WO2016204328A1 - Thin heat pipe and method for manufacturing same - Google Patents

Thin heat pipe and method for manufacturing same Download PDF

Info

Publication number
WO2016204328A1
WO2016204328A1 PCT/KR2015/006256 KR2015006256W WO2016204328A1 WO 2016204328 A1 WO2016204328 A1 WO 2016204328A1 KR 2015006256 W KR2015006256 W KR 2015006256W WO 2016204328 A1 WO2016204328 A1 WO 2016204328A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
hollow tube
flat
heat pipe
thin
Prior art date
Application number
PCT/KR2015/006256
Other languages
French (fr)
Korean (ko)
Inventor
차준선
김병호
최유진
Original Assignee
티티엠주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 티티엠주식회사 filed Critical 티티엠주식회사
Priority to PCT/KR2015/006256 priority Critical patent/WO2016204328A1/en
Priority to CN201580081005.4A priority patent/CN107835926A/en
Publication of WO2016204328A1 publication Critical patent/WO2016204328A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D13/00Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form
    • B21D13/06Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form by drawing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Definitions

  • the present invention relates to a thin heat pipe and a manufacturing method therefor, and more particularly to a thin heat pipe of a thin thickness that can not be produced by extrusion or drawing and a manufacturing method for the same.
  • the present invention relates to a method for manufacturing a thin heat pipe, a heat pipe, and a method for manufacturing a housing for a thin heat pipe, which can be suppressed to generate corrugations on the surface as much as a thin film.
  • heat pipes are tens to hundreds of times more thermally conductive than high thermally conductive metals such as silver, copper, and aluminum. Therefore, the heat pipe has a very wide range of application, which is useful in various fields such as cooling a heat generating unit at a specific position like a computer CPU, recovering heat from exhaust gas, and collecting geothermal or solar heat. It is a heat transportation device.
  • the heat pipe is made of an airtight solid such as metal such as stainless steel, copper, and aluminum, and forms a closed space, that is, a housing, in the form of a tube to contain a working fluid therein. Therefore, when heat is applied from one side of the housing, the working fluid is evaporated in the inner space of the heating part, and the vaporized vapor is rapidly moved to the other side where no heat is applied and condensed, so that the heat of the heating part (evaporation part) is latent. It serves to be delivered to the condensation unit in the form of heat). At this time, the condensed liquid is returned to the heating part again by the capillary force of the wick structure provided inside the housing. Then, the heat transfer cycle as described above is infinitely repeated, so that the heat of the heating unit is continuously moved to the condensing unit.
  • an airtight solid such as metal such as stainless steel, copper, and aluminum
  • drawing or extrusion processing applied when manufacturing a plate-shaped housing is subject to certain dimension limitations in housing thinning due to limitations in processing accuracy. That is, when a thin plate heat pipe is to be manufactured by drawing or extruding, the housing formed by drawing or extruding may not be able to produce capillary force due to the limitation of processing precision of drawing or extruding. There was a problem that it is not crushed or distorted can not be normally applied to heat pipe manufacturing.
  • the wick 105 formed to face each other on the upper and lower flat plates 111 is arranged side by side up and down, the upper protrusion 121 and the lower protrusion 121 when rolling as shown in the lower side of FIG. Is close, while the upper groove 123 and the lower groove 123 are spaced apart. Therefore, on the premise that the cross-sectional area of the housing 103 is constant, since the gap between the upper groove 123 and the lower groove 123 is sufficiently wide, the boiling working fluid during degassing may be lost in the form of a liquid lump. Since the loss amount of the working fluid can be large, there is a problem that the production efficiency of the heat pipe is lowered. In addition, as shown in the lower side of FIG.
  • the longitudinal cross-sectional area of the housing 103 is reduced due to deformation due to buckling, resulting in a decrease in the performance of the heat pipe 101, and the upper protrusion 121 and the lower protrusion 121. Since the spacing between them is sufficiently narrow, the resistance to the flow of the working fluid is increased, and there is also a problem that the heat radiation performance of the heat pipe is reduced.
  • the present invention has been made to solve the above-mentioned problems, and it is possible to process a thin heat pipe of thin thickness, which could not be formed by drawing or extrusion due to the limitation of processing precision, and thus, by pressing, It is an object of the present invention to provide a thin heat pipe and a manufacturing method therefor that have a sufficiently thin thickness and do not degrade heat dissipation performance or production efficiency in response to the trend of thinning.
  • the thin heat pipe manufacturing method of the present invention for achieving the above object, the housing manufacturing step of manufacturing a thin hollow housing; A working fluid injection step of injecting a working fluid operating in the housing into the housing; And a closing step of sealing and sealing the inlet of the housing into which the working fluid is injected, wherein the housing manufacturing step includes forming a flat hollow tube with a thickness capable of plastic processing by drawing or extrusion. Molding step; And a secondary molding step of molding the housing having a thin shape by compressing the hollow tube so that the thickness of the hollow tube is reduced.
  • the manufacturing method of the thin heat pipe housing of the present invention the primary forming step of forming a flat hollow tube to a thickness capable of plastic processing by drawing or extrusion; And a secondary molding step of molding the housing having a thin shape by compressing the hollow tube so that the thickness of the hollow tube is reduced.
  • the thin heat pipe of the present invention comprises a thin hollow housing having a hollow provided therein as manufactured by the first forming step and the second forming step; A working fluid which is filled in the hollow of the housing and is evaporated at one side of the housing by heat transferred to the housing to condense at the other side of the housing; And a wick which protrudes on both sides of the inner surface of the housing to face each other and guides the working fluid in both directions through the groove formed between the spaced gaps of the protrusions. .
  • the manufacturing method of the thin heat pipe housing of the present invention the primary forming step of forming a flat hollow tube to a thickness capable of plastic processing by drawing or extrusion; And a secondary molding step of molding the housing having a thin shape by compressing the hollow tube so that the thickness of the hollow tube is reduced.
  • the primary forming step by connecting the pair of flat plate and the plate facing each other to provide a hollow inside the plate, the hollow against the pressing force generated by the pressing of the secondary forming step Forming the hollow tube by drawing or extruding the hollow tube formed by a pair of sidewalls having an inclination with respect to the flat plate such that the yield strength of the tube is attenuated so that the flat plate is generally flat even after pressing;
  • the hollow tube is compressed by rolling to reduce the thickness of the hollow tube to a thin thickness.
  • the thin heat pipe of the present invention consisting of the flat body and the side wall body having an inclination, a thin hollow housing having a hollow therein; A working fluid which is filled in the hollow of the housing and is evaporated at one side of the housing by heat transferred to the housing to condense at the other side of the housing; And a wick configured to be protruded on both sides of the inner surface of the housing to face each other, and to guide the working fluid in both directions through the groove formed between the spaced gaps of the protrusions in both directions. It can also be configured.
  • the thickness of the hollow tube can be reduced by pressing and then manufacturing a flat hollow tube with a thickness capable of plastic processing by drawing or extrusion, thereby manufacturing a thin housing.
  • a heat pipe is manufactured by injecting and filling a working fluid into the housing to seal the housing, thereby providing a thin heat pipe that cannot be processed by drawing or extrusion, and furthermore, a hollow pipe composed of a flat body and a side wall body.
  • the side wall body and / or the partition wall of the housing constituting the hollow tube form an inclination with respect to the flat body forming the upper and lower surfaces of the housing, the pressing force due to the compression acting on the side wall body and / or the partition wall when the hollow tube is crimped.
  • the yield strength can be attenuated. Accordingly, the side wall and / or the partition wall are easily deformed while being adapted to the pressing force due to the crimp, so that the corrugation of the wave pattern does not occur on the flat plate of the housing, Since the heat pipe can be manufactured to a thin thickness that was not expected by conventional drawing or extrusion processing, it is possible to provide the heat pipe in an ultra-thin in accordance with the recent trend. Accordingly, it is possible to provide a thin heat pipe that is thin and does not have to worry about deterioration due to poor contact with a heat source when the product is applied.
  • the working fluid can be easily transferred from the inside of the housing through the capillary force of the wick. If the free end of each wick formed on both sides of the inner surface is prevented from facing each other, the wick does not interfere with the movement of the working fluid during movement of the working fluid in spite of the presence of the wick.
  • the fluid can be smoothly flowed, and furthermore, since opposite wicks on both sides of the housing face each other in an alternating state, the free end side of the wick can be easily manufactured to face each other in an unmatched state.
  • the heat dissipation performance of the heat pipe be maintained normally through alternate wicks, but even if the housing is made thin by pressing, the cross sectional area of the housing is not substantially reduced, so that the hollow cross-sectional area can be maintained at a desired size. As a result, the heat capacity of the heat pipe can be maximized compared to the thickness of the housing.
  • the housing when the housing is configured so that the space between the free end side of the wick facing each other is formed on both sides of the hollow tube and can be configured to communicate with the working fluid through the gap can easily fill the working fluid inside the housing Can be.
  • the working fluid can be purified as well, thereby improving the performance of the working fluid.
  • FIG. 1 is a cross-sectional view of a heat pipe formed by drawing or extrusion
  • FIG. 2 is a flowchart sequentially illustrating a manufacturing process of a housing and a thin heat pipe according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view of the housing manufactured by the manufacturing process of FIG.
  • FIG. 4 is a cross-sectional view of the housing shown in FIG. 2 and another embodiment of the manufacturing process
  • FIG. 5 is a schematic diagram schematically showing the housing forming step shown in FIG. 2;
  • FIG. 6 and 7 are cross-sectional views of the housing by the finishing step shown in FIG.
  • FIG. 9 is a graph comparing the performance of the general thin housing shown in FIG. 1 and the thin housing according to the present invention.
  • the thin heat pipe manufacturing method of the present invention includes a housing manufacturing step (S10), a working fluid injection step (S20) and a finishing step (S30) as shown in FIG.
  • Housing manufacturing step (S10) is a step of manufacturing a thin housing 3 suitable for manufacturing a thin heat pipe.
  • the housing 3 is manufactured in the form of a thin plate having a thickness t smaller than the length l or the width w.
  • the housing manufacturing step (S10) is, for example, as shown in Figure 2 as the primary molding step (S11) for molding the hollow tube 10 and the secondary molding step (S12) for molding the thin housing (3). Can be configured.
  • the primary forming step (S11) is to manufacture the thin housing 3 of the precise structure having the wick 5 by the plastic processing such as drawing or extrusion, which is relatively unsuitable for precision machining, to the minimum thickness t as possible. It is a process and is a preliminary step for producing a thin heat pipe 1 which cannot be manufactured by drawing or compression because of its relatively precise structure.
  • the primary forming step (S11) is drawn to have a minimum thickness (t) that can be thin while maintaining the shape of the wick 5, etc., before processing the housing 3 to its final form by rolling described below. Or through the extrusion to form a plate-shaped hollow tube 10 as shown in the upper side of Figs.
  • the hollow tube 10 is a preformed product prepared for manufacturing the thin housing 3, but similarly to the housing 3, the hollow tube 10 is molded into a plate shape having a thickness T thinner than the length l or the width w.
  • the hollow tube 10 is connected to the pair of flat body 11, both ends of the flat body 11 arranged to face the hollow (S) inside
  • the plate body 11 and the side wall body 13 provide a hollow S in which the working fluid F is filled.
  • the hollow tube 10 is provided with a finishing end and a rear wall at the front and rear ends of the flat body 11 and the side wall body 13 to receive the working fluid F in a sealed state.
  • the above-described flat body 11 is a portion forming the heat transfer surface of the heat pipe 1, as compared to the side wall body 13 or the rear wall forming the thickness of the heat pipe 1 as shown in FIG.
  • the length and / or width are formed to be significantly long.
  • the heat pipe 1 forms a plate shape as a whole.
  • the flat body 11 is provided with a wick 5 extending in the longitudinal direction on each inner circumferential surface facing up and down. Therefore, when the flat body 11 is completed in the housing 3, the working fluid evaporated from the evaporation unit (one side of the housing) by the wick 5 is transferred to the condensation unit (the other side of the housing) to condense. That is, the working fluid transfers heat transferred to one side of the housing 3 to the other side while reciprocating in the housing 3 to cool the housing 3.
  • the wick 5 is composed of a projection 21 as shown in Figs.
  • the wick 5 may be formed in the shape of a semicircle or parallelogram as shown in the cross section of the protrusion 21, or alternatively, may be formed in various shapes such as a triangle or a semi-ellipse.
  • stainless steel, copper, aluminum, nickel, or the like may be used in the case of a heat pipe for normal temperature (use temperature range 230 to 500 K).
  • the hollow tube 10 may be composed of one hollow S surrounded by the flat body 11 or the like, but may be divided into multiple channels as shown in FIGS. 3 and 4.
  • the hollow tube 10 is hollow (S) is partitioned by a plurality of partition walls 15 to form a plurality of channels (17).
  • Each partition wall 15 is formed to be parallel to the above-described side wall body 13 while the hollow S is divided by a constant distance (equal interval) in the width direction to configure each channel 17 to have the same shape.
  • the width w of the channel 17 may alternatively be configured.
  • the hollow tube 10 is not shown in the case of having a single channel structure, the inner peripheral surface or both sides of the side wall body 13, or in the case of a multi-channel structure as shown in Figs.
  • the plurality of partition walls 15 may be formed in an inclined state.
  • the side wall body 13 and the partition walls 15 which are inclined in this way are inclined, the secondary forming step S12 described later as shown in FIG. 5.
  • the yield strength to the pressing force generated when the hollow tube 10 is rolled by is greatly attenuated. Accordingly, the hollow tube 10 is easily compressed to provide a thin housing 3 as the thickness T is reduced to a thin thickness t.
  • the housing 3 is easily molded into a thin shape as the side wall 13 and the partition wall 15 are flexibly deformed while being adapted to the pressing force when rolling, and the hollow tube 10 is reduced to a thin thickness t. Therefore, since the flat body 11 is rolled uniformly as a whole, the housing 3 formed into a thin shape by the rolling process forms a flat surface as a whole.
  • the inclination angle of the side wall body 13 or the partition wall 15 is in the range of 40 degrees to 70 degrees with respect to the surface of the flat body 11.
  • the inclination angle of 40 ° to 70 ° is an optimal range that reduces the yield strength of the partition wall 15 and the like but does not disturb the flow of the working fluid.
  • the inclination angle is less than 40 °, the angle between the partition wall 15 and the flat plate 11 is greatly reduced, so that the flow resistance of the working fluid flowing in the housing 3 completed with the heat pipe 1 is greatly increased. As a result, the heat transfer performance of the heat pipe 1 is lowered.
  • the yield strength reduction effect of the side wall body 13 or the partition wall 15 decreases, so that the flat body 11 after rolling is reduced. This is because waveform distortion occurs at
  • the secondary forming step (S12) is, as mentioned above, as a step of rolling the hollow tube 10 formed by drawing or extrusion in the primary forming step (S11) to the housing (3) of the finished product
  • the thickness (T) of the hollow tube 10 step by step rolling roll 20 arranged in three stages as shown in Figure 5 to a thin thickness (t) as shown in Figure 3
  • the thin housing 3 is molded.
  • the thinned housing 3 is thus a thin plate having a length l and / or a width w significantly longer than the width w as in the hollow tube 10, as shown in FIGS. 3 and 4. It consists of the upper body. Accordingly, the housing 3 connects the upper and lower pairs of flat bodies 11 and the left and right pairs of side wall bodies 13 connecting the left and right ends of the flat bodies 11 and the rear ends of the flat bodies, as shown. It consists of an open end in front of the rear wall and the flat body. The flat body 11 and the side wall 13 provide a hollow S for receiving the working fluid F inside the housing 3 through the rear wall and the finishing end.
  • the partition wall 15 partitioning the side wall body 13 and the hollow S at both ends of the housing 3 has a hollow tube 10 rolled into the housing 3 as shown in FIGS. 3 and 4.
  • the thickness T that is, the height is reduced to form a thin thickness t, and the width w is wider and the inclination angle is larger.
  • This wick 5 is provided with the upper and lower flat bodies 11 as shown so that the working fluid F which operates inside the housing 3 is guided in both directions in the interior of the housing 3, that is, the upper and lower portions, respectively. Each is formed.
  • the wicks 5 are preferably arranged alternately in the width direction as shown. Therefore, the housing 3 can maintain the flow cross section (cross-sectional area of a hollow) formed in the width direction to a desired magnitude
  • the wick 5 consists of a groove 23 formed between the plurality of protrusions 21 and each of the protrusions 21, as shown in FIGS. 2 to 7, as mentioned above.
  • the plurality of protrusions 21 protrude from the inner circumferential surface of each of the upper and lower flat plates 11 of the housing 3 as shown, and are formed at a predetermined distance (equal interval) in the width direction, and in the longitudinal direction of the housing 3. It extends and connects the evaporation part and the condensation part of the housing 3 while forming the groove 23 with the protrusion 21 adjacent to the periphery.
  • each protrusion 21 may be inclined in the same direction as the inclined direction of the inner circumferential surface of the side wall body 13 or the partition wall 15, as shown in FIG.
  • the groove 23 is a moving passage for returning the working fluid F condensed in the condensation part to the evaporation part and extends in the longitudinal direction of the housing 3 as shown in the same manner as the projection 21. It serves to move the working fluid of the condensation unit to the evaporation unit by capillary force.
  • the wick 5 preferably has respective positions formed on the upper and lower flat bodies 11, that is, free end ends of the protrusions 21 facing each other coincide with each other. Not only are they alternately shifted so as not to face each other, and more preferably, as shown in FIGS.
  • the protrusions 21 and the grooves corresponding to each other up and down Bar 23 is formed in the opposite state as to be engaged with each other, assuming that the cross-sectional area of the injection hole (9) is constant, the structure (g) of the injection hole (9) to be closed by compression is not engaged Since it becomes narrower than time, sealing of the inlet (9) is made more quickly, and thus the amount of loss of the working fluid (F) at the time of degassing described later can be adjusted more precisely. That is, when the projection 21 and the groove 23 are engaged when the injection hole 9 is crimped, the gap between the upper and lower grooves 23 is smaller than the case of FIG.
  • the wicks 5 respectively formed on the upper and lower flat plates 11 may be protrusions as shown in FIGS. 3 and 4 even when the hollow tube 10 is compressed and deformed into the thin housing 3.
  • the free end side ends of 21 are spaced apart by the gap D.
  • the hollow tube 10 must be compressed at a pressure that can be spaced apart by the gap D between the free end ends of the projections 21 facing each other when rolling, that is, during the molding of the housing 3. Accordingly, even when the housing 3 is manufactured in a thin shape, a gap D is formed between the protrusions 21 facing each other, so that the working fluid F can be communicated through the gap D. Therefore, since the working fluid F injected into the injection hole 9 communicates through the aforementioned gap D, the working fluid F is easily filled therein.
  • the working fluid F guided to one side (upper side) of the housing 3 and the other side (lower side) of the housing 3 are provided.
  • the working fluids F guided to each other are limited as much as possible to interfere with each other. Therefore, the working fluid F is smoothly moved even when guided from both sides of the housing 3, respectively.
  • the working fluid injection step (S20) is a step of injecting the working fluid into the molded housing 3 through the housing manufacturing step (S10), as shown in Figure 8 is open to one end of the housing (3) The working fluid F is injected into the housing 3 through the injection hole 9.
  • the working fluid is a heat transfer medium that is housed inside the housing 3 and rapidly transfers heat applied from the heat source to the evaporation unit at one end of the housing 3 to the condensation unit at the other end and discharged to the outside. It is housed in a sealed state in the hollow S shown in 3 and 4. Therefore, the working fluid F is heated and vaporized by the heat of the heat generating source in close contact with the evaporator, cooled in the condensation unit, and recovered to the evaporator through the wick 5.
  • the working fluid may be methanol, ethanol, ammonia, acetone, fluorocarbon compounds, and water, and the like, taking into account the amount of loss in the degassing step (S30) and the amount of filling accommodated in the final product. The amount of injection into the housing 3 is then determined.
  • the finishing step (S30) is a step of closing the inlet (9) of the housing 3 to finish the manufacture of the heat pipe (1), as shown in Figure 8, in the above working fluid injection step (S20)
  • the injection hole 9 of the housing 3 into which the working fluid F is injected is pressed and sealed with a pinch or the like to complete a series of heat pipe 1 manufacturing processes.
  • the heat pipe 1 manufactured through the above steps for example, as shown in FIG. 3, as can be seen in the graph of FIG. 9, compared with the conventional heat pipe 101 shown in FIG. 1, Since the buckling deformation of the partition wall 15 and the side wall body 13 is relatively small, and therefore the cross-sectional area reduction of the housing 3 after rolling is also relatively small, the thermal resistance is significantly reduced. That is, under the same conditions, the heat pipe 1 having a larger flow cross-section of the working fluid F can release heat at a higher speed than the heat pipe 101 when it is desired to release heat from a heat source of a specific temperature. Will be.
  • the heat pipe can be used to the extent that the amount of heat emitted from the condensation unit and the amount of heat absorbed from the evaporator unit are matched, that is, the temperature of the heat pipe in the condensation unit does not rise even when heated in the evaporator unit.
  • the heat capacity is a range in which the thermal resistance remains constant despite an increase in the heat load, the longitudinal flow cross-sections of the housings 3 and 103 are the same, and therefore, even if the thermal resistance is the same, Since the flow resistance of the housing 3 is significantly reduced than that of the housing 103, the heat capacity of the heat pipe 1 is greater than the heat capacity of the heat pipe 101. Therefore, in the heat pipe 1 according to the present invention, the usable range A becomes wider than the usable range B of the general heat pipe 1.
  • the present invention may further include a degassing step (S40).
  • Degassing step (S40) is a foreign matter such as non-condensable gas contained in the housing 3 and the working fluid (F) before or after the injection of the working fluid (F) in the housing 3 in the working fluid injection step (S20) Step to remove it.
  • the degassing step S40 is performed by various methods such as vacuum degassing or heating degassing. In the degassing step (S40), for example, as shown in FIG. 8, a foreign material may be removed by heating the housing 3 into which the working fluid is injected in the above working fluid injection step (S20) according to a heating degassing method.
  • a heating means such as a heating bath 30 may be used as shown in FIG. 5.
  • the housing 3 is submerged in the heating bath 30 in the state in which the working fluid F is injected and heated by the bath.
  • the housing 3 is fired by nitrogen, oxygen, moisture, or nitrogen, which is adsorbed on the inner wall, or dissolved in the working fluid F.
  • Foreign matter containing condensate gas is vaporized. The vaporized foreign matter is then removed out of the housing 3 through the inlet 9 together with the working gas in a boiling gaseous or liquid state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The present invention relates to a thin heat pipe and a method for manufacturing same. The thin heat pipe of the present invention comprises a thin housing (3) having a hollow space (S) therein and formed through a first formation step for forming a hollow tube and a second formation step for forming the thin housing by compressing the hollow tube. The housing (3) is filled with a working fluid (F) which transfers heat. The present invention may provide an ultra-thin heat pipe which cannot be expected to be obtained from drawing or extruding.

