WO2016204518A1 - 전지 팩 - Google Patents

전지 팩 Download PDF

Info

Publication number
WO2016204518A1
WO2016204518A1 PCT/KR2016/006370 KR2016006370W WO2016204518A1 WO 2016204518 A1 WO2016204518 A1 WO 2016204518A1 KR 2016006370 W KR2016006370 W KR 2016006370W WO 2016204518 A1 WO2016204518 A1 WO 2016204518A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air path
battery
path portion
cooling duct
Prior art date
Application number
PCT/KR2016/006370
Other languages
English (en)
French (fr)
Inventor
이강우
정상윤
성준엽
김기연
유성천
문덕희
이정행
최용준
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/552,566 priority Critical patent/US10461286B2/en
Priority to JP2017549465A priority patent/JP6380877B2/ja
Priority to EP16811931.1A priority patent/EP3261169A4/en
Priority to CN201680015744.8A priority patent/CN107431257B/zh
Publication of WO2016204518A1 publication Critical patent/WO2016204518A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery pack suitable for improving the cooling effect of an inner structure by planarizing the sealing surface of the outer structures to sufficiently surround the inner structure using the outer structures.
  • the vehicle has evolved in the order of a hybrid vehicle, a plug-in hybrid vehicle, and an electric vehicle.
  • the hybrid vehicle and the plug-in hybrid vehicle have an internal combustion engine, an electric motor and a battery pack, and the electric vehicle has an electric motor and a battery pack without an internal combustion engine.
  • the battery pack has also evolved with hybrid vehicles, plug-in hybrid vehicles and electric vehicles.
  • the battery pack is configured to be chargeable by electric power supplied from the outside of the electric vehicle or electric power produced therein.
  • the battery pack has cooling ducts and a battery module between the lower case and the upper case. The cooling ducts introduce air from the outside of the battery pack to the inside to cool the battery cells of the battery module using the air, and continuously discharge the air from the inside of the battery pack to the outside.
  • the cooling ducts are partially exposed to the outside air from the outer wall of the battery pack to suck air from the outside of the battery pack.
  • the upper case is curved according to the shape of the cooling ducts and is in close contact with the lower case and the cooling ducts using a sealing member.
  • the cooling duct and the upper case are not matched, the cooling duct and the upper case have unnecessary space between the cooling duct and the sealing member or between the sealing member and the upper case. The unnecessary space partially discharges the air to be introduced into the battery module via the cooling duct, thereby lowering the cooling performance of the cooling duct.
  • the shape of the cooling duct installed between the lower case and the upper case has a great influence on the cooling effect of the battery cells per unit time.
  • Many studies related to the shape of the cooling duct have been performed. An example of the above studies has been disclosed in the 'battery pack of the inlet and outlet optimization structure' of Korea Patent Publication No. 10-2012-0122000 (published date: November 07, 2012).
  • the battery pack has a cell module, an inlet duct and an outlet duct inside the outer case, and an inlet cover and an outlet cover on an upper side of the outer case.
  • the inlet duct is in communication with the inlet cover, and the outlet duct is in communication with the outlet cover.
  • the inlet cover and the outlet cover are located on different sides of the outer case, respectively.
  • the battery pack since the outside air sequentially passes through the inlet cover, the inlet duct, the battery cells of the cell module, the outlet duct and the outlet cover, the battery cells located near the outlet cover are different from other battery cells. Heat accumulates under the influence of hot air exchanged heat. Thermal accumulation of some of these battery cells degrades the electrical characteristics of the battery module.
  • the present invention was devised under the background of the prior art, which minimizes the sealing area of the lower case and the upper case which are sequentially stacked and maximizes the cooling efficiency of the cooling ducts for the battery cells of the battery module between the lower case and the upper case. It is an object of the present invention to provide a battery pack having a structure suitable for use.
  • the battery cells are sequentially stacked, the air flow paths are located between the battery cells, the side of the battery cells are in communication with the air flow paths
  • a battery module defining a air flow space and including a cooling duct having an air entrance opened upwardly in communication with the air flow space;
  • a lower case for seating the battery module and the cooling duct;
  • an upper case coupled to the lower case to cover the battery module and the cooling duct, the upper case having a vent structure on the cooling duct, the vent structure defining an air path and through one side of the air path.
  • An inner air path portion communicating with the air inlet and having a rectangular tunnel-shaped window frame passing through the side wall of the upper case through the other side of the air path, and inserted along an inner wall of the window frame; And an outer air path portion having through holes in the front wall located at the front and the rear wall located at the rear of the window frame.
  • the lower case has an end located at the same level along the edge at the top and can be in close contact with the upper case via a sealing member along the edge.
  • the battery pack further comprises battery cartridges interposed between the battery cells, each of the battery cartridges, the outer frame; A lower cooling fin and an upper cooling fin fixed to an edge of the outer frame and spaced at a predetermined interval; And air inlets formed on both sides of the outer frame to expose the air flow path between the lower cooling fin and the upper cooling fin to the outside.
  • the cooling duct can be opened through the air flow space toward the air inlets of each of the battery cartridges.
  • said air inlet of said cooling duct may be lower than the highest level of said battery module.
  • the battery module includes a plurality of cooling ducts on both sides, and the air inlet of each cooling duct may be located at the same level.
  • the cooling duct may be wrapped by the lower case and the upper case.
  • two cooling ducts may be located on each of both sides of the battery cells.
  • the vent structure may be located at least one side wall at the long side edge of the upper case.
  • the inner air path portion may surround the outer air path portion.
  • the inner air path portion may be tightly coupled to the edge of the air inlet of the cooling duct through a sealing member.
  • the inner air path portion a rectangular tunnel-shaped window frame located on the side wall of the housing of the upper case, a connection end forming a step from the front side of the window frame to the rear in the lower side of the window frame, It may include a belt-shaped locking jaw protruding from the inner wall of the window frame along the inner edge of the window frame on the connection end, and a partition wall protruding from the housing toward the cooling duct opposite the connection end.
  • the inner air path portion may have a flow path connecting portion in contact with the edge of the air inlet of the cooling duct at the inner end of the connecting end and the end of the partition wall in the lower portion of the housing of the upper case.
  • the flow path connecting portion may have an inverted 'U' shaped groove structure at the end.
  • the flow path connecting portion may have a sealing member in the groove structure and may be in close contact with the air inlet through the sealing member.
  • both sidewalls of the window frame may have fastening pieces protruding toward the partition wall from the locking jaw at an end of the rear side.
  • the outer air path portion flows air from the rear wall toward the inner air path portion by introducing air through the front wall at one side of the upper case and through the bottom bottom between the front wall and the rear wall.
  • the air can be outflowed.
  • the outer air path portion introduces air from the inner air path portion toward the rear wall at the other side of the upper case to allow air through the front wall and through the bottom bottom between the front wall and the rear wall. May spill.
  • the outer air path portion may have hooks protruding from the rear wall and engaged to the fastening pieces of the inner air path portion.
  • the outer air path portion has sidewalls between the front wall and the rear wall, each of the sidewalls protruding from the bottom bottom below the front wall and the rear wall, the height of the protruding portion of the sidewall being the It may become smaller from the front wall towards the rear wall.
  • the lower bottom may have through holes.
  • the battery pack according to the present invention has a lower sealing area between the lower case and the upper case by placing the sealing member at the same level along the entire end of the lower case between the lower case and the upper case which are sequentially stacked, thereby lowering the sealing with the lower case. There is no unnecessary space between the members or between the sealing member and the upper case.
  • the battery pack according to the present invention includes cooling ducts and a battery module between the lower case and the upper case, and does not have unnecessary space between the edge of the lower case and the edge of the upper case. Cooling efficiency can be maximized.
  • the battery pack according to the present invention has a vent structure, having cooling ducts respectively located at both sides of the battery module between the lower case and the upper case, and vent structures communicating with the cooling ducts at the upper case, respectively.
  • cooling ducts may be used to quickly perform inflow and outflow of air in a plurality of regions of the upper case and to cool the battery cells of the battery module in a short time.
  • the battery pack according to the present invention has a lower sealing area of the lower case and the upper case and maximizes the cooling efficiency of the cooling ducts for the battery module, so that the lower case and the upper part generated by the heat of the battery cells in the battery module during operation of the battery module.
  • the internal pressure between the cases can be lowered appropriately.
  • FIG. 1 is an exploded perspective view showing a battery pack according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating the battery module of FIG. 1.
  • FIG. 2 is a perspective view illustrating the battery module of FIG. 1.
  • FIG. 3 is a perspective view showing in detail the battery cartridge of FIG.
  • FIG. 4 is an exploded perspective view showing the structure of the upper case of FIG. 1 in detail.
  • FIG. 5 is a partial cross-sectional view showing in detail the coupling relationship between the lower case, the upper case and the cooling duct of FIG.
  • FIG. 6 is a perspective view showing in detail the front wall of the outer air path portion of FIG. 4.
  • FIG. 7 is a plan view showing in detail a bottom bottom of the outer air path of FIG. 4.
  • FIG. 8 is a perspective view showing in detail the rear wall of the outer air path portion of FIG. 4.
  • FIG. 9 is a perspective view illustrating the battery pack of FIG. 1.
  • FIG. 10 is a partial cross-sectional view showing the battery pack taken along cut lines II ′ and II ′ II ′ of FIG. 9.
  • the battery cell refers to a lithium secondary battery.
  • the lithium secondary battery is a generic term for a secondary battery in which lithium ions act as operating ions during charging and discharging to induce an electrochemical reaction in the positive electrode and the negative electrode.
  • the present invention is not limited to the type of battery.
  • FIG. 1 is an exploded perspective view showing a battery pack according to an embodiment of the present invention
  • Figure 2 is a perspective view showing the battery module of FIG. 3 is a perspective view showing the battery cartridge of FIG. 2 in detail.
  • the battery pack 120 includes a lower case 5, a battery module 50, and an upper case 110.
  • the lower case 5 is opened toward the upper case 110 to accommodate the battery module 50.
  • the lower case 5 has an end located at the same level along the upper edge.
  • the battery module 50 includes battery cartridges 20 having cooling passages and cooling ducts 42, 44, 46, and 48 for introducing air into or extracting the air from the cooling passages.
  • the battery cartridges 20 are sequentially stacked in the battery module 50.
  • the battery cartridges 20 accommodate one or two battery cells (C in FIG. 10) between two adjacent battery cartridges 20.
  • Each of the cooling ducts 42, 44, 46, 48 is located on the side of the battery cartridge 20.
  • the cooling ducts (42, 44, 46, 48) is a battery cell (C) that is received between the battery cartridge 20 through the air by introducing air into each cooling flow path of the battery cartridge 20 Cool them.
  • each of the cooling ducts 46, 48 has a blowing fan (not shown in the figure).
  • the blower fan draws air from the outside through the cooling ducts 42 and 44 to allow air to flow through the respective cooling channels of the battery cartridges 20, and the air flows through the battery cartridge 20.
