WO2016207449A1 - Hybrid solar installation - Google Patents

Hybrid solar installation Download PDF

Info

Publication number
WO2016207449A1
WO2016207449A1 PCT/ES2015/070487 ES2015070487W WO2016207449A1 WO 2016207449 A1 WO2016207449 A1 WO 2016207449A1 ES 2015070487 W ES2015070487 W ES 2015070487W WO 2016207449 A1 WO2016207449 A1 WO 2016207449A1
Authority
WO
WIPO (PCT)
Prior art keywords
installation
solar
high temperature
thermal
hybrid
Prior art date
Application number
PCT/ES2015/070487
Other languages
Spanish (es)
French (fr)
Inventor
José Alfonso NEBRERA GARCÍA
Alberto RODRIGUEZ ROCHA
Jorge SERVERT DEL RIO
Original Assignee
Acs Servicios, Comunicaciones Y Energía, S. L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acs Servicios, Comunicaciones Y Energía, S. L. filed Critical Acs Servicios, Comunicaciones Y Energía, S. L.
Priority to PCT/ES2015/070487 priority Critical patent/WO2016207449A1/en
Publication of WO2016207449A1 publication Critical patent/WO2016207449A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • F03G6/067Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/003Devices for producing mechanical power from solar energy having a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/003Devices for producing mechanical power from solar energy having a Rankine cycle
    • F03G6/005Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention relates to a hybrid solar installation that allows the production of electricity from the hybridization of solar energy and a fuel suitable for use in an engine and / or a turbine, preferably natural gas, LPG, biogas, Synthesis gas or liquid fuels such as diesel, diesel, biokerosene or jet-fuei.
  • a fuel suitable for use in an engine and / or a turbine preferably natural gas, LPG, biogas, Synthesis gas or liquid fuels such as diesel, diesel, biokerosene or jet-fuei.
  • the object of the present invention is a hybrid solar installation with a manageable and firm renewable technology that can be adapted to the electricity demand curve, thus overcoming the traditional disadvantage of renewable technologies, so that their production does not depend on the availability of solar resource, variable in time,
  • the photovoitaic use has the disadvantage of being non-manageable, since its instantaneous production capacity is inextricably subject to the availability of solar energy; its manageability can only be achieved by storing electrical energy, which is a non-specific technology of the source used and its predictability is only in the short term.
  • Thermoelectric utilization can be done by concentrating solar energy through parabolic discs, parabolic trough channels, Fresnel linear receivers or solar towers.
  • Parabolic discs are small autonomous units that, although they can be grouped together to produce large-scale electricity, are hardly susceptible to integration per se, which limits their options for improved manageability and predictability.
  • Fresnel linear receivers are based on units formed by small flat individual mirrors or with small curvature and horizontal axis and that are oriented according to the position of the sun and the receiver on which the radiation is concentrated. Said receiver is fixed and placed at a higher height than that of the mirrors. Inside the receiver circulates a transfer fluid that captures the heat concentrated by the mirrors. Traditionally, water / steam is used as a transfer fluid, so that the management of such systems is limited to pressurized storage of superheated water, limiting the storage capacity and therefore its manageability.
  • Both parabolic trough and solar tower channel technology are based on heating a heat transfer fluid or heat transfer fluid (HTF) using concentrated solar radiation, and then use this fluid to generate steam that will be used in a regenerative and overheated Rankine cycle.
  • HTF heat transfer fluid
  • Both technologies try to improve their manageability in three ways mainly: oversizing the surface of solar radiation collection, including storage of thermal energy, and / or burning auxiliary fuels (usually natural gas) in furnaces to heat the heat-carrying thermal fluid.
  • auxiliary fuel in furnaces could solve the problem, but normally the power delivered by these furnaces is much lower than the nominal of the installation (since they are mainly used as a regulation mechanism) and, although their size was sufficient, the performance obtained would be poor compared to other technologies.
  • the carbon footprint is increased by their use.
  • natural gas can be used in combined cycle power plants with yields close to 55%, while used in the furnace of these solar power plants its performance is limited superiorly by that of the Rankine cycle of the installation, which is usually in the range from 37 to 42% maximum (without considering boiler performance).
  • efficiency would be sacrificed in exchange for predictability and manageability.
  • Fossil fuel powered facilities are often highly predictable and manageable, especially open or combined cycle gas turbines.
  • these capacities are paid in the form of environmental cost and, in many cases, energy dependence due to the lack of local fossil resources.
  • the hybrid solar installation of the present invention solves all the above drawbacks by presenting advantages of efficiency, manageability, predictability, low environmental impact and use of local energy resources with respect to the prior art installations,
  • the present invention relates to a solar hybrid installation that allows the production of electricity to be carried out from the hybridization of solar energy and an auxiliary fuel suitable for use in an engine and / or a turbine, preferably natural gas, LPG, biogas, synthesis gas or liquid fuels such as diesel, diesel, biokerosene or jet-fuei.
  • an auxiliary fuel suitable for use in an engine and / or a turbine, preferably natural gas, LPG, biogas, synthesis gas or liquid fuels such as diesel, diesel, biokerosene or jet-fuei.
  • the hybrid solar installation comprises a thermoelectric solar installation with thermal storage, preferably with central tower or parabolic channel technology and an auxiliary machine, preferably a thermal combustion machine, more preferably a gas turbine or an engine that provides the Hybrid installation a high degree of flexibility that allows to be completely manageable and firm.
  • the solar hybrid installation comprises a high temperature storage tank and a low temperature storage tank of! storage fluid of the thermoelectric solar installation, this system may sometimes be replaced by a thermocycline tank, and also a steam turbine, so that the power to be delivered by the installation may be covered by combinations of steam turbine power and the auxiliary machine depending on the energy available to both.
  • the solar hybrid installation also includes a high-temperature recovery boiler that uses the energy available in the exhaust gases of the auxiliary machine so, in addition to providing additional power by itself, the auxiliary machine increases the energy available in the system Thermal storage, which is used to move the steam turbine.
  • the operation strategy of the installation includes demand forecast and available solar resource, so that the operating regime of the gas turbine is optimized to ensure that the thermal storage will have sufficient energy when necessary.
  • a post-combustor arranged after the thermal combustion machine or auxiliary machine that adds a amount of additional fuel in order to heat the exhaust gases of the auxiliary machine so as to allow the heating of the storage fluid to the temperature defined by the high temperature tank, in order to obtain a sufficiently high gas temperature for the correct operation of the high temperature recovery boiler and under conditions imposed by the high temperature storage tank.
  • the hybrid solar installation also comprises a low temperature recovery boiler, which uses the energy available in the exhaust gases of the alpha temperature recovery boiler, to reduce the temperature of the exhaust gases by means of a transfer fluid.
  • the energy thus recovered from the exhaust gases can be sent to a condensate preheater which, together with a condenser, the steam turbine and a steam generator form a Rankine cycle, where steam is generated for the steam turbine.
  • a secondary transfer fluid circuit with the corresponding heat exchangers can be used, or the condensate can be circulated directly through the low recuperator. In this way, through the low temperature recovery boiler, the generation and consumption of this low heat is decoupled in time analogously to what is done with high temperature energy.
  • the exhaustive recovery of the energy available in the auxiliary fuel makes the installation very efficient, reaching a thermal to electrical efficiency for the auxiliary fuel close to a combined cycle.
  • the number of annual hours in which the Rankine cycle operates at high rates can be maximized, which increases the average annual performance of the same.
  • the hybrid solar installation of the present invention provides energy with the same manageability and firmness as a combined cycle of comparable power, but consuming approximately 40% of the fossil fuel. In this way, it takes advantage of a local energy resource such as solar, minimizing the dependence of additional fuels to stabilize production and improve predictability and manageability of the installation.
  • the hybrid solar installation of the present invention is easily adaptable to the use of locally produced fuels (biogas, biokerosene, etc.) provided their quality allows them to be used in thermal machines.
  • locally produced fuels biogas, biokerosene, etc.
  • Figure 1 shows a first preferred embodiment of the solar hybrid installation of the present invention.
  • Figure 2 shows a second preferred embodiment of the hybrid solar installation of the present invention. PREFERRED EMBODIMENT OF THE INVENTION
  • the solar hybrid installation comprises a thermoelectric solar installation (1) with thermal storage, with parabolic channel technology in this embodiment, and an auxiliary machine (2), preferably a machine thermal combustion, more preferably a gas turbine.
  • the solar hybrid installation comprises a high temperature storage tank (3) and a low temperature storage tank (4) of a storage fluid of the thermoelectric solar installation or a thermocline tank replacing the high temperature storage tank ( 3) and the low temperature storage tank (4), and in this preferred embodiment, a reversible heat exchanger (5) between a heat transfer fluid and the storage fluid, between the high temperature storage tanks (3 ) low temperature (4) and thermoelectric solar installation (1).
  • the hybrid solar installation also includes a high recovery boiler temperature (6) that uses the energy available in the exhaust gases of the auxiliary machine (2) to increase the temperature of the storage fluid that is directed to the high temperature storage tank (3) or the thermocline tank, and a boiler Low temperature recovery (7), which uses the energy available in the exhaust gases of the high temperature recovery boiler (6), exhaust gases that are preferably located at 300 ° C, by means of a transfer fluid (which can be directly condensed from the cycle, or a secondary circuit of pressurized water, thermal oil, mineral oil or others) reduce the temperature of the exhaust gases to around 90 ° C to 150 ° C.
  • a transfer fluid which can be directly condensed from the cycle, or a secondary circuit of pressurized water, thermal oil, mineral oil or others
  • the energy thus recovered is sent to a condensate preheater (8) which together with a condenser (9), a steam turbine (10) and a steam generator (1 1) form a Rankine cycle, where steam is generated for the steam turbine.
  • Exhaust gases from the low temperature recovery boiler (7) are sent to a chimney (12) for extraction.
  • the hybrid solar installation comprises a thermoelectric solar installation (1) with thermal storage, with central tower technology in this exemplary embodiment, and an auxiliary machine (2), preferably a machine thermal combustion, more preferably a gas turbine.
  • the elements are those described in the first embodiment, but without the presence of a reversible heat exchanger (5) between the heat transfer thermal fluid and the storage fluid, between the low temperature storage tanks (3) ( 4) and the thermoelectric solar installation (1).
  • the temperature of the high temperature storage tank (3) is higher than the temperature of the high temperature storage tank (3) for the first embodiment.

Abstract

The invention relates to a hybrid solar installation that permits the production of electricity based on the hybridisation of solar energy and a fuel suitable for use in a motor and/or a turbine, preferably natural gas, LPG, biogas, synthesis gas or liquid fuels such as diesel, petrol, biokerosene or jet fuel, comprising a thermoelectric solar installation having thermal storage, preferably with central tower technology or parabolic channels and an auxiliary machine, preferably a thermal combustion machine, particularly preferably a gas turbine or a motor that provides the hybrid installation with a high degree of flexibility which permits same to be completely manageable and robust.

Description

INSTALACIÓN HIBRIDA SOLAR  SOLAR HYBRID INSTALLATION
D E S C R I P C I Ó N OBJETO DE LA INVENCIÓN D E S C R I P C I O N OBJECT OF THE INVENTION
La presente invención se refiere a una instalación híbrida solar que permite llevar a cabo la producción de electricidad a partir de la hibridación de energía solar y un combustible apto para uso en un motor y/o una turbina, preferiblemente gas natural, GLP, biogás, gas de síntesis o combustibles líquidos como diésel, gasóleo, bioqueroseno o jet-fuei. The present invention relates to a hybrid solar installation that allows the production of electricity from the hybridization of solar energy and a fuel suitable for use in an engine and / or a turbine, preferably natural gas, LPG, biogas, Synthesis gas or liquid fuels such as diesel, diesel, biokerosene or jet-fuei.
El objeto de la presente invención es una instalación híbrida solar con una tecnología renovable gestionabie y firme que se puede adaptar a la curva de demanda eléctrica, venciendo de esta manera la desventaja tradicional de las tecnologías renovables, ai no depender su producción de la disponibilidad de recurso solar, variable en el tiempo, The object of the present invention is a hybrid solar installation with a manageable and firm renewable technology that can be adapted to the electricity demand curve, thus overcoming the traditional disadvantage of renewable technologies, so that their production does not depend on the availability of solar resource, variable in time,
ANTECEDENTES DE LA INVENCIÓN El aprovechamiento de energía solar para producción de electricidad puede lograrse por dos vías principales: fotovoítaica y termoeléctrica. BACKGROUND OF THE INVENTION The use of solar energy for electricity production can be achieved in two main ways: photovoítaica and thermoelectric.
El aprovechamiento fotovoitaico tiene la desventaja de ser no gestionabie, ya que su capacidad de producción instantánea está indisolublemente sujeta a la disponibilidad de energía solar; su gestionabilidad solo se puede lograr mediante el almacenamiento de energía eléctrica, que es una tecnología inespecífica de la fuente utilizada y su predictibilidad solo es a corto plazo. The photovoitaic use has the disadvantage of being non-manageable, since its instantaneous production capacity is inextricably subject to the availability of solar energy; its manageability can only be achieved by storing electrical energy, which is a non-specific technology of the source used and its predictability is only in the short term.
El aprovechamiento termoeléctrico puede hacerse concentrando la energía solar mediante discos parabólicos, canales cilindro-parabólicos, receptores lineales Fresnel o torres solares. Los discos parabólicos son pequeñas unidades autónomas que, si bien pueden agruparse para producir electricidad a gran escala, son difícilmente susceptibles de integración per se, lo que limita sus opciones de mejora de gestionabilidad y predictibilidad. Los receptores lineales Fresnel se basan en unidades formadas por pequeños espejos individuales planos o con pequeña curvatura y eje horizontal y que se orientan en función de la posición del sol y del receptor sobre el que se concentra la radiación. Dicho receptor es fijo y está colocado a una mayor altura respecto a la de ios espejos. Por el interior de dicho receptor circula un fluido de transferencia que capta el calor concentrado por los espejos. Tradicíonaimente, se emplea agua/vapor como fluido de transferencia, con lo que la gestionabiiidad de dichos sistemas queda limitada ai almacenamiento presurizado de agua sobrecalentada, limitando la capacidad de almacenamiento y por tanto su gestionabiiidad. Thermoelectric utilization can be done by concentrating solar energy through parabolic discs, parabolic trough channels, Fresnel linear receivers or solar towers. Parabolic discs are small autonomous units that, although they can be grouped together to produce large-scale electricity, are hardly susceptible to integration per se, which limits their options for improved manageability and predictability. Fresnel linear receivers are based on units formed by small flat individual mirrors or with small curvature and horizontal axis and that are oriented according to the position of the sun and the receiver on which the radiation is concentrated. Said receiver is fixed and placed at a higher height than that of the mirrors. Inside the receiver circulates a transfer fluid that captures the heat concentrated by the mirrors. Traditionally, water / steam is used as a transfer fluid, so that the management of such systems is limited to pressurized storage of superheated water, limiting the storage capacity and therefore its manageability.
Los últimos estudios se centran en la sustitución del agua/vapor por sales fundidas con el objetivo de aumentar las temperaturas de operación y la capacidad de almacenamiento de este tipo de sistemas. En este último caso, la problemática es similar a la planteada a continuación para las tecnologías de canales ciiindro- parabólicos o torre solar en lo que respecta a la presente instalación. The latest studies focus on the replacement of water / steam with molten salts with the aim of increasing the operating temperatures and storage capacity of these types of systems. In the latter case, the problem is similar to the one presented below for the technologies of cylindrical-parabolic channels or solar tower with respect to the present installation.
Tanto la tecnología de canales cilindro-parabólicos como la de torre solar se basan en calentar un fluido de transferencia o fluido térmico caloportador (HTF, siglas en inglés de "heat transfer fluid") mediante la radiación solar concentrada, y después utilizar este fluido para generar vapor que se utilizará en un ciclo Rankine regenerativo y con recalentamiento. Ambas tecnologías intentan mejorar su gestionabiiidad por tres vías principalmente: sobredimensionando la superficie de captación de radiación solar, incluyendo almacenamiento de energía térmica, y/o quemando combustibles auxiliares (habitualmente gas natural) en hornos para calentar el fluido térmico caloportador. Both parabolic trough and solar tower channel technology are based on heating a heat transfer fluid or heat transfer fluid (HTF) using concentrated solar radiation, and then use this fluid to generate steam that will be used in a regenerative and overheated Rankine cycle. Both technologies try to improve their manageability in three ways mainly: oversizing the surface of solar radiation collection, including storage of thermal energy, and / or burning auxiliary fuels (usually natural gas) in furnaces to heat the heat-carrying thermal fluid.
Ni el sobredimensionamiento del campo solar ni la inclusión de almacenamiento térmico garantizan por sí mismos la gestionabiiidad completa de la instalación, y mucho menos su firmeza, que sigue siendo sensible a periodos prolongados sin radiación solar. Su predictibilidad es algo mejor, pero aún imperfecta. Neither the oversizing of the solar field nor the inclusion of thermal storage guarantee for themselves the complete manageability of the installation, much less its firmness, which remains sensitive to prolonged periods without solar radiation. Its predictability is somewhat better, but still imperfect.
El uso de combustible auxiliar en hornos podría resolver el problema, pero normalmente la potencia entregabie por estos hornos es mucho menor que la nominal de la instalación (ya que se utilizan principalmente como mecanismo de regulación) y, aunque su tamaño fuera suficiente, el rendimiento obtenido sería pobre en comparación con otras tecnologías. Además, en el caso de combustibles fósiles (no renovables), se incrementa la huella de carbono por el uso de los mismos. Por ejemplo, el gas natural puede emplearse en centrales de ciclo combinado con rendimientos cercanos ai 55%, mientras que usado en el horno de estas centrales solares su rendimiento está limitado superiormente por el del ciclo Rankine de la instalación, que suele situarse en el rango del 37 ai 42% como máximo (sin considerar el rendimiento de la caldera). Así, se sacrificaría eficiencia a cambio de predicfibilidad y gestionabiiidad. The use of auxiliary fuel in furnaces could solve the problem, but normally the power delivered by these furnaces is much lower than the nominal of the installation (since they are mainly used as a regulation mechanism) and, although their size was sufficient, the performance obtained would be poor compared to other technologies. In addition, in the case of fossil fuels (no renewable), the carbon footprint is increased by their use. For example, natural gas can be used in combined cycle power plants with yields close to 55%, while used in the furnace of these solar power plants its performance is limited superiorly by that of the Rankine cycle of the installation, which is usually in the range from 37 to 42% maximum (without considering boiler performance). Thus, efficiency would be sacrificed in exchange for predictability and manageability.
Las instalaciones alimentadas por combustible fósil suelen ser altamente predecibles y gestíonables, especialmente las turbinas de gas en ciclo abierto o combinado. No obstante, estas capacidades se pagan en forma de coste medioambiental y, en muchos casos, dependencia energética debido a la falta de recursos fósiles locales. Fossil fuel powered facilities are often highly predictable and manageable, especially open or combined cycle gas turbines. However, these capacities are paid in the form of environmental cost and, in many cases, energy dependence due to the lack of local fossil resources.
Sería posible intentar paliar las deficiencias de ambas fuentes, a nivel regional o nacional, mediante la implantación de instalaciones de ambos tipos (solares y fósiles) y buscando equilibrar el mix energético, pero esto implica una política energética de planificación estatal centralizada, y lleva a mayores costes totales. It would be possible to try to alleviate the deficiencies of both sources, at regional or national level, by implementing facilities of both types (solar and fossil) and seeking to balance the energy mix, but this implies a centralized state planning energy policy, and leads to higher total costs
La instalación híbrida solar de la presente invención solventa todos los inconvenientes anteriores presentando ventajas de eficiencia, gestionabiiidad, predictibiiidad, bajo impacto ambiental y aprovechamiento de recursos energéticos locales respecto a las instalaciones del estado de la técnica, The hybrid solar installation of the present invention solves all the above drawbacks by presenting advantages of efficiency, manageability, predictability, low environmental impact and use of local energy resources with respect to the prior art installations,
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención se refiere a una instalación híbrida solar que permite llevar a cabo la producción de electricidad a partir de la hibridación de energía solar y un combustible auxiliar apto para su uso en un motor y/o una turbina, preferiblemente gas natural, GLP, biogás, gas de síntesis o combustibles líquidos como diésel, gasóleo, bioqueroseno o jet-fuei. The present invention relates to a solar hybrid installation that allows the production of electricity to be carried out from the hybridization of solar energy and an auxiliary fuel suitable for use in an engine and / or a turbine, preferably natural gas, LPG, biogas, synthesis gas or liquid fuels such as diesel, diesel, biokerosene or jet-fuei.
La instalación híbrida solar comprende una instalación solar termoeléctrica con almacenamiento térmico, preferentemente con tecnología de torre central o de canales parabólicos y una máquina auxiliar, preferentemente una máquina térmica de combustión, más preferentemente una turbina de gas o un motor que proporciona a la instalación híbrida un alto grado de flexibilidad que ie permite ser completamente gestíonable y firme. The hybrid solar installation comprises a thermoelectric solar installation with thermal storage, preferably with central tower or parabolic channel technology and an auxiliary machine, preferably a thermal combustion machine, more preferably a gas turbine or an engine that provides the Hybrid installation a high degree of flexibility that allows to be completely manageable and firm.
La instalación híbrida solar comprende un tanque de almacenamiento a alta temperatura y un tanque de almacenamiento a baja temperatura de! fluido de almacenamiento de la instalación solar termoeléctrica, pudiendo ser en ocasiones este sistema sustituido por un tanque termociino, y además una turbina de vapor, por lo que la potencia a entregar por la instalación podrá ser cubierta por combinaciones de potencia de la turbina de vapor y la máquina auxiliar en función de la energía disponible para ambas. The solar hybrid installation comprises a high temperature storage tank and a low temperature storage tank of! storage fluid of the thermoelectric solar installation, this system may sometimes be replaced by a thermocycline tank, and also a steam turbine, so that the power to be delivered by the installation may be covered by combinations of steam turbine power and the auxiliary machine depending on the energy available to both.
Una de las ventajas presentadas por esta instalación híbrida solar es que tanto la potencia de la turbina de vapor como la potencia de la máquina auxiliar pueden ser escaladas de acuerdo a los tipos de demanda existente. De esta manera, y en conjunción con las estrategias de operación predefinidas en la instalación, la instalación es completamente gestionable y firme en cualquier rango de producción entre el mínimo técnico de la máquina de menor potencia y la suma total de las potencias de las máquinas térmicas. La instalación híbrida solar comprende además una caldera de recuperación de alta temperatura que utiliza la energía disponible en los gases de escape de la máquina auxiliar por lo que, además de proporcionar potencia adicional por sí misma, la máquina auxiliar aumenta la energía disponible en el sistema de almacenamiento térmico, que es utilizado para mover la turbina de vapor. Esto hace que la energía a entregar por la instalación sea completamente predecible, ya que además del recurso solar se dispone de la energía recuperada de la máquina auxiliar y de su propia generación para dar respuesta a la demanda a satisfacer. Esto permite modular la entrega de potencia de cada máquina para dar servicio no solo a la demanda a corto plazo sino también a medio plazo. Para ello, la estrategia de operación de la instalación incluye previsión de demanda y de recurso solar disponible, de manera que el régimen de funcionamiento de la turbina de gas se optimiza para asegurar que el almacenamiento térmico dispondrá de energía suficiente cuando sea necesario. One of the advantages presented by this hybrid solar installation is that both the power of the steam turbine and the power of the auxiliary machine can be scaled according to the types of existing demand. In this way, and in conjunction with the predefined operation strategies in the installation, the installation is fully manageable and firm in any production range between the technical minimum of the lowest power machine and the total sum of the power of the thermal machines . The solar hybrid installation also includes a high-temperature recovery boiler that uses the energy available in the exhaust gases of the auxiliary machine so, in addition to providing additional power by itself, the auxiliary machine increases the energy available in the system Thermal storage, which is used to move the steam turbine. This makes the energy to be delivered by the installation completely predictable, since in addition to the solar resource, the energy recovered from the auxiliary machine and its own generation is available to respond to the demand to be met. This allows modulating the power delivery of each machine to serve not only the demand in the short term but also in the medium term. For this, the operation strategy of the installation includes demand forecast and available solar resource, so that the operating regime of the gas turbine is optimized to ensure that the thermal storage will have sufficient energy when necessary.
En caso de ser necesario, se incluye en la instalación un post-combustor dispuesto después de la máquina térmica de combustión o máquina auxiliar que añade una cantidad de combustible adicional con el objeto de calentar los gases de escape de la máquina auxiliar de manera que se permita el calentamiento del fluido de almacenamiento hasta la temperatura definida por el tanque de alta temperatura, con el objeto de obtener una temperatura de gases suficientemente alta para el correcto funcionamiento de la caldera de recuperación de alta temperatura y en condiciones impuestas por el tanque de almacenamiento de alta temperatura. If necessary, a post-combustor arranged after the thermal combustion machine or auxiliary machine that adds a amount of additional fuel in order to heat the exhaust gases of the auxiliary machine so as to allow the heating of the storage fluid to the temperature defined by the high temperature tank, in order to obtain a sufficiently high gas temperature for the correct operation of the high temperature recovery boiler and under conditions imposed by the high temperature storage tank.
Opcionalmente, la instalación híbrida solar comprende además una caldera de recuperación de baja temperatura, que utiliza la energía disponible en los gases de escape de la caldera de recuperación de alfa temperatura, para mediante un fluido de transferencia reducir la temperatura de los gases de escape. Optionally, the hybrid solar installation also comprises a low temperature recovery boiler, which uses the energy available in the exhaust gases of the alpha temperature recovery boiler, to reduce the temperature of the exhaust gases by means of a transfer fluid.
La energía así recuperada de los gases de escape puede ser enviada a unos precalentadores de condensado que, junto con un condensador, la turbina de vapor y un generador de vapor forman un ciclo Rankine, donde se genera vapor para la turbina de vapor. Para enviar la energía a ios precalentadores puede emplearse un circuito secundario de fluido de transferencia con los intercambiadores de calor correspondientes, o bien hacer circular directamente el condensado por el recuperador de baja. De esta manera, mediante la caldera de recuperación de baja temperatura se desacopla en el tiempo la generación y el consumo de este calor de baja de forma análoga a lo que se hace con la energía de alta temperatura. La exhaustiva recuperación de la energía disponible en el combustible auxiliar hace que la instalación sea muy eficiente, alcanzando un rendimiento térmico a eléctrico para el combustible auxiliar cercano ai de un ciclo combinado. The energy thus recovered from the exhaust gases can be sent to a condensate preheater which, together with a condenser, the steam turbine and a steam generator form a Rankine cycle, where steam is generated for the steam turbine. To send the energy to the pre-heaters, a secondary transfer fluid circuit with the corresponding heat exchangers can be used, or the condensate can be circulated directly through the low recuperator. In this way, through the low temperature recovery boiler, the generation and consumption of this low heat is decoupled in time analogously to what is done with high temperature energy. The exhaustive recovery of the energy available in the auxiliary fuel makes the installation very efficient, reaching a thermal to electrical efficiency for the auxiliary fuel close to a combined cycle.
Adicionaimente, al aumentar la energía disponible para operar el ciclo Rankine, y disponer de una fuente de potencia eléctrica alternativa, puede maximízarse el número de horas anuales en las que el ciclo Rankine opera en regímenes elevados, lo que aumenta el rendimiento promedio anual del mismo. Additionally, by increasing the energy available to operate the Rankine cycle, and having an alternative electric power source, the number of annual hours in which the Rankine cycle operates at high rates can be maximized, which increases the average annual performance of the same. .
La instalación híbrida solar de la presente invención proporciona energía con la misma gestionabilidad y firmeza que un ciclo combinado de potencia comparable, pero consumiendo aproximadamente un 40% del combustible fósil que aquél. De este modo aprovecha un recurso energético local como es el solar minimizando la dependencia de combustibles adicionales para estabilizar la producción y mejorar la predictibilidad y gestionab !idad de la instalación. The hybrid solar installation of the present invention provides energy with the same manageability and firmness as a combined cycle of comparable power, but consuming approximately 40% of the fossil fuel. In this way, it takes advantage of a local energy resource such as solar, minimizing the dependence of additional fuels to stabilize production and improve predictability and manageability of the installation.
Adicionalrnente, la instalación híbrida solar de la presente invención es fácilmente adaptable al uso de combustibles de producción local (biogás, bioqueroseno, etc.) siempre que su calidad permita utilizarlos en máquinas térmicas. Additionally, the hybrid solar installation of the present invention is easily adaptable to the use of locally produced fuels (biogas, biokerosene, etc.) provided their quality allows them to be used in thermal machines.
BREVE DESCRIPCIÓN DE LOS DIBUJOS BRIEF DESCRIPTION OF THE DRAWINGS
La Figura 1 muestra un primer ejemplo de realización preferente de la instalación híbrida solar de la presente invención. Figure 1 shows a first preferred embodiment of the solar hybrid installation of the present invention.
La Figura 2 muestra un segundo ejemplo de realización preferente de la instalación híbrida solar de la presente invención. REALIZACIÓN PREFERENTE DE LA INVENCIÓN Figure 2 shows a second preferred embodiment of the hybrid solar installation of the present invention. PREFERRED EMBODIMENT OF THE INVENTION
A continuación se procederá a describir de manera detallada la instalación híbrida solar de la presente invención. En un primer ejemplo de realización mostrado en la Figura 1 , la instalación híbrida solar comprende una instalación solar termoeléctrica (1 ) con almacenamiento térmico, con tecnología de canales parabólicos en este ejemplo de realización, y una máquina auxiliar (2), preferentemente una máquina térmica de combustión, más preferentemente una turbina de gas. Next, the hybrid solar installation of the present invention will be described in detail. In a first embodiment shown in Figure 1, the solar hybrid installation comprises a thermoelectric solar installation (1) with thermal storage, with parabolic channel technology in this embodiment, and an auxiliary machine (2), preferably a machine thermal combustion, more preferably a gas turbine.
La instalación híbrida solar comprende un tanque de almacenamiento a alta temperatura (3) y un tanque de almacenamiento a baja temperatura (4) de un fluido de almacenamiento de la instalación solar termoeléctrica o un tanque termoclino en sustitución del tanque de almacenamiento a alta temperatura (3) y el tanque de almacenamiento a baja temperatura (4), y en este ejemplo de realización preferente un intercambiador de calor reversible (5) entre un fluido térmico caíoportador y el fluido de almacenamiento, entre los tanques de almacenamiento a alta temperatura (3) baja temperatura (4) y la instalación solar termoeléctrica (1 ). La instalación híbrida solar comprende además una caldera de recuperación de alta temperatura (6) que utiliza la energía disponible en los gases de escape de la máquina auxiliar (2) para incrementar la temperatura del fluido de almacenamiento que es dirigido al tanque de almacenamiento a alta temperatura (3) o al tanque termoclino, y una caldera de recuperación de baja temperatura (7), que utiliza la energía disponible en ios gases de escape de la caldera de recuperación de alta temperatura (6), gases de escape que preferentemente se encuentran a 300 °C, para mediante un fluido de transferencia (que puede ser directamente condensado del ciclo, o un circuito secundario de agua a presión, aceite térmico, aceite mineral u otros) reducir la temperatura de los gases de escape hasta el entorno de 90 °C a 150 °C. The solar hybrid installation comprises a high temperature storage tank (3) and a low temperature storage tank (4) of a storage fluid of the thermoelectric solar installation or a thermocline tank replacing the high temperature storage tank ( 3) and the low temperature storage tank (4), and in this preferred embodiment, a reversible heat exchanger (5) between a heat transfer fluid and the storage fluid, between the high temperature storage tanks (3 ) low temperature (4) and thermoelectric solar installation (1). The hybrid solar installation also includes a high recovery boiler temperature (6) that uses the energy available in the exhaust gases of the auxiliary machine (2) to increase the temperature of the storage fluid that is directed to the high temperature storage tank (3) or the thermocline tank, and a boiler Low temperature recovery (7), which uses the energy available in the exhaust gases of the high temperature recovery boiler (6), exhaust gases that are preferably located at 300 ° C, by means of a transfer fluid ( which can be directly condensed from the cycle, or a secondary circuit of pressurized water, thermal oil, mineral oil or others) reduce the temperature of the exhaust gases to around 90 ° C to 150 ° C.
La energía así recuperada es enviada a unos precalentadores (8) de condensado que junto con un condensador (9), una turbina de vapor (10) y un generador de vapor (1 1 ) forman un ciclo Rankine, donde se genera vapor para la turbina de vapor. Los gases de escape de la caldera de recuperación de baja temperatura (7) son enviados a una chimenea (12) para su extracción. The energy thus recovered is sent to a condensate preheater (8) which together with a condenser (9), a steam turbine (10) and a steam generator (1 1) form a Rankine cycle, where steam is generated for the steam turbine. Exhaust gases from the low temperature recovery boiler (7) are sent to a chimney (12) for extraction.
En un segundo ejemplo de realización mostrado en la Figura 2, la instalación híbrida solar comprende una instalación solar termoeléctrica (1 ) con almacenamiento térmico, con tecnología de torre central en este ejemplo de realización, y una máquina auxiliar (2), preferentemente una máquina térmica de combustión, más preferentemente una turbina de gas. In a second embodiment shown in Figure 2, the hybrid solar installation comprises a thermoelectric solar installation (1) with thermal storage, with central tower technology in this exemplary embodiment, and an auxiliary machine (2), preferably a machine thermal combustion, more preferably a gas turbine.
Los elementos son los descritos en el primer ejemplo de realización, pero sin la presencia de un intercambiador de calor reversible (5) entre el fluido térmico caloportador y el fluido de almacenamiento, entre ios tanques de almacenamiento a alfa temperatura (3) baja temperatura (4) y la instalación solar termoeléctrica (1 ). The elements are those described in the first embodiment, but without the presence of a reversible heat exchanger (5) between the heat transfer thermal fluid and the storage fluid, between the low temperature storage tanks (3) ( 4) and the thermoelectric solar installation (1).
Debido a la presencia de la tecnología de torre central, es que la temperatura del tanque de almacenamiento a alta temperatura (3) es mayor que la temperatura del tanque de almacenamiento a alta temperatura (3) para el primer ejemplo de realización. Due to the presence of the central tower technology, it is that the temperature of the high temperature storage tank (3) is higher than the temperature of the high temperature storage tank (3) for the first embodiment.

Claims

R E I V I N D I C A C I O N E S
1. - Instalación híbrida solar que comprende una instalación solar termoeléctrica (1 ) con almacenamiento térmico y un fluido de caloportador, y una turbina de vapor (10) para la transformación de la energía contenida en el fluido caloportador en energía eléctrica, un condensador (9) y un generador de vapor (1 1 ) para llevar a cabo un ciclo Rankine caracterizado por que comprende además una máquina térmica de combustión (2) o máquina auxiliar, un tanque de almacenamiento a alta temperatura (3) y un tanque de almacenamiento a baja temperatura (4) de un fluido de almacenamiento de la instalación solar termoeléctrica (1 ) o un tanque termoclino en sustitución del tanque de almacenamiento a alta temperatura (3) y el tanque de almacenamiento a baja temperatura (4), comprendiendo además la instalación una caldera de recuperación de alta temperatura (6) que utiliza la energía disponible en los gases de escape de la máquina térmica de combustión (2) para incrementar la temperatura del fluido de almacenamiento que es dirigido ai tanque de almacenamiento a alta temperatura (3) o al tanque termoclino. 1. - Solar hybrid installation comprising a thermoelectric solar installation (1) with thermal storage and a heat transfer fluid, and a steam turbine (10) for the transformation of the energy contained in the heat transfer fluid into electrical energy, a condenser ( 9) and a steam generator (1 1) for carrying out a Rankine cycle characterized in that it also comprises a thermal combustion machine (2) or auxiliary machine, a high temperature storage tank (3) and a storage tank at low temperature (4) of a storage fluid of the thermoelectric solar installation (1) or a thermocline tank replacing the high temperature storage tank (3) and the low temperature storage tank (4), further comprising the installation of a high temperature recovery boiler (6) that uses the energy available in the exhaust gases of the thermal combustion machine (2) to increase the temperature of the storage fluid that is directed to the high temperature storage tank (3) or to the thermocline tank.
2. - instalación híbrida solar según reivindicación 1 caracterizado por que comprende además unos precalentadores (8) de condensado. 2. - solar hybrid installation according to claim 1, characterized in that it also comprises condensate preheaters (8).
3. - Instalación híbrida solar según cualquiera de las reivindicaciones anteriores caracterizado por que comprende además una caldera de recuperación de baja temperatura (7) dispuesta a la salida de la caldera de recuperación de alta temperatura (6), que utiliza la energía disponible en los gases de escape de la caldera de recuperación de alta temperatura (6). 3. - Solar hybrid installation according to any of the preceding claims characterized in that it further comprises a low temperature recovery boiler (7) arranged at the outlet of the high temperature recovery boiler (6), which uses the energy available in the Exhaust gases from the high temperature recovery boiler (6).
4. - Instalación híbrida solar según cualquiera de las reivindicaciones anteriores caracterizado por que la máquina térmica de combustión (2) es una turbina de gas. 4. - Solar hybrid installation according to any of the preceding claims characterized in that the thermal combustion machine (2) is a gas turbine.
5.- Instalación híbrida solar según cualquiera de las reivindicaciones 1 a 4 caracterizado por que la máquina térmica de combustión (2) es un motor. 5. Solar hybrid installation according to any of claims 1 to 4 characterized in that the thermal combustion machine (2) is a motor.
6.- Instalación híbrida solar según cualquiera de las reivindicaciones anteriores caracterizado por que comprende un postcombustor dispuesto después de la máquina térmica de combustión (2) o máquina auxiliar que añade una cantidad de combustible adicional, con el objeto de obtener una temperatura de gases suficientemente alta para el correcto funcionamiento del recuperador de alfa temperatura (8) y en condiciones impuestas por el tanque de almacenamiento de alta temperatura (3). 6. Solar hybrid installation according to any of the preceding claims characterized in that it comprises a post-combustion disposed after the thermal combustion machine (2) or auxiliary machine that adds a quantity of fuel additionally, in order to obtain a sufficiently high gas temperature for the correct functioning of the alpha temperature recuperator (8) and under conditions imposed by the high temperature storage tank (3).
7.- Instalación híbrida solar según cualquiera de las reivindicaciones anteriores caracterizado por que la instalación solar termoeléctrica (1 ) es una instalación con tecnología de canales parabólicos. 7.- Solar hybrid installation according to any of the preceding claims characterized in that the thermoelectric solar installation (1) is an installation with parabolic channel technology.
8. - Instalación híbrida solar según cualquiera de las reivindicaciones 1 a 8 caracterizado por que la instalación solar termoeléctrica (1 ) es una instalación con tecnología de torre central. 8. - Hybrid solar installation according to any of claims 1 to 8 characterized in that the thermoelectric solar installation (1) is an installation with central tower technology.
9. - Instalación híbrida solar según reivindicación 7 caracterizado por que comprende un intercambíador de calor reversible (5) entre el fluido térmico caloportador y el fluido de almacenamiento, entre los tanques de almacenamiento a alta temperatura (3) baja temperatura (4) y la instalación solar termoeléctrica (1 ). 9. - Solar hybrid installation according to claim 7 characterized in that it comprises a reversible heat exchanger (5) between the heat transfer thermal fluid and the storage fluid, between the high temperature storage tanks (3) low temperature (4) and the solar thermal installation (1).
PCT/ES2015/070487 2015-06-23 2015-06-23 Hybrid solar installation WO2016207449A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2015/070487 WO2016207449A1 (en) 2015-06-23 2015-06-23 Hybrid solar installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2015/070487 WO2016207449A1 (en) 2015-06-23 2015-06-23 Hybrid solar installation

Publications (1)

Publication Number Publication Date
WO2016207449A1 true WO2016207449A1 (en) 2016-12-29

Family

ID=53879534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070487 WO2016207449A1 (en) 2015-06-23 2015-06-23 Hybrid solar installation

Country Status (1)

Country Link
WO (1) WO2016207449A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107542631A (en) * 2017-09-04 2018-01-05 中国华能集团清洁能源技术研究院有限公司 A kind of three tank heat storage type point line focus mixing heat collecting field solar heat power generation system
CN110767323A (en) * 2019-10-14 2020-02-07 中国科学院合肥物质科学研究院 Intermediate heat exchange system for nuclear fusion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2925615A1 (en) * 1979-06-25 1981-02-12 Maschf Augsburg Nuernberg Ag Energy conversion system utilising waste heat - has solar energy collector supplemented by IC engine waste heat and heat store generating steam for current generation
US20120102950A1 (en) * 2010-11-02 2012-05-03 Alliance For Sustainable Energy, Llc. Solar thermal power plant with the integration of an aeroderivative turbine
WO2013018014A2 (en) * 2011-08-02 2013-02-07 Brightsource Industries (Israel) Ltd. Solar energy thermal storage systems, devices, and methods
WO2014123537A1 (en) * 2013-02-08 2014-08-14 Skyfuel, Inc. Solar/gas hybrid power system configurations and methods of use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2925615A1 (en) * 1979-06-25 1981-02-12 Maschf Augsburg Nuernberg Ag Energy conversion system utilising waste heat - has solar energy collector supplemented by IC engine waste heat and heat store generating steam for current generation
US20120102950A1 (en) * 2010-11-02 2012-05-03 Alliance For Sustainable Energy, Llc. Solar thermal power plant with the integration of an aeroderivative turbine
WO2013018014A2 (en) * 2011-08-02 2013-02-07 Brightsource Industries (Israel) Ltd. Solar energy thermal storage systems, devices, and methods
WO2014123537A1 (en) * 2013-02-08 2014-08-14 Skyfuel, Inc. Solar/gas hybrid power system configurations and methods of use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107542631A (en) * 2017-09-04 2018-01-05 中国华能集团清洁能源技术研究院有限公司 A kind of three tank heat storage type point line focus mixing heat collecting field solar heat power generation system
CN110767323A (en) * 2019-10-14 2020-02-07 中国科学院合肥物质科学研究院 Intermediate heat exchange system for nuclear fusion device

Similar Documents

Publication Publication Date Title
CN202100399U (en) Solar energy and common boiler combined power-generating and heating system
US20120102950A1 (en) Solar thermal power plant with the integration of an aeroderivative turbine
Avezova et al. Solar thermal power plants in the world: The experience of development and operation
CN102400872A (en) Heat generation device with complementary energy storage of solar energy and wind energy
US20100089060A1 (en) Hybrid power facilities
CN102278285A (en) High-temperature heat-accumulating-type new energy utilizing system
WO2016207449A1 (en) Hybrid solar installation
CN204460763U (en) Adopt the tower type solar solar-thermal generating system of fused salt working medium
CN104296397A (en) Device capable of utilizing heat of disk-type solar thermal collector in offline and concentrated mode
Pitz-Paal Concentrating solar power
Mancini et al. Solar thermal power today and tomorrow
Alam et al. Hybrid solar thermal power plant potential in bangladesh
JP6138495B2 (en) Power generation system
Arabkoohsar et al. A hybrid solar concentrating-waste incineration power plant for cost-effective and dispatchable renewable energy production
US20100089059A1 (en) Hybrid Power Facilities
CN204458230U (en) A kind of solar light-heat power-generation system with concentrated heat accumulation
Monne et al. Developments for future implementation in dish-Stirling technology
Jawhar et al. Thermal energy storage options for concentrated solar power plants in the united arab emirates
CN202300882U (en) Solar energy and wind energy complementary energy storage thermal power generation device
KR20170085326A (en) Hot-water and/or hot-air generating apparatus with photothermal conversion structure
Kröger The Stellenbosch University solar power thermodynamic cycle
Chowdhury et al. Biomass supported solar thermal hybrid power plant for continuous electricity generation from renewable sources
CN204458228U (en) With the solar light-heat power-generation system of distributed heat accumulation
CN204458232U (en) Tower type solar solar-thermal generating system
Alalewi Concentrated solar power (CSP)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15751044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15751044

Country of ref document: EP

Kind code of ref document: A1