Description

박형 히트파이프 및 이를 위한 제조방법Thin Heat Pipe and Manufacturing Method Therefor
본 발명은 박형 히트파이프 및 이를 위한 제조방법에 관한 것으로, 좀더 상세하게는 압출이나 인발로는 제조할 수 없는 얇은 두께의 박형의 히트파이프 및 이를 위한 제조방법에 관한 것이다.The present invention relates to a thin heat pipe and a manufacturing method therefor, and more particularly to a thin heat pipe of a thin thickness that can not be produced by extrusion or drawing and a manufacturing method for the same.
특히, 박형으로 형성되어도 표면에 파형의 주름이 발생되는 것을 최대한 억제할 수 있는 박형 히트파이프의 제조방법 및 이에 의한 히트파이프, 그리고 박형 히트파이프를 위한 하우징의 제조방법에 관한 것이다.In particular, the present invention relates to a method for manufacturing a thin heat pipe, a heat pipe, and a method for manufacturing a housing for a thin heat pipe, which can be suppressed to generate corrugations on the surface as much as a thin film.
일반적으로 히트파이프는 은, 구리, 알루미늄 등의 고 열전도성 금속에 비해 열전도성이 수십 배에서 수백 배 크다. 따라서, 히트파이프는 적용 범위가 매우 광범위하여 컴퓨터의 CPU와 같이 특정 위치의 발열부를 냉각시키거나, 배기가스의 열을 회수하고자 하는 경우, 지열 또는 태양열을 포집하고자 할 경우 등 다양한 분야에서 유용하게 적용되고 있는 열수송 장치이다.In general, heat pipes are tens to hundreds of times more thermally conductive than high thermally conductive metals such as silver, copper, and aluminum. Therefore, the heat pipe has a very wide range of application, which is useful in various fields such as cooling a heat generating unit at a specific position like a computer CPU, recovering heat from exhaust gas, and collecting geothermal or solar heat. It is a heat transportation device.
또한, 히트파이프는 스테인레스강, 구리, 알루미늄과 같은 금속 등의 기밀성 고체로 만들어지며, 관 등의 형태로 폐쇄 공간 즉, 하우징을 만들어 내부에 작동유체를 담는다. 따라서, 하우징 일측에서 열을 가하면, 해당 가열부의 내부 공간에서 작동유체가 증발되고, 증발된 증기는 열이 가해지지 않는 타측으로 신속히 이동하여 응축함으로써, 가열부(증발부)의 열이 잠열(latent heat) 형태로 응축부에 전달되도록 하는 역할을 한다. 이때, 응축된 액체는 하우징 내부에 마련된 윅(wick) 구조물의 모세관력에 의해 다시 가열부로 되돌아간다. 이후, 위와 같은 열수송 사이클이 무한 반복됨으로써 가열부의 열은 지속적으로 응축부로 이동된다.In addition, the heat pipe is made of an airtight solid such as metal such as stainless steel, copper, and aluminum, and forms a closed space, that is, a housing, in the form of a tube to contain a working fluid therein. Therefore, when heat is applied from one side of the housing, the working fluid is evaporated in the inner space of the heating part, and the vaporized vapor is rapidly moved to the other side where no heat is applied and condensed, so that the heat of the heating part (evaporation part) is latent. It serves to be delivered to the condensation unit in the form of heat). At this time, the condensed liquid is returned to the heating part again by the capillary force of the wick structure provided inside the housing. Then, the heat transfer cycle as described above is infinitely repeated, so that the heat of the heating unit is continuously moved to the condensing unit.
그런데, 이러한 히트파이프는 최근 들어 적용 대상인 컴퓨터나 노트북 등 각종 전자제품들이 소형화 또는 박형화되는 추세에 맞추어 소형, 박형화가 요구되고 있다.However, such heat pipes have recently been required to be compact and thin in accordance with the trend of miniaturization or thinning of various electronic products such as computers and laptops.
그러나, 통상적으로 널리 생산되고 있는 판상 히트파이프의 경우, 판상의 하우징을 제조할 때 적용되는 인발이나 압출가공이 가공 정밀도의 한계로 인해 하우징 박형화에 일정한 치수 제한을 받게 된다. 즉, 박형의 판상 히트파이프를 인발 또는 압출에 의해 제조하고자 하는 경우, 인발 또는 압출가공에 의해 성형되는 하우징은 인발 또는 압출가공의 가공 정밀도 한계로 인해, 내부의 윅 구조가 모세관력을 만들지 못할 정도로 뭉개지거나 왜곡되어 히트파이프 제조에 정상적으로 적용될 수 없게 되는 문제점이 있었다.However, in the case of plate heat pipes which are generally widely produced, drawing or extrusion processing applied when manufacturing a plate-shaped housing is subject to certain dimension limitations in housing thinning due to limitations in processing accuracy. That is, when a thin plate heat pipe is to be manufactured by drawing or extruding, the housing formed by drawing or extruding may not be able to produce capillary force due to the limitation of processing precision of drawing or extruding. There was a problem that it is not crushed or distorted can not be normally applied to heat pipe manufacturing.
또한, 도 1의 상측에 도시된 것처럼, 인발 또는 압출가공에 의해 가공 정밀도를 유지하는 범위 내에서 제작한 후, 히트파이프(101)를 박형으로 압연하고자 하는 시도도 있었으나, 이 경우 도 1의 하측에 도시된 것처럼, 하우징(103)은 격벽(115)의 항복강도으로 인해, 격벽(115)이 위치하는 부위와 그렇지 않은 부위에서 평판체(111)에 압축 편차가 발생하고, 이로 인해 평판체(111)가 전체적으로 파형 주름을 일으키게 되므로, 이 하우징(103)에 의해 제작되는 히트파이프(101)는 제품 적용 시 열원과의 접촉부의 열 저항을 증가시켜 발열성능이 현저히 저하되는문제점이 있었다.In addition, as shown in the upper side of FIG. 1, there has been an attempt to roll the heat pipe 101 into a thin shape after fabricating within a range that maintains processing accuracy by drawing or extrusion, but in this case, the lower side of FIG. As shown in FIG. 3, due to the yield strength of the partition wall 115, compression deviation occurs in the flat plate 111 at the portion where the partition wall 115 is located and at the portion where the partition wall 115 is not located. Since the 111 is generally corrugated, the heat pipe 101 manufactured by the housing 103 has a problem in that the heat resistance of the contact portion with the heat source is increased when the product is applied, thereby significantly reducing the heat generation performance.
또한, 상하 평판체(111)에 서로 마주보도록 형성된 윅(105)이 상하로 나란히 배치되므로, 도 1의 하측에 도시된 것처럼 압연을 했을 때, 상측의 돌기(121)와 하측의 돌기(121)는 근접하는 반면, 상측의 홈(123)과 하측의 홈(123)은 이격된다. 따라서 하우징(103)의 단면적이 일정하다는 전제 하에서, 상측 홈(123)과 하측 홈(123) 사이의 간격이 충분히 넓기 때문에, 탈기 시 비등하는 작동유체가 액상의 덩어리 형태로 유실될 수 있고, 따라서 작동유체의 유실량이 커질 수 있으므로, 히트파이프의 생산 효율성이 저하되는 문제점이 있었다. 또, 도 1 하측에 도시된 것처럼, 하우징(103)의 길이방향 횡 단면적이 좌굴로 인한 변형으로 감소되어 히트파이프(101)의 성능 저하를 가져오며, 상측 돌기(121)와 하측 돌기(121)의 사이의 간격이 충분히 좁기 때문에, 작동유체의 유동에 대한 저항이 증대되어, 히트파이프의 방열성능 저하를 가져오는 문제점도 있었다.In addition, since the wick 105 formed to face each other on the upper and lower flat plates 111 is arranged side by side up and down, the upper protrusion 121 and the lower protrusion 121 when rolling as shown in the lower side of FIG. Is close, while the upper groove 123 and the lower groove 123 are spaced apart. Therefore, on the premise that the cross-sectional area of the housing 103 is constant, since the gap between the upper groove 123 and the lower groove 123 is sufficiently wide, the boiling working fluid during degassing may be lost in the form of a liquid lump. Since the loss amount of the working fluid can be large, there is a problem that the production efficiency of the heat pipe is lowered. In addition, as shown in the lower side of FIG. 1, the longitudinal cross-sectional area of the housing 103 is reduced due to deformation due to buckling, resulting in a decrease in the performance of the heat pipe 101, and the upper protrusion 121 and the lower protrusion 121. Since the spacing between them is sufficiently narrow, the resistance to the flow of the working fluid is increased, and there is also a problem that the heat radiation performance of the heat pipe is reduced.
본 발명은 상술한 문제점을 해결하기 위하여 창출된 것으로, 가공 정밀도의 한계로 인해 인발이나 압출가공에 의해 성형할 수 없었던 얇은 두께의 박형 히트파이프를 압착에 의해 가공할 수 있도록 함으로써, 최근 전자제품의 박형화 추세에 대응하여 충분히 얇은 두께이면서도 방열성능이나 생산 효율성이 떨어지지 않는 박형의 히트파이프 및 이를 위한 제조방법을 제공하기 위함이 그 목적이다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is possible to process a thin heat pipe of thin thickness, which could not be formed by drawing or extrusion due to the limitation of processing precision, and thus, by pressing, It is an object of the present invention to provide a thin heat pipe and a manufacturing method therefor that have a sufficiently thin thickness and do not degrade heat dissipation performance or production efficiency in response to the trend of thinning.
전술한 목적을 달성하기 위한 본 발명의 박형 히트파이프 제조방법은, 박형의 중공형 하우징을 제조하는 하우징 제조단계; 상기 하우징의 내부에 작동하는 작동유체를 상기 하우징에 주입하는 작동유체 주입단계; 및 상기 작동유체가 주입된 상기 하우징의 주입구를 밀폐하여 밀봉하는 마감단계;를 포함하고, 상기 하우징 제조단계는, 인발이나 압출에 의한 소성가공이 가능한 두께로 평판형의 중공튜브를 성형하는 1차 성형단계; 및 상기 중공튜브의 두께가 축소되도록, 상기 중공튜브를 압착하여 박형의 상기 하우징을 성형하는 2차 성형단계;를 포함한다.The thin heat pipe manufacturing method of the present invention for achieving the above object, the housing manufacturing step of manufacturing a thin hollow housing; A working fluid injection step of injecting a working fluid operating in the housing into the housing; And a closing step of sealing and sealing the inlet of the housing into which the working fluid is injected, wherein the housing manufacturing step includes forming a flat hollow tube with a thickness capable of plastic processing by drawing or extrusion. Molding step; And a secondary molding step of molding the housing having a thin shape by compressing the hollow tube so that the thickness of the hollow tube is reduced.
그리고, 본 발명의 박형 히트파이프용 하우징의 제조방법은, 인발이나 압출에 의한 소성가공이 가능한 두께로 평판형의 중공튜브를 성형하는 1차 성형단계; 및 상기 중공튜브의 두께가 축소되도록, 상기 중공튜브를 압착하여 박형의 상기 하우징을 성형하는 2차 성형단계;를 포함한다.In addition, the manufacturing method of the thin heat pipe housing of the present invention, the primary forming step of forming a flat hollow tube to a thickness capable of plastic processing by drawing or extrusion; And a secondary molding step of molding the housing having a thin shape by compressing the hollow tube so that the thickness of the hollow tube is reduced.
또, 본 발명의 박형 히트파이프는, 상기 1차 성형단계 및 상기 2차 성형단계에 의해 제조됨에 따라 내부에 중공이 마련된 박형의 중공형 하우징; 상기 하우징의 중공에 충전되고, 상기 하우징에 전이되는 열에 의해 상기 하우징의 일측에서 증발되어 상기 하우징의 타측에서 응축되면서 열을 이송하는 작동유체; 및 상기 하우징의 내면 양측에 제각기 돌출되어 서로 대향하는 복수의 돌기로 구성되고, 상기 돌기들의 이격된 틈 사이로 형성되는 홈을 통해 상기 하우징의 내부에서 상기 작동유체를 양방향으로 안내하는 윅;을 포함한다.In addition, the thin heat pipe of the present invention comprises a thin hollow housing having a hollow provided therein as manufactured by the first forming step and the second forming step; A working fluid which is filled in the hollow of the housing and is evaporated at one side of the housing by heat transferred to the housing to condense at the other side of the housing; And a wick which protrudes on both sides of the inner surface of the housing to face each other and guides the working fluid in both directions through the groove formed between the spaced gaps of the protrusions. .
전술한 바와 달리, 본 발명의 박형 히트파이프용 하우징의 제조방법은, 인발이나 압출에 의한 소성가공이 가능한 두께로 평판형의 중공튜브를 성형하는 1차 성형단계; 및 상기 중공튜브의 두께가 축소되도록, 상기 중공튜브를 압착하여 박형의 상기 하우징을 성형하는 2차 성형단계;를 포함하여 구성할 수도 있다.Unlike the above, the manufacturing method of the thin heat pipe housing of the present invention, the primary forming step of forming a flat hollow tube to a thickness capable of plastic processing by drawing or extrusion; And a secondary molding step of molding the housing having a thin shape by compressing the hollow tube so that the thickness of the hollow tube is reduced.
여기서, 상기 1차 성형단계는, 서로 대향하는 한 쌍의 평판체 및 상기 평판체를 연결하여 상기 평판체의 내측에 중공을 제공하고, 상기 2차 성형단계의 압착으로 발생되는 가압력에 대한 상기 중공튜브의 항복강도가 감쇠되어 압착 후에도 상기 평판체가 전체적으로 평탄면을 이루도록, 상기 평판체에 대해 경사를 갖는 한 쌍의 측벽체에 의해 중공형으로 형성되는 상기 중공튜브를 인발이나 압출을 통해 성형하며, 상기 2차 성형단계는, 상기 중공튜브를 압연가공으로 압착하여 상기 중공튜브의 두께를 박형의 두께로 축소한다.Here, the primary forming step, by connecting the pair of flat plate and the plate facing each other to provide a hollow inside the plate, the hollow against the pressing force generated by the pressing of the secondary forming step Forming the hollow tube by drawing or extruding the hollow tube formed by a pair of sidewalls having an inclination with respect to the flat plate such that the yield strength of the tube is attenuated so that the flat plate is generally flat even after pressing; In the secondary forming step, the hollow tube is compressed by rolling to reduce the thickness of the hollow tube to a thin thickness.