  • the heat exchanges heat with the battery cells (C) accommodated between) flows from the cooling flow path toward the cooling ducts 46, 48 and is discharged to the outside through the cooling ducts (46, 48).
  • the upper case 110 has an end opening toward the lower case 5 and located at the same level along the lower edge thereof. An end of the upper case 110 faces the end of the lower case 5.
  • the upper case 110 includes vent structures 102, 104, 106, and 108 in a box-shaped housing 70 covering an upper portion of the battery module 50.
  • vent structures 102, 104, 106, 108 are located in one-to-one correspondence on top of the cooling ducts 42, 44, 46, 48.
  • the vent structures 102, 104, 106, 108 guide the inflow of air from the outside of the upper case 110 to the inside or guide the outflow of air from the inside of the upper case 110 to the outside. It is configured to.
  • the battery module 50 has cooling ducts 42, 44, 46, 48 that are tightly coupled to both sides of the battery cartridge 20, as shown in FIG. 2.
  • the cooling ducts 42, 44, 46, 48 are located between the lower case 5 and the battery cartridges 20.
  • Each of the cooling ducts 42, 44, 46, 48 has an air inlet 35 that opens toward the upper case 110.
  • the cooling ducts 42, 44, 46, 48 open toward the sides of the battery cartridges 20 below the air inlets 35. More specifically, the cooling ducts 42, 44, 46, 48 are grooves 42a, 44a, 46a, 48a that respectively open under the air inlets 35 toward the sides of the battery cartridge 20. Has Each of the grooves 42a, 44a, 46a, 48a has a rectangular edge and is attached to the battery cartridges 20 via a sealing member interposed at the edge.
  • the grooves 42a, 44a, 46a, 48a provide space for a smooth flow of air entering or exiting through the air inlets 35.
  • the space communicates with the air inlet 35.
  • the air inlet 35 is lower than the top level of the battery module 50.
  • the air inlets 35 of the cooling ducts 42, 44, 46, 48 are located at the same level.
  • the battery cartridge 20 includes a lower cooling fin 11 and an upper cooling fin 12 as shown in FIG.
  • the lower cooling fin 11 and the upper cooling fin 12 are spaced apart from each other and are fixed to the outer frame of the battery cartridge 20 by insert injection molding or the like.
  • the battery cartridge 20 has air inlets 14, 15, 17, 18 on the side which are covered by the cooling ducts 42, 44, 46, 48 along the longitudinal direction.
  • the air inlets 14, 15, 17, 18 communicate with the grooves 42a, 44a, 46a, 48a of the cooling ducts 42, 44, 46, 48.
  • Each of the air guide holes 14, 15, 17, and 18 has a slit-shaped opening along the length direction of the battery cartridge 20. The opening serves as a passage for introducing air from each of the cooling ducts 42, 44, 46, 48 or for discharging air towards each of the cooling ducts 42, 44, 46, 48.
  • the air inlets 14, 15, 17, 18 may be configured to supply air passages (not shown) positioned between the lower cooling fins 11 and the upper cooling fins 12 of the battery cartridge 20. It is exposed to the outside of the cartridge 20.
  • FIG. 4 is an exploded perspective view showing the structure of the upper case of Figure 1 in detail
  • Figure 5 is a partial cross-sectional view showing in detail the coupling relationship of the lower case, the upper case and the cooling duct of FIG.
  • the upper case 110 has a plurality of vent structures 102, 104, 106 and 108.
  • the vent structures 102, 104, 106, and 108 are positioned at the long edges of the upper case 110.
  • the vent structure 102 has an inner air path portion 69a and an outer air path portion 95a detachable from the inner air path portion 69a
  • the vent structure 104 includes an inner air path portion (a). 69b) and the outside air path part 95b which can be attached or detached to the inside air path part 69b.
  • the vent structure 106 has an inner air path portion 69c and an outer air path portion 95c detachable from the inner air path portion 69c
  • the vent structure 108 has an inner air path portion ( 69d) and the outer side air path part 95d which can be attached and detached from the inner side air path part 69d.
  • the inner air path portion 69a has a shape and a structure similar to the remaining inner air path portions 69b, 69c, and 69d, but has an opening area when compared with the remaining inner air path portions 69b, 69c, and 69d. The difference is in the size of.
  • the outer air path portion 95c has a shape and a structure similar to the remaining outer air path portions 95b, 95c, and 95d, but the overall structure when compared with the remaining outer air path portions 95b, 95c, and 95d. The difference is in the size of.
  • the vent structure 102 may be selected to collectively describe the remaining vent structures 104, 106, 108.
  • the inner air path portion 69a includes a rectangular tunnel-shaped window frame 61 positioned on the side wall of the housing 70 of the upper case 110.
  • the inner air path portion 69a is a window frame on the connection end 63 and the connection end 63 that form a step from the front side to the rear of the window frame 61 on the lower side of the window frame 61.
  • a partition wall 68 protruding vertically toward the side.
  • the inner air path portion 69a has a flow path connecting portion in intimate contact with the edge of the air inlet 35 of the cooling duct 42 at the inner end of the connecting end 63 and the end of the partition wall 68.
  • the flow path connecting portion 66 may have an inverted 'U' shaped groove structure and may have a sealing member in the groove structure.
  • both sidewalls of the window frame 61 have fastening pieces 67 protruding from the locking jaw 65 toward the partition wall 68 at the end of the rear side.
  • the inner air path portion 69a defines an air path P1 having an approximately '-' shape in the interior of the housing 70 of the upper case 110.
  • the outer air path portion 95a may be aligned with the inner air path portion 69a. More preferably, the outer air path portion 95a may be coupled to the inner air path portion 69a by coupling the hooks 89 protruding toward the inner air path portion 69a to the fastening pieces 67. .
  • FIG. 6 is a perspective view showing in detail the front wall of the outer air path of FIG. 4, and FIG. 7 is a plan view showing the lower bottom of the outer air path of FIG. 4 in detail. 8 is a perspective view showing in detail the rear wall of the outer air path portion of FIG. 4.
  • the outer air path portion 95a has a hollow (or hollow) square pillar shape. More specifically, the outer air path portion 95a is downward between the through-holes 81 located at the edge of the lower side of the front wall S1, the front wall S1 and the rear wall S3. Through holes 85 located at the bottom S2, through holes 87 located at the edge of the upper side of the rear wall S3, and hooks 89 protruding from the rear wall S3. .
  • the front wall S1 is exposed to the outside air from the outside of the inner air path portion 69a and the rear wall.
  • S3 is positioned inside the inner air path portion 69a, and the lower bottom S2 is positioned to face the lower portion of the inner air path portion 69a.
  • the outer air path portion 95a has side walls S4 between the front wall S1 and the rear wall S3, each of the side walls S4 having a front wall S1 and a rear wall S3. Protrudes from the lower bottom S2 below), and the height of the protruding portion of the side wall S4 becomes smaller from the front wall S1 toward the rear wall S3.
  • the protruding portions of the lower bottom S2 and the sidewalls S4 form a space (83 in FIG. 6) below the lower bottom S2.
  • the outer air path portion 95a defines an approximately ' ⁇ ' shaped air path P2 between the front wall S1 and the rear wall S3, as shown in FIG. 5. .
  • the air path P2 of the outer air path portion 95a is the housing 70 of the upper case 110. In communication with the air path P1 of the inner air path part 69a.
  • FIG. 9 is a perspective view illustrating the battery pack of FIG. 1, and FIG. 10 is a partial cross-sectional view of the battery pack taken along the cutting lines I-I 'and II-II' of FIG. 9.
  • the lower case 5 is covered by the upper case 110.
  • the upper edge of the lower case 5 is in close contact with the lower edge of the upper case 110 through the sealing member (8).
  • the lower case 5 and the upper case 110 completely surround the cooling ducts 42, 44, 46, and 48 of the battery module 50 of FIG. 1.
  • the vent structures 102, 104, 106, and 108 of the upper case 110 communicate with the cooling ducts 42, 44, 46, and 48 of the battery module 50, respectively.
  • the inner air path portion 69a of the vent structure 102 is in one direction D1.
  • the housing 70 of the upper case 110 in the other direction D2 which is opened toward the cooling duct 42 and coupled to the air inlet 35 of the cooling duct 42, and is perpendicular to the one direction D1. Opening toward the side of
  • the vent structure 102 includes an inner air path 69a and inner air that form an air path (P1 in FIG. 5) along the opening direction of the air inlet 35 of the cooling duct 42 and at right angles to the opening direction.
  • the outer air path portion 95a is inserted along the inner wall of the passage portion 69a and hooked to the fastening piece 67 through the hook 89.
  • the inner air path portion 69a has a flow path connecting portion in intimate contact with the edge of the air inlet 35 of the cooling duct 42 at the inner end of the connecting end 63 and the end of the partition wall 68. 5 of 66).
  • the inner air path portion 69a surrounds the outer air path portion 95a.
  • the inner air path portion 69a defines an air path P1 on the air inlet 35 of the cooling duct 42.
  • the outer air path portion 95a is fitted to the window frame (61 in FIG. 4) of the inner air path portion 69a and is caught on the connection end (63 in FIG. 4) of the window frame 61 (65 in FIG. 4). Takes on The hooks 89 of the outer air path portion 95a are respectively coupled to the fastening pieces 67 of the inner air path portion 69a.
  • FIGS. 1 and 10 Next, a manufacturing method and an operation mechanism of a battery pack according to an embodiment of the present invention will be described with reference to FIGS. 1 and 10.
  • the lower case 5, the battery module 50, and the upper case 110 may be prepared.
  • the lower case 5 may have a box shape and may be opened toward the upper case 110.
  • the battery module 50 is accommodated in the lower case 5 and may have battery cartridges 20, battery cells C, and cooling ducts 42, 44, 46, and 48.
  • the battery cartridges 20 may be sequentially stacked.
  • the battery cells C may be inserted between two adjacent battery cartridges 20.
  • the cooling ducts 42, 44, 46, 48 may be located on opposite sidewalls of the battery cartridge 20.
  • the sealing member 8 may be attached along the edge of the upper part of the lower case 5.
  • the sealing member 8 may be made of bond, silicone, rubber or urethane.
  • the upper case 110 may be in close contact with the sealing member 8 on the lower case 5 to cover the battery module 50.
  • the inner air path portions 69a, 69b, 69c, 69d of the vent structures 102, 104, 106, 108 in the upper case 110 are connected to the cooling ducts 42 through the flow path connections 66. , 44, 46, 48 may be coupled to the air inlets 35.
  • the air inlets 35 may be attached to the flow path connecting portions 66 using a sealing member.
  • the outer air path portions 95a, 95b, 95c, 95d are fitted along the inner walls of the inner air path portions 69a, 69b, 69c, 69d, the outer air path portions 95a, 95b, 95c. , 95d may fit naturally on the connection ends 63 of the window frame (61 in FIG. 4) of the inner air path portions 69a, 69b, 69c, 69d.
  • the hooks 89 of the outer air path portions 95a, 95b, 95c, and 95d may be hooked to the fastening pieces 67 of the inner air path portions 69a, 69b, 69c, and 69d, respectively.
  • the lower case 5 the battery module 50 and the upper case 110 may constitute the battery pack 120.
  • the battery pack 120 uses the outer air path portion 95a during driving of a blower fan (not shown) installed in the cooling duct 46.
  • a blower fan (not shown) installed in the cooling duct 46.
  • the leaked air passes heat through the air inlets 14 and 15 positioned at one side of each of the battery cartridges 20 and passes heat inside the air passages of the battery cartridges 20 to draw heat from the battery cells C. After absorbing it is discharged through air inlets 17, 18 located on the other side of each of the battery cartridges 20.
  • the battery pack 120 uses the outer air path portion 95c while driving the blower fan of the cooling duct 46 from the inner air path portion 69c on the other side of the upper case 110. Heated air is introduced through the air passages of the battery cartridges 20 through the through holes 87 of the rear wall S3 and through the through holes 81 of the front wall S1 and the front wall S1. Air may flow out through the through holes 85 of the bottom bottom S2 between the bottom wall S3 and the rear wall S3 along the flow lines F2 and F3.
  • the battery pack 120 introduces air into the battery cartridge from the outside through the outer air path portion 95a and the inner air path portion 69a while driving the blower fan of the cooling duct 46.
  • the heated air may pass through the air flow paths of the 20, and the air may flow out from the inside to the outside through the inner air path portion 69c and the outer air path portion 95c.

