WO2016207988A1 - Mgb2 superconducting wire - Google Patents

Mgb2 superconducting wire Download PDF

Info

Publication number
WO2016207988A1
WO2016207988A1 PCT/JP2015/068116 JP2015068116W WO2016207988A1 WO 2016207988 A1 WO2016207988 A1 WO 2016207988A1 JP 2015068116 W JP2015068116 W JP 2015068116W WO 2016207988 A1 WO2016207988 A1 WO 2016207988A1
Authority
WO
WIPO (PCT)
Prior art keywords
mgb
superconducting wire
core
cross
thickness
Prior art date
Application number
PCT/JP2015/068116
Other languages
French (fr)
Japanese (ja)
Inventor
山本 浩之
一宗 児玉
楠 敏明
雅成 高口
量子 菅野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/068116 priority Critical patent/WO2016207988A1/en
Publication of WO2016207988A1 publication Critical patent/WO2016207988A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/04Single wire
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a MgB 2 superconducting wire, and more particularly to a superconducting wire having a magnesium diboride (MgB 2 ) core.
  • MgB 2 magnesium diboride
  • Magnesium diboride (MgB 2 ) has a higher superconducting transition temperature (39K) than Nb-based metallic superconductors that have been put into practical use. Therefore, application is expected as a superconducting material that can be used at 10 to 20 K without using liquid He.
  • application as an electromagnet wire for a nuclear magnetic resonance apparatus (NMR) or a magnetic resonance imaging apparatus (MRI) that generates a high magnetic field is expected.
  • Superconducting wires applied to these high magnetic field generating magnets are required to have a high critical current density ( Jc ) for flowing a large current in a magnetic field.
  • Jc is the maximum current density that can be passed while maintaining the superconducting state, which depends not only on the physical properties unique to the superconducting material but also on the method of manufacturing the wire.
  • the MgB 2 wire is generally produced using a powder-in-tube method (PIT method).
  • PIT method powder-in-tube method
  • Mg magnesium
  • B boron
  • FIG. 1 (a) An Mg rod 1 is inserted into the metal tube 10 (FIG. 1 (a)), and a gap between them is filled with a boron raw material 2 (FIG. 1 (b)).
  • FIG. 2 shows a schematic diagram of a cross section of a wire by a conventional IMD method. Mg in the center of the wire is diffused into the surrounding B by heat treatment, and the MgB 2 core 20 is generated inside the sheath 10. Since Mg existing before the heat treatment is consumed by this diffusion reaction, the central portion of the cross section of the wire becomes a void 30. In the wire rod produced by this manufacturing method, the MgB 2 core produced is higher in density than the PIT method, and as a result, Jc is improved.
  • the cross-sectional shape is circular, and the constituent elements 10, 20, and 30 are present concentrically. In this figure, the cross-sectional shape is circular, but it may be elliptical. However, the display of the figure is omitted. In the case of concentric circles, the shape of each element is an ellipse concentrically.
  • MgB 2 is generated only on the inner side of the sheath as described above, and the central portion becomes a void, so that the sectional area of the MgB 2 core tends to be essentially reduced.
  • a method of reducing the volume of the Mg rod before heat treatment to the minimum amount necessary for MgB 2 production and filling as much B raw material as possible is used.
  • the B layer inside the sheath becomes thick, there is a problem that the progress of the MgB 2 generation reaction due to the diffusion of Mg becomes uneven in the thickness direction.
  • the microstructure of the MgB 2 core depends on the reaction conditions, and the crystal grain size and the number of strains in the crystal vary. In insufficient reaction process is not MgB 2 is produced, lowering the magnetic field J c resulted in relief of coarsening and crystal distortion particle size in excess reaction process reversed. Therefore, in order to obtain a high magnetic field J c it becomes necessary reaction process under optimum conditions. Problems That is, when the thick simply MgB 2 core for the MgB 2 core cross-sectional area increase in the IMD process, the reaction occurs unevenness in the thickness direction, can not be uniformly generate optimal MgB 2 regions where high J c is obtained was there.
  • MgB 2 wire material by internal diffusion process (IMD) method to achieve both an improvement in the cross-sectional area increases and the superconducting properties of MgB 2 core, provides a MgB 2 wire material to achieve a high critical current density J c That is.
  • the cross-sectional shape of the filament region including the MgB 2 core (region of the sheath inner wall) has a region that protrudes inward. Even if the thickness of the MgB 2 core is the same as that of the prior art, the cross-sectional area of the core increases as the surface area of the sheath inner wall is larger. At the same time, the thickness of the core can be suppressed within a range in which uneven reaction of MgB 2 generation does not occur, and MgB 2 is generated under optimal reaction conditions over the entire area of the wire.
  • the present invention increases the quality MgB 2 core, MgB 2 superconducting wire exhibits higher J c properties in a magnetic field is obtained.
  • FIG. 1 is a schematic cross-sectional view of an MgB 2 single core wire of Example 1.
  • FIG. 3 is a schematic diagram of a production process of the MgB 2 single-core wire of Example 1.
  • FIG. 4 is a schematic cross-sectional view of a MgB 2 single core wire of Example 2.
  • FIG. 4 is a schematic cross-sectional view of an MgB 2 single-core wire of Example 3.
  • FIG. 6 is a schematic cross-sectional view of an MgB 2 multi-core wire of Example 4.
  • Example 1 proposes a single-core MgB 2 wire.
  • FIG. 3A shows a schematic cross-sectional view of the wire rod of Example 1.
  • the shape of the region surrounded by the inner wall of the sheath 10 is not a simple ring shape but includes a region protruding inward (portion 40 in the figure). It is characterized by having the shape of
  • the “simple ring shape” means, for example, the one indicated by reference numeral 20 in FIG. This increases the surface area inside the sheath 10 and increases the volume of the MgB 2 core 20 compared to the conventional IMD wire shown in FIG.
  • the filament area S and the circumferential length L are obtained by using some approximation S ⁇ ( ⁇ (1 ⁇ ) - ⁇ ) a 2 , L ⁇ 2 ⁇ a (2- ⁇ ) + 2a ( ⁇ - ⁇ ).
  • a is the radius of the filament region
  • ⁇ and ⁇ are the relative ratio of the distances b and d to the radius a.
  • a method for manufacturing the wire will be described with reference to FIGS.
  • a perspective view of each process is shown in the upper stage, and a sectional view in the lower stage.
  • B powder and Mg raw material rod are prepared.
  • the amount of the B powder to be prepared and used is weighed so that the molar ratio to Mg is 2 or less.
  • the Mg raw material rod 1 is processed into a shape like the gap 30 in the sectional view of FIG. 3, that is, a shape substantially similar to the sectional shape of the gap 30 in FIG.
  • the Mg rod 1 is inserted into the Fe tube 10 (which is a kind of the above-described metal tube) (FIG. 4 (a)), and further, a region corresponding to the constricted portion 40 in FIG.
  • a metal (Fe) member 11 processed into a shape (keyhole shape) that can fill the gap and the center of the mold is inserted (FIG. 4B).
  • B powder 2 is filled into the space between the assembled Fe tube 10 / Fe member 11 and the Mg raw material rod 1 (FIG. 4 (c)).
  • the shape of the cross section is similar to the shape of the finished product shown in FIG. 2 (FIG. 4 (d)).
  • the composition at the time of filling is B powder filled with the MgB 2 core 20 region in FIG. 2, the void 30 region is Mg, and the sheath 10 region is an Fe tube and an Fe member. It becomes the composition which becomes.
  • the cross-sectional area of the core increases as the surface area is large even if the thickness of the MgB 2 core is the same as that of the conventional structure. At the same time, the thickness of the core can be suppressed within a range in which uneven reaction of MgB 2 generation does not occur, and MgB 2 is generated under optimal reaction conditions over the entire area of the wire.
  • the MgB 2 wire prototype manufactured with the configuration of Example 1 has an MgB 2 core cross-sectional area of about 1.3 times that of the wire having the conventional structure shown in FIG. 2, thereby improving J c by 1.3 times. .
  • an Fe tube is used as the sheath material, but a composite material of Cu and Fe may be used in order to improve heat transfer. At that time, it is desirable to arrange the Fe so as to be in contact with MgB 2 . Further, in this embodiment using the B powder in the raw material, it may be added materials such as C and B 4 C in order to further improve the J c.
  • the MgB 2 core 20 is continuously present in the cross section inside the sheath. However, the MgB 2 core 20 does not necessarily have to be continuous in the entire arbitrary cross section with respect to the longitudinal direction of the wire.
  • the core may be discontinuous due to shape disturbances in some places during manufacturing.
  • the direction in which the current flows is the longitudinal direction of the wire, and there is no adverse effect that significantly cuts the current path.
  • Example 2 proposes a single-core MgB 2 wire.
  • FIG. 5A shows a schematic cross-sectional view of the wire rod of Example 2.
  • FIG. The wire rod of the present embodiment is a flat wire, and the outer shape of the cross section is a rectangle. Similar to the first embodiment, the shape of the region surrounded by the inner wall of the sheath 10 (the region where the MgB 2 core 20 is generated) is not a simple square, but U having a convex region (part 40 in the figure) inside. It is a letter shape. Compared with the wire material by the conventional IMD method, the surface area inside the sheath 10 increases, and the volume of the MgB 2 core 20 increases.
  • the filament area S of the closed curved surface surrounded by the boundary line between the MgB 2 core 20 and the sheath 10 and the peripheral length L of the boundary line in the cross section of the wire rod of the present embodiment will be described.
  • the filament area S and the circumferential length L are approximately equal to S ⁇ ( 2 ⁇ + 2 ⁇ 2 ⁇ ) a 2 , L ⁇ 2 (1 + 2 ⁇ ) a.
  • a is the short side of the filament region
  • ⁇ and ⁇ are the relative ratio of the long side b to the short side a and the distance d.
  • S 0 ⁇ a 2 and circumferential length L 0 ⁇ 2 (1 + ⁇ ) due to a slight approximation in which the short side of the filament region is a and the corner curved portion is a right-angled shape.
  • L 4.2 ⁇ S.
  • Example 2 The basic production method of the wire of Example 2 is the same as that of Example 1. However, in the case of Example 2, the Fe member 11 to be inserted is not a keyhole-shaped cross section as in Example 1, but a simple square, and a die having a square hole shape is used in the middle of the drawing process. While forming the shape into a quadrangle, it is made into a wire while performing surface-reducing processing.
  • the cross-sectional area of the core increases as the surface area is large even if the thickness of the MgB 2 core is the same as that of the conventional structure. At the same time, the thickness of the core can be suppressed within a range in which uneven reaction of MgB 2 generation does not occur, and MgB 2 is generated under optimal reaction conditions over the entire area of the wire.
  • the MgB 2 wire prototype manufactured with the configuration of Example 2 has an MgB 2 core cross-sectional area of about 1.5 times that of the wire material obtained by the conventional IMD method, thereby improving J c by 1.5 times.
  • an Fe tube is used as the sheath material, but a composite material of Cu and Fe may be used in order to improve heat transfer. At that time, it is desirable to arrange the Fe so as to be in contact with MgB 2 . Further, in this embodiment using the B powder in the raw material, it may be added materials such as C and B 4 C in order to further improve the J c.
  • the MgB 2 core 20 is continuous inside the sheath as shown in the cross-sectional view of FIG. 5, but not all of them are necessarily continuous. Due to the complex core shape, the core may become discontinuous in some places during manufacturing, and the core may be discontinuous, but the direction of current flow is the longitudinal direction of the line, and the adverse effect of significantly cutting the current path There is no.
  • Example 3 proposes a single-core MgB 2 wire.
  • FIG. 6A shows a schematic cross-sectional view of the wire rod of Example 3.
  • the filament area S of the closed curved surface surrounded by the boundary line between the MgB 2 core 20 and the sheath 10 and the peripheral length L of the boundary line in the cross section of the wire rod of the present embodiment will be described.
  • a is the radius of the filament region
  • ⁇ and ⁇ are the relative ratio of the distances b and d to the radius a.
  • S 0 ⁇ a 2
  • circumferential length L 0 2 ⁇ a
  • L 3.5 ⁇ S. Based on this, L> 4 ⁇ S is expressed in the claims.
  • the basic production method of the wire of Example 3 is the same as that of Example 1.
  • the Mg rod 1 shown in FIG. 4 uses a raw material having a cross-sectional shape similar to the gap 30 shown in FIG.
  • the Fe member 11 shown in FIG. 4 uses a member having a triangular cross section, and is arranged on the inner wall of the Fe tube 10 serving as a sheath.
  • B is filled between the Mg rod and the Fe tube, and then drawing and heat treatment are performed to produce a wire.
  • the cross-sectional area of the core increases as the surface area is large even if the thickness of the MgB 2 core is the same as that of the conventional structure. At the same time, the thickness of the core can be suppressed within a range in which uneven reaction of MgB 2 generation does not occur, and MgB 2 is generated under optimal reaction conditions over the entire area of the wire.
  • the MgB 2 wire prototype manufactured with the configuration of Example 2 has a MgB 2 core cross-sectional area of about 1.8 times that of the wire material obtained by the conventional IMD method, and thereby Jc is also improved by 1.8 times.
  • an Fe tube is used as the sheath material, but a composite material of Cu and Fe may be used in order to improve heat transfer. At that time, it is desirable to arrange the Fe so as to be in contact with MgB 2 . Further, in this embodiment using the B powder in the raw material, it may be added materials such as C and B 4 C in order to further improve the J c.
  • the MgB 2 core 20 is continuous inside the sheath as shown in the cross-sectional view of FIG. 6, but not all may be necessarily continuous. Due to the complex core shape, the core may become discontinuous in some places during manufacturing, and the core may be discontinuous, but the direction of current flow is the longitudinal direction of the line, and the adverse effect of significantly cutting the current path There is no.
  • Example 4 proposes a multi-core MgB 2 wire.
  • FIG. 7A shows a schematic cross-sectional view of the fourth embodiment. Seven filament regions in which the MgB 2 core 20 is formed are arranged. As shown in the drawing, each of the six filament regions arranged on the outer side has a side close to the outer periphery of the wire cross section narrowed inward (portion 40 in the figure), and is generated inside the sheath due to its shape. The cross-sectional area of the MgB 2 core 20 increases compared to the shape without the constricted portion 40.
  • the relationship between the area (filament area) S of the closed curved surface surrounded by the boundary line between the MgB 2 core 20 and the sheath 10 and the peripheral length L of the boundary line is as follows. explain. When the dimension notation of each place is used for each of the six filament regions arranged outside in the cross section of Example 4 shown in FIG. 7B, the filament area S and the circumferential length L are slightly approximated.
  • Example 4 The manufacturing process of the wire of Example 4 will be described. First, six composites composed of Fe tubes, Mg bars, and B powder are prepared in the same procedure as in Example 1. In addition, based on the normal IMD method, one composite composed of an Fe tube, a simple cylindrical Mg rod, and B powder is prepared. After hexagonal molding of these external shapes, a cylindrical metal tube is filled in a hexagonal arrangement. In that case, it arrange
  • the cross-sectional area of the core increases as the surface area is large even if the thickness of the MgB 2 core is the same as that of the conventional structure. At the same time, the thickness of the core can be suppressed within a range in which uneven reaction of MgB 2 generation does not occur, and MgB 2 is generated under optimal reaction conditions over the entire area of the wire.
  • MgB 2 wire prototyped in the configuration of Example 3 MgB 2 core area is approximately 1.2 times that of the multi-core wire by conventional IMD process, whereby J c was also improved 1.2 times.
  • the filaments are arranged in a hexagonal shape, but other shapes may be arranged, for example, a quadrangular shape or an octagonal shape.
  • an Fe tube is used as the sheath material, but a composite material of Cu and Fe may be used in order to improve heat transfer. At that time, it is desirable to arrange the Fe so as to be in contact with MgB 2 .
  • the B powder in the raw material it may be added materials such as C and B 4 C in order to further improve the J c.
  • the MgB 2 core 20 is continuous inside each filament. However, not all of them are necessarily continuous. Due to the complex core shape, the core may become discontinuous in some places during manufacturing, and the core may be discontinuous, but the direction of current flow is the longitudinal direction of the line, and the adverse effect of significantly cutting the current path There is no.

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

The problem addressed by the disclosed invention is to provide an MgB2 superconducting wire which achieves a high critical current density Jc by establishing a good balance between improvement of superconducting characteristics and increase of the cross-sectional area of an MgB2 core of the MgB2 superconducting wire by means of an internal diffusion method. A means for solving the above-described problem is the achievement of a superconducting wire comprising an MgB2 core that has a larger cross-sectional area than conventional superconducting wires by configuring a filament region including the MgB2 core such that the cross-sectional shape thereof has an inwardly projected region.

Description

MgB2超電導線材MgB2 superconducting wire
 本発明は、MgB超電導線材に関し、特に二硼化マグネシウム(MgB)の芯を有する超電導線材に関する。 The present invention relates to a MgB 2 superconducting wire, and more particularly to a superconducting wire having a magnesium diboride (MgB 2 ) core.
 二硼化マグネシウム(MgB)は従来実用化されているNb系の金属超電導体に比べて高い超電導転移温度(39K)を有する。そのため、液体Heを用いない10~20Kで使用可能な超電導材料として応用が期待されている。特に高磁場を発生させる核磁気共鳴装置(NMR)や磁気共鳴画像診断装置(MRI)用の電磁石用線材としての応用が期待される。それらの高磁場発生用マグネットに適用する超電導線材には、磁場中で大電流を流すための高い臨界電流密度(J)が求められる。Jは超電導状態を維持しつつ流せることの可能な最大の電流密度であり、それは超電導材料固有の物性はもとより、線材の作製方法によっても左右される。 Magnesium diboride (MgB 2 ) has a higher superconducting transition temperature (39K) than Nb-based metallic superconductors that have been put into practical use. Therefore, application is expected as a superconducting material that can be used at 10 to 20 K without using liquid He. In particular, application as an electromagnet wire for a nuclear magnetic resonance apparatus (NMR) or a magnetic resonance imaging apparatus (MRI) that generates a high magnetic field is expected. Superconducting wires applied to these high magnetic field generating magnets are required to have a high critical current density ( Jc ) for flowing a large current in a magnetic field. Jc is the maximum current density that can be passed while maintaining the superconducting state, which depends not only on the physical properties unique to the superconducting material but also on the method of manufacturing the wire.
 これまでの開発において、MgB線材は一般的にパウダーインチューブ法(PIT法)を用いて作製される。これは、金属管の中にマグネシウム(Mg)およびホウ素(B)を充填し、その後、線引加工を行い、熱処理を施すことで金属管(シース)内部にMgBを生成する手法である。近年、PIT法を基にして、さらに高いJを得るために内部拡散法(IMD法)が開発されている(特許文献1)。IMD法による線材の作製工程を図1に示す。金属管10の中にMgの棒1を挿入(図1(a))し、両者の隙間にホウ素の原料2を充填する(図1(b))。その後、線引加工を行い,最後に熱処理を行いMgB2を生成する(図1(c))。
図2に従来のIMD法による線材断面の模式図を示す。線材中央にあったMgは、熱処理により周囲のBへ拡散しシース10の内側にMgBコア20が生成される。熱処理前に存在したMgはこの拡散反応によって消費されるので、線材断面の中央部は空隙30となる。この製法による線材では、PIT法に比べ生成されるMgBコアが高密度であり、結果としてJが改善する。なお、この図では、その断面形状は円形であり、かつ、同心円状に符号10, 20, 30の構成要素が存在している。この図では断面形状が円形だが、楕円形状でもよい。但し、その図の表示は省略する。同心円状にする場合、同心状に各要素の形状が楕円となる。
In the development so far, the MgB 2 wire is generally produced using a powder-in-tube method (PIT method). In this method, magnesium (Mg) and boron (B) are filled in a metal tube, and then drawing is performed, and heat treatment is performed to generate MgB 2 inside the metal tube (sheath). Recently, based on PIT method, internal diffusion process in order to obtain a higher J c (IMD) method has been developed (Patent Document 1). The manufacturing process of the wire by the IMD method is shown in FIG. An Mg rod 1 is inserted into the metal tube 10 (FIG. 1 (a)), and a gap between them is filled with a boron raw material 2 (FIG. 1 (b)). Thereafter, drawing is performed, and finally heat treatment is performed to generate MgB2 (FIG. 1 (c)).
FIG. 2 shows a schematic diagram of a cross section of a wire by a conventional IMD method. Mg in the center of the wire is diffused into the surrounding B by heat treatment, and the MgB 2 core 20 is generated inside the sheath 10. Since Mg existing before the heat treatment is consumed by this diffusion reaction, the central portion of the cross section of the wire becomes a void 30. In the wire rod produced by this manufacturing method, the MgB 2 core produced is higher in density than the PIT method, and as a result, Jc is improved. In this figure, the cross-sectional shape is circular, and the constituent elements 10, 20, and 30 are present concentrically. In this figure, the cross-sectional shape is circular, but it may be elliptical. However, the display of the figure is omitted. In the case of concentric circles, the shape of each element is an ellipse concentrically.
 IMD法による線材では、上述の通りシース内側にのみMgBが生成し、中央部は空隙となるため本質的にMgBコアの断面積が少なくなる傾向がある。MgBコアの断面積を増やすには、熱処理前のMg棒の体積をMgB生成に必要な最低限の量まで減らし、B原料をできるだけ多く充填する方法が取られる。しかしその場合、シース内側のB層が厚くなるため、Mgの拡散によるMgB生成反応の進行度合が厚さ方向で不均一になる問題が生じる。一般に、MgBコアの微細組織は反応条件に依存し、結晶粒径や結晶内の歪の多さが変わる。不充分な反応処理ではMgBが生成されず、逆に過剰な反応処理でも粒径の粗大化や結晶歪の緩和をもたらし磁場中Jの低下を招く。よって、高い磁場中Jを得るには最適条件での反応処理が必要になる。すなわち、IMD法においてMgBコア断面積増加のために単純にMgBコアを厚くした場合、厚さ方向の反応むらが生じ、高Jが得られる最適なMgB領域を均一に生成できない課題があった。 In the wire by the IMD method, MgB 2 is generated only on the inner side of the sheath as described above, and the central portion becomes a void, so that the sectional area of the MgB 2 core tends to be essentially reduced. In order to increase the cross-sectional area of the MgB 2 core, a method of reducing the volume of the Mg rod before heat treatment to the minimum amount necessary for MgB 2 production and filling as much B raw material as possible is used. However, in this case, since the B layer inside the sheath becomes thick, there is a problem that the progress of the MgB 2 generation reaction due to the diffusion of Mg becomes uneven in the thickness direction. In general, the microstructure of the MgB 2 core depends on the reaction conditions, and the crystal grain size and the number of strains in the crystal vary. In insufficient reaction process is not MgB 2 is produced, lowering the magnetic field J c resulted in relief of coarsening and crystal distortion particle size in excess reaction process reversed. Therefore, in order to obtain a high magnetic field J c it becomes necessary reaction process under optimum conditions. Problems That is, when the thick simply MgB 2 core for the MgB 2 core cross-sectional area increase in the IMD process, the reaction occurs unevenness in the thickness direction, can not be uniformly generate optimal MgB 2 regions where high J c is obtained was there.
特開2004-47441号公報JP 2004-47441 A
 本発明の目的は、内部拡散法(IMD法)によるMgB線材について、MgBコアの断面積増大と超電導特性の向上を両立させ、高い臨界電流密度Jを実現するMgB線材を提供することである。 An object of the present invention, the MgB 2 wire material by internal diffusion process (IMD) method, to achieve both an improvement in the cross-sectional area increases and the superconducting properties of MgB 2 core, provides a MgB 2 wire material to achieve a high critical current density J c That is.
 本発明においては、MgBコアを含むフィラメント領域(シース内壁の領域)の断面形状が内側に凸の領域を有する。従来に対してMgBコアの厚さが同じでもシース内壁の表面積が広い分、コアの断面積が増える。同時に、MgB生成の反応むらが生じない範囲にコアの厚さを抑えることができ、線材の全域に渡り最適な反応条件でMgBが生成される。 In the present invention, the cross-sectional shape of the filament region including the MgB 2 core (region of the sheath inner wall) has a region that protrudes inward. Even if the thickness of the MgB 2 core is the same as that of the prior art, the cross-sectional area of the core increases as the surface area of the sheath inner wall is larger. At the same time, the thickness of the core can be suppressed within a range in which uneven reaction of MgB 2 generation does not occur, and MgB 2 is generated under optimal reaction conditions over the entire area of the wire.
 本発明により、良質なMgBコアを増やし、磁場中でより高いJ特性を示すMgB超電導線材が得られる。 The present invention increases the quality MgB 2 core, MgB 2 superconducting wire exhibits higher J c properties in a magnetic field is obtained.
従来のIMD法によるMgB単芯線材の作製工程の模式図である。It is a schematic view of a manufacturing process of the MgB 2 single-core wire by conventional IMD technique. 従来のIMD法によるMgB単芯線材の断面模式図である。It is a schematic sectional view of MgB 2 single-core wire by conventional IMD technique. 実施例1のMgB単芯線材の断面模式図である。1 is a schematic cross-sectional view of an MgB 2 single core wire of Example 1. FIG. 実施例1のMgB単芯線材の作製工程の模式図である。3 is a schematic diagram of a production process of the MgB 2 single-core wire of Example 1. FIG. 実施例2のMgB単芯線材の断面模式図である。4 is a schematic cross-sectional view of a MgB 2 single core wire of Example 2. FIG. 実施例3のMgB単芯線材の断面模式図である。4 is a schematic cross-sectional view of an MgB 2 single-core wire of Example 3. FIG. 実施例4のMgB多芯線材の断面模式図である。6 is a schematic cross-sectional view of an MgB 2 multi-core wire of Example 4. FIG.
 本発明の実施形態を、図面を用いて詳細に説明する。 Embodiments of the present invention will be described in detail with reference to the drawings.
 実施例1は、単芯のMgB線材を提案するものである。図3(a)に、実施例1の線材の断面模式図を示す。本実施例では、シース10の内壁に囲まれた領域の形状(MgBコア20が生成された領域)が単純なリング形状でなく内側に凸の領域(図中部位40)を含みC字型の形状を有するのが特徴である。ここで、「単純なリング形状」とは、例えば、図2の符号20で示すものをいう。これにより図2に示した従来のIMD線材に比べてシース10内側の表面積が増え、MgBコア20の体積が増える。特に、線材の断面積の大きさが従来の線材と同じである線材を本実施例に基づいて製造する場合、全単面積に占めるMgBコア20の面積の割合が従来よりも大きくできるという利点がある。 Example 1 proposes a single-core MgB 2 wire. FIG. 3A shows a schematic cross-sectional view of the wire rod of Example 1. FIG. In the present embodiment, the shape of the region surrounded by the inner wall of the sheath 10 (the region where the MgB 2 core 20 is generated) is not a simple ring shape but includes a region protruding inward (portion 40 in the figure). It is characterized by having the shape of Here, the “simple ring shape” means, for example, the one indicated by reference numeral 20 in FIG. This increases the surface area inside the sheath 10 and increases the volume of the MgB 2 core 20 compared to the conventional IMD wire shown in FIG. In particular, when a wire rod having the same cross-sectional area as that of a conventional wire rod is manufactured based on this embodiment, the advantage that the ratio of the area of the MgB 2 core 20 in the total single area can be made larger than that of the conventional wire rod. There is.
 なお本実施例の場合の線材断面を有するものにおける、MgBコア20とシース10との境界線で囲まれる閉曲面の面積(フィラメント面積)Sと、上記境界線の周長Lとの関係を説明する。 The relationship between the area (filament area) S of the closed curved surface surrounded by the boundary line between the MgB 2 core 20 and the sheath 10 and the peripheral length L of the boundary line in the example having the wire cross section in the case of the present embodiment. explain.
 図3(b)に記載した、実施例1の断面における各場所の寸法表記を用いると、上記フィラメント面積Sと周長Lは若干の近似を用いてS≒(π―π(1-β)―αβ)a、L≒2πa(2-β)+2a(β-α)と表される。aはフィラメント領域の半径であり、αとβは半径aに対する距離b、dの相対比である。実施例1ではα=0.6、β=0.2であり、約L=6√Sとなる。これに基づき、請求項では、L>4√Sと表記した。 Using the dimensional notation of each location in the cross section of Example 1 described in FIG. 3B, the filament area S and the circumferential length L are obtained by using some approximation S≈ (π−π (1−β) -Αβ) a 2 , L≈2πa (2-β) + 2a (β-α). a is the radius of the filament region, and α and β are the relative ratio of the distances b and d to the radius a. In Example 1, α = 0.6 and β = 0.2, which is about L = 6√S. Based on this, L> 4√S is expressed in the claims.
 ちなみに、フィラメント領域が円形状の従来構成の場合、フィラメント領域の半径をaとして、S=πa、周長L=2πaであり、L=3.5√Sである。 Incidentally, in the case of a conventional configuration in which the filament region has a circular shape, assuming that the radius of the filament region is a, S 0 = πa 2 , circumferential length L 0 = 2πa, and L = 3.5√S.
 線材の作製方法について図4を用いて説明する。各工程の斜視図を上段、断面図を下段に示す。はじめにBの粉末とMg原料棒を準備する。準備し、使用するB粉末の量は、Mgに対するモル比が2以下になるよう秤量する。Mg原料棒1は図3の断面図で空隙30のような形状、即ち、図2の空隙30の断面形状と略相似の形状、即ち、略C字型の形状に加工しておく。Fe管10(上記した金属管の一種である。)の中に上記Mg棒1を挿入し(図4(a))、さらに図2のくびれ部位40に該当する領域を形成するため、C字型のギャップと中央部を埋められる形状(鍵穴形状)に加工した金属(Fe)部材11を挿入する(図4(b))。組み上げたFe管10・Fe部材11と、Mg原料棒1との空間にB粉末2を充填する(図4(c))。B粉末2の充填が完了すると、その断面の形状は図2に示す完成品の形状と似た形状となる(図4(d))。その充填完了時点の構成は、図4の下段に示したように図2のMgBコア20の領域が充填されたB粉末、空隙30の領域がMg、シース10の領域がFe管とFe部材となっている構成となる。このように作製した材料の端部を封止する。続いて、線引加工により直径0.5mmまで減面加工し線材化する。最後に600~800℃にて熱処理することでシース内にMgBを生成する。 A method for manufacturing the wire will be described with reference to FIGS. A perspective view of each process is shown in the upper stage, and a sectional view in the lower stage. First, B powder and Mg raw material rod are prepared. The amount of the B powder to be prepared and used is weighed so that the molar ratio to Mg is 2 or less. The Mg raw material rod 1 is processed into a shape like the gap 30 in the sectional view of FIG. 3, that is, a shape substantially similar to the sectional shape of the gap 30 in FIG. The Mg rod 1 is inserted into the Fe tube 10 (which is a kind of the above-described metal tube) (FIG. 4 (a)), and further, a region corresponding to the constricted portion 40 in FIG. A metal (Fe) member 11 processed into a shape (keyhole shape) that can fill the gap and the center of the mold is inserted (FIG. 4B). B powder 2 is filled into the space between the assembled Fe tube 10 / Fe member 11 and the Mg raw material rod 1 (FIG. 4 (c)). When the filling of the B powder 2 is completed, the shape of the cross section is similar to the shape of the finished product shown in FIG. 2 (FIG. 4 (d)). As shown in the lower part of FIG. 4, the composition at the time of filling is B powder filled with the MgB 2 core 20 region in FIG. 2, the void 30 region is Mg, and the sheath 10 region is an Fe tube and an Fe member. It becomes the composition which becomes. The end portion of the material thus produced is sealed. Subsequently, the surface is reduced to a diameter of 0.5 mm by drawing to form a wire. Finally, heat treatment is performed at 600 to 800 ° C. to generate MgB 2 in the sheath.
 本実施例の場合、従来構造に対してMgBコアの厚さが同じでも表面積が広い分、コアの断面積が増える。同時に、MgB生成の反応むらが生じないような範囲にコアの厚さを抑えることができ、線材の全域に渡り最適な反応条件でMgBが生成される。実施例1の構成で試作したMgB線材は、図2で示した従来構造の線材に比べてMgBコア断面積が約1.3倍になり、それによりJも1.3倍向上した。 In the case of the present embodiment, the cross-sectional area of the core increases as the surface area is large even if the thickness of the MgB 2 core is the same as that of the conventional structure. At the same time, the thickness of the core can be suppressed within a range in which uneven reaction of MgB 2 generation does not occur, and MgB 2 is generated under optimal reaction conditions over the entire area of the wire. The MgB 2 wire prototype manufactured with the configuration of Example 1 has an MgB 2 core cross-sectional area of about 1.3 times that of the wire having the conventional structure shown in FIG. 2, thereby improving J c by 1.3 times. .
 また、本実施例ではシース材料にFe管を用いたが、伝熱を良くするためにCuとFeの複合材を用いても良い。その際、FeがMgBと接する構造になるよう配置するのが望ましい。また、本実施例では原料にB粉末を用いたが、よりJを向上させる目的でCやBCなどの添加材を加えてもよい。なお、本実施例では図2の断面図に示すようにシース内部でMgBコア20は、その断面において連続的に存在している。しかるに、必ずしも線材の長手方向に対する任意の断面の全てにおいてMgBコア20が連続していなくても良い。単純なリング形状ではなく複雑なコア形状を有するため、製造中に所々に形状の乱れが生じて、コアが不連続になる場合もある。しかしながら、電流を流す方向は線材の長手方向であり、電流パスを著しく切断する悪影響はない。 In this embodiment, an Fe tube is used as the sheath material, but a composite material of Cu and Fe may be used in order to improve heat transfer. At that time, it is desirable to arrange the Fe so as to be in contact with MgB 2 . Further, in this embodiment using the B powder in the raw material, it may be added materials such as C and B 4 C in order to further improve the J c. In the present embodiment, as shown in the cross-sectional view of FIG. 2, the MgB 2 core 20 is continuously present in the cross section inside the sheath. However, the MgB 2 core 20 does not necessarily have to be continuous in the entire arbitrary cross section with respect to the longitudinal direction of the wire. Since it has a complicated core shape instead of a simple ring shape, the core may be discontinuous due to shape disturbances in some places during manufacturing. However, the direction in which the current flows is the longitudinal direction of the wire, and there is no adverse effect that significantly cuts the current path.