또한, 본 발명의 박형 히트파이프는, 전술한 바와 같이 제조됨에 따라 상기 평판체 및 경사를 갖는 상기 측벽체로 구성되고, 내부에 중공을 갖는 박형의 중공형 하우징; 상기 하우징의 중공에 충전되고, 상기 하우징에 전이되는 열에 의해 상기 하우징의 일측에서 증발되어 상기 하우징의 타측에서 응축되면서 열을 이송하는 작동유체; 및 상기 하우징의 내면 양측에 제각기 돌출되어 서로 대향하는 복수의 돌기로 구성되고, 상기 돌기들의 이격된 틈 사이로 형성되는 홈을 통해 상기 하우징의 내부에서 상기 작동유체를 양방향으로 안내하는 윅;을 포함하여 구성할 수도 있다.In addition, the thin heat pipe of the present invention, according to the manufacturing as described above, consisting of the flat body and the side wall body having an inclination, a thin hollow housing having a hollow therein; A working fluid which is filled in the hollow of the housing and is evaporated at one side of the housing by heat transferred to the housing to condense at the other side of the housing; And a wick configured to be protruded on both sides of the inner surface of the housing to face each other, and to guide the working fluid in both directions through the groove formed between the spaced gaps of the protrusions in both directions. It can also be configured.
전술한 바와 같은 본 발명은, 인발이나 압출에 의한 소성가공이 가능한 두께로 평판형의 중공튜브를 제조한 후 압착을 통해 이러한 중공튜브의 두께를 축소시킬 수 있으므로 박형의 하우징을 제조할 수 있고, 이에 더하여 이러한 하우징에 작동유체를 주입시켜서 충전한 후 하우징을 밀봉하여 히트파이프를 제조하므로 인발이나 압출로 가공할 수 없는 박형의 히트파이프를 제공할 수 있으며, 더 나아가 평판체 및 측벽체로 구성된 중공파이프에 의해 대략적으로 직사각형의 단면을 갖는 하우징을 제조하므로 박형의 평판형 히트파이프를 제공할 수 있다.According to the present invention as described above, the thickness of the hollow tube can be reduced by pressing and then manufacturing a flat hollow tube with a thickness capable of plastic processing by drawing or extrusion, thereby manufacturing a thin housing. In addition, a heat pipe is manufactured by injecting and filling a working fluid into the housing to seal the housing, thereby providing a thin heat pipe that cannot be processed by drawing or extrusion, and furthermore, a hollow pipe composed of a flat body and a side wall body. By manufacturing a housing having a substantially rectangular cross section, it is possible to provide a thin flat plate heat pipe.
특히, 중공튜브를 구성하는 하우징의 측벽체 및/또는 격벽이 하우징의 상면 및 하면을 이루는 평판체에 대해 경사를 형성하므로 중공튜브의 압착시 측벽체 및/또는 격벽에 작용하는 압착에 의한 가압력에 대한 항복강도를 감쇠시킬 수 있으며, 이에 따라 측벽체 및/또는 격벽이 압착에 의한 가압력에 순응하면서 용이하게 휨변형되므로 압착시 하우징의 평판체에 물결 무늬의 주름이 발생하지 않을 뿐만 아니라, 판상의 히트파이프를 기존의 인발 또는 압출가공에 의해서는 기대할 수 없었던 얇은 두께로 제조할 수 있으므로 최근의 추세에 맞추어 히트파이프를 초박형으로 제공할 수 있다. 이에 따라, 박형이면서 제품 적용 시 열원과의 접촉 불량으로 인한 성능저하를 염려할 필요가 없는 박형 히트파이프를 제공할 수 있다.In particular, since the side wall body and / or the partition wall of the housing constituting the hollow tube form an inclination with respect to the flat body forming the upper and lower surfaces of the housing, the pressing force due to the compression acting on the side wall body and / or the partition wall when the hollow tube is crimped. The yield strength can be attenuated. Accordingly, the side wall and / or the partition wall are easily deformed while being adapted to the pressing force due to the crimp, so that the corrugation of the wave pattern does not occur on the flat plate of the housing, Since the heat pipe can be manufactured to a thin thickness that was not expected by conventional drawing or extrusion processing, it is possible to provide the heat pipe in an ultra-thin in accordance with the recent trend. Accordingly, it is possible to provide a thin heat pipe that is thin and does not have to worry about deterioration due to poor contact with a heat source when the product is applied.
그리고, 하우징의 내부에서 양방향으로 작동유체를 안내하는 윅을 중공튜브의 내면 양측에 제각기 마련할 경우, 윅의 모세관력을 통해 하우징의 내부에서 작동유체를 용이하게 이송시킬 수 있고, 이에 더하여 중공튜브의 내면 양측에 제각기 형성된 윅의 자유단측 단부가 서로 마주하는 것이 방지되도록 구성할 경우, 윅이 존재함에도 불구하고 윅이 작동유체의 이동시 작동유체의 이동을 방해하지 않으므로 두께가 얇은 하우징의 중공에서 작동유체를 원활하게 유동시킬 수 있으며, 더 나아가 하우징의 양측에서 대향하는 윅이 교호상태로 대향하므로 윅의 자유단측 단부가 서로 일치하지 않는 상태로 마주하도록 용이하게 제조할 수 있다. 이에 따라, 서로 교호하는 윅을 통해 히트파이프의 방열성능을 정상적으로 유지할 수 있을 뿐 아니라, 압착에 의해 하우징이 박형으로 제조되어도 하우징의 횡단면적이 사실상 감소되지 않으므로 중공의 단면적을 소망하는 크기로 유지할 수 있으며, 이로 인하여 하우징의 두께에 비해 히트파이프의 열용량을 극대화시킬 수 있다.In addition, when the wicks for guiding the working fluid in both directions inside the housing are provided on both sides of the inner surface of the hollow tube, the working fluid can be easily transferred from the inside of the housing through the capillary force of the wick. If the free end of each wick formed on both sides of the inner surface is prevented from facing each other, the wick does not interfere with the movement of the working fluid during movement of the working fluid in spite of the presence of the wick. The fluid can be smoothly flowed, and furthermore, since opposite wicks on both sides of the housing face each other in an alternating state, the free end side of the wick can be easily manufactured to face each other in an unmatched state. Accordingly, not only can the heat dissipation performance of the heat pipe be maintained normally through alternate wicks, but even if the housing is made thin by pressing, the cross sectional area of the housing is not substantially reduced, so that the hollow cross-sectional area can be maintained at a desired size. As a result, the heat capacity of the heat pipe can be maximized compared to the thickness of the housing.
또, 중공튜브의 양측에 제각기 형성되어 서로 대향하는 윅의 자유단측 단부 사이가 간극으로 이격되어 하우징이 구성될 경우 간극을 통해 작동유체를 소통시킬 수 있으므로 하우징의 내부에 작동유체를 용이하게 충전할 수 있다.In addition, when the housing is configured so that the space between the free end side of the wick facing each other is formed on both sides of the hollow tube and can be configured to communicate with the working fluid through the gap can easily fill the working fluid inside the housing Can be.
또한, 압연롤을 통한 압연가공으로 전술한 평판형의 중공튜브를 압착하여 박형의 하우징을 제조하므로 박형의 히트파이프를 용이하게 제조할 수 있으며, 중공튜브를 압연롤에 연속적으로 공급하여 박형의 하우징을 제조할 수 있으므로 박형의 히트파이프를 단시간에 다량으로 제조할 수 있다.In addition, since the above-mentioned flat hollow tube is pressed to produce a thin housing by rolling through a rolling roll, a thin heat pipe can be easily manufactured, and the hollow tube is continuously supplied to the rolling roll to provide a thin housing. Since it can be prepared a thin heat pipe can be produced in a large amount in a short time.
아울러, 탈기공정을 통해 작동유체가 주입된 하우징에서 이물질을 제거할 수 있으므로 작동유체를 정화할 수 있을 뿐만 아니라 이에 의해 작동유체의 성능을 향상시킬 수 있다.In addition, since the foreign matter can be removed from the housing in which the working fluid is injected through the degassing process, the working fluid can be purified as well, thereby improving the performance of the working fluid.
도 1은 인발 또는 압출에 의해 성형된 히트파이프의 단면도;1 is a cross-sectional view of a heat pipe formed by drawing or extrusion;
도 2는 본 발명의 실시예에 의한 하우징 및 박형 히트파이프의 제조공정을 순차적으로 도시한 플로우차트;2 is a flowchart sequentially illustrating a manufacturing process of a housing and a thin heat pipe according to an embodiment of the present invention;
도 3은 도 2의 제조공정에 의해 제조된 하우징의 단면도;3 is a cross-sectional view of the housing manufactured by the manufacturing process of FIG.
도 4는 도 2에 도시된 하우징 및 제조공정의 다른 실시예를 도시한 하우징의 단면도;4 is a cross-sectional view of the housing shown in FIG. 2 and another embodiment of the manufacturing process;
도 5는 도 2에 도시된 하우징 성형단계를 개략적으로 도시한 개략도;FIG. 5 is a schematic diagram schematically showing the housing forming step shown in FIG. 2; FIG.
도 6 및 도 7은 도 2에 도시된 마감단계에 의한 하우징의 단면도;6 and 7 are cross-sectional views of the housing by the finishing step shown in FIG.
도 8은 도 2에 도시된 각 단계를 순차적으로 도시한 플로우차트; 및8 is a flowchart showing each step shown in FIG. 2 in sequence; And
도 9는 도 1에 도시된 일반적인 박형의 하우징 및 본 발명에 의한 박형의 하우징에 대한 성능을 비교하여 도시한 그래프.FIG. 9 is a graph comparing the performance of the general thin housing shown in FIG. 1 and the thin housing according to the present invention. FIG.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 의한 박형 히트파이프 및 이를 위한 제조방법을 설명하면 다음과 같다.Hereinafter, a thin heat pipe and a manufacturing method for the same according to an embodiment of the present invention with reference to the accompanying drawings.
본 발명의 박형 히트파이프 제조방법은, 도 2에 도시된 바와 같이 하우징 제조단계(S10), 작동유체 주입단계(S20) 및 마감단계(S30)를 포함한다.The thin heat pipe manufacturing method of the present invention includes a housing manufacturing step (S10), a working fluid injection step (S20) and a finishing step (S30) as shown in FIG.
하우징 제조단계(S10)는 박형 히트파이프를 제조하기 알맞은 박형의 하우징(3)을 제조하는 단계이다. 하우징 제조단계(S10)는 도 3 내지 도 7에 도시된 바와 같이, 길이(l)나 폭(w)에 비해 두께(t)가 얇은 박형의 판상으로 하우징(3)을 제조한다. 이러한 하우징 제조단계(S10)는 예컨대, 도 2에 도시된 바와 같이 중공튜브(10)를 성형하는 1차 성형단계(S11) 및 박형의 하우징(3)을 성형하는 2차 성형단계(S12)로 구성될 수 있다.Housing manufacturing step (S10) is a step of manufacturing a thin housing 3 suitable for manufacturing a thin heat pipe. In the housing manufacturing step S10, as illustrated in FIGS. 3 to 7, the housing 3 is manufactured in the form of a thin plate having a thickness t smaller than the length l or the width w. The housing manufacturing step (S10) is, for example, as shown in Figure 2 as the primary molding step (S11) for molding the hollow tube 10 and the secondary molding step (S12) for molding the thin housing (3). Can be configured.
1차 성형단계(S11)는 정밀가공에 상대적으로 부적합한 인발이나 압출과 같은 소성가공에 의해 윅(5)을 구비한 정밀한 구조의 박형 하우징(3)을 가능한 한 최소한의 두께(t)로 제조하는 공정이며, 상대적으로 정밀한 구조로 인해 인발이나 압축에 의해 제조할 수 없는 박형의 히트파이프(1)를 제조하기 위한 사전 단계이다. 1차 성형단계(S11)는 후술되는 압연에 의해 하우징(3)을 최종 형태로 가공하기 전, 윅(5) 등의 형태를 온전히 유지할 수 있으면서 박형이 가능한 최소의 두께(t)를 갖도록, 인발 또는 압출을 통해 도 3 및 도 4의 상측에 도시된 바와 같은 판형의 중공튜브(10)를 성형한다.The primary forming step (S11) is to manufacture the thin housing 3 of the precise structure having the wick 5 by the plastic processing such as drawing or extrusion, which is relatively unsuitable for precision machining, to the minimum thickness t as possible. It is a process and is a preliminary step for producing a thin heat pipe 1 which cannot be manufactured by drawing or compression because of its relatively precise structure. The primary forming step (S11) is drawn to have a minimum thickness (t) that can be thin while maintaining the shape of the wick 5, etc., before processing the housing 3 to its final form by rolling described below. Or through the extrusion to form a plate-shaped hollow tube 10 as shown in the upper side of Figs.
중공튜브(10)는 박형의 하우징(3)을 제조하기 위해 준비되는 예비 성형품이지만, 하우징(3)과 마찬가지로 길이(l)나 폭(w)에 비해 두께(T)가 얇은 판상으로 성형된다. 중공튜브(10)는 도 3 및 도 6의 상측에 도시된 바와 같이, 마주보도록 배열되는 한 쌍의 평판체(11), 평판체(11)의 양측단을 연결하여 내부에 중공(S)을 형성하는 한 쌍의 측벽체(13) 및 평판체(11)의 후단을 연결하는 미도시된 후벽체, 그리고 작동유체(F)의 주입 후 핀치작업 등의 압착에 의해 마감되는 전면의 마감단으로 구성된다. 평판체(11) 및 측벽체(13)는 작동유체(F)가 충전되는 중공(S)을 제공한다. 그리고, 중공튜브(10)는 평판체(11) 및 측벽체(13)의 선단 및 후단에 마감단 및 후벽체가 구비되므로 작동유체(F)를 밀봉상태로 수용한다.The hollow tube 10 is a preformed product prepared for manufacturing the thin housing 3, but similarly to the housing 3, the hollow tube 10 is molded into a plate shape having a thickness T thinner than the length l or the width w. As shown in the upper side of Fig. 3 and 6, the hollow tube 10 is connected to the pair of flat body 11, both ends of the flat body 11 arranged to face the hollow (S) inside A rear wall not shown connecting the rear end of the pair of side wall bodies 13 and the flat plate 11 to be formed, and a front end of the front surface which is finished by pressing such as pinching after injection of the working fluid F. It is composed. The plate body 11 and the side wall body 13 provide a hollow S in which the working fluid F is filled. In addition, the hollow tube 10 is provided with a finishing end and a rear wall at the front and rear ends of the flat body 11 and the side wall body 13 to receive the working fluid F in a sealed state.
