WO2016208703A1 - Optical fiber holding device and laser oscillator comprising same - Google Patents

Optical fiber holding device and laser oscillator comprising same Download PDF

Info

Publication number
WO2016208703A1
WO2016208703A1 PCT/JP2016/068765 JP2016068765W WO2016208703A1 WO 2016208703 A1 WO2016208703 A1 WO 2016208703A1 JP 2016068765 W JP2016068765 W JP 2016068765W WO 2016208703 A1 WO2016208703 A1 WO 2016208703A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
holder
holding device
heat
heat conducting
Prior art date
Application number
PCT/JP2016/068765
Other languages
French (fr)
Japanese (ja)
Inventor
政直 村上
クリスチャン シェーファー
聡史 服部
Original Assignee
三星ダイヤモンド工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星ダイヤモンド工業株式会社 filed Critical 三星ダイヤモンド工業株式会社
Priority to JP2017524987A priority Critical patent/JP6799328B2/en
Publication of WO2016208703A1 publication Critical patent/WO2016208703A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers

Definitions

  • the present invention relates to an optical fiber holding device and a laser oscillator having the same.
  • Laser oscillators using optical fibers are widely used.
  • This laser oscillator oscillates laser light by an optical fiber using excitation light oscillated from a light source.
  • the optical fiber used for this laser oscillator is formed of fluoride glass such as ZBLAN glass doped with a laser active material such as erbium.
  • the laser active substance contained in the optical fiber since the laser active substance contained in the optical fiber generates heat by absorbing the excitation light, the heat generation may damage the optical fiber.
  • the fluoride fiber has lower heat resistance than the quartz fiber.
  • the optical fiber is sandwiched between two plate-like indiums, and the optical fiber and two indiums are sandwiched between the holder and the holder presser from the outside.
  • the holder is generally provided with a heat sink in contact therewith.
  • indium is a soft metal, it is deformed by inserting an optical fiber between small pieces. For this reason, a pair of indium is in contact with the gap between the fiber and the holder being small, and cooling can be performed by heat transfer.
  • An object of the present invention is to provide an optical fiber holding device that can efficiently dissipate heat generated by an optical fiber. Moreover, it is providing the laser oscillator which has this holding
  • An optical fiber holding device is a device that is placed on a heat sink for cooling an optical fiber and holds the optical fiber.
  • the holding device includes a first holder, a second holder, a plate-like first heat conducting member, and a second heat conducting member.
  • the first holder is disposed in contact with the heat sink. A part of the surface of the second holder comes into contact with the surface of the first holder.
  • the first heat conducting member and the second heat conducting member are disposed so as to sandwich the optical fiber between the first holder and the second holder, and are deformable and have heat conductivity.
  • the first holder has a first recess, a first groove, and a flat portion.
  • the first recess is formed at a position corresponding to the distal end side of the optical fiber on the surface facing the second holder, and can accommodate the first heat conducting member.
  • channel is formed in a 1st recessed part, and accommodates the optical fiber pinched
  • the flat portion is formed in a portion other than the first recess.
  • the second holder is formed to have a length that covers the first concave portion and the flat portion of the first holder, and accommodates the second heat conducting member at a position corresponding to the first concave portion on the surface facing the first holder. It has a possible second recess over its entire length.
  • the tip portion of the optical fiber is sandwiched between the first heat conducting member and the second heat conducting member, and together with these heat conducting members, the concave portions and the first grooves of the first holder and the second holder. Is housed in. And the 1st holder and the 2nd holder contact
  • the first heat conducting member and the second heat conducting member are sandwiched between the first holder and the second holder, but the two heat conducting members are accommodated in the recesses formed in both holders. . For this reason, a part of surface has contact
  • the first holder has a first recess formed at a position corresponding to the tip side of the optical fiber, and a flat portion at a portion other than the first recess. That is, the optical fiber is sandwiched and held between the flat portion of the first holder and the concave portion of the second holder. For this reason, the optical fiber can be firmly attached to the first holder, and the optical fiber and the heat conducting member can be prevented from floating. For this reason, cooling efficiency can be improved.
  • the second holder has a second groove that is formed in the second recess and accommodates the optical fiber sandwiched between the first heat conducting member and the second heat conducting member together with the second heat conducting member.
  • the optical fiber is accommodated in the first and second grooves formed in the first and second recesses together with the first and second heat conducting members, it is possible to prevent a lateral shift. Therefore, the optical fiber is held in close contact with the first holder and the second holder together with each heat conducting member, and the cooling efficiency can be further increased. In addition, the positional accuracy of the tip of the optical fiber can be increased.
  • a regulation groove for regulating lateral movement of the optical fiber is formed in the flat portion of the first holder.
  • the optical fiber can be prevented from shifting to the right and left by the restriction groove formed in the flat portion of the first holder, and the position accuracy of the optical fiber tip can be further increased.
  • the first heat conductive member and the second heat conductive member are made of indium.
  • a laser oscillator includes an excitation light source, an oscillation optical fiber that receives the excitation light from the excitation light source and outputs laser light, and a part of the oscillation optical fiber described above.
  • An optical fiber holding device and a heat sink on which the optical fiber holding device is placed are provided.
  • the heat generated by the optical fiber can be efficiently radiated. Further, the optical fiber and the heat conducting member can be prevented from floating from the first and second holders, and the cooling efficiency can be increased.
  • FIG. 1st holder The schematic block diagram of a laser oscillator.
  • FIG. 1 is a schematic configuration diagram of a laser oscillator according to an embodiment of the present invention.
  • the laser oscillator 1 includes an excitation light source 2, first to third lenses 3a, 3b, 3c, first and second dichroic mirrors 4a, 4b, a damper 5, an optical fiber 6, a housing 7, and a chiller device 8. Yes.
  • the excitation light source 2 oscillates excitation light and can be constituted by, for example, a lamp or a semiconductor laser.
  • the excitation light oscillated by the excitation light source 2 is output through the excitation light transmission fiber 2a.
  • the first lens 3a is a lens that functions as a collimating lens, and is disposed between the excitation light transmission fiber 2a and a first window portion 7a of the casing 7 described later.
  • the first lens 3a converts the excitation light from the excitation light source 2 from a divergent light state to a parallel light state.
  • the second lens 3 b is a lens that functions as a condensing lens and a collimating lens, and is disposed between the first dichroic mirror 4 a and the first end 11 of the optical fiber 6.
  • the second lens 3b collects the excitation light converted into the parallel light by the first lens 3a and radiates it to the optical fiber 6, and converts the laser light emitted from the optical fiber 6 into a parallel light state. .
  • the third lens 3 c is a lens that functions as a condenser lens and a collimating lens, and is disposed between the second dichroic mirror 4 b and the second end portion 12 of the optical fiber 6.
  • the third lens 3 c converts the excitation light and laser light from the optical fiber 6 into a parallel light state, and condenses the laser light from the second dichroic mirror 4 b and emits it to the optical fiber 6.
  • the first dichroic mirror 4a is disposed between the first lens 3a and the second lens 3b.
  • the first dichroic mirror 4 a transmits the excitation light from the excitation light source 2 and reflects it so as to change the traveling direction of the laser light from the optical fiber 6.
  • the second dichroic mirror 4b is disposed between the third lens 3c and the damper 5.
  • the second dichroic mirror 4 b is configured to transmit the excitation light from the optical fiber 6 and reflect the laser light from the optical fiber 6.
  • the damper 5 is a member that is disposed on the downstream side of the second dichroic mirror 4b and absorbs the excitation light transmitted through the second dichroic mirror 4b.