Abstract

본 발명은, 전지 모듈을 완전하게 둘러싸는 하부 케이스와 상부 케이스의 실링 면적을 최소화하여 전지 모듈에서 전지 셀들에 대한 냉각 덕트의 냉각 효율을 향상시키는데 적합한 전지 팩을 개시한다. 본 발명에 따르는 전지 팩은, 순차적으로 적층되는 전지 셀들과, 전지 셀들의 측부에 위치되는 냉각 덕트를 포함하는 전지 모듈; 전지 모듈과 냉각 덕트를 안착시키는 하부 케이스; 및 하부 케이스에 결합되어 전지 모듈과 냉각 덕트를 덮으며, 냉각 덕트 상에 벤트 구조물을 가지는 상부 케이스를 포함하고, 벤트 구조물은 냉각 덕트 상에서 상부 케이스의 측벽에 개구되는 내측 공기 경로부와 내측 공기 경로부에 삽입되는 외측 공기 경로부를 가지는 것을 특징으로 한다.

Description

전지 팩
본 출원은 2015년 06월 16일에 출원된 한국특허출원 제10-2015-0085238호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
본 발명은, 외부 구조물들을 이용하여 내부 구조물을 충분히 감싸도록 외부 구조물들의 실링 면을 평탄화해서 내부 구조물의 냉각 효과를 향상시키는데 적합한 전지 팩에 관한 것이다.
최근에, 차량의 배출 가스에 기인한 대기 오염을 줄이기 위해서, 차량은 내연 기관 및/ 또는 전기 모터를 이용해서 구동력을 확보하려는 연구에 바탕을 두고 제조되고 있다. 이에 따라서, 상기 차량은 하이브리드 자동차, 플러그인 하이브리드 자동차, 및 전기 자동차의 순서로 진화되었다. 이 경우에, 상기 하이브리드 자동차 및 플러그인 하이브리드 자동차는 내연 기관, 전기 모터와 전지 팩을 가지며, 상기 전기 자동차는 내연 기관 없이 전기 모터와 전지 팩을 갖는다.
더불어서, 상기 전지 팩도 하이브리드 자동차, 플러그인 하이브리드 자동차 및 전기 자동차와 함께 진화되었다. 상기 전지 팩은 전기 자동차의 외부에서 공급된 전력 또는 내부에서 생산된 전력에 의해 충전 가능하도록 구성된다. 상기 전지 팩은 하부 케이스와 상부 케이스 사이에 쿨링 덕트들과 전지 모듈을 갖는다. 상기 쿨링 덕트들은 전지 팩의 외부로부터 내부를 향해 공기를 유입시켜 공기를 이용하여 전지 모듈의 전지 셀들을 냉각시키며 전지 팩의 내부로부터 외부를 향해 공기를 계속적으로 유출시킨다.
여기서, 상기 쿨링 덕트들은 전지 팩의 외부로부터 공기를 흡입하기 위해 전지 팩의 외벽으로부터 부분적으로 외기에 노출된다. 또한, 상기 상부 케이스는 쿨링 덕트들의 형상에 따라 굴곡을 가지며 실링 부재를 이용하여 하부 케이스와 쿨링 덕트들에 밀착된다. 그러나, 상기 쿨링 덕트와 상부 케이스가 정합되지 않으면, 상기 쿨링 덕트와 상부 케이스는 쿨링 덕트와 실링 부재 사이에 또는 실링 부재와 상부 케이스 사이에 불필요한 공간을 갖게 된다. 상기 불필요한 공간은 쿨링 덕트를 경유하여 전지 모듈로 유입되어야 할 공기를 부분적으로 배출시켜 쿨링 덕트의 냉각 성능을 저하시킨다.
따라서, 상기 하부 케이스와 상부 케이스 사이에 설치되는 쿨링 덕트의 형상은 단위 시간 당 전지 셀들의 냉각 효과에 큰 영향을 준다. 상기 쿨링 덕트의 형상 관련 연구들이 많이 수행되고 있다. 상기 연구들 중 일 예가 한국 공개특허공보 제10-2012-0122000호(공개일자; 2012년11월07일)의 '유입구 및 유출구 최적화 구조의 배터리 팩'에서 개시되었다. 상기 배터리 팩은 아우터 케이스의 내부에 셀 모듈, 인렛 덕트와 아웃렛 덕트를 가지며, 아우터 케이스의 상부 측에 유입구 커버와 유출구 커버를 갖는다.
상기 인렛 덕트는 유입구 커버와 연통하고, 상기 아웃렛 덕트는 유출구 커버와 연통한다. 여기서, 상기 유입구 커버와 유출구 커버는 아우터 케이스의 서로 다른 측면들에 각각 위치된다. 그러나, 상기 배터리 팩의 경우에, 외부의 공기가 유입구 커버, 인렛 덕트, 셀 모듈의 전지 셀들, 아웃렛 덕트와 유출구 커버를 순차적으로 경유하므로, 상기 유출구 커버 가까이에 위치되는 전지 셀들은 다른 전지 셀들과 열을 교환한 뜨거운 공기의 영향을 받아 열을 축적한다. 이러한 일부 전지 셀들의 열 축적은 전지 모듈의 전기적 특성을 저하시킨다.
본 발명은 위와 같은 종래 기술의 배경하에 창안된 것으로서, 순차적으로 적층되는 하부 케이스와 상부 케이스의 실링 면적을 최소화하며 하부 케이스와 상부 케이스 사이에서 전지 모듈의 전지 셀들에 대한 냉각 덕트의 냉각 효율을 극대화시키는데 적합한 구조를 가진 전지 팩을 제공하는데 그 목적이 있다.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 전지 팩은, 순차적으로 적층되는 전지 셀들과, 상기 전지 셀들 사이에 위치되는 공기 유로들과, 상기 전지 셀들의 측부에 위치되어 상기 공기 유로들에 연통되는 공기 유동 공간을 정의하며 상기 공기 유동 공간에 연통되도록 상부를 향해 개구된 공기 출입구를 가지는 냉각 덕트를 포함하는 전지 모듈; 상기 전지 모듈과 상기 냉각 덕트를 안착시키는 하부 케이스; 및 상기 하부 케이스에 결합되어 상기 전지 모듈과 상기 냉각 덕트를 덮으며, 상기 냉각 덕트 상에 벤트 구조물을 가지는 상부 케이스를 포함하고, 상기 벤트 구조물은 공기 경로를 정의하며 상기 공기 경로의 일 측을 통해 상기 공기 출입구와 연통하고 상기 공기 경로의 타 측을 통해 상기 상부 케이스의 측벽을 관통하는 사각 터널형의 창문 틀을 가지는 내측 공기 경로부와, 상기 창문 틀의 내측 벽을 따라 삽입되며 상기 창문 틀의 전방에 위치되는 전방 벽과 상기 창문 틀의 후방에 위치되는 후방 벽에 관통 공들을 가지는 외측 공기 경로부를 가지는 것을 특징으로 한다.
*본 발명에 따라서, 상기 하부 케이스는 상부에서 가장 자리를 따라 동일 레벨에 위치되는 단부를 가지며 상기 가장 자리를 따라 실링 부재를 통해 상기 상부 케이스에 밀착될 수 있다.
본 발명에 따라서, 상기 전지 팩은 상기 전지 셀들 사이에 개재되는 전지 카트리지들을 더 포함하고, 상기 전지 카트리지들의 각각은, 외곽 프레임; 상기 외곽 프레임의 가장 자리에 고정되어 소정 간격으로 이격하는 하부 냉각 핀과 상부 냉각 핀; 및 상기 외곽 프레임의 양 측면에 위치되어 하부 냉각 핀과 상부 냉각 핀 사이의 공기 유로를 외부에 노출시키는 공기 유도구들을 포함할 수 있다.
본 발명에 따라서, 상기 냉각 덕트는 상기 공기 유동 공간을 통해 상기 전지 카트리지들의 각각의 상기 공기 유도구들을 향하여 개구될 수 있다.
바람직하게, 상기 냉각 덕트의 상기 공기 출입구는 상기 전지 모듈의 최 상단 레벨보다 더 낮을 수 있다.
일 측면에서, 상기 전지 모듈은 양 측부에 복수의 냉각 덕트를 포함하고, 각각의 냉각 덕트의 공기 출입구는 동일 레벨에 위치될 수 있다.
다른 측면에서, 상기 냉각 덕트는 상기 하부 케이스와 상기 상부 케이스에 의해 감싸질 수 있다.
또 다른 측면에서, 상기 냉각 덕트는 상기 전지 셀들의 양 측부들의 각각에 두 개씩 위치될 수 있다.
본 발명에 따라서, 상기 벤트 구조물은 상기 상부 케이스의 장변 가장 자리에서 측벽에 적어도 하나 위치될 수 있다.
바람직하게, 상기 내측 공기 경로부는 상기 외측 공기 경로부를 둘러쌀 수 있다.
일 측면에서, 상기 내측 공기 경로부는 상기 냉각 덕트의 상기 공기 출입구의 가장 자리에 실링 부재를 통해 밀착 결합될 수 있다.
다른 측면에서, 상기 내측 공기 경로부는, 상기 상부 케이스의 하우징의 측벽에 위치되는 사각 터널 형의 창문 틀, 상기 창문 틀의 하부 측에서 상기 창문 틀의 전방으로부터 후방을 향해 단차를 형성하는 접속단, 상기 접속단 상에서 상기 창문 틀의 내측 가장 자리를 따라 상기 창문 틀의 내벽으로부터 돌출되는 띠 형상의 걸림 턱과, 상기 접속단의 맞은 편에서 상기 하우징으로부터 냉각 덕트를 향해 돌출하는 격벽을 포함할 수 있다.
