WO2016208486A1 - Solid electrolyte reinforcement member and solid electrolyte film including reinforcement member - Google Patents

Solid electrolyte reinforcement member and solid electrolyte film including reinforcement member Download PDF

Info

Publication number
WO2016208486A1
WO2016208486A1 PCT/JP2016/067948 JP2016067948W WO2016208486A1 WO 2016208486 A1 WO2016208486 A1 WO 2016208486A1 JP 2016067948 W JP2016067948 W JP 2016067948W WO 2016208486 A1 WO2016208486 A1 WO 2016208486A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
reinforcing material
electrolyte membrane
glass
membrane
Prior art date
Application number
PCT/JP2016/067948
Other languages
French (fr)
Japanese (ja)
Inventor
仁 興梠
澤 春夫
和哉 志村
Original Assignee
ユニチカ株式会社
ニッポン高度紙工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社, ニッポン高度紙工業株式会社 filed Critical ユニチカ株式会社
Priority to JP2017525298A priority Critical patent/JPWO2016208486A1/en
Publication of WO2016208486A1 publication Critical patent/WO2016208486A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid electrolyte reinforcing material applicable to a fuel cell and the like, and a solid electrolyte membrane including the reinforcing material.
  • Fuel cells are attracting attention as environmentally friendly energy sources because of their high power generation efficiency and low environmental impact. Fuel cells are generally classified into several types according to the type of electrolyte. Among them, the polymer electrolyte fuel cell (PEFC) can be easily reduced in size and weight with high output and can be expected to be reduced in cost due to mass production effects.
  • PEFC polymer electrolyte fuel cell
  • the most representative hydrogen-oxygen fuel cell as a PEFC is an electrochemical oxidation reaction of hydrogen supplied to the negative electrode as shown in the following formula (1), and oxygen supplied to the positive electrode as shown in the formula (2).
  • Some fuel cells use fuel other than hydrogen, such as a direct methanol fuel cell where the fuel supplied to the negative electrode is methanol, but even in this case, the reaction in which the fuel is electrochemically oxidized at the negative electrode to release protons Is carried out in the same way and can be operated using a proton conducting solid electrolyte.
  • a fluorine-based polymer membrane having perfluoroalkylene as a main skeleton and having an ion exchange group such as a sulfo group is widely used.
  • the sulfo group in the polymer is ionized and becomes proton conductive.
  • ionized molecules gather to form a cluster, and this cluster forms a path for protons.
  • this polymer film swells with moisture, it causes an increase in size, a decrease in mechanical strength, and a creep during long-time operation, resulting in a decrease in durability after the start of operation. There is.
  • a reinforcing material for a solid electrolyte membrane for example, a reinforcing material for a proton conductive membrane, which is made of a nonwoven fabric mainly composed of glass fibers having a C glass composition and a binder that strengthens the bonding between the glass fibers,
  • the average fiber diameter of the fibers is in the range of 0.1 ⁇ m to 20 ⁇ m
  • the average fiber length of the glass fibers is in the range of 0.5 mm to 20 mm
  • the binder contains a fibrous binder
  • the added amount of the fibrous binder is glass
  • Proton conductive membrane reinforcements in the range of 1% to 40% of the mass of the fiber are known.
  • a proton conductive membrane having excellent mechanical strength, dimensional stability, handleability and durability, and good proton conductivity can be obtained, and further, a fuel cell can be obtained using the proton conductive membrane. It is said that a fuel cell with high power generation efficiency can be obtained.
  • the reinforcing material disclosed in Patent Document 1 needs to increase the porosity to obtain good proton conductivity.
  • the resulting reinforcing material contains water.
  • the tensile strength (tensile strength when containing water) and the dimensional stability (low swellability) before and after containing water were not sufficient.
  • the thickness of the solid electrolyte membrane (for example, 30 ⁇ m or less) from the viewpoint of obtaining good proton and other ion conductivity.
  • the reinforcing material specifically disclosed as an example in Patent Document 1 has a thickness of 50 ⁇ m, and the thickness of the reinforcing material is too large, so that the solid electrolyte membrane to be reinforced is inevitably thick. It has been found that there is a problem that the ion conductivity tends to be limited.
  • the present invention solves the above-mentioned problems and, for example, when used as a solid electrolyte reinforcing material for fuel cells or the like, the solid electrolyte reinforcing material having excellent tensile strength and low swellability when containing water and excellent ionic conductivity
  • the purpose is to provide.
  • an object of the present invention is to provide a solid electrolyte membrane using the reinforcing material.
  • the reinforcing material disclosed in Patent Document 1 has a nonwoven fabric structure. Therefore, the tensile strength and low swellability when containing water, protons, etc. It has been found that it is difficult to achieve both ionic conductivity. Therefore, as a result of further studies by the inventors, as a solid electrolyte reinforcing material, a glass yarn having a specific count is selected as a solid electrolyte reinforcing material, and by adopting a woven fabric having a woven density satisfying a specific range, the water content is excellent. It was found that the tensile strength and low swellability can be combined with excellent ionic conductivity. The present invention has been completed by further studies based on this finding.
  • Item 1 Including glass yarn with a count of 1.0 to 3.5 tex as warp and weft, A solid electrolyte reinforcing material, which is a woven fabric having a weaving density of at least one of the warp and the weft of 30 to 75/25 mm.
  • Item 2. Item 2. The solid electrolyte reinforcing material according to Item 1, wherein the glass yarn has an average filament diameter of 3.0 to 4.8 ⁇ m.
  • Item 3. Item 3.
  • the solid electrolyte reinforcing material according to Item 1 or 2 which does not substantially contain a binder component that enhances the binding property with the solid electrolyte to be reinforced.
  • Item 4. Item 4.
  • Item 5. In order to reinforce the solid electrolyte membrane of the fuel cell, a glass yarn having a yarn count of 1.0 to 3.5 tex is included as a warp and a weft. The use of textiles that are.
  • Item 6. 5 A solid electrolyte membrane comprising a solid electrolyte and the solid electrolyte reinforcing material according to any one of Items 1 to 4.
  • Item 8. The solid electrolyte membrane according to Item 7, wherein the ion conductive inorganic / organic hybrid compound is an inorganic / organic hybrid compound in which at least one selected from a silicic acid compound and a tungstic acid compound and polyvinyl alcohol are chemically bonded. .
  • Item 9. Use of a solid electrolyte as a solid electrolyte membrane of a fuel cell and a membrane comprising the solid electrolyte reinforcing material according to any one of Items 1 to 4.
  • Item 10. Item 9. A fuel cell comprising the solid electrolyte membrane according to any one of Items 6 to 8.
  • the solid electrolyte reinforcing material of the present invention by employing a woven fabric that includes glass yarn of a specific count and has a woven density within a specific range, the solid electrolyte membrane has a water content that could not be obtained by the prior art. It is possible to combine the tensile strength and low swellability of ionic conductivity with protons and the like. Therefore, the solid electrolyte membrane containing the solid electrolyte reinforcing material of the present invention, when used in a fuel cell, for example, has good tensile strength and low swellability when containing water, and can have excellent output characteristics.
  • the solid electrolyte reinforcing material of the present invention includes a glass yarn having a yarn count of 1.0 to 3.5 tex as a warp and a weft, and a woven fabric having a woven density of 30 to 75 yarns / 25 mm of at least one of the warp and the weft. It is characterized by being.
  • the solid electrolyte reinforcing material of the present invention will be described in detail.
  • a known glass material can be used depending on the usage environment of the solid electrolyte to be reinforced for the glass material constituting the glass yarn.
  • Specific examples of the glass material include E glass, C glass, S glass, T glass, and AR glass.
  • Proton conducting solid electrolytes are usually strong acids. Therefore, when a solid electrolyte is used in, for example, a fuel cell, if the acid resistance of the glass material is excellent, a decrease in tensile strength at the time of water content accompanying the elution of the glass component is less likely to occur, and the cation component eluted from the glass material Decrease in the ionic conductivity of the solid electrolyte due to is more difficult. Therefore, the glass composition constituting the glass yarn has a total content of CaO, MgO, Na 2 O and K 2 O of 20% by mass or less from the viewpoint of further improving the tensile strength and output characteristics. preferable.
  • SiO 2 is 60 to 70 mass%, Al 2 O 3 is 20 to 30 mass%, and the total content of CaO, MgO, Na 2 O and K 2 O is 20 mass% or less. More preferably: SiO 2 is 60 to 70% by mass, Al 2 O 3 is 20 to 30% by mass, and the total content of CaO, MgO, Na 2 O and K 2 O is 10 to 20% by mass. It is particularly preferable that the total content of Na 2 O and K 2 O is 2% by mass or less.
  • the glass composition constituting the glass yarn is particularly 60 to 70% by mass of SiO 2 and 20 to 20% of Al 2 O 3. 30% by mass, the total content of CaO, MgO, Na 2 O and K 2 O is 10 to 20% by mass, and the total content of Na 2 O and K 2 O is 2% by mass or less It is particularly preferable that the tensile strength and ionic conductivity at the time of hydration can be made more compatible.
  • a solid electrolyte membrane using an inorganic / organic hybrid compound as the solid electrolyte can also be used as a separator for an alkaline water electrolysis type hydrogen generator.
  • the glass composition constituting the glass yarn is ZrO 2 from the viewpoint of further improving the hydrogen generation efficiency.
  • the count of the glass yarn needs to be 1.0 to 3.5 tex from the viewpoint of minimizing the interference of ionic conduction by the glass yarn when it is contained in the solid electrolyte membrane. 4 tex is preferred, 1.0 to 2.0 tex is more preferred, and 1.5 to 1.97 tex is even more preferred.
  • the count of the glass yarn is a value obtained according to a method defined in Japanese Industrial Standard “JIS R 3420 2013 7.1”.
  • the glass yarn is preferably a glass yarn in which a plurality of single fibers (filaments), which are long glass fibers, are twisted together.
  • the number of filaments in the glass yarn is not particularly limited, but is preferably about 20 to 120 from the viewpoint of further improving the balance between tensile strength and low swellability when containing water and ion conductivity. ⁇ 70 are more preferred, and 20 to 55 are particularly preferred. From the same viewpoint, the average diameter of the filament in the glass yarn is preferably about 3.0 to 4.8 ⁇ m, particularly preferably 3.0 to 4.5 ⁇ m.
  • the number of filaments in the glass yarn was determined by embedding the fabric in an epoxy resin and curing it, polishing it to such an extent that the glass yarn could be observed, and observing it at a magnification of 500 times using a scanning electron microscope (SEM). It is required by doing.
  • the average diameter of the filaments in the glass yarn is the same as described above, and the diameters of all filaments contained in one glass yarn are measured at a magnification of 500 times using a scanning electron microscope (SEM). The average value is calculated.
  • the woven density of at least one of warp and weft needs to be 30 to 75/25 mm, and particularly preferably 50 to 60/25 mm.
  • the obtained solid electrolyte can have excellent tensile strength and low swellability at the time of water content, and excellent ionic conductivity.
  • both the warp and the weft satisfy the range of the weave density from the viewpoint of further combining the tensile strength and low swellability with water and ionic conductivity when containing water.
  • the weave density of the warp and the weft is a value determined according to a method defined in Japanese Industrial Standard “JIS R 3420 2013 7.9”.
  • the mixing ratio of the glass yarn in the woven fabric is not particularly limited as long as the effect of the present invention is achieved, but is preferably 70% by mass or more, and 80% by mass. The above is more preferable, and 100% by mass (woven fabric made only of glass yarn) is particularly preferable.
  • the woven structure of the woven fabric used for the solid electrolyte reinforcing material of the present invention is not particularly limited, and examples thereof include plain weave, satin weave, twill weave, oblique weave, and woven weave.
  • the thickness of the woven fabric used for the solid electrolyte reinforcing material of the present invention is a value determined according to a method defined in Japanese Industrial Standard “JIS R 3420 2013 7.10.1A method”.
  • the mass of the woven fabric is not particularly limited, but the viewpoint of making the tensile strength and low swellability and ionic conductivity at the time of water content more effective both compatible with each other more effectively. Therefore, 5 to 30 g / m 2 is preferable, 5 to 20 g / m 2 is more preferable, and 5 to 10 g / m 2 is particularly preferable.
  • the mass of the woven fabric is a value determined according to a method defined in Japanese Industrial Standard “JIS R 3420 2013 7.2”.
  • the solid electrolyte reinforcing material of the present invention does not substantially contain a binder component that enhances the binding property with the solid electrolyte to be reinforced.
  • the obtained solid electrolyte membrane has a better film formation state, and for example, the output characteristics when used in a fuel cell can be further improved.
  • substantially no binder component means that the binder component is not actively applied to the fabric constituting the solid electrolyte reinforcing material, or the binder component is removed by heat cleaning treatment (heating treatment). As a result, it means that these are not contained.
  • Such a binder component is particularly preferably zero in content, but within a range not impairing the effects of the present invention, it is about 0.1% by mass or less, more preferably 0.05% by mass or less in the solid electrolyte reinforcing material. Even if it is included, there is no problem.
  • the binder component that enhances the binding property with the solid electrolyte to be reinforced include silane coupling agents, starch and synthetic resins (for example, acrylic resins, urethane resins, fluororesins, silicone resins, epoxy resins, polyesters). Resin) and the like, and inorganic binders such as silica and alkyl silicate.
  • the content of the surfactant is particularly preferably zero, but within a range not impairing the effects of the present invention, the solid electrolyte reinforcing material has a content of about 0.1% by mass or less. Preferably about 0.05 mass% or less may be contained.
  • the solid electrolyte reinforcing material of the present invention does not substantially contain the binder component
  • an inorganic / organic hybrid compound described later is used as the solid electrolyte to be reinforced
  • the binding property between the reinforcing material and the solid electrolyte is particularly good.
  • the film formation state becomes even better, and the output characteristics when used in a fuel cell can be further effectively improved.
  • Examples of a method for producing a solid electrolyte reinforcing material substantially not containing the binder component include a method of subjecting a woven fabric made of glass yarn to a heat cleaning treatment (heating treatment).
  • Examples of the heat cleaning treatment conditions include a temperature of 350 to 450 ° C. and a time of 20 to 60 hours.
  • the solid electrolyte membrane of the present invention is characterized by including the solid electrolyte reinforcing material and the solid electrolyte. Since the solid electrolyte membrane of the present invention is reinforced by the solid electrolyte reinforcing material, it becomes possible to combine ion conductivity while improving the tensile strength and low swellability when containing water.
  • the solid electrolyte used in the solid electrolyte membrane of the present invention is not particularly limited as long as it conducts ions such as protons.
  • ions such as protons.
  • a polymer electrolyte, an ion conductive inorganic substance, an ion conductive inorganic / organic A hybrid compound etc. are mentioned.
  • Examples of the polymer electrolyte include a fluorine-based polymer electrolyte, a hydrocarbon-based polymer electrolyte, and a chemically modified fullerene ion conductor.
  • Examples of the fluorine-based polymer electrolyte include perfluoroalkylene as a main skeleton, and sulfo And those having an ion exchange group such as a group or a carboxyl group.
  • Examples of the hydrocarbon polymer electrolyte include sulfonated aromatic polymers such as polystyrene, polyarylene ether, polyimide, polyphosphazene, polybenzimidazole.
  • the ion conductive inorganic / organic hybrid compound examples include those containing an organic part and an inorganic part containing one or more elements selected from Si, Al, Ti, Sn, Zr, Mo, and W and O.
  • a hybrid compound in which at least one selected from a silicic acid compound, a tungstic acid compound, and a zirconic acid compound and polyvinyl alcohol are chemically bonded (hereinafter sometimes referred to as a hybrid compound A), etc.
  • the hybrid compound A has particularly good binding properties between the solid electrolyte reinforcing material and the solid electrolyte, and the film-forming state becomes even better. For example, the output characteristics when used in a fuel cell are further improved. It becomes easy to improve.
  • the solid electrolyte membrane of the present invention only needs to contain the solid electrolyte reinforcing material as a membrane matrix.
  • the ratio between the solid electrolyte and the solid electrolyte reinforcing material may be appropriately set according to the use of the solid electrolyte membrane, the type of the solid electrolyte to be used, etc.
  • the solid electrolyte reinforcing material is 10 to 70 parts by weight, preferably 20 to 50 parts by weight, and more preferably 20 to 40 parts by weight per part by weight.
  • the thickness of the solid electrolyte membrane of the present invention may be appropriately set according to the use of the solid electrolyte membrane, and is, for example, 20 to 200 ⁇ m, preferably 20 to 50 ⁇ m, more preferably 20 to 30 ⁇ m. Can be mentioned.
  • the method for producing the solid electrolyte membrane of the present invention is not particularly limited.
  • the solid electrolyte membrane may be produced by impregnating the solid electrolyte reinforcing material with a liquid in which the solid electrolyte is dispersed or dissolved and then drying. Is mentioned.
  • the solid electrolyte membrane of the present invention can achieve both the tensile strength and low swellability that could not be obtained by the prior art, and ion conductivity such as protons.
  • solid electrolyte fuel cells, solid electrolyte hydrogen generation It can be suitably used for an apparatus or the like.
  • the solid electrolyte membrane of the present invention is excellent in hydroxide ion permeability, it can also be applied as a separator for an alkaline water electrolysis type hydrogen generator.
  • portions other than the solid electrolyte are not particularly limited, and the same configuration as that of a known fuel cell can be applied.
  • a known fuel electrode is provided on both sides of the solid electrolyte.
  • a known air electrode is arranged.
  • Thickness of fabric ( ⁇ m) It was measured and calculated according to the method described in Japanese Industrial Standard “JIS R 3420 2013 7.10.1A Method”.
  • Tensile strength (MPa) of the solid electrolyte membrane when it contains water A test piece was prepared by cutting the solid electrolyte membrane into a size of 20 mm ⁇ 40 mm. After the test piece is immersed in pure water at 20 to 25 ° C. for 1 hour to absorb water, the strength until the solid electrolyte membrane breaks is measured using a weighted measuring instrument, and the tensile strength is calculated by the following formula (a). Was calculated.
  • Tensile strength (MPa) measurement load (N) / membrane cross-sectional area (width mm ⁇ thickness mm) (a)
  • Ionic conductivity (mW / cm 2 ) Ion conductivity was evaluated by the following method using the maximum output density in the case of a fuel cell as an index. When the maximum output density was 500 mW / m 2 or more, it was determined to be acceptable as having excellent ion conductivity.
  • the produced membrane electrode assembly has catalyst electrode layers 2 and 3 laminated on both sides of a solid electrolyte membrane 1 and gas diffusion layers 4 and 5 laminated on the outermost layer.
  • the catalyst electrode layers 2 and 3 were formed using a 50 wt% platinum-supported carbon catalyst (Tanaka Kikinzoku Kogyo Co., Ltd.) and a Nafion ionomer (5% Solution DE520 CS type).
  • the gas diffusion layer is formed of carbon paper (22.4 ⁇ 22.4 mm, thickness 195 ⁇ m), and on the inner side (catalyst electrode layers 2 and 3 side), a microporous layer has a thickness of about A layer composed of 10 ⁇ m carbon black powder (acetylene black manufactured by Denki Kagaku Kogyo Co., Ltd.) and Teflon (Aldrich) is applied.
  • carbon black powder acetylene black manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Teflon Aldrich
  • the MEA was set in a commercial fuel cell single cell (manufactured by Electrochem) to constitute a general hydrogen-oxygen fuel cell. Specifically, as shown in FIG. 1, the MEA (members 1 to 5 in FIG. 1) is connected to the conductive separators 6 and 7 which also serve as the chamber separation and the gas supply flow path to the electrodes. A predetermined flow rate of hydrogen 8 and oxygen 9 was passed through the flow path. The maximum power density (mW / cm 2 ) was measured by controlling the single cell for fuel cell thus set so that the cell temperature was 80 ° C. and the relative humidity of the supply gas was 100%.
  • the glass composition is 60 to 70% by mass of SiO 2 and 20 to 30% by mass of Al 2 O 3 , CaO, MgO, Na 2 O and K Glass yarn having a total content of 2 O of 10 to 20% by mass and a total content of Na 2 O and K 2 O of 2% by mass or less (glass composition A) (number 1.7 tex, average) Weaving with an air jet loom using a filament diameter of 4.1 ⁇ m, 51 filaments, and 0.5 Z twist, a plain weave glass cloth having a warp density of 55/25 mm and a weft density of 55/25 mm was obtained.
  • the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating (heat cleaning) at 400 ° C. for 30 hours to obtain a solid electrolyte reinforcing material. Since the obtained solid electrolyte reinforcing material was subjected to a heat cleaning treatment, it did not substantially contain a binder component that enhances the binding property with the solid electrolyte to be reinforced.
  • Example 2 (1) Production of Solid Electrolyte Reinforcing Material As warp and weft, a glass yarn composed of glass composition B shown in Table 1 (number 1.7 tex, average filament diameter 4.1 ⁇ m, number of filaments 51, number of twists 0.5 Z) Used, weaving with an air jet loom to obtain a plain weave glass cloth having a warp density of 55/25 mm and a weft density of 55/25 mm. Subsequently, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating at 400 ° C. for 30 hours to obtain a solid electrolyte reinforcing material. Since the obtained solid electrolyte reinforcing material was subjected to a heat cleaning treatment, it did not substantially contain a binder component that enhances the binding property with the solid electrolyte to be reinforced.
  • Table 1 number 1.7 tex, average filament diameter 4.1 ⁇ m, number of filaments 51, number of twists 0.5 Z
  • Example 3 Production of Solid Electrolyte Reinforcing Material As a warp and a weft, a glass yarn composed of glass composition A (number 1.7 tex, average filament diameter 4.1 ⁇ m, number of filaments 51, number of twists 0.5 Z) and air jet By weaving with a loom, a plain weave glass cloth having a warp density of 55/25 mm and a weft density of 55/25 mm was obtained and used as a solid electrolyte reinforcing material. Since the obtained solid electrolyte reinforcing material was not subjected to a heat cleaning treatment, it contained a binder component that enhances the binding property to the solid electrolyte to be reinforced.
  • glass composition A number 1.7 tex, average filament diameter 4.1 ⁇ m, number of filaments 51, number of twists 0.5 Z
  • air jet By weaving with a loom, a plain weave glass cloth having a warp density of 55/25 mm and a weft density of 55/25 mm was obtained and
  • Example 4 Production of solid electrolyte reinforcing material A solid electrolyte reinforcing material was obtained under the same conditions as in Example 3 except that the warp density was changed to 95/25 mm and the weft density was changed to 55/25 mm. Since the obtained solid electrolyte reinforcing material was not subjected to a heat cleaning treatment, it contained a binder component that enhances the binding property to the solid electrolyte to be reinforced.
  • Comparative Example 1 (1) Production of Solid Electrolyte Reinforcing Material As a warp and a weft, a glass yarn made of glass composition A (number 4.2 tex, average filament diameter 4.6 ⁇ m, number of filaments 100, number of twists 1.0 Z) and air jet Weaving with a loom gave a plain weave glass cloth with a warp density of 69/25 mm and a weft density of 72/25 mm. Subsequently, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating (heat cleaning) at 400 ° C. for 30 hours to obtain a solid electrolyte reinforcing material. Since the obtained solid electrolyte reinforcing material was subjected to a heat cleaning treatment, it did not substantially contain a binder component that enhances the binding property with the solid electrolyte to be reinforced.
  • Comparative Example 2 (1) Production of Solid Electrolyte Reinforcing Material As a warp and a weft, a glass yarn composed of glass composition A (number 1.7 tex, average filament diameter 4.1 ⁇ m, number of filaments 51, number of twists 0.5 Z) and air jet Weaving with a loom gave a plain weave glass cloth having a warp density of 95/25 mm and a weft density of 95/25 mm. Subsequently, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating (heat cleaning) at 400 ° C. for 30 hours.
  • the surface treatment agent silane coupling agent (S-350 N-vinylbenzyl-aminoethyl- ⁇ -aminopropyltrimethoxysilane (hydrochloride) Chisso Corporation) was adjusted to a concentration of 15 g / L and squeezed with a padder roll. Then, it dried and cured at 120 degreeC for 1 minute, and obtained the solid electrolyte reinforcing material.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

The purpose of the present invention is to provide a solid electrolyte reinforcement member exhibiting exceptional tensile strength and low swelling characteristics when containing water, and exceptional ion conductivity. For the solid electrolyte reinforcement member, a glass yarn having a specific count is selected, and a fabric in which the weaving density of the glass yarn satisfies a specific range is employed, thereby making it possible to obtain exceptional tensile strength and low swelling characteristics when containing water, and exceptional ion conductivity.