여기서, 전술한 평판체(11)는 히트파이프(1)의 열전달면을 이루는 부분으로, 도 3에 도시된 바와 같이 히트파이프(1)의 두께를 형성하는 측벽체(13)나 후벽체에 비해 길이 및/또는 폭이 현저히 길게 형성된다. 이에 따라, 히트파이프(1)는 전체적으로 판상을 형성한다. Here, the above-described flat body 11 is a portion forming the heat transfer surface of the heat pipe 1, as compared to the side wall body 13 or the rear wall forming the thickness of the heat pipe 1 as shown in FIG. The length and / or width are formed to be significantly long. As a result, the heat pipe 1 forms a plate shape as a whole.
또한, 평판체(11)는 도 3 및 도 4에 도시된 바와 같이 상하로 마주보는 각각의 내주면 상에 길이방향으로 연장된 윅(5)이 돌출형성된다. 따라서, 평판체(11)는 하우징(3)으로 완성될 경우, 윅(5)에 의해 증발부(하우징의 일측)에서 증발된 작동유체를 응축부(하우징의 타측)로 이송하여 응축시킨다. 즉, 작동유체는 하우징(3)의 내부에서 왕복하면서 하우징(3)의 일측에 전이된 열을 타측으로 이송하여 하우징(3)을 냉각시킨다. 이때, 윅(5)은 도 3 및 도 4에 도시된 바와 같이 돌기(21)로 구성된다. 이러한 윅(5)은 돌기(21)의 횡단면이 도시된 바와 같이 반원형 또는 평행사변형의 형태로 형성될 수 있고, 이와 달리 삼각형이나 반타원형 등 다양한 형태로 형성될 수도 있다.In addition, as shown in FIGS. 3 and 4, the flat body 11 is provided with a wick 5 extending in the longitudinal direction on each inner circumferential surface facing up and down. Therefore, when the flat body 11 is completed in the housing 3, the working fluid evaporated from the evaporation unit (one side of the housing) by the wick 5 is transferred to the condensation unit (the other side of the housing) to condense. That is, the working fluid transfers heat transferred to one side of the housing 3 to the other side while reciprocating in the housing 3 to cool the housing 3. At this time, the wick 5 is composed of a projection 21 as shown in Figs. The wick 5 may be formed in the shape of a semicircle or parallelogram as shown in the cross section of the protrusion 21, or alternatively, may be formed in various shapes such as a triangle or a semi-ellipse.
한편, 중공튜브(10)의 재질로는 상온용 히트파이프(사용온도 범위 230 내지 500 K)의 경우 스테인레스, 구리, 알루미늄, 니켈 등을 사용할 수있다.Meanwhile, as the material of the hollow tube 10, stainless steel, copper, aluminum, nickel, or the like may be used in the case of a heat pipe for normal temperature (use temperature range 230 to 500 K).
중공튜브(10)는 평판체(11) 등에 의해 둘러싸인 중공(S)가 하나로 구성될 수 있으나, 도 3 및 도 4에 도시된 바와 같이 분할되어 다채널의 구조로 구성될 수도 있다. 이를 위해, 중공튜브(10)는 중공(S)이 복수의 격벽(15)에 의해 구획되어 복수의 채널(17)을 형성한다. 각각의 격벽(15)은 전술한 측벽체(13)와 평행을 이루면서 중공(S)을 폭방향으로 일정한 거리(등간격)를 두고 분할됨으로써 각각의 채널(17)들이 동일한 형태를 갖도록 구성하는 것이 바람직하지만, 이와 달리 채널(17)의 폭(w)이 달리 구성될 수도 있다.The hollow tube 10 may be composed of one hollow S surrounded by the flat body 11 or the like, but may be divided into multiple channels as shown in FIGS. 3 and 4. To this end, the hollow tube 10 is hollow (S) is partitioned by a plurality of partition walls 15 to form a plurality of channels (17). Each partition wall 15 is formed to be parallel to the above-described side wall body 13 while the hollow S is divided by a constant distance (equal interval) in the width direction to configure each channel 17 to have the same shape. However, alternatively, the width w of the channel 17 may alternatively be configured.
특히, 중공튜브(10)는 도시되어 있지 않지만 단일채널 구조를 갖는 경우 측벽체(13)의 내주면이나 양측면, 또는 도 3 및 도 4에 도시된 것처럼 다채널 구조인 경우 채널(17)을 구획하는 복수의 격벽(15)이 경사상태로 형성될 수 있다.이렇게 경사형성되는 측벽체(13) 및 격벽(15)은 경사형성됨에 따라 도 5에 도시된 바와 같이 후술되는 2차 성형단계(S12)에 의해 중공튜브(10)가 압연될 경우 발생되는 가압력에 대한 항복강도가 크게 감쇠된다. 이에 따라, 중공튜브(10)는 용이하게 압착되어 두께(T)가 박형의 두께(t)로 축소됨에 따라 박형의 하우징(3)을 제공한다. 즉, 하우징(3)은 측벽체(13) 및 격벽(15)이 압연시 가압력에 순응하면서 휨변형하여 중공튜브(10)가 박형의 두께(t)로 축소됨에 따라 박형으로 용이하게 성형된다. 따라서, 압연가공에 의해 박형으로 성형되는 하우징(3)은 평판체(11)가 전체적으로 균일하게 압연되므로 전체적으로 평탄면을 이루게 된다.In particular, the hollow tube 10 is not shown in the case of having a single channel structure, the inner peripheral surface or both sides of the side wall body 13, or in the case of a multi-channel structure as shown in Figs. The plurality of partition walls 15 may be formed in an inclined state. As the side wall body 13 and the partition walls 15 which are inclined in this way are inclined, the secondary forming step S12 described later as shown in FIG. 5. The yield strength to the pressing force generated when the hollow tube 10 is rolled by is greatly attenuated. Accordingly, the hollow tube 10 is easily compressed to provide a thin housing 3 as the thickness T is reduced to a thin thickness t. That is, the housing 3 is easily molded into a thin shape as the side wall 13 and the partition wall 15 are flexibly deformed while being adapted to the pressing force when rolling, and the hollow tube 10 is reduced to a thin thickness t. Therefore, since the flat body 11 is rolled uniformly as a whole, the housing 3 formed into a thin shape by the rolling process forms a flat surface as a whole.
이때, 측벽체(13) 또는 격벽(15)은 경사각도가 평판체(11) 표면에 대해 40° 내지 70 °의 범위 내에 있는 것이 바람직하다. 40° 내지 70 °의 경사각도는 격벽(15) 등의 항복강도를 줄이면서도 작동유체의 유동을 방해하지 않는 최적의 범위이다. 이러한 경사각도는 40° 미만일 경우, 격벽(15)과 평판체(11) 사이의 각도가 크게 작아져 히트파이프(1)로 완성된 하우징(3) 내에서 유동하는 작동유체의 유동저항이 크게 증대됨으로써, 히트파이프(1)의 열전달 성능을 저하시키는 결과를 초래하고 반대로, 70°를 초과할 경우, 측벽체(13) 또는 격벽(15)의 항복강도 감소 효과가 적어지므로 압연 후 평판체(11)에 파형의 변형이 발생하기 때문이다.At this time, it is preferable that the inclination angle of the side wall body 13 or the partition wall 15 is in the range of 40 degrees to 70 degrees with respect to the surface of the flat body 11. The inclination angle of 40 ° to 70 ° is an optimal range that reduces the yield strength of the partition wall 15 and the like but does not disturb the flow of the working fluid. When the inclination angle is less than 40 °, the angle between the partition wall 15 and the flat plate 11 is greatly reduced, so that the flow resistance of the working fluid flowing in the housing 3 completed with the heat pipe 1 is greatly increased. As a result, the heat transfer performance of the heat pipe 1 is lowered. On the contrary, when it exceeds 70 °, the yield strength reduction effect of the side wall body 13 or the partition wall 15 decreases, so that the flat body 11 after rolling is reduced. This is because waveform distortion occurs at
한편, 2차 성형단계(S12)는 위에서 언급한 바와 같이, 위 1차 성형단계(S11)에서 인발 또는 압출에 의해 성형된 중공튜브(10)를 완제품의 하우징(3)으로 압연가공하는 단계로서, 예컨대 도 5에 도시된 것처럼 3단으로 연속 배치된 압연롤(20)에 의해 단계적으로 중공튜브(10)의 두께(T)를 도 3에 도시된 바와 같이 박형의 두께(t)로 축소시켜서 박형의 하우징(3)을 성형한다.On the other hand, the secondary forming step (S12) is, as mentioned above, as a step of rolling the hollow tube 10 formed by drawing or extrusion in the primary forming step (S11) to the housing (3) of the finished product For example, by reducing the thickness (T) of the hollow tube 10 step by step rolling roll 20 arranged in three stages as shown in Figure 5 to a thin thickness (t) as shown in Figure 3 The thin housing 3 is molded.
이렇게 해서 박형화된 하우징(3)은 도 3 및 도 4 하측에 도시된 것처럼, 중공튜브(10)과 마찬가지로 폭(w)에 비해 길이(l) 및/또는 폭(w)이 현저히 긴 박형의 판상체로 이루어진다. 따라서, 하우징(3)은 도시된 바와 같이 상하 한 쌍의 평판체(11) 및 평판체(11)의 좌우측단을 연결하는 좌우 한 쌍의 측벽체(13), 그리고 평판체의 후단을 연결하는 후벽체 및 평판체 전면에 개방된 마감단으로 이루어진다. 이러한 평판체(11) 및 측벽체(13)는 후벽체 및 마감단을 통해 하우징(3)의 내부에 작동유체(F)를 수용하는 중공(S)을 제공한다. 이때, 하우징(3) 양측단의 측벽체(13) 및 중공(S)을 구획하는 격벽(15)은, 도 3 및 도 4에 도시된 바와 같이 중공튜브(10)이 하우징(3)으로 압연되는 과정에서 좌굴에 의해 두께(T), 즉 높이가 축소되어 박형의 두께(t)로 성형되고, 이에 비해 폭(w)이 넓어지며, 경사각도도 더 커진다.The thinned housing 3 is thus a thin plate having a length l and / or a width w significantly longer than the width w as in the hollow tube 10, as shown in FIGS. 3 and 4. It consists of the upper body. Accordingly, the housing 3 connects the upper and lower pairs of flat bodies 11 and the left and right pairs of side wall bodies 13 connecting the left and right ends of the flat bodies 11 and the rear ends of the flat bodies, as shown. It consists of an open end in front of the rear wall and the flat body. The flat body 11 and the side wall 13 provide a hollow S for receiving the working fluid F inside the housing 3 through the rear wall and the finishing end. At this time, the partition wall 15 partitioning the side wall body 13 and the hollow S at both ends of the housing 3 has a hollow tube 10 rolled into the housing 3 as shown in FIGS. 3 and 4. In the process of buckling, the thickness T, that is, the height is reduced to form a thin thickness t, and the width w is wider and the inclination angle is larger.
또한, 위와 같이 박형화된 판상의 하우징(3)은 도 3 및 도 4 하측에 도시된 것처럼, 평판체(11)의 내주면에 다양한 형태의 윅(5)이 형성된다. 이러한 윅(5)은 하우징(3)의 내부에서 작동하는 작동유체(F)가 하우징(3)의 내부에서 양방향으로, 즉 상부 및 하부에서 제각기 안내되도록 도시된 바와 같이 상하 평판체(11)에 각각 형성된다. 윅(5)은 도시된 것처럼 폭방향으로 서로 엇갈리게 배치되는 것이 바람직하다. 따라서, 하우징(3)은 폭방향으로 형성되는 유동단면적(중공의 단면적)을 소망하는 크기로 유지할 수 있다. 그렇지 않을 경우, 즉 유동단면적이 일정하게 유지되지 않을 경우, 하우징(3)은 작동유체(F)의 유동저항이 크게 증대되어 히트파이프(1)의 열수송 능력을 저하시킬 수 있다.In addition, the thin plate-like housing 3 as described above, as shown in the lower side 3 and 4, the wick 5 of various forms is formed on the inner peripheral surface of the flat plate (11). This wick 5 is provided with the upper and lower flat bodies 11 as shown so that the working fluid F which operates inside the housing 3 is guided in both directions in the interior of the housing 3, that is, the upper and lower portions, respectively. Each is formed. The wicks 5 are preferably arranged alternately in the width direction as shown. Therefore, the housing 3 can maintain the flow cross section (cross-sectional area of a hollow) formed in the width direction to a desired magnitude | size. Otherwise, if the flow cross section is not kept constant, the housing 3 can greatly increase the flow resistance of the working fluid F, thereby lowering the heat transport capability of the heat pipe 1.
이를 위해, 윅(5)은 위에서 언급한 바와 같이, 도 2 내지 도 7에 도시된 것처럼, 복수의 돌기(21)와 각 돌기(21) 사이에 형성되는 홈(23)으로 이루진다. 복수의 돌기(21)는 도시된 바와 같이 하우징(3)의 상하 각 평판체(11)의 내주면에 돌출되어 폭방향으로 일정한 거리(등간격)를 두고 형성되며, 하우징(3)의 길이방향으로 길게 연장되어 주변에 인접한 돌기(21)와 함께 홈(23)을 형성하면서 하우징(3)의 증발부와 응축부를 연결한다. 이때, 각각의 돌기(21)는 도 4에 도시된 바와 같이, 측벽체(13)의 내주면 또는 격벽(15)의 경사방향과 같은 방향으로 기울어질 수 있는데, 이 경우 기울어진 측벽체(13)나 격벽(15)과 마찬가지로 윅(5)을 통한 작동유체의 유동저항을 줄일 수 있게 된다. 또한, 홈(23)은 위에서 언급한 것처럼, 응축부에서 응축된작동유체(F)를 증발부로 되돌려 보내는 이동 통로로서, 돌기(21)와 마찬가지로 도시된 것처럼 하우징(3)의 길이방향으로 길게 연장되어, 응축부의 작동유체를 모세관력에 의해 증발부로 이동시키는 역할을 한다.To this end, the wick 5 consists of a groove 23 formed between the plurality of protrusions 21 and each of the protrusions 21, as shown in FIGS. 2 to 7, as mentioned above. The plurality of protrusions 21 protrude from the inner circumferential surface of each of the upper and lower flat plates 11 of the housing 3 as shown, and are formed at a predetermined distance (equal interval) in the width direction, and in the longitudinal direction of the housing 3. It extends and connects the evaporation part and the condensation part of the housing 3 while forming the groove 23 with the protrusion 21 adjacent to the periphery. At this time, each protrusion 21 may be inclined in the same direction as the inclined direction of the inner circumferential surface of the side wall body 13 or the partition wall 15, as shown in FIG. Like the bulkhead 15, it is possible to reduce the flow resistance of the working fluid through the wick (5). In addition, as described above, the groove 23 is a moving passage for returning the working fluid F condensed in the condensation part to the evaporation part and extends in the longitudinal direction of the housing 3 as shown in the same manner as the projection 21. It serves to move the working fluid of the condensation unit to the evaporation unit by capillary force.
특히, 윅(5)은 도 3 및 도 4에 도시된 바와 같이, 바람직하게는 상하 평판체(11)에 형성되는 각각의 위치가, 즉 서로 마주하는 돌기(21)의 자유단측 단부가 서로 일치하는 상태로 마주하지 않도록 서로 교호되어 어긋나있을 뿐 아니라, 더욱 바람직하게는 주입구(9)가 핀치 등에 의해 압착되는 과정에서 도 6 및 도 7에 도시된 것처럼, 상하로 대응하는 돌기(21)와 홈(23)이 서로 맞물림되는 것과 같이 대향상태로 형성되는 바, 주입구(9)의 단면적이 일정하다고 가정할 때, 압착에 의해 밀폐시켜야 하는 주입구(9)의 간격(g)이 맞물림되지 않는 구조일 때보다 좁아지므로, 주입구(9) 밀폐가 더욱 신속하게 이루어지고, 따라서 후술되는 탈기 시에 작동유체(F)의 유실량을 좀더 정밀하게 조절할 수 있다. 즉, 주입구(9) 압착 시 돌기(21)와 홈(23)이 맞물리는 경우, 도 3 및 도 4에 도시된 것처럼 상하 홈(23) 사이의 간격이 맞물림되지 않는 도 1의 경우보다 작게 벌어지므로, 핀치 압착에 의한 주입구(9)의 밀폐시간이 도 1의 경우보다 짧아져, 후술되는 탈기 시 많은 양의 작동유체(F)가 순간적으로 비등하여 유실되는 특성을 고려할 때, 작동유체(F)의 유실량을 줄일 수 있을 뿐 아니라, 유실량 즉, 유실량에 따른 완성된 히트파이프(1)의 작동유체(F) 주입량을 더욱 정밀하게 조절할 수 있게 된다.In particular, as shown in FIGS. 3 and 4, the wick 5 preferably has respective positions formed on the upper and lower flat bodies 11, that is, free end ends of the protrusions 21 facing each other coincide with each other. Not only are they alternately shifted so as not to face each other, and more preferably, as shown in FIGS. 6 and 7 in the process of injecting the inlet 9 by a pinch or the like, the protrusions 21 and the grooves corresponding to each other up and down Bar 23 is formed in the opposite state as to be engaged with each other, assuming that the cross-sectional area of the injection hole (9) is constant, the structure (g) of the injection hole (9) to be closed by compression is not engaged Since it becomes narrower than time, sealing of the inlet (9) is made more quickly, and thus the amount of loss of the working fluid (F) at the time of degassing described later can be adjusted more precisely. That is, when the projection 21 and the groove 23 are engaged when the injection hole 9 is crimped, the gap between the upper and lower grooves 23 is smaller than the case of FIG. 1 where the gap between the upper and lower grooves 23 is not engaged as shown in FIGS. 3 and 4. Since the closing time of the injection hole 9 by pinch crimping is shorter than in the case of FIG. 1, when considering the characteristic that a large amount of working fluid F is instantaneously boiled and lost during degassing described later, the working fluid F In addition to reducing the amount of loss, it is possible to more precisely control the amount of injection fluid (F) of the completed heat pipe 1 according to the amount of loss, that is, the amount of loss.
여기서, 전술한 바와 같이 상하 평판체(11)에 제각기 형성되는 윅(5)은, 중공튜브(10)가 압착되어 박형의 하우징(3)으로 변형되어도 도 3 및 도 4에 도시된 바와 같이 돌기(21)의 자유단측 단부들 사이가 간극(D)으로 이격된다. 이를 위해, 중공튜브(10)는 압연시, 즉 하우징(3)의 성형시 서로 마주하는 돌기(21)들의 자유단측 단부들 사이가 간극(D)으로 이격될 수 있는 압력으로 압착되어야 한다. 이에 따라, 하우징(3)은 박형으로 제조되어도 서로 마주하는 돌기(21)들 사이에 간극(D)이 형성되므로 간극(D)을 통해 작동유체(F)를 소통시킬 수 있다. 따라서, 하우징(3)은 주입구(9)로 주입되는 작동유체(F)가 전술한 간극(D)을 통해 소통되므로 내부에 작동유체(F)가 용이하게 충전된다.Here, as described above, the wicks 5 respectively formed on the upper and lower flat plates 11 may be protrusions as shown in FIGS. 3 and 4 even when the hollow tube 10 is compressed and deformed into the thin housing 3. The free end side ends of 21 are spaced apart by the gap D. FIG. For this purpose, the hollow tube 10 must be compressed at a pressure that can be spaced apart by the gap D between the free end ends of the projections 21 facing each other when rolling, that is, during the molding of the housing 3. Accordingly, even when the housing 3 is manufactured in a thin shape, a gap D is formed between the protrusions 21 facing each other, so that the working fluid F can be communicated through the gap D. Therefore, since the working fluid F injected into the injection hole 9 communicates through the aforementioned gap D, the working fluid F is easily filled therein.
그리고, 윅(5)은 하우징(3)의 양측에서 전술한 바와 같이 교호상태로 형성되므로 하우징(3)의 일측(상부)로 안내되는 작동유체(F) 및 하우징(3)의 타측(하부)로 안내되는 작동유체(F)가 서로 간섭되는 것이 최대한 제한된다. 따라서, 작동유체(F)는 하우징(3)의 양측에서 제각기 안내되어도 원활하게 이동된다.Since the wick 5 is formed in an alternating state as described above on both sides of the housing 3, the working fluid F guided to one side (upper side) of the housing 3 and the other side (lower side) of the housing 3 are provided. The working fluids F guided to each other are limited as much as possible to interfere with each other. Therefore, the working fluid F is smoothly moved even when guided from both sides of the housing 3, respectively.
한편, 작동유체 주입단계(S20)는 위 하우징 제조단계(S10)를 거쳐 성형된 하우징(3)에 작동유체를 주입하는 단계로서, 도 8에 도시된 바와 같이 하우징(3)의 일단에 개방된 주입구(9)를 통해 하우징(3) 내부로 작동유체(F)를 주입한다.On the other hand, the working fluid injection step (S20) is a step of injecting the working fluid into the molded housing 3 through the housing manufacturing step (S10), as shown in Figure 8 is open to one end of the housing (3) The working fluid F is injected into the housing 3 through the injection hole 9.
이때, 작동유체는 하우징(3) 내부에 수용되어 발열원으로부터 하우징(3) 일측단의 증발부에 가해진 열을, 타측단의 응축부로 신속히 전달하여 외부로 방출하는 열전달 매체로서, 별도로 도시하지는 않았지만 도 3 및 도 4에 도시된 중공(S)에 밀봉 상태로 수용된다. 따라서, 작동유체(F)는 증발부에 밀착된 발열원의 열에 의해 가열되어 기화되며, 응축부에서 냉각되어 윅(5)을 통해 증발부로 회수된다. 이때, 작동유체로는 메탄올, 에탄올, 암모니아, 에세톤, 불화탄화계 화합물, 그리고 물(water) 등을 사용할 수 있으며, 후술되는 탈기단계(S30)에서의 유실량과 최종 제품에 수용되는 충진량을 고려하여 하우징(3)에의 주입량이 결정된다.At this time, the working fluid is a heat transfer medium that is housed inside the housing 3 and rapidly transfers heat applied from the heat source to the evaporation unit at one end of the housing 3 to the condensation unit at the other end and discharged to the outside. It is housed in a sealed state in the hollow S shown in 3 and 4. Therefore, the working fluid F is heated and vaporized by the heat of the heat generating source in close contact with the evaporator, cooled in the condensation unit, and recovered to the evaporator through the wick 5. In this case, the working fluid may be methanol, ethanol, ammonia, acetone, fluorocarbon compounds, and water, and the like, taking into account the amount of loss in the degassing step (S30) and the amount of filling accommodated in the final product. The amount of injection into the housing 3 is then determined.
다른 한편, 마감단계(S30)는 하우징(3)의 주입구(9)를 밀폐시켜 히트파이프(1)의 제조를 마무리하는 단계로서, 도 8에 도시된 것처럼, 위 작동유체 주입단계(S20)에서 작동유체(F)를 주입한 하우징(3)의 주입구(9)를 핀치 등에 의해 압착하여 밀폐시킴으로써 일련의 히트파이프(1) 제조공정을 완료하게 된다.On the other hand, the finishing step (S30) is a step of closing the inlet (9) of the housing 3 to finish the manufacture of the heat pipe (1), as shown in Figure 8, in the above working fluid injection step (S20) The injection hole 9 of the housing 3 into which the working fluid F is injected is pressed and sealed with a pinch or the like to complete a series of heat pipe 1 manufacturing processes.
따라서, 위와 같은 단계를 거쳐 제조되는 예컨대, 도 3에 도시된 바와 같은 히트파이프(1)는 도 9의 그래프에서 알 수 있듯이, 도 1에 도시된 종래의 히트파이프(101)와 비교해 볼 때, 격벽(15)이나 측벽체(13)의 좌굴 변형이 상대적으로 적고, 따라서 압연 후 하우징(3)의 횡단면적 감소도 상대적으로 적기 때문에, 열저항(thermal resistance)이 현저히 감소한다. 즉, 동일 조건 하에서 특정온도의 열원으로부터 열을 방출시키고자 할 때 작동유체(F)의 유동단면적이 더 큰 히트파이프(1)가 히트파이프(101)에 비해 더 빠른 속도로 열을 방출시킬 수 있게 된다.Therefore, the heat pipe 1 manufactured through the above steps, for example, as shown in FIG. 3, as can be seen in the graph of FIG. 9, compared with the conventional heat pipe 101 shown in FIG. 1, Since the buckling deformation of the partition wall 15 and the side wall body 13 is relatively small, and therefore the cross-sectional area reduction of the housing 3 after rolling is also relatively small, the thermal resistance is significantly reduced. That is, under the same conditions, the heat pipe 1 having a larger flow cross-section of the working fluid F can release heat at a higher speed than the heat pipe 101 when it is desired to release heat from a heat source of a specific temperature. Will be.
또한, 히트파이프는 응축부에서 방출되는 열량과 증발부에서 흡수되는 열량이 일치하는 범위까지 즉, 증발부에서 가열되어도 응축부에서의 방열로 자체의 온도는 상승하지 않는 범위까지 사용이 가능한 바, 열부하(heat load)가 증가함에도 불구하고 열저항이 일정하게 유지되는 범위를 열용량이라고 할 때, 하우징(3,103)의 길이방향 유동단면적이 동일하고, 따라서 열저항이 동일하다고 가정하더라도, 작동유체에 대한 하우징(3)의 유동저항이 하우징(103)보다 현저히 감소되므로, 히트파이프(1)의 열용량이 히트파이프(101)의 열용량보다 더 크다. 따라서, 본 발명에 의한 히트파이프(1)는 가용범위(A)가 일반적인의 히트파이프(1)의 가용범위(B)보다 더 넓어지게 된다.In addition, the heat pipe can be used to the extent that the amount of heat emitted from the condensation unit and the amount of heat absorbed from the evaporator unit are matched, that is, the temperature of the heat pipe in the condensation unit does not rise even when heated in the evaporator unit. When the heat capacity is a range in which the thermal resistance remains constant despite an increase in the heat load, the longitudinal flow cross-sections of the housings 3 and 103 are the same, and therefore, even if the thermal resistance is the same, Since the flow resistance of the housing 3 is significantly reduced than that of the housing 103, the heat capacity of the heat pipe 1 is greater than the heat capacity of the heat pipe 101. Therefore, in the heat pipe 1 according to the present invention, the usable range A becomes wider than the usable range B of the general heat pipe 1.
한편, 본 발명은 탈기단계(S40)를 더 포함할 수 있다. 탈기단계(S40)는 작동유체 주입단계(S20)에서 하우징(3) 내에 작동유체(F)를 주입하기 전에 또는 주입 후 하우징(3) 및 작동유체(F)에 포함된 불응축가스 등의 이물질을 제거하는 단계이다. 탈기단계(S40)는 진공탈기법 또는 가열탈기법 등 다양한 방법으로 탈기를 수행한다. 탈기단계(S40)는 예컨대, 도 8에 도시된 바와 같이 가열탈기법에 따라 위 작동유체 주입단계(S20)에서 작동유체가 주입된 하우징(3)을 가열하여 이물질을 제거할 수 있다. 이를 위해 도 5에 도시된 것처럼 가열용 욕조(30;heating bath) 등의 가열수단을 사용할 수 있다. 이러한 경우, 하우징(3)은 작동유체(F)가 주입된 상태로 그 하부가 가열용 욕조(30)에 침잠되어 중탕에 의해 가열된다. 이와 같이 가열용 욕조(30)에 의해 하우징(3)이 가열될 경우, 하우징(3)은 내벽면 등에 흡착되어 있던 질소, 산소, 수분 또는 작동유체(F)에 녹아 있던 질소, 수분 등의 불응축가스를 포함하는 이물질이 기화된다. 그리고, 기화된 이물질은 동시에 비등한 기상 또는 액상의 작동유체와 함께 주입구(9)를 통해 하우징(3) 밖으로 제거된다.On the other hand, the present invention may further include a degassing step (S40). Degassing step (S40) is a foreign matter such as non-condensable gas contained in the housing 3 and the working fluid (F) before or after the injection of the working fluid (F) in the housing 3 in the working fluid injection step (S20) Step to remove it. The degassing step S40 is performed by various methods such as vacuum degassing or heating degassing. In the degassing step (S40), for example, as shown in FIG. 8, a foreign material may be removed by heating the housing 3 into which the working fluid is injected in the above working fluid injection step (S20) according to a heating degassing method. For this purpose, a heating means such as a heating bath 30 may be used as shown in FIG. 5. In this case, the housing 3 is submerged in the heating bath 30 in the state in which the working fluid F is injected and heated by the bath. When the housing 3 is heated by the heating bath 30 as described above, the housing 3 is fired by nitrogen, oxygen, moisture, or nitrogen, which is adsorbed on the inner wall, or dissolved in the working fluid F. Foreign matter containing condensate gas is vaporized. The vaporized foreign matter is then removed out of the housing 3 through the inlet 9 together with the working gas in a boiling gaseous or liquid state.
전술한 실시예는 본 발명의 바람직한 실시예를 설명한 것에 불과하므로 본 발명의 적용 범위는 이와 같은 것에 한정되지 않으며, 본질적 특징이 충족될 수 있을 경우 동일 사상의 범주내에서 적절한 변형(구조나 구성의 변경이나 부분적 생략 또는 보완)이 가능하다. 또한, 전술한 실시예들은 특징의 일부 또는 다수가 상호 간에 조합될 수도 있다. 따라서, 본 발명의 실시예에 나타난 각 구성 요소의 구조 및 구성은 변형이나 조합에 의해 실시할 수 있으므로 이러한 구조 및 구성의 변형이나 조합이 첨부된 본 발명의 특허청구범위에 속함은 당연한 것이다.The foregoing embodiments are merely illustrative of the preferred embodiments of the present invention, and therefore the scope of application of the present invention is not limited to such, and, if essential features can be met, appropriate modifications (structure or configuration of the Change, partial omission or supplement). In addition, the above-described embodiments may be a combination of some or several of the features. Therefore, since the structure and configuration of each component shown in the embodiment of the present invention can be carried out by modification or combination, it is natural that such a modification and combination of the structure and configuration belong to the appended claims.

Claims (28)

  1. 박형의 중공형 하우징(3)을 제조하는 하우징 제조단계(S10);Housing manufacturing step (S10) for manufacturing a thin hollow housing (3);
    상기 하우징(3)의 내부에 작동하는 작동유체(F)를 상기 하우징(3)에 주입하는 작동유체 주입단계(S20); 및A working fluid injection step (S20) of injecting a working fluid (F) operating in the housing (3) into the housing (3); And
    상기 작동유체(F)가 주입된 상기 하우징(3)의 주입구(9)를 밀폐하여 밀봉하는 마감단계(S30);를 포함하고,And a closing step (S30) of sealing and sealing the injection hole 9 of the housing 3 into which the working fluid F is injected.
    상기 하우징 제조단계(S10)는,The housing manufacturing step (S10),
    인발이나 압출에 의한 소성가공이 가능한 두께(T)로 평판형의 중공튜브(10)를 성형하는 1차 성형단계(S11); 및Primary molding step (S11) of forming a flat hollow tube 10 to a thickness (T) capable of plastic processing by drawing or extrusion; And
    상기 중공튜브(10)의 두께(T)가 축소되도록, 상기 중공튜브(10)를 압착하여 박형의 상기 하우징(3)을 성형하는 2차 성형단계(S12);를 포함하는 박형 히트파이프의 제조방법.The secondary tube forming step (S12) for pressing the hollow tube 10 to form a thin housing 3 so that the thickness (T) of the hollow tube 10 is reduced; manufacturing a thin heat pipe Way.
  2. 제 1 항에 있어서, 상기 1차 성형단계(S11)는,The method of claim 1, wherein the primary forming step (S11),
    상기 하우징(3)에 평면을 제공하는 한쌍의 평판체(11) 및 상기 평판체(11)의 폭 보다 작은 폭으로 형성되어 상기 평판체(11)의 양측단을 연결하는 한쌍의 측벽체(13)로 구성되고, 상기 평판체(11) 및 상기 측벽체(13)에 의해 중공(S)을 갖도록 평판형의 상기 중공튜브(10)를 성형하는 박형 히트파이프의 제조방법.A pair of flat bodies 11 providing a plane to the housing 3 and a pair of side walls 13 formed to have a width smaller than the width of the flat bodies 11 to connect both ends of the flat body 11. ) And a flat heat pipe (10) formed by the flat plate (11) and the side wall body (13) to have a hollow (S).
  3. 제 2 항에 있어서, 상기 1차 성형단계(S11)는,The method of claim 2, wherein the primary forming step (S11),
    상기 측벽체(11)의 항복강도가 감쇠되어 상기 2차 성형단계(S12)를 통해 상기 평판체(11)에 제공되는 가압력에 의해 상기 측벽체(11)가 순응하면서 휨변형하도록, 상기 측벽체(11)가 상기 평판체(11)에 대해 경사를 이루는 형태로 평판형의 상기 중공튜브(10)를 성형하는 박형 히트파이프의 제조방법.The yield strength of the side wall body 11 is attenuated so that the side wall body 11 flexes and deforms while conforming to the side wall body 11 due to the pressing force provided to the flat body 11 through the secondary molding step S12. The manufacturing method of the thin heat pipe (11) shape | molds the said hollow tube (10) of flat form in the shape which inclines with respect to the said flat body (11).
  4. 제 3 항에 있어서, 상기 1차 성형단계(S11)는,The method of claim 3, wherein the primary forming step (S11),
    상기 측벽체(11)가 상기 평판체(11)에 대해 40° 내지 70°의 경사를 이루도록 상기 중공튜브(10)를 성형하는 것을 특징으로 하는 박형 히트파이프의 제조방법.The method of manufacturing a thin heat pipe, characterized in that for forming the hollow tube (10) so that the side wall body (11) makes an inclination of 40 ° to 70 ° with respect to the flat plate (11).
  5. 제 2 항에 있어서, 상기 1차 성형단계(S11)는,The method of claim 2, wherein the primary forming step (S11),
    상기 평판체(11)에 연결된 상기 측벽체(11)와 평행을 이루면서 상기 중공튜브(10)의 상기 중공(S)을 분할하여 상기 중공튜브(10)의 내부에 복수의 채널(17)을 제공하는 격벽(15)을 상기 중공튜브(10)와 함께 성형하는 박형 히트파이프.The plurality of channels 17 are provided in the hollow tube 10 by dividing the hollow S of the hollow tube 10 while being parallel to the side wall body 11 connected to the flat body 11. A thin heat pipe for forming the partition wall 15 together with the hollow tube (10).
  6. 제 5 항에 있어서, 상기 1차 성형단계(S11)는,The method of claim 5, wherein the primary forming step (S11),
    상기 격벽(15)의 항복강도가 감쇠되어 상기 중공튜브(10)에 제공되는 가압력에 의해 상기 격벽(15)이 순응하면서 휨변형하도록, 상기 격벽(15)이 상기 평판체(11)에 대해 경사를 이루는 형태로 상기 중공튜브(10)를 성형하는 박형 히트파이프의 제조방법.The partition wall 15 is inclined with respect to the flat plate 11 so that the yield strength of the partition wall 15 is attenuated so that the partition wall 15 flexes and deforms due to the pressing force applied to the hollow tube 10. Method for producing a thin heat pipe for forming the hollow tube (10) to form a form.
  7. 제 6 항에 있어서, 상기 1차 성형단계(S11)는,The method of claim 6, wherein the primary forming step (S11),
    상기 격벽(11)이 상기 평판체(11)에 대해 40° 내지 70°의 경사를 이루도록 상기 중공튜브(10)를 성형하는 것을 특징으로 하는 박형 히트파이프의 제조방법.Method for producing a thin heat pipe, characterized in that for forming the hollow tube (10) so that the partition wall (11) to the inclination of the plate body 11 to 40 ° to 70 °.
  8. 제 1 항에 있어서, 상기 1차 성형단계(S11)는,The method of claim 1, wherein the primary forming step (S11),
    상기 하우징(3)의 내부에서 작동하는 상기 작동유체(F)가 상기 하우징(3)의 내부에서 양방향으로 안내되도록, 평판형으로 성형되는 상기 중공튜브(10)의 내면 양측에 복수의 돌기(21)로 구성된 윅(5)을 상기 중공튜브(10)와 함께 성형하는 박형 히트파이프의 제조방법.A plurality of projections 21 on both sides of the inner surface of the hollow tube 10 is formed in a flat shape so that the working fluid (F) operating in the housing (3) is guided in both directions inside the housing (3). Method for producing a thin heat pipe for forming a wick (5) consisting of a) together with the hollow tube (10).
  9. 제 8 항에 있어서, 상기 1차 성형단계(S11)는,The method of claim 8, wherein the primary forming step (S11),
    상기 하우징(3)의 내부에서 상기 윅(5)을 통해 양방향으로 제각기 안내되는 상기 작동유체(F)들 간의 간섭이 방지되도록, 상기 중공튜브(10)의 내면 일측에 형성된 상기 윅(5) 및 상기 중공튜브(10)의 내면 타측에 형성된 상기 윅(5)의 자유단측 단부가 서로 일치되는 것이 방지되는 상태로 대향하는 상기 윅(5)을 상기 중공튜브(10)와 함께 성형하는 박형 히트파이프의 제조방법.The wick 5 formed on one side of the inner surface of the hollow tube 10 to prevent interference between the working fluids (F) respectively guided in both directions through the wick (5) inside the housing (3) and A thin heat pipe for forming the wick 5 together with the hollow tube 10 in a state where the free end side ends of the wick 5 formed on the other side of the inner surface of the hollow tube 10 are prevented from coinciding with each other. Manufacturing method.
  10. 제 9 항에 있어서, 상기 1차 성형단계(S11)는,The method of claim 9, wherein the primary forming step (S11),
    상기 윅(5)들의 자유단측 단부가 서로 교호하도록 상기 윅(5)을 상기 중공튜브(10)와 함께 성형하는 것을 특징으로 하는 박형 히트파이프의 제조방법.And forming the wick (5) together with the hollow tube (10) such that the free end ends of the wicks (5) alternate with each other.
  11. 청구항 1에 있어서, 상기 2차 성형단계(S12)는,The method according to claim 1, wherein the secondary molding step (S12),
    상기 중공튜브(10)를 압연가공으로 압착하여 상기 중공튜브(10)의 두께(T)를 박형의 두께(t)로 축소하는 박형 히트파이프의 제조방법.The hollow tube 10 is pressed by rolling to reduce the thickness T of the hollow tube 10 to a thin thickness t.
  12. 청구항 1에 있어서, 상기 1차 성형단계(S11)는,The method according to claim 1, wherein the primary forming step (S11),
    상기 하우징(3)에 평면을 제공하는 한쌍의 평판체(11) 및 상기 평판체(11)의 폭 보다 작은 폭으로 형성되어 상기 평판체(11)의 양측단을 연결하는 한쌍의 측벽체(13)로 구성되고, 상기 평판체(11) 및 상기 측벽체(13)에 의해 중공(S)을 갖도록 평판형의 상기 중공튜브(10)를 성형하는 동시에,A pair of flat bodies 11 providing a plane to the housing 3 and a pair of side walls 13 formed to have a width smaller than the width of the flat bodies 11 to connect both ends of the flat body 11. And the hollow tube 10 of the flat plate shape so as to have a hollow S by the flat plate 11 and the side wall 13,
    상기 측벽체(11)의 항복강도가 감쇠되어 상기 2차 성형단계(S12)를 통해 상기 평판체(11)에 제공되는 가압력에 의해 상기 측벽체(11)가 순응하면서 휨변형하도록, 상기 측벽체(11)가 상기 평판체(11)에 대해 경사를 이루는 형태로 평판형의 상기 중공튜브(10)를 성형하고,The yield strength of the side wall body 11 is attenuated so that the side wall body 11 flexes and deforms while conforming to the side wall body 11 due to the pressing force provided to the flat body 11 through the secondary molding step S12. (11) to form the flat hollow tube 10 in the form of the inclined to the flat body 11,
    상기 2차 성형단계(S12)는,The secondary molding step (S12),
    상기 중공튜브(10)를 압연가공으로 압착하여 상기 중공튜브(10)의 두께(T)를 박형의 두께(t)로 축소하는 박형 히트파이프의 제조방법.The hollow tube 10 is pressed by rolling to reduce the thickness T of the hollow tube 10 to a thin thickness t.
  13. 제 12 항에 있어서, The method of claim 12,
    상기 2차 성형단계(S12)의 이전에 실시되는 상기 1차 성형단계(S11)는,The primary molding step (S11) is carried out before the secondary molding step (S12),
    상기 평판체(11)에 연결되어 상기 측벽체(11)와 평행을 이루면서 상기 중공튜브(10)의 상기 중공(S)을 분할하여 상기 중공튜브(10)의 내부에 복수의 채널(17)을 제공하는 격벽(15)을 상기 중공튜브(10)와 함께 성형하거나,A plurality of channels 17 are formed inside the hollow tube 10 by dividing the hollow S of the hollow tube 10 while being connected to the flat body 11 and parallel to the side wall body 11. Forming the partition wall 15 together with the hollow tube 10, or
    상기 하우징(3)의 내부에서 작동하는 상기 작동유체(F)가 상기 하우징(3)의 내부에서 양방향으로 안내되도록, 평판형 상기 중공튜브(10)의 내면 양측에 복수의 돌기(21)로 구성된 윅(5)을 상기 중공튜브(10)와 함께 성형하는 박형 히트파이프.A plurality of protrusions 21 are formed on both sides of the inner surface of the flat hollow tube 10 such that the working fluid F operating inside the housing 3 is guided in both directions inside the housing 3. Thin heat pipe for forming the wick (5) together with the hollow tube (10).
  14. 제 13 항에 있어서, 상기 1차 성형단계(S11)는,The method of claim 13, wherein the primary forming step (S11),
    상기 격벽(15)의 항복강도가 감쇠되어 상기 중공튜브(10)에 제공되는 가압력에 의해 상기 격벽(15)이 순응하면서 휨변형하도록, 상기 격벽(15)이 상기 평판체(11)에 대해 경사를 이루는 형태로 상기 중공튜브(10)를 성형하는 박형 히트파이프의 제조방법.The partition wall 15 is inclined with respect to the flat plate 11 so that the yield strength of the partition wall 15 is attenuated so that the partition wall 15 flexes and deforms due to the pressing force applied to the hollow tube 10. Method for producing a thin heat pipe for forming the hollow tube (10) to form a form.
  15. 제 13 항에 있어서, 상기 1차 성형단계(S11)는,The method of claim 13, wherein the primary forming step (S11),
    상기 하우징(3)의 내면 양측에 형성된 상기 윅(5)의 자유단측 단부가 상기 2차 성형단계(S12)의 가압력에 의해 밀착되는 것이 방지되도록, 상기 윅(5)들의 자유단측 단부가 서로 교호하는 상태로 상기 윅(5)을 상기 중공튜브(10)와 함께 성형하는 것을 특징으로 하는 박형 히트파이프의 제조방법.The free end side ends of the wicks 5 alternate with each other so that the free end side ends of the wicks 5 formed on both sides of the inner surface of the housing 3 are prevented from coming into close contact by the pressing force of the secondary forming step S12. Method for producing a thin heat pipe, characterized in that for forming the wick (5) together with the hollow tube (10).
  16. 제 15 항에 있어서, 상기 2차 성형단계(S11)는,The method of claim 15, wherein the secondary forming step (S11),
    상기 하우징(3)의 내면 양측에 형성된 상기 윅(5)의 자유단측 단부들 사이가 간극으로 이격되는 것이 가능한 압력으로 상기 중공튜브(10)를 압연가공하는 박형 히트파이프의 제조방법.A method of manufacturing a thin heat pipe by rolling the hollow tube (10) at a pressure that can be spaced apart between the free end side ends of the wick (5) formed on both sides of the inner surface of the housing (3).
  17. 제 1 항에 있어서,The method of claim 1,
    상기 작동유체 주입단계(S20) 전 또는 후에 상기 작동유체(F)와 상기 하우징(3)에 포함된 이물질을 제거하는 탈기단계(S40);를 더 포함하는 것을 특징으로 하는 박형 히트파이프 제조방법.And a degassing step (S40) for removing foreign matters contained in the working fluid (F) and the housing (3) before or after the working fluid injection step (S20).
  18. 박형 히트파이프용 하우징의 제조방법에 있어서,In the manufacturing method of the housing for thin heat pipes,
    인발이나 압출에 의한 소성가공이 가능한 두께(T)로 평판형의 중공튜브(10)를 성형하는 1차 성형단계(S11); 및Primary molding step (S11) of forming a flat hollow tube 10 to a thickness (T) capable of plastic processing by drawing or extrusion; And
    상기 중공튜브(10)의 두께(T)가 축소되도록, 상기 중공튜브(10)를 압착하여 박형의 상기 하우징(3)을 성형하는 2차 성형단계(S12);를 포함하는 박형 히트파이프용 하우징의 제조방법.And a secondary forming step (S12) of pressing the hollow tube 10 to form the thin housing 3 by compressing the hollow tube 10 so that the thickness T of the hollow tube 10 is reduced. Manufacturing method.
  19. 제 18 항에 있어서, 상기 2차 성형단계(S12)는,The method of claim 18, wherein the secondary forming step (S12),
    상기 중공튜브(10)를 압연가공으로 압착하여 상기 중공튜브(10)의 두께(T)를 박형의 두께(t)로 축소하는 박형 히트파이프용 하우징의 제조방법.The hollow tube 10 is pressed by rolling to reduce the thickness (T) of the hollow tube 10 to a thin thickness (t) of the manufacturing method of the housing for thin heat pipes.
  20. 상기 제 18 항의 상기 1차 성형단계(S11) 및 상기 2차 성형단계(S12)에 의해 제조됨에 따라 내부에 중공(S)이 마련된 박형의 중공형 하우징(3);A thin hollow housing (3) having a hollow (S) provided therein as manufactured by the first forming step (S11) and the second forming step (S12) of claim 18;
    상기 하우징(3)의 중공(S)에 충전되고, 상기 하우징(3)에 전이되는 열에 의해 상기 하우징(3)의 일측에서 증발되어 상기 하우징(3)의 타측에서 응축되면서 열을 이송하는 작동유체(F); 및A working fluid filled in the hollow S of the housing 3 and evaporated at one side of the housing 3 by heat transferred to the housing 3 to condense at the other side of the housing 3 while transferring heat. (F); And
    상기 하우징(3)의 내면 양측에 제각기 돌출되어 서로 대향하는 복수의 돌기(21)로 구성되고, 상기 돌기(21)들의 이격된 틈 사이로 형성되는 홈(23)을 통해 상기 하우징(3)의 내부에서 상기 작동유체(F)를 양방향으로 안내하는 윅(5);을 포함하는 박형 히트파이프.The interior of the housing 3 through a groove 23 formed between a plurality of protrusions 21 which protrude on both sides of the inner surface of the housing 3 to face each other, and are formed between the spaced gaps of the protrusions 21. A wick (5) for guiding the working fluid (F) in both directions; a thin heat pipe comprising a.
  21. 제 20 항에 있어서, 상기 윅(5)은,The wick 5 according to claim 20,
    상기 하우징(3)의 내면 양측에서 서로 대향하는 상기 돌기(21)의 자유단측 단부가 서로 일치되는 것이 방지되는 상태로 대향하도록 상기 하우징(3)의 내면 양측에 제각기 돌출형성되고,Protrusions are formed on both sides of the inner surface of the housing 3 so as to face each other in a state in which the free end side ends of the protrusions 21 facing each other on both sides of the inner surface of the housing 3 are prevented from coinciding with each other.
    상기 돌기(21)는,The protrusion 21,
    상기 하우징(3)의 내면 양측에서 자유단측 단부가 서로 교호하는 상태로 대향함에 따라 일치되는 것이 방지되는 상태로 대향하는 박형 히트파이프.A thin heat pipe facing each other in a state where the free end side ends face each other in an alternating state on both sides of the inner surface of the housing (3).
  22. 제 20 항에 있어서, 상기 하우징(3)은,The method of claim 20, wherein the housing (3)
    상기 윅(5)이 내측면에 형성되고, 서로 대향하는 한 쌍의 평판체(11); 및 A pair of flat bodies 11 having the wicks 5 formed on the inner side thereof and opposing each other; And
    상기 평판체(11)를 연결하여 상기 평판체(11)의 내측에 상기 중공(S)을 제공하는 한 쌍의 측벽체(13);를 포함하고,And a pair of side wall bodies 13 which connect the flat bodies 11 to provide the hollows S inside the flat bodies 11.
    상기 측벽체(13)는,The side wall body 13,
    상기 평판체(11)에 대해 경사를 갖는 박형 히트파이프.Thin heat pipe having an inclination with respect to the flat plate (11).
  23. 박형 히트파이프용 하우징의 제조방법에 있어서,In the manufacturing method of the housing for thin heat pipes,
    인발이나 압출에 의한 소성가공이 가능한 두께(T)로 평판형의 중공튜브(10)를 성형하는 1차 성형단계(S11); 및Primary molding step (S11) of forming a flat hollow tube 10 to a thickness (T) capable of plastic processing by drawing or extrusion; And
    상기 중공튜브(10)의 두께(T)가 축소되도록, 상기 중공튜브(10)를 압착하여 박형의 상기 하우징(3)을 성형하는 2차 성형단계(S12);를 포함하고,And a secondary molding step (S12) of pressing the hollow tube 10 to form the thin housing 3 so as to reduce the thickness T of the hollow tube 10.
    상기 1차 성형단계(S11)는,The primary molding step (S11),
    서로 대향하는 한 쌍의 평판체(11) 및 상기 평판체(11)를 연결하여 상기 평판체(11)의 내측에 중공(S)을 제공하고, 상기 2차 성형단계(S12)의 압착으로 발생되는 가압력에 대한 상기 중공튜브(10)의 항복강도가 감쇠되어 압착 후에도 상기 평판체(11)가 전체적으로 평탄면을 이루도록, 상기 평판체(11)에 대해 경사를 갖는 한 쌍의 측벽체(13)에 의해 중공형으로 형성되는 상기 중공튜브(10)를 인발이나 압출을 통해 성형하며,A pair of flat plates 11 and the flat plates 11 facing each other are provided to provide a hollow S in the inside of the flat plates 11, and are generated by the pressing of the secondary forming step S12. The pair of sidewalls 13 having an inclination with respect to the flat body 11 so that the yield strength of the hollow tube 10 with respect to the pressing force is attenuated so that the flat body 11 becomes a flat surface as a whole even after pressing. By forming the hollow tube 10 is formed by drawing or extrusion through the hollow,
    상기 2차 성형단계(S12)는,The secondary molding step (S12),
    상기 중공튜브(10)를 압연가공으로 압착하여 상기 중공튜브(10)의 두께(T)를 박형의 두께(t)로 축소하는 박형 히트파이프용 하우징의 제조방법.The hollow tube 10 is pressed by rolling to reduce the thickness (T) of the hollow tube 10 to a thin thickness (t) of the manufacturing method of the housing for thin heat pipes.
  24. 상기 제 23 항에 의해 제조됨에 따라 상기 평판체(11) 및 경사를 갖는 상기 측벽체(13)로 구성되고, 내부에 중공(S)을 갖는 박형의 중공형 하우징(3);A thin hollow housing (3) composed of the flat plate (11) and the side wall body (13) having an inclination according to claim 23, and having a hollow (S) therein;
    상기 하우징(3)의 중공(S)에 충전되고, 상기 하우징(3)에 전이되는 열에 의해 상기 하우징(3)의 일측에서 증발되어 상기 하우징(3)의 타측에서 응축되면서 열을 이송하는 작동유체(F); 및A working fluid filled in the hollow S of the housing 3 and evaporated at one side of the housing 3 by heat transferred to the housing 3 to condense at the other side of the housing 3 while transferring heat. (F); And
    상기 하우징(3)의 내면 양측에 제각기 돌출되어 서로 대향하는 복수의 돌기(21)로 구성되고, 상기 돌기(21)들의 이격된 틈 사이로 형성되는 홈(23)을 통해 상기 하우징(3)의 내부에서 상기 작동유체(F)를 양방향으로 안내하는 윅(5);을 포함하는 박형 히트파이프.The interior of the housing 3 through a groove 23 formed between a plurality of protrusions 21 which protrude on both sides of the inner surface of the housing 3 to face each other, and are formed between the spaced gaps of the protrusions 21. A wick (5) for guiding the working fluid (F) in both directions; a thin heat pipe comprising a.
  25. 제 24 항에 있어서, 상기 윅(5)은,The wick 5 according to claim 24,
    상기 하우징(3)의 내면 양측에서 서로 대향하는 상기 돌기(21)의 자유단측 단부가 서로 일치되는 것이 방지되는 상태로 대향하도록 상기 하우징(3)의 내면 양측에 제각기 돌출형성되고,Protrusions are formed on both sides of the inner surface of the housing 3 so as to face each other in a state in which the free end side ends of the protrusions 21 facing each other on both sides of the inner surface of the housing 3 are prevented from coinciding with each other.
    상기 돌기(21)는,The protrusion 21,
    상기 하우징(3)의 내면 양측에서 자유단측 단부가 서로 교호하는 상태로 대향함에 따라 일치되는 것이 방지되는 상태로 대향하는 박형 히트파이프.A thin heat pipe facing each other in a state where the free end side ends face each other in an alternating state on both sides of the inner surface of the housing (3).
  26. 제 25 항에 있어서, 상기 윅(5)은,The wick 5 according to claim 25,
    상기 하우징(3)의 내면 양측에서 서로 대향하는 상기 돌기(21)의 자유단측 단부 사이에 간극을 갖는 박형 히트파이프.A thin heat pipe having a gap between the free end side ends of the protrusions (21) facing each other on both inner surfaces of the housing (3).
  27. 제 24 항에 있어서, 상기 하우징(3)은,The method according to claim 24, wherein the housing (3)
    상기 측벽체(13)와 평행을 이루며, 상기 중공(S)을 분할하여 상기 중공(S)에 복수의 채널(17)을 제공하는 격벽(15);을 더 포함하고,Parallel to the side wall body 13, partition wall 15 for dividing the hollow (S) to provide a plurality of channels 17 in the hollow (S);
    상기 격벽(15)은,The partition wall 15,
    상기 측벽체(13)와 함께 상기 평판체(11)에 대해 경사를 갖는 박형 히트파이프.A thin heat pipe having an inclination with respect to the flat plate (11) together with the side wall (13).
  28. 제 27 항에 있어서, 상기 하우징(3)은,The method according to claim 27, wherein the housing (3)
    상기 측벽체(13) 및 상기 격벽(15)이 서로 같은 방향의 경사를 갖는 박형 히트파이프.The thin heat pipe of which the side wall body 13 and the partition wall 15 are inclined in the same direction.
PCT/KR2015/006256 2015-06-19 2015-06-19 Thin heat pipe and method for manufacturing same WO2016204328A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2015/006256 WO2016204328A1 (en) 2015-06-19 2015-06-19 Thin heat pipe and method for manufacturing same
CN201580081005.4A CN107835926A (en) 2015-06-19 2015-06-19 Thin type heat pipe and its manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/006256 WO2016204328A1 (en) 2015-06-19 2015-06-19 Thin heat pipe and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2016204328A1 true WO2016204328A1 (en) 2016-12-22

Family

ID=57545930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006256 WO2016204328A1 (en) 2015-06-19 2015-06-19 Thin heat pipe and method for manufacturing same

Country Status (2)

Country Link
CN (1) CN107835926A (en)
WO (1) WO2016204328A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028281A (en) * 1998-07-09 2000-01-28 Furukawa Electric Co Ltd:The Plate type heat pipe and its manufacture
KR100631050B1 (en) * 2005-04-19 2006-10-04 한국전자통신연구원 Flat plate type heat pipe
KR20070120251A (en) * 2006-06-19 2007-12-24 티티엠주식회사 Printed circuit board incorporated with heatpipe and manufacturing method thereof
KR20120065575A (en) * 2010-12-13 2012-06-21 한국전자통신연구원 Thinned flat plate heat pipe fabricated by extrusion
KR20150065426A (en) * 2013-12-05 2015-06-15 티티엠주식회사 Thin Type Heat Pipe Provided with a Wick Fixed Obliquely

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101581549A (en) * 2009-06-09 2009-11-18 北京奇宏科技研发中心有限公司 Flat heat pipe and manufacture method
CN103134363A (en) * 2011-11-22 2013-06-05 奇鋐科技股份有限公司 Structure and manufacturing method of heat pipe
CN103851941B (en) * 2012-12-04 2016-08-17 奇鋐科技股份有限公司 Thin type heat pipe manufacture method
CN203224159U (en) * 2013-03-05 2013-10-02 奇鋐科技股份有限公司 Heat pipe structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028281A (en) * 1998-07-09 2000-01-28 Furukawa Electric Co Ltd:The Plate type heat pipe and its manufacture
KR100631050B1 (en) * 2005-04-19 2006-10-04 한국전자통신연구원 Flat plate type heat pipe
KR20070120251A (en) * 2006-06-19 2007-12-24 티티엠주식회사 Printed circuit board incorporated with heatpipe and manufacturing method thereof
KR20120065575A (en) * 2010-12-13 2012-06-21 한국전자통신연구원 Thinned flat plate heat pipe fabricated by extrusion
KR20150065426A (en) * 2013-12-05 2015-06-15 티티엠주식회사 Thin Type Heat Pipe Provided with a Wick Fixed Obliquely

Also Published As

Publication number Publication date
CN107835926A (en) 2018-03-23

Similar Documents

Publication Publication Date Title
US7802436B2 (en) Cooling apparatus having low profile extrusion and method of manufacture therefor
US7275588B2 (en) Planar heat pipe structure
US6981322B2 (en) Cooling apparatus having low profile extrusion and method of manufacture therefor
US20110174465A1 (en) Flat heat pipe with vapor channel
WO2011087203A2 (en) Heat exchanger, a food handler including the heat exchanger, and a manufacturing method of the heat exchanger
WO2015084064A1 (en) Thin heat pipe having wicks of crisscross structure
WO2016204328A1 (en) Thin heat pipe and method for manufacturing same
CN102203538B (en) Gas cooler
Ming et al. The thermal analysis of the heat dissipation system of the charging module integrated with ultra-thin heat pipes
Mizutani et al. Experimental and analytical investigation of a 0.3-mm-thick loop heat pipe for 10 W-class heat dissipation
CN1777770B (en) Improved sealing arrangement for use in evacuating a glass chamber
KR101539445B1 (en) Thin Type Heat Pipe Manufacturing Method
CN115866988A (en) Foldable temperature equalization plate and electronic equipment
US10845128B2 (en) Heat pipe
CN203224159U (en) Heat pipe structure
TW202043690A (en) Heat dissipation unit with axial capillary structure
TWI710742B (en) Vapor chamber
CN212227827U (en) Concave tooth type ditch-shaped ultrathin heat pipe
CN211400897U (en) Novel heat pipe structure
KR20000024564A (en) Pipe for heat exchanger
CN105783560A (en) Horizontal type cooling device adopting brine
CN111043885A (en) Thin type temperature-equalizing plate and manufacturing method thereof
CN111076589A (en) Ultrathin heat pipe with gradient capillary core structure
CN215668123U (en) High-efficient bright annealing device of seamless steel pipe of rapid cooling shape of preapring for an unfavorable turn of events
US20230417491A1 (en) Vapor chamber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895715

Country of ref document: EP

Kind code of ref document: A1