본 발명에 따라서, 상기 내측 공기 경로부는 상기 상부 케이스의 상기 하우징의 하부에서 상기 접속단의 내측 단부와 상기 격벽의 단부에 상기 냉각 덕트의 상기 공기 출입구의 가장 자리와 접촉하는 유로 연결부를 가질 수 있다.
바람직하게, 상기 유로 연결부는 단부에 역 'U' 자 형상의 홈 구조를 가질 수 있다.
일 측면에서, 상기 유로 연결부는 상기 홈 구조에 실링 부재를 가지며 상기 실링 부재를 통해 상기 공기 출입구에 밀착될 수 있다.
선택적으로, 상기 창문 틀의 양 측벽들은 후방 측의 단부에 상기 걸림턱으로부터 상기 격벽을 향해 돌출하는 체결 편들을 가질 수 있다.
본 발명에 따라서, 상기 외측 공기 경로부는 상기 상부 케이스의 일 측부에서 상기 전방 벽을 통해 그리고 상기 전방 벽과 상기 후방 벽 사이의 하방 바닥을 통해 공기를 유입시켜 상기 후방 벽으로부터 상기 내측 공기 경로부를 향해 상기 공기를 유출시킬 수 있다.
바람직하게, 상기 외측 공기 경로부는 상기 상부 케이스의 타 측부에서 상기 내측 공기 경로부로부터 상기 후방 벽을 향해 공기를 유입시켜 상기 전방 벽을 통해 그리고 상기 전방 벽과 상기 후방 벽 사이의 하방 바닥을 통해 공기를 유출시킬 수 있다.
일 측면에서, 상기 외측 공기 경로부는 상기 후방 벽으로부터 돌출하여 상기 내측 공기 경로부의 상기 체결 편들에 결합되는 후크들을 가질 수 있다.
다른 측면에서, 상기 외측 공기 경로부는 상기 전방 벽과 상기 후방 벽 사이에 측벽들을 가지고, 상기 측벽들의 각각은 상기 전방 벽과 상기 후방 벽 아래의 하방 바닥으로부터 돌출하며, 상기 측벽의 돌출 부분의 높이는 상기 전방 벽으로부터 상기 후방 벽을 향해 점점 작아질 수 있다.
또 다른 측면에서, 상기 하방 바닥은 관통 공들을 가질 수 있다.
본 발명에 따르는 전지 팩은, 순차적으로 적층되는 하부 케이스와 상부 케이스 사이에서 하부 케이스의 단부 전체를 따라 실링 부재를 동일 레벨에 위치시켜 하부 케이스와 상부 케이스의 실링 면적을 작게 가지므로 하부 케이스와 실링 부재 사이에 또는 실링 부재와 상부 케이스 사이에 불필요한 공간을 갖지 않는다.
본 발명에 따르는 전지 팩은, 하부 케이스와 상부 케이스 사이에 냉각 덕트들과 전지 모듈을 구비하며 하부 케이스의 가장 자리와 상부 케이스의 가장 자리 사이에 불필요한 공간을 가지지 않으므로 전지 모듈에 구비된 냉각 덕트들의 냉각 효율을 극대화시킬 수 있다.
본 발명에 따르는 전지 팩은, 하부 케이스와 상부 케이스 사이에서 전지 모듈의 양 측부들에 각각 위치되는 냉각 덕트들과, 상부 케이스에서 냉각 덕트들에 각각 연통되는 벤트(vent) 구조물들을 구비하므로 벤트 구조물들과 냉각 덕트들을 이용하여 상부 케이스의 복수의 영역들에서 공기의 유입 및 유출을 빠르게 수행하며 전지 모듈의 전지 셀들을 단 시간 내에 냉각시킬 수 있다.
본 발명에 따르는 전지 팩은, 하부 케이스와 상부 케이스의 실링 면적을 작게 가지며 전지 모듈에 대한 냉각 덕트들의 냉각 효율을 극대화시키므로 전지 모듈의 구동 동안에 전지 모듈에서 전지 셀들의 열에 의해 발생되는 하부 케이스와 상부 케이스 사이의 내부 압력을 적절하게 낮출 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 한 실시예를 예시하는 것이며, 후술하는 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명의 실시 예에 따른 전지 팩을 보여주는 분해 사시도이다.
도 2는, 도 1의 전지 모듈을 보여주는 사시도이다.
도 3은, 도 2의 전지 카트리지를 상세하게 보여주는 사시도이다.
도 4는, 도 1의 상부 케이스의 구조를 상세하게 보여주는 분해 사시도이다.
도 5는, 도 1의 하부 케이스, 상부 케이스와 냉각 덕트의 결합 관계를 상세하게 보여주는 부분 단면도이다.
도 6은, 도 4의 외측 공기 경로부의 전방 벽을 상세하게 보여주는 사시도이다.
도 7은, 도 4의 외측 공기 경로부의 하방 바닥을 상세하게 보여주는 평면도이다.
도 8은, 도 4의 외측 공기 경로부의 후방 벽을 상세하게 보여주는 사시도이다.
도 9는, 도 1의 전지 팩을 보여주는 사시도이다.
도 10은, 도 9의 절단선들 Ⅰ - Ⅰ' 와 Ⅱ - Ⅱ' 를 따라 취해 전지 팩을 보여주는 부분 단면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 출원을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 발명시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
이하에서 설명되는 실시 예에 있어서, 전지 셀은 리튬 이차 전지를 일컫는다. 여기서, 리튬 이차 전지라 함은 충전과 방전이 이루어지는 동안 리튬 이온이 작동 이온으로 작용하여 양극과 음극에서 전기화학적 반응을 유발하는 이차 전지를 총칭한다. 하지만 본 발명은 전지의 종류에 한정되지 않음은 자명하다.
도 1은 본 발명의 실시 예에 따른 전지 팩을 보여주는 분해 사시도이고, 도 2는 도 1의 전지 모듈을 보여주는 사시도이다. 또한, 도 3은 도 2의 전지 카트리지를 상세하게 보여주는 사시도이다.
도 1 내지 도 3을 참조하면, 본 발명에 따른 전지 팩(120)은 하부 케이스(5), 전지 모듈(50)과 상부 케이스(110)를 포함한다. 상기 하부 케이스(5)는 전지 모듈(50)을 수용하도록 상부 케이스(110)를 향해 개구된다. 일 측면에서, 상기 하부 케이스(5)는 상부의 가장 자리를 따라 동일 레벨에 위치되는 단부를 갖는다.
상기 전지 모듈(50)은 냉각 유로를 가지는 전지 카트리지(20)들과 냉각 유로에 공기를 유입시키거나 냉각 유로로부터 공기를 배출시키는 냉각 덕트들(42, 44, 46, 48)을 포함한다. 상기 전지 카트리지(20)들은 전지 모듈(50)에서 순차적으로 적층된다. 바람직하게, 상기 전지 카트리지(20)들은 인접하는 두 개의 전지 카트리(20)들 사이에 하나 또는 두 개의 전지 셀(도 10의 C)들을 수용한다.
상기 냉각 덕트들(42, 44, 46, 48)의 각각은 전지 카트리지(20)들의 측부에 위치된다. 바람직하게, 상기 냉각 덕트들(42, 44, 46, 48)은 전지 카트리지(20)들의 각각의 냉각 유로에 공기를 유입시켜 공기를 통해 전지 카트리지(20)들 사이에 수용되는 전지 셀(C)들을 냉각시킨다. 일 측면에서, 상기 냉각 덕트들(46, 48)의 각각은 송풍 팬(도면에 미 도시)을 갖는다.
상기 송풍 팬이 구동되면, 상기 송풍 팬은 냉각 덕트들(42, 44)을 통해 외부로부터 공기를 흡입하여 전지 카트리지(20)들의 각각의 냉각 유로에 공기를 흐르게 하고, 상기 공기는 전지 카트리지(20)들 사이에 수용되는 전지 셀(C)들과 열을 교환하여 냉각 유로로부터 냉각 덕트들(46, 48)을 향해 흘러서 냉각 덕트들(46, 48)을 통해 외부로 배출된다.
상기 상부 케이스(110)는 하부 케이스(5)를 향해 개구되며 하부의 가장 자리를 따라 동일 레벨에 위치되는 단부를 갖는다. 상기 상부 케이스(110)의 단부는 하부 케이스(5)의 단부와 마주한다. 상기 상부 케이스(110)는 전지 모듈(50)의 상부를 덮는 박스 형상의 하우징(70)에 벤트 구조물들(102, 104, 106, 108)을 포함한다.
상기 벤트 구조물들(102, 104, 106, 108)은 냉각 덕트들(42, 44, 46, 48)의 상부에 일대일 대응되도록 위치된다. 바람직하게, 상기 벤트 구조물들(102, 104, 106, 108)은 상부 케이스(110)의 외부로부터 내부를 향해 공기의 유입을 가이드하거나 상부 케이스(110)의 내부로부터 외부를 향해 공기의 유출을 가이드하도록 구성된다.