Description

固体電解質補強材及び該補強材を含む固体電解質膜Solid electrolyte reinforcing material and solid electrolyte membrane including the reinforcing material
 本発明は、燃料電池等に適用可能な固体電解質の補強材、及び該補強材を含む固体電解質膜に関する。 The present invention relates to a solid electrolyte reinforcing material applicable to a fuel cell and the like, and a solid electrolyte membrane including the reinforcing material.
 燃料電池は、発電効率が高くかつ環境負荷が小さいため、環境にやさしいエネルギー源として注目されている。燃料電池は、一般に、電解質の種類によっていくつかのタイプに分類される。なかでも、高分子電解質型燃料電池(PEFC)は、高出力かつ小型軽量化が容易であり、さらに量産効果による低コスト化も期待できる。 Fuel cells are attracting attention as environmentally friendly energy sources because of their high power generation efficiency and low environmental impact. Fuel cells are generally classified into several types according to the type of electrolyte. Among them, the polymer electrolyte fuel cell (PEFC) can be easily reduced in size and weight with high output and can be expected to be reduced in cost due to mass production effects.
 PEFCとして最も代表的な水素―酸素燃料電池は、下記の式(1)に示すように負極に供給される水素の電気化学的酸化反応、式(2)に示すように正極に供給される酸素の電気化学的還元反応、及びその間の電解質中のプロトン移動からなる反応によって電流が流れ、電気エネルギーが取り出される。
  H→ 2H++2e-     ・・・・・・・・・・(1)
  1/2O2+ 2H++2e- → H2O   ・・・・・・(2)
The most representative hydrogen-oxygen fuel cell as a PEFC is an electrochemical oxidation reaction of hydrogen supplied to the negative electrode as shown in the following formula (1), and oxygen supplied to the positive electrode as shown in the formula (2). An electric current flows and electric energy is taken out by an electrochemical reduction reaction and a reaction consisting of proton transfer in the electrolyte therebetween.
H 2 → 2H + + 2e - ·········· (1)
1/2 O 2 + 2H + + 2e → H 2 O (2)
 この燃料電池そのものからは水しか排出しないためクリーンであるとともに極めて静粛性にも優れる。燃料電池は、水素は風力、太陽光など自然エネルギーを用いた水の電気分解から製造することができ、CO2削減又は脱原発、脱石油等の点からのメリットも大きい。そのため、自動車に適用され、既に燃料電池自動車の販売も開始されている。また、燃料電池は、廃熱と併せて使用することで極めて高いエネルギー効率が得られることから、家庭用発電機兼給湯器としても普及しつつある。更に、燃料電池は、長時間の連続給電が可能で、定期的な交換も不要であること等から、非常用電源としても普及しつつある。また、燃料電池は、二次電池と異なり、長時間の充電を必要としないことから、稼動効率の点で作業車用電源としても注目されている。 Since only water is discharged from the fuel cell itself, it is clean and extremely quiet. In the fuel cell, hydrogen can be produced by electrolysis of water using natural energy such as wind power and sunlight, and there are great advantages in terms of CO 2 reduction, denuclearization, oil removal, and the like. Therefore, it is applied to automobiles, and sales of fuel cell automobiles have already started. In addition, since fuel cells can be used in combination with waste heat to obtain extremely high energy efficiency, they are also becoming popular as household power generators and water heaters. Furthermore, fuel cells are becoming popular as emergency power sources because they can be continuously fed for a long time and do not require periodic replacement. In addition, unlike a secondary battery, a fuel cell does not require charging for a long time, and thus has attracted attention as a power source for work vehicles in terms of operating efficiency.
 負極に供給される燃料がメタノールである直接メタノール型燃料電池等、水素以外のものを燃料として用いる燃料電池もあるが、この場合でも燃料が負極で電気化学的に酸化されてプロトンを放出する反応は同様に行われており、プロトン伝導性固体電解質を利用して作動させることができる。 Some fuel cells use fuel other than hydrogen, such as a direct methanol fuel cell where the fuel supplied to the negative electrode is methanol, but even in this case, the reaction in which the fuel is electrochemically oxidized at the negative electrode to release protons Is carried out in the same way and can be operated using a proton conducting solid electrolyte.
 固体電解質がプロトン伝導性でなく、水酸化物イオン伝導性である場合にも同様の反応を起こさせることが可能で、その場合各電極での反応は下記の式(3)及び(4)のようになり、水酸化物イオンがプロトンとは逆の方向に電解質中を移動する。但し、電解質が水分子を持っている場合、水分子から水酸化物イオンにプロトンが移動することによって実質的に水酸化物イオンがその逆向きに移動したのと等価な状態が実現できるので、実際にはプロトンが動くことによって水酸化物イオンが移動することもあり得る。
  H+ 2OH-→ H2O+2e-   ・・・・・・・(3)
  1/2O2+ H2O+2e-→2OH-  ・・・・・・・(4)
The same reaction can be caused even when the solid electrolyte is not proton conductive but hydroxide ion conductive, in which case the reaction at each electrode is represented by the following formulas (3) and (4). Thus, hydroxide ions move in the electrolyte in the direction opposite to that of protons. However, when the electrolyte has water molecules, the protons move from the water molecules to the hydroxide ions, so that a state equivalent to the movement of the hydroxide ions in the opposite direction can be realized. In practice, hydroxide ions may move due to movement of protons.
H 2 + 2OH → H 2 O + 2e (3)
1/2 O 2 + H 2 O + 2e → 2OH (4)
 PEFCに用いられる固体電解質膜としては、パーフルオロアルキレンを主骨格とし、スルホ基等のイオン交換基を有するフッ素系高分子膜等が広く使用されている。これらの高分子膜では、水を含有することによって、ポリマー中のスルホ基がイオン化してプロトン伝導性となる。また、イオン化した分子が集合してクラスタを形成し、このクラスタがプロトンの通り道を形成する。しかし、この高分子膜は含水にともなって膨潤するため、寸法の増大、機械的強度の低下、及び長時間運転時のクリープ発生を招き、その結果、運転開始後の耐久性が低下するという欠点がある。 As a solid electrolyte membrane used for PEFC, a fluorine-based polymer membrane having perfluoroalkylene as a main skeleton and having an ion exchange group such as a sulfo group is widely used. In these polymer membranes, by containing water, the sulfo group in the polymer is ionized and becomes proton conductive. In addition, ionized molecules gather to form a cluster, and this cluster forms a path for protons. However, since this polymer film swells with moisture, it causes an increase in size, a decrease in mechanical strength, and a creep during long-time operation, resulting in a decrease in durability after the start of operation. There is.
 そこで、前記固体電解質膜の欠点を解消するために、各種の補強材による固体電解質膜の補強が試みられている。固体電解質膜の補強材として、例えば、プロトン伝導性膜用の補強材であって、Cガラス組成を有するガラス繊維とガラス繊維同士の結びつきを強めるバインダーとを主要構成要素とする不織布からなり、ガラス繊維の平均繊維径が0.1μm~20μmの範囲にあり、ガラス繊維の平均繊維長が0.5mm~20mmの範囲にあり、バインダーが繊維状バインダーを含み、繊維状バインダーの添加量が、ガラス繊維の質量の1%~40%の範囲にある、プロトン伝導性膜用補強材が知られている。(例えば、特許文献1参照)。該補強材によれば、機械的強度、寸法安定性、取扱い性及び耐久性に優れ、良好なプロトン伝導性を示すプロトン伝導性膜が得られ、さらに、このプロトン伝導性膜を用いて燃料電池を構成することにより、発電効率の高い燃料電池が得られるとされている。 Therefore, in order to eliminate the drawbacks of the solid electrolyte membrane, attempts have been made to reinforce the solid electrolyte membrane with various reinforcing materials. As a reinforcing material for a solid electrolyte membrane, for example, a reinforcing material for a proton conductive membrane, which is made of a nonwoven fabric mainly composed of glass fibers having a C glass composition and a binder that strengthens the bonding between the glass fibers, The average fiber diameter of the fibers is in the range of 0.1 μm to 20 μm, the average fiber length of the glass fibers is in the range of 0.5 mm to 20 mm, the binder contains a fibrous binder, and the added amount of the fibrous binder is glass Proton conductive membrane reinforcements in the range of 1% to 40% of the mass of the fiber are known. (For example, refer to Patent Document 1). According to the reinforcing material, a proton conductive membrane having excellent mechanical strength, dimensional stability, handleability and durability, and good proton conductivity can be obtained, and further, a fuel cell can be obtained using the proton conductive membrane. It is said that a fuel cell with high power generation efficiency can be obtained.
特開2011-236429号公報JP 2011-236429 A
 しかしながら、特許文献1に開示されている補強材は、良好なプロトン伝導性を得るには空隙率を高くする必要があるところ、空隙率を高めた場合、得られる補強材は水を含んだ状態における引張強度(含水時の引張強度)及び水を含む前後での寸法安定性(低膨潤性)が充分でないという問題があった。 However, the reinforcing material disclosed in Patent Document 1 needs to increase the porosity to obtain good proton conductivity. When the porosity is increased, the resulting reinforcing material contains water. There was a problem that the tensile strength (tensile strength when containing water) and the dimensional stability (low swellability) before and after containing water were not sufficient.
 一方、本発明者等が検討した結果、良好なプロトン等のイオン伝導性を得るという観点からは、固体電解質膜の厚さを薄くすること(例えば、30μm以下)が好ましいことが判明した。しかしながら、特許文献1に実施例として具体的に開示されている補強材は、厚さが50μmであり、補強材の厚さが大きすぎるために補強する固体電解質膜も必然的に厚くなってしまい、イオン伝導性が制限され易くなるという問題があることを知得した。 On the other hand, as a result of studies by the present inventors, it has been found that it is preferable to reduce the thickness of the solid electrolyte membrane (for example, 30 μm or less) from the viewpoint of obtaining good proton and other ion conductivity. However, the reinforcing material specifically disclosed as an example in Patent Document 1 has a thickness of 50 μm, and the thickness of the reinforcing material is too large, so that the solid electrolyte membrane to be reinforced is inevitably thick. It has been found that there is a problem that the ion conductivity tends to be limited.
 本発明は、上記問題を解決し、例えば燃料電池等の固体電解質補強材として使用した場合に、優れた含水時の引張強度及び低膨潤性と、優れたイオン伝導性とを兼ね備える固体電解質補強材を提供することを目的とする。更に、本発明は、該補強材を利用した固体電解質膜を提供することを目的とする。 The present invention solves the above-mentioned problems and, for example, when used as a solid electrolyte reinforcing material for fuel cells or the like, the solid electrolyte reinforcing material having excellent tensile strength and low swellability when containing water and excellent ionic conductivity The purpose is to provide. Furthermore, an object of the present invention is to provide a solid electrolyte membrane using the reinforcing material.
 本発明者等が上記課題を解決すべく鋭意検討を行った結果、特許文献1に開示されている補強材は、不織布構造であるために、含水時の引張強度及び低膨潤性と、プロトン等のイオン伝導性との両立が困難となることを知得した。そこで、本発明者等が更に検討を重ねた結果、固体電解質補強材として、特定の番手のガラス糸を選択し、これを織密度が特定範囲を満たす織物を採用することにより、優れた含水時の引張強度及び低膨潤性と、優れたイオン伝導性とを兼ね備え得ることを突き止めた。本発明は、かかる知見に基づいて、更に検討を重ねることにより完成するに至った。 As a result of intensive studies by the present inventors to solve the above-mentioned problems, the reinforcing material disclosed in Patent Document 1 has a nonwoven fabric structure. Therefore, the tensile strength and low swellability when containing water, protons, etc. It has been found that it is difficult to achieve both ionic conductivity. Therefore, as a result of further studies by the inventors, as a solid electrolyte reinforcing material, a glass yarn having a specific count is selected as a solid electrolyte reinforcing material, and by adopting a woven fabric having a woven density satisfying a specific range, the water content is excellent. It was found that the tensile strength and low swellability can be combined with excellent ionic conductivity. The present invention has been completed by further studies based on this finding.
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 経糸及び緯糸として番手が1.0~3.5texであるガラス糸を含み、
 前記経糸及び前記緯糸の少なくとも一方の織密度が30~75本/25mmの織物である、固体電解質補強材。
項2. 前記ガラス糸の平均フィラメント直径が3.0~4.8μmである、項1に記載の固体電解質補強材。
