WO2016208463A1 - Wire measurement device and method - Google Patents

Wire measurement device and method Download PDF

Info

Publication number
WO2016208463A1
WO2016208463A1 PCT/JP2016/067725 JP2016067725W WO2016208463A1 WO 2016208463 A1 WO2016208463 A1 WO 2016208463A1 JP 2016067725 W JP2016067725 W JP 2016067725W WO 2016208463 A1 WO2016208463 A1 WO 2016208463A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
sliding surface
information
camera
line camera
Prior art date
Application number
PCT/JP2016/067725
Other languages
French (fr)
Japanese (ja)
Inventor
匠朗 川畑
亀山 悟
Original Assignee
株式会社 明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 明電舎 filed Critical 株式会社 明電舎
Priority to SG11201710208TA priority Critical patent/SG11201710208TA/en
Priority to MYPI2017704903A priority patent/MY196040A/en
Publication of WO2016208463A1 publication Critical patent/WO2016208463A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/12Trolley lines; Accessories therefor
    • B60M1/28Manufacturing or repairing trolley lines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing

Definitions

  • the present invention is in the field of managing overhead lines in the railway field, and in particular, image processing is performed on data acquired by a line camera installed on the roof of a train, and the height and displacement of the overhead line from the line.
  • the present invention relates to a linear measuring device and method.
  • Patent Document 1 listed below discloses a technique for measuring the wear and displacement of an overhead wire by installing a line camera on the roof of a train and acquiring these sensor data while the train is running.
  • Patent Document 2 listed below discloses a technique for measuring the height and displacement of an overhead line by installing a line camera and a laser rangefinder on a train roof, acquiring these sensor data while the train is running. ing.
  • the range in which the management of the position information of the overhead line (measurement of the overhead line position) is required is a deviation of ⁇ 900 mm from the vehicle center. The reason is as follows.
  • the overhead line is located at ⁇ 250 mm on the left and right ( ⁇ 300 mm on the Shinkansen) from the “center” of the pantograph in order to collect electricity on the train through the pantograph.
  • the “end” of the pantograph may come into contact with the second overhead line (an overhead line other than the main line). This is because it is necessary to measure the overhead line position within a range of ⁇ 900 mm.
  • The“ deviation ” is the horizontal position of the filament and the distance from the center of the pantograph.
  • Lines are wires installed in the air, and include wires such as overhead wires, suspended overhead wires, and feeders.
  • Air section refers to sections where the overhead wires in the overlap (front and rear in the direction of vehicle travel) are not electrically connected.
  • FIG. 17 is a top view illustrating the air section.
  • FIG. 17 shows a state in which the main line 1 and the sub-main line 2 are separated from each other and are overlapped above the line 3 without being electrically connected.
  • An “air joint” is an electrical connection of air sections.
  • FIG. 18 is a top view for explaining the crossover.
  • FIG. 18 shows a state in which the crossover line 4 intersects the main line 1 above the line 3 on which the branching device 3a is arranged.
  • “Sliding surface” means a surface where the overhead wire is in contact with the pantograph and is worn. Usually, the overhead wire is always in contact with the pantograph, and there is a sliding surface. However, regarding the equipment section with the second overhead line, such as an air section and a crossover, there is a portion that does not contact the pantograph, that is, a portion that does not have a sliding surface, within a deviation ⁇ 900 mm from the center of the vehicle that needs to be managed.
  • management of overhead lines is to regularly check whether the height, displacement and wear of overhead lines are below the prescribed control values, and accidents can be prevented by managing overhead lines. is there.
  • the height of the overhead line means the height from the track to the overhead line installed above the train, and is usually at a position of about 4500 mm (5000 mm for the Shinkansen).
  • the “overhead deflection” is the horizontal position of the overhead line, and the normal overhead line is located ⁇ 250 mm to the left and right of the pantograph center ( ⁇ 300 mm for the Shinkansen). In addition, the position of deviation ⁇ 900 mm from the center of the vehicle where the second overhead line exists is also managed.
  • the wear of the overhead wire is the wear of the overhead wire that is generated in proportion to the frequency of passing the train (pantograph), and is managed so as not to exceed the wear limit value.
  • Patent Document 1 requires separate height information as described in paragraph [0035] of the document, “the overhead line height data is (substantially) input from the outside”. And deviation) cannot be measured. In addition, only worn overhead wires are targeted, and air sections and crossovers cannot be measured.
  • Patent Document 2 it is necessary to install two line cameras and one laser rangefinder on the roof of the train. Therefore, the apparatus configuration installed on the roof becomes complicated and large.
  • the position information of the laser rangefinder is used for matching the corresponding points of stereo measurement.
  • the detection rate and accuracy of the laser deteriorate in proportion to the measurement distance, air sections and crossovers that are far away from each other are used. It is difficult to make stereo measurements of overhead lines such as
  • the laser data acquisition cycle is 10 times or more slower than that of the line camera, so that it is difficult to mount the laser data on a high-speed traveling vehicle such as a business vehicle.
  • the present invention has been made in view of the technical situation as described above, and can measure a wide range of heights and deviations using only a line camera. It is an object of the present invention to provide a line measuring device and method that can measure a second overhead line (an overhead line other than the main line) within ⁇ 900 mm.
  • the filament measuring device for solving the above-mentioned problems is, A first line camera and a second line camera, which are arranged at both ends of the sleeper direction on the roof of the vehicle and are inclined toward the center of the sleeper direction of the vehicle, respectively, From the image captured by the first line camera and the image captured by the second line camera, the line information and the sliding surface information of the line to be measured are detected, and the line information and the sliding surface information are used.
  • An image processing unit that calculates the height and displacement of the line by associating the line between the captured images.
  • a filament measuring device for solving the above-mentioned problems is
  • the image processing unit When the sliding surface information does not exist in the line to be measured, the correspondence is obtained by using the time information when the line intersects the overhead line having the sliding surface and the sliding surface information of the overhead line. It is characterized by attaching.
  • a filament measuring device for solving the above-mentioned problems is
  • the image processing unit A sliding surface extraction unit that detects the sliding surface information from an image captured by the first line camera and an image captured by the second line camera;
  • a line extraction unit for detecting the line information from an image captured by the first line camera and an image captured by the second line camera;
  • a combining unit that creates line combination information from the line information;
  • an association unit that performs the association using the time information at which the filament intersects the overhead line having the sliding surface, and the sliding surface information of the overhead line;
  • a stereo measurement unit for stereo-measuring the line connection information associated with the image captured by the first line camera and the image captured by the second line camera, and calculating the height and displacement of the line; It is characterized by providing.
  • a filament measuring method for solving the above-mentioned problem is as follows: The first line camera and the second line camera that image the line are arranged at both ends in the sleeper direction on the roof of the vehicle, respectively, inclined toward the center of the sleeper direction of the vehicle, From the image captured by the first line camera and the image captured by the second line camera, the line information and the sliding surface information of the line to be measured are detected, and the line information and the sliding surface information are used. Thus, the height and the deviation of the line are calculated by associating the line between the captured images.
  • a filament measuring method for solving the above-mentioned problem is as follows.
  • the correspondence is obtained by using the time information when the line intersects the overhead line having the sliding surface and the sliding surface information of the overhead line. It is characterized by attaching.
  • a filament measuring method for solving the above-mentioned problem is as follows.
  • the sliding surface information is detected from the image captured by the first line camera and the image captured by the second line camera
  • the line information is detected from the image captured by the first line camera and the image captured by the second line camera, Create line combination information from the line information,
  • the association is performed using the sliding surface information, and the sliding surface information does not exist in the linear object that is the measurement target.
  • the correspondence is performed using the time information when the filament intersects the overhead line having the sliding surface, and the sliding surface information of the overhead line, Stereoscopic measurement is performed on the line connection information associated with the image captured by the first line camera and the image captured by the second line camera, and the height and displacement of the line are calculated. .
  • the linear measuring device and method according to the present invention it is possible to measure a wide range of heights and deviations using only a line camera, and the measurement target is within ⁇ 900 mm of deviation from the center of the vehicle in addition to the main line.
  • the second overhead line (an overhead line other than the main line) can also be measured.
  • the detection rate and accuracy of the stereo measurement of the overhead line such as the connecting line and the air section that are separated from each other are hardly lowered.
  • the line measuring device and method according to the present invention can be mounted on a high-speed traveling vehicle such as a business vehicle because the line camera alone performs stereo measurement.
  • two line cameras are installed on the roof of a train, the data acquired by each line camera is image-processed, and the line is within a range of deviation ⁇ 900 mm from the vehicle center. It is possible to measure the height and displacement of the overhead wire from the inside.
  • This technique in addition to the technique disclosed in Patent Document 2, has a three-line camera configuration in which a wide-angle lens is placed in the center of the vehicle, so that the management range of the second overhead line such as a crossover (eg, deviation ⁇ from the center of the vehicle) 900 mm) can be secured.
  • the imaging area is shown in FIGS.
  • FIG. 19 is a schematic diagram illustrating the imaging area of each line camera.
  • the first line camera 31 disposed at one end of the sleeper direction
  • the third line camera 33 disposed at the center
  • the second line camera disposed at the other end of the sleeper direction.
  • Each of the line camera 32 and the third line camera 33 is an area where the imaging areas overlap (the area indicated by the broken line in the figure is the imaging area of the first and second line cameras 31 and 32, and the area indicated by the solid line is the area of the third line camera 33. Imaging area). Since this area can perform stereo imaging, it is referred to as a “stereo imaging available area”.
  • FIG. 20 is a schematic diagram for explaining a stereo imageable area using the first line camera 31 and the third line camera 33.
  • FIG. 21 is a schematic diagram for explaining a stereo imageable area using the second line camera 32 and the third line camera 33.
  • an image pickup area of 900 mm on one side is secured by the pattern of the first line camera 31 and the third line camera 33, and as shown by a gray zone in FIG.
  • the imaging area of 900 mm on the other side is secured by the pattern of the 3-line camera 33.
  • the height information of the crossover line is limited by acquiring the main line position information of the overhead line, it is possible to restrict the corresponding points of the stereo measurement, and it becomes possible to measure the line of the crossover line.
  • stereo imaging by the first line camera 31 or the second line camera 32 and the third line camera 33 has a problem that the stereo resolution is low because the distance between the line cameras is short.
  • the first line camera 31 and the second line camera 32 are used by switching within the imaging range in charge of each, the processing becomes complicated.
  • the crossover line is measured by limiting the height information from the main line, but only the crossover line can be constrained (Condition: “The crossover line is set within 30 mm from the main line height”)
  • the crossover line is set within 30 mm from the main line height
  • FIG. 1 shows an apparatus configuration of the filament measuring apparatus according to the present embodiment.
  • the vehicle 10 traveling on the track 3 is shown passing through the air section equipment portions of the main line 1 and the sub-main line 2 suspended by the suspension lines 1a and 2a, respectively.
  • the suspension wires 1 a and 2 a are supported by a bent metal fitting 7 attached to the electric pole 6, and the feeder 5 is attached to the electric pole 6 in addition to the bent metal fitting 7.
  • the linear measuring device is installed at both ends of the roof top 10a of the vehicle 10 in the sleeper direction, and is inclined toward the center of the sleeper direction of the vehicle 10, respectively.
  • the line measuring device may be provided with illumination 13 for illuminating the line between the first line camera 11 and the second line camera 12.
  • FIG. 3 shows regions in which stereo measurement is possible when the line camera 11 and the second line camera 12 are directed in the vertical direction without being tilted.
  • the linear measuring device does not generate a region where the imaging ranges do not overlap each other, that is, a region where stereo measurement cannot be performed.
  • FIG. 4 is a diagram comparing the imaging range angle of view when the first line camera 11 is installed in the vertical direction and when it is installed obliquely.
  • FIG. 5 is a diagram for comparing the imaging range angle of view when the second line camera 12 is installed in the vertical direction and when it is installed obliquely.
  • the broken lines in FIGS. 4 and 5 indicate the imaging range when each line camera is installed in the vertical direction, and the solid lines indicate the imaging range when each line camera is installed obliquely. .
  • the first line camera 11 is tilted so that the stereo imaging impossible area b can be captured in stereo as shown in FIG. 4, and the second line camera 12 enables stereo imaging impossible area a in stereo imaging as shown in FIG. Tilt to be.
  • a wide measurement target area such as a crossover or an air section (deviation ⁇ 900 mm)
  • the image processor 9 and the line information are displayed.
  • the moving surface information is acquired (detected), and the detected line information and sliding surface information are used to associate the line between the captured images of the first line camera 11 and the second line camera 12.
  • FIG. 6 shows an image when the overhead line information in the air section facility of FIG. 1 is captured by the first line camera 11 and the second line camera 12.
  • 6A is a captured image of the first line camera 11
  • FIG. 6B is a captured image of the second line camera 12
  • the horizontal axis is the pixel of the camera (pix).
  • the vertical axis represents time (ms).
  • FIG. 7 is an example of a data diagram of the sliding surface detection result of the air section equipment.
  • 7A is a diagram based on an image captured by the first line camera 11, and a diagram illustrated in FIG. 7B is a diagram based on an image captured by the second line camera 12.
  • FIG. 8 is an example of a data diagram of the line detection result of the air section equipment. 8A is a diagram based on the captured image of the first line camera 11, and the diagram illustrated in FIG. 8B is a diagram based on the captured image of the second line camera 12.
  • the image processing unit 9 detects the data of the sliding surface 8 from the captured images shown in FIGS. 6A and 6B as shown in FIG. Further, from the captured images shown in FIGS. 6 (a) and 6 (b), the line data is detected as shown in FIG. 8, and “in the captured image of the first line camera 11 and the captured image of the second line camera 12, Correlation is performed based on the information that the line data having a moving surface is a measurement target. Thereby, if it is an overhead line which has even a part of sliding surface, all correspondence will be attained.
  • FIG. 9 is a functional configuration diagram of the filament measuring device according to the present embodiment.
  • the filament measuring apparatus includes a first line camera 11, a second line camera 12, and an image processing unit 9.
  • the image processing unit 9 includes an image input unit 14, a sliding surface extraction unit 15, a line extraction unit 16, a coupling unit 17, an association unit 18, a stereo measurement unit 19, a storage unit 20, and an equipment data setting unit. 21 is provided.
  • the image input unit 14 acquires image data captured by the first line camera 11 and the second line camera 12.
  • the sliding surface extraction unit 15 detects the sliding surface data from FIG. 6 as shown in FIG.
  • the line extraction unit 16 detects line data from FIG. 6 as shown in FIG. 8 by image processing as already described. At this time, the line data is a collection of point clouds, and there is no relation between the data. Therefore, this is hereinafter referred to as “wire line point group data (wire point group information)”. Moreover, in FIG. 8, the location with disturbances, such as the utility pole 6, becomes a defect
  • the joining unit 17 creates “striated joint data” by joining the filaments from the filament point group data in the following procedure.
  • the combining unit 17 first combines the continuous filament point group data to create a part. At this time, the overlapping part and the missing part are distinguished as different parts. Next, the parts are connected using information such as the length, angle, approximate quadratic curve coefficient, and start / end coordinates of each part. (Striated information).
  • the associating unit 18 uses the linear combination data having the sliding surface data as the measurement target overhead line, and between the linear combination data of the captured image of the first line camera 11 and the captured image of the second line camera 12. Perform the association.
  • FIG. 10 is a diagram showing a correspondence result between the main line 1 and the sub-main line 2 in the air section facility.
  • 10A is a diagram based on a captured image of the first line camera 11, and a diagram illustrated in FIG. 10B is a diagram based on a captured image of the second line camera 12, and
  • FIG. 10 is a diagram based on the captured image of the first line camera 11, and the diagram illustrated in FIG. 10D is a diagram based on the captured image of the second line camera 12.
  • the horizontal axis represents the number of pixels (pix) of the line camera, and the vertical axis represents time (ms). As shown in FIG. 10, it is possible to associate an overhead line having the sliding surface 8 in part.
  • FIG. 11 is a schematic view showing a state where the vehicle 10 passes through a crossover facility where the main line 1 and the crossover line 4 intersect.
  • the crossover line 4 is also suspended by the suspension line 4a like the main line 1 (and the above-mentioned secondary main line 2).
  • FIG. 12A An example of a captured image diagram of the crossover facility shown in FIG. 11 is shown in FIG. 12A is an image captured by the first line camera 11, and FIG. 12B is an image captured by the second line camera 12.
  • the horizontal axis represents camera pixels (pix).
  • the vertical axis represents time (ms).
  • the crossover 4 that is the overhead line to be measured may not have the sliding surface 8 as shown in FIG. Therefore, when measuring the crossover 4, time information at which the overhead line having no sliding surface 8 and the overhead line having the sliding surface 8 intersect is used.
  • the suspension line 4a of the transition line in addition to the transition line 4 as shown in FIG. are the A portion and B portion in the image shown in FIG. 12A of the image taken by the first line camera 11, and the C portion and D portion in the image shown in FIG. 12B of the image taken by the second line camera 12, respectively. Although they intersect, it is not possible to associate the crossover lines 4 between the captured images.
  • the crossover 4 when the crossover 4 intersects the main line 1, it has a feature that it intersects with a height substantially equal to the height of the main line 1, and on the captured image, it intersects with the overhead line having the sliding surface 8. Since the time information to be substantially matched, the portion B of the image taken by the first line camera 11 shown in FIG. 12A and the portion C of the image taken by the second line camera 12 shown in FIG. It can be seen that the overhead line having the intersection is the crossover line 4. Thereby, if it registers as one overhead line, the crossover 4 can also be matched.
  • FIG. 13 is a data diagram showing a correspondence result between the main line 1 and the crossover line 4 in the crossover line facility.
  • the diagram shown in FIG. 13A is a data diagram showing the main line 1 association result based on the image captured by the first line camera 11, and the diagram shown in FIG. 13B shows the image captured by the second line camera 12.
  • FIG. 13C is a data diagram showing the correspondence result of the crossover line 4 based on the captured image of the first line camera 11, and FIG.
  • the diagram shown in D is a data diagram showing the association result of the crossover lines 4 based on the captured image of the second line camera 12.
  • the horizontal axis represents the number of pixels (pix) of the line camera, and the vertical axis represents time (ms).
  • the associating unit 18 can associate not only the main line 1 but also the crossover line 4.
  • the association unit 18 changes the association method as described above based on a conditional branch indicating whether or not the measurement target is the crossover 4 (that is, a conditional branch indicating whether or not the sliding surface data exists).
  • the sliding surface information (of the overhead line that has the sliding surface 8 and intersects with the crossover 4) and the crossover with the crossover 4 that has the sliding surface 8. (Corresponding to the crossover line 4 and the crossover line 4) is associated with time information.
  • the association unit 18 is the description of the association unit 18.
  • the stereo measurement unit 19 performs stereo measurement on the line connection data in which the image captured by the first line camera 11 and the image captured by the second line camera 12 are associated with each other, as in the graph of FIG. 14 showing the overhead line measurement result. Calculate and output the height and deflection of the filament. The calculation of the height and the deviation is performed in the same manner as the paragraphs [0025] to [0028] of Patent Document 2.
  • the storage unit 20 stores each data, and the facility data setting unit 21 determines whether the second overhead line (the overhead line other than the main line) is the left or right with respect to the traveling direction.
  • the facility information of the direction of the facility to enter is input.
  • FIG. 15 is a flowchart for explaining the overall operation of the image processing unit 9.
  • FIG. 16 is a flowchart detailing the operation of the association unit 18.
  • the operation procedure of the image processing unit 9 will be described with reference to the flowcharts of FIGS.
  • step S ⁇ b> 1 image data captured by the first line camera 11 and the second line camera 12 is acquired by the image input unit 14.
  • step S2 the sliding surface extraction unit 15 detects sliding surface data.
  • step S3 the line extraction unit 16 detects line point cloud data.
  • step S4 the connecting unit 17 creates the line connection data from the line point group data.
  • step S5 the associating unit 18 associates the line-connected data of the captured image of the first line camera 11 and the captured image of the second line camera 12 with each other.
  • step S5 will be described in detail as shown in steps S5-1 to S5-3 below.
  • step S5-1 the associating unit 18 determines whether or not the measurement target is the crossover 4 (that is, a conditional branch indicating whether or not the sliding surface data exists). If it is crossover 4 (that is, if sliding surface data does not exist), the process proceeds to step S5-3, and if it is not crossover 4 (that is, if sliding surface data exists), step S5-2. Migrate to
  • step S5-2 the associating unit 18 associates the line connection data with only the sliding surface information of the crossover line 4 (the line to be measured).
  • step S5-3 the associating unit 18 uses the sliding surface information of the overhead line having the sliding surface 8 and intersecting the crossover line 4, and the time information of the intersection of the crossover line 4 and the overhead line. Then, the linear combination data is associated with each other.
  • step S ⁇ b> 6 the stereo measurement unit 19 then performs stereo measurement of the line connection data associated with the images captured by the first line camera 11 and the second line camera 12, and Calculate height and excursion.
  • step S7 the calculated line height and displacement are output.
  • the operation of the image processing unit 9 has been described above.
  • Patent Document 1 height information is separately required, and the position (height and displacement) of the overhead line cannot be measured with a line camera alone.
  • the second overhead line an overhead line other than the main line
  • the second overhead line whose deviation is within ⁇ 900 mm from the vehicle center is also measured. It becomes possible.
  • Patent Document 2 a laser sensor is required.
  • the laser has a detection rate and accuracy that are in proportion to the measurement distance, it is difficult to perform stereo measurement of overhead lines such as crossovers and air sections that are separated from each other. It is.
  • the stereo measurement is performed by the line camera alone, the detection rate and accuracy of stereo measurement of overhead lines such as crossovers and air sections that are separated from each other are unlikely to decrease.
  • the laser data acquisition cycle is 10 times or more slower than that of the line camera. Therefore, it is difficult to mount the laser data on a high-speed traveling vehicle such as a business vehicle. And so on.
  • the present invention is suitable as a line measuring device and method.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Remote Sensing (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

A wire measurement device is provided with: a first line camera (11) and a second line camera (12) for capturing an image of a wire, the first line camera (11) and the second line camera (12) being disposed at both ends in a railroad-tie direction on a rooftop (10a) of a railroad car (10) and each inclined toward the center in the railroad-tie direction of the railroad car (10); and an image processing unit (9) for detecting sliding surface information and wire information of a wire as a measurement object from an image captured by the first line camera (11) and an image captured by the second line camera (12) and calculating the height and deviation of the wire by performing a mapping of the wire among the captured images using the wire information and the sliding surface information.

Description

線条計測装置及び方法Line measuring device and method
 本発明は、鉄道分野における架線を管理する分野のものであり、特に、電車の屋根上に設置されたラインカメラで取得したデータを画像処理し、線条の中から架線の高さ及び偏位を測定する、線条計測装置及び方法に関するものである。 The present invention is in the field of managing overhead lines in the railway field, and in particular, image processing is performed on data acquired by a line camera installed on the roof of a train, and the height and displacement of the overhead line from the line. The present invention relates to a linear measuring device and method.
 架線を含む線条の高さ及び偏位を計測する技術として、例えば下記特許文献1,2に開示されるものがある。 As a technique for measuring the height and displacement of a wire including an overhead wire, for example, there are those disclosed in Patent Documents 1 and 2 below.
 下記特許文献1には、ラインカメラを電車の屋根上に設置し、電車を走行させながら、これらのセンサデータを取得して、架線の摩耗及び偏位を計測する技術が開示されている。 Patent Document 1 listed below discloses a technique for measuring the wear and displacement of an overhead wire by installing a line camera on the roof of a train and acquiring these sensor data while the train is running.
 下記特許文献2には、ラインカメラとレーザ距離計を電車の屋根上に設置し、電車を走行させながらこれらのセンサデータを取得して、架線の高さ及び偏位を計測する技術が開示されている。 Patent Document 2 listed below discloses a technique for measuring the height and displacement of an overhead line by installing a line camera and a laser rangefinder on a train roof, acquiring these sensor data while the train is running. ing.
 ところで、架線の位置情報の管理(架線位置測定)が必要とされている範囲は、車両中心より偏位±900mmである。その理由は次のとおりである。 By the way, the range in which the management of the position information of the overhead line (measurement of the overhead line position) is required is a deviation of ± 900 mm from the vehicle center. The reason is as follows.
 通常、架線は、パンタグラフを通じて電車に集電するためにパンタグラフの「中心」より左右±250mm(新幹線では±300mm)の位置にある。しかし、オーバラップ周辺のエアセクション設備や二つの軌道が交差する渡り線設備付近では、パンタグラフの「端」が第二架線(本線以外の架線)に接触する虞があり、そのため、車両中心より偏位±900mmの範囲の架線位置測定が必要となるのである。 Usually, the overhead line is located at ± 250 mm on the left and right (± 300 mm on the Shinkansen) from the “center” of the pantograph in order to collect electricity on the train through the pantograph. However, in the vicinity of the air section equipment around the overlap and the crossover equipment where two tracks intersect, the “end” of the pantograph may come into contact with the second overhead line (an overhead line other than the main line). This is because it is necessary to measure the overhead line position within a range of ± 900 mm.
 なお、上述の「偏位」、「線条」、「オーバラップ」、「エアセクション」、「渡り線」及び「摺動面」については、以下の如く定義される。 The above-mentioned “deviation”, “strip”, “overlap”, “air section”, “crossover” and “sliding surface” are defined as follows.
 「偏位」とは、線条の水平方向の位置で、パンタグラフの中央からの距離を指す。 ”The“ deviation ”is the horizontal position of the filament and the distance from the center of the pantograph.
 「線条」とは、空中に架設された線で、架線、吊架線、及び、き電線などの線がある。 “Lines” are wires installed in the air, and include wires such as overhead wires, suspended overhead wires, and feeders.
 「オーバラップ」とは、架線を電気的又は機械的に区分する設備のことで、エアセクション又はエアジョイントのことを指す。 * “Overlap” means equipment that separates overhead wires electrically or mechanically, and refers to air sections or air joints.
 「エアセクション」とは、オーバラップにおいて、前後(車両進行方向手前側と後側)の架線を電気的に接続せずに区分箇所としたものである。図17はエアセクションを説明する上面図である。図17では、線路3の上方において、本線1と副本線2とが電気的に接続せずに区分箇所とされてオーバラップしている様子が示されている。また、「エアジョイント」とは、エアセクションを電気的に接続したものである。 “Air section” refers to sections where the overhead wires in the overlap (front and rear in the direction of vehicle travel) are not electrically connected. FIG. 17 is a top view illustrating the air section. FIG. 17 shows a state in which the main line 1 and the sub-main line 2 are separated from each other and are overlapped above the line 3 without being electrically connected. An “air joint” is an electrical connection of air sections.
 「渡り線」とは、分岐器上の2組の架線をパンタグラフの通過に支障のないように交差させた設備。図18は渡り線を説明する上面図である。図18では、分岐器3aが配された線路3の上方で、本線1に渡り線4が交差している様子が示されている。 ”A“ crossover ”is a facility that crosses two sets of overhead wires on a turnout so as not to interfere with the passage of the pantograph. FIG. 18 is a top view for explaining the crossover. FIG. 18 shows a state in which the crossover line 4 intersects the main line 1 above the line 3 on which the branching device 3a is arranged.
 「摺動面」とは、架線がパンタグラフと接触し摩耗した面のことで、通常、架線は常にパンタグラフに接しているため摺動面が存在する。しかし、エアセクションや渡り線など、第二架線がある設備区間に関しては、管理が必要な車両中心より偏位±900mm内において、パンタグラフと接しない箇所、すなわち摺動面を持たない箇所がある。 “Sliding surface” means a surface where the overhead wire is in contact with the pantograph and is worn. Usually, the overhead wire is always in contact with the pantograph, and there is a sliding surface. However, regarding the equipment section with the second overhead line, such as an air section and a crossover, there is a portion that does not contact the pantograph, that is, a portion that does not have a sliding surface, within a deviation ± 900 mm from the center of the vehicle that needs to be managed.
 また、「架線の管理」とは、架線の高さ、偏位及び摩耗が、定められた管理値以下かどうかを定期的に確認することであり、架線を管理することで事故防止が可能である。 In addition, “management of overhead lines” is to regularly check whether the height, displacement and wear of overhead lines are below the prescribed control values, and accidents can be prevented by managing overhead lines. is there.
 「架線の高さ」とは、線路から電車の上方に設備された架線までの高さのことで、通常4500mm(新幹線では5000mm)程度の位置にある。 “The height of the overhead line” means the height from the track to the overhead line installed above the train, and is usually at a position of about 4500 mm (5000 mm for the Shinkansen).
 「架線の偏位」とは、架線の水平方向の位置のことで、通常架線はパンタグラフ中心より左右±250mm(新幹線では±300mm)の位置に存在しており、エアセクションや渡り線設備箇所では、それに加え第二架線が存在する車両中心より偏位±900mmの位置も管理される。 The “overhead deflection” is the horizontal position of the overhead line, and the normal overhead line is located ± 250 mm to the left and right of the pantograph center (± 300 mm for the Shinkansen). In addition, the position of deviation ± 900 mm from the center of the vehicle where the second overhead line exists is also managed.
 「架線の摩耗」とは、電車(パンタグラフ)が通過頻度に比例して発生する架線の摩耗のことで、この摩耗限界値を超えないように管理される。 “The wear of the overhead wire” is the wear of the overhead wire that is generated in proportion to the frequency of passing the train (pantograph), and is managed so as not to exceed the wear limit value.
特開2010-127746号公報JP 2010-127746 A 特開2012-8026号公報JP 2012-8026 A
 上記特許文献1は、該文献段落[0035]に「架線高さデータは(略)外部から入力する」と記載されるとおり、別途高さ情報が必要であり、単独では架線の位置(高さ及び偏位)の計測を行うことができない。また、摩耗している架線のみが対象であり、エアセクションや渡り線は計測できない。 The above-mentioned Patent Document 1 requires separate height information as described in paragraph [0035] of the document, “the overhead line height data is (substantially) input from the outside”. And deviation) cannot be measured. In addition, only worn overhead wires are targeted, and air sections and crossovers cannot be measured.
 上記特許文献2は、電車の屋根上にラインカメラ2台とレーザ距離計1台を設置する必要がある。したがって、屋根上へ設置する装置構成が複雑かつ大型になってしまう。また、ステレオ計測の対応点マッチングにレーザ距離計の位置情報を使用しているが、レーザは性質上、検出率及び精度は計測距離に比例し悪くなるため、距離の離れたエアセクションや渡り線等の架線のステレオ計測が困難である。また、レーザのデータ取得周期は、ラインカメラの10倍以上遅く、そのため、営業車両等の高速走行車両への搭載は難しい。 In Patent Document 2, it is necessary to install two line cameras and one laser rangefinder on the roof of the train. Therefore, the apparatus configuration installed on the roof becomes complicated and large. In addition, the position information of the laser rangefinder is used for matching the corresponding points of stereo measurement. However, because the detection rate and accuracy of the laser deteriorate in proportion to the measurement distance, air sections and crossovers that are far away from each other are used. It is difficult to make stereo measurements of overhead lines such as In addition, the laser data acquisition cycle is 10 times or more slower than that of the line camera, so that it is difficult to mount the laser data on a high-speed traveling vehicle such as a business vehicle.
 本発明は、上述のような技術的状況に鑑みてなされたものであり、ラインカメラのみで広範囲の高さ及び偏位の計測が可能であり、さらに、計測対象が本線に加え車両中心から偏位±900mm内にある第二架線(本線以外の架線)も計測可能とする、線条計測装置及び方法を提供することを目的とする。 The present invention has been made in view of the technical situation as described above, and can measure a wide range of heights and deviations using only a line camera. It is an object of the present invention to provide a line measuring device and method that can measure a second overhead line (an overhead line other than the main line) within ± 900 mm.
 上記課題を解決する第1の発明に係る線条計測装置は、
 車両の屋根上の枕木方向両端に、それぞれ該車両の枕木方向中心に向けて傾斜して配置され、線条を撮像する、第1ラインカメラ及び第2ラインカメラと、
 前記第1ラインカメラによる撮像画像及び前記第2ラインカメラによる撮像画像から、計測対象である線条の線条情報及び摺動面情報を検出し、該線条情報及び該摺動面情報を用いて、該撮像画像間の該線条の対応付けを行うことで、該線条の高さ及び偏位を算出する、画像処理部とを備える
 ことを特徴とする。
The filament measuring device according to the first invention for solving the above-mentioned problems is,
A first line camera and a second line camera, which are arranged at both ends of the sleeper direction on the roof of the vehicle and are inclined toward the center of the sleeper direction of the vehicle, respectively,
From the image captured by the first line camera and the image captured by the second line camera, the line information and the sliding surface information of the line to be measured are detected, and the line information and the sliding surface information are used. An image processing unit that calculates the height and displacement of the line by associating the line between the captured images.
 上記課題を解決する第2の発明に係る線条計測装置は、
 上記第1の発明に係る線条計測装置において、
 前記画像処理部は、
 計測対象である前記線条に前記摺動面情報が存在しない場合は、該線条が摺動面を有する架線と交差する時間情報、及び、該架線の摺動面情報を用いて、前記対応付けを行う
 ことを特徴とする。
A filament measuring device according to a second invention for solving the above-mentioned problems is
In the filament measuring apparatus according to the first invention,
The image processing unit
When the sliding surface information does not exist in the line to be measured, the correspondence is obtained by using the time information when the line intersects the overhead line having the sliding surface and the sliding surface information of the overhead line. It is characterized by attaching.
 上記課題を解決する第3の発明に係る線条計測装置は、
 上記第2の発明に係る線条計測装置において、
 前記画像処理部は、
 前記第1ラインカメラによる撮像画像及び前記第2ラインカメラによる撮像画像から、前記摺動面情報をそれぞれ検出する、摺動面抽出部と、
 前記第1ラインカメラによる撮像画像及び前記第2ラインカメラによる撮像画像から、前記線条情報をそれぞれ検出する、線条抽出部と、
 前記線条情報から線条結合情報を作成する結合部と、
 計測対象である前記線条に前記摺動面情報が存在する場合は、該摺動面情報を用いて、前記対応付けを行い、計測対象である前記線条に前記摺動面情報が存在しない場合は、該線条が摺動面を有する架線と交差する時間情報、及び、該架線の摺動面情報を用いて、前記対応付けを行う、対応付け部と、
 前記第1ラインカメラによる撮像画像と前記第2ラインカメラによる撮像画像の対応付けされた前記線条結合情報同士をステレオ計測し、前記線条の高さ及び偏位を算出する、ステレオ計測部とを備える
 ことを特徴とする。
A filament measuring device according to a third invention for solving the above-mentioned problems is
In the filament measuring apparatus according to the second invention,
The image processing unit
A sliding surface extraction unit that detects the sliding surface information from an image captured by the first line camera and an image captured by the second line camera;
A line extraction unit for detecting the line information from an image captured by the first line camera and an image captured by the second line camera;
A combining unit that creates line combination information from the line information;
When the sliding surface information is present in the line that is the measurement target, the association is performed using the sliding surface information, and the sliding surface information does not exist in the linear object that is the measurement target. In this case, an association unit that performs the association using the time information at which the filament intersects the overhead line having the sliding surface, and the sliding surface information of the overhead line;
A stereo measurement unit for stereo-measuring the line connection information associated with the image captured by the first line camera and the image captured by the second line camera, and calculating the height and displacement of the line; It is characterized by providing.
 上記課題を解決する第4の発明に係る線条計測方法は、
 線条を撮像する第1ラインカメラ及び第2ラインカメラを、車両の屋根上の枕木方向両端に、それぞれ該車両の枕木方向中心に向けて傾斜して配置し、
 前記第1ラインカメラによる撮像画像及び前記第2ラインカメラによる撮像画像から、計測対象である線条の線条情報及び摺動面情報を検出し、該線条情報及び該摺動面情報を用いて、該撮像画像間の該線条の対応付けを行うことで、該線条の高さ及び偏位を算出する
 ことを特徴とする。
A filament measuring method according to a fourth invention for solving the above-mentioned problem is as follows:
The first line camera and the second line camera that image the line are arranged at both ends in the sleeper direction on the roof of the vehicle, respectively, inclined toward the center of the sleeper direction of the vehicle,
From the image captured by the first line camera and the image captured by the second line camera, the line information and the sliding surface information of the line to be measured are detected, and the line information and the sliding surface information are used. Thus, the height and the deviation of the line are calculated by associating the line between the captured images.
 上記課題を解決する第5の発明に係る線条計測方法は、
 上記第4の発明に係る線条計測方法において、
 計測対象である前記線条に前記摺動面情報が存在しない場合は、該線条が摺動面を有する架線と交差する時間情報、及び、該架線の摺動面情報を用いて、前記対応付けを行う
 ことを特徴とする。
A filament measuring method according to a fifth invention for solving the above-mentioned problem is as follows.
In the filament measurement method according to the fourth invention,
When the sliding surface information does not exist in the line to be measured, the correspondence is obtained by using the time information when the line intersects the overhead line having the sliding surface and the sliding surface information of the overhead line. It is characterized by attaching.
 上記課題を解決する第6の発明に係る線条計測方法は、
 上記第5の発明に係る線条計測方法において、
 前記第1ラインカメラによる撮像画像及び前記第2ラインカメラによる撮像画像から、前記摺動面情報をそれぞれ検出し、
 前記第1ラインカメラによる撮像画像及び前記第2ラインカメラによる撮像画像から、前記線条情報をそれぞれ検出し、
 前記線条情報から線条結合情報を作成し、
 計測対象である前記線条に前記摺動面情報が存在する場合は、該摺動面情報を用いて、前記対応付けを行い、計測対象である前記線条に前記摺動面情報が存在しない場合は、該線条が摺動面を有する架線と交差する時間情報、及び、該架線の摺動面情報を用いて、前記対応付けを行い、
 前記第1ラインカメラによる撮像画像と前記第2ラインカメラによる撮像画像の対応付けされた前記線条結合情報同士をステレオ計測し、前記線条の高さ及び偏位を算出する
 ことを特徴とする。
A filament measuring method according to a sixth invention for solving the above-mentioned problem is as follows.
In the filament measurement method according to the fifth invention,
The sliding surface information is detected from the image captured by the first line camera and the image captured by the second line camera,
The line information is detected from the image captured by the first line camera and the image captured by the second line camera,
Create line combination information from the line information,
When the sliding surface information is present in the line that is the measurement target, the association is performed using the sliding surface information, and the sliding surface information does not exist in the linear object that is the measurement target. In this case, the correspondence is performed using the time information when the filament intersects the overhead line having the sliding surface, and the sliding surface information of the overhead line,
Stereoscopic measurement is performed on the line connection information associated with the image captured by the first line camera and the image captured by the second line camera, and the height and displacement of the line are calculated. .
 本発明に係る線条計測装置及び方法によれば、ラインカメラのみで広範囲の高さ及び偏位の計測が可能であり、さらに、計測対象が本線に加え車両中心から偏位±900mm内にある第二架線(本線以外の架線)も計測可能となる。 According to the linear measuring device and method according to the present invention, it is possible to measure a wide range of heights and deviations using only a line camera, and the measurement target is within ± 900 mm of deviation from the center of the vehicle in addition to the main line. The second overhead line (an overhead line other than the main line) can also be measured.
 また、本発明に係る線条計測装置及び方法では、ラインカメラ単独でのステレオ計測のため、距離が離れた渡り線やエアセクション等の架線のステレオ計測の検出率及び精度が低下しにくい。 Also, in the line measuring apparatus and method according to the present invention, since the stereo measurement is performed by the line camera alone, the detection rate and accuracy of the stereo measurement of the overhead line such as the connecting line and the air section that are separated from each other are hardly lowered.
 さらに、本発明に係る線条計測装置及び方法では、ラインカメラ単独でのステレオ計測のため、営業車両等の高速走行車両への搭載が可能となる。 Furthermore, the line measuring device and method according to the present invention can be mounted on a high-speed traveling vehicle such as a business vehicle because the line camera alone performs stereo measurement.
本発明の実施例に係る線条計測装置の装置構成を説明する概略図である。It is the schematic explaining the apparatus structure of the filament measuring apparatus which concerns on the Example of this invention. 本発明の実施例に係る線条計測装置による撮像範囲及び計測対象領域を説明する模式図である。It is a schematic diagram explaining the imaging range and measurement object area | region by the filament measuring apparatus which concerns on the Example of this invention. ラインカメラを鉛直方向に設置した場合の撮像範囲及び計測対象領域を説明する模式図である。It is a schematic diagram explaining the imaging range and measurement object area | region at the time of installing a line camera in a perpendicular direction. 第1ラインカメラを鉛直方向に設置した場合と斜めに設置した場合との撮像範囲画角比較図である。It is an imaging range angle of view comparison between the case where the first line camera is installed in the vertical direction and the case where it is installed obliquely. 第2ラインカメラを鉛直方向に設置した場合と斜めに設置した場合との撮像範囲画角比較図である。It is an imaging range field angle comparison figure with the case where a 2nd line camera is installed in the perpendicular direction, and the case where it installs diagonally. エアセクション設備の撮像画像図の一例である。It is an example of the captured image figure of an air section installation. エアセクション設備の摺動面検出結果のデータ図の一例である。It is an example of the data figure of the sliding surface detection result of an air section equipment. エアセクション設備の線条検出結果のデータ図の一例である。It is an example of the data figure of the filament detection result of an air section installation. 本発明の実施例に係る線条計測装置の機能構成を説明する概略図である。It is the schematic explaining the functional structure of the filament measuring apparatus which concerns on the Example of this invention. エアセクション設備における本線1及び副本線2の対応付け結果を示す図である。It is a figure which shows the matching result of the main line 1 and the submain line 2 in an air section installation. 車両が渡り線設備を通過する様子を示した概略図である。It is the schematic which showed a mode that the vehicle passed the crossover equipment. 渡り線設備の撮像画像図の一例である。It is an example of the captured image figure of a crossover installation. 渡り線設備における本線及び渡り線の対応付け結果を示すデータ図である。It is a data figure which shows the matching result of the main line and a connecting line in a connecting line installation. 架線計測結果の一例を示すグラフである。It is a graph which shows an example of an overhead line measurement result. 本発明の実施例における画像処理部の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the image process part in the Example of this invention. 本発明の実施例における対応付け部の詳述を説明するフローチャートである。It is a flowchart explaining the detailed description of the matching part in the Example of this invention. エアセクションを説明する上面図である。It is a top view explaining an air section. 渡り線を説明する上面図である。It is a top view explaining a crossover. 各ラインカメラの撮像領域を説明する模式図である。It is a schematic diagram explaining the imaging region of each line camera. 第1ラインカメラ及び第3ラインカメラを使用したステレオ撮像可能領域を説明する模式図である。It is a schematic diagram explaining the stereo imaging | photography possible area | region using a 1st line camera and a 3rd line camera. 第2ラインカメラ及び第3ラインカメラを使用したステレオ撮像可能領域を説明する模式図である。It is a schematic diagram explaining the stereo imaging | photography possible area | region using a 2nd line camera and a 3rd line camera.
 本発明に係る線条計測装置及び方法は、電車の屋根上に2台のラインカメラを設置し、各ラインカメラで取得したデータを画像処理し、車両中心より偏位±900mmの範囲において線条の中から架線の高さ及び偏位を測定可能とするものである。 In the line measuring apparatus and method according to the present invention, two line cameras are installed on the roof of a train, the data acquired by each line camera is image-processed, and the line is within a range of deviation ± 900 mm from the vehicle center. It is possible to measure the height and displacement of the overhead wire from the inside.
 以下、本発明に係る線条計測装置及び方法を、実施例にて図面を用いて説明する。 Hereinafter, the filament measuring device and method according to the present invention will be described with reference to the drawings in the embodiments.
 特願2014-196032号には、ラインカメラを電車の屋根上の枕木方向両端に各1台ずつ、さらに車両中央に1台の、計3台を設置し、架線の摩耗及び位置を測定する技術が開示されている。この技術は、電車を走行させながら、これら電車の屋根上に設置されたラインカメラによるセンサデータを取得して、架線の摩耗及び位置を計測するものである。 In Japanese Patent Application No. 2014-196032, three line cameras are installed, one at each end of the sleeper direction on the roof of the train, and one at the center of the vehicle, measuring the wear and position of the overhead wires. Is disclosed. This technique measures the wear and position of overhead wires by acquiring sensor data from line cameras installed on the roofs of these trains while running the trains.
 この技術は、上記特許文献2の開示する技術に加え、広角レンズを車両中央に置いた3台のラインカメラ構成により、渡り線などの第二架線の管理範囲(例:車両中心より偏位±900mm)の撮像領域を確保することができる。撮像領域を図19~21に示す。 This technique, in addition to the technique disclosed in Patent Document 2, has a three-line camera configuration in which a wide-angle lens is placed in the center of the vehicle, so that the management range of the second overhead line such as a crossover (eg, deviation ± from the center of the vehicle) 900 mm) can be secured. The imaging area is shown in FIGS.
 図19は、各ラインカメラの撮像領域を説明する模式図である。図19に示すように、車両の屋根上30aにおいて、枕木方向一端に配置された第1ラインカメラ31と中央に配置された第3ラインカメラ33、並びに、枕木方向他端に配置された第2ラインカメラ32と第3ラインカメラ33は、それぞれ撮像領域の重なる領域(図中に破線で示す領域が第1,2ラインカメラ31,32の撮像領域、実線で示す領域が第3ラインカメラ33の撮像領域)がある。この領域はステレオ撮像を行うことができるため、「ステレオ撮像可能領域」と呼称する。 FIG. 19 is a schematic diagram illustrating the imaging area of each line camera. As shown in FIG. 19, on the roof 30a of the vehicle, the first line camera 31 disposed at one end of the sleeper direction, the third line camera 33 disposed at the center, and the second line camera disposed at the other end of the sleeper direction. Each of the line camera 32 and the third line camera 33 is an area where the imaging areas overlap (the area indicated by the broken line in the figure is the imaging area of the first and second line cameras 31 and 32, and the area indicated by the solid line is the area of the third line camera 33. Imaging area). Since this area can perform stereo imaging, it is referred to as a “stereo imaging available area”.
 図20は、第1ラインカメラ31及び第3ラインカメラ33を使用したステレオ撮像可能領域を説明する模式図である。図21は、第2ラインカメラ32及び第3ラインカメラ33を使用したステレオ撮像可能領域を説明する模式図である。 FIG. 20 is a schematic diagram for explaining a stereo imageable area using the first line camera 31 and the third line camera 33. FIG. 21 is a schematic diagram for explaining a stereo imageable area using the second line camera 32 and the third line camera 33.
 図20にグレーゾーンで示すように、第1ラインカメラ31と第3ラインカメラ33のパターンで片側900mmの撮像領域を確保し、図21にグレーゾーンで示すように、第2ラインカメラ32と第3ラインカメラ33のパターンによりもう片側900mmの撮像領域を確保している。 As shown by a gray zone in FIG. 20, an image pickup area of 900 mm on one side is secured by the pattern of the first line camera 31 and the third line camera 33, and as shown by a gray zone in FIG. The imaging area of 900 mm on the other side is secured by the pattern of the 3-line camera 33.
 また、架線の本線位置情報を取得することにより渡り線の高さ情報が限定されるため、ステレオ計測の対応点を制約することができ、渡り線の線条計測が可能となる。 Moreover, since the height information of the crossover line is limited by acquiring the main line position information of the overhead line, it is possible to restrict the corresponding points of the stereo measurement, and it becomes possible to measure the line of the crossover line.
 しかしながら、第1ラインカメラ31あるいは第2ラインカメラ32と、第3ラインカメラ33とによるステレオ撮像では、ラインカメラ間の距離が短いためステレオ分解能が低いという問題がある。 However, stereo imaging by the first line camera 31 or the second line camera 32 and the third line camera 33 has a problem that the stereo resolution is low because the distance between the line cameras is short.
 また、第1ラインカメラ31と第2ラインカメラ32とは、各々が担当する撮像範囲で切り替えて使用するため、処理が複雑になる。 Also, since the first line camera 31 and the second line camera 32 are used by switching within the imaging range in charge of each, the processing becomes complicated.
 また、本線からの高さ情報を制限することで渡り線を計測するが、高さ制約ができるのは渡り線のみ(条件:「渡り線は、本線高さから30mm以内に設置されている」)で、エアセクション等の車両中心より偏位±900mm位置が高い位置にある対象や、複雑な構造の設備は、高さを制限する手法による位置計測が困難である問題がある。 In addition, the crossover line is measured by limiting the height information from the main line, but only the crossover line can be constrained (Condition: “The crossover line is set within 30 mm from the main line height”) However, there is a problem that it is difficult to measure the position by a method for limiting the height of an object such as an air section or the like having a deviation ± 900 mm higher than the center of the vehicle or a facility having a complicated structure.
 ここで、本実施例に係る線条計測装置の装置構成を図1に示す。図1では、線路3上を走行する車両10が、吊架線1a,2aによってそれぞれ吊架された本線1及び副本線2のエアセクション設備部分を通過する様子を表している。なお、吊架線1a,2aは電柱6に取り付けられた曲引金具7によって支持され、電柱6には曲引金具7の他、き電線5が取り付けられている。 Here, FIG. 1 shows an apparatus configuration of the filament measuring apparatus according to the present embodiment. In FIG. 1, the vehicle 10 traveling on the track 3 is shown passing through the air section equipment portions of the main line 1 and the sub-main line 2 suspended by the suspension lines 1a and 2a, respectively. The suspension wires 1 a and 2 a are supported by a bent metal fitting 7 attached to the electric pole 6, and the feeder 5 is attached to the electric pole 6 in addition to the bent metal fitting 7.
 本実施例に係る線条計測装置では、図1に示すように、車両10の屋根上10aの枕木方向両端に設置され、それぞれ車両10の枕木方向中心に向けて傾斜して配置され、線条を撮像する、第1ラインカメラ11及び第2ラインカメラ12を備え、さらに、後述する画像処理部9を備える。 In the linear measuring device according to the present embodiment, as shown in FIG. 1, the linear measuring device is installed at both ends of the roof top 10a of the vehicle 10 in the sleeper direction, and is inclined toward the center of the sleeper direction of the vehicle 10, respectively. Are provided with a first line camera 11 and a second line camera 12, and an image processing unit 9 described later.
 これにより、エアセクション(及び渡り線)等の広範囲のステレオ撮像領域(例:車両中心より偏位±900mm)を確保することができる。なお、本実施例に係る線条計測装置は、図1に示すように、第1ラインカメラ11及び第2ラインカメラ12の間に線条を照らすための照明13を設けてもよい。 This makes it possible to secure a wide-range stereo imaging area (eg, deviation ± 900 mm from the center of the vehicle) such as an air section (and a crossover). In addition, as shown in FIG. 1, the line measuring device according to the present embodiment may be provided with illumination 13 for illuminating the line between the first line camera 11 and the second line camera 12.
 本実施例に係る線条計測装置のように、第1ラインカメラ11及び第2ラインカメラ12を車両10の枕木方向中心に向けて傾けた場合のステレオ計測可能な領域を図2に、第1ラインカメラ11及び第2ラインカメラ12を傾けずに鉛直方向に向けた場合のステレオ計測可能な領域を図3に、それぞれ示す。 A region in which stereo measurement is possible when the first line camera 11 and the second line camera 12 are tilted toward the sleeper direction center of the vehicle 10 as in the linear measurement device according to the present embodiment is shown in FIG. FIG. 3 shows regions in which stereo measurement is possible when the line camera 11 and the second line camera 12 are directed in the vertical direction without being tilted.
 図3に示すように、通常、車両10の屋根上10aの限定された設置環境下で、第1,2ラインカメラ11,12を鉛直方向に向けて設置すると、エアセクション及び渡り線等の設備では、既に説明したごとく広範囲なステレオ撮像領域が必要なため(図中の「計測対象領域」)、計測対象領域(二点鎖線で示した領域。図2,4,5も同様)中に互いの撮像範囲の重ならないステレオ撮像不可領域a,bが生じてしまい、当該箇所についてはステレオ計測できない。 As shown in FIG. 3, normally, when the first and second line cameras 11 and 12 are installed in the vertical direction in a limited installation environment on the roof 10a of the vehicle 10, facilities such as an air section and a crossover are installed. Then, as already described, since a wide range of stereo imaging areas are necessary ("measurement target area" in the figure), the measurement target areas (areas indicated by two-dot chain lines; the same applies to FIGS. 2, 4 and 5). Stereo imaging impossible areas a and b that do not overlap with each other in the imaging range are generated, and stereo measurement cannot be performed for the relevant part.
 一方、本実施例に係る線条計測装置では、図2に示すように、計測対象領域中に互いの撮像範囲の重ならない領域、すなわち、ステレオ計測することができない領域が生じない。 On the other hand, as shown in FIG. 2, the linear measuring device according to the present embodiment does not generate a region where the imaging ranges do not overlap each other, that is, a region where stereo measurement cannot be performed.
 この点に関して図4,5を用いて詳述する。図4は、第1ラインカメラ11を鉛直方向に設置した場合と斜めに設置した場合との撮像範囲画角を比較する図である。図5は、第2ラインカメラ12を鉛直方向に設置した場合と斜めに設置した場合との撮像範囲画角を比較する図である。なお、図4,5中の破線は、各ラインカメラが鉛直方向に設置された場合の撮像範囲を示しており、実線は、各ラインカメラが斜めに設置された場合の撮像範囲を示している。 This point will be described in detail with reference to FIGS. FIG. 4 is a diagram comparing the imaging range angle of view when the first line camera 11 is installed in the vertical direction and when it is installed obliquely. FIG. 5 is a diagram for comparing the imaging range angle of view when the second line camera 12 is installed in the vertical direction and when it is installed obliquely. The broken lines in FIGS. 4 and 5 indicate the imaging range when each line camera is installed in the vertical direction, and the solid lines indicate the imaging range when each line camera is installed obliquely. .
 第1ラインカメラ11は、図4のようにステレオ撮像不可領域bがステレオ撮像可能になるように傾けられ、第2ラインカメラ12は、図5のようにステレオ撮像不可領域aがステレオ撮像可能になるように傾けられる。これによって、図2のように(渡り線やエアセクション(偏位±900mm)等の)広範囲の計測対象領域を確保することができる。 The first line camera 11 is tilted so that the stereo imaging impossible area b can be captured in stereo as shown in FIG. 4, and the second line camera 12 enables stereo imaging impossible area a in stereo imaging as shown in FIG. Tilt to be. As a result, as shown in FIG. 2, it is possible to secure a wide measurement target area (such as a crossover or an air section (deviation ± 900 mm)).
 また、画像処理部9では、ステレオ計測において、第1ラインカメラ11及び第2ラインカメラ12による撮像画像上にある複数の線条の中から適切な対応付けを行うために、線条情報と摺動面情報を取得(検出)し、検出された線条情報及び摺動面情報を用いて、第1ラインカメラ11と第2ラインカメラ12の撮像画像間の線条の対応付けを行う。これより、従来必要であったレーザ装置や高さ計測装置等の外部装置が不要となり、エアセクションや渡り線等における偏位±900mm範囲の架線位置(高さ及び偏位)を単独測定(算出)することが可能となる。 Further, in the stereo measurement, in the stereo measurement, in order to perform an appropriate association among the plurality of filaments on the image captured by the first line camera 11 and the second line camera 12, the image processor 9 and the line information are displayed. The moving surface information is acquired (detected), and the detected line information and sliding surface information are used to associate the line between the captured images of the first line camera 11 and the second line camera 12. This eliminates the need for external devices such as laser devices and height measuring devices that were required in the past, and enables independent measurement (calculation) of overhead wire positions (height and displacement) in the ± 900 mm range of deviation in air sections and crossovers. ).
 架線位置計測における最大の課題は、ラインカメラ間の線条データ(線条情報)の対応付けである。例えば、図1のエアセクション設備における架線情報を、第1ラインカメラ11及び第2ラインカメラ12で撮像した場合の画像を図6に示す。図6のAに示す図は、第1ラインカメラ11の撮像画像図、図6のBに示す図は、第2ラインカメラ12の撮像画像図であり、ともに横軸がカメラの画素(pix)、縦軸が時間(ms)を表している。 The biggest problem in overhead line position measurement is the correspondence of line data (line information) between line cameras. For example, FIG. 6 shows an image when the overhead line information in the air section facility of FIG. 1 is captured by the first line camera 11 and the second line camera 12. 6A is a captured image of the first line camera 11, FIG. 6B is a captured image of the second line camera 12, and the horizontal axis is the pixel of the camera (pix). The vertical axis represents time (ms).
 目視による判断では、図6のA,Bに示す2つの撮像画像の線条(図中の本線1や副本線2等)の対応付けは難しい(この対応付け情報として、上記特許文献2ではレーザ情報を利用し、上記特願2014-196032号では本線の高さ情報を利用していた)。 In the judgment by visual observation, it is difficult to correlate the lines (such as the main line 1 and the sub main line 2 in the figure) of the two captured images shown in A and B of FIG. 6. Information was used, and in the above Japanese Patent Application No. 2014-196032, the height information of the main line was used).
 画像処理部9では、この対応付けに摺動面データ(摺動面情報)を利用する。ここで、図7は、エアセクション設備の摺動面検出結果のデータ図の一例である。図7のAに示す図は、第1ラインカメラ11の撮像画像に基づく図であり、図7のBに示す図は、第2ラインカメラ12の撮像画像に基づく図である。図8は、エアセクション設備の線条検出結果のデータ図の一例である。図8のAに示す図は、第1ラインカメラ11の撮像画像に基づく図であり、図8のBに示す図は、第2ラインカメラ12の撮像画像に基づく図である。 The image processing unit 9 uses sliding surface data (sliding surface information) for this association. Here, FIG. 7 is an example of a data diagram of the sliding surface detection result of the air section equipment. 7A is a diagram based on an image captured by the first line camera 11, and a diagram illustrated in FIG. 7B is a diagram based on an image captured by the second line camera 12. FIG. 8 is an example of a data diagram of the line detection result of the air section equipment. 8A is a diagram based on the captured image of the first line camera 11, and the diagram illustrated in FIG. 8B is a diagram based on the captured image of the second line camera 12.
 すなわち、画像処理部9では、図6(a)(b)に示す撮像画像から、摺動面8のデータを図7に示すように検出する。さらに、図6(a)(b)に示す撮像画像から、線条データを図8に示すように検出し、「第1ラインカメラ11の撮像画像と第2ラインカメラ12の撮像画像において、摺動面を有する線条データ同士が、計測対象である」情報を基に対応付けを行う。これにより、摺動面を一部でも有する架線であれば、全て対応付けが可能となる。 That is, the image processing unit 9 detects the data of the sliding surface 8 from the captured images shown in FIGS. 6A and 6B as shown in FIG. Further, from the captured images shown in FIGS. 6 (a) and 6 (b), the line data is detected as shown in FIG. 8, and “in the captured image of the first line camera 11 and the captured image of the second line camera 12, Correlation is performed based on the information that the line data having a moving surface is a measurement target. Thereby, if it is an overhead line which has even a part of sliding surface, all correspondence will be attained.
 図9は、本実施例に係る線条計測装置の機能構成図である。図9に示すように、本実施例に係る線条計測装置は、第1ラインカメラ11、第2ラインカメラ12、及び、画像処理部9を備えている。さらに、画像処理部9は、画像入力部14、摺動面抽出部15、線条抽出部16、結合部17、対応付け部18、ステレオ計測部19、記憶部20、及び、設備データ設定部21を備えている。 FIG. 9 is a functional configuration diagram of the filament measuring device according to the present embodiment. As shown in FIG. 9, the filament measuring apparatus according to the present embodiment includes a first line camera 11, a second line camera 12, and an image processing unit 9. Further, the image processing unit 9 includes an image input unit 14, a sliding surface extraction unit 15, a line extraction unit 16, a coupling unit 17, an association unit 18, a stereo measurement unit 19, a storage unit 20, and an equipment data setting unit. 21 is provided.
 画像入力部14は、第1ラインカメラ11及び第2ラインカメラ12によって撮像した画像データを取得する。 The image input unit 14 acquires image data captured by the first line camera 11 and the second line camera 12.
 摺動面抽出部15は、画像処理により、既に説明したごとく、図6から摺動面データを図7に示すように検出する。 The sliding surface extraction unit 15 detects the sliding surface data from FIG. 6 as shown in FIG.
 線条抽出部16は、画像処理により、既に説明したごとく、図6から線条データを図8に示すように検出する。このとき、線条データは点群の集まりであり、データ間に関連性はないため、以下ではこれを「線条点群データ(線条点群情報)」と呼称する。また、図8では、電柱6等の外乱がある箇所が欠損となる。 The line extraction unit 16 detects line data from FIG. 6 as shown in FIG. 8 by image processing as already described. At this time, the line data is a collection of point clouds, and there is no relation between the data. Therefore, this is hereinafter referred to as “wire line point group data (wire point group information)”. Moreover, in FIG. 8, the location with disturbances, such as the utility pole 6, becomes a defect | deletion.
 結合部17は、線条点群データから下記の手順で線条を結合した、「線条結合データ」を作成する。 The joining unit 17 creates “striated joint data” by joining the filaments from the filament point group data in the following procedure.
 すなわち、結合部17は、まず連続している線条点群データを結合し、パーツを作成する。このとき、重なっている箇所や欠損している箇所は別のパーツとして区別する。次に、各パーツの長さ、角度、近似二次曲線係数、及び、開始終了座標等の情報を利用してパーツ間を結合し、バラバラであった線条点群データを線条結合データ(線条結合情報)にする。 That is, the combining unit 17 first combines the continuous filament point group data to create a part. At this time, the overlapping part and the missing part are distinguished as different parts. Next, the parts are connected using information such as the length, angle, approximate quadratic curve coefficient, and start / end coordinates of each part. (Striated information).
 対応付け部18は、まず、摺動面データを有する線条結合データを計測対象の架線とし、第1ラインカメラ11の撮像画像と第2ラインカメラ12の撮像画像の線条結合データ間同士の対応付けを行う。 First, the associating unit 18 uses the linear combination data having the sliding surface data as the measurement target overhead line, and between the linear combination data of the captured image of the first line camera 11 and the captured image of the second line camera 12. Perform the association.
 図10は、エアセクション設備における本線1及び副本線2の対応付け結果を示す図である。図10のAに示す図は、第1ラインカメラ11の撮像画像に基づく図であり、図10のBに示す図は、第2ラインカメラ12の撮像画像に基づく図であり、図10のCに示す図は、第1ラインカメラ11の撮像画像に基づく図であり、図10のDに示す図は、第2ラインカメラ12の撮像画像に基づく図である。そして、それぞれ横軸がラインカメラの画素数(pix)、縦軸が時間(ms)を表している。図10に示すように、摺動面8を一部に有する架線について対応付けが可能となる。 FIG. 10 is a diagram showing a correspondence result between the main line 1 and the sub-main line 2 in the air section facility. 10A is a diagram based on a captured image of the first line camera 11, and a diagram illustrated in FIG. 10B is a diagram based on a captured image of the second line camera 12, and FIG. FIG. 10 is a diagram based on the captured image of the first line camera 11, and the diagram illustrated in FIG. 10D is a diagram based on the captured image of the second line camera 12. The horizontal axis represents the number of pixels (pix) of the line camera, and the vertical axis represents time (ms). As shown in FIG. 10, it is possible to associate an overhead line having the sliding surface 8 in part.
 一方、図11は、車両10が、本線1と渡り線4とが交差する渡り線設備を通過する様子を示した概略図である。なお、渡り線4も本線1(及び既出の副本線2)と同様、吊架線4aに吊架されている。 On the other hand, FIG. 11 is a schematic view showing a state where the vehicle 10 passes through a crossover facility where the main line 1 and the crossover line 4 intersect. In addition, the crossover line 4 is also suspended by the suspension line 4a like the main line 1 (and the above-mentioned secondary main line 2).
 図11に示す渡り線設備の撮像画像図の一例を、図12に示す。図12のAに示す図は、第1ラインカメラ11による撮像画像図、図12のBに示す図は、第2ラインカメラ12による撮像画像図であり、ともに横軸がカメラの画素(pix)、縦軸が時間(ms)を表している。 An example of a captured image diagram of the crossover facility shown in FIG. 11 is shown in FIG. 12A is an image captured by the first line camera 11, and FIG. 12B is an image captured by the second line camera 12. In each case, the horizontal axis represents camera pixels (pix). The vertical axis represents time (ms).
 渡り線設備では、図12のように計測対象の架線である渡り線4が摺動面8を持たない場合もある。そのため、渡り線4を計測する場合には、摺動面8を持たない架線と摺動面8を持つ架線とが交差する時間情報を利用する。 In the crossover equipment, the crossover 4 that is the overhead line to be measured may not have the sliding surface 8 as shown in FIG. Therefore, when measuring the crossover 4, time information at which the overhead line having no sliding surface 8 and the overhead line having the sliding surface 8 intersect is used.
 摺動面データを持つ架線(本線1)と交差する架線は、図12のように渡り線4以外にも渡り線の吊架線4a等の候補がある。これらは、第1ラインカメラ11による撮像画像の図12のAに示す図ではA部分とB部分、第2ラインカメラ12による撮像画像の図12のBに示す図ではC部分とD部分でそれぞれ交差するが、これだけでは撮像画像間で渡り線4同士の対応付けを行うことはできない。 As for the overhead line that intersects the overhead line having the sliding surface data (main line 1), there are candidates for the suspension line 4a of the transition line in addition to the transition line 4 as shown in FIG. These are the A portion and B portion in the image shown in FIG. 12A of the image taken by the first line camera 11, and the C portion and D portion in the image shown in FIG. 12B of the image taken by the second line camera 12, respectively. Although they intersect, it is not possible to associate the crossover lines 4 between the captured images.
 渡り線設備において、渡り線4が本線1と交差する際には、本線1の高さとほぼ等しい高さを交差するという特徴があり、撮像画像上では、摺動面8を有する架線との交差する時間情報はほぼ一致するため、第1ラインカメラ11による撮像画像の図12のAに示す図のB部分と第2ラインカメラ12による撮像画像の図12のBに示す図のC部分との交差箇所を有する架線が、渡り線4であることがわかる。これにより、一本の架線として登録してあれば、渡り線4も対応付け可能となる。 In the crossover facility, when the crossover 4 intersects the main line 1, it has a feature that it intersects with a height substantially equal to the height of the main line 1, and on the captured image, it intersects with the overhead line having the sliding surface 8. Since the time information to be substantially matched, the portion B of the image taken by the first line camera 11 shown in FIG. 12A and the portion C of the image taken by the second line camera 12 shown in FIG. It can be seen that the overhead line having the intersection is the crossover line 4. Thereby, if it registers as one overhead line, the crossover 4 can also be matched.
 図13は、渡り線設備における本線1及び渡り線4の対応付け結果を示すデータ図である。図13のAに示す図は、第1ラインカメラ11の撮像画像に基づく本線1の対応付け結果を示すデータ図であり、図13のBに示す図は、第2ラインカメラ12の撮像画像に基づく本線1の対応付け結果を示すデータ図であり、図13のCに示す図は、第1ラインカメラ11の撮像画像に基づく渡り線4の対応付け結果を示すデータ図であり、図13のDに示す図は、第2ラインカメラ12の撮像画像に基づく渡り線4の対応付け結果を示すデータ図である。そして、それぞれ横軸がラインカメラの画素数(pix)、縦軸が時間(ms)を表している。 FIG. 13 is a data diagram showing a correspondence result between the main line 1 and the crossover line 4 in the crossover line facility. The diagram shown in FIG. 13A is a data diagram showing the main line 1 association result based on the image captured by the first line camera 11, and the diagram shown in FIG. 13B shows the image captured by the second line camera 12. FIG. 13C is a data diagram showing the correspondence result of the crossover line 4 based on the captured image of the first line camera 11, and FIG. The diagram shown in D is a data diagram showing the association result of the crossover lines 4 based on the captured image of the second line camera 12. The horizontal axis represents the number of pixels (pix) of the line camera, and the vertical axis represents time (ms).
 このようにして、図13のA,B,C,Dに示す各図のように、対応付け部18では、本線1だけでなく、渡り線4も対応付けを可能とする。 In this way, as shown in FIGS. 13A, 13B, and 13D, the associating unit 18 can associate not only the main line 1 but also the crossover line 4.
 そのため、対応付け部18では、計測対象が渡り線4であるか否かの条件分岐(すなわち、摺動面データが存在しないか存在するかの条件分岐)により上述のように対応付け方法を変更し、計測対象が渡り線4の場合には、(摺動面8を有し渡り線4と交差する架線の)摺動面情報、及び、(摺動面8を有し渡り線4と交差する架線と渡り線4との)交差箇所の時間情報による対応付けを行う。
 以上が対応付け部18についての説明である。
For this reason, the association unit 18 changes the association method as described above based on a conditional branch indicating whether or not the measurement target is the crossover 4 (that is, a conditional branch indicating whether or not the sliding surface data exists). When the measuring object is the crossover 4, the sliding surface information (of the overhead line that has the sliding surface 8 and intersects with the crossover 4) and the crossover with the crossover 4 that has the sliding surface 8. (Corresponding to the crossover line 4 and the crossover line 4) is associated with time information.
The above is the description of the association unit 18.
 ステレオ計測部19は、第1ラインカメラ11による撮像画像と第2ラインカメラ12による撮像画像の対応付けされた線条結合データ同士をステレオ計測し、架線計測結果を示す図14のグラフのように、線条の高さ及び偏位を算出し出力する。高さ及び偏位の算出については、上記特許文献2の段落[0025]~[0028]部分と同様に行う。 The stereo measurement unit 19 performs stereo measurement on the line connection data in which the image captured by the first line camera 11 and the image captured by the second line camera 12 are associated with each other, as in the graph of FIG. 14 showing the overhead line measurement result. Calculate and output the height and deflection of the filament. The calculation of the height and the deviation is performed in the same manner as the paragraphs [0025] to [0028] of Patent Document 2.
 なお、記憶部20は各データを記憶し、設備データ設定部21は、渡り線なのかエアセクションなのかの設備の種類や第二架線(本線以外の架線)が進行方向に対して左右どちらから進入してくるかの設備の方向の設備情報を入力するものである。 The storage unit 20 stores each data, and the facility data setting unit 21 determines whether the second overhead line (the overhead line other than the main line) is the left or right with respect to the traveling direction. The facility information of the direction of the facility to enter is input.
 図15は、画像処理部9全体の動作を説明するフローチャートである。図16は、対応付け部18の動作を詳述するフローチャートである。以下、画像処理部9の動作手順について、図15,16のフローチャートを用いて説明する。 FIG. 15 is a flowchart for explaining the overall operation of the image processing unit 9. FIG. 16 is a flowchart detailing the operation of the association unit 18. Hereinafter, the operation procedure of the image processing unit 9 will be described with reference to the flowcharts of FIGS.
 図15に示すように、ステップS1では、画像入力部14において、第1ラインカメラ11及び第2ラインカメラ12によって撮像した画像データを取得する。 As shown in FIG. 15, in step S <b> 1, image data captured by the first line camera 11 and the second line camera 12 is acquired by the image input unit 14.
 ステップS2では、摺動面抽出部15において、摺動面データを検出する。 In step S2, the sliding surface extraction unit 15 detects sliding surface data.
 ステップS3では、線条抽出部16において、線条点群データを検出する。 In step S3, the line extraction unit 16 detects line point cloud data.
 ステップS4では、結合部17において、線条点群データから線条結合データを作成する。 In step S4, the connecting unit 17 creates the line connection data from the line point group data.
 ステップS5では、対応付け部18において、第1ラインカメラ11の撮像画像と第2ラインカメラ12の撮像画像の線条結合データ間同士の対応付けを行う。 In step S5, the associating unit 18 associates the line-connected data of the captured image of the first line camera 11 and the captured image of the second line camera 12 with each other.
 ここで、図16に示すように、ステップS5について詳しく説明すると、下記ステップS5‐1~S5‐3のようになる。 Here, as shown in FIG. 16, step S5 will be described in detail as shown in steps S5-1 to S5-3 below.
 ステップS5‐1では、対応付け部18において、計測対象が渡り線4であるか否か(すなわち、摺動面データが存在しないか存在するかの条件分岐)を判断する。渡り線4であれば(すなわち、摺動面データが存在しなければ)、ステップS5‐3へ移行し、渡り線4でなければ(すなわち、摺動面データが存在すれば)ステップS5‐2へ移行する。 In step S5-1, the associating unit 18 determines whether or not the measurement target is the crossover 4 (that is, a conditional branch indicating whether or not the sliding surface data exists). If it is crossover 4 (that is, if sliding surface data does not exist), the process proceeds to step S5-3, and if it is not crossover 4 (that is, if sliding surface data exists), step S5-2. Migrate to
 ステップS5‐2では、対応付け部18において、渡り線4(計測対象の線条)の摺動面情報のみによる線条結合データ間同士の対応付けを行う。 In step S5-2, the associating unit 18 associates the line connection data with only the sliding surface information of the crossover line 4 (the line to be measured).
 ステップS5‐3では、対応付け部18において、摺動面8を有し渡り線4と交差する架線の摺動面情報、及び、渡り線4と該架線との交差箇所の時間情報を用いて、線条結合データ間同士の対応付けを行う。 In step S5-3, the associating unit 18 uses the sliding surface information of the overhead line having the sliding surface 8 and intersecting the crossover line 4, and the time information of the intersection of the crossover line 4 and the overhead line. Then, the linear combination data is associated with each other.
 図15に示すように、その後ステップS6では、ステレオ計測部19において、第1ラインカメラ11及び第2ラインカメラ12による撮像画像の対応付けされた線条結合データ同士をステレオ計測し、線条の高さ及び偏位を算出する。 As shown in FIG. 15, in step S <b> 6, the stereo measurement unit 19 then performs stereo measurement of the line connection data associated with the images captured by the first line camera 11 and the second line camera 12, and Calculate height and excursion.
 ステップS7では、算出された線条の高さ及び偏位を出力する。
 以上が画像処理部9の動作についての説明である。
In step S7, the calculated line height and displacement are output.
The operation of the image processing unit 9 has been described above.
 上記特許文献1では、別途高さ情報が必要で、ラインカメラ単独では架線の位置(高さ及び偏位)計測を行うことができない。しかしながら、本実施例では、単独で高さ及び偏位の計測が可能であり、さらに、計測対象が本線に加え車両中心から偏位±900mm内にある第二架線(本線以外の架線)も計測可能となる。 In Patent Document 1, height information is separately required, and the position (height and displacement) of the overhead line cannot be measured with a line camera alone. However, in this embodiment, it is possible to measure the height and deviation alone, and in addition to the main line, the second overhead line (an overhead line other than the main line) whose deviation is within ± 900 mm from the vehicle center is also measured. It becomes possible.
 上記特許文献2では、レーザセンサが必要であるが、レーザは性質上、検出率及び精度は計測距離に比例し悪くなるため、距離の離れた渡り線やエアセクション等の架線のステレオ計測が困難である。しかしながら、本実施例では、ラインカメラ単独でのステレオ計測のため、距離が離れた渡り線やエアセクション等の架線のステレオ計測の検出率及び精度が低下しにくい。また、レーザのデータ取得周期は、ラインカメラの10倍以上遅く、そのため、営業車両等の高速走行車両への搭載は難しいが、本実施例では、ラインカメラ単独でのステレオ計測のため、営業車両等の高速走行車両への搭載が可能となる。 In Patent Document 2 described above, a laser sensor is required. However, since the laser has a detection rate and accuracy that are in proportion to the measurement distance, it is difficult to perform stereo measurement of overhead lines such as crossovers and air sections that are separated from each other. It is. However, in the present embodiment, since the stereo measurement is performed by the line camera alone, the detection rate and accuracy of stereo measurement of overhead lines such as crossovers and air sections that are separated from each other are unlikely to decrease. Further, the laser data acquisition cycle is 10 times or more slower than that of the line camera. Therefore, it is difficult to mount the laser data on a high-speed traveling vehicle such as a business vehicle. And so on.
 上記特願2014-196032号では、高さを限定することで、高さ制約がある渡り線(条件:「本線の高さから30mm以内に設置されている」)の計測を可能とするが、車両中心から偏位±900mmの位置が高い位置にある設備や、複雑な構造の設備では、高さを制限する手法による位置計測が困難である。しかしながら、本実施例では、摺動面情報を持つ架線との関係性があれば、すべて計測可能となる。 In the above Japanese Patent Application No. 2014-196032, by limiting the height, it is possible to measure a jumper with a height restriction (condition: “installed within 30 mm from the height of the main line”). In equipment with a high deviation of ± 900 mm from the center of the vehicle or equipment with a complicated structure, it is difficult to measure the position by a technique for limiting the height. However, in this embodiment, if there is a relationship with the overhead line having the sliding surface information, all can be measured.
 本発明は、線条計測装置及び方法として好適である。 The present invention is suitable as a line measuring device and method.
1 本線
1a (本線の)吊架線
2 副本線
2a (副本線の)吊架線
3 線路
3a 分岐器
4 渡り線
4a (渡り線の)吊架線
5 き電線
6 電柱
7 曲引金具
8 摺動面
9 画像処理部
10 車両
10a,30a (車両の)屋根上
11,31 第1ラインカメラ
12,32 第2ラインカメラ
13 照明
14 画像入力部
15 摺動面抽出部
16 線条抽出部
17 結合部
18 対応付け部
19 ステレオ計測部
20 記憶部
21 設備データ設定部
33 第3ラインカメラ
1 Main line 1a (Main line) Suspension line 2 Sub main line 2a (Sub main line) Suspension line 3 Line 3a Branch 4 Crossover 4a (Transition line) Suspension line 5 Feeding line 6 Electric pole 7 Bending bracket 8 Sliding surface 9 Image processing unit 10 Vehicles 10a, 30a (on the vehicle) roof 11, 31 First line camera 12, 32 Second line camera 13 Illumination 14 Image input unit 15 Sliding surface extraction unit 16 Line extraction unit 17 Coupling unit 18 Attachment unit 19 Stereo measurement unit 20 Storage unit 21 Equipment data setting unit 33 Third line camera

Claims (6)

  1.  車両の屋根上の枕木方向両端に、それぞれ該車両の枕木方向中心に向けて傾斜して配置され、線条を撮像する、第1ラインカメラ及び第2ラインカメラと、
     前記第1ラインカメラによる撮像画像及び前記第2ラインカメラによる撮像画像から、計測対象である線条の線条情報及び摺動面情報を検出し、該線条情報及び該摺動面情報を用いて、該撮像画像間の該線条の対応付けを行うことで、該線条の高さ及び偏位を算出する、画像処理部とを備える
     ことを特徴とする、線条計測装置。
    A first line camera and a second line camera, which are arranged at both ends of the sleeper direction on the roof of the vehicle and are inclined toward the center of the sleeper direction of the vehicle, respectively,
    From the image captured by the first line camera and the image captured by the second line camera, the line information and the sliding surface information of the line to be measured are detected, and the line information and the sliding surface information are used. And an image processing unit that calculates the height and displacement of the line by associating the line between the captured images.
  2.  前記画像処理部は、
     計測対象である前記線条に前記摺動面情報が存在しない場合は、該線条が摺動面を有する架線と交差する時間情報、及び、該架線の摺動面情報を用いて、前記対応付けを行う
     ことを特徴とする、請求項1に記載の線条計測装置。
    The image processing unit
    When the sliding surface information does not exist in the line to be measured, the correspondence is obtained by using the time information when the line intersects the overhead line having the sliding surface and the sliding surface information of the overhead line. The filament measuring device according to claim 1, wherein the linear measuring device is attached.
  3.  前記画像処理部は、
     前記第1ラインカメラによる撮像画像及び前記第2ラインカメラによる撮像画像から、前記摺動面情報をそれぞれ検出する、摺動面抽出部と、
     前記第1ラインカメラによる撮像画像及び前記第2ラインカメラによる撮像画像から、前記線条情報をそれぞれ検出する、線条抽出部と、
     前記線条情報から線条結合情報を作成する結合部と、
     計測対象である前記線条に前記摺動面情報が存在する場合は、該摺動面情報を用いて、前記対応付けを行い、計測対象である前記線条に前記摺動面情報が存在しない場合は、該線条が摺動面を有する架線と交差する時間情報、及び、該架線の摺動面情報を用いて、前記対応付けを行う、対応付け部と、
     前記第1ラインカメラによる撮像画像と前記第2ラインカメラによる撮像画像の対応付けされた前記線条結合情報同士をステレオ計測し、前記線条の高さ及び偏位を算出する、ステレオ計測部とを備える
     ことを特徴とする、請求項2に記載の線条計測装置。
    The image processing unit
    A sliding surface extraction unit that detects the sliding surface information from an image captured by the first line camera and an image captured by the second line camera;
    A line extraction unit for detecting the line information from an image captured by the first line camera and an image captured by the second line camera;
    A combining unit that creates line combination information from the line information;
    When the sliding surface information is present in the line that is the measurement target, the association is performed using the sliding surface information, and the sliding surface information does not exist in the linear object that is the measurement target. In this case, an association unit that performs the association using the time information at which the filament intersects the overhead line having the sliding surface, and the sliding surface information of the overhead line;
    A stereo measurement unit for stereo-measuring the line connection information associated with the image captured by the first line camera and the image captured by the second line camera, and calculating the height and displacement of the line; The filament measuring device according to claim 2, comprising:
  4.  線条を撮像する第1ラインカメラ及び第2ラインカメラを、車両の屋根上の枕木方向両端に、それぞれ該車両の枕木方向中心に向けて傾斜して配置し、
     前記第1ラインカメラによる撮像画像及び前記第2ラインカメラによる撮像画像から、計測対象である線条の線条情報及び摺動面情報を検出し、該線条情報及び該摺動面情報を用いて、該撮像画像間の該線条の対応付けを行うことで、該線条の高さ及び偏位を算出する
     ことを特徴とする、線条計測方法。
    The first line camera and the second line camera that image the line are arranged at both ends in the sleeper direction on the roof of the vehicle, respectively, inclined toward the center of the sleeper direction of the vehicle,
    From the image captured by the first line camera and the image captured by the second line camera, the line information and the sliding surface information of the line to be measured are detected, and the line information and the sliding surface information are used. A line measuring method, comprising: calculating the height and displacement of the line by associating the line between the captured images.
  5.  計測対象である前記線条に前記摺動面情報が存在しない場合は、該線条が摺動面を有する架線と交差する時間情報、及び、該架線の摺動面情報を用いて、前記対応付けを行う
     ことを特徴とする、請求項4に記載の線条計測方法。
    When the sliding surface information does not exist in the line to be measured, the correspondence is obtained by using the time information when the line intersects the overhead line having the sliding surface and the sliding surface information of the overhead line. The method for measuring a filament according to claim 4, wherein the line is attached.
  6.  前記第1ラインカメラによる撮像画像及び前記第2ラインカメラによる撮像画像から、前記摺動面情報をそれぞれ検出し、
     前記第1ラインカメラによる撮像画像及び前記第2ラインカメラによる撮像画像から、前記線条情報をそれぞれ検出し、
     前記線条情報から線条結合情報を作成し、
     計測対象である前記線条に前記摺動面情報が存在する場合は、該摺動面情報を用いて、前記対応付けを行い、計測対象である前記線条に前記摺動面情報が存在しない場合は、該線条が摺動面を有する架線と交差する時間情報、及び、該架線の摺動面情報を用いて、前記対応付けを行い、
     前記第1ラインカメラによる撮像画像と前記第2ラインカメラによる撮像画像の対応付けされた前記線条結合情報同士をステレオ計測し、前記線条の高さ及び偏位を算出する
     ことを特徴とする、請求項5に記載の線条計測方法。
    The sliding surface information is detected from the image captured by the first line camera and the image captured by the second line camera,
    The line information is detected from the image captured by the first line camera and the image captured by the second line camera,
    Create line combination information from the line information,
    When the sliding surface information is present in the line that is the measurement target, the association is performed using the sliding surface information, and the sliding surface information does not exist in the linear object that is the measurement target. In this case, the correspondence is performed using the time information when the filament intersects the overhead line having the sliding surface, and the sliding surface information of the overhead line,
    Stereoscopic measurement is performed on the line connection information associated with the image captured by the first line camera and the image captured by the second line camera, and the height and displacement of the line are calculated. The filament measurement method according to claim 5.
PCT/JP2016/067725 2015-06-23 2016-06-15 Wire measurement device and method WO2016208463A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201710208TA SG11201710208TA (en) 2015-06-23 2016-06-15 Wire measurement device and method
MYPI2017704903A MY196040A (en) 2015-06-23 2016-06-15 Wire Measurement Device and Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015125341A JP6518940B2 (en) 2015-06-23 2015-06-23 Filament measurement apparatus and method
JP2015-125341 2015-06-23

Publications (1)

Publication Number Publication Date
WO2016208463A1 true WO2016208463A1 (en) 2016-12-29

Family

ID=57585095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067725 WO2016208463A1 (en) 2015-06-23 2016-06-15 Wire measurement device and method

Country Status (5)

Country Link
JP (1) JP6518940B2 (en)
MY (1) MY196040A (en)
SG (1) SG11201710208TA (en)
TW (1) TWI616638B (en)
WO (1) WO2016208463A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200378750A1 (en) * 2019-05-29 2020-12-03 Hitachi High-Tech Fine Systems Corporation Overhead wire mutual separating situation measuring apparatus and overhead wire mutual separating situation measuring method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6834522B2 (en) 2017-01-23 2021-02-24 スズキ株式会社 Driving support device
WO2018230480A1 (en) * 2017-06-12 2018-12-20 株式会社 明電舎 Line distinguishing device and line distinguishing method
JP7225616B2 (en) * 2018-09-07 2023-02-21 株式会社明電舎 Wire measuring device and wire measuring method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1855084A2 (en) * 2006-05-11 2007-11-14 Siemens Aktiengesellschaft Method for determining the remaining height of a catenary wire and devices to perform the method
JP2009236574A (en) * 2008-03-26 2009-10-15 Railway Technical Res Inst Method and device for measuring trolley wire deflection using stereo technique
JP2012052939A (en) * 2010-09-02 2012-03-15 Meidensha Corp Trolley wire surveying apparatus
WO2013104845A2 (en) * 2012-01-13 2013-07-18 Societe Nationale Des Chemins De Fer Francais Sncf Measurement system that can be used to check the section of a contact wire for railway overhead power lines

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635657B2 (en) * 2005-03-11 2011-02-23 株式会社明電舎 Trolley wire wear measuring device by image processing
KR101727329B1 (en) * 2011-10-19 2017-04-17 엘에스산전 주식회사 An apparatus and method for mesuring velocity of train
JP6069639B2 (en) * 2013-07-11 2017-02-01 株式会社明電舎 Wire measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1855084A2 (en) * 2006-05-11 2007-11-14 Siemens Aktiengesellschaft Method for determining the remaining height of a catenary wire and devices to perform the method
JP2009236574A (en) * 2008-03-26 2009-10-15 Railway Technical Res Inst Method and device for measuring trolley wire deflection using stereo technique
JP2012052939A (en) * 2010-09-02 2012-03-15 Meidensha Corp Trolley wire surveying apparatus
WO2013104845A2 (en) * 2012-01-13 2013-07-18 Societe Nationale Des Chemins De Fer Francais Sncf Measurement system that can be used to check the section of a contact wire for railway overhead power lines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AKIRA ICHIGE: "Development of Measurement Device for Contact Wire Deviation Using Stereo Vision", THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN KENKYUKAI SHIRYO KOTSU . DENKI TETSUDO KENKYUKAI, vol. TER-13, no. 016 to 032, 13 May 2013 (2013-05-13), pages 17 - 22 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200378750A1 (en) * 2019-05-29 2020-12-03 Hitachi High-Tech Fine Systems Corporation Overhead wire mutual separating situation measuring apparatus and overhead wire mutual separating situation measuring method

Also Published As

Publication number Publication date
MY196040A (en) 2023-03-08
TW201706560A (en) 2017-02-16
JP2017009446A (en) 2017-01-12
JP6518940B2 (en) 2019-05-29
TWI616638B (en) 2018-03-01
SG11201710208TA (en) 2018-01-30

Similar Documents

Publication Publication Date Title
WO2016208463A1 (en) Wire measurement device and method
WO2016047510A1 (en) Line measurement device and method
JP5245445B2 (en) Crossover measuring device
WO2014136976A1 (en) Overhead line position measuring device and method
JP6069639B2 (en) Wire measuring device
JP4685494B2 (en) Trolley wire position measuring device
JP6159177B2 (en) Overhead wire position measuring apparatus and method
EP3936369B1 (en) Pantograph displacement measuring device, and trolley-wire hard-spot detection method
JP5549488B2 (en) Trolley wire inspection device
JP5952759B2 (en) Overhead wire position measuring apparatus and method
KR20130067870A (en) Method of measuring a dynamic displacement of pantograph and trolley wire
WO2018051738A1 (en) Insulator detection device and insulator detection method
KR101106935B1 (en) Measuring Apparatus for uplift amount and oscillation of contact line and Method thereof
JP6844697B2 (en) Line discriminating device and line discriminating method
JP6308681B2 (en) Crossover equipment monitoring device and method
JP7225616B2 (en) Wire measuring device and wire measuring method
JP2020006845A (en) Track curvature estimation device and method
JP5402272B2 (en) Vehicle position measuring device for electric railway maintenance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814234

Country of ref document: EP

Kind code of ref document: A1