상기 전지 모듈(50)은, 도 2에 도시된 바와 같이, 전지 카트리지(20)들의 양 측부들에 긴밀하게 결합되는 냉각 덕트들(42, 44, 46, 48)을 갖는다. 상기 냉각 덕트들(42, 44, 46, 48)은 하부 케이스(5)와 전지 카트리지(20)들 사이에 위치된다. 상기 냉각 덕트들(42, 44, 46, 48)의 각각은 상부 케이스(110)를 향해 개구되는 공기 출입구(35)를 갖는다.
상기 냉각 덕트들(42, 44, 46, 48)은 공기 출입구(35)들 아래에서 전지 카트리지(20)들의 측부를 향해 개구된다. 좀 더 상세하게는, 상기 냉각 덕트들(42, 44, 46, 48)은 공기 출입구(35)들 아래에서 전지 카트리지(20)들의 측부를 향해 각각 개구되는 그루브들(42a, 44a, 46a, 48a)을 갖는다. 상기 그루브들(42a, 44a, 46a, 48a)의 각각은 사각형의 가장 자리를 가지며, 가장 자리에 개재된 실링 부재를 통해 전지 카트리지(20)들에 부착된다.
상기 그루브들(42a, 44a, 46a, 48a)은 공기 출입구(35)들을 통해 유입되거나 배출되는 공기의 원활한 유동을 위해 공간을 제공한다. 상기 공간은 공기 출입구(35)와 연통한다. 바람직하게, 상기 공기 출입구(35)는 전지 모듈(50)의 최 상단 레벨보다 더 낮다. 바람직하게, 상기 냉각 덕트들(42, 44, 46, 48)의 공기 출입구(35)들은 동일 레벨에 위치된다.
상기 전지 카트리지(20)는 도 3에 도시된 바와 같이 하부 냉각 핀(11)과 상부 냉각 핀(12)을 포함한다. 상기 하부 냉각 핀(11)과 상부 냉각 핀(12)은 서로로부터 이격되며 전지 카트리지(20)의 외곽 프레임에 인서트 사출 성형 등을 통해 고정된다. 상기 전지 카트리지(20)는 길이 방향을 따라 냉각 덕트들(42, 44, 46, 48)에 의해 덮이는 공기 유도구들(14, 15, 17, 18)을 측면에 갖는다.
여기서, 상기 공기 유도구들(14, 15, 17, 18)은 냉각 덕트들(42, 44, 46, 48)의 그루브들(42a, 44a, 46a, 48a)과 연통한다. 상기 공기 유도구들(14, 15, 17, 18)의 각각은 전지 카트리지(20)의 길이 방향을 따라 슬릿 형상의 개구를 갖는다. 상기 개구는 냉각 덕트들(42, 44, 46, 48)의 각각으로부터 공기를 유입하거나 냉각 덕트들(42, 44, 46, 48)의 각각을 향해 공기를 배출하는 통로로서 기능한다.
바람직하게, 상기 공기 유도구들(14, 15, 17, 18)은 전지 카트리지(20)의 하부 냉각 핀(11)과 상부 냉각 핀(12) 사이에 위치되는 공기 유로(도면에 미도시)를 전지 카트리지(20)의 외부에 노출시킨다.
도 4는 도 1의 상부 케이스의 구조를 상세하게 보여주는 분해 사시도이고, 도 5는 도 1의 하부 케이스, 상부 케이스와 냉각 덕트의 결합 관계를 상세하게 보여주는 부분 단면도이다.
도 4 및 도 5를 참조하면, 상기 상부 케이스(110)는 복수의 벤트 구조물들(102, 104, 106, 108)을 갖는다. 상기 벤트 구조물들(102, 104, 106, 108)은 상부 케이스(110)의 장변 가장 자리에 위치된다. 바람직하게, 상기 벤트 구조물(102)은 내측 공기 경로부(69a)와 내측 공기 경로부(69a)에 착탈 가능한 외측 공기 경로부(95a)를 가지며, 상기 벤트 구조물(104)은 내측 공기 경로부(69b)와 내측 공기 경로부(69b)에 착탈 가능한 외측 공기 경로부(95b)를 갖는다.
유사하게, 상기 벤트 구조물(106)은 내측 공기 경로부(69c)와 내측 공기 경로부(69c)에 착탈 가능한 외측 공기 경로부(95c)를 가지며, 상기 벤트 구조물(108)은 내측 공기 경로부(69d)와 내측 공기 경로부(69d)에 착탈 가능한 외측 공기 경로부(95d)를 갖는다. 여기서, 상기 내측 공기 경로부(69a)는 나머지 내측 공기 경로부들(69b, 69c, 69d)과 유사한 형상과 구조를 가지며, 다만 나머지 내측 공기 경로부들(69b, 69c, 69d)과 비교하였을 때에 개구 면적의 크기에서 차이를 보일 뿐이다.
또한, 상기 외측 공기 경로부(95c)는 나머지 외측 공기 경로부들(95b, 95c, 95d)과 유사한 형상과 구조를 가지며, 다만 나머지 외측 공기 경로부들(95b, 95c, 95d)과 비교하였을 때에 전체적인 구조물의 크기에서 차이를 보일 뿐이다. 따라서, 본 발명을 단순하게 설명하기 위해, 상기 벤트 구조물(102)이 나머지 벤트 구조물들(104, 106, 108)의 설명을 일괄하도록 선택될 수 있다.
바람직하게, 상기 벤트 구조물(102)에서, 상기 내측 공기 경로부(69a)는 상부 케이스(110)의 하우징(70)의 측벽에 위치되는 사각 터널 형의 창문 틀(61)을 포함한다. 여기서, 상기 내측 공기 경로부(69a)는, 창문 틀(61)의 하부 측에서 창문 틀(61)의 전방으로부터 후방을 향해 단차를 형성하는 접속단(63), 접속단(63) 상에서 창문 틀(61)의 내측 가장 자리를 따라 창문 틀(61)의 내벽으로부터 돌출되는 띠 형상의 걸림 턱(65)과, 접속단(63)으로부터 이격되어 하우징(70)의 상부 내벽으로부터 냉각 덕트(42)를 향해 수직으로 돌출하는 격벽(68)을 포함한다.
바람직하게, 상기 내측 공기 경로부(69a)는 접속단(63)의 내측 단부와 격벽(68)의 단부에 냉각 덕트(42)의 공기 출입구(35)의 가장 자리와 긴밀하게 접촉하는 유로 연결부(66)를 갖는다. 상기 유로 연결부(66)는 역 'U' 자 형상의 홈 구조를 가지며, 홈 구조에 실링 부재를 가질 수 있다. 일 측면에서, 상기 창문 틀(61)의 양 측벽들은 후방 측의 단부에 걸림턱(65)으로부터 격벽(68)을 향해 돌출하는 체결 편(67)들을 갖는다.
다른 측면에서, 상기 내측 공기 경로부(69a)는 상부 케이스(110)의 하우징(70)의 내부에서 대략적으로 'ㄱ' 자 형상의 공기 경로(P1)를 정의한다. 한편, 상기 벤트 구조물(102)에서, 상기 외측 공기 경로부(95a)는 내측 공기 경로부(69a)에 정렬될 수 있다. 더 바람직하게, 상기 외측 공기 경로부(95a)는 내측 공기 경로부(69a)를 향해 돌출되는 후크(89)들을 체결 편(67)들에 결합시켜 내측 공기 경로부(69a)에 결합될 수 있다.
도 6은 도 4의 외측 공기 경로부의 전방 벽을 상세하게 보여주는 사시도이고, 도 7은 도 4의 외측 공기 경로부의 하방 바닥을 상세하게 보여주는 평면도이다. 또한, 도 8은 도 4의 외측 공기 경로부의 후방 벽을 상세하게 보여주는 사시도이다.
도 6 내지 도 8을 참조하면, 상기 외측 공기 경로부(95a)는 속이 빈(또는 공동의) 사각 기둥 형상으로 이루어진다. 좀 더 상세하게는, 상기 외측 공기 경로부(95a)는 전방 벽(S1)의 하부 측의 가장 자리에 위치되는 관통 공(81)들, 전방 벽(S1)과 후방 벽(S3) 사이의 하방 바닥(S2)에 위치되는 관통 공(85)들, 후방 벽(S3)의 상부 측의 가장 자리에 위치되는 관통 공(87)들, 그리고 후방 벽(S3)으로부터 돌출하는 후크(89)들을 갖는다.
상기 외측 공기 경로부(95a)가 내측 공기 경로부(69a)에 도 5와 같이 결합되는 때에, 상기 전방 벽(S1)은 내측 공기 경로부(69a)의 외부에서 외기에 노출되며, 상기 후방 벽(S3)은 내측 공기 경로부(69a)의 내부에 위치되고, 상기 하방 바닥(S2)은 내측 공기 경로부(69a)의 하부를 향하도록 위치된다.