 実施例2は、単芯のMgB線材を提案するものである。図5(a)に、実施例2の線材の断面模式図を示す。本実施例の線材は平角線であり、その断面の外形は長方形である。実施例1と同様に、シース10の内壁に囲まれた領域(MgBコア20が生成された領域)の形状は単純な四角ではなく、内側に凸の領域(図中部位40)をもつU字型である。従来のIMD法による線材に比べてシース10内側の表面積が増え、MgBコア20の体積が増える。本実施例の線材断面において、MgBコア20とシース10との境界線で囲まれる閉曲面の面積(フィラメント面積)Sと、上記境界線の周長Lとの関係を説明する。図5(b)に記載した、実施例2の断面における各場所の寸法表記を用いると、上記フィラメント面積Sと周長Lは、角の湾曲部が直角形状とした若干の近似によりS≒(2αβ+2β-β)a、L≒2(1+2α-β)aと表される。aはフィラメント領域の短辺であり、αとβは短辺aに対する長辺b、距離dの相対比である。実施例2ではα=2、β=0.3であり、約L=9√Sとなる。ちなみに、フィラメント領域が単純な長方形の従来構成の場合、フィラメント領域の短辺をaとして、角の湾曲部が直角形状とした若干の近似によりS≒αa、周長L≒2(1+α)aと表され、α=2ではL=4.2√Sである。これに基づき、請求項では、L>4√Sと表記した。 Example 2 proposes a single-core MgB 2 wire. FIG. 5A shows a schematic cross-sectional view of the wire rod of Example 2. FIG. The wire rod of the present embodiment is a flat wire, and the outer shape of the cross section is a rectangle. Similar to the first embodiment, the shape of the region surrounded by the inner wall of the sheath 10 (the region where the MgB 2 core 20 is generated) is not a simple square, but U having a convex region (part 40 in the figure) inside. It is a letter shape. Compared with the wire material by the conventional IMD method, the surface area inside the sheath 10 increases, and the volume of the MgB 2 core 20 increases. The relationship between the area (filament area) S of the closed curved surface surrounded by the boundary line between the MgB 2 core 20 and the sheath 10 and the peripheral length L of the boundary line in the cross section of the wire rod of the present embodiment will be described. Using the dimension notation of each location in the cross section of Example 2 described in FIG. 5B, the filament area S and the circumferential length L are approximately equal to S≈ ( 2αβ + 2β 2 −β) a 2 , L≈2 (1 + 2α−β) a. a is the short side of the filament region, and α and β are the relative ratio of the long side b to the short side a and the distance d. In the second embodiment, α = 2 and β = 0.3, which is about L = 9√S. By the way, in the case of the conventional configuration in which the filament region is a simple rectangle, S 0 ≈αa 2 and circumferential length L 0 ≈2 (1 + α) due to a slight approximation in which the short side of the filament region is a and the corner curved portion is a right-angled shape. ) A, and when α = 2, L = 4.2√S. Based on this, L> 4√S is expressed in the claims.
 実施例2の線材の基本的な作製方法は実施例1と同じである。ただ実施例2の場合、挿入するFe部材11が実施例1のように鍵穴形状の断面でなく単純な四角形となり、さらに線引加工の途中段階で穴の形状が四角形のダイスを使用し、断面形状を四角形に成形しつつ減面加工を施しつつ線材化する。 The basic production method of the wire of Example 2 is the same as that of Example 1. However, in the case of Example 2, the Fe member 11 to be inserted is not a keyhole-shaped cross section as in Example 1, but a simple square, and a die having a square hole shape is used in the middle of the drawing process. While forming the shape into a quadrangle, it is made into a wire while performing surface-reducing processing.
 本実施例の場合、従来構造に対してMgBコアの厚さが同じでも表面積が広い分、コアの断面積が増える。同時に、MgB生成の反応むらが生じない範囲にコアの厚さを抑えることができ、線材の全域に渡り最適な反応条件でMgBが生成される。実施例2の構成で試作したMgB線材は、従来のIMD法による線材に比べてMgBコア断面積が約1.5倍になり、それによりJも1.5倍向上した。 In the case of the present embodiment, the cross-sectional area of the core increases as the surface area is large even if the thickness of the MgB 2 core is the same as that of the conventional structure. At the same time, the thickness of the core can be suppressed within a range in which uneven reaction of MgB 2 generation does not occur, and MgB 2 is generated under optimal reaction conditions over the entire area of the wire. The MgB 2 wire prototype manufactured with the configuration of Example 2 has an MgB 2 core cross-sectional area of about 1.5 times that of the wire material obtained by the conventional IMD method, thereby improving J c by 1.5 times.
 また、本実施例ではシース材料にFe管を用いたが、伝熱を良くするためにCuとFeの複合材を用いても良い。その際、FeがMgBと接する構造になるよう配置するのが望ましい。また、本実施例では原料にB粉末を用いたが、よりJを向上させる目的でCやBCなどの添加材を加えてもよい。なお、本実施例では図5の断面図に示すようにシース内部でMgBコア20は連続しているが、必ずしも全てが連続していなくても良い。複雑なコア形状を有するため、製造中に所々に形状の乱れが生じて、コアが不連続になる場合もあるが、電流を流す方向は線の長手方向であり、電流パスを著しく切断する悪影響はない。 In this embodiment, an Fe tube is used as the sheath material, but a composite material of Cu and Fe may be used in order to improve heat transfer. At that time, it is desirable to arrange the Fe so as to be in contact with MgB 2 . Further, in this embodiment using the B powder in the raw material, it may be added materials such as C and B 4 C in order to further improve the J c. In the present embodiment, the MgB 2 core 20 is continuous inside the sheath as shown in the cross-sectional view of FIG. 5, but not all of them are necessarily continuous. Due to the complex core shape, the core may become discontinuous in some places during manufacturing, and the core may be discontinuous, but the direction of current flow is the longitudinal direction of the line, and the adverse effect of significantly cutting the current path There is no.
 実施例3は、単芯のMgB線材を提案するものである。図6(a)に、実施例3の線材の断面模式図を示す。実施例1と同様に、シース10の内壁に囲まれた領域(MgBコア20が生成された領域)の形状は単純な円形ではなく、内側に凸の領域(図中部位40)をもつ。従来のIMD法による線材に比べてシース10内側の表面積が増え、MgBコア20の体積が増える。 Example 3 proposes a single-core MgB 2 wire. FIG. 6A shows a schematic cross-sectional view of the wire rod of Example 3. FIG. Similar to the first embodiment, the shape of the region surrounded by the inner wall of the sheath 10 (the region where the MgB 2 core 20 is generated) is not a simple circle, but has a convex region (portion 40 in the figure) on the inside. Compared with the wire material by the conventional IMD method, the surface area inside the sheath 10 increases, and the volume of the MgB 2 core 20 increases.
 本実施例の線材断面において、MgBコア20とシース10との境界線で囲まれる閉曲面の面積(フィラメント面積)Sと、上記境界線の周長Lとの関係を説明する。図6(b)に記載した、実施例3の断面における各場所の寸法表記を用いると、上記フィラメント面積Sと周長Lは若干の近似を用いてS≒πa-6bd/2=(π-3αβ)a、L≒2πa-6βd+12c=2πa-6βa+12a√(α+β/4)と表される。aはフィラメント領域の半径であり、αとβは半径aに対する距離b、dの相対比である。実施例3ではα=0.6、β=0.25であり、約L=7.4√Sとなる。ちなみに、フィラメント領域が円形状の従来構成の場合、フィラメント領域の半径をaとして、S=πa、周長L=2πaであり、L=3.5√Sである。これに基づき、請求項では、L>4√Sと表記した。 The relationship between the area (filament area) S of the closed curved surface surrounded by the boundary line between the MgB 2 core 20 and the sheath 10 and the peripheral length L of the boundary line in the cross section of the wire rod of the present embodiment will be described. Using the dimensional notation of each location in the cross section of Example 3 shown in FIG. 6B, the filament area S and the circumferential length L can be obtained by using some approximation S≈πa 2 −6bd / 2 = (π -3Arufabeta) is expressed as a 2, L ≒ 2πa-6βd + 12c = 2πa-6βa + 12a√ (α 2 + β 2/4). a is the radius of the filament region, and α and β are the relative ratio of the distances b and d to the radius a. In Example 3, α = 0.6 and β = 0.25, which is about L = 7.4√S. Incidentally, in the case of a conventional configuration in which the filament region has a circular shape, assuming that the radius of the filament region is a, S 0 = πa 2 , circumferential length L 0 = 2πa, and L = 3.5√S. Based on this, L> 4√S is expressed in the claims.
 実施例3の線材の基本的な作製方法は実施例1と同じである。ただし実施例3の場合、図4で示すところのMg棒1は図6に示した空隙30と相似で外側にくびれが入った断面形状の原料を用いる。また、図6のくびれ部位40に該当する領域を形成するため、図4で示す所のFe部材11は断面が三角形の部材を使用し、シースとなるFe管10の内壁に6箇所配置する。以上のように金属部材を組み込んだ複合体においてMg棒とFe管の間にBを充填し、その後線引加工・熱処理を行い線材を作製する。 The basic production method of the wire of Example 3 is the same as that of Example 1. However, in the case of Example 3, the Mg rod 1 shown in FIG. 4 uses a raw material having a cross-sectional shape similar to the gap 30 shown in FIG. Further, in order to form a region corresponding to the constricted portion 40 in FIG. 6, the Fe member 11 shown in FIG. 4 uses a member having a triangular cross section, and is arranged on the inner wall of the Fe tube 10 serving as a sheath. In the composite body incorporating the metal member as described above, B is filled between the Mg rod and the Fe tube, and then drawing and heat treatment are performed to produce a wire.
 本実施例の場合、従来構造に対してMgBコアの厚さが同じでも表面積が広い分、コアの断面積が増える。同時に、MgB生成の反応むらが生じない範囲にコアの厚さを抑えることができ、線材の全域に渡り最適な反応条件でMgBが生成される。実施例2の構成で試作したMgB線材は、従来のIMD法による線材に比べてMgBコア断面積が約1.8倍になり、それによりJも1.8倍向上した。 In the case of the present embodiment, the cross-sectional area of the core increases as the surface area is large even if the thickness of the MgB 2 core is the same as that of the conventional structure. At the same time, the thickness of the core can be suppressed within a range in which uneven reaction of MgB 2 generation does not occur, and MgB 2 is generated under optimal reaction conditions over the entire area of the wire. The MgB 2 wire prototype manufactured with the configuration of Example 2 has a MgB 2 core cross-sectional area of about 1.8 times that of the wire material obtained by the conventional IMD method, and thereby Jc is also improved by 1.8 times.
 また、本実施例ではシース材料にFe管を用いたが、伝熱を良くするためにCuとFeの複合材を用いても良い。その際、FeがMgBと接する構造になるよう配置するのが望ましい。また、本実施例では原料にB粉末を用いたが、よりJを向上させる目的でCやBCなどの添加材を加えてもよい。なお、本実施例では図6の断面図に示すようにシース内部でMgBコア20は連続しているが、必ずしも全てが連続していなくても良い。複雑なコア形状を有するため、製造中に所々に形状の乱れが生じて、コアが不連続になる場合もあるが、電流を流す方向は線の長手方向であり、電流パスを著しく切断する悪影響はない。 In this embodiment, an Fe tube is used as the sheath material, but a composite material of Cu and Fe may be used in order to improve heat transfer. At that time, it is desirable to arrange the Fe so as to be in contact with MgB 2 . Further, in this embodiment using the B powder in the raw material, it may be added materials such as C and B 4 C in order to further improve the J c. In this embodiment, the MgB 2 core 20 is continuous inside the sheath as shown in the cross-sectional view of FIG. 6, but not all may be necessarily continuous. Due to the complex core shape, the core may become discontinuous in some places during manufacturing, and the core may be discontinuous, but the direction of current flow is the longitudinal direction of the line, and the adverse effect of significantly cutting the current path There is no.
 実施例4は、多芯のMgB線材を提案するものである。図7(a)に、実施例4の断面模式図を示す。MgBコア20が形成されたフィラメント領域が7つ配置されている。図示したように、外側に配置される6つのフィラメント領域のそれぞれは、線材断面の外周に近い側の辺が内側にくびれており(図中部位40)、その形状のためにシース内側に生成されるMgBコア20の断面積は、上記くびれ部位40がない形状に比べて増加する。この外側に配置される6つのフィラメント領域のそれぞれについて、MgBコア20とシース10との境界線で囲まれる閉曲面の面積(フィラメント面積)Sと、上記境界線の周長Lとの関係を説明する。図7(b)に記載した、実施例4の断面における、外側に配置される6つのフィラメント領域のそれぞれについて、各場所の寸法表記を用いると、上記フィラメント面積Sと周長Lは若干の近似を用いてS≒πa/6-γ√3/4-bd/2=(π/6-γ√3/4-αβ/2)a、L≒2(1-γ)a+2πa/6-d+2c=a(2(1-γ)+π/3-β+2a√(α+β/4))と表される。a、b、c、d、eは図7(b)に示した通りの線分であり、α、β、γはaを基準としたb、d、eの比率である。実施例4ではα=0.5、β=0.2、γ=0.2であり、約L=5.1√Sとなる。ちなみに、外側に配置される6つのフィラメント領域がくびれていない構成の場合、図7(b)に示した線分cが無くなるため、S≒(π/6-γ√3/4)a、周長L≒(2+π/3-γ)aであり、約L=4√Sである。これに基づき、請求項では、L>4√Sと表記した。 Example 4 proposes a multi-core MgB 2 wire. FIG. 7A shows a schematic cross-sectional view of the fourth embodiment. Seven filament regions in which the MgB 2 core 20 is formed are arranged. As shown in the drawing, each of the six filament regions arranged on the outer side has a side close to the outer periphery of the wire cross section narrowed inward (portion 40 in the figure), and is generated inside the sheath due to its shape. The cross-sectional area of the MgB 2 core 20 increases compared to the shape without the constricted portion 40. For each of the six filament regions arranged outside, the relationship between the area (filament area) S of the closed curved surface surrounded by the boundary line between the MgB 2 core 20 and the sheath 10 and the peripheral length L of the boundary line is as follows. explain. When the dimension notation of each place is used for each of the six filament regions arranged outside in the cross section of Example 4 shown in FIG. 7B, the filament area S and the circumferential length L are slightly approximated. S≈πa 2 / 6−γ 2 a 2 √3 / 4−bd / 2 = (π / 6−γ 2 √3 / 4αβ / 2) a 2 , L≈2 (1−γ) a + 2πa / 6-d + 2c = a (2 (1-γ) + π / 3-β + 2a√ (α 2 + β 2/4)) is expressed as. a, b, c, d, and e are line segments as shown in FIG. 7B, and α, β, and γ are ratios of b, d, and e with reference to a. In Example 4, α = 0.5, β = 0.2, γ = 0.2, and approximately L = 5.1√S. Incidentally, in the case of the configuration in which the six filament regions arranged outside are not constricted, the line segment c shown in FIG. 7B is eliminated, so that S 0 ≈ (π / 6−γ 2 √3 / 4) a 2. Circumference L 0 ≈ (2 + π / 3−γ) a, and approximately L = 4√S. Based on this, L> 4√S is expressed in the claims.
 実施例4の線材の作製工程について説明する。まず実施例1と同様の手順で、Fe管、Mg棒、B粉末で構成される複合体を6本作製する。また、通常のIMD法に基づき、Fe管、単純円柱のMg棒と、B粉末で構成される複合体を1本作製する。それらの外形を六角成型した後、円筒の金属管に六角型配置で充填する。その際、くびれ部40が最終的に線材の外側になるよう配置する。この金属複合体を線引加工により直径1.5mmまで減面加工を行った後、600~800℃にて熱処理を施し、図7(a)の断面形状の多芯線材を得る。 The manufacturing process of the wire of Example 4 will be described. First, six composites composed of Fe tubes, Mg bars, and B powder are prepared in the same procedure as in Example 1. In addition, based on the normal IMD method, one composite composed of an Fe tube, a simple cylindrical Mg rod, and B powder is prepared. After hexagonal molding of these external shapes, a cylindrical metal tube is filled in a hexagonal arrangement. In that case, it arrange | positions so that the constriction part 40 may finally become the outer side of a wire. The metal composite is subjected to surface reduction to a diameter of 1.5 mm by drawing, and then heat-treated at 600 to 800 ° C. to obtain a multi-core wire having a cross-sectional shape as shown in FIG.
 本実施例の場合、従来構造に対してMgBコアの厚さが同じでも表面積が広い分、コアの断面積が増える。同時に、MgB生成の反応むらが生じない範囲にコアの厚さを抑えることができ、線材の全域に渡り最適な反応条件でMgBが生成される。実施例3の構成で試作したMgB線材は、従来のIMD法による多芯線材に比べてMgBコア断面積が約1.2倍になり、それによりJも1.2倍向上した。 In the case of the present embodiment, the cross-sectional area of the core increases as the surface area is large even if the thickness of the MgB 2 core is the same as that of the conventional structure. At the same time, the thickness of the core can be suppressed within a range in which uneven reaction of MgB 2 generation does not occur, and MgB 2 is generated under optimal reaction conditions over the entire area of the wire. MgB 2 wire prototyped in the configuration of Example 3, MgB 2 core area is approximately 1.2 times that of the multi-core wire by conventional IMD process, whereby J c was also improved 1.2 times.
 また、本実施例ではフィラメントの配置を六角形状配置にしたが、それ以外の形状の配置:例えば四角形状配置、八角形状配置にしても構わない。また、本実施例ではシース材料にFe管を用いたが、伝熱を良くするためにCuとFeの複合材を用いても良い。その際、FeがMgBと接する構造になるよう配置するのが望ましい。また、本実施例では原料にB粉末を用いたが、よりJを向上させる目的でCやBCなどの添加材を加えてもよい。なお、本実施例では図7の断面図に示すように各フィラメント内部でMgBコア20は連続しているが、必ずしも全てが連続していなくても良い。複雑なコア形状を有するため、製造中に所々に形状の乱れが生じて、コアが不連続になる場合もあるが、電流を流す方向は線の長手方向であり、電流パスを著しく切断する悪影響はない。 Further, in this embodiment, the filaments are arranged in a hexagonal shape, but other shapes may be arranged, for example, a quadrangular shape or an octagonal shape. In this embodiment, an Fe tube is used as the sheath material, but a composite material of Cu and Fe may be used in order to improve heat transfer. At that time, it is desirable to arrange the Fe so as to be in contact with MgB 2 . Further, in this embodiment using the B powder in the raw material, it may be added materials such as C and B 4 C in order to further improve the J c. In the present embodiment, as shown in the cross-sectional view of FIG. 7, the MgB 2 core 20 is continuous inside each filament. However, not all of them are necessarily continuous. Due to the complex core shape, the core may become discontinuous in some places during manufacturing, and the core may be discontinuous, but the direction of current flow is the longitudinal direction of the line, and the adverse effect of significantly cutting the current path There is no.
 1…金属管、2…ホウ素原料、10…シース、11…金属部材、20…MgBコア、30…空隙、40…くびれ部位 1 ... metal tube, 2 ... boron raw material, 10 ... sheath, 11 ... metal member, 20 ... MgB 2 core, 30 ... gap, 40 ... constricted site

Claims (10)

  1.  その外形形状が筒型である金属シースと、
     前記金属シースの延在方向の任意の一の断面で見たときに、前記金属シースの内部は中空となっており、前記金属シースの内周辺にMgBコアおよび空隙部を有する少なくとも一つのフィラメント領域の辺が接するように設けられ、
     前記フィラメント領域の外側部分と前記フィラメント領域の内側部分との間の距離を前記フィラメント領域の厚さとするとき、前記厚さが場所によって異なることを特徴とするMgB超電導線材。
    A metal sheath whose outer shape is cylindrical,
    When viewed in an arbitrary cross section in the extending direction of the metal sheath, the inside of the metal sheath is hollow, and at least one filament having an MgB 2 core and a void in the inner periphery of the metal sheath It is provided so that the side of the area touches,
    The MgB 2 superconducting wire, wherein when the distance between the outer portion of the filament region and the inner portion of the filament region is the thickness of the filament region, the thickness varies depending on the location.
  2.  前記金属シース断面の外周形状は円形であり、前記円の中心点から円周方向に測った前記フィラメント領域の一部の厚さが、他の前記フィラメント領域の他の部位の厚さよりも大きいことをより、前記厚さが場所によって異なることを特徴とする請求項1記載のMgB超電導線材。 The outer peripheral shape of the cross section of the metal sheath is circular, and the thickness of a part of the filament region measured in the circumferential direction from the center point of the circle is larger than the thickness of other parts of the other filament region. The MgB 2 superconducting wire according to claim 1, wherein the thickness varies depending on the location.
  3.  前記空隙部の数は一つまたは複数であることを特徴とする請求項2記載のMgB超電導線材。 The MgB 2 superconducting wire according to claim 2, wherein the number of the voids is one or more.
  4.  前記金属シース断面の外周形状は略四角形であり、その四角形の図心からその四角形の外周方向に測った前記フィラメント領域の一部の厚さが、他の前記フィラメント領域の他の部位の厚さよりも大きいことをより、前記厚さが場所によって異なることを特徴とする請求項1記載のMgB超電導線材。 The outer peripheral shape of the cross section of the metal sheath is substantially a quadrangle, and the thickness of a part of the filament region measured from the centroid of the quadrangle in the outer peripheral direction of the quadrangle is larger than the thickness of other parts of the other filament region. The MgB 2 superconducting wire according to claim 1, wherein the thickness differs depending on the location due to its large size.
  5.  前記金属シース断面の外周形状は略四角形であり、前記シース断面で見たときの一部のシースの厚さが他の部分のシースの厚さよりも厚いことをより、前記厚さが場所によって異なることを特徴とする請求項1記載のMgB超電導線材。 The outer peripheral shape of the cross section of the metal sheath is substantially square, and the thickness varies depending on the location because the thickness of a part of the sheath when viewed in the cross section of the sheath is thicker than the thickness of the sheath of the other part. The MgB 2 superconducting wire according to claim 1, wherein:
  6. 金属シースの内側に、MgBコアおよび空隙部を含むフィラメント領域を少なくとも一つ以上有するMgB超電導線材であり、
    前記フィラメント領域の外側は金属シース材で覆われ、かつ前記フィラメント領域内の前記MgBコアは前記空隙部の外側に配置され、
    前記フィラメント領域は内側に凸の形状を一ヶ所以上有し、かつ
    前記フィラメント領域の外周長Lと断面積Sの関係がL>4√Sの関係であることを特徴とするMgB超電導線材。
    An MgB 2 superconducting wire having at least one filament region including an MgB 2 core and voids inside the metal sheath,
    The outside of the filament region is covered with a metal sheath material, and the MgB 2 core in the filament region is disposed outside the gap,
    The filament region has one or more inwardly convex shapes, and the relationship between the outer peripheral length L and the cross-sectional area S of the filament region is L> 4√S, MgB 2 superconducting wire,
  7. 請求項6に記載のMgB超電導線材において、前記金属シースの外形は円形状であることを特徴とするMgB超電導線材。 In MgB 2 superconducting wire according to claim 6, the outer shape of the metal sheath MgB 2 superconducting wire, which is a circular shape.
  8. 請求項6に記載のMgB超電導線材において、前記金属シースの外形は多角形状であることを特徴とするMgB超電導線材。 In MgB 2 superconducting wire according to claim 6, MgB 2 superconducting wire, characterized in that the outer shape of the metal sheath is a polygonal shape.
  9. 請求項6に記載のMgB超電導線材において、前記フィラメント領域は一つであることを特徴とする、単芯のMgB超電導線材。 The single core MgB 2 superconducting wire according to claim 6, wherein the MgB 2 superconducting wire has one filament region.
  10. 前記フィラメント領域は二つ以上あることを特徴とする請求項6に記載の多芯のMgB超電導線材。 The multifilamentary MgB 2 superconducting wire according to claim 6, wherein there are two or more filament regions.
PCT/JP2015/068116 2015-06-24 2015-06-24 Mgb2 superconducting wire WO2016207988A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/068116 WO2016207988A1 (en) 2015-06-24 2015-06-24 Mgb2 superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/068116 WO2016207988A1 (en) 2015-06-24 2015-06-24 Mgb2 superconducting wire

Publications (1)

Publication Number Publication Date
WO2016207988A1 true WO2016207988A1 (en) 2016-12-29

Family

ID=57584890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068116 WO2016207988A1 (en) 2015-06-24 2015-06-24 Mgb2 superconducting wire

Country Status (1)

Country Link
WO (1) WO2016207988A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138814U (en) * 1989-04-26 1990-11-20
JPH0512934A (en) * 1990-11-07 1993-01-22 Furukawa Electric Co Ltd:The Compound superconducting wire and manufacture thereof
JP2007157590A (en) * 2005-12-07 2007-06-21 Hitachi Ltd HIGH-PERFORMANCE MgB2 SUPERCONDUCTIVE WIRE, AND ITS MANUFACTURING METHOD

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138814U (en) * 1989-04-26 1990-11-20
JPH0512934A (en) * 1990-11-07 1993-01-22 Furukawa Electric Co Ltd:The Compound superconducting wire and manufacture thereof
JP2007157590A (en) * 2005-12-07 2007-06-21 Hitachi Ltd HIGH-PERFORMANCE MgB2 SUPERCONDUCTIVE WIRE, AND ITS MANUFACTURING METHOD

Similar Documents

Publication Publication Date Title
US8626254B2 (en) Metal assembly constituting a precursor for a superconductor, a superconductor and a method suitable for the production of a superconductor
JP2012094436A (en) Precursor of niobium-tin superconducting wire rod, niobium-tin superconducting wire rod using the same, and niobium-tin superconducting wire rod manufacturing method
JP2009211880A (en) Nb3Sn SUPERCONDUCTING WIRE ROD MADE BY USING INTERNAL Sn METHOD, AND PRECURSOR THEREFOR
JP2013062239A (en) Nb3Sn SUPERCONDUCTING WIRE AND METHOD FOR MANUFACTURING THE SAME
JP2008091136A (en) Nbti based superconductive wire
JP4185548B1 (en) Nb3Sn superconducting wire and precursor therefor
JP4227143B2 (en) Nb3Sn superconducting wire and precursor therefor
US7718898B2 (en) Precursor for manufacturing Nb3Sn superconducting wire and Nb3Sn superconducting wire
WO2016207988A1 (en) Mgb2 superconducting wire
JP2013197072A (en) Mgb2 superconducting multi-core wire material, superconducting cable, superconducting magnet
JP2007128686A (en) Nb3Sn SUPERCONDUCTING WIRE MATERIAL MANUFACTURED BY INSIDE DIFFUSION METHOD
US10128428B2 (en) Ternary molybdenum chalcogenide superconducting wire and manufacturing thereof
JP2010015821A (en) Precursor for manufacturing nb3sn superconductive wire rod and method of manufacturing the same, and nb3sn superconductive wire rod
JP2019186167A (en) PRECURSOR OF Nb3Sn SUPERCONDUCTING WIRE ROD AND Nb3Sn SUPERCONDUCTING WIRE ROD
JP2014143056A (en) Precursor for superconducting wire rod and superconducting wire rod
JP2010097902A (en) PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTIVE WIRE, AND Nb3Sn SUPERCONDUCTIVE WIRE
WO2020095734A1 (en) Precursor used for manufacturing superconductive wire rod, method for manufacturing precursor, and superconductive wire rod
JP5492691B2 (en) Manufacturing method of MgB2 superconducting multi-core wire
JP2013062039A (en) PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTING WIRE ROD AND Nb3Sn SUPERCONDUCTING WIRE ROD
JP2009059652A (en) BRONZE PROCESS Nb3Sn SUPERCONDUCTING WIRE ROD AND ITS PRECURSOR
JP2008147175A (en) Nbti superconducting multi-core for pulse, and nbti superconduting molded stranded wire for pulse
JPH01503502A (en) Superconductor manufacturing method
JP2019053985A (en) Precursor used for manufacturing superconducting wire rod, manufacturing method of precursor and superconducting wire rod
JP7129573B2 (en) Completed conductor assembly for Nb3Sn superconducting wire and method for manufacturing sub-elements for Nb3Sn superconducting wire
WO2024009568A1 (en) Multicore wire rod

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP