WO2016206357A1 - 电泳显示器切换画面的闪烁减少方法及电泳显示器 - Google Patents

电泳显示器切换画面的闪烁减少方法及电泳显示器 Download PDF

Info

Publication number
WO2016206357A1
WO2016206357A1 PCT/CN2016/070363 CN2016070363W WO2016206357A1 WO 2016206357 A1 WO2016206357 A1 WO 2016206357A1 CN 2016070363 W CN2016070363 W CN 2016070363W WO 2016206357 A1 WO2016206357 A1 WO 2016206357A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
driving signal
electrophoretic display
state
signal
Prior art date
Application number
PCT/CN2016/070363
Other languages
English (en)
French (fr)
Inventor
周国富
王利
易子川
汉森·艾利克斯·维克多
Original Assignee
深圳市国华光电研究院
华南师范大学
深圳市国华光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市国华光电研究院, 华南师范大学, 深圳市国华光电科技有限公司 filed Critical 深圳市国华光电研究院
Publication of WO2016206357A1 publication Critical patent/WO2016206357A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a method for reducing flicker of an electrophoretic display switching screen and an electrophoretic display.
  • EPD (electrophoresis) electronic paper Electrophoretic electronic paper has become a very important information display carrier. It has been widely used in e-book readers, electronic labels, electronic billboards, etc., and it has good bistable characteristics. When it is displayed statically, it consumes almost no electricity. It is a display technology with energy saving and environmental protection features. However, electrophoresis electronic paper also has a series of shortcomings, such as: slow response speed, poor display quality, flickering when the screen is switched, etc. These shortcomings seriously affect the display effect of electrophoretic electronic paper and restrict the application range of the market. .
  • the gray scale display of the electrophoretic electronic paper is mainly driven by a voltage sequence applied to the pixel electrode, and this voltage sequence is called a driving waveform. The shortcomings exhibited by electrophoretic electronic paper display are caused by poor design of the driving waveform.
  • Electrophoretic particles are an important component of electrophoretic displays. During electrophoretic display, charged black and white particles undergo electrophoretic effects when voltage is applied, but this electrophoretic effect is non-linear for the length of applied voltage; therefore In order to achieve correct display of gray scale, an appropriate driving waveform must be selected to drive the electrophoretic particles.
  • a typical drive waveform consists of three phases: erasing the original image, activating the electrophoretic particle, and flashing the new grayscale [46].
  • a white gray scale with a relatively stable reflectance value is generated, and is used as a reference gray scale to further drive the particles to form a target gray scale.
  • this driving process drives the particles to change the direction of electrophoresis in the microcapsules due to the voltage change, and causes the high and low transition of the screen reflectivity. This phenomenon is reflected in the human eye, which is flicker, and the visual comfort. Has had a bad effect. Therefore, improving the flicker during the driving process of the electrophoretic display has positive significance for the application of the electrophoretic display.
  • Kao et al KAO W C, CHANG W T, YE J A.
  • Driving waveform design based on response latency analysis of Electrophoretic displays [J].
  • Display Technology, Journal of, 2012, 8(10): 596-601. proposes a flicker reduction method based on the change of the shape of the driving waveform, but the driving waveform does not follow the principle of DC balance.
  • Lu et al. (LU C M, WEY C L. A Controller design for micro-cup active-matrix electrophoretic displays [J].
  • the drive waveform should be able to quickly eliminate the effects of the original image and display a new image. If the DC is unbalanced, the drive can cause damage to the display, so DC balance must be maintained during the drive waveform.
  • a traditional drive waveform there are three phases: erasing the original image, activating the particle phase (resetting to a black state and clearing it to a white state again), and writing a new grayscale.
  • the duty cycle of the second stage is 50%. Therefore, this stage does not cause DC residual. Only the other two phases will cause DC imbalance, and the driving waveforms of these two phases must match each other to meet the principle of DC balance.
  • Figure 1 is a schematic diagram of a conventional driving waveform.
  • each voltage state in the drive waveform can be set to a voltage of 15V, 0V or -15V.
  • FIG. 2 is a schematic diagram of a switching process of an electrophoretic display screen formed by a conventional driving waveform; flicker occurs during switching between two images, and the flicker can be perceived by the human eye because the screen switching frequency is lower than 25 Hz.
  • the conventional drive waveform switching process has 4 flashes, which seriously affects the reading comfort.
  • an object of the present invention is to provide a method for reducing flicker of an electrophoretic display switching screen and an electrophoretic display.
  • a method for reducing flicker of an electrophoretic display switching picture wherein each pixel electrode in the electrophoretic display corresponds to one pixel, and a driving signal is applied on the pixel electrode to achieve a target gray scale display, the driving signal comprising: activating particle driving signal, DC balance Compensating the driving signal, and writing a new gray scale driving signal; the activated particle driving signal includes a first extreme state driving signal and a second extreme state driving signal; the method includes:
  • the voltage polarity of the second extreme state driving signal is the same as the voltage polarity of the DC balance compensation driving signal.
  • the present invention can also be improved as follows.
  • the driving waveform of the DC balance complementary driving signal is determined by the brushing new grayscale driving signal in the previous state of the pixel point, and specifically: the driving waveform of the new grayscale driving signal is written by the previous state of the pixel
  • the voltage polarity and the driving duration determine the voltage polarity and driving duration of the DC balance compensation drive signal.
  • the first extreme state is a black state
  • the second extreme state is a white state
  • the drive signal is a pulse signal.
  • the electrophoretic display device is an electrophoretic electronic paper.
  • the invention also discloses an electrophoretic display device, wherein the electrophoretic display device comprises at least one pixel point and at least one pixel point driving device; each pixel electrode corresponds to one pixel point, and the driving device applies on the pixel electrode Driving a signal to achieve a target gray scale display; driving signals applied by the driving device include: activating a particle driving signal, a DC balance compensation driving signal, and writing a new gray scale driving signal; and the activated particle driving signal includes a first extreme state driving Signal, second extreme state drive signal;
  • the driving device receives the target gray scale information displayed by the pixel point, and determines a driving waveform of the DC balanced supplemental driving signal by the flashing new gray scale driving signal of the previous state of the pixel point;
  • the driving device drives the pixel point from the original gray scale to the first extreme state through the first extreme state driving signal, and drives the pixel point to switch from the first extreme state to the second extreme state through the second extreme state driving signal, and then applies the direct current Balancing the compensation drive signal to maintain the DC balance of the electrophoretic display, and then converting the pixel to the target gray scale by writing a new gray scale drive signal;
  • the voltage polarity of the second extreme state driving signal is the same as the voltage polarity of the DC balance compensation driving signal.
  • the present invention can also be improved as follows.
  • the driving waveform of the DC balance supplemental driving signal is determined by the brushing new grayscale driving signal in the previous state of the pixel, and the driving device is: the driving device writes the new grayscale driving signal from the previous state of the pixel
  • the voltage polarity of the drive waveform and the drive duration determine the DC balance to compensate for the voltage polarity and drive duration of the drive signal.
  • the first extreme state is a black state
  • the second extreme state is a white state
  • the drive signal is a pulse signal.
  • the electrophoretic display device is an electrophoretic electronic paper.
  • the invention has the beneficial effects that the invention can integrate the various stages of the driving waveform by optimizing the driving waveform, thereby obviously reducing the number of blinking of the display screen of the electrophoretic display device, and improving the comfort when the electrophoretic electronic paper screen is switched.
  • Figure 1 is a schematic diagram of a conventional driving waveform
  • FIG. 2 is a schematic diagram of a switching process of an electrophoretic display screen formed by a conventional driving waveform
  • FIG. 3 is a schematic flow chart of a method for reducing flicker of a switching screen of an electrophoretic display according to the present invention
  • FIG. 4 is a schematic diagram of driving waveform design according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a set of four-level gray scale driving waveforms based on the method of the present invention
  • FIG. 6 is a schematic diagram of a process of updating an electrophoretic display screen driven by a driving waveform in a specific embodiment.
  • a method for reducing flicker of an electrophoretic display switching picture wherein each pixel electrode of the electrophoretic display corresponds to one pixel, and a driving signal is applied to the pixel electrode to achieve a target gray scale display, the driving signal comprising: activating a particle driving signal, The DC balance compensates the driving signal and writes a new gray scale driving signal; the activated particle driving signal includes a first extreme state driving signal and a second extreme state driving signal; the method includes:
  • the voltage polarity of the second extreme state driving signal is the same as the voltage polarity of the DC balance compensation driving signal.
  • the driving waveform of the DC balance complementary driving signal is determined by the brushing new grayscale driving signal in the previous state of the pixel, which is specifically: the new grayscale driving signal is written by the previous state of the pixel
  • the voltage polarity of the drive waveform and the drive duration determine the DC balance to compensate for the voltage polarity and drive duration of the drive signal.
  • the electrophoretic display device is an electrophoretic electronic paper
  • the driving signal is a pulse signal
  • the frequency of the pulse signal is 50 Hz
  • the first extreme state is a black state
  • the second extreme state is a white state
  • FIG. 4 is a first embodiment of the present invention
  • the DC balance compensation phase driven by the negative voltage does not change the reference gray scale; in the driving waveform of the embodiment of the present invention, the conversion between -15V and +15V There are two times, so you can reduce the number of flickers by one.
  • the human eye is sensitive to brightness conversion when the brightness is low; during the change of the reflectance of the display, the driving voltage duration is in a nonlinear relationship with the gray level. Therefore, in the process of brushing a uniform gray scale, the negative voltage duration of the new gray scale stage is not linearly shortened.
  • FIG. 5 is a schematic diagram of a set of four-level gray-scale driving waveforms based on the method of the present invention, as shown in FIG. 5, in which B represents black gray scale, and DG represents Dark gray gray scale, LG stands for light gray gray scale, and W stands for white gray scale.
  • the above-mentioned driving waveform binary file is downloaded to the EPD (electrophoresis) controller driving waveform lookup table, and the change of the electrophoretic display screen is recorded by using the fact of the testing device.
  • the image conversion process of the EPD is as shown in FIG. 6 is a schematic diagram of the process of updating the electrophoretic display screen driven by the driving waveform in a specific embodiment, and the number of blinking of the display screen is reduced to three times. Therefore, the reading driving comfort of the EPD can be improved by using the novel driving waveform of the present invention.
  • the method of the invention can significantly reduce the number of flickering of the display screen of the electrophoretic display device, and compares the driving waveforms of the two types of particles according to the traditional driving waveform, and integrates the various stages of the driving waveform to reduce the flicker of the display screen of the electrophoretic display device.
  • the new driving waveform is downloaded to the EPD controller and the performance test is performed.
  • the performance comparison between the new driving waveform and the traditional driving waveform shows that the performance of the new driving waveform is better than the traditional driving.
  • the waveform significantly reduces one-time flicker; the embodiment of the present invention uses a four-level gray-scale driving waveform as an example to explain the related content, but the driving waveform design method of the present invention is applicable to the design of a multi-level gray-scale driving waveform.
  • the invention also discloses an electrophoretic display device, wherein the electrophoretic display device comprises at least one pixel point and at least one pixel point driving device; each pixel electrode corresponds to one pixel point, and the driving device applies on the pixel electrode Driving a signal to achieve a target gray scale display; driving signals applied by the driving device include: activating a particle driving signal, a DC balance compensation driving signal, and writing a new gray scale driving signal; and the activated particle driving signal includes a first extreme state driving Signal, second extreme state drive signal;
  • the driving device receives the target gray scale information displayed by the pixel point, and determines a driving waveform of the DC balanced supplemental driving signal by the flashing new gray scale driving signal of the previous state of the pixel point;
  • the driving device drives the pixel point from the original gray scale to the first extreme state through the first extreme state driving signal, and drives the pixel point to switch from the first extreme state to the second extreme state through the second extreme state driving signal, and then applies the direct current Balancing the compensation drive signal to maintain the DC balance of the electrophoretic display, and then converting the pixel to the target gray scale by writing a new gray scale drive signal;
  • the voltage polarity of the second extreme state driving signal is the same as the voltage polarity of the DC balance compensation driving signal.
  • the electrophoretic display device is an electrophoretic electronic paper
  • the first extreme state is a black state
  • the second extreme state is a white state.
  • the drive signal is a pulse signal
  • the frequency of the pulse signal is 50 Hz.
  • the driving waveform of the DC balanced supplemental driving signal is determined by the flashing new grayscale driving signal in a state before the pixel, which is specifically: the driving device is newly written by the pixel in the previous state.
  • the voltage polarity and driving duration of the driving waveform of the gray scale driving signal determine the voltage polarity and driving duration of the DC balance compensation driving signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

电泳显示器切换画面的闪烁减少方法及电泳显示器,所述方法包括:接收由像素点显示的目标灰阶信息;由像素点前一状态的刷写新灰阶驱动信号确定直流平衡补充驱动信号的驱动波形;通过第一极端状态驱动信号将像素点由原始灰阶驱动到第一极端状态;通过第二极端状态驱动信号驱动像素点由第一极端状态转换至第二极端状态,然后施加直流平衡补偿驱动信号使电泳显示器保持直流平衡,再通过刷写新灰阶驱动信号将像素转换到目标灰阶;所述第二极端状态驱动信号的电压极性与直流平衡补偿驱动信号的电压极性相同。通过优化驱动波形,将驱动波形各个阶段加以整合,可减少电泳显示设备显示屏的闪烁次数,提升电泳电子纸画面切换时的舒适度。

Description

电泳显示器切换画面的闪烁减少方法及电泳显示器
技术领域
本发明涉及显示器技术领域,特别涉及电泳显示器切换画面的闪烁减少方法及电泳显示器。
背景技术
EPD(电泳)电子纸:电泳电子纸已经成为一种非常重要的信息显示载体,目前已经广泛应用于电子书阅读器、电子标签、电子广告牌等,其具备了良好的双稳态特性,在静态显示时,几乎不耗电,是一种具备节能环保特色的显示技术。然而,电泳电子纸还存在一系列缺点,例如:响应速度较慢,画面显示质量不佳,画面切换时伴随着闪烁现象等;这些缺点严重影响了电泳电子纸显示效果,并制约了市场应用范围。电泳电子纸的灰阶显示,主要是由施加在像素电极上的电压序列驱动形成,这种电压序列被称之为驱动波形。而电泳电子纸显示时所表现出来的缺点,诸多是由驱动波形的不良设计所造成。
在电泳显示屏中,特定灰阶的显示没有固定的阈值电压,所以,需要利用驱动波形进行驱动像素显示灰阶。这个灰阶显示的过程,也是电场力驱动粒子电泳运动的过程。电泳粒子是电泳显示器的一个重要组成部分,在电泳显示的过程中,施加电压时,带电的黑色与白色粒子发生电泳效应,但对于所施加的电压时间长度,这种电泳效应是非线性的;因此,为了实现灰度的正确显示,必须选择一种恰当的驱动波形来驱动电泳粒子。典型的驱动波形包含三个阶段:擦除原始图像、激活电泳粒子和刷写新灰阶[46]。第二阶段结束时,就产生了反射率值相对稳定的白色灰阶,并以其作为参考灰阶,进一步驱动粒子形成目的灰阶。无论如何,这个驱动过程由于电压的转变,驱动粒子在微胶囊中不断更换电泳方向,并造成屏幕反射率的高、低转变,这种现象反应到人眼中,便是闪烁,对视觉的舒适性产生了不良的影响。所以,改善电泳显示屏驱动过程中的闪烁,对于电泳显示屏的应用具有积极意义。
目前,关于驱动波形闪烁处理的原理和设计方法,已经有很多报道Kao等(KAO W C, CHANG W T, YE J A. Driving waveform design based on response latency analysis of electrophoretic displays [J]. Display Technology, Journal of, 2012, 8(10): 596-601.)提出了一种基于驱动波形形态变化的闪烁减少方法,但这种驱动波形并不遵守直流平衡的原理。Lu等(LU C M, WEY C L. A controller design for micro‐cup active‐matrix electrophoretic displays [J]. Journal of the Society for Information Display, 2012, 20(2): 103-108.)提出了一种最小化驱动波形查找表设计方法,以便于驱动波形可以存储在一个更小的内存中。然而,驱动波形的实质并未改进,闪烁的数量并不会减少。
一般来说,驱动波形应当可以快速的消除原始图像的影响并显示新图像。如果直流是不平衡的,则驱动会对显示屏造成损害,因此必须在驱动波形过程中保持直流平衡。在传统的驱动波形中,需要有三个阶段:擦除原始图像、激活粒子阶段(重置为黑色的状态并再次清除为白色状态)、刷写新灰阶。第二阶段占空比为50%。因此,这个阶段不会导致直流残留。只有其他两个阶段会导致直流不平衡,这两个阶段的驱动波形必须相互配合达到直流平衡的原理要求。图1为传统驱动波形示意图,如图1所示,若帧率为50帧/秒,则单位时间是1/50=20ms ,三个阶段的每一个波形持续时间在个必须是20ms整数倍。若要达到直流平衡,则必须满足方程(5-1)的要求。在驱动波形中的每个电压状态可以设置电压为15V、0V或-15V。
te=tw (5-1)
一般来说,在频率很低的时候,黑色状态和白色状态之间的开关切换会产生闪烁,传统驱动波形的驱动过程如图2所示, 图2为由传统驱动波形所形成的电泳显示屏切换过程示意图;闪烁便发生在两个图像之间的切换过程中,因画面切换频率低于25Hz,所以这种闪烁可以为人眼所感知。在图2中,传统的驱动波形切换过程有4次闪烁,严重影响了阅读的舒适性。
发明内容
为解决上述技术问题,本发明的目的是提供电泳显示器切换画面的闪烁减少方法及电泳显示器。
本发明解决上述技术问题的技术方案如下:
一种电泳显示器切换画面的闪烁减少方法,电泳显示器中每一个像素电极对应一个像素点,在像素电极上施加驱动信号以实现目标灰阶显示,所述驱动信号包括:激活粒子驱动信号、直流平衡补偿驱动信号、刷写新灰阶驱动信号;所述激活粒子驱动信号包括第一极端状态驱动信号、第二极端状态驱动信号;该方法包括:
接收由像素点显示的目标灰阶信息;
由像素点前一状态的刷写新灰阶驱动信号确定直流平衡补充驱动信号的驱动波形;
通过第一极端状态驱动信号将像素点由原始灰阶驱动到第一极端状态;
通过第二极端状态驱动信号驱动像素点由第一极端状态转换至第二极端状态,然后施加直流平衡补偿驱动信号使电泳显示器保持直流平衡,再通过刷写新灰阶驱动信号将像素转换到目标灰阶;
所述第二极端状态驱动信号的电压极性与直流平衡补偿驱动信号的电压极性相同。
在上述技术方案的基础上,本发明还可以做如下的改进。
进一步,所述由像素点前一状态的刷写新灰阶驱动信号确定直流平衡补充驱动信号的驱动波形,其具体为:由像素点前一状态的刷写新灰阶驱动信号的驱动波形的电压极性和驱动时长确定直流平衡补偿驱动信号的电压极性和驱动时长。
进一步,所述第一极端状态为黑色状态,所述第二极端状态为白色状态。
进一步,所述驱动信号为脉冲信号。
进一步,所述电泳显示设备为电泳电子纸。
本发明还公开了一种电泳显示设备,所述电泳显示设备中包括至少一个像素点和至少一个像素点的驱动装置;每一个像素电极对应一个像素点,所述驱动装置通过在像素电极上施加驱动信号以实现目标灰阶显示;所述驱动装置施加的驱动信号包括:激活粒子驱动信号、直流平衡补偿驱动信号、刷写新灰阶驱动信号;所述激活粒子驱动信号包括第一极端状态驱动信号、第二极端状态驱动信号;
所述驱动装置接收由像素点显示的目标灰阶信息,由像素点前一状态的刷写新灰阶驱动信号确定直流平衡补充驱动信号的驱动波形;
所述驱动装置通过第一极端状态驱动信号将像素点由原始灰阶驱动到第一极端状态,通过第二极端状态驱动信号驱动像素点由第一极端状态转换至第二极端状态,然后施加直流平衡补偿驱动信号使电泳显示器保持直流平衡,再通过刷写新灰阶驱动信号将像素转换到目标灰阶;
所述第二极端状态驱动信号的电压极性与直流平衡补偿驱动信号的电压极性相同。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述由像素点前一状态的刷写新灰阶驱动信号确定直流平衡补充驱动信号的驱动波形,其具体为:所述驱动装置由像素点前一状态的刷写新灰阶驱动信号的驱动波形的电压极性和驱动时长确定直流平衡补偿驱动信号的电压极性和驱动时长。
进一步,所述第一极端状态为黑色状态,所述第二极端状态为白色状态。
进一步,所述驱动信号为脉冲信号。
进一步,所述电泳显示设备为电泳电子纸。
本发明的有益效果:本发明通过优化驱动波形,将驱动波形各个阶段加以整合,可以明显减少电泳显示设备显示屏的闪烁次数,提升了电泳电子纸画面切换时的舒适度。
附图说明
图1为传统驱动波形示意图;
图2为由传统驱动波形所形成的电泳显示屏切换过程示意图;
图3为本发明一种电泳显示器切换画面的闪烁减少方法流程示意图;
图4为本发明一具体实施例的驱动波形设计示意图;
图5为一组基于本发明所述方法的四级灰阶驱动波形示意图;
图6为一具体实施例中在驱动波形驱动下电泳显示屏画面更新过程示意图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
本发明一种电泳显示器切换画面的闪烁减少方法,电泳显示器中每一个像素电极对应一个像素点,在像素电极上施加驱动信号以实现目标灰阶显示,所述驱动信号包括:激活粒子驱动信号、直流平衡补偿驱动信号、刷写新灰阶驱动信号;所述激活粒子驱动信号包括第一极端状态驱动信号、第二极端状态驱动信号;该方法包括:
接收由像素点显示的目标灰阶信息;
由像素点前一状态的刷写新灰阶驱动信号确定直流平衡补充驱动信号的驱动波形;
通过第一极端状态驱动信号将像素点由原始灰阶驱动到第一极端状态;
通过第二极端状态驱动信号驱动像素点由第一极端状态转换至第二极端状态,然后施加直流平衡补偿驱动信号使电泳显示器保持直流平衡,再通过刷写新灰阶驱动信号将像素转换到目标灰阶;
所述第二极端状态驱动信号的电压极性与直流平衡补偿驱动信号的电压极性相同。
作为优选的实施方式,所述由像素点前一状态的刷写新灰阶驱动信号确定直流平衡补充驱动信号的驱动波形,其具体为:由像素点前一状态的刷写新灰阶驱动信号的驱动波形的电压极性和驱动时长确定直流平衡补偿驱动信号的电压极性和驱动时长。
下面以一具体实施例为例对本发明做进一步说明。
在本具体实施例中,电泳显示设备为电泳电子纸,驱动信号为脉冲信号,脉冲信号的频率为50Hz,第一极端状态为黑色状态,第二极端状态为白色状态;图4为本发明一具体实施例的驱动波形设计示意图,如图4所示,在本具体实施例中,驱动波形分四个阶段,在第一阶段重置为黑色状态,白色状态形成于第二阶段,其被用作参考灰阶,所以,在白色状态形成后,利用负电压驱动的直流平衡补偿阶段则不会改变参考灰阶;在本发明具体实施例的驱动波形中,-15V、+15V之间的转换有两次,因此可以减少1次闪烁。根据伽马校正的原理,人类的眼睛在亮度低时对亮度转换比较敏感;在显示屏反射率变化过程中,驱动电压持续时间与灰阶其实一个非线性变化关系。所以,在刷写均匀的灰阶过程中,刷写新灰阶阶段的负电压持续时间并不能呈现线性缩短。
根据这一原则,以四级灰阶为例,图5为一组基于本发明所述方法的四级灰阶驱动波形示意图,如图5所示,图中,B代表黑色灰阶,DG代表深灰色灰阶,LG代表浅灰色灰阶,W代表白色灰阶。
将上述驱动波形二进制文件下载到EPD(电泳)控制器驱动波形查找表中,并利用测试装置事实记录电泳显示屏的变化情况,在驱动过程中,EPD的图像转换过程如图6所示,图6为一具体实施例中在驱动波形驱动下电泳显示屏画面更新过程示意图,显示屏闪烁的次数减少到了三次,所以,采用本发明新型驱动波形可以改善EPD的阅读舒适性。
本发明所述方法可以明显减少电泳显示设备显示屏的闪烁次数,通过对比传统驱动波形,并依据两种类型粒子的一些驱动性能,将驱动波形各个阶段加以整合,减少电泳显示设备显示屏的闪烁次数,在驱动波形设计中,满足直流平衡要求新型驱动波形下载到EPD控制器中,并进行了性能测试,新型驱动波形与传统驱动波形的性能对比实验结果表明,新型驱动波形的性能比传统驱动波形明显减少了1次闪烁;本发明具体实施例使用了四级灰阶驱动波形作为例子来解释相关内容,但是本发明的驱动波形设计方法适用于多级灰阶驱动波形的设计。
本发明还公开了一种电泳显示设备,所述电泳显示设备中包括至少一个像素点和至少一个像素点的驱动装置;每一个像素电极对应一个像素点,所述驱动装置通过在像素电极上施加驱动信号以实现目标灰阶显示;所述驱动装置施加的驱动信号包括:激活粒子驱动信号、直流平衡补偿驱动信号、刷写新灰阶驱动信号;所述激活粒子驱动信号包括第一极端状态驱动信号、第二极端状态驱动信号;
所述驱动装置接收由像素点显示的目标灰阶信息,由像素点前一状态的刷写新灰阶驱动信号确定直流平衡补充驱动信号的驱动波形;
所述驱动装置通过第一极端状态驱动信号将像素点由原始灰阶驱动到第一极端状态,通过第二极端状态驱动信号驱动像素点由第一极端状态转换至第二极端状态,然后施加直流平衡补偿驱动信号使电泳显示器保持直流平衡,再通过刷写新灰阶驱动信号将像素转换到目标灰阶;
所述第二极端状态驱动信号的电压极性与直流平衡补偿驱动信号的电压极性相同。
作为优选的实施方式,电泳显示设备为电泳电子纸,第一极端状态为黑色状态,第二极端状态为白色状态。驱动信号为脉冲信号,脉冲信号的频率为50Hz。
作为优选的实施方式,所述由像素点前一状态的刷写新灰阶驱动信号确定直流平衡补充驱动信号的驱动波形,其具体为:所述驱动装置由像素点前一状态的刷写新灰阶驱动信号的驱动波形的电压极性和驱动时长确定直流平衡补偿驱动信号的电压极性和驱动时长。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种电泳显示器切换画面的闪烁减少方法,其特征在于,
    电泳显示器中每一个像素电极对应一个像素点,在像素电极上施加驱动信号以实现目标灰阶显示,所述驱动信号包括:激活粒子驱动信号、直流平衡补偿驱动信号、刷写新灰阶驱动信号;所述激活粒子驱动信号包括第一极端状态驱动信号、第二极端状态驱动信号;该方法包括:
    接收由像素点显示的目标灰阶信息;
    由像素点前一状态的刷写新灰阶驱动信号确定直流平衡补充驱动信号的驱动波形;
    通过第一极端状态驱动信号将像素点由原始灰阶驱动到第一极端状态;
    通过第二极端状态驱动信号驱动像素点由第一极端状态转换至第二极端状态,然后施加直流平衡补偿驱动信号使电泳显示器保持直流平衡,再通过刷写新灰阶驱动信号将像素转换到目标灰阶;
    所述第二极端状态驱动信号的电压极性与直流平衡补偿驱动信号的电压极性相同。
  2. 根据权利要求1所述一种电泳显示器切换画面的闪烁减少方法,其特征在于,
    所述由像素点前一状态的刷写新灰阶驱动信号确定直流平衡补充驱动信号的驱动波形,其具体为:由像素点前一状态的刷写新灰阶驱动信号的驱动波形的电压极性和驱动时长确定直流平衡补偿驱动信号的电压极性和驱动时长。
  3. 根据权利要求1或2所述一种电泳显示器切换画面的闪烁减少方法,其特征在于,所述第一极端状态为黑色状态,所述第二极端状态为白色状态。
  4. 根据权利要求1或2所述一种电泳显示器切换画面的闪烁减少方法,其特征在于,所述驱动信号为脉冲信号。
  5. 根据权利要求1或2所述一种电泳显示器切换画面的闪烁减少方法,其特征在于,所述电泳显示设备为电泳电子纸。
  6. 一种电泳显示设备,其特征在于:所述电泳显示设备中包括至少一个像素点和至少一个像素点的驱动装置;每一个像素电极对应一个像素点,所述驱动装置通过在像素电极上施加驱动信号以实现目标灰阶显示;所述驱动装置施加的驱动信号包括:激活粒子驱动信号、直流平衡补偿驱动信号、刷写新灰阶驱动信号;所述激活粒子驱动信号包括第一极端状态驱动信号、第二极端状态驱动信号;
    所述驱动装置接收由像素点显示的目标灰阶信息,由像素点前一状态的刷写新灰阶驱动信号确定直流平衡补充驱动信号的驱动波形;
    所述驱动装置通过第一极端状态驱动信号将像素点由原始灰阶驱动到第一极端状态,通过第二极端状态驱动信号驱动像素点由第一极端状态转换至第二极端状态,然后施加直流平衡补偿驱动信号使电泳显示器保持直流平衡,再通过刷写新灰阶驱动信号将像素转换到目标灰阶;
    所述第二极端状态驱动信号的电压极性与直流平衡补偿驱动信号的电压极性相同。
  7. 根据权利要求6所述一种电泳显示设备,其特征在于,
    所述由像素点前一状态的刷写新灰阶驱动信号确定直流平衡补充驱动信号的驱动波形,其具体为:所述驱动装置由像素点前一状态的刷写新灰阶驱动信号的驱动波形的电压极性和驱动时长确定直流平衡补偿驱动信号的电压极性和驱动时长。
  8. 根据权利要求6或7所述一种电泳显示器切换画面的闪烁减少方法,其特征在于,所述第一极端状态为黑色状态,所述第二极端状态为白色状态。
  9. 根据权利要求6或7所述一种电泳显示设备,其特征在于,所述驱动信号为脉冲信号。
  10. 根据权利要求6或7所述一种电泳显示设备,其特征在于,所述电泳显示设备为电泳电子纸。
PCT/CN2016/070363 2015-06-24 2016-01-07 电泳显示器切换画面的闪烁减少方法及电泳显示器 WO2016206357A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510354744.8A CN104978934B (zh) 2015-06-24 2015-06-24 电泳显示器切换画面的闪烁减少方法及电泳显示器
CN201510354744.8 2015-06-24

Publications (1)

Publication Number Publication Date
WO2016206357A1 true WO2016206357A1 (zh) 2016-12-29

Family

ID=54275396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070363 WO2016206357A1 (zh) 2015-06-24 2016-01-07 电泳显示器切换画面的闪烁减少方法及电泳显示器

Country Status (2)

Country Link
CN (1) CN104978934B (zh)
WO (1) WO2016206357A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110111714A (zh) * 2019-04-16 2019-08-09 福建华佳彩有限公司 一种商用显示器源极走线电压的补偿方法
CN110313027A (zh) * 2017-03-09 2019-10-08 伊英克公司 提供用于彩色电泳显示器的直流平衡更新序列的驱动器
CN113689826A (zh) * 2021-08-24 2021-11-23 京东方科技集团股份有限公司 一种电子纸的驱动方法、电子纸及存储介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104978934B (zh) * 2015-06-24 2018-03-09 深圳市国华光电科技有限公司 电泳显示器切换画面的闪烁减少方法及电泳显示器
CN105405411B (zh) * 2015-12-01 2018-01-05 深圳市国华光电科技有限公司 一种16阶电泳显示器的显示驱动方法和系统
CN106023906A (zh) * 2016-06-24 2016-10-12 深圳市国华光电科技有限公司 一种电泳电子纸驱动方法及其系统
CN108154851B (zh) * 2016-12-02 2020-08-11 元太科技工业股份有限公司 电子纸显示设备的时序控制器电路
CN107068071A (zh) * 2017-05-16 2017-08-18 华南师范大学 一种电泳显示器减弱纹理的方法及系统
CN110751930B (zh) * 2018-01-22 2021-05-18 青岛海信移动通信技术股份有限公司 用于墨水屏的页面刷新方法及装置
CN110890072A (zh) * 2019-12-04 2020-03-17 中山大学 自供能电子纸驱动电路及电子纸显示设备
CN111402819B (zh) * 2020-04-26 2021-09-21 华南师范大学 电湿润显示器驱动系统、方法及设备
CN113376920B (zh) * 2021-05-26 2022-09-30 中山职业技术学院 一种三色电泳电子纸粒子快速响应方法及显示屏
WO2024000181A1 (en) * 2022-06-28 2024-01-04 Huawei Technologies Co., Ltd. Solid-state imaging device having tunable conversion gain, driving method, and electronic device
CN115346496A (zh) * 2022-08-16 2022-11-15 广州文石信息科技有限公司 一种基于帧率的屏幕显示方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1882975A (zh) * 2003-11-17 2006-12-20 皇家飞利浦电子股份有限公司 具有直流平衡超程复位驱动器的双稳态显示器
US20090046052A1 (en) * 2007-08-14 2009-02-19 Samsung Electronics Co., Ltd. Electrophoretic display device and method of driving same
CN104050933A (zh) * 2013-03-13 2014-09-17 精工爱普生株式会社 电光装置的驱动方法和驱动装置、电光装置以及电子设备
CN104978934A (zh) * 2015-06-24 2015-10-14 深圳市国华光电科技有限公司 电泳显示器切换画面的闪烁减少方法及电泳显示器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI380114B (en) * 2005-12-15 2012-12-21 Nlt Technologies Ltd Electrophoretic display device and driving method for same
JP6256822B2 (ja) * 2012-09-14 2018-01-10 Tianma Japan株式会社 電気泳動表示装置及びその駆動方法
CN103680426B (zh) * 2013-12-27 2015-12-30 深圳市国华光电科技有限公司 一种改进电泳显示器激活模式的驱动方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1882975A (zh) * 2003-11-17 2006-12-20 皇家飞利浦电子股份有限公司 具有直流平衡超程复位驱动器的双稳态显示器
US20090046052A1 (en) * 2007-08-14 2009-02-19 Samsung Electronics Co., Ltd. Electrophoretic display device and method of driving same
CN104050933A (zh) * 2013-03-13 2014-09-17 精工爱普生株式会社 电光装置的驱动方法和驱动装置、电光装置以及电子设备
CN104978934A (zh) * 2015-06-24 2015-10-14 深圳市国华光电科技有限公司 电泳显示器切换画面的闪烁减少方法及电泳显示器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAI, PENGFEI ET AL.: "An Improved Driving Scheme in an Electrophoretic Display", INTERNATIONAL JOURNAL OF ENGINEERING AND TECHNOLOGY, vol. 3, no. 4, 30 April 2013 (2013-04-30), XP055340320, ISSN: 2049-3444 *
LIU, XIANMING ET AL.: "Electronic paper driving schemes based on DC balance", JOURNAL OF SOUTH CHINA NORMAL UNIVERSITY ( NATURAL SCIENCE EDITION, vol. 47, 25 May 2015 (2015-05-25), pages 10 - 12 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110313027A (zh) * 2017-03-09 2019-10-08 伊英克公司 提供用于彩色电泳显示器的直流平衡更新序列的驱动器
CN110111714A (zh) * 2019-04-16 2019-08-09 福建华佳彩有限公司 一种商用显示器源极走线电压的补偿方法
CN113689826A (zh) * 2021-08-24 2021-11-23 京东方科技集团股份有限公司 一种电子纸的驱动方法、电子纸及存储介质
CN113689826B (zh) * 2021-08-24 2022-12-20 京东方科技集团股份有限公司 一种电子纸的驱动方法、电子纸及存储介质

Also Published As

Publication number Publication date
CN104978934B (zh) 2018-03-09
CN104978934A (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
WO2016206357A1 (zh) 电泳显示器切换画面的闪烁减少方法及电泳显示器
US7932884B2 (en) Liquid crystal display and driving method thereof
US7095396B2 (en) Liquid crystal display device using OCB cell and driving method thereof
TWI417829B (zh) 電泳顯示裝置更新畫面之驅動方式
CN204857151U (zh) 显示驱动电路、显示驱动芯片及显示器
US9589517B2 (en) Liquid crystal display device and method for driving same
US8970473B2 (en) Bistable display and method of driving a panel thereof
US20070152942A1 (en) Liquid crystal display device
JP2011209671A (ja) 液晶表示装置及びその駆動方法
KR20160080768A (ko) 표시 장치 및 이의 구동 방법
WO2017201811A1 (zh) 一种液晶显示器的驱动方法及驱动装置
US20110187759A1 (en) Liquid crystal device, method of controlling liquid crystal device, and electronic apparatus
US20070195045A1 (en) Liquid crystal display device
US9443484B2 (en) Liquid crystal display device and method for driving same
US20070126687A1 (en) Liquid crystal display device and driving method thereof
CN114267312A (zh) 残像优化电路及方法
JP2002358056A (ja) 画像表示装置および共通信号供給方法
CN117037719A (zh) 一种电泳显示器驱动方法、系统、设备及存储介质
JP2005091385A (ja) 液晶表示装置
TWI406217B (zh) 電泳式顯示裝置的顯示方法及運用此方法之電泳式顯示裝置
KR20040053428A (ko) 액정표시장치 및 그 구동방법
KR101258262B1 (ko) 액정표시장치 및 그 구동 방법
KR101336084B1 (ko) 액정표시장치 구동방법
KR20080094261A (ko) 액정표시장치 및 그의 구동 방법
JPH11175038A (ja) 表示パネルの駆動方法及びその駆動回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16813473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16813473

Country of ref document: EP

Kind code of ref document: A1