바람직하게, 상기 외측 공기 경로부(95a)는 전방 벽(S1)과 후방 벽(S3) 사이에 측벽(S4)들을 가지고, 상기 측벽(S4)들의 각각은 전방 벽(S1)과 후방 벽(S3) 아래의 하방 바닥(S2)으로부터 돌출하며, 상기 측벽(S4)의 돌출 부분의 높이는 전방 벽(S1)으로부터 후방 벽(S3)을 향해 점점 작아진다. 여기서, 상기 하방 바닥(S2)과 측벽(S4)들의 돌출 부분은 하방 바닥(S2) 아래에 공간(도 6의 83)을 형성한다.
일 측면에서, 상기 외측 공기 경로부(95a)는, 도 5에 도시된 바와 같이, 전방 벽(S1)과 후방 벽(S3) 사이에 대략적으로 '┌' 형상의 공기 경로(P2)를 정의한다. 상기 외측 공기 경로부(95a)가 내측 공기 경로부(69a)에 도 5와 같이 삽입되는 때에, 상기 외측 공기 경로부(95a)의 공기 경로(P2)는 상부 케이스(110)의 하우징(70)의 내부에서 내측 공기 경로부(69a)의 공기 경로(P1)와 연통한다.
도 9는 도 1의 전지 팩을 보여주는 사시도이고, 도 10은 도 9의 절단선들 Ⅰ - Ⅰ' 와 Ⅱ - Ⅱ' 를 따라 취해 전지 팩을 보여주는 부분 단면도이다.
도 9 및 도 10을 참조하면, 상기 전지 카트리지(120)에서, 상기 하부 케이스(5)는 상부 케이스(110)에 의해 덮인다. 여기서, 상기 하부 케이스(5)의 상부의 가장 자리는 실링 부재(8)를 통해 상부 케이스(110)의 하부의 가장 자리에 밀착된다. 또한, 상기 하부 케이스(5)와 상부 케이스(110)는 전지 모듈(도 1의 50)의 냉각 덕트들(42, 44, 46, 48)을 완전히 감싼다.
도 10을 참조하면, 상기 상부 케이스(110)의 벤트 구조물들(102, 104, 106, 108)은 전지 모듈(50)의 냉각 덕트들(42, 44, 46, 48)과 각각 연통한다. 본 발명의 설명의 편의를 위해, 상기 벤트 구조물들(102, 104, 106, 108) 중 하나(102)를 선택하면, 상기 벤트 구조물(102)의 내측 공기 경로부(69a)는 일 방향(D1)으로 냉각 덕트(42)를 향해 개구되어 냉각 덕트(42)의 공기 출입구(35)에 결합되고, 일 방향(D1)과 직각을 이루는 타 방향(D2)으로 상부 케이스(110)의 하우징(70)의 측부를 향해 개구된다.
상기 벤트 구조물(102)은 냉각 덕트(42)의 공기 출입구(35)의 개구 방향을 따라 그리고 개구 방향에 직각으로 공기 경로(도 5의 P1)를 형성하는 내측 공기 경로부(69a)와 내측 공기 경로부(69a)의 내측 벽을 따라 삽입되어 후크(89)를 통해 체결 편(67)에 후크 결합되는 외측 공기 경로부(95a)로 이루어진다.
여기서, 상기 내측 공기 경로부(69a)는 접속단(63)의 내측 단부와 격벽(68)의 단부에서 냉각 덕트(42)의 공기 출입구(35)의 가장 자리와 긴밀하게 접촉하는 유로 연결부(도 5의 66)를 갖는다. 바람직하게, 상기 내측 공기 경로부(69a)는 외측 공기 경로부(95a)를 둘러싼다.
일 측면에서, 상기 내측 공기 경로부(69a)는 냉각 덕트(42)의 공기 출입구(35) 상에서 공기 경로(P1)를 정의한다. 상기 외측 공기 경로부(95a)는 내측 공기 경로부(69a)의 창문 틀(도 4의 61)에 끼워져 창문 틀(61)의 접속단(도 4의 63) 상에서 걸림 턱(도 4의 65)에 걸린다. 상기 외측 공기 경로부(95a)의 후크(89)들은 내측 공기 경로부(69a)의 체결 편(67)들에 각각 결합된다.
다음으로, 본 발명의 실시 예에 따른 전지 팩의 제조방법과 작동 매커니즘이 도 1 및 도 10을 참조해서 설명된다.
도 1 및 도 10을 참조하면, 하부 케이스(5), 전지 모듈(50) 및 상부 케이스(110)가 준비될 수 있다. 상기 하부 케이스(5)는 상자 형상으로 이루어져 상부 케이스(110)를 향해 개구될 수 있다. 다음으로, 상기 전지 모듈(50)은 하부 케이스(5)에 수용되며 전지 카트리지(20)들, 전지 셀(C)들과 냉각 덕트들(42, 44, 46, 48)을 가질 수 있다.
상기 전지 카트리지(20)들은 순차적으로 적층될 수 있다. 상기 전지 셀(C)들은 인접하는 두 개의 전지 카트리지(20)들 사이에 삽입될 수 있다. 상기 냉각 덕트들(42, 44, 46, 48)은 전지 카트리지(20)들의 대향하는 측벽들에 위치될 수 있다. 계속해서, 상기 하부 케이스(5)의 상부의 가장 자리를 따라 실링 부재(8)가 부착될 수 있다. 상기 실링 부재(8)는 본드, 실리콘, 고무 또는 우레탄으로 이루어질 수 있다.
이어서, 상기 상부 케이스(110)는 하부 케이스(5) 상에서 실링 부재(8)에 밀착되어 전지 모듈(50)을 덮을 수 있다. 이 경우에, 상기 상부 케이스(110)에서 벤트 구조물들(102, 104, 106, 108)의 내측 공기 경로부들(69a, 69b, 69c, 69d)은 유로 연결부(66)들을 통해 냉각 덕트들(42, 44, 46, 48)의 공기 출입구(35)들에 결합될 수 있다.
상기 공기 출입구(35)들은 실링 부재를 이용하여 유로 연결부(66)들에 부착될 수 있다. 다음으로, 상기 외측 공기 경로부들(95a, 95b, 95c, 95d)이 내측 공기 경로부들(69a, 69b, 69c, 69d)의 내측 벽들을 따라 끼워지면, 상기 외측 공기 경로부(95a, 95b, 95c, 95d)들은 내측 공기 경로부들(69a, 69b, 69c, 69d)의 창문 틀(도 4의 61)들의 접속단(63)들 상에 자연스럽게 끼워질 수 있다.
상기 외측 공기 경로부(95a, 95b, 95c, 95d)의 후크(89)들은 내측 공기 경로부(69a, 69b, 69c, 69d)의 체결편(67)들에 각각 후크 결합될 수 있다. 이를 통해서, 상기 하부 케이스(5), 전지 모듈(50)과 상부 케이스(110)는 전지 팩(120)을 구성할 수 있다.
한편, 상기 전지 팩(120)의 냉각 매커니즘을 설명하면, 상기 전지 팩(120)은, 냉각 덕트(46)에 설치된 송풍 팬(미도시)의 구동 동안에, 외측 공기 경로부(95a)를 이용하여, 상부 케이스(110)의 일 측부에서 전방 벽(도 6의 S1)의 관통 공(81)들을 통해 그리고 전방 벽(S1)과 후방 벽(도 7의 S3) 사이의 하방 바닥(도 7의 S2)의 관통 공(85)들을 통해 흐름선들(F0, F1)을 따라 공기를 유입시켜 후방 벽(S3)의 관통공(도 8의 87)들로부터 내측 공기 경로부(69a)를 향해 공기를 유출시킬 수 있다.
상기 유출된 공기는 전지 카트리지(20)들의 각각의 일 측면에 위치되는 공기 유도구들(14, 15)을 통해 전지 카트리지(20)의 공기 유로의 내부를 통과하면서 전지 셀(C)들로부터 열을 흡수한 후에 전지 카트리지(20)들의 각각의 타 측면에 위치되는 공기 유도구들(17, 18)을 통해 배출된다.
또한, 상기 전지 팩(120)은, 냉각 덕트(46)의 송풍 팬의 구동 동안에, 외측 공기 경로부(95c)를 이용하여, 상부 케이스(110)의 타 측부에서 내측 공기 경로부(69c)로부터 후방 벽(S3)의 관통 공(87)들을 통해 전지 카트리지(20)들의 각각의 공기 유로를 통과하면서 가열된 공기를 유입시켜 전방 벽(S1)의 관통 공(81)들을 통해 그리고 전방 벽(S1)과 후방 벽(S3) 사이의 하방 바닥(S2)의 관통 공(85)들을 통해 흐름선들(F2, F3)을 따라 공기를 외부로 유출시킬 수 있다.
따라서, 상기 전지 팩(120)은, 냉각 덕트(46)의 송풍 팬의 구동 동안에, 외측 공기 경로부(95a)와 내측 공기 경로부(69a)를 통해 외부로부터 내부를 향해 공기를 유입시켜 전지 카트리지(20)들의 공기 유로를 통과시키며 공기 유로를 통과하면서 가열된 공기를 내측 공기 경로부(69c)와 외측 공기 경로부(95c)를 통해 내부로부터 외부를 향해 공기를 유출시킬 수 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (21)

  1. 순차적으로 적층되는 전지 셀들과, 상기 전지 셀들 사이에 위치되는 공기 유로들과, 상기 전지 셀들의 측부에 위치되어 상기 공기 유로들에 연통되는 공기 유동 공간을 정의하며 상기 공기 유동 공간에 연통되도록 상부를 향해 개구된 공기 출입구를 가지는 냉각 덕트를 포함하는 전지 모듈;
    상기 전지 모듈과 상기 냉각 덕트를 안착시키는 하부 케이스; 및
    상기 하부 케이스에 결합되어 상기 전지 모듈과 상기 냉각 덕트를 덮으며, 상기 냉각 덕트 상에 벤트 구조물을 가지는 상부 케이스를 포함하고,
    상기 벤트 구조물은 공기 경로를 정의하며 상기 공기 경로의 일 측을 통해 상기 공기 출입구와 연통하고 상기 공기 경로의 타 측을 통해 상기 상부 케이스의 측벽을 관통하는 사각 터널형의 창문 틀을 가지는 내측 공기 경로부와, 상기 창문 틀의 내측 벽을 따라 삽입되며 상기 창문 틀의 전방에 위치되는 전방 벽과 상기 창문 틀의 후방에 위치되는 후방 벽에 관통 공들을 가지는 외측 공기 경로부를 가지는 것을 특징으로 하는 전지 팩.
  2. 제1항에 있어서,
    상기 하부 케이스는 상부에서 가장 자리를 따라 동일 레벨에 위치되는 단부를 가지며 상기 가장 자리를 따라 실링 부재를 통해 상기 상부 케이스에 밀착되는 것을 특징으로 하는 전지 팩.
  3. 제1항에 있어서,
    상기 전지 셀들 사이에 개재되는 전지 카트리지들을 더 포함하고,
    상기 전지 카트리지들의 각각은,
    외곽 프레임;
    상기 외곽 프레임의 가장 자리에 고정되어 소정 간격으로 이격하는 하부 냉각 핀과 상부 냉각 핀; 및
    상기 외곽 프레임의 양 측면에 위치되어 하부 냉각 핀과 상부 냉각 핀 사이의 공기 유로를 외부에 노출시키는 공기 유도구들을 포함하는 것을 특징으로 하는 전지 팩.
  4. 제3항에 있어서,
    상기 냉각 덕트는 상기 공기 유동 공간을 통해 상기 전지 카트리지들의 각각의 상기 공기 유도구들을 향하여 개구되는 것을 특징으로 하는 전지 팩.
  5. 제1항에 있어서,
    상기 냉각 덕트의 상기 공기 출입구는 상기 전지 모듈의 최 상단 레벨보다 더 낮은 것을 특징으로 하는 전지 팩.
  6. 제1항에 있어서,
    상기 전지 모듈은 양 측부에 복수의 냉각 덕트를 포함하고,
    각각의 냉각 덕트의 공기 출입구는 동일 레벨에 위치되는 것을 특징으로 하는 전지 팩.
  7. 제1항에 있어서,
    상기 냉각 덕트는 상기 하부 케이스와 상기 상부 케이스에 의해 감싸지는 것을 특징으로 하는 전지 팩.
  8. 제1항에 있어서,
    상기 냉각 덕트는 상기 전지 셀들의 양 측부들의 각각에 두 개씩 위치되는 것을 특징으로 하는 전지 팩.
  9. 제1항에 있어서,
    상기 벤트 구조물은 상기 상부 케이스의 장변 가장 자리에서 측벽에 적어도 하나 위치되는 것을 특징으로 하는 전지 팩.
  10. 제1항에 있어서,
    상기 내측 공기 경로부는 상기 외측 공기 경로부를 둘러싸는 것을 특징으로 하는 전지 팩.
  11. 제1항에 있어서,
    상기 내측 공기 경로부는 상기 냉각 덕트의 상기 공기 출입구의 가장 자리에 실링 부재를 통해 밀착 결합되는 것을 특징으로 하는 전지 팩.
  12. 제1항에 있어서,
    상기 내측 공기 경로부는,
    상기 상부 케이스의 하우징의 측벽에 위치되는 사각 터널 형의 창문 틀,
    상기 창문 틀의 하부 측에서 상기 창문 틀의 전방으로부터 후방을 향해 단차를 형성하는 접속단,
    상기 접속단 상에서 상기 창문 틀의 내측 가장 자리를 따라 상기 창문 틀의 내벽으로부터 돌출되는 띠 형상의 걸림 턱과,
    상기 접속단의 맞은 편에서 상기 하우징으로부터 냉각 덕트를 향해 돌출하는 격벽을 포함하는 것을 특징으로 하는 전지 팩.
  13. 제12항에 있어서,
    상기 내측 공기 경로부는 상기 상부 케이스의 상기 하우징의 하부에서 상기 접속단의 내측 단부와 상기 격벽의 단부에 상기 냉각 덕트의 상기 공기 출입구의 가장 자리와 접촉하는 유로 연결부를 가지는 것을 특징으로 하는 전지 팩.
  14. 제13항에 있어서,
    상기 유로 연결부는 단부에 역 'U' 자 형상의 홈 구조를 가지는 것을 특징으로 하는 전지 팩.
  15. 제14항에 있어서,
    상기 유로 연결부는 상기 홈 구조에 실링 부재를 가지며 상기 실링 부재를 통해 상기 공기 출입구에 밀착되는 것을 특징으로 하는 전지 팩.
  16. 제12항에 있어서,
    상기 창문 틀의 양 측벽들은 후방 측의 단부에 상기 걸림턱으로부터 상기 격벽을 향해 돌출하는 체결 편들을 가지는 것을 특징으로 하는 전지 팩.
  17. 제1항에 있어서,
    상기 외측 공기 경로부는 상기 상부 케이스의 일 측부에서 상기 전방 벽을 통해 그리고 상기 전방 벽과 상기 후방 벽 사이의 하방 바닥을 통해 공기를 유입시켜 상기 후방 벽으로부터 상기 내측 공기 경로부를 향해 상기 공기를 유출시키는 것을 특징으로 하는 전지 팩.
  18. 제1항에 있어서,
    상기 외측 공기 경로부는 상기 상부 케이스의 타 측부에서 상기 내측 공기 경로부로부터 상기 후방 벽을 향해 공기를 유입시켜 상기 전방 벽을 통해 그리고 상기 전방 벽과 상기 후방 벽 사이의 하방 바닥을 통해 공기를 유출시키는 것을 특징으로 하는 전지 팩.
  19. 제16항에 있어서,
    상기 외측 공기 경로부는 상기 후방 벽으로부터 돌출하여 상기 내측 공기 경로부의 상기 체결 편들에 결합되는 후크들을 가지는 것을 특징으로 하는 전지 팩.
  20. 제1항에 있어서,
    상기 외측 공기 경로부는 상기 전방 벽과 상기 후방 벽 사이에 측벽들을 가지고,
    상기 측벽들의 각각은 상기 전방 벽과 상기 후방 벽 아래의 하방 바닥으로부터 돌출하며,
    상기 측벽의 돌출 부분의 높이는 상기 전방 벽으로부터 상기 후방 벽을 향해 점점 작아지는 것을 특징으로 하는 전지 팩.
  21. 제20항에 있어서,
    상기 하방 바닥은 관통 공들을 가지는 것을 특징으로 하는 전지 팩.
PCT/KR2016/006370 2015-06-16 2016-06-15 전지 팩 WO2016204518A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/552,566 US10461286B2 (en) 2015-06-16 2016-06-15 Battery pack
JP2017549465A JP6380877B2 (ja) 2015-06-16 2016-06-15 電池パック
EP16811931.1A EP3261169A4 (en) 2015-06-16 2016-06-15 Battery pack
CN201680015744.8A CN107431257B (zh) 2015-06-16 2016-06-15 电池组

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0085238 2015-06-16
KR1020150085238A KR101881196B1 (ko) 2015-06-16 2015-06-16 전지 팩

Publications (1)

Publication Number Publication Date
WO2016204518A1 true WO2016204518A1 (ko) 2016-12-22

Family

ID=57546578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006370 WO2016204518A1 (ko) 2015-06-16 2016-06-15 전지 팩

Country Status (6)

Country Link
US (1) US10461286B2 (ko)
EP (1) EP3261169A4 (ko)
JP (1) JP6380877B2 (ko)
KR (1) KR101881196B1 (ko)
CN (1) CN107431257B (ko)
WO (1) WO2016204518A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102065106B1 (ko) * 2015-12-18 2020-01-10 주식회사 엘지화학 이차전지 팩
CN106453707B (zh) * 2016-11-01 2019-05-03 捷开通讯(深圳)有限公司 一种超薄电子装置
US10756401B2 (en) * 2017-02-08 2020-08-25 Denso Corporation Power source apparatus and work machine having the same
CN112331997B (zh) * 2019-10-15 2021-11-12 宁德时代新能源科技股份有限公司 电池包和车辆
KR20210046339A (ko) * 2019-10-18 2021-04-28 주식회사 엘지화학 전지 모듈 및 이을 포함하는 전지 팩
TWI790570B (zh) * 2021-03-18 2023-01-21 輝能科技股份有限公司 具散熱匣體之電池模組及其電池系統

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080027506A (ko) * 2006-09-25 2008-03-28 주식회사 엘지화학 중대형 전지모듈 및 전지모듈 어셈블리
KR20120076752A (ko) * 2010-12-30 2012-07-10 에스케이이노베이션 주식회사 유입구와 유출구가 수직구조인 배터리 팩
KR20130126159A (ko) * 2012-05-11 2013-11-20 에스케이이노베이션 주식회사 냉각 유로 관통형 이차전지모듈
KR20140110232A (ko) * 2013-03-06 2014-09-17 엘지전자 주식회사 전지 카트리지
KR20150044599A (ko) * 2013-10-17 2015-04-27 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5392873A (en) * 1992-01-22 1995-02-28 Honda Giken Kogyo Kabushiki Kaisha Structure for securing batteries used in an electric vehicle
KR100578889B1 (ko) * 2004-10-28 2006-05-11 삼성에스디아이 주식회사 전지 모듈
JP2007207523A (ja) * 2006-01-31 2007-08-16 Sanyo Electric Co Ltd 組電池
JP5259602B2 (ja) 2006-09-25 2013-08-07 エルジー・ケム・リミテッド セルモジュールカートリッジ及びそれを備えた中大型バッテリーモジュール
JP2010284984A (ja) * 2009-06-09 2010-12-24 Fuji Heavy Ind Ltd 車両用バッテリ搭載構造
US9583800B2 (en) * 2010-03-08 2017-02-28 Lg Electronics Inc. Vehicle and method for controlling same
JP5244931B2 (ja) * 2011-02-22 2013-07-24 日立ビークルエナジー株式会社 蓄電モジュール
KR101750069B1 (ko) * 2011-04-28 2017-06-23 에스케이이노베이션 주식회사 유입구 및 유출구 최적화 구조의 배터리 팩
KR101417306B1 (ko) * 2012-07-30 2014-07-09 기아자동차주식회사 차량용 배터리팩
US9306199B2 (en) * 2012-08-16 2016-04-05 Lg Chem, Ltd. Battery module and method for assembling the battery module
KR101561121B1 (ko) * 2012-11-01 2015-10-19 주식회사 엘지화학 효율적인 냉각 구조의 중대형 전지팩
JP2016199105A (ja) * 2015-04-08 2016-12-01 本田技研工業株式会社 バッテリユニット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080027506A (ko) * 2006-09-25 2008-03-28 주식회사 엘지화학 중대형 전지모듈 및 전지모듈 어셈블리
KR20120076752A (ko) * 2010-12-30 2012-07-10 에스케이이노베이션 주식회사 유입구와 유출구가 수직구조인 배터리 팩
KR20130126159A (ko) * 2012-05-11 2013-11-20 에스케이이노베이션 주식회사 냉각 유로 관통형 이차전지모듈
KR20140110232A (ko) * 2013-03-06 2014-09-17 엘지전자 주식회사 전지 카트리지
KR20150044599A (ko) * 2013-10-17 2015-04-27 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3261169A4 *

Also Published As

Publication number Publication date
CN107431257A (zh) 2017-12-01
EP3261169A4 (en) 2018-03-21
US10461286B2 (en) 2019-10-29
JP6380877B2 (ja) 2018-08-29
EP3261169A1 (en) 2017-12-27
KR20160148323A (ko) 2016-12-26
JP2018509740A (ja) 2018-04-05
US20180047951A1 (en) 2018-02-15
CN107431257B (zh) 2019-11-01
KR101881196B1 (ko) 2018-07-23

Similar Documents

Publication Publication Date Title
WO2016204518A1 (ko) 전지 팩
WO2017018721A1 (ko) 전지팩
WO2019112125A1 (ko) 셀 에지 직접 냉각 방식의 배터리 모듈 및 이를 포함하는 배터리 팩
WO2015126209A1 (ko) 배터리팩
WO2017078306A1 (ko) 전지 모듈
WO2013081325A1 (ko) 배터리모듈
WO2012067359A2 (ko) 냉매의 분배 균일성이 향상된 전지팩
WO2016140430A1 (ko) 전지 팩
WO2012148160A2 (ko) 배터리팩 수납장치 및 이를 이용한 전력 저장용 배터리팩의 냉각 장치
WO2013048060A2 (ko) 신규한 냉각구조를 가진 전지팩
WO2011149234A2 (ko) 전기 자동차용 배터리 팩과, 조립체 및, 이를 이용한 온도제어 시스템
WO2016068551A1 (ko) 단위 전지 팩
WO2010002139A9 (ko) 열 교환기를 가지고 있는 전지셀 어셈블리를 포함하는 전지모듈
WO2014112732A1 (ko) 배터리 케이스
WO2013168989A1 (en) Secondary battery module having through type cool channel
WO2020075962A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 랙 및 이러한 배터리 랙을 포함하는 전력 저장 장치
WO2013133636A1 (ko) 신규한 공냉식 구조의 전지팩
WO2017057924A1 (ko) 냉각 덕트의 실링성이 개선된 전지 모듈
WO2012067364A2 (ko) 우수한 냉각 효율성의 전지팩
WO2021085911A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 랙 및 전력 저장 장치
WO2018190552A1 (ko) 서랍형 배터리 팩
WO2022097943A1 (ko) 전기 차량용 공냉식 배터리 팩
WO2020197111A1 (ko) 배터리 모듈, 이를 포함하는 배터리 랙 및 전력 저장 장치
WO2022240140A1 (ko) 진공호퍼 프리챠져용 히팅트레이
WO2013183889A1 (ko) 배터리 팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811931

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15552566

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017549465

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016811931

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE