WO2016208144A1 - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
WO2016208144A1
WO2016208144A1 PCT/JP2016/002826 JP2016002826W WO2016208144A1 WO 2016208144 A1 WO2016208144 A1 WO 2016208144A1 JP 2016002826 W JP2016002826 W JP 2016002826W WO 2016208144 A1 WO2016208144 A1 WO 2016208144A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
reactor
shielding member
magnetic shielding
terminal
Prior art date
Application number
PCT/JP2016/002826
Other languages
French (fr)
Japanese (ja)
Inventor
朝日 俊行
小谷 淳一
寛範 長崎
伸哉 松谷
浩史 冨田
植松 秀典
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016208144A1 publication Critical patent/WO2016208144A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/363Electric or magnetic shields or screens made of electrically conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00

Definitions

  • the present invention relates to a reactor that is a passive element using inductance.
  • a reactor is known in which a current flows through two coils so as to branch from the input side, and then a current is output from each coil. Furthermore, a reactor in which a coupling coefficient adjusting means for adjusting a coupling coefficient between two coils is arranged between the two coils is known.
  • the coupling coefficient adjusting means is made of a nonmagnetic metal such as aluminum.
  • a configuration is also known in which a magnetic shielding plate is placed and then sealed with a sealing resin as a filler when the coil is housed in a chassis (see Patent Document 1, especially FIG. 2 and FIG. 7). This reactor is obtained by magnetically coupling two coils via a core like a transformer, and is used by adjusting the magnetic coupling coefficient between the two coils.
  • a reactor having two coils that are directly connected electrically is known.
  • a configuration is also known in which a sensor holder is disposed between the two coils (see Patent Document 2).
  • a sensor holder that holds a sensor for measuring a physical quantity of the reactor is disposed between two coils.
  • the reactor includes a first coil, a second coil arranged in parallel with the first coil, a connection conductor connected to the first coil and the second coil, a first terminal connected to the first coil, A second terminal connected to the second coil; and a magnetic shielding member disposed between the first coil and the second coil.
  • the first terminal, the first coil, the connection conductor, the second coil, and the second terminal are electrically connected in series in this order.
  • This reactor can reduce the increase in AC resistance when high-frequency current flows through the coil.
  • FIG. 1 is an exploded perspective view of a reactor in the first embodiment.
  • FIG. 2 is an overall perspective view of the reactor in the first embodiment.
  • 3 is a cross-sectional view taken along line 3-3 of the reactor shown in FIG.
  • FIG. 4A is a top view of the reactor in the first embodiment.
  • FIG. 4B shows the resistance of the reactor in the first embodiment.
  • FIG. 5 is a diagram showing another magnetic shielding member of the reactor in the first embodiment.
  • FIG. 6 is a diagram showing a magnetic shielding member of still another reactor in the first embodiment.
  • FIG. 7 is a cross-sectional view of the reactor in the second embodiment.
  • FIG. 8 is a perspective view of the reactor in the third embodiment.
  • FIG. 9 is a perspective view of the reactor in the fourth embodiment.
  • the effect of the proximity effect on the coil is large.
  • it is particularly susceptible to a large loss due to the proximity effect, that is, an increase in resistance. appear.
  • the influence becomes significant.
  • the reactor described in Patent Document 1 has two coils, but is not electrically connected directly.
  • the reactor sensor holder described in Patent Document 2 only needs to have a size necessary to hold the sensor.
  • Patent Document 1 and Patent Document 2 do not mention an increase in AC resistance when high-frequency AC flows through a reactor in which two coils are electrically connected in series.
  • ⁇ AC loss occurs when high-frequency current flows through the reactor.
  • One cause is that the skin effect in the conductor, that is, the high frequency alternating current tends to flow only on the surface of the conductor, thus increasing the resistance.
  • Another cause is that the proximity effect, that is, the magnetism due to the current flowing through a part of the conductor affects the other part of the conductor, thereby causing a bias in the current density distribution and increasing the resistance.
  • the reactor in the following embodiments has an effect of reducing an increase in AC resistance when a high-frequency current flows through the reactor based on the above.
  • FIG. 1 is an exploded perspective view of a reactor 10 in the first embodiment.
  • FIG. 2 is an overall perspective view of the reactor 10.
  • FIG. 3 is a cross-sectional view taken along line 3-3 of reactor 10 shown in FIG.
  • FIG. 4A is a top view of the reactor 10.
  • the reactor 10 includes a coil 31, a coil 32, a connection conductor 33, a terminal 36, a terminal 37, and a magnetic shielding member 40.
  • the coil 31, the coil 32, the connection conductor 33, the terminal 36, and the terminal 37 are made of continuous conductors.
  • the continuous conductor may be a single conductor.
  • the coil 31 and the coil 32 are each made of a conductor wound around winding axes 31C and 32C.
  • the end 31 ⁇ / b> A of the coil 31 is connected to the connection conductor 33, and the end 31 ⁇ / b> B of the coil 31 is connected to the terminal 36.
  • An end 32 A of the coil 32 is connected to the connection conductor 33, and an end 32 B of the coil 32 is connected to the terminal 37.
  • the terminal 36, the coil 31, the connection conductor 33, the coil 32, and the terminal 37 are electrically connected in series in this order.
  • the coil 31 and the coil 32 are arranged in parallel.
  • the coils 31 and 32 are arranged so that the winding shaft 31C of the coil 31 and the winding shaft 32C of the coil 32 are spatially parallel to each other.
  • the part located in the coil 31 of the winding shaft 31C and the part located in the coil 32 of the winding shaft 32C comprise a pair of opposite side of rectangular PE.
  • the coil 31 and the coil 32 have a cylindrical shape having a circular front shape as shown in FIG. 3, but are not limited to this. You may have the extending polygonal cylinder shape.
  • the magnetic shielding member 40 is disposed between the coil 31 and the coil 32.
  • the magnetic shielding member 40 is made of a nonmagnetic material. As shown in FIGS. 3 and 4A, when the coil 32 is seen through the coil 31, the outer shape of the magnetic shielding member 40 is located outside the outer shape of the coil 32. On the contrary, when the coil 32 is seen through, the outer shape of the magnetic shielding member 40 is located outside the outer shape of the coil 31. An arbitrary portion of the coil 31 faces an arbitrary portion of the coil 32 through the magnetic shielding member 40. In other words, when the magnetic shielding member 40 is a flat plate, the magnetic shielding member 40 shields between the coil 31 and the coil 32. However, the magnetic shielding member 40 may not completely shield between the coil 31 and the coil 32.
  • the magnetic shielding member 40 effectively shields the magnetism generated from the coil 31 and the magnetism generated from the coil 32, an increase in the AC resistance of the reactor 10 due to the proximity effect between the coils 31 and 32 is reduced.
  • the outer shape of the magnetic shielding member 40 when the coil 32 is seen through the coil 32, the outer shape of the magnetic shielding member 40 is positioned outside the outer shape of the coil 32. A part of the outer shape may be at the same position.
  • the reactor 10 may further include a chassis 20, a filler 50, and a core 60.
  • the chassis 20 holds the coil 31, the coil 32, and the connection conductor 33 directly or indirectly.
  • the coil 31, the coil 32, and the connection conductor 33 may be held by a holding portion formed in the chassis 20. Or you may hold
  • the chassis 20 is preferably made of a metal in order to improve the heat dissipation of the reactor 10, and more preferably made of a metal having a good thermal conductivity such as aluminum.
  • the filler 50 is filled in the chassis 20 and covers the coil 31, the coil 32, and the magnetic shielding member 40. A part of the magnetic shielding member 40 may be exposed from the filler 50.
  • the filler 50 is made of resin. Specifically, the filler 50 is obtained by curing a fluid or semi-fluid resin.
  • the filler 50 is made of, for example, a mixture of silicon resin, epoxy resin, and insulating powder.
  • the filler 50 may contain magnetic powder.
  • the filler 50 has a function of sealing the coil 31 and the coil 32 and the magnetic shielding member 40. 1 and 4A, the filler 50 is not shown.
  • the core 60 is made of a magnetic material. Although the coil 31 and the coil 32 are spatially arranged in parallel by the core 60, they have electrical characteristics close to the electrical characteristics of the coils arranged spatially in series. The coil 31 and the coil 32 are wound around the core 60.
  • the cross section of the core 60 has a quadrangular shape, but may have a circular shape.
  • the cross-sectional shape of the core 60 is preferably matched to the winding shape which is a cross-sectional shape perpendicular to the winding axes 31C and 32C of the coil 31 and the coil 32.
  • the core 60 may be divided into a core 61 and a core 62 so as to be easily assembled. By dividing the core 60, the coil 31 and the coil 32 are manufactured and then combined with the core 61 and the core 62, thereby obtaining a configuration in which the coils 31 and 32 are wound around the core 60.
  • FIG. 4B shows the resistance of the reactor 10 in the first embodiment.
  • the vertical axis represents the resistance of the reactor 10
  • the horizontal axis represents the frequency of the voltage applied to the coils 31 and 32.
  • FIG. 4B shows the resistance R10 of the reactor 10 according to the first embodiment and the resistance R20 of the reactor of the comparative example that does not include the magnetic shielding member 40.
  • the coils 31 and 32 have a rectangular cylindrical shape having a rectangular cross section instead of the cylindrical shape having a circular cross section illustrated in FIG. 1.
  • the reactor of the comparative example has the same configuration as the reactor 10 except that the magnetic shielding member 40 is not provided.
  • the resistance R20 of the reactor of the comparative example is 20.7 m ⁇ , whereas the resistance R10 of the reactor 10 according to the first embodiment is 19.1 m ⁇ , which is that of the comparative example. It is 7.7% less than the resistance R20 of the reactor.
  • the resistance R20 of the reactor of the comparative example is 103 m ⁇ , whereas the resistance R10 of the reactor 10 according to the first embodiment is 94.8 m ⁇ , which is 8.0 compared to the resistance R20 of the reactor of the comparative example. %decreasing.
  • the resistance R10 of the reactor according to the first embodiment is greatly reduced as compared with the resistance R20 of the reactor of the comparative example.
  • the temperature of the reactor 10 according to the first embodiment including the magnetic shielding member 40 made of aluminum and the reactor of the comparative example were compared.
  • the reactor of the comparative example almost the entire coils 31 and 32 were 199 ° C. or higher, and particularly the portion on the opposite side of the bottom of the chassis 20 was 210 ° C. or higher.
  • the reactor 10 according to the first embodiment almost the entire coils 31 and 32 were less than 200 ° C., and the portion on the opposite side of the bottom of the chassis 20 was also less than 200 ° C.
  • the loss of the reactor 10 according to the first embodiment and the reactor of the comparative example were compared.
  • the coils 31 and 32 have a rectangular cylindrical shape having a rectangular cross section instead of the cylindrical shape having a circular cross section shown in FIG.
  • the reactor of the comparative example has the same configuration as the reactor 10 except that the magnetic shielding member 40 is not provided.
  • Table 1 shows the result of the simulation of the reactor loss when a current having a DC component of 70 A and an AC component having a frequency of 100 kHz and an effective value of 30 A is passed through the reactor.
  • the reactor 10 according to the first embodiment has a larger shield loss due to the electromagnetic shielding member 40 than the reactor of the comparative example.
  • the coil loss due to the coils 31 and 32 itself is reduced because the influence of the proximity of the coils 31 and 32 is reduced to reduce the coil AC loss. Therefore, the reactor 10 according to the first embodiment has a smaller loss as a whole than the reactor of the comparative example.
  • the alternating current resistance value of the simulation result shown in Table 1 does not match the alternating current resistance value shown in FIG. 4B. The reason is that the reactor coil in the simulation shown in Table 1 and the reactor coil from which the result shown in FIG. 4B is obtained have the same basic coil structure, but specific coil values (coil windings). This is because the diameter, the cross-sectional dimension of the coil wire, the number of turns of the coil, etc. are different.
  • the reactor 10 according to the first embodiment reduces not only the effect of heat conduction by the magnetic shielding member 40 but also the loss by reducing the resistance of the coils 31 and 32 in the high frequency band. Can be made.
  • FIG. 5 shows another magnetic shielding member 40A of the reactor 10 in the first embodiment.
  • the magnetic shielding member 40 has a flat plate shape as described above, a plurality of holes 41 are formed.
  • the magnetic shielding member 40 ⁇ / b> A in which the plurality of holes 41 are formed can reduce an increase in the AC resistance of the reactor 10.
  • the filling material 50 before curing passes through the plurality of holes 41, so that the filling material is separated between the space on the coil 31 side divided by the magnetic shielding member 40 and the space on the coil 32 side. An amount of 50 and density deviation are unlikely to occur.
  • FIG. 6 partially shows still another magnetic shielding member 40B of the reactor 10 according to the first embodiment.
  • the magnetic shielding member 40 ⁇ / b> B has a net shape composed of a plurality of vertical lines 42 and a plurality of horizontal lines 43. A region surrounded by the vertical lines 42 adjacent to each other and the horizontal lines 43 adjacent to each other corresponds to the holes 41 of the magnetic shielding member 40A shown in FIG. Both the plurality of vertical lines 42 and the plurality of horizontal lines 43 are made of a nonmagnetic material such as aluminum.
  • the magnetic shielding member 40 ⁇ / b> B also reduces the increase in AC resistance of the reactor 10. Further, the amount and density of the filler 50 are less likely to be uneven between the space on the coil 31 side separated by the magnetic shielding member 40B and the space on the coil 32 side.
  • FIG. 7 is a front cross-sectional view of reactor 10A in the second embodiment.
  • Reactor 10A in the second embodiment is different from reactor 10 in the first embodiment in that magnetic shielding member 40 is in contact with chassis 20.
  • the heat transmitted to the magnetic shielding member 40 is easily transmitted to the chassis 20, and the heat dissipation characteristics of the reactor 10 are improved.
  • Reactor 10A in the second embodiment has the same effect as reactor 10 in the first embodiment.
  • the reactor 10 includes the filler 50 and the core 60, similarly to the reactor 10 according to the first embodiment.
  • the magnetic shielding member 40 may be the magnetic shielding member 40A or the magnetic shielding member 40B shown in FIG. 5 or FIG.
  • FIG. 8 is a perspective view of reactor 10B in the third embodiment.
  • Reactor 10B includes a chassis 20A made of the same material as chassis 20, instead of chassis 20 of reactor 10 in the first embodiment.
  • the chassis 20A has a flat plate shape.
  • Reactor 10B in the third embodiment has the same effect as reactor 10 in the first embodiment.
  • FIG. 9 is a perspective view of reactor 10C in the fourth embodiment.
  • Reactor 10C includes a chassis 20B made of the same material as chassis 20A, instead of chassis 20A of reactor 10B in the third embodiment.
  • the chassis 20B has a shape in which a flat plate and a side plate are combined.
  • Reactor 10B in the third embodiment has the same effect as reactor 10 in the first embodiment.
  • reactors 10B and 10C in the third and fourth embodiments may further include a filler 50 and a core 60 in the same manner as reactor 10 in the first embodiment.
  • the magnetic shielding member 40 may be the magnetic shielding member 40A or the magnetic shielding member 40B shown in FIG. 5 or FIG.
  • the magnetic shielding member 40 may be separated from the chassis 20 in the same manner as the reactor 10 in the first embodiment. However, when the magnetic shielding member 40 is brought into contact with the chassis 20 similarly to the reactor 10A in the second embodiment, the heat dissipation characteristics of the reactors 10B and 10C can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Regulation Of General Use Transformers (AREA)

Abstract

Provided is a reactor comprising the following: a first coil; a second coil disposed so as to be parallel to the first coil; a connected conductor connected to the first coil and the second coil; a first terminal connected to the first coil; a second terminal connected to the second coil; and a magnetic shielding member disposed between the first coil and the second coil. The first terminal, the first coil, the connected conductor, the second coil and the second terminal are electrically connected in series in this order. The reactor can reduce the increase of the alternating-current resistance when high-frequency current flows to the coil.

Description

リアクトルReactor
 本発明は、インダクタンスを利用した受動素子であるリアクトルに関する。 The present invention relates to a reactor that is a passive element using inductance.
 入力側から分岐するように2つのコイルに電流が流れ、その後、それぞれのコイルから電流が出力されるリアクトルは知られている。さらに、2個のコイル間の結合係数を調整する結合係数調整手段を2個のコイル間に配置しているリアクトルは知られている。結合係数調整手段はアルミニウム等の非磁性金属で作られている。コイルをシャーシに収納する場合に磁気遮蔽板を配置した後に充填材である封止樹脂で封止する構成も知られている(特許文献1。特に、図2、図7参照)。このリアクトルは、トランスのように2個のコイルをコアを介して磁気結合させたものであり、2個のコイル間の磁気結合係数を調整させて使用するものである。 A reactor is known in which a current flows through two coils so as to branch from the input side, and then a current is output from each coil. Furthermore, a reactor in which a coupling coefficient adjusting means for adjusting a coupling coefficient between two coils is arranged between the two coils is known. The coupling coefficient adjusting means is made of a nonmagnetic metal such as aluminum. A configuration is also known in which a magnetic shielding plate is placed and then sealed with a sealing resin as a filler when the coil is housed in a chassis (see Patent Document 1, especially FIG. 2 and FIG. 7). This reactor is obtained by magnetically coupling two coils via a core like a transformer, and is used by adjusting the magnetic coupling coefficient between the two coils.
 電気的に直接に接続された2つのコイルを有するリアクトルは知られている。この2つのコイル間にセンサホルダを配置する構成も知られている(特許文献2参照)。このリアクトルは、リアクトルの物理量を測定するセンサを保持するセンサホルダを2個のコイル間に配置させている。 A reactor having two coils that are directly connected electrically is known. A configuration is also known in which a sensor holder is disposed between the two coils (see Patent Document 2). In this reactor, a sensor holder that holds a sensor for measuring a physical quantity of the reactor is disposed between two coils.
特開2014-127637号公報JP 2014-127637 A 特開2014-93375号公報JP 2014-93375 A
 リアクトルは、第1コイルと、第1コイルと並列に配置された第2コイルと、第1コイルと第2コイルとに接続された接続導体と、第1コイルに接続された第1端子と、第2コイルに接続された第2端子と、第1コイルと第2コイルとの間に配置された磁気遮蔽部材とを備える。第1端子と第1コイルと接続導体と第2コイルと第2端子とはこの順に電気的に直列に接続されている。 The reactor includes a first coil, a second coil arranged in parallel with the first coil, a connection conductor connected to the first coil and the second coil, a first terminal connected to the first coil, A second terminal connected to the second coil; and a magnetic shielding member disposed between the first coil and the second coil. The first terminal, the first coil, the connection conductor, the second coil, and the second terminal are electrically connected in series in this order.
 このリアクトルは、高周波の電流がコイルに流れたときの交流抵抗の増加を減少させることができる。 This reactor can reduce the increase in AC resistance when high-frequency current flows through the coil.
図1は実施の形態1におけるリアクトルの分解斜視図である。FIG. 1 is an exploded perspective view of a reactor in the first embodiment. 図2は実施の形態1におけるリアクトルの全体斜視図である。FIG. 2 is an overall perspective view of the reactor in the first embodiment. 図3は図2に示すリアクトルの線3-3における断面図である。3 is a cross-sectional view taken along line 3-3 of the reactor shown in FIG. 図4Aは実施の形態1におけるリアクトルの上面図である。FIG. 4A is a top view of the reactor in the first embodiment. 図4Bは実施の形態1におけるリアクトルの抵抗を示す図である。FIG. 4B shows the resistance of the reactor in the first embodiment. 図5は実施の形態1におけるリアクトルの他の磁気遮蔽部材を示す図である。FIG. 5 is a diagram showing another magnetic shielding member of the reactor in the first embodiment. 図6は実施の形態1におけるさらに他のリアクトルの磁気遮蔽部材を示す図である。FIG. 6 is a diagram showing a magnetic shielding member of still another reactor in the first embodiment. 図7は実施の形態2におけるリアクトルの断面図である。FIG. 7 is a cross-sectional view of the reactor in the second embodiment. 図8は実施の形態3におけるリアクトルの斜視図である。FIG. 8 is a perspective view of the reactor in the third embodiment. 図9は実施の形態4におけるリアクトルの斜視図である。FIG. 9 is a perspective view of the reactor in the fourth embodiment.
 コイルにおける近接効果の影響は大きく、2個のコイルを電気的に直列接続し、空間的に並列に配置させたリアクトルの場合、特に影響を受けやすく、近接効果により大きな損失、即ち抵抗の上昇が発生する。特に、電流が高周波になると影響が顕著に表れる。 The effect of the proximity effect on the coil is large. In the case of a reactor in which two coils are electrically connected in series and arranged in parallel spatially, it is particularly susceptible to a large loss due to the proximity effect, that is, an increase in resistance. appear. In particular, when the current becomes a high frequency, the influence becomes significant.
 一般的にコイルの近傍に導体を配置すると、コイルからの磁界により導体に渦電流が発生し、この渦電流によってリアクトルの損失が大きくなる。 Generally, when a conductor is arranged in the vicinity of a coil, an eddy current is generated in the conductor due to a magnetic field from the coil, and the loss of the reactor increases due to the eddy current.
 特に、リアクトルを流れる電流が高周波になると、渦電流による損失の影響を考慮しても、2個のコイル間の磁界の遮断を行なって近接効果を抑制するほうが、リアクトル全体として損失を抑制できる。 Especially, when the current flowing through the reactor becomes high frequency, even if the influence of the loss due to the eddy current is taken into account, it is possible to suppress the loss as a whole by blocking the magnetic field between the two coils to suppress the proximity effect.
 特許文献1に記載のリアクトルは2個のコイルを有するが、電気的に直接に接続したものではない。 The reactor described in Patent Document 1 has two coils, but is not electrically connected directly.
 特許文献2に記載のリアクトルのセンサホルダは、センサを保持するのに必要な大きさがあればよい。 The reactor sensor holder described in Patent Document 2 only needs to have a size necessary to hold the sensor.
 上記、特許文献1および特許文献2は、2つのコイルが電気的に直列に接続されたリアクトルに高周波の交流が流れたときの交流抵抗の増加については言及していない。 The above Patent Document 1 and Patent Document 2 do not mention an increase in AC resistance when high-frequency AC flows through a reactor in which two coils are electrically connected in series.
 リアクトルに高周波の電流を流したときに、交流損失が生じる。電流が高周波になればなるほど、交流損失が増加する。一つの原因は、導体おける表皮効果、即ち、高周波の交流は導体の表面のみを流れようとするので、抵抗が増加することである。他の原因として、近接効果、即ち、導体のある部分を流れる電流による磁気が、導体の他の部分に影響を与えることにより電流密度分布に偏りが生じ抵抗が増加することである。 ∙ AC loss occurs when high-frequency current flows through the reactor. The higher the current, the higher the AC loss. One cause is that the skin effect in the conductor, that is, the high frequency alternating current tends to flow only on the surface of the conductor, thus increasing the resistance. Another cause is that the proximity effect, that is, the magnetism due to the current flowing through a part of the conductor affects the other part of the conductor, thereby causing a bias in the current density distribution and increasing the resistance.
 コイルに交流が流れているとき、コイルの近傍に配置された金属板には渦電流が生じる。渦電流はコイルの損失に繋がるので、通常、金属板は可能であればコイルの近傍に配置されない。 When an alternating current flows through the coil, an eddy current is generated in the metal plate arranged in the vicinity of the coil. Since eddy currents lead to coil losses, metal plates are usually not placed near the coil if possible.
 以下の実施の形態におけるリアクトルは、上記に基づき、高周波の電流がリアクトルに流れたときの交流抵抗の増加を減少させる効果を有する。 The reactor in the following embodiments has an effect of reducing an increase in AC resistance when a high-frequency current flows through the reactor based on the above.
 (実施の形態1)
 図1は実施の形態1におけるリアクトル10の分解斜視図である。図2はリアクトル10の全体斜視図である。図3は図2に示すリアクトル10の線3-3における面断面図である。図4Aはリアクトル10の上面図である。
(Embodiment 1)
FIG. 1 is an exploded perspective view of a reactor 10 in the first embodiment. FIG. 2 is an overall perspective view of the reactor 10. FIG. 3 is a cross-sectional view taken along line 3-3 of reactor 10 shown in FIG. FIG. 4A is a top view of the reactor 10.
 リアクトル10はコイル31、コイル32、接続導体33、端子36、端子37、および磁気遮蔽部材40を有する。 The reactor 10 includes a coil 31, a coil 32, a connection conductor 33, a terminal 36, a terminal 37, and a magnetic shielding member 40.
 コイル31、コイル32、接続導体33、端子36、および端子37は連続した導体から作られている。連続した導体は一本の導体であってもよい。 The coil 31, the coil 32, the connection conductor 33, the terminal 36, and the terminal 37 are made of continuous conductors. The continuous conductor may be a single conductor.
 コイル31およびコイル32はそれぞれ巻軸31C、32Cを中心に巻回された導体よりなる。コイル31の端31Aは接続導体33に接続されており、コイル31の端31Bは端子36に接続されている。コイル32の端32Aは接続導体33に接続され、コイル32の端32Bは端子37に接続されている。端子36、コイル31、接続導体33、コイル32、および端子37はこの順に電気的に直列に接続している。コイル31およびコイル32は並列に配置されている。すなわち、コイル31の巻軸31Cおよびコイル32の巻軸32Cが互いに空間的に平行になるようにコイル31、32が配置されている。実施の形態1では、図4Aに示すように、巻軸31Cのコイル31内に位置する部分と巻軸32Cのコイル32内に位置する部分とが長方形PEの一対の対辺を構成する。コイル31およびコイル32は、即ち図3に示すように円形の正面形状を有する円筒形状を有するが、これに限られず、四角形の正面形状を有する四角筒形状等、巻軸31C、32Cに沿って延びる多角形筒形状を有してもよい。 The coil 31 and the coil 32 are each made of a conductor wound around winding axes 31C and 32C. The end 31 </ b> A of the coil 31 is connected to the connection conductor 33, and the end 31 </ b> B of the coil 31 is connected to the terminal 36. An end 32 A of the coil 32 is connected to the connection conductor 33, and an end 32 B of the coil 32 is connected to the terminal 37. The terminal 36, the coil 31, the connection conductor 33, the coil 32, and the terminal 37 are electrically connected in series in this order. The coil 31 and the coil 32 are arranged in parallel. That is, the coils 31 and 32 are arranged so that the winding shaft 31C of the coil 31 and the winding shaft 32C of the coil 32 are spatially parallel to each other. In Embodiment 1, as shown to FIG. 4A, the part located in the coil 31 of the winding shaft 31C and the part located in the coil 32 of the winding shaft 32C comprise a pair of opposite side of rectangular PE. The coil 31 and the coil 32 have a cylindrical shape having a circular front shape as shown in FIG. 3, but are not limited to this. You may have the extending polygonal cylinder shape.
 磁気遮蔽部材40は、コイル31およびコイル32の間に配置されている。磁気遮蔽部材40は非磁性体よりなる。図3および図4Aに示すように、コイル31からコイル32を透視したときに、磁気遮蔽部材40の外形はコイル32の外形より外側に位置している。逆に、コイル32からを透視したときに、磁気遮蔽部材40の外形はコイル31の外形より外側に位置している。コイル31の任意の部分は磁気遮蔽部材40を介してコイル32の任意の部分に対向する。言い換えると、磁気遮蔽部材40が平板である場合には、磁気遮蔽部材40はコイル31およびコイル32間を遮蔽する。ただし、磁気遮蔽部材40はコイル31およびコイル32間を完全には遮蔽しなくてもよい。磁気遮蔽部材40はコイル31から発生する磁気、およびコイル32から発生する磁気を有効に遮蔽するので、コイル31およびコイル32間の近接効果によるリアクトル10の交流抵抗の増加が減少する。図1から図4Aにおいては、コイル31からコイル32を透視したときに、磁気遮蔽部材40の外形がコイル32の外形より外側に位置している構成であるが、外形の全部が同じ位置、または外形の一部が同じ位置であってもよい。 The magnetic shielding member 40 is disposed between the coil 31 and the coil 32. The magnetic shielding member 40 is made of a nonmagnetic material. As shown in FIGS. 3 and 4A, when the coil 32 is seen through the coil 31, the outer shape of the magnetic shielding member 40 is located outside the outer shape of the coil 32. On the contrary, when the coil 32 is seen through, the outer shape of the magnetic shielding member 40 is located outside the outer shape of the coil 31. An arbitrary portion of the coil 31 faces an arbitrary portion of the coil 32 through the magnetic shielding member 40. In other words, when the magnetic shielding member 40 is a flat plate, the magnetic shielding member 40 shields between the coil 31 and the coil 32. However, the magnetic shielding member 40 may not completely shield between the coil 31 and the coil 32. Since the magnetic shielding member 40 effectively shields the magnetism generated from the coil 31 and the magnetism generated from the coil 32, an increase in the AC resistance of the reactor 10 due to the proximity effect between the coils 31 and 32 is reduced. In FIG. 1 to FIG. 4A, when the coil 32 is seen through the coil 32, the outer shape of the magnetic shielding member 40 is positioned outside the outer shape of the coil 32. A part of the outer shape may be at the same position.
 リアクトル10は、さらにシャーシ20、充填材50、およびコア60を有してもよい。 The reactor 10 may further include a chassis 20, a filler 50, and a core 60.
 シャーシ20は直接的にまたは間接的にコイル31、コイル32、および接続導体33を保持する。例えば、シャーシ20に形成された保持部によりコイル31、コイル32、および接続導体33を保持してもよい。または、シャーシ20に配置された個別の保持部材によりコイル31、コイル32、および接続導体33をそれぞれ保持してもよい。シャーシ20はリアクトル10の放熱を良好にするため、金属よりなることが好ましく、特に、アルミニウムのような熱伝導性が良好な金属よりなることが、より好ましい。 The chassis 20 holds the coil 31, the coil 32, and the connection conductor 33 directly or indirectly. For example, the coil 31, the coil 32, and the connection conductor 33 may be held by a holding portion formed in the chassis 20. Or you may hold | maintain the coil 31, the coil 32, and the connection conductor 33 with the separate holding member arrange | positioned at the chassis 20, respectively. The chassis 20 is preferably made of a metal in order to improve the heat dissipation of the reactor 10, and more preferably made of a metal having a good thermal conductivity such as aluminum.
 充填材50はシャーシ20内に充填され、コイル31、コイル32、および磁気遮蔽部材40を覆う。なお、磁気遮蔽部材40の一部は充填材50から露出していてもよい。充填材50は樹脂で作られている。具体的には、充填材50は流動体または半流動体の樹脂を硬化させて得られる。充填材50として、例えば、シリコン樹脂やエポキシ樹脂および絶縁性粉末との混合物よりなる。充填材50は磁性体粉末を含有してもよい。充填材50はコイル31コイル32および磁気遮蔽部材40を封止する機能を有する。尚、図1および図4Aは充填材50の図示を省略している。 The filler 50 is filled in the chassis 20 and covers the coil 31, the coil 32, and the magnetic shielding member 40. A part of the magnetic shielding member 40 may be exposed from the filler 50. The filler 50 is made of resin. Specifically, the filler 50 is obtained by curing a fluid or semi-fluid resin. The filler 50 is made of, for example, a mixture of silicon resin, epoxy resin, and insulating powder. The filler 50 may contain magnetic powder. The filler 50 has a function of sealing the coil 31 and the coil 32 and the magnetic shielding member 40. 1 and 4A, the filler 50 is not shown.
 コア60は磁性体からなる。コア60により、コイル31およびコイル32は空間的には並列に配置されてはいるが、空間的に直列に配置されたコイルの電気的特性に近い電気的特性を有する。コイル31およびコイル32はコア60に巻回されている。図において、コア60の断面は四角形状を有するが、円形状を有していてもよい。コア60の断面形状はコイル31およびコイル32の巻軸31C,32Cに直角の断面形状である巻き形状に合わせることが好ましい。コア60は容易に組立てられるように、コア61およびコア62に分割されていてもよい。コア60を分割することにより、コイル31およびコイル32を製造してからコア61およびコア62に組み合わせることによって、コイル31、32がコア60に巻回されている構成が得られる。 The core 60 is made of a magnetic material. Although the coil 31 and the coil 32 are spatially arranged in parallel by the core 60, they have electrical characteristics close to the electrical characteristics of the coils arranged spatially in series. The coil 31 and the coil 32 are wound around the core 60. In the figure, the cross section of the core 60 has a quadrangular shape, but may have a circular shape. The cross-sectional shape of the core 60 is preferably matched to the winding shape which is a cross-sectional shape perpendicular to the winding axes 31C and 32C of the coil 31 and the coil 32. The core 60 may be divided into a core 61 and a core 62 so as to be easily assembled. By dividing the core 60, the coil 31 and the coil 32 are manufactured and then combined with the core 61 and the core 62, thereby obtaining a configuration in which the coils 31 and 32 are wound around the core 60.
 図4Bは実施の形態1におけるリアクトル10の抵抗を示す。図4Bにおいて、縦軸はリアクトル10の抵抗を示し、横軸はコイル31、32に印加される電圧の周波数を示す。図4Bは、実施の形態1におけるリアクトル10の抵抗R10と、磁気遮蔽部材40を備えていない比較例のリアクトルの抵抗R20とを示す。図4Bに記載の実施の形態1にかかるリアクトル10では、コイル31、32は図1に示す円形状の断面を有する円筒形状ではなく、矩形状の断面を有する矩形筒形状を有する。比較例のリアクトルは磁気遮蔽部材40を備えていないこと以外はリアクトル10と同じ構成を有する。 FIG. 4B shows the resistance of the reactor 10 in the first embodiment. In FIG. 4B, the vertical axis represents the resistance of the reactor 10, and the horizontal axis represents the frequency of the voltage applied to the coils 31 and 32. FIG. 4B shows the resistance R10 of the reactor 10 according to the first embodiment and the resistance R20 of the reactor of the comparative example that does not include the magnetic shielding member 40. In the reactor 10 according to the first embodiment illustrated in FIG. 4B, the coils 31 and 32 have a rectangular cylindrical shape having a rectangular cross section instead of the cylindrical shape having a circular cross section illustrated in FIG. 1. The reactor of the comparative example has the same configuration as the reactor 10 except that the magnetic shielding member 40 is not provided.
 図4Bに示すように、100kHzの周波数では、比較例のリアクトルの抵抗R20は20.7mΩであるのに対して、実施の形態1にかかるリアクトル10の抵抗R10は19.1mΩと、比較例のリアクトルの抵抗R20に比べて7.7%減っている。500kHzの周波数では比較例のリアクトルの抵抗R20が103mΩであるのに対して、実施の形態1にかかるリアクトル10の抵抗R10は94.8mΩと、比較例のリアクトルの抵抗R20に比べて8.0%減っている。図4Bに示すように、周波数が高くなると実施の形態1にかかるリアクトルの抵抗R10は比較例のリアクトルの抵抗R20に比べてより大きく減っている。 As shown in FIG. 4B, at a frequency of 100 kHz, the resistance R20 of the reactor of the comparative example is 20.7 mΩ, whereas the resistance R10 of the reactor 10 according to the first embodiment is 19.1 mΩ, which is that of the comparative example. It is 7.7% less than the resistance R20 of the reactor. At a frequency of 500 kHz, the resistance R20 of the reactor of the comparative example is 103 mΩ, whereas the resistance R10 of the reactor 10 according to the first embodiment is 94.8 mΩ, which is 8.0 compared to the resistance R20 of the reactor of the comparative example. %decreasing. As shown in FIG. 4B, when the frequency is increased, the resistance R10 of the reactor according to the first embodiment is greatly reduced as compared with the resistance R20 of the reactor of the comparative example.
 アルミよりなる磁気遮蔽部材40を備えた実施の形態1にかかるリアクトル10と比較例のリアクトルの温度を比較した。比較例のリアクトルではコイル31、32のほぼ全体が199℃以上で、特にシャーシ20の底の反対側の部分は210℃以上になった。対して実施の形態1にかかるリアクトル10では、コイル31、32のほぼ全体が200℃未満であり、シャーシ20の底の反対側の部分でも200℃未満であった。 The temperature of the reactor 10 according to the first embodiment including the magnetic shielding member 40 made of aluminum and the reactor of the comparative example were compared. In the reactor of the comparative example, almost the entire coils 31 and 32 were 199 ° C. or higher, and particularly the portion on the opposite side of the bottom of the chassis 20 was 210 ° C. or higher. On the other hand, in the reactor 10 according to the first embodiment, almost the entire coils 31 and 32 were less than 200 ° C., and the portion on the opposite side of the bottom of the chassis 20 was also less than 200 ° C.
 また、実施の形態1にかかるリアクトル10と比較例のリアクトルの損失につき比較した。なお、表1に記載の実施の形態1にかかるリアクトル10では、コイル31、32は図1に示す円形状の断面を有する円筒形状ではなく、矩形状の断面を有する矩形筒形状を有する。比較例のリアクトルは磁気遮蔽部材40を備えていないこと以外はリアクトル10と同じ構成を有する。リアクトルに70Aの直流成分と周波数が100kHzで実効値が30Aの交流成分とを有する電流を流した場合のリアクトルの損失のシミュレーションの結果を表1に示す。 Also, the loss of the reactor 10 according to the first embodiment and the reactor of the comparative example were compared. In the reactor 10 according to the first embodiment shown in Table 1, the coils 31 and 32 have a rectangular cylindrical shape having a rectangular cross section instead of the cylindrical shape having a circular cross section shown in FIG. The reactor of the comparative example has the same configuration as the reactor 10 except that the magnetic shielding member 40 is not provided. Table 1 shows the result of the simulation of the reactor loss when a current having a DC component of 70 A and an AC component having a frequency of 100 kHz and an effective value of 30 A is passed through the reactor.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施の形態1にかかるリアクトル10は比較例のリアクトルに比べて電磁遮蔽部材40によるシールド損失が大きい。しかし、コイル31、32の近接の影響が低減することでコイル交流損失が小さいことで、コイル31、32自体に起因するコイル損失が小さくなっている。したがって、実施の形態1にかかるリアクトル10は比較例のリアクトルに比べて全体として損失が小さい。なお、表1に示すシミュレーションの結果の交流抵抗値は図4Bに示す交流抵抗値と合致していない。その理由は、表1に示すシミュレーションでのリアクトルのコイルと図4Bに示す結果が得られたリアクトルのコイルとでは、コイルの基本構造は同じであるが、具体的なコイルの値(コイルの巻径、コイル線の断面の寸法、コイルの巻数等)が異なるからである。 As shown in Table 1, the reactor 10 according to the first embodiment has a larger shield loss due to the electromagnetic shielding member 40 than the reactor of the comparative example. However, the coil loss due to the coils 31 and 32 itself is reduced because the influence of the proximity of the coils 31 and 32 is reduced to reduce the coil AC loss. Therefore, the reactor 10 according to the first embodiment has a smaller loss as a whole than the reactor of the comparative example. In addition, the alternating current resistance value of the simulation result shown in Table 1 does not match the alternating current resistance value shown in FIG. 4B. The reason is that the reactor coil in the simulation shown in Table 1 and the reactor coil from which the result shown in FIG. 4B is obtained have the same basic coil structure, but specific coil values (coil windings). This is because the diameter, the cross-sectional dimension of the coil wire, the number of turns of the coil, etc. are different.
 このように、実施の形態1にかかるリアクトル10は比較例のリアクトルに比べて磁気遮蔽部材40よる熱伝導の効果だけではなく、コイル31、32の高周波数帯域での低抵抗化により損失を低減させることができる。 Thus, compared with the reactor of the comparative example, the reactor 10 according to the first embodiment reduces not only the effect of heat conduction by the magnetic shielding member 40 but also the loss by reducing the resistance of the coils 31 and 32 in the high frequency band. Can be made.
 図5は実施の形態1におけるリアクトル10の他の磁気遮蔽部材40Aを示す。磁気遮蔽部材40は前述のように平板形状を有するが、複数の孔41が形成されている。複数の孔41が形成されている磁気遮蔽部材40Aも、磁気遮蔽部材40同様に、リアクトル10の交流抵抗の増加を減少させることができる。磁気遮蔽部材40Aでは、硬化前の充填材50が複数の孔41を通過することにより、磁気遮蔽部材40によって分けられるコイル31の側の空間と、コイル32の側の空間との間で充填材50の量および密度の偏りが生じ難い。 FIG. 5 shows another magnetic shielding member 40A of the reactor 10 in the first embodiment. Although the magnetic shielding member 40 has a flat plate shape as described above, a plurality of holes 41 are formed. Similarly to the magnetic shielding member 40, the magnetic shielding member 40 </ b> A in which the plurality of holes 41 are formed can reduce an increase in the AC resistance of the reactor 10. In the magnetic shielding member 40A, the filling material 50 before curing passes through the plurality of holes 41, so that the filling material is separated between the space on the coil 31 side divided by the magnetic shielding member 40 and the space on the coil 32 side. An amount of 50 and density deviation are unlikely to occur.
 図6は実施の形態1にかかるリアクトル10のさらに他の磁気遮蔽部材40Bを部分的に示す。磁気遮蔽部材40Bは複数の縦線42と複数の横線43とからなる網形状を有する。互いに隣りあう縦線42と互いに隣りあう横線43とに囲まれた領域が図5に示す磁気遮蔽部材40Aの孔41に相当する。複数の縦線42と複数の横線43は共に、アルミニウムのような非磁性体よりなる。磁気遮蔽部材40Bもリアクトル10の交流抵抗の増加を低減させる。さらに、磁気遮蔽部材40Bによって分けられるコイル31の側の空間と、コイル32の側の空間との間で充填材50の量および密度の偏りが生じ難い。 FIG. 6 partially shows still another magnetic shielding member 40B of the reactor 10 according to the first embodiment. The magnetic shielding member 40 </ b> B has a net shape composed of a plurality of vertical lines 42 and a plurality of horizontal lines 43. A region surrounded by the vertical lines 42 adjacent to each other and the horizontal lines 43 adjacent to each other corresponds to the holes 41 of the magnetic shielding member 40A shown in FIG. Both the plurality of vertical lines 42 and the plurality of horizontal lines 43 are made of a nonmagnetic material such as aluminum. The magnetic shielding member 40 </ b> B also reduces the increase in AC resistance of the reactor 10. Further, the amount and density of the filler 50 are less likely to be uneven between the space on the coil 31 side separated by the magnetic shielding member 40B and the space on the coil 32 side.
 (実施の形態2)
 図7は実施の形態2におけるリアクトル10Aの正面断面図である。図7において、図1から図6に示す実施の形態1におけるリアクトル10と同じ構成要素については同じ符号を付している。実施の形態2におけるリアクトル10Aでは磁気遮蔽部材40がシャーシ20と接している点で実施の形態1におけるリアクトル10とは相違する。磁気遮蔽部材40がシャーシ20と接することで磁気遮蔽部材40に伝わった熱が、シャーシ20に伝わりやすく、リアクトル10の放熱特性が向上する。実施の形態2におけるリアクトル10Aは実施の形態1におけるリアクトル10と同様の効果を有する。
(Embodiment 2)
FIG. 7 is a front cross-sectional view of reactor 10A in the second embodiment. In FIG. 7, the same components as those of the reactor 10 in the first embodiment shown in FIGS. 1 to 6 are denoted by the same reference numerals. Reactor 10A in the second embodiment is different from reactor 10 in the first embodiment in that magnetic shielding member 40 is in contact with chassis 20. When the magnetic shielding member 40 is in contact with the chassis 20, the heat transmitted to the magnetic shielding member 40 is easily transmitted to the chassis 20, and the heat dissipation characteristics of the reactor 10 are improved. Reactor 10A in the second embodiment has the same effect as reactor 10 in the first embodiment.
 尚、実施の形態2におけるリアクトル10Aでは、実施の形態1におけるリアクトル10と同様に、リアクトル10は充填材50およびコア60を有する方が好ましい。さらに、磁気遮蔽部材40は、図5または図6に示す磁気遮蔽部材40Aまたは磁気遮蔽部材40Bであってもよい。 Note that, in the reactor 10 </ b> A according to the second embodiment, it is preferable that the reactor 10 includes the filler 50 and the core 60, similarly to the reactor 10 according to the first embodiment. Furthermore, the magnetic shielding member 40 may be the magnetic shielding member 40A or the magnetic shielding member 40B shown in FIG. 5 or FIG.
 (実施の形態3)
 図8は実施の形態3におけるリアクトル10Bの斜視図である。図8において、図1から図6に示す実施の形態1におけるリアクトル10と同じ構成要素については同じ符号を付している。リアクトル10Bは実施の形態1におけるリアクトル10のシャーシ20の代わりに、シャーシ20と同じ材料よりなるシャーシ20Aを備える。シャーシ20Aは平板形状を有する。実施の形態3におけるリアクトル10Bは実施の形態1におけるリアクトル10と同様の効果を有する。
(Embodiment 3)
FIG. 8 is a perspective view of reactor 10B in the third embodiment. In FIG. 8, the same components as those of the reactor 10 in the first embodiment shown in FIGS. 1 to 6 are denoted by the same reference numerals. Reactor 10B includes a chassis 20A made of the same material as chassis 20, instead of chassis 20 of reactor 10 in the first embodiment. The chassis 20A has a flat plate shape. Reactor 10B in the third embodiment has the same effect as reactor 10 in the first embodiment.
 (実施の形態4)
 図9は実施の形態4におけるリアクトル10Cの斜視図である。図9において、図8に示す実施の形態3におけるリアクトル10Bと同じ構成要素については同じ符号を付している。リアクトル10Cは実施の形態3におけるリアクトル10Bのシャーシ20Aの代わりに、シャーシ20Aと同じ材料よりなるシャーシ20Bを備える。シャーシ20Bは、平板と側板が組み合わされた形状を有する。実施の形態3におけるリアクトル10Bは実施の形態1におけるリアクトル10と同様の効果を有する。
(Embodiment 4)
FIG. 9 is a perspective view of reactor 10C in the fourth embodiment. In FIG. 9, the same components as those in reactor 10B in the third embodiment shown in FIG. Reactor 10C includes a chassis 20B made of the same material as chassis 20A, instead of chassis 20A of reactor 10B in the third embodiment. The chassis 20B has a shape in which a flat plate and a side plate are combined. Reactor 10B in the third embodiment has the same effect as reactor 10 in the first embodiment.
 尚、実施の形態3、4におけるリアクトル10B、10Cは、実施の形態1におけるリアクトル10と同様に、充填材50およびコア60をさらに備えてもよい。さらに、磁気遮蔽部材40は、図5または図6に示す磁気遮蔽部材40Aまたは磁気遮蔽部材40Bであってもよい。 In addition, reactors 10B and 10C in the third and fourth embodiments may further include a filler 50 and a core 60 in the same manner as reactor 10 in the first embodiment. Furthermore, the magnetic shielding member 40 may be the magnetic shielding member 40A or the magnetic shielding member 40B shown in FIG. 5 or FIG.
 実施の形態3、4におけるリアクトル10B、10Cでは、実施の形態1におけるリアクトル10と同様に、磁気遮蔽部材40がシャーシ20から離れていてもよい。しかし、実施の形態2におけるリアクトル10Aと同様に磁気遮蔽部材40がシャーシ20に接触させることにより、リアクトル10B、10Cの放熱特性を向上させることができる。 In the reactors 10B and 10C in the third and fourth embodiments, the magnetic shielding member 40 may be separated from the chassis 20 in the same manner as the reactor 10 in the first embodiment. However, when the magnetic shielding member 40 is brought into contact with the chassis 20 similarly to the reactor 10A in the second embodiment, the heat dissipation characteristics of the reactors 10B and 10C can be improved.
10,10A~10C  リアクトル
20  シャーシ
31  コイル(第1コイル)
31C  巻軸(第1巻軸)
32  コイル(第2コイル)
32C  巻軸(第2巻軸)
33  接続導体
36  端子(第1端子)
37  端子(第2端子)
40,40A,40B  磁気遮蔽部材
41  孔
50  充填材
60  コア
61  コア
62  コア
10, 10A-10C Reactor 20 Chassis 31 Coil (first coil)
31C reel (first reel)
32 coil (second coil)
32C reel (second reel)
33 Connection conductor 36 Terminal (first terminal)
37 terminals (second terminal)
40, 40A, 40B Magnetic shielding member 41 Hole 50 Filler 60 Core 61 Core 62 Core

Claims (7)

  1. 第1コイルと、
    前記第1コイルと並列に配置された第2コイルと、
    前記第1コイルと前記第2コイルとに接続された接続導体と、
    前記第1コイルに接続された第1端子と、
    前記第2コイルに接続された第2端子と、
    前記第1コイルと前記第2コイルとの間に配置された磁気遮蔽部材と、
    を備え、
    前記第1端子と前記第1コイルと前記接続導体と前記第2コイルと前記第2端子とはこの順に電気的に直列に接続されている、リアクトル。
    A first coil;
    A second coil disposed in parallel with the first coil;
    A connection conductor connected to the first coil and the second coil;
    A first terminal connected to the first coil;
    A second terminal connected to the second coil;
    A magnetic shielding member disposed between the first coil and the second coil;
    With
    A reactor in which the first terminal, the first coil, the connection conductor, the second coil, and the second terminal are electrically connected in series in this order.
  2. 前記磁気遮蔽部材は、前記第1コイルと前記第2コイルの任意の一方から他方を透視した際に、前記磁気遮部材の外形が前記他方の外形と同じまたはそれより外側に位置している、請求項1に記載のリアクトル。 When the magnetic shielding member is seen through the other from any one of the first coil and the second coil, the outer shape of the magnetic shielding member is the same as or outside of the other outer shape, The reactor according to claim 1.
  3. 前記磁気遮蔽部材は金属よりなり、複数の孔が形成されている、請求項1または2に記載のリアクトル。 The reactor according to claim 1, wherein the magnetic shielding member is made of metal and has a plurality of holes.
  4. 前記磁気遮蔽部材は網形状を有する、請求項3に記載のリアクトル。 The reactor according to claim 3, wherein the magnetic shielding member has a net shape.
  5. 前記第1コイルと前記第2コイルを直接的または間接的に保持するシャーシをさらに備え、
    前記磁気遮蔽部材は前記シャーシと接触している、請求項1から4のいずれか一項に記載のリアクトル。
    A chassis that directly or indirectly holds the first coil and the second coil;
    The reactor according to any one of claims 1 to 4, wherein the magnetic shielding member is in contact with the chassis.
  6. 前記第1コイルは第1巻軸を中心に巻回されており、
    前記第2コイルは前記第1巻軸と平行な第2巻軸を中心に巻回されている、請求項1から5のいずれか一項に記載のリアクトル。
    The first coil is wound around a first winding axis;
    The reactor according to any one of claims 1 to 5, wherein the second coil is wound around a second winding axis parallel to the first winding axis.
  7. 前記第1巻軸の前記第1コイル内に位置する部分と前記第2巻軸の前記第2コイル内に位置する部分とが長方形の一対の対辺を構成するように、前記第1コイルと前記第2コイルとが配置されている、請求項6に記載のリアクトル。 The first coil and the first coil are arranged such that a portion of the first winding shaft located in the first coil and a portion of the second winding shaft located in the second coil constitute a pair of opposite sides of a rectangle. The reactor according to claim 6, wherein the second coil is disposed.
PCT/JP2016/002826 2015-06-25 2016-06-13 Reactor WO2016208144A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-127165 2015-06-25
JP2015127165 2015-06-25

Publications (1)

Publication Number Publication Date
WO2016208144A1 true WO2016208144A1 (en) 2016-12-29

Family

ID=57584785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002826 WO2016208144A1 (en) 2015-06-25 2016-06-13 Reactor

Country Status (1)

Country Link
WO (1) WO2016208144A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018120958A (en) * 2017-01-25 2018-08-02 田淵電機株式会社 Coil device and method of manufacturing the same
JP2018120957A (en) * 2017-01-25 2018-08-02 田淵電機株式会社 Coil device and method of manufacturing the same
WO2019181473A1 (en) * 2018-03-23 2019-09-26 株式会社村田製作所 Inductor and voltage converter using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5685806A (en) * 1979-12-14 1981-07-13 Hitachi Ltd Stabilizer for resin molded fluorescent lamp
JP2007116066A (en) * 2005-10-24 2007-05-10 Sumitomo Electric Ind Ltd Reactor and its manufacturing method
JP2009212384A (en) * 2008-03-05 2009-09-17 Sumitomo Electric Ind Ltd Reactor and attaching structure for the same
JP2014127637A (en) * 2012-12-27 2014-07-07 Auto Network Gijutsu Kenkyusho:Kk Reactor, converter and power conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5685806A (en) * 1979-12-14 1981-07-13 Hitachi Ltd Stabilizer for resin molded fluorescent lamp
JP2007116066A (en) * 2005-10-24 2007-05-10 Sumitomo Electric Ind Ltd Reactor and its manufacturing method
JP2009212384A (en) * 2008-03-05 2009-09-17 Sumitomo Electric Ind Ltd Reactor and attaching structure for the same
JP2014127637A (en) * 2012-12-27 2014-07-07 Auto Network Gijutsu Kenkyusho:Kk Reactor, converter and power conversion device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018120958A (en) * 2017-01-25 2018-08-02 田淵電機株式会社 Coil device and method of manufacturing the same
JP2018120957A (en) * 2017-01-25 2018-08-02 田淵電機株式会社 Coil device and method of manufacturing the same
WO2019181473A1 (en) * 2018-03-23 2019-09-26 株式会社村田製作所 Inductor and voltage converter using same
CN111937101A (en) * 2018-03-23 2020-11-13 株式会社村田制作所 Inductor and voltage converter using the same
JPWO2019181473A1 (en) * 2018-03-23 2021-01-07 株式会社村田製作所 Inductor and voltage converter using it
CN111937101B (en) * 2018-03-23 2022-05-03 株式会社村田制作所 Inductor and voltage converter using the same
US11908603B2 (en) 2018-03-23 2024-02-20 Murata Manufacturing Co., Ltd. Inductor and voltage converter using it

Similar Documents

Publication Publication Date Title
US11967446B2 (en) Packaging structure of a magnetic device
JP5923916B2 (en) Contactless power supply
US20170221625A1 (en) Magnetic devices including low ac resistance foil windings and gapped magnetic cores
US20160365188A1 (en) Variable core electromagnetic device
US20140368059A1 (en) Transformer, electronic apparatus, and method for controlling transformer
WO2016208144A1 (en) Reactor
US20140292467A1 (en) Transformer
US20150109081A1 (en) Cast coil assembly with fins for an electrical transformer
EP3158567B1 (en) Inductor assembly comprising at least one inductor coil thermally coupled to a metallic inductor housing
JP2012099739A (en) Core segment, annular coil core and annular coil
JP6490355B2 (en) Reactor parts and reactors
JP6631722B2 (en) Inductor
US20140300440A1 (en) Inductor gap spacer
US2483159A (en) Magnetic core
US20180167046A1 (en) Inductive component for a bus bar
CN109660033B (en) Power transfer unit
JP6064943B2 (en) Electronics
US10902993B2 (en) Inductor assembly comprising at least one inductor coil thermally coupled to a metallic inductor housing
JP6673711B2 (en) Coil parts
JP6060206B2 (en) Annular coil
US20180197669A1 (en) Ceramic insulated transformer
JP2018107224A (en) Stationary induction electric apparatus
JP2012109351A (en) Coil component and power supply circuit using the same
JP2021019104A (en) Reactor device
JP2016025273A (en) Winding component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16813918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16813918

Country of ref document: EP

Kind code of ref document: A1