  • the optical fiber 6 has a core and a clad formed so as to cover the core.
  • a first end cap (not shown) is thermally fused to the end face of the first end 11 of the optical fiber 6, and a second end cap (not shown) is attached to the end face of the second end 12. It is heat-sealed.
  • FIG. 2 is a perspective view of the holding device 60 provided at the first end portion 11.
  • 3 is a sectional view of the holding device 60, and
  • FIGS. 4 and 5 are exploded views thereof.
  • the holding device provided at the second end portion 12 has the same configuration.
  • the holding device 60 includes a holder 14 (first holder), a holder presser (second holder) 15, and first indium (between these and the optical fiber 6).
  • the holder 14 is a copper block-shaped member.
  • a first recess 14 b for accommodating the first indium 18 is formed on one surface 14 a of the holder 14. As shown in FIG. 5, the first concave portion 14b is formed only at a part on the tip side of the optical fiber 6, and the portion where the first concave portion 14b is not formed is a flat portion (that is, the surface 14a). Yes.
  • the first recess 14 b is formed with a first groove 14 c for accommodating a part of the optical fiber 6 (half in the radial direction) and the first indium 18.
  • channel 14c is formed in the width direction center part in the bottom face of the 1st recessed part 14b.
  • the first recess 14b is set to have a dimension that allows a gap to be formed at the end in a state where the first indium 18 is accommodated. Specifically, in FIG. 3, the width in the same direction of the first recess 14b is set to w1 larger than w0 with respect to the width w0 of the first indium 18 in the left-right direction.
  • the holder holder 15 has the same basic configuration as the holder 14 although the dimension in the extending direction of the optical fiber 6 is different. That is, a second recess 15b for accommodating the second indium 19 is formed on one surface 15a of the holder presser 15, and a part of the optical fiber 6 and the second indium 19 are accommodated in the second recess 15b. A second groove 15c is formed for this purpose.
  • the shape of the second groove 15 c is the same as that of the first groove 14 c of the holder 14.
  • the dimension of the first recess 15b in the left-right width direction is the same as that of the first recess 14b, and is set such that a gap is formed at the end while the second indium 19 is accommodated.
  • the length of the holder retainer 15 in the direction in which the optical fiber 6 extends is longer than the length of the first recess 14 b of the holder 14 in the same direction. That is, the holder presser 15 is formed to have a length that covers a part of the first concave portion 14 b and the flat portion 14 a of the holder 14. The second recess 15 b and the second groove 15 c are formed over the entire length of the holder presser 15.
  • the length of the first indium 18 is formed substantially the same as the length of the first recess 14 b of the holder 14.
  • the length of the second indium 19 is formed to be the same as the length of the second recess 15 b of the holder presser 15.
  • the holder presser 15 has four through holes 15d, and the holder 14 has four tap holes 14d at positions corresponding to the through holes 15d.
  • the optical fiber 6 is sandwiched between the first and second indiums 18 and 19 by screwing a bolt (not shown) that penetrates the through hole 15d of the holder presser 15 into the tap hole 14d of the holder 14. In this state, these can be held between the holder 14 and the holder presser 15.
  • the total d (see FIG. 3) of the depth from the surface 14a of the groove 14c of the holder 14 and the depth from the surface 15a of the groove 15c of the holder retainer 15 is the sum of the first indium 18 and the second indium 19. It is smaller than the thickness and the diameter of the optical fiber 6. Therefore, as shown in FIG. 3, when the first and second indiums 18 and 19 and the optical fiber 6 are sandwiched between the holder 14 and the holder presser 15, the first and second indiums 18 and 19 It is deformed while being in close contact with the outer periphery of the fiber 6. The deformation is absorbed in the gaps (w1-w0) formed between the first and second indiums 18 and 19 and the recesses 14b and 15b.
  • the housing 7 is a rectangular parallelepiped box, and includes second and third lenses 3 b and 3 c, first and second dichroic mirrors 4 a and 4 b, a damper 5, and an optical fiber 6. Contained.
  • casing 7 has the 1st window part 7a and the 2nd window part 7b which have a light transmittance. Excitation light from the light source 2 enters the housing 7 through the first window portion 7 a and is sent to the optical fiber 6. Further, the laser light from the optical fiber 6 is output to the outside of the housing 7 via the second window portion 7b.
  • the casing 7 has a base portion 70 as a heat sink on the bottom surface.
  • the base portion 70 is formed with a flow path through which a refrigerant flows. Since the holder 14 is installed on the base portion 70, the holding device 60 including the holder 14 is cooled.
  • the inside of the housing 7 is filled with nitrogen. Further, a desiccant is put in the housing 7 in order to remove moisture in the housing 7.
  • the chiller device 8 is connected to the housing 7 via a pipe 8a.
  • the chiller device 8 adjusts the temperature of the refrigerant flowing in the base portion of the housing 7. Specifically, the chiller device 8 cools the refrigerant sent from the base portion of the housing 7 via the pipe 8a. The refrigerant cooled in the chiller device 8 is returned to the base portion of the housing 7 through the pipe 8a.
  • the excitation light oscillated in the excitation light source 2 is output from the excitation light transmission fiber 2a, becomes a parallel light state in the first lens 3a, and enters the housing 7 through the first window portion 7a.
  • the excitation light that has entered the housing 7 passes through the first dichroic mirror 4 a, is collected by the second lens 3 b, and enters the optical fiber 6 from the first end 11 of the optical fiber 6.
  • the excitation light incident on the optical fiber 6 propagates in the core, and the laser active material doped in the core is excited to output laser light. And the excitation light radiated
  • the laser light generated in the core of the optical fiber 6 is emitted from the second end portion 12 of the optical fiber 6 and converted into a parallel light state by the third lens 3c. Then, the laser light is reflected by the second dichroic mirror 4b, condensed by the third lens 3c, and enters the optical fiber 6 from the second end 12 side.
  • the laser light incident on the optical fiber 6 propagates in the core and is emitted from the first end portion 11 of the optical fiber 6. Then, the laser light is converted into a parallel light state by the second lens 3b, reflected in the first dichroic mirror 4a, the traveling direction is changed so as to go to the second window portion 7b, and the laser beam passes through the second window portion 7b. Is radiated to the outside of the housing 7.
  • the optical fiber 6 In the laser oscillation operation described above, the optical fiber 6 generates heat, but since the optical fiber 6 is held in close contact with the base portion 70, it is efficiently cooled by the refrigerant flowing in the base portion 21.
  • the optical fiber 6 is held by the holder 14 and the holder presser 15 and the first and second indiums 18 and 19, and is cooled by heat conduction. Therefore, the heat generated in the optical fiber 6 can be radiated. Moreover, since the first and second indiums 18 and 19 are accommodated in the first and second recesses 14b and 15b formed in the holder 14 and the holder presser 15, the surfaces of the holder 14 and the holder presser 15 are brought into contact with each other. And the heat transfer between the two becomes good. Therefore, the optical fiber 6 can be efficiently cooled.
  • the optical fiber 6 since the optical fiber 6 is pressed against the flat portion 14a of the holder 14 by the holder press 15, the optical fiber 6 can be prevented from being lifted, and the cooling efficiency can be further increased.
  • a V-shaped groove 14e ′ as shown in FIG. 6 may be formed in the direction along the first recess 14b. Good. In this case, the optical fiber 6 can be prevented from being displaced in the left-right direction, and the accuracy of the position of the end face of the optical fiber can be increased.
  • channel is not limited to V shape.
  • the second groove 15c is formed in the second recess 15b of the holder presser 15.
  • the second groove 15c can be omitted depending on the degree of deformation of the second heat conducting member. is there.
  • Indium is used as a heat conducting member that sandwiches the optical fiber, but any member having good heat conductivity that can be deformed may be used, and is not particularly limited to indium.
  • the holding device is applied to the laser oscillator in the above embodiment, the holding device of the present invention can be used when holding the optical fiber in another optical fiber device.

Abstract

In order to efficiently radiate heat generated by an optical fiber, this device is provided with a holder 14, a holder retainer 15, and first and second indiums 18, 19. The surfaces of respective parts of the holder 14 and the holder retainer 15 abut on each other. Both the indiums 18, 19 are disposed between the holder 14 and the holder retainer 15 so as to sandwich an optical fiber 6 therebetween. The holder 14 has a first recessed portion 14b for housing the first indium 18, a first groove 14c, and a flat portion 14a. The first groove 14c is formed within the first recessed portion 14b and houses the optical fiber 6 sandwiched between both the indiums 18, 19. The flat portion 14a is formed in a portion other than that where the first recessed portion 14b is formed. The holder retainer 15 is formed to have a length covering the first recessed portion 14b and the flat portion 14a of the holder 14, and has a second recessed portion 15b for housing the second indium 19.

Description

光ファイバ保持装置及びこれを有するレーザ発振器Optical fiber holding device and laser oscillator having the same
 本発明は、光ファイバ保持装置及びこれを有するレーザ発振器に関する。 The present invention relates to an optical fiber holding device and a laser oscillator having the same.
 光ファイバを利用したレーザ発振器が広く用いられている。このレーザ発振器は、光源から発振される励起光を利用して、光ファイバによってレーザ光を発振する。このレーザ発振器に用いられる光ファイバは、例えば、エルビウムなどのレーザ活性物質がドープされたZBLANガラスなどのフッ化物ガラスによって形成される。 Laser oscillators using optical fibers are widely used. This laser oscillator oscillates laser light by an optical fiber using excitation light oscillated from a light source. The optical fiber used for this laser oscillator is formed of fluoride glass such as ZBLAN glass doped with a laser active material such as erbium.
 ここで、光ファイバに含まれるレーザ活性物質は励起光を吸収することによって発熱するため、この発熱によって光ファイバが損傷する場合がある。特に、フッ化物ファイバでは、石英ファイバと比較して耐熱性が低い。 Here, since the laser active substance contained in the optical fiber generates heat by absorbing the excitation light, the heat generation may damage the optical fiber. In particular, the fluoride fiber has lower heat resistance than the quartz fiber.
 そこで、例えば特許文献1の図4には、光ファイバを2枚の板状のインジウムで挟みこみ、さらにその外側からホルダとホルダ押えとで光ファイバ及び2枚のインジウムを挟みこむようにしている。また、ホルダには、一般的にヒートシンクが接触して設けられている。 Therefore, for example, in FIG. 4 of Patent Document 1, the optical fiber is sandwiched between two plate-like indiums, and the optical fiber and two indiums are sandwiched between the holder and the holder presser from the outside. The holder is generally provided with a heat sink in contact therewith.
 このような構成では、光ファイバからの熱は、インジウム及びホルダを介してヒートシンクに伝達される。これにより、光ファイバの熱が放熱される。 In such a configuration, heat from the optical fiber is transferred to the heat sink via the indium and the holder. Thereby, the heat of the optical fiber is dissipated.
特開2010-153673号公報JP 2010-153673 A
 特許文献1の構造では、インジウムは、柔らかい金属であるため、小片同士で光ファイバを挟みこむことによって変形する。このため、ファイバ及びホルダとの隙間が少ない状態で1対のインジウムが接触し、伝熱により冷却を行うことができる。 In the structure of Patent Document 1, since indium is a soft metal, it is deformed by inserting an optical fiber between small pieces. For this reason, a pair of indium is in contact with the gap between the fiber and the holder being small, and cooling can be performed by heat transfer.
 しかし、2枚のインジウムで光ファイバを挟みこむことによって、ホルダとホルダ押えとの間に2枚のインジウム分の隙間が形成される。このため、ホルダとホルダ押えとの間での伝熱性が劣ることになる。このため、ホルダへの伝熱性が阻害され、効率よく放熱を行うことができない。 However, by sandwiching the optical fiber with two pieces of indium, a gap for two pieces of indium is formed between the holder and the holder presser. For this reason, heat transfer between the holder and the holder presser is inferior. For this reason, the heat transfer to the holder is hindered and heat cannot be efficiently dissipated.
 本発明の課題は、光ファイバの発熱を効率よく放熱することができる光ファイバの保持装置を提供することにある。また、この保持装置を有するレーザ発振器を提供することにある。 An object of the present invention is to provide an optical fiber holding device that can efficiently dissipate heat generated by an optical fiber. Moreover, it is providing the laser oscillator which has this holding | maintenance apparatus.
 (1)本発明の一側面に係る光ファイバ保持装置は、光ファイバを冷却するヒートシンク上に配置され、光ファイバを保持する装置である。この保持装置は、第1ホルダと、第2ホルダと、板状の第1熱伝導部材及び第2熱伝導部材と、を備えている。第1ホルダはヒートシンクに接触して配置される。第2ホルダは表面の一部が第1ホルダの表面に当接する。第1熱伝導部材及び第2熱伝導部材は、第1ホルダと第2ホルダとの間において、光ファイバを挟みこむように配置され、変形可能かつ熱伝導性を有する。そして、第1ホルダは、第1凹部と、第1溝と、平坦部と、を有している。第1凹部は、第2ホルダと対向する面において光ファイバの先端側に対応する位置に形成され、第1熱伝導部材を収容可能である。第1溝は、第1凹部内に形成され、第1熱伝導部材と第2熱伝導部材とによって挟み込まれた光ファイバを第1熱伝導部材とともに収容する。平坦部は第1凹部が形成された以外の部分に形成されている。また、第2ホルダは、第1ホルダの第1凹部及び平坦部を覆う長さに形成されるとともに、第1ホルダと対向する面における第1凹部に対応する位置に第2熱伝導部材を収容可能な第2凹部を全長にわたって有している。 (1) An optical fiber holding device according to one aspect of the present invention is a device that is placed on a heat sink for cooling an optical fiber and holds the optical fiber. The holding device includes a first holder, a second holder, a plate-like first heat conducting member, and a second heat conducting member. The first holder is disposed in contact with the heat sink. A part of the surface of the second holder comes into contact with the surface of the first holder. The first heat conducting member and the second heat conducting member are disposed so as to sandwich the optical fiber between the first holder and the second holder, and are deformable and have heat conductivity. The first holder has a first recess, a first groove, and a flat portion. The first recess is formed at a position corresponding to the distal end side of the optical fiber on the surface facing the second holder, and can accommodate the first heat conducting member. A 1st groove | channel is formed in a 1st recessed part, and accommodates the optical fiber pinched | interposed by the 1st heat conductive member and the 2nd heat conductive member with a 1st heat conductive member. The flat portion is formed in a portion other than the first recess. The second holder is formed to have a length that covers the first concave portion and the flat portion of the first holder, and accommodates the second heat conducting member at a position corresponding to the first concave portion on the surface facing the first holder. It has a possible second recess over its entire length.
 この装置では、光ファイバの先端部は、第1熱伝導部材と第2熱伝導部材とに挟持された状態で、これらの熱伝導部材とともに第1ホルダ及び第2ホルダの各凹部及び第1溝に収容されている。そして、第1ホルダと第2ホルダとは、一部の表面が当接している。 In this apparatus, the tip portion of the optical fiber is sandwiched between the first heat conducting member and the second heat conducting member, and together with these heat conducting members, the concave portions and the first grooves of the first holder and the second holder. Is housed in. And the 1st holder and the 2nd holder contact | abut one part surface.
 ここでは、第1ホルダと第2ホルダとの間に第1熱伝導部材及び第2熱伝導部材が挟持されているが、2つの熱伝導部材は両ホルダに形成された凹部に収容されている。このため、第1ホルダと第2ホルダとは、一部の表面が当接しており、互いの間の熱伝導性が良好になる。したがって、光ファイバの発熱を効率よく放熱することができる。 Here, the first heat conducting member and the second heat conducting member are sandwiched between the first holder and the second holder, but the two heat conducting members are accommodated in the recesses formed in both holders. . For this reason, a part of surface has contact | abutted the 1st holder and the 2nd holder, and the heat conductivity between each other becomes good. Therefore, the heat generated by the optical fiber can be efficiently radiated.
 また、第1ホルダは、光ファイバの先端側に対応する位置に第1凹部が形成されるとともに、第1凹部が形成された以外の部分に平坦部を有している。すなわち、光ファイバは、第1ホルダの平坦部と第2ホルダの凹部とによって挟み込まれて保持されている。このため、光ファイバを第1ホルダにしっかり密着させて、光ファイバ及び熱伝導部材の浮き上がりを防止できる。このため、冷却効率を高めることができる。 Further, the first holder has a first recess formed at a position corresponding to the tip side of the optical fiber, and a flat portion at a portion other than the first recess. That is, the optical fiber is sandwiched and held between the flat portion of the first holder and the concave portion of the second holder. For this reason, the optical fiber can be firmly attached to the first holder, and the optical fiber and the heat conducting member can be prevented from floating. For this reason, cooling efficiency can be improved.
 (2)好ましくは、第2ホルダは、第2凹部内に形成され、第1熱伝導部材と第2熱伝導部材とによって挟み込まれた光ファイバを第2熱伝導部材とともに収容する第2溝を有している。 (2) Preferably, the second holder has a second groove that is formed in the second recess and accommodates the optical fiber sandwiched between the first heat conducting member and the second heat conducting member together with the second heat conducting member. Have.
 この場合は、光ファイバは第1及び第2凹部に形成された第1及び第2溝に、第1及び第2熱伝導部材とともに収容されるので、左右方向のずれを防止できる。したがって、光ファイバは各熱伝導部材とともに第1ホルダ及び第2ホルダに密着して保持され、冷却効率をより高めることができる。また、光ファイバ先端の位置精度を高めることができる。 In this case, since the optical fiber is accommodated in the first and second grooves formed in the first and second recesses together with the first and second heat conducting members, it is possible to prevent a lateral shift. Therefore, the optical fiber is held in close contact with the first holder and the second holder together with each heat conducting member, and the cooling efficiency can be further increased. In addition, the positional accuracy of the tip of the optical fiber can be increased.
 (3)好ましくは、第1ホルダの平坦部には、光ファイバの横方向の移動を規制するための規制溝が形成されている。 (3) Preferably, a regulation groove for regulating lateral movement of the optical fiber is formed in the flat portion of the first holder.
 この場合は、第1ホルダの平坦部に形成された規制溝によって光ファイバが左右にずれるのを防止でき、光ファイバ先端の位置精度をより高めることができる。 In this case, the optical fiber can be prevented from shifting to the right and left by the restriction groove formed in the flat portion of the first holder, and the position accuracy of the optical fiber tip can be further increased.
 (4)好ましくは、第1熱伝導部材及び第2熱伝導部材はインジウムで構成されている。 (4) Preferably, the first heat conductive member and the second heat conductive member are made of indium.
 (5)本発明の一側面に係るレーザ発振器は、励起光源と、励起光源からの励起光が導入されレーザ光を出力する発振用光ファイバと、発振用光ファイバの一部を保持する前述の光ファイバ保持装置と、光ファイバ保持装置が載置されるヒートシンクと、を備えている。 (5) A laser oscillator according to an aspect of the present invention includes an excitation light source, an oscillation optical fiber that receives the excitation light from the excitation light source and outputs laser light, and a part of the oscillation optical fiber described above. An optical fiber holding device and a heat sink on which the optical fiber holding device is placed are provided.
 以上のような本発明では、光ファイバの発熱を効率よく放熱することができる。また、光ファイバ及び熱伝導部材が、第1及び第2ホルダから浮き上がるのを防止でき、冷却効率を高めることができる。 In the present invention as described above, the heat generated by the optical fiber can be efficiently radiated. Further, the optical fiber and the heat conducting member can be prevented from floating from the first and second holders, and the cooling efficiency can be increased.
レーザ発振器の概略構成図。The schematic block diagram of a laser oscillator. 保持装置の外観斜視図。The external appearance perspective view of a holding | maintenance apparatus. 保持装置の断面図。Sectional drawing of a holding | maintenance apparatus. 図3の分解図。The exploded view of FIG. 図4の断面図。Sectional drawing of FIG. 第1ホルダの他の実施形態を示す断面図。Sectional drawing which shows other embodiment of a 1st holder.
 [レーザ発振器の構成]
 図1は、本発明の一実施形態によるレーザ発振器の概略構成図である。レーザ発振器1は、励起光源2、第1~第3レンズ3a,3b,3c、第1及び第2ダイクロイックミラー4a,4b、ダンパ5、光ファイバ6、筐体7、並びにチラー装置8を備えている。
[Configuration of laser oscillator]
FIG. 1 is a schematic configuration diagram of a laser oscillator according to an embodiment of the present invention. The laser oscillator 1 includes an excitation light source 2, first to third lenses 3a, 3b, 3c, first and second dichroic mirrors 4a, 4b, a damper 5, an optical fiber 6, a housing 7, and a chiller device 8. Yes.
 励起光源2は、励起光を発振するものであり、例えばランプ又は半導体レーザなどによって構成することができる。励起光源2にて発振された励起光は、励起光伝送ファイバ2aを介して出力される。 The excitation light source 2 oscillates excitation light and can be constituted by, for example, a lamp or a semiconductor laser. The excitation light oscillated by the excitation light source 2 is output through the excitation light transmission fiber 2a.
 第1レンズ3aは、コリメートレンズとして機能するレンズであり、励起光伝送ファイバ2aと、後述する筐体7の第1窓部7aとの間に配置されている。第1レンズ3aは、励起光源2からの励起光を発散光の状態から平行光の状態に変換する。 The first lens 3a is a lens that functions as a collimating lens, and is disposed between the excitation light transmission fiber 2a and a first window portion 7a of the casing 7 described later. The first lens 3a converts the excitation light from the excitation light source 2 from a divergent light state to a parallel light state.
 第2レンズ3bは、集光レンズ及びコリメートレンズとして機能するレンズであり、第1ダイクロイックミラー4aと光ファイバ6の第1端部11との間に配置されている。第2レンズ3bは、第1レンズ3aによって平行光の状態とされた励起光を集光して光ファイバ6に放射するとともに、光ファイバ6から放射されたレーザ光を平行光の状態に変換する。 The second lens 3 b is a lens that functions as a condensing lens and a collimating lens, and is disposed between the first dichroic mirror 4 a and the first end 11 of the optical fiber 6. The second lens 3b collects the excitation light converted into the parallel light by the first lens 3a and radiates it to the optical fiber 6, and converts the laser light emitted from the optical fiber 6 into a parallel light state. .
 第3レンズ3cは、集光レンズ及びコリメートレンズとして機能するレンズであり、第2ダイクロイックミラー4bと光ファイバ6の第2端部12との間に配置されている。第3レンズ3cは、光ファイバ6からの励起光及びレーザ光を平行光の状態に変換するとともに、第2ダイクロイックミラー4bからのレーザ光を集光して光ファイバ6に放射する。 The third lens 3 c is a lens that functions as a condenser lens and a collimating lens, and is disposed between the second dichroic mirror 4 b and the second end portion 12 of the optical fiber 6. The third lens 3 c converts the excitation light and laser light from the optical fiber 6 into a parallel light state, and condenses the laser light from the second dichroic mirror 4 b and emits it to the optical fiber 6.
 第1ダイクロイックミラー4aは、第1レンズ3aと第2レンズ3bとの間に配置されている。第1ダイクロイックミラー4aは、励起光源2からの励起光を透過するとともに、光ファイバ6からのレーザ光の進行方向を変更するように反射する。 The first dichroic mirror 4a is disposed between the first lens 3a and the second lens 3b. The first dichroic mirror 4 a transmits the excitation light from the excitation light source 2 and reflects it so as to change the traveling direction of the laser light from the optical fiber 6.
 第2ダイクロイックミラー4bは、第3レンズ3cとダンパ5との間に配置されている。第2ダイクロイックミラー4bは、光ファイバ6からの励起光を透過するとともに、光ファイバ6からのレーザ光を反射するように構成されている。 The second dichroic mirror 4b is disposed between the third lens 3c and the damper 5. The second dichroic mirror 4 b is configured to transmit the excitation light from the optical fiber 6 and reflect the laser light from the optical fiber 6.
 ダンパ5は、第2ダイクロイックミラー4bの下流側に配置されており、第2ダイクロイックミラー4bが透過した励起光を吸収する部材である。 The damper 5 is a member that is disposed on the downstream side of the second dichroic mirror 4b and absorbs the excitation light transmitted through the second dichroic mirror 4b.
 光ファイバ6は、詳細は省略するが、コアと、コアを覆うように形成されたクラッドと、を有している。光ファイバ6の第1端部11の端面には第1エンドキャップ(図示せず)が熱融着されており、また第2端部12の端面には第2エンドキャップ(図示せず)が熱融着されている。 Although the details are omitted, the optical fiber 6 has a core and a clad formed so as to cover the core. A first end cap (not shown) is thermally fused to the end face of the first end 11 of the optical fiber 6, and a second end cap (not shown) is attached to the end face of the second end 12. It is heat-sealed.
 光ファイバ6の第1エンドキャップ及び第2エンドキャップの内側(端面から離れる側)には、図2に示すように、保持装置60が設けられている。図2は、第1端部11に設けられた保持装置60の斜視図である。また、図3に保持装置60の断面図を、図4及び図5にその分解図を示している。なお、第2端部12に設けられた保持装置も同様の構成である。 As shown in FIG. 2, a holding device 60 is provided inside the first end cap and the second end cap of the optical fiber 6 (on the side away from the end face). FIG. 2 is a perspective view of the holding device 60 provided at the first end portion 11. 3 is a sectional view of the holding device 60, and FIGS. 4 and 5 are exploded views thereof. The holding device provided at the second end portion 12 has the same configuration.
 図2~図5に示すように、保持装置60は、ホルダ14(第1ホルダ)と、ホルダ押え(第2ホルダ)15と、これらと光ファイバ6との間に配置された第1インジウム(第1熱伝導部材)18及び第2インジウム(第2熱伝導部材)19と、を有している。 As shown in FIGS. 2 to 5, the holding device 60 includes a holder 14 (first holder), a holder presser (second holder) 15, and first indium (between these and the optical fiber 6). A first heat conducting member 18 and a second indium (second heat conducting member) 19.
 ホルダ14は銅製のブロック状の部材である。ホルダ14の一方の表面14aには、第1インジウム18を収容するための第1凹部14bが形成されている。第1凹部14bは、図5に示すように、光ファイバ6の先端側の一部にのみ形成されており、第1凹部14bが形成されていない部分は平坦部(すなわち表面14a)になっている。また、第1凹部14bには、光ファイバ6の一部(径方向の半分)と第1インジウム18とを収容するための第1溝14cが形成されている。第1溝14cは、第1凹部14bの底面において幅方向中央部に形成されている。 The holder 14 is a copper block-shaped member. A first recess 14 b for accommodating the first indium 18 is formed on one surface 14 a of the holder 14. As shown in FIG. 5, the first concave portion 14b is formed only at a part on the tip side of the optical fiber 6, and the portion where the first concave portion 14b is not formed is a flat portion (that is, the surface 14a). Yes. The first recess 14 b is formed with a first groove 14 c for accommodating a part of the optical fiber 6 (half in the radial direction) and the first indium 18. The 1st groove | channel 14c is formed in the width direction center part in the bottom face of the 1st recessed part 14b.
 第1凹部14bは、第1インジウム18を収容した状態で、端部に隙間が形成されるような寸法に設定されている。具体的には、図3において、第1インジウム18の左右方向の幅w0に対して、第1凹部14bの同方向の幅はw0より大きいw1に設定されている。 The first recess 14b is set to have a dimension that allows a gap to be formed at the end in a state where the first indium 18 is accommodated. Specifically, in FIG. 3, the width in the same direction of the first recess 14b is set to w1 larger than w0 with respect to the width w0 of the first indium 18 in the left-right direction.
 ホルダ押え15は、光ファイバ6の延びる方向の寸法が異なるが、基本的な構成はホルダ14と同様である。すなわち、ホルダ押え15の一方の表面15aには、第2インジウム19を収容するための第2凹部15bが形成され、第2凹部15bには、光ファイバ6の一部及び第2インジウム19を収容するための第2溝15cが形成されている。第2溝15cの形状はホルダ14の第1溝14cと同様である。また、第1凹部15bの左右幅方向の寸法は第1凹部14bと同様であり、第2インジウム19を収容した状態で、端部に隙間が形成されるような寸法に設定されている。 The holder holder 15 has the same basic configuration as the holder 14 although the dimension in the extending direction of the optical fiber 6 is different. That is, a second recess 15b for accommodating the second indium 19 is formed on one surface 15a of the holder presser 15, and a part of the optical fiber 6 and the second indium 19 are accommodated in the second recess 15b. A second groove 15c is formed for this purpose. The shape of the second groove 15 c is the same as that of the first groove 14 c of the holder 14. The dimension of the first recess 15b in the left-right width direction is the same as that of the first recess 14b, and is set such that a gap is formed at the end while the second indium 19 is accommodated.
 ホルダ押え15の光ファイバ6の延びる方向の長さは、ホルダ14の第1凹部14bの同方向の長さより長く形成されている。すなわち、ホルダ押え15は、ホルダ14の第1凹部14b及び平坦部14aの一部を覆う長さに形成されている。そして、第2凹部15b及び第2溝15cは、ホルダ押え15の全長にわたって形成されている。 The length of the holder retainer 15 in the direction in which the optical fiber 6 extends is longer than the length of the first recess 14 b of the holder 14 in the same direction. That is, the holder presser 15 is formed to have a length that covers a part of the first concave portion 14 b and the flat portion 14 a of the holder 14. The second recess 15 b and the second groove 15 c are formed over the entire length of the holder presser 15.
 なお、第1インジウム18の長さはホルダ14の第1凹部14bの長さとほぼ同じに形成されている。また、同様に、第2インジウム19の長さはホルダ押え15の第2凹部15bの長さと同じに形成されている。 Note that the length of the first indium 18 is formed substantially the same as the length of the first recess 14 b of the holder 14. Similarly, the length of the second indium 19 is formed to be the same as the length of the second recess 15 b of the holder presser 15.
 ホルダ押え15には4つの貫通孔15dが形成され、ホルダ14には貫通孔15dに対応する位置に4つのタップ穴14dが形成されている。 The holder presser 15 has four through holes 15d, and the holder 14 has four tap holes 14d at positions corresponding to the through holes 15d.
 以上のような構成により、ホルダ押え15の貫通孔15dを貫通するボルト(図示せず)をホルダ14のタップ穴14dにねじ込むことによって、第1及び第2インジウム18,19で光ファイバ6を挟み込んだ状態で、これらをホルダ14とホルダ押え15との間に保持することができる。 With the configuration described above, the optical fiber 6 is sandwiched between the first and second indiums 18 and 19 by screwing a bolt (not shown) that penetrates the through hole 15d of the holder presser 15 into the tap hole 14d of the holder 14. In this state, these can be held between the holder 14 and the holder presser 15.
 ここで、ホルダ14の溝14cの表面14aからの深さと、ホルダ押え15の溝15cの表面15aからの深さと、の合計d(図3参照)は、第1インジウム18及び第2インジウム19の厚みと光ファイバ6の直径よりも小さい。したがって、図3に示すように、ホルダ14とホルダ押え15との間に第1及び第2インジウム18,19と光ファイバ6とを挟み込んだ場合、第1及び第2インジウム18,19は、光ファイバ6の外周に密着しながら変形する。そして、この変形分は、第1及び第2インジウム18,19と各凹部14b,15bとの間に形成された隙間(w1-w0)に吸収されることになる。 Here, the total d (see FIG. 3) of the depth from the surface 14a of the groove 14c of the holder 14 and the depth from the surface 15a of the groove 15c of the holder retainer 15 is the sum of the first indium 18 and the second indium 19. It is smaller than the thickness and the diameter of the optical fiber 6. Therefore, as shown in FIG. 3, when the first and second indiums 18 and 19 and the optical fiber 6 are sandwiched between the holder 14 and the holder presser 15, the first and second indiums 18 and 19 It is deformed while being in close contact with the outer periphery of the fiber 6. The deformation is absorbed in the gaps (w1-w0) formed between the first and second indiums 18 and 19 and the recesses 14b and 15b.
 筐体7は、図1に示すように、直方体状の箱体であって、第2及び第3レンズ3b,3c、第1及び第2ダイクロイックミラー4a,4b、ダンパ5、並びに光ファイバ6を収容している。筐体7は、光透過性を有する第1窓部7a及び第2窓部7bを有する。光源2からの励起光は、第1窓部7aを介して筐体7内に進入し、光ファイバ6へと送られる。また、光ファイバ6からのレーザ光は、第2窓部7bを介して、筐体7の外部に出力される。 As shown in FIG. 1, the housing 7 is a rectangular parallelepiped box, and includes second and third lenses 3 b and 3 c, first and second dichroic mirrors 4 a and 4 b, a damper 5, and an optical fiber 6. Contained. The housing | casing 7 has the 1st window part 7a and the 2nd window part 7b which have a light transmittance. Excitation light from the light source 2 enters the housing 7 through the first window portion 7 a and is sent to the optical fiber 6. Further, the laser light from the optical fiber 6 is output to the outside of the housing 7 via the second window portion 7b.
 また、筐体7は、底面にヒートシンクとしてのベース部70を有する。ベース部70は内部に冷媒が流れる流路が形成されている。このベース部70上に、ホルダ14が設置されているため、ホルダ14を含む保持装置60が冷却される。 The casing 7 has a base portion 70 as a heat sink on the bottom surface. The base portion 70 is formed with a flow path through which a refrigerant flows. Since the holder 14 is installed on the base portion 70, the holding device 60 including the holder 14 is cooled.
 なお、筐体7の内部は、窒素によって充填されている。また、筐体7内の水分を除去するために、筐体7内に乾燥剤が入れられている。 Note that the inside of the housing 7 is filled with nitrogen. Further, a desiccant is put in the housing 7 in order to remove moisture in the housing 7.
 チラー装置8は、筐体7と配管8aを介して接続されている。チラー装置8は、筐体7のベース部内を流れる冷媒の温度を調整する。具体的には、筐体7のベース部から配管8aを介して送られてきた冷媒をチラー装置8が冷却する。チラー装置8において冷却された冷媒は配管8aを介して筐体7のベース部に戻される。 The chiller device 8 is connected to the housing 7 via a pipe 8a. The chiller device 8 adjusts the temperature of the refrigerant flowing in the base portion of the housing 7. Specifically, the chiller device 8 cools the refrigerant sent from the base portion of the housing 7 via the pipe 8a. The refrigerant cooled in the chiller device 8 is returned to the base portion of the housing 7 through the pipe 8a.
 [動作]
 励起光源2において発振された励起光は、励起光伝送ファイバ2aから出力され、第1レンズ3aにおいて平行光の状態となり、第1窓部7aを介して筐体7内に進入する。筐体7内に進入した励起光は、第1ダイクロイックミラー4aを透過し、第2レンズ3bにて集光されて光ファイバ6の第1端部11から光ファイバ6に入射する。
[Operation]
The excitation light oscillated in the excitation light source 2 is output from the excitation light transmission fiber 2a, becomes a parallel light state in the first lens 3a, and enters the housing 7 through the first window portion 7a. The excitation light that has entered the housing 7 passes through the first dichroic mirror 4 a, is collected by the second lens 3 b, and enters the optical fiber 6 from the first end 11 of the optical fiber 6.
 光ファイバ6に入射した励起光は、コア内を伝播し、コアにドープされたレーザ活性物質が励起してレーザ光が出力される。そして、光ファイバ6の第2端部12から放射された励起光は、第3レンズ3c、第2ダイクロイックミラー4bを透過し、ダンパ5に吸収される。 The excitation light incident on the optical fiber 6 propagates in the core, and the laser active material doped in the core is excited to output laser light. And the excitation light radiated | emitted from the 2nd end part 12 of the optical fiber 6 permeate | transmits the 3rd lens 3c and the 2nd dichroic mirror 4b, and is absorbed by the damper 5. FIG.
 一方、光ファイバ6のコア内で生成されたレーザ光は、光ファイバ6の第2端部12から放射され、第3レンズ3cで平行光の状態に変換される。そして、レーザ光は、第2ダイクロイックミラー4bで反射され、第3レンズ3cで集光されて、第2端部12側から光ファイバ6に入射する。光ファイバ6内に入射したレーザ光は、コア内を伝播し、光ファイバ6の第1端部11から放射される。そして、レーザ光は、第2レンズ3bによって平行光の状態に変換され、第1ダイクロイックミラー4aに反射されて第2窓部7bに向かうように進行方向が変更され、第2窓部7bを介して筐体7の外部へ放射される。 On the other hand, the laser light generated in the core of the optical fiber 6 is emitted from the second end portion 12 of the optical fiber 6 and converted into a parallel light state by the third lens 3c. Then, the laser light is reflected by the second dichroic mirror 4b, condensed by the third lens 3c, and enters the optical fiber 6 from the second end 12 side. The laser light incident on the optical fiber 6 propagates in the core and is emitted from the first end portion 11 of the optical fiber 6. Then, the laser light is converted into a parallel light state by the second lens 3b, reflected in the first dichroic mirror 4a, the traveling direction is changed so as to go to the second window portion 7b, and the laser beam passes through the second window portion 7b. Is radiated to the outside of the housing 7.
 以上のレーザ発振動作において、光ファイバ6は発熱するが、光ファイバ6は、ベース部70に密着して保持されているので、ベース部21内を流れる冷媒によって効率よく冷却される。 In the laser oscillation operation described above, the optical fiber 6 generates heat, but since the optical fiber 6 is held in close contact with the base portion 70, it is efficiently cooled by the refrigerant flowing in the base portion 21.
 また、第1端部11及び第2端部12の保持装置60では、ホルダ14及びホルダ押え15と、第1及び第2インジウム18,19と、によって光ファイバ6を保持し、熱伝導によって冷却しているので、光ファイバ6で発生した熱を放熱させることができる。しかも、第1及び第2インジウム18,19をホルダ14とホルダ押え15に形成された第1及び第2凹部14b,15bに収容しているので、ホルダ14とホルダ押え15の表面を互いに接触させることができ、両者の間の伝熱性が良好になる。したがって、効率よく光ファイバ6を冷却することができる。 Further, in the holding device 60 for the first end portion 11 and the second end portion 12, the optical fiber 6 is held by the holder 14 and the holder presser 15 and the first and second indiums 18 and 19, and is cooled by heat conduction. Therefore, the heat generated in the optical fiber 6 can be radiated. Moreover, since the first and second indiums 18 and 19 are accommodated in the first and second recesses 14b and 15b formed in the holder 14 and the holder presser 15, the surfaces of the holder 14 and the holder presser 15 are brought into contact with each other. And the heat transfer between the two becomes good. Therefore, the optical fiber 6 can be efficiently cooled.
 さらに、保持装置60においては、ホルダ押え15によって光ファイバ6をホルダ14の平坦部14aに押し付けているので、光ファイバ6の浮き上がりを防止でき、冷却効率をより高めることができる。 Furthermore, in the holding device 60, since the optical fiber 6 is pressed against the flat portion 14a of the holder 14 by the holder press 15, the optical fiber 6 can be prevented from being lifted, and the cooling efficiency can be further increased.
 [他の実施形態]
 以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
[Other Embodiments]
As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various change is possible unless it deviates from the meaning of this invention.
 (a)ホルダ14の第1凹部14bが形成されていない部分を平坦にしたが、第1凹部14bに沿った方向に、図6に示すようなV字状の溝14e’を形成してもよい。この場合は、光ファイバ6の左右方向のズレを防止でき、光ファイバ端面の位置の精度を高くすることができる。なお、この溝の形状はV字状に限定されない。 (A) Although the portion of the holder 14 where the first recess 14b is not formed is flattened, a V-shaped groove 14e ′ as shown in FIG. 6 may be formed in the direction along the first recess 14b. Good. In this case, the optical fiber 6 can be prevented from being displaced in the left-right direction, and the accuracy of the position of the end face of the optical fiber can be increased. In addition, the shape of this groove | channel is not limited to V shape.
 (b)前記実施形態では、ホルダ押え15の第2凹部15bに第2溝15cを形成したが、第2熱伝導部材の変形の程度によっては、この第2溝15cを省略することも可能である。 (B) In the embodiment, the second groove 15c is formed in the second recess 15b of the holder presser 15. However, the second groove 15c can be omitted depending on the degree of deformation of the second heat conducting member. is there.
 (c)光ファイバを挟みこむ熱伝導部材としてインジウムを用いたが、変形可能な熱伝導性の良い部材であればよく、特にインジウムに限定されない。 (C) Indium is used as a heat conducting member that sandwiches the optical fiber, but any member having good heat conductivity that can be deformed may be used, and is not particularly limited to indium.
 (d)前記実施形態では保持装置をレーザ発振器に適用したが、本発明の保持装置は、他の光ファイバ装置において光ファイバを保持する際に用いることができる。 (D) Although the holding device is applied to the laser oscillator in the above embodiment, the holding device of the present invention can be used when holding the optical fiber in another optical fiber device.
 (e)保持すべき光ファイバの構成は前記実施形態に限定されない。 (E) The configuration of the optical fiber to be held is not limited to the above embodiment.
 1 レーザ発振器
 2 励起光源
 6 光ファイバ
 14 ホルダ(第1ホルダ)
 14a 表面(平坦部)
 14b 第1凹部
 14c 第1溝
 15 ホルダ押え(第2ホルダ)
 15b 第2凹部
 15c 第2溝
 60 保持装置
 70 ベース部(ヒートシンク)
DESCRIPTION OF SYMBOLS 1 Laser oscillator 2 Excitation light source 6 Optical fiber 14 Holder (1st holder)
14a Surface (flat part)
14b 1st recessed part 14c 1st groove | channel 15 Holder presser (2nd holder)
15b 2nd recessed part 15c 2nd groove | channel 60 Holding | maintenance apparatus 70 Base part (heat sink)

Claims (5)

  1.  光ファイバを冷却するヒートシンク上に配置され、光ファイバを保持する光ファイバ保持装置であって、
     前記ヒートシンクに接触して配置される第1ホルダと、
     表面の一部が前記第1ホルダの表面に当接する第2ホルダと、
     前記第1ホルダと前記第2ホルダとの間において、前記光ファイバを挟みこむように配置され、変形可能かつ熱伝導性を有する板状の第1熱伝導部材及び第2熱伝導部材と、
    を備え、
     前記第1ホルダは、
     前記第2ホルダと対向する面において光ファイバの先端側に対応する位置に形成され、前記第1熱伝導部材を収容可能な第1凹部と、
     前記第1凹部内に形成され、前記第1熱伝導部材と前記第2熱伝導部材とによって挟み込まれた光ファイバを前記第1熱伝導部材とともに収容する第1溝と、
     前記第1凹部が形成された以外の部分に形成された平坦部と、
    を有し、
     前記第2ホルダは、前記第1ホルダの第1凹部及び平坦部を覆う長さに形成されるとともに、前記第1ホルダと対向する面における前記第1凹部に対応する位置に前記第2熱伝導部材を収容可能な第2凹部を全長にわたって有している、
    光ファイバ保持装置。
    An optical fiber holding device that is disposed on a heat sink for cooling an optical fiber and holds the optical fiber,
    A first holder disposed in contact with the heat sink;
    A second holder in which a part of the surface abuts against the surface of the first holder;
    Between the first holder and the second holder, the first and second heat conducting members are disposed so as to sandwich the optical fiber, are deformable and have heat conductivity, and
    With
    The first holder is
    A first recess formed in a position corresponding to the tip side of the optical fiber on the surface facing the second holder, and capable of accommodating the first heat conducting member;
    A first groove for accommodating an optical fiber formed in the first recess and sandwiched between the first heat conducting member and the second heat conducting member together with the first heat conducting member;
    A flat portion formed in a portion other than the first concave portion; and
    Have
    The second holder is formed to have a length that covers the first recess and the flat portion of the first holder, and the second heat conduction is performed at a position corresponding to the first recess on a surface facing the first holder. It has a second recess that can accommodate the member over its entire length,
    Optical fiber holding device.
  2.  前記第2ホルダは、前記第2凹部内に形成され、前記第1熱伝導部材と前記第2熱伝導部材とによって挟み込まれた光ファイバを前記第2熱伝導部材とともに収容する第2溝を有している、請求項1に記載の光ファイバ保持装置。 The second holder has a second groove that is formed in the second recess and receives the optical fiber sandwiched between the first heat conducting member and the second heat conducting member together with the second heat conducting member. The optical fiber holding device according to claim 1.
  3.  前記第1ホルダの平坦部には、前記光ファイバの横方向の移動を規制するための規制溝が形成されている、請求項1又は2に記載の光ファイバ保持装置。 The optical fiber holding device according to claim 1 or 2, wherein a regulation groove for regulating lateral movement of the optical fiber is formed in the flat portion of the first holder.
  4.  前記第1熱伝導部材及び第2熱伝導部材はインジウムで構成されている、請求項1から3のいずれかに記載の光ファイバ保持装置。 The optical fiber holding device according to any one of claims 1 to 3, wherein the first heat conductive member and the second heat conductive member are made of indium.
  5.  励起光源と、
     励起光源からの励起光が導入され、レーザ光を出力する発振用光ファイバと、
     前記発振用光ファイバの一部を保持する請求項1から4のいずれかに記載の光ファイバ保持装置と、
     前記光ファイバ保持装置が載置されるヒートシンクと、
    を備えたレーザ発振器。
    An excitation light source;
    An oscillation optical fiber that receives pumping light from a pumping light source and outputs laser light;
    The optical fiber holding device according to any one of claims 1 to 4, which holds a part of the oscillation optical fiber;
    A heat sink on which the optical fiber holding device is placed;
    A laser oscillator comprising:
PCT/JP2016/068765 2015-06-26 2016-06-24 Optical fiber holding device and laser oscillator comprising same WO2016208703A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017524987A JP6799328B2 (en) 2015-06-26 2016-06-24 Optical fiber holding device and laser oscillator with it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-128491 2015-06-26
JP2015128491 2015-06-26

Publications (1)

Publication Number Publication Date
WO2016208703A1 true WO2016208703A1 (en) 2016-12-29

Family

ID=57585582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068765 WO2016208703A1 (en) 2015-06-26 2016-06-24 Optical fiber holding device and laser oscillator comprising same

Country Status (2)

Country Link
JP (1) JP6799328B2 (en)
WO (1) WO2016208703A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020059433A1 (en) * 2018-09-21 2021-08-30 三星ダイヤモンド工業株式会社 Optical fiber cooling device and optical fiber laser device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274489A (en) * 2000-03-27 2001-10-05 Toshiba Corp Heat dissipating device for optical fiber
WO2003009435A1 (en) * 2001-07-17 2003-01-30 Element Six Limited Heat spreader
JP2007173648A (en) * 2005-12-23 2007-07-05 Toshiba Corp Fiber laser device and fiber-laser cooling structure
JP2010153673A (en) * 2008-12-26 2010-07-08 Mitsuboshi Diamond Industrial Co Ltd Optical fiber laser device
JP2013168435A (en) * 2012-02-14 2013-08-29 Mitsubishi Electric Corp Rod type fiber laser amplifier and rod type fiber laser oscillator
JP2016012621A (en) * 2014-06-27 2016-01-21 三星ダイヤモンド工業株式会社 Optical fiber holding device and laser oscillator having the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274489A (en) * 2000-03-27 2001-10-05 Toshiba Corp Heat dissipating device for optical fiber
WO2003009435A1 (en) * 2001-07-17 2003-01-30 Element Six Limited Heat spreader
JP2007173648A (en) * 2005-12-23 2007-07-05 Toshiba Corp Fiber laser device and fiber-laser cooling structure
JP2010153673A (en) * 2008-12-26 2010-07-08 Mitsuboshi Diamond Industrial Co Ltd Optical fiber laser device
JP2013168435A (en) * 2012-02-14 2013-08-29 Mitsubishi Electric Corp Rod type fiber laser amplifier and rod type fiber laser oscillator
JP2016012621A (en) * 2014-06-27 2016-01-21 三星ダイヤモンド工業株式会社 Optical fiber holding device and laser oscillator having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020059433A1 (en) * 2018-09-21 2021-08-30 三星ダイヤモンド工業株式会社 Optical fiber cooling device and optical fiber laser device

Also Published As

Publication number Publication date
JP6799328B2 (en) 2020-12-16
JPWO2016208703A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
TWI597909B (en) Optical fiber, and laser oscillator using the same
WO2016013468A1 (en) Optical fiber cooling device and laser oscillator
JP5166119B2 (en) Faraday rotator, optical isolator, and laser processing apparatus
JP2016012621A (en) Optical fiber holding device and laser oscillator having the same
JP5308175B2 (en) Optical fiber cooling equipment
WO2016208703A1 (en) Optical fiber holding device and laser oscillator comprising same
JP2007081233A (en) Laser oscillator
JP6579569B2 (en) Solid state laser element
JP6565374B2 (en) Fiber optic equipment
JP6593547B1 (en) Optical module
JP2017011238A (en) Optic fiber holding device and laser oscillator having the same
JP6695039B2 (en) Fiber optic equipment
JP7092386B2 (en) Optical fiber holding device and laser oscillator with it
JPWO2016129505A1 (en) Optical fiber fixing structure
JP2017017301A (en) Laser oscillator
JP2011187525A (en) Semiconductor laser device and method of manufacturing the same
JP2017016079A (en) Optical fiber holding device and laser oscillator having the same
JP2014202902A (en) Holder, laser oscillation device, and laser beam machine
JP2017016078A (en) Optical fiber holding device and laser oscillator having the same
JP2021005660A (en) Fiber laser oscillator
JP4900309B2 (en) Semiconductor laser device
JP2006108501A (en) Laser unit, optical adjusting method thereof, optical apparatus, and its assembling method
JP2005005627A (en) Temperature control device and laser device
JP2008177444A (en) Solid state laser oscillator
JP2017144466A (en) Power monitoring device and laser processing machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524987

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814472

Country of ref document: EP

Kind code of ref document: A1