項3. 補強する固体電解質との結合性を高めるバインダー成分を実質的に含有しない、項1または2に記載の固体電解質補強材。
項4. 前記ガラス糸を構成するガラス組成物が、CaO、MgO、Na2O及びK2Oの含有量の合計が20質量%以下である、項1~3のいずれか1項に記載の固体電解質補強材。
項5. 燃料電池の固体電解質膜の補強のための、経糸及び緯糸として番手が1.0~3.5texであるガラス糸を含み、前記経糸及び前記緯糸の少なくとも一方の織密度が30~75本/25mmである織物の使用。
項6. 固体電解質、及び項1~4のいずれかに記載の固体電解質補強材を含む、固体電解質膜。
項7. 前記固体電解質が、イオン導電性の無機/有機ハイブリッド化合物である、項6に記載の固体電解質膜。
項8. 前記イオン導電性の無機/有機ハイブリッド化合物が、珪酸化合物、及びタングステン酸化合物から選択される少なくとも1種類とポリビニルアルコールとが化学結合した無機/有機ハイブリッド化合物である、項7に記載の固体電解質膜。
項9. 燃料電池の固体電解質膜としての、固体電解質、及び項1~4のいずれかに記載の固体電解質補強材を含む膜の使用。
項10. 項6~8のいずれかに記載の固体電解質膜を含む、燃料電池。
That is, this invention provides the invention of the aspect hung up below.
Item 1. Including glass yarn with a count of 1.0 to 3.5 tex as warp and weft,
A solid electrolyte reinforcing material, which is a woven fabric having a weaving density of at least one of the warp and the weft of 30 to 75/25 mm.
Item 2. Item 2. The solid electrolyte reinforcing material according to Item 1, wherein the glass yarn has an average filament diameter of 3.0 to 4.8 μm.
Item 3. Item 3. The solid electrolyte reinforcing material according to Item 1 or 2, which does not substantially contain a binder component that enhances the binding property with the solid electrolyte to be reinforced.
Item 4. Item 4. The solid electrolyte reinforcement according to any one of Items 1 to 3, wherein the glass composition constituting the glass yarn has a total content of CaO, MgO, Na 2 O and K 2 O of 20% by mass or less. Wood.
Item 5. In order to reinforce the solid electrolyte membrane of the fuel cell, a glass yarn having a yarn count of 1.0 to 3.5 tex is included as a warp and a weft. The use of textiles that are.
Item 6. 5. A solid electrolyte membrane comprising a solid electrolyte and the solid electrolyte reinforcing material according to any one of Items 1 to 4.
Item 7. Item 7. The solid electrolyte membrane according to Item 6, wherein the solid electrolyte is an ion conductive inorganic / organic hybrid compound.
Item 8. Item 8. The solid electrolyte membrane according to Item 7, wherein the ion conductive inorganic / organic hybrid compound is an inorganic / organic hybrid compound in which at least one selected from a silicic acid compound and a tungstic acid compound and polyvinyl alcohol are chemically bonded. .
Item 9. Use of a solid electrolyte as a solid electrolyte membrane of a fuel cell and a membrane comprising the solid electrolyte reinforcing material according to any one of Items 1 to 4.
Item 10. Item 9. A fuel cell comprising the solid electrolyte membrane according to any one of Items 6 to 8.
 本発明の固体電解質補強材によれば、特定の番手のガラス糸を含み、織密度が特定範囲である織物を採用することにより、固体電解質膜に対して、従来技術では得られなかった含水時の引張強度及び低膨潤性と、プロトン等のイオン伝導性とを兼ね備えさせることができる。従って、本発明の固体電解質補強材を含む固体電解質膜は、例えば燃料電池に用いた場合に、含水時の引張強度及び低膨潤性が良好で、優れた出力特性を備えさせることができる。 According to the solid electrolyte reinforcing material of the present invention, by employing a woven fabric that includes glass yarn of a specific count and has a woven density within a specific range, the solid electrolyte membrane has a water content that could not be obtained by the prior art. It is possible to combine the tensile strength and low swellability of ionic conductivity with protons and the like. Therefore, the solid electrolyte membrane containing the solid electrolyte reinforcing material of the present invention, when used in a fuel cell, for example, has good tensile strength and low swellability when containing water, and can have excellent output characteristics.
本願実施例における固体電解質のイオン導電性の評価方法を説明する模式図である。It is a schematic diagram explaining the evaluation method of the ionic conductivity of the solid electrolyte in an Example of this application.
 <固体電解質補強材>
 本発明の固体電解質補強材は、経糸及び緯糸として番手が1.0~3.5texであるガラス糸を含み、該経糸及び該緯糸の少なくとも一方の織密度が30~75本/25mmの織物であることを特徴とする。以下、本発明の固体電解質補強材について詳述する。
<Solid electrolyte reinforcement>
The solid electrolyte reinforcing material of the present invention includes a glass yarn having a yarn count of 1.0 to 3.5 tex as a warp and a weft, and a woven fabric having a woven density of 30 to 75 yarns / 25 mm of at least one of the warp and the weft. It is characterized by being. Hereinafter, the solid electrolyte reinforcing material of the present invention will be described in detail.
 本発明の固体電解質補強材に使用される織物において、ガラス糸を構成するガラス材料については、補強する固体電解質の使用環境によって公知のガラス材料を用いることができる。ガラス材料としては、具体的には、Eガラス、Cガラス、Sガラス、Tガラス、ARガラス等が挙げられる。 In the woven fabric used for the solid electrolyte reinforcing material of the present invention, a known glass material can be used depending on the usage environment of the solid electrolyte to be reinforced for the glass material constituting the glass yarn. Specific examples of the glass material include E glass, C glass, S glass, T glass, and AR glass.
 プロトン伝導性固体電解質は通常強酸である。そのため、固体電解質を例えば燃料電池に用いる場合、ガラス材料の耐酸性が優れていると、ガラス成分の溶出に伴う含水時の引張強度の低下がより起こり難くなり、またガラス材料から溶出したカチオン成分による固体電解質のイオン伝導性の低下がより起こり難くなる。従って、ガラス糸を構成するガラス組成物は、引張強度と出力特性をより向上させるという観点から、CaO、MgO、Na2O及びK2Oの含有量の合計が20質量%以下であるものが好ましい。とりわけ、SiO2が60~70質量%、Al23が20~30質量%であって、且つCaO、MgO、Na2O及びK2Oの含有量の合計が20質量%以下であるものが更に好ましく;SiO2が60~70質量%、Al23が20~30質量%であって、CaO、MgO、Na2O及びK2Oの含有量の合計が10~20質量%であり、且つNa2O及びK2Oの含有量の合計が2質量%以下であるものが特に好ましい。 Proton conducting solid electrolytes are usually strong acids. Therefore, when a solid electrolyte is used in, for example, a fuel cell, if the acid resistance of the glass material is excellent, a decrease in tensile strength at the time of water content accompanying the elution of the glass component is less likely to occur, and the cation component eluted from the glass material Decrease in the ionic conductivity of the solid electrolyte due to is more difficult. Therefore, the glass composition constituting the glass yarn has a total content of CaO, MgO, Na 2 O and K 2 O of 20% by mass or less from the viewpoint of further improving the tensile strength and output characteristics. preferable. In particular, SiO 2 is 60 to 70 mass%, Al 2 O 3 is 20 to 30 mass%, and the total content of CaO, MgO, Na 2 O and K 2 O is 20 mass% or less. More preferably: SiO 2 is 60 to 70% by mass, Al 2 O 3 is 20 to 30% by mass, and the total content of CaO, MgO, Na 2 O and K 2 O is 10 to 20% by mass. It is particularly preferable that the total content of Na 2 O and K 2 O is 2% by mass or less.
 また、補強対象となる固体電解質を後述する無機/有機ハイブリッド化合物にする場合には、ガラス糸を構成するガラス組成物として、特に、SiO2が60~70質量%、Al23が20~30質量%であって、CaO、MgO、Na2O及びK2Oの含有量の合計が10~20質量%であり、且つNa2O及びK2Oの含有量の合計が2質量%以下であるものとすると、含水時の引張強度とイオン伝導性をより一層両立することができ、特に好ましい。 When the solid electrolyte to be reinforced is an inorganic / organic hybrid compound described later, the glass composition constituting the glass yarn is particularly 60 to 70% by mass of SiO 2 and 20 to 20% of Al 2 O 3. 30% by mass, the total content of CaO, MgO, Na 2 O and K 2 O is 10 to 20% by mass, and the total content of Na 2 O and K 2 O is 2% by mass or less It is particularly preferable that the tensile strength and ionic conductivity at the time of hydration can be made more compatible.
 また、固体電解質として無機/有機ハイブリッド化合物を使用した固体電解質膜は、アルカリ水電解型の水素発生装置のセパレータとしても用いることができる。このようなセパレータとして使用される固体電解質膜に本発明の固体電解質補強材を適用する場合には、ガラス糸を構成するガラス組成物としては、水素発生効率をより向上させるという観点から、ZrO2の含有量が10~30質量%であることが好ましく;SiO2が55~62質量%、Al23が1~5質量%、CaO及びMgOの含有量の合計が0~12質量%、B23が0~4質量%、Na2O及びK2Oの含有量の合計が13~18質量%であり、且つZrO2の含有量が12~21質量%であることが更に好ましい。 A solid electrolyte membrane using an inorganic / organic hybrid compound as the solid electrolyte can also be used as a separator for an alkaline water electrolysis type hydrogen generator. When the solid electrolyte reinforcing material of the present invention is applied to the solid electrolyte membrane used as such a separator, the glass composition constituting the glass yarn is ZrO 2 from the viewpoint of further improving the hydrogen generation efficiency. Is preferably 10 to 30% by mass; SiO 2 is 55 to 62% by mass, Al 2 O 3 is 1 to 5% by mass, and the total content of CaO and MgO is 0 to 12% by mass; More preferably, B 2 O 3 is 0 to 4% by mass, the total content of Na 2 O and K 2 O is 13 to 18% by mass, and the content of ZrO 2 is 12 to 21% by mass. .
 ガラス糸の番手は、固体電解質膜中に含有させた際にガラス糸によるイオン伝導の妨害を最小限にするという観点から、1.0~3.5texが必要であり、1.0~2.4texが好ましく、1.0~2.0texが更に好ましく、1.5~1.97texがより一層好ましい。本発明において、ガラス糸の番手は、日本工業規格「JIS R 3420 2013 7.1」に規定されている方法に従って求められる値である。 The count of the glass yarn needs to be 1.0 to 3.5 tex from the viewpoint of minimizing the interference of ionic conduction by the glass yarn when it is contained in the solid electrolyte membrane. 4 tex is preferred, 1.0 to 2.0 tex is more preferred, and 1.5 to 1.97 tex is even more preferred. In the present invention, the count of the glass yarn is a value obtained according to a method defined in Japanese Industrial Standard “JIS R 3420 2013 7.1”.
 ガラス糸は、ガラス長繊維である単繊維(フィラメント)が複数本撚りまとめられたガラスヤーンが好ましい。ガラスヤーンにおけるフィラメントの本数は、特に制限されないが、含水時の引張強度及び低膨潤性と、イオン伝導性との両立を一層優れたものにするという観点から、20~120本程度が好ましく、20~70本が更に好ましく、20~55本が特に好ましい。ガラスヤーンにおけるフィラメントの平均直径は、同様の観点から、3.0~4.8μm程度が好ましく、3.0~4.5μmが特に好ましい。ここで、ガラスヤーンにおけるフィラメントの本数は、織物をエポキシ樹脂に包埋して硬化させ、ガラス糸が観察可能な程度に研磨し、走査型電子顕微鏡(SEM)を用い、倍率500倍にて観察することによって求められる。また、ガラスヤーンにおけるフィラメントの平均直径は、織物を前記と同様に処理して走査型電子顕微鏡(SEM)を用いて倍率500倍にて1本のガラスヤーンに含まれる全てのフィラメントの直径を測定し、その平均値を算出することによって求められる。 The glass yarn is preferably a glass yarn in which a plurality of single fibers (filaments), which are long glass fibers, are twisted together. The number of filaments in the glass yarn is not particularly limited, but is preferably about 20 to 120 from the viewpoint of further improving the balance between tensile strength and low swellability when containing water and ion conductivity. ~ 70 are more preferred, and 20 to 55 are particularly preferred. From the same viewpoint, the average diameter of the filament in the glass yarn is preferably about 3.0 to 4.8 μm, particularly preferably 3.0 to 4.5 μm. Here, the number of filaments in the glass yarn was determined by embedding the fabric in an epoxy resin and curing it, polishing it to such an extent that the glass yarn could be observed, and observing it at a magnification of 500 times using a scanning electron microscope (SEM). It is required by doing. The average diameter of the filaments in the glass yarn is the same as described above, and the diameters of all filaments contained in one glass yarn are measured at a magnification of 500 times using a scanning electron microscope (SEM). The average value is calculated.
 本発明の固体電解質補強材に使用される織物において、経糸及び緯糸の少なくとも一方の織密度が30~75本/25mmである必要があり、とりわけ50~60本/25mmであることが好ましい。これにより、得られる固体電解質は、優れた含水時の引張強度及び低膨潤性と、優れたイオン伝導性とを兼ね備えることが可能になる。含水時の引張強度及び低膨潤性とイオン電導性とをより一層良好に兼ね備えさせるという観点から、経糸及び緯糸の双方が前記織密度の範囲を満たしていることが好ましい。本発明において、経糸及び緯糸の織密度は、日本工業規格「JIS R 3420 2013 7.9」に規定されている方法に従って求められる値である。 In the woven fabric used for the solid electrolyte reinforcing material of the present invention, the woven density of at least one of warp and weft needs to be 30 to 75/25 mm, and particularly preferably 50 to 60/25 mm. Thereby, the obtained solid electrolyte can have excellent tensile strength and low swellability at the time of water content, and excellent ionic conductivity. It is preferable that both the warp and the weft satisfy the range of the weave density from the viewpoint of further combining the tensile strength and low swellability with water and ionic conductivity when containing water. In the present invention, the weave density of the warp and the weft is a value determined according to a method defined in Japanese Industrial Standard “JIS R 3420 2013 7.9”.
 本発明の固体電解質補強材に使用される織物において、織物中におけるガラス糸の混用率としては、本発明の効果を奏する範囲内で特に制限はないが、70質量%以上が好ましく、80質量%以上が更に好ましく、100質量%(ガラス糸のみからなる織物)が特に好ましい。 In the woven fabric used for the solid electrolyte reinforcing material of the present invention, the mixing ratio of the glass yarn in the woven fabric is not particularly limited as long as the effect of the present invention is achieved, but is preferably 70% by mass or more, and 80% by mass. The above is more preferable, and 100% by mass (woven fabric made only of glass yarn) is particularly preferable.
 本発明の固体電解質補強材に使用される織物の織組織としては、特に制限されないが、例えば、平織、朱子織、綾織、斜子織、畦織等が挙げられ、中でも平織が好ましい。 The woven structure of the woven fabric used for the solid electrolyte reinforcing material of the present invention is not particularly limited, and examples thereof include plain weave, satin weave, twill weave, oblique weave, and woven weave.
 本発明の固体電解質補強材に使用される織物の厚さについては、固体電解質膜に含有させた際の含水時の引張強度及び低膨潤性と、イオン伝導性とをより一層良好にするという観点から、8~30μmが好ましく、8~20μmが更に好ましい。本発明において、織物の厚さは、日本工業規格「JIS R 3420 2013 7.10.1A法」に規定されている方法に従って求められる値である。 Regarding the thickness of the woven fabric used for the solid electrolyte reinforcing material of the present invention, the viewpoint of making the tensile strength and low swellability at the time of water inclusion and the ionic conductivity even better when contained in the solid electrolyte membrane Therefore, 8 to 30 μm is preferable, and 8 to 20 μm is more preferable. In the present invention, the thickness of the woven fabric is a value determined according to a method defined in Japanese Industrial Standard “JIS R 3420 2013 7.10.1A method”.
 本発明の固体電解質補強材において、織物の質量については、特に制限されないが、固体電解質としたときの含水時の引張強度及び低膨潤性とイオン伝導性とをより一層効果的に両立させるという観点から、5~30g/m2が好ましく、5~20g/m2がより好ましく、5~10g/m2が特に好ましい。本発明において、織物の質量は、日本工業規格「JIS R 3420 2013 7.2」に規定されている方法に従って求められる値である。 In the solid electrolyte reinforcing material of the present invention, the mass of the woven fabric is not particularly limited, but the viewpoint of making the tensile strength and low swellability and ionic conductivity at the time of water content more effective both compatible with each other more effectively. Therefore, 5 to 30 g / m 2 is preferable, 5 to 20 g / m 2 is more preferable, and 5 to 10 g / m 2 is particularly preferable. In the present invention, the mass of the woven fabric is a value determined according to a method defined in Japanese Industrial Standard “JIS R 3420 2013 7.2”.
 本発明の固体電解質補強材は、補強する固体電解質との結合性を高めるバインダー成分を実質的に含有しないことが好ましい。これにより、得られる固体電解質膜は、製膜状態がより良好なものとなり、例えば、燃料電池に用いた場合の出力特性をより一層向上させることができる。ここで、「バインダー成分を実質的に含有しない」とは、バインダー成分を積極的には固体電解質補強材を構成する織物に塗布等しない、或いはバインダー成分をヒートクリーニング処理(加熱処理)によって除去する、等により、結果的にこれらを含有しないことを意味する。こうしたバインダー成分は、含有量がゼロであることが特に好ましいが、本発明の効果を損ねない範囲で、固体電解質補強材中に0.1質量%以下程度、より好ましくは0.05質量%以下程度含まれていても差し支えない。 It is preferable that the solid electrolyte reinforcing material of the present invention does not substantially contain a binder component that enhances the binding property with the solid electrolyte to be reinforced. Thereby, the obtained solid electrolyte membrane has a better film formation state, and for example, the output characteristics when used in a fuel cell can be further improved. Here, “substantially no binder component” means that the binder component is not actively applied to the fabric constituting the solid electrolyte reinforcing material, or the binder component is removed by heat cleaning treatment (heating treatment). As a result, it means that these are not contained. Such a binder component is particularly preferably zero in content, but within a range not impairing the effects of the present invention, it is about 0.1% by mass or less, more preferably 0.05% by mass or less in the solid electrolyte reinforcing material. Even if it is included, there is no problem.
 上記補強する固体電解質との結合性を高めるバインダー成分としては、具体的には、シランカップリング剤や、澱粉及び合成樹脂(例えば、アクリル樹脂、ウレタン樹脂、フッ素樹脂、シリコーン樹脂、エポキシ樹脂、ポリエステル樹脂等)等の有機バインダー、シリカ、アルキルシリケート等の無機バインダー等が挙げられる。また、上記バインダー成分と同様、界面活性剤の含有量についてもゼロであることが特に好ましいが、本発明の効果を損ねない範囲で、固体電解質補強材中に0.1質量%以下程度、より好ましくは0.05質量%以下程度含まれていても差し支えない。 Specific examples of the binder component that enhances the binding property with the solid electrolyte to be reinforced include silane coupling agents, starch and synthetic resins (for example, acrylic resins, urethane resins, fluororesins, silicone resins, epoxy resins, polyesters). Resin) and the like, and inorganic binders such as silica and alkyl silicate. Further, similarly to the binder component, the content of the surfactant is particularly preferably zero, but within a range not impairing the effects of the present invention, the solid electrolyte reinforcing material has a content of about 0.1% by mass or less. Preferably about 0.05 mass% or less may be contained.
 本発明の固体電解質補強材が前記バインダー成分を実質的に含有しない場合には、補強する固体電解質として、後述する無機/有機ハイブリッド化合物を使用すると、該補強材と該固体電解質の結合性が特に良好になり、製膜状態がより一層良好になって、燃料電池に用いた場合の出力特性をより一層効果的に向上させることも可能になる。 When the solid electrolyte reinforcing material of the present invention does not substantially contain the binder component, when an inorganic / organic hybrid compound described later is used as the solid electrolyte to be reinforced, the binding property between the reinforcing material and the solid electrolyte is particularly good. As a result, the film formation state becomes even better, and the output characteristics when used in a fuel cell can be further effectively improved.
 前記バインダー成分を実質的に含有していない固体電解質補強材を製造する方法としては、例えば、ガラス糸を製織した織物にヒートクリーニング処理(加熱処理)を施す方法が挙げられる。ヒートクリーニング処理の条件としては、例えば、温度350~450℃で20~60時間が挙げられる。 Examples of a method for producing a solid electrolyte reinforcing material substantially not containing the binder component include a method of subjecting a woven fabric made of glass yarn to a heat cleaning treatment (heating treatment). Examples of the heat cleaning treatment conditions include a temperature of 350 to 450 ° C. and a time of 20 to 60 hours.
 <固体電解質膜>
 本発明の固体電解質膜は、前記固体電解質補強材及び固体電解質を含むことを特徴とする。本発明の固体電解質膜は、前記固体電解質補強材によって補強されていることにより、含水時の引張強度及び低膨潤性を良好にしつつ、イオン伝導性を兼ね備えることが可能になる。
<Solid electrolyte membrane>
The solid electrolyte membrane of the present invention is characterized by including the solid electrolyte reinforcing material and the solid electrolyte. Since the solid electrolyte membrane of the present invention is reinforced by the solid electrolyte reinforcing material, it becomes possible to combine ion conductivity while improving the tensile strength and low swellability when containing water.
 本発明の固体電解質膜に使用される固体電解質としてはプロトン等のイオンを伝導するものであれば特に限定されず、例えば、高分子電解質、イオン導電性の無機物質、イオン導電性の無機/有機ハイブリッド化合物等が挙げられる。 The solid electrolyte used in the solid electrolyte membrane of the present invention is not particularly limited as long as it conducts ions such as protons. For example, a polymer electrolyte, an ion conductive inorganic substance, an ion conductive inorganic / organic A hybrid compound etc. are mentioned.
 高分子電解質としては、例えば、フッ素系高分子電解質、炭化水素系高分子電解質、化学修飾フラーレンイオン伝導体が挙げられ、フッ素系高分子電解質としては、例えば、パーフルオロアルキレンを主骨格とし、スルホ基やカルボキシル基等のイオン交換基を有するものが挙げられる。炭化水素系高分子電解質としては、例えば、ポリスチレン、ポリアリーレンエーテル、ポリイミド、ポリフォスファゼン、ポリベンゾイミダゾ-ルなどの芳香族系ポリマーをスルホン化したものが挙げられる。 Examples of the polymer electrolyte include a fluorine-based polymer electrolyte, a hydrocarbon-based polymer electrolyte, and a chemically modified fullerene ion conductor. Examples of the fluorine-based polymer electrolyte include perfluoroalkylene as a main skeleton, and sulfo And those having an ion exchange group such as a group or a carboxyl group. Examples of the hydrocarbon polymer electrolyte include sulfonated aromatic polymers such as polystyrene, polyarylene ether, polyimide, polyphosphazene, polybenzimidazole.
 イオン導電性の無機/有機ハイブリッド化合物としては、Si、Al、Ti、Sn、Zr、Mo、及びWから選ばれる1種以上の元素とOとを含む無機部分と、有機部分とを含むものが挙げられ、具体的には、珪酸化合物、タングステン酸化合物、及びジルコン酸化合物から選ばれる1種以上とポリビニルアルコールとが化学結合したハイブリッド化合物(以下、ハイブリッド化合物Aと表記することもある)等が挙げられる。とりわけ、前記ハイブリッド化合物Aは、前記固体電解質補強材と固体電解質の結合性が特に良好で、製膜状態がより一層良好になることから、例えば、燃料電池に用いた場合の出力特性がより一層向上し易くなる。 Examples of the ion conductive inorganic / organic hybrid compound include those containing an organic part and an inorganic part containing one or more elements selected from Si, Al, Ti, Sn, Zr, Mo, and W and O. Specifically, a hybrid compound in which at least one selected from a silicic acid compound, a tungstic acid compound, and a zirconic acid compound and polyvinyl alcohol are chemically bonded (hereinafter sometimes referred to as a hybrid compound A), etc. Can be mentioned. In particular, the hybrid compound A has particularly good binding properties between the solid electrolyte reinforcing material and the solid electrolyte, and the film-forming state becomes even better. For example, the output characteristics when used in a fuel cell are further improved. It becomes easy to improve.
 本発明の固体電解質膜は、固体電解質を膜状のマトリックスとして、その中に前記固体電解質補強材が含まれていればよい。 The solid electrolyte membrane of the present invention only needs to contain the solid electrolyte reinforcing material as a membrane matrix.
 本発明の固体電解質膜において、固体電解質と前記固体電解質補強材の比率については、該固体電解質膜の用途、使用する固体電解質の種類等に応じて適宜設定すればよいが、例えば、固体電解質100質量部当たり、前記固体電解質補強材が10~70質量部、好ましくは20~50質量部、更に好ましくは20~40質量部が挙げられる。 In the solid electrolyte membrane of the present invention, the ratio between the solid electrolyte and the solid electrolyte reinforcing material may be appropriately set according to the use of the solid electrolyte membrane, the type of the solid electrolyte to be used, etc. For example, the solid electrolyte 100 The solid electrolyte reinforcing material is 10 to 70 parts by weight, preferably 20 to 50 parts by weight, and more preferably 20 to 40 parts by weight per part by weight.
 また、本発明の固体電解質膜の厚さについても、該固体電解質膜の用途等に応じて適宜設定すればよいが、例えば、20~200μm、好ましくは20~50μm、更に好ましくは20~30μmが挙げられる。 In addition, the thickness of the solid electrolyte membrane of the present invention may be appropriately set according to the use of the solid electrolyte membrane, and is, for example, 20 to 200 μm, preferably 20 to 50 μm, more preferably 20 to 30 μm. Can be mentioned.
 本発明の固体電解質膜の製造方法としては、特に限定されるものではないが、例えば、固体電解質を分散又は溶解した液体を前記固体電解質補強材に含浸させた後、乾燥することによって製造することが挙げられる。 The method for producing the solid electrolyte membrane of the present invention is not particularly limited. For example, the solid electrolyte membrane may be produced by impregnating the solid electrolyte reinforcing material with a liquid in which the solid electrolyte is dispersed or dissolved and then drying. Is mentioned.
 本発明の固体電解質膜は、従来技術では得られなかった引張強度及び低膨潤性と、プロトン等のイオン伝導性との両立が図れることから、例えば、固体電解質型燃料電池、固体電解質型水素発生装置等に好適に使用することができる。また、本発明の固体電解質膜は、水酸化物イオンの通過性にも優れることから、アルカリ水電解型の水素発生装置のセパレータとしても適用することができる。 The solid electrolyte membrane of the present invention can achieve both the tensile strength and low swellability that could not be obtained by the prior art, and ion conductivity such as protons. For example, solid electrolyte fuel cells, solid electrolyte hydrogen generation It can be suitably used for an apparatus or the like. In addition, since the solid electrolyte membrane of the present invention is excellent in hydroxide ion permeability, it can also be applied as a separator for an alkaline water electrolysis type hydrogen generator.
 本発明の固体電解質膜を用いた燃料電池において、固体電解質以外の部分は、特に限定されず、公知の燃料電池と同様の構成を適用でき、例えば、固体電解質の両側には公知の燃料極と公知の空気極とが配置される。 In the fuel cell using the solid electrolyte membrane of the present invention, portions other than the solid electrolyte are not particularly limited, and the same configuration as that of a known fuel cell can be applied. For example, a known fuel electrode is provided on both sides of the solid electrolyte. A known air electrode is arranged.
 以下、実施例によって本発明を詳しく説明する。但し、本発明は以下の実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to the following examples.
1.評価方法
(1)ガラス糸の番手(tex)
 日本工業規格「JIS R 3420 2013 7.1」に記載の方法に従い、測定、算出した。
1. Evaluation method (1) Count of glass yarn (tex)
It was measured and calculated according to the method described in Japanese Industrial Standard “JIS R 3420 2013 7.1”.
(2)ガラス糸の平均フィラメント直径(μm)、平均フィラメント本数(本)
 得られた織物を30cm角にカットしたものを2枚用意し、一方を経糸観察用、他方を緯糸観察用として、それぞれをエポキシ樹脂(丸本ストルアス株式会社製商品名3091)に包埋して硬化させ、経糸、緯糸が観察可能な程度に研磨し、SEM(日本電子株式会社製商品名JSM-6390A)を用い、倍率500倍で観察、測定を行った。
(2) Glass filament average filament diameter (μm), average filament number (pieces)
Two pieces of the resulting woven fabric cut into 30 cm squares are prepared, one for warp observation and the other for weft observation, and each is embedded in an epoxy resin (trade name 3091 manufactured by Marumoto Struers Co., Ltd.). It was hardened, polished to such an extent that warps and wefts could be observed, and observed and measured at a magnification of 500 times using SEM (trade name JSM-6390A, manufactured by JEOL Ltd.).
(3)織密度(本/25mm)
 日本工業規格「JIS R 3420 2013 7.9」に記載の方法に従い、経糸、緯糸の織密度を測定、算出した。
(3) Weaving density (main / 25mm)
According to the method described in Japanese Industrial Standard “JIS R 3420 2013 7.9”, the weave density of warp and weft was measured and calculated.
(4)織物の厚さ(μm)
 日本工業規格「JIS R 3420 2013 7.10.1A法」に記載の方法に従い、測定、算出した。
(4) Thickness of fabric (μm)
It was measured and calculated according to the method described in Japanese Industrial Standard “JIS R 3420 2013 7.10.1A Method”.
(5)織物の質量(g/m2
 日本工業規格「JIS R 3420 2013 7.2」に記載の方法に従い、測定、算出した。
(5) Mass of fabric (g / m 2 )
It was measured and calculated according to the method described in Japanese Industrial Standard “JIS R 3420 2013 7.2”.
(6)ガラス糸を構成するガラス組成物の組成及び質量比(質量%)
 アルカリ融解-ICP発光分光分析法及び原子吸光光度法により測定した。
(6) Composition and mass ratio (mass%) of the glass composition constituting the glass yarn
It was measured by alkali melting-ICP emission spectrometry and atomic absorption spectrophotometry.
(7)固体電解質膜の含水時の引張強度(MPa)
 固体電解質膜を20mm×40mmの大きさに切断した試験片を準備した。試験片を20~25℃の純水に1時間浸漬して吸水させた後に、加重測定器を用いて固体電解質膜が破断するまでの強度の測定を行い、下記式(a)にて引張強度を算出した。
 引張強度(MPa)=測定加重(N)/膜断面積(幅mm×厚みmm) (a)
(7) Tensile strength (MPa) of the solid electrolyte membrane when it contains water
A test piece was prepared by cutting the solid electrolyte membrane into a size of 20 mm × 40 mm. After the test piece is immersed in pure water at 20 to 25 ° C. for 1 hour to absorb water, the strength until the solid electrolyte membrane breaks is measured using a weighted measuring instrument, and the tensile strength is calculated by the following formula (a). Was calculated.
Tensile strength (MPa) = measurement load (N) / membrane cross-sectional area (width mm × thickness mm) (a)
(8)固体電解質膜の膨潤性(%)
 固体電解質膜を20mm×40mmの大きさに切断した試験片を準備した。試験片を20~25℃の純水に1時間浸漬し、浸漬前後での試験片の面積を測定し、下記式(b)にて膨潤度を算出した。
 膨潤度(%)=[(浸漬後面積-浸漬前面積)/(浸漬前面積)]×100 (b)
(8) Swellability of solid electrolyte membrane (%)
A test piece was prepared by cutting the solid electrolyte membrane into a size of 20 mm × 40 mm. The test piece was immersed in pure water at 20 to 25 ° C. for 1 hour, the area of the test piece before and after immersion was measured, and the degree of swelling was calculated by the following formula (b).
Swelling degree (%) = [(Area after immersion−Area before immersion) / (Area before immersion)] × 100 (b)
(9)イオン伝導性(mW/cm2
 イオン伝導性について、燃料電池とした場合の最高出力密度を指標として、以下の方法で評価した。該最高出力密度が500mW/m2以上の場合、イオン伝導性に優れるものとして合格とした。
(9) Ionic conductivity (mW / cm 2 )
Ion conductivity was evaluated by the following method using the maximum output density in the case of a fuel cell as an index. When the maximum output density was 500 mW / m 2 or more, it was determined to be acceptable as having excellent ion conductivity.
(膜電極接合体(MEA)の作製)
 燃料電池での評価を行なうため、固体電解質膜に電極を取り付けて膜電極接合体(MEA)を作製した。作製した膜電極接合体は、図1に示すように、固体電解質膜1の両面に触媒電極層2及び3が積層され、更に最外層にはガス拡散層4及び5が積層されている。触媒電極層2及び3は、50wt%白金担持カーボン触媒(田中貴金属工業株式会社製)とNafionアイオノマー(5%Solution DE520 CSタイプ)を用いて形成した。また、ガス拡散層は、カーボンペーパー(22.4×22.4mm、厚さ195μm)で形成しており、その内側(触媒電極層2及び3側)には、マイクロポーラス層として、厚さ約10μmのカーボンブラック粉末(電気化学工業株式会社製アセチレンブラック)とテフロン(Aldrich社)から成る層が塗布されている。
(Production of membrane electrode assembly (MEA))
In order to evaluate the fuel cell, an electrode was attached to the solid electrolyte membrane to produce a membrane electrode assembly (MEA). As shown in FIG. 1, the produced membrane electrode assembly has catalyst electrode layers 2 and 3 laminated on both sides of a solid electrolyte membrane 1 and gas diffusion layers 4 and 5 laminated on the outermost layer. The catalyst electrode layers 2 and 3 were formed using a 50 wt% platinum-supported carbon catalyst (Tanaka Kikinzoku Kogyo Co., Ltd.) and a Nafion ionomer (5% Solution DE520 CS type). Further, the gas diffusion layer is formed of carbon paper (22.4 × 22.4 mm, thickness 195 μm), and on the inner side (catalyst electrode layers 2 and 3 side), a microporous layer has a thickness of about A layer composed of 10 μm carbon black powder (acetylene black manufactured by Denki Kagaku Kogyo Co., Ltd.) and Teflon (Aldrich) is applied.
(燃料電池出力特性の評価)
 上記MEAを市販の燃料電池用単セル(エレクトロケム社製)にセットし、一般的な水素―酸素燃料電池を構成した。具体的には、図1に示すように、MEA(図1中、符号1~5の部材)を極室分離と電極へのガス供給流路の役割を兼ねた導電性のセパレータ6及び7に挟みこみ、流路にそれぞれ所定流量の水素8、酸素9を流した。斯してセットした燃料電池用単セルに、セル温度が80℃、供給ガスの相対湿度が100%になるように制御して、最高出力密度(mW/cm2)の測定を行った。
(Evaluation of fuel cell output characteristics)
The MEA was set in a commercial fuel cell single cell (manufactured by Electrochem) to constitute a general hydrogen-oxygen fuel cell. Specifically, as shown in FIG. 1, the MEA (members 1 to 5 in FIG. 1) is connected to the conductive separators 6 and 7 which also serve as the chamber separation and the gas supply flow path to the electrodes. A predetermined flow rate of hydrogen 8 and oxygen 9 was passed through the flow path. The maximum power density (mW / cm 2 ) was measured by controlling the single cell for fuel cell thus set so that the cell temperature was 80 ° C. and the relative humidity of the supply gas was 100%.
2.固体電解質補強材及び固体電解質膜の製造
実施例1
(1)固体電解質補強材の製造
 経糸及び緯糸として、ガラス組成が、SiO2が60~70質量%、Al23が20~30質量%であって、CaO、MgO、Na2O及びK2Oの含有量の合計が10~20質量%であり、且つNa2O及びK2Oの含有量の合計が2質量%以下(ガラス組成A)であるガラスヤーン(番手1.7tex、平均フィラメント直径4.1μm、フィラメント本数51本、撚り数0.5Z)を用い、エアージェット織機で製織し、経糸密度が55本/25mm、緯糸密度が55本/25mmの平織のガラスクロスを得た。次いで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱(ヒートクリーニング)して除去し、固体電解質補強材を得た。得られた固体電解質補強材は、ヒートクリーニング処理に供されているので、補強する固体電解質との結合性を高めるバインダー成分を実質的に含有していないものであった。
2. Production of solid electrolyte reinforcement and solid electrolyte membrane
Example 1
(1) Production of solid electrolyte reinforcing material As warp and weft, the glass composition is 60 to 70% by mass of SiO 2 and 20 to 30% by mass of Al 2 O 3 , CaO, MgO, Na 2 O and K Glass yarn having a total content of 2 O of 10 to 20% by mass and a total content of Na 2 O and K 2 O of 2% by mass or less (glass composition A) (number 1.7 tex, average) Weaving with an air jet loom using a filament diameter of 4.1 μm, 51 filaments, and 0.5 Z twist, a plain weave glass cloth having a warp density of 55/25 mm and a weft density of 55/25 mm was obtained. . Subsequently, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating (heat cleaning) at 400 ° C. for 30 hours to obtain a solid electrolyte reinforcing material. Since the obtained solid electrolyte reinforcing material was subjected to a heat cleaning treatment, it did not substantially contain a binder component that enhances the binding property with the solid electrolyte to be reinforced.
(2)固体電解質膜の製造
 珪酸化合物とタングステン酸化合物がポリビニルアルコールに化学結合した無機/有機ハイブリッド膜(ニッポン高度紙製、登録商標iO―brane)の原料溶液をアプリケータで所定の厚みに調整しながらポリエステルフィルムの基材上に塗布した。その溶液上に前記で得られた固体電解質補強材を載せ、70~130℃に加熱し、乾燥した。塗布した原料溶液がほぼ乾燥した時点で、その上から更に前記原料溶液を塗布して乾燥し、固体電解質膜を作製した。得られた固体電解質膜において、固体電解質100質量部当たりの固体電解質補強材の比率は30質量部であった。また、得られた固体電解質膜の厚みは25μmであった。
(2) Manufacture of a solid electrolyte membrane A raw material solution of an inorganic / organic hybrid membrane (registered trademark iO-plane, manufactured by Nippon Kogyo Paper Co., Ltd.) in which a silicate compound and a tungstate compound are chemically bonded to polyvinyl alcohol is adjusted to a predetermined thickness with an applicator. Then, it was coated on a polyester film substrate. The solid electrolyte reinforcing material obtained above was placed on the solution, heated to 70 to 130 ° C. and dried. When the applied raw material solution was almost dried, the raw material solution was further applied thereon and dried to produce a solid electrolyte membrane. In the obtained solid electrolyte membrane, the ratio of the solid electrolyte reinforcing material per 100 parts by mass of the solid electrolyte was 30 parts by mass. Moreover, the thickness of the obtained solid electrolyte membrane was 25 micrometers.
実施例2
(1)固体電解質補強材の製造
 経糸及び緯糸として、表1に示すガラス組成Bからなるガラスヤーン(番手1.7tex、平均フィラメント直径4.1μm、フィラメント本数51本、撚り数0.5Z)を用い、エアージェット織機で製織し、経糸密度が55本/25mm、緯糸密度が55本/25mmの平織のガラスクロスを得た。次いで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱して除去し、固体電解質補強材を得た。得られた固体電解質補強材は、ヒートクリーニング処理に供されているので、補強する固体電解質との結合性を高めるバインダー成分を実質的に含有していないものであった。
Example 2
(1) Production of Solid Electrolyte Reinforcing Material As warp and weft, a glass yarn composed of glass composition B shown in Table 1 (number 1.7 tex, average filament diameter 4.1 μm, number of filaments 51, number of twists 0.5 Z) Used, weaving with an air jet loom to obtain a plain weave glass cloth having a warp density of 55/25 mm and a weft density of 55/25 mm. Subsequently, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating at 400 ° C. for 30 hours to obtain a solid electrolyte reinforcing material. Since the obtained solid electrolyte reinforcing material was subjected to a heat cleaning treatment, it did not substantially contain a binder component that enhances the binding property with the solid electrolyte to be reinforced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(2)固体電解質膜の製造
 得られた固体電解質補強材を使用し、前記実施例1と同様の条件で固体電解質膜を作製した。得られた固体電解質膜において、固体電解質100質量部当たりの固体電解質補強材の比率は30質量部であった。また、得られた固体電解質膜の厚みは25μmであった。
(2) Production of solid electrolyte membrane Using the obtained solid electrolyte reinforcing material, a solid electrolyte membrane was produced under the same conditions as in Example 1. In the obtained solid electrolyte membrane, the ratio of the solid electrolyte reinforcing material per 100 parts by mass of the solid electrolyte was 30 parts by mass. Moreover, the thickness of the obtained solid electrolyte membrane was 25 micrometers.
実施例3
(1)固体電解質補強材の製造
 経糸及び緯糸として、ガラス組成Aからなるガラスヤーン(番手1.7tex、平均フィラメント直径4.1μm、フィラメント本数51本、撚り数0.5Z)を用い、エアージェット織機で製織し、経糸密度が55本/25mm、緯糸密度が55本/25mmの平織のガラスクロスを得て、固体電解質補強材とした。得られた固体電解質補強材は、ヒートクリーニング処理を行っていないため、補強する固体電解質との結合性を高めるバインダー成分を含有するものであった。
Example 3
(1) Production of Solid Electrolyte Reinforcing Material As a warp and a weft, a glass yarn composed of glass composition A (number 1.7 tex, average filament diameter 4.1 μm, number of filaments 51, number of twists 0.5 Z) and air jet By weaving with a loom, a plain weave glass cloth having a warp density of 55/25 mm and a weft density of 55/25 mm was obtained and used as a solid electrolyte reinforcing material. Since the obtained solid electrolyte reinforcing material was not subjected to a heat cleaning treatment, it contained a binder component that enhances the binding property to the solid electrolyte to be reinforced.
(2)固体電解質膜の製造
 得られた固体電解質補強材を使用し、前記実施例1と同様の条件で固体電解質膜を作製した。得られた固体電解質膜において、固体電解質100質量部当たりの固体電解質補強材の比率は30質量部であった。また、得られた固体電解質膜の厚みは30μmであった。
(2) Production of solid electrolyte membrane Using the obtained solid electrolyte reinforcing material, a solid electrolyte membrane was produced under the same conditions as in Example 1. In the obtained solid electrolyte membrane, the ratio of the solid electrolyte reinforcing material per 100 parts by mass of the solid electrolyte was 30 parts by mass. Moreover, the thickness of the obtained solid electrolyte membrane was 30 micrometers.
実施例4
(1)固体電解質補強材の製造
 経糸密度を95本/25mm、緯糸密度を55本/25mmに変更したこと以外は、前記実施例3同様の条件で、固体電解質補強材を得た。得られた固体電解質補強材は、ヒートクリーニング処理を行っていないため、補強する固体電解質との結合性を高めるバインダー成分を含有するものであった。
Example 4
(1) Production of solid electrolyte reinforcing material A solid electrolyte reinforcing material was obtained under the same conditions as in Example 3 except that the warp density was changed to 95/25 mm and the weft density was changed to 55/25 mm. Since the obtained solid electrolyte reinforcing material was not subjected to a heat cleaning treatment, it contained a binder component that enhances the binding property to the solid electrolyte to be reinforced.
(2)固体電解質膜の製造
 得られた固体電解質補強材を使用し、前記実施例1と同様の条件で固体電解質膜を作製した。得られた固体電解質膜において、固体電解質100質量部当たりの固体電解質補強材の比率は35質量部であった。また、得られた固体電解質膜の厚みは30μmであった。
(2) Production of solid electrolyte membrane Using the obtained solid electrolyte reinforcing material, a solid electrolyte membrane was produced under the same conditions as in Example 1. In the obtained solid electrolyte membrane, the ratio of the solid electrolyte reinforcing material per 100 parts by mass of the solid electrolyte was 35 parts by mass. Moreover, the thickness of the obtained solid electrolyte membrane was 30 micrometers.
比較例1
(1)固体電解質補強材の製造
 経糸及び緯糸として、ガラス組成Aからなるガラスヤーン(番手4.2tex、平均フィラメント直径4.6μm、フィラメント本数100本、撚り数1.0Z)を用い、エアージェット織機で製織し、経糸密度が69本/25mm、緯糸密度が72本/25mmの平織のガラスクロスを得た。ついで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱(ヒートクリーニング)して除去し、固体電解質補強材を得た。得られた固体電解質補強材は、ヒートクリーニング処理に供されているので、補強する固体電解質との結合性を高めるバインダー成分を実質的に含有していないものであった。
Comparative Example 1
(1) Production of Solid Electrolyte Reinforcing Material As a warp and a weft, a glass yarn made of glass composition A (number 4.2 tex, average filament diameter 4.6 μm, number of filaments 100, number of twists 1.0 Z) and air jet Weaving with a loom gave a plain weave glass cloth with a warp density of 69/25 mm and a weft density of 72/25 mm. Subsequently, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating (heat cleaning) at 400 ° C. for 30 hours to obtain a solid electrolyte reinforcing material. Since the obtained solid electrolyte reinforcing material was subjected to a heat cleaning treatment, it did not substantially contain a binder component that enhances the binding property with the solid electrolyte to be reinforced.
(2)固体電解質膜の製造
 得られた固体電解質補強材を使用し、前記実施例1と同様の条件で固体電解質膜を作製した。得られた固体電解質膜において、固体電解質100質量部当たりの固体電解質補強材の比率は65質量部であった。また、得られた固体電解質膜の厚みは40μmであった。
(2) Production of solid electrolyte membrane Using the obtained solid electrolyte reinforcing material, a solid electrolyte membrane was produced under the same conditions as in Example 1. In the obtained solid electrolyte membrane, the ratio of the solid electrolyte reinforcing material per 100 parts by mass of the solid electrolyte was 65 parts by mass. Moreover, the thickness of the obtained solid electrolyte membrane was 40 micrometers.
比較例2
(1)固体電解質補強材の製造
 経糸及び緯糸として、ガラス組成Aからなるガラスヤーン(番手1.7tex、平均フィラメント直径4.1μm、フィラメント本数51本、撚り数0.5Z)を用い、エアージェット織機で製織し、経糸密度が95本/25mm、緯糸密度が95本/25mmの平織のガラスクロスを得た。次いで、得られたガラスクロスに付着している紡糸集束剤と製織集束剤を400℃で30時間加熱(ヒートクリーニング)して除去した。その後、表面処理剤のシランカップリング剤(S-350 N-ビニルベンジル-アミノエチル-γ-アミノプロピルトリメトキシシラン(塩酸塩)チッソ株式会社)を15g/Lの濃度に調整しパダーロールで絞った後、120℃で1分乾燥・キュアリングし、固体電解質補強材を得た。
Comparative Example 2
(1) Production of Solid Electrolyte Reinforcing Material As a warp and a weft, a glass yarn composed of glass composition A (number 1.7 tex, average filament diameter 4.1 μm, number of filaments 51, number of twists 0.5 Z) and air jet Weaving with a loom gave a plain weave glass cloth having a warp density of 95/25 mm and a weft density of 95/25 mm. Subsequently, the spinning sizing agent and the weaving sizing agent adhering to the obtained glass cloth were removed by heating (heat cleaning) at 400 ° C. for 30 hours. Thereafter, the surface treatment agent silane coupling agent (S-350 N-vinylbenzyl-aminoethyl-γ-aminopropyltrimethoxysilane (hydrochloride) Chisso Corporation) was adjusted to a concentration of 15 g / L and squeezed with a padder roll. Then, it dried and cured at 120 degreeC for 1 minute, and obtained the solid electrolyte reinforcing material.
(2)固体電解質膜の製造
 得られた固体電解質補強材を使用し、前記実施例1と同様の条件で固体電解質膜を作製した。得られた固体電解質膜において、固体電解質100質量部当たりの固体電解質補強材の比率は45質量部であった。また、得られた固体電解質膜の厚みは30μmであった。
(2) Production of solid electrolyte membrane Using the obtained solid electrolyte reinforcing material, a solid electrolyte membrane was produced under the same conditions as in Example 1. In the obtained solid electrolyte membrane, the ratio of the solid electrolyte reinforcing material per 100 parts by mass of the solid electrolyte was 45 parts by mass. Moreover, the thickness of the obtained solid electrolyte membrane was 30 micrometers.
3.評価結果
 得られた結果を表2に示す。この結果から、経糸及び緯糸として番手が1.0~3.5texのガラス糸を用いて、経糸及び前記緯糸の少なくとも一方の織密度を30~75本/25mmに設定して製造した織物からなる固体電解質補強材を使用した固体電解質膜(実施例1~4)は、含水時の引張強度が高く、低膨潤性であり、しかも優れたイオン伝導性を備えていた。特に、バインダー成分を実質的に含んでいない固体電解質補強材を使用した場合(実施例1及び2)には、格段に優れたイオン伝導性を備えていた。これに対して、経糸及び緯糸として3.5texを超えるガラス糸を用いて製造した織物からなる固体電解質補強を使用した場合材(比較例1)には、イオン伝導性が不十分であった。また、経糸及び緯糸として1.75texのガラス糸を使用しても、経糸及び緯糸の織密度が75本/25mmを超えている固体電解質補強材を使用した場合(比較例3)には、イオン伝導性が不十分であった。
3. The results obtained are shown in Table 2. From this result, it is made of a woven fabric manufactured by using glass yarn having a yarn count of 1.0 to 3.5 tex as warp and weft and setting the weave density of at least one of the warp and weft to 30 to 75 yarns / 25 mm. The solid electrolyte membranes (Examples 1 to 4) using the solid electrolyte reinforcing material had high tensile strength when containing water, low swelling, and excellent ionic conductivity. In particular, when a solid electrolyte reinforcing material substantially not containing a binder component was used (Examples 1 and 2), the ion conductivity was remarkably excellent. On the other hand, in the case of using a solid electrolyte reinforcement made of a woven fabric manufactured using glass yarns exceeding 3.5 tex as warp and weft, the material (Comparative Example 1) has insufficient ion conductivity. In addition, when a glass electrolyte of 1.75 tex is used as the warp and weft, when a solid electrolyte reinforcing material in which the weave density of the warp and weft exceeds 75/25 mm is used (Comparative Example 3), The conductivity was insufficient.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
1 固体電解質膜
2,3 触媒電極層
4,5 ガス拡散層
6,7 セパレータ
8 水素
9 酸素
DESCRIPTION OF SYMBOLS 1 Solid electrolyte membrane 2, 3 Catalyst electrode layer 4, 5 Gas diffusion layer 6, 7 Separator 8 Hydrogen 9 Oxygen

Claims (10)

  1.  経糸及び緯糸として番手が1.0~3.5texであるガラス糸を含み、
     前記経糸及び前記緯糸の少なくとも一方の織密度が30~75本/25mmの織物である、固体電解質補強材。
    Including glass yarn with a count of 1.0 to 3.5 tex as warp and weft,
    A solid electrolyte reinforcing material, which is a woven fabric having a weaving density of at least one of the warp and the weft of 30 to 75/25 mm.
  2.  前記ガラス糸の平均フィラメント直径が3.0~4.8μmである、請求項1に記載の固体電解質補強材。 The solid electrolyte reinforcing material according to claim 1, wherein the glass filament has an average filament diameter of 3.0 to 4.8 µm.
  3.  補強する固体電解質との結合性を高めるバインダー成分を実質的に含有しない、請求項1または2に記載の固体電解質補強材。 The solid electrolyte reinforcing material according to claim 1 or 2, which does not substantially contain a binder component that enhances the binding property with the solid electrolyte to be reinforced.
  4.  前記ガラス糸を構成するガラス組成物が、CaO、MgO、Na2O及びK2Oの含有量の合計が20質量%以下である、請求項1~3のいずれか1項に記載の固体電解質補強材。 The solid electrolyte according to any one of claims 1 to 3, wherein the glass composition constituting the glass yarn has a total content of CaO, MgO, Na 2 O and K 2 O of 20% by mass or less. Reinforcement.
  5.  燃料電池の固体電解質膜の補強のための、経糸及び緯糸として番手が1.0~3.5texであるガラス糸を含み、前記経糸及び前記緯糸の少なくとも一方の織密度が30~75本/25mmである織物の使用。 In order to reinforce the solid electrolyte membrane of the fuel cell, a glass yarn having a yarn count of 1.0 to 3.5 tex is included as a warp and a weft, and a woven density of at least one of the warp and the weft is 30 to 75/25 mm The use of textiles that are.
  6.  固体電解質、及び請求項1~4のいずれかに記載の固体電解質補強材を含む、固体電解質膜。 A solid electrolyte membrane comprising a solid electrolyte and the solid electrolyte reinforcing material according to any one of claims 1 to 4.
  7.  前記固体電解質が、イオン導電性の無機/有機ハイブリッド化合物である、請求項6に記載の固体電解質膜。 The solid electrolyte membrane according to claim 6, wherein the solid electrolyte is an ion conductive inorganic / organic hybrid compound.
  8.  前記イオン導電性の無機/有機ハイブリッド化合物が、珪酸化合物、及びタングステン酸化合物から選択される少なくとも1種類とポリビニルアルコールとが化学結合した無機/有機ハイブリッド化合物である、請求項7に記載の固体電解質膜。 The solid electrolyte according to claim 7, wherein the ion conductive inorganic / organic hybrid compound is an inorganic / organic hybrid compound in which at least one selected from a silicic acid compound and a tungstic acid compound is chemically bonded to polyvinyl alcohol. film.
  9.  燃料電池の固体電解質膜としての、固体電解質、及び請求項1~4のいずれかに記載の固体電解質補強材を含む膜の使用。 Use of a membrane containing a solid electrolyte and the solid electrolyte reinforcing material according to any one of claims 1 to 4 as a solid electrolyte membrane of a fuel cell.
  10.  請求項6~8のいずれかに記載の固体電解質膜を含む、燃料電池。 A fuel cell comprising the solid electrolyte membrane according to any one of claims 6 to 8.
PCT/JP2016/067948 2015-06-24 2016-06-16 Solid electrolyte reinforcement member and solid electrolyte film including reinforcement member WO2016208486A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017525298A JPWO2016208486A1 (en) 2015-06-24 2016-06-16 Solid electrolyte reinforcing material and solid electrolyte membrane including the reinforcing material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015126375 2015-06-24
JP2015-126375 2015-06-24

Publications (1)

Publication Number Publication Date
WO2016208486A1 true WO2016208486A1 (en) 2016-12-29

Family

ID=57585101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067948 WO2016208486A1 (en) 2015-06-24 2016-06-16 Solid electrolyte reinforcement member and solid electrolyte film including reinforcement member

Country Status (3)

Country Link
JP (1) JPWO2016208486A1 (en)
TW (1) TW201711263A (en)
WO (1) WO2016208486A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100913A (en) * 2018-12-20 2020-07-02 旭化成株式会社 Glass cloth, prepreg, and printed wiring board
CN111416147A (en) * 2020-03-06 2020-07-14 湖南科技大学 Composite solid polymer electrolyte and preparation method thereof
CN114270606A (en) * 2019-08-01 2022-04-01 3M创新有限公司 Thermal barrier material for rechargeable electrical energy storage systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI818690B (en) * 2022-08-23 2023-10-11 友達光電股份有限公司 Solar module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041091A1 (en) * 2001-10-30 2003-05-15 Sekisui Chemical Co., Ltd. Proton conducting membrane, process for its production, and fuel cells made by using the same
JP2003253010A (en) * 2002-02-27 2003-09-10 Sekisui Chem Co Ltd Proton conductive membrane and production method therefor
JP2004296243A (en) * 2003-03-26 2004-10-21 Nippon Kodoshi Corp Solid electrolyte and electrochemical system using solid electrolyte
JP2004342423A (en) * 2003-05-14 2004-12-02 Nippon Kodoshi Corp Solid electrolyte, and electrochemical system using it
JP2010238525A (en) * 2009-03-31 2010-10-21 Nippon Kodoshi Corp High ion-conductive solid electrolyte and electrochemical system using this solid electrolyte

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041091A1 (en) * 2001-10-30 2003-05-15 Sekisui Chemical Co., Ltd. Proton conducting membrane, process for its production, and fuel cells made by using the same
JP2003253010A (en) * 2002-02-27 2003-09-10 Sekisui Chem Co Ltd Proton conductive membrane and production method therefor
JP2004296243A (en) * 2003-03-26 2004-10-21 Nippon Kodoshi Corp Solid electrolyte and electrochemical system using solid electrolyte
JP2004342423A (en) * 2003-05-14 2004-12-02 Nippon Kodoshi Corp Solid electrolyte, and electrochemical system using it
JP2010238525A (en) * 2009-03-31 2010-10-21 Nippon Kodoshi Corp High ion-conductive solid electrolyte and electrochemical system using this solid electrolyte

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100913A (en) * 2018-12-20 2020-07-02 旭化成株式会社 Glass cloth, prepreg, and printed wiring board
JP7319776B2 (en) 2018-12-20 2023-08-02 旭化成株式会社 Glass cloth, prepreg, and printed wiring board
CN114270606A (en) * 2019-08-01 2022-04-01 3M创新有限公司 Thermal barrier material for rechargeable electrical energy storage systems
CN114270606B (en) * 2019-08-01 2024-01-30 3M创新有限公司 Thermal barrier material for rechargeable electrical energy storage systems
CN111416147A (en) * 2020-03-06 2020-07-14 湖南科技大学 Composite solid polymer electrolyte and preparation method thereof
CN111416147B (en) * 2020-03-06 2023-06-02 湖南科技大学 Composite solid polymer electrolyte and preparation method thereof

Also Published As

Publication number Publication date
JPWO2016208486A1 (en) 2018-06-07
TW201711263A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP4971789B2 (en) Proton conductive membrane reinforcing material and proton conductive membrane and fuel cell using the same
JP4615097B2 (en) Non-woven fiber web
WO2016208486A1 (en) Solid electrolyte reinforcement member and solid electrolyte film including reinforcement member
KR101767370B1 (en) Polymer Electrolyte Membrane for Fuel Cell and Method for Manufacturing The Same
EP2610952A1 (en) Conductive sheet and production method for same
JP6180624B2 (en) POLYMER ELECTROLYTE MEMBRANE, MANUFACTURING METHOD THEREOF, AND MEMBRANE-ELECTRODE ASSEMBLY CONTAINING THE SAME
EP1237214A2 (en) Conductive carbonaceous-fiber sheet and solid polymer electrolyte fuel cell
US20120082919A1 (en) Polymer electrolyte fuel cell
CN102008905B (en) Proton exchange film as well as preparation method and application thereof
KR102321252B1 (en) Complex electrolyte membrane, manufacturing method thereof and membrane electrode assembly containing the same
KR20190131687A (en) Complex electrolyte membrane for PEMFC, manufacturing method thereof and membrane electrode assembly containing the same
JP2004047450A (en) Reinforcing material for proton conductive film, proton conductive film using same and fuel cell using same
JP5164569B2 (en) Proton conductive membrane reinforcing material, proton conductive membrane using the same, and fuel cell
JP2004319421A (en) Proton conductive membrane reinforcing material, proton conductive membrane, and fuel cell using it
JP2005011724A (en) Proton conductive film reinforcing material, proton conductive film using the same, and fuel cell using the proton conductive film
JP2004165047A (en) Membrane-electrode junction, and fuel cell using the same
JP2011124019A (en) Membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
JP6105215B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell
KR102321255B1 (en) Complex electrolyte membrane, manufacturing method thereof and membrane electrode assembly containing the same
JPWO2006057239A1 (en) Proton conducting membrane, fuel cell using the same, and method for producing proton conducting membrane
KR102321256B1 (en) Complex electrolyte membrane for PEMFC, manufacturing method thereof and membrane electrode assembly containing the same
JP6198388B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell
JPH06342666A (en) Solid high molecular type fuel cell
KR102085208B1 (en) Complex electrolyte membrane for PEMFC, manufacturing method thereof and membrane electrode assembly containing the same
US20220140355A1 (en) Carbon electrode material for redox flow battery and redox flow battery provided with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017525298

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814257

Country of ref document: EP

Kind code of ref document: A1