WO2016204231A1 - Laminate film, and laminate-film production method - Google Patents

Laminate film, and laminate-film production method Download PDF

Info

Publication number
WO2016204231A1
WO2016204231A1 PCT/JP2016/067946 JP2016067946W WO2016204231A1 WO 2016204231 A1 WO2016204231 A1 WO 2016204231A1 JP 2016067946 W JP2016067946 W JP 2016067946W WO 2016204231 A1 WO2016204231 A1 WO 2016204231A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminate
meth
laminated film
acrylate
Prior art date
Application number
PCT/JP2016/067946
Other languages
French (fr)
Japanese (ja)
Inventor
将之 楠本
達也 大場
疋田 伸治
内海 京久
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201680034978.7A priority Critical patent/CN107708996B/en
Priority to JP2017525297A priority patent/JP6433592B2/en
Priority to KR1020177035953A priority patent/KR102028470B1/en
Publication of WO2016204231A1 publication Critical patent/WO2016204231A1/en
Priority to US15/840,405 priority patent/US20180179643A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • B05D1/265Extrusion coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D147/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper

Definitions

  • the present invention relates to a laminated film and a method for producing the laminated film.
  • LCDs Liquid crystal display devices
  • LCDs consume less power and are increasingly used year by year as space-saving image display devices. Further, in recent liquid crystal display devices, further power saving, color reproducibility improvement and the like are required as LCD performance improvement.
  • a quantum dot is a crystal in an electronic state in which the direction of movement is restricted in all three dimensions.
  • the nanoparticle Becomes a quantum dot.
  • Quantum dots exhibit various quantum effects. For example, the “quantum size effect” in which the density of states of electrons (energy level) is discretized appears. According to this quantum size effect, the absorption wavelength and emission wavelength of light can be controlled by changing the size of the quantum dot.
  • quantum dots are dispersed in a resin or the like, and are used, for example, as a quantum dot film that performs wavelength conversion and disposed between a backlight and a liquid crystal panel.
  • the quantum dots When excitation light enters the film containing quantum dots from the backlight, the quantum dots are excited and emit fluorescence.
  • quantum dots having different light emission characteristics it is possible to realize white light by emitting light having a narrow half-value width of red light, green light, and blue light. Since the half-value width of the fluorescence due to quantum dots is narrow, it is possible to design white light obtained by appropriately selecting the wavelength to have high luminance or excellent color reproducibility.
  • quantum dot layer a resin layer containing quantum dots (hereinafter also referred to as “quantum dot layer”) to protect the quantum dot layer.
  • quantum dot layer a resin layer containing quantum dots
  • Patent Document 1 describes a composition in which a quantum dot phosphor is dispersed in a cycloolefin (co) polymer in a concentration range of 0.01% by mass to 20% by mass.
  • covers the whole surface of the made resin molding is described. Further, it is described that the gas barrier layer is a gas barrier film in which a silica film or an alumina film is formed on at least one surface of the resin layer.
  • Patent Document 2 describes a display backlight unit including a remote phosphor film containing a light-emitting quantum dot (QD) population.
  • the QD phosphor material is sandwiched between two gas barrier films, and the QD phosphor material
  • surroundings is described.
  • Patent Document 3 discloses a light emitting device including a color conversion layer that converts at least a part of the color light emitted from the light source unit into another color light, and an impermeable sealing sheet that seals the color conversion layer.
  • the apparatus is described, and has a second bonding layer provided in a frame shape along the outer periphery of the phosphor layer, that is, surrounding the planar shape of the phosphor layer, and this second bonding layer is A configuration made of an adhesive material having gas barrier properties is described.
  • Patent Document 3 describes a configuration in which the upper layer and / or the bottom layer, which is a barrier layer for sealing the QD film, is narrowed to prevent the entry of oxygen and water by narrowing the opening at the end.
  • Patent Document 4 includes a quantum point that converts the wavelength of excitation light to generate wavelength-converted light, a wavelength conversion unit that includes a dispersion medium that disperses the quantum point, and a sealing member that seals the wavelength conversion unit.
  • a quantum point wavelength converter is described, and it is described that the wavelength conversion part is sealed by heating and thermally sticking the end region of the sealing sheet.
  • the film including quantum dots used for the LCD is a thin film of about 50 ⁇ m to 350 ⁇ m. It was very difficult to coat the entire surface of the thin quantum dot layer with a gas barrier film, and there was a problem that productivity was poor. In addition, when the gas barrier film is bent, the barrier layer is broken and the gas barrier property is lowered.
  • the protective layer and the resin layer are formed by a so-called dam fill method.
  • a dam fill method can be considered. That is, after forming a protective layer on the peripheral portion on one gas barrier film, a resin layer is formed in a region surrounded by the protective layer, and then the other gas barrier film is laminated on the protective layer and the resin layer. It is conceivable to produce a film containing quantum dots.
  • the material of the protective layer that can be formed by such a method is an adhesive material or the like, high barrier properties cannot be imparted, and gas barrier properties and durability are not sufficient.
  • such a dam fill method has a problem that productivity is extremely poor because all processes are batch methods.
  • the thickness of the quantum dot layer at the end becomes thin.
  • the size of the area that can be used effectively becomes small, and the frame portion becomes large.
  • a barrier layer having a high gas barrier property is hard and brittle, if the gas barrier film having such a barrier layer is suddenly bent, the barrier layer is cracked, and the gas barrier property is lowered. There has been a problem that it becomes impossible to prevent moisture and oxygen from entering the layer.
  • the object of the present invention is to solve such problems of the prior art, can prevent optical functional layers such as quantum dot layers from being deteriorated by moisture and oxygen, has high durability,
  • An object of the present invention is to provide a laminated film and a method for producing the laminated film that can be narrowed and have high productivity.
  • the present inventors have obtained a functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer, and a functional layer.
  • An end face sealing layer formed so as to cover at least a part of the end face of the laminate, and the end face sealing layer is composed of at least two layers, and each layer is made of a metal, whereby the above-described problems can be solved.
  • the headline and the present invention were completed. That is, this invention provides the laminated film of the following structures, and its manufacturing method.
  • a functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer, and An end face sealing layer formed to cover at least a part of the end face of the functional layer laminate,
  • the end face sealing layer is composed of at least two layers, and each layer is a laminated film made of metal.
  • the thickness of the first layer is 0.001 ⁇ m to 0.5 ⁇ m
  • the laminated film according to (4), wherein the thickness of the metal plating layer is 0.01 ⁇ m to 100 ⁇ m.
  • the material of the first layer in contact with the functional layer laminate is at least one selected from the group consisting of aluminum, titanium, chromium, copper, and nickel, or an alloy containing at least one of these.
  • each layer other than the first layer is at least one selected from the group consisting of aluminum, titanium, chromium, nickel, tin, copper, silver, and gold, or an alloy containing at least one of these.
  • (1) The laminated film as described in any one of (5).
  • (7) The laminated film according to any one of (1) to (6), wherein the end face sealing layer has a thickness of 0.1 ⁇ m to 100 ⁇ m.
  • the functional layer laminate having an optical functional layer and a gas barrier layer has at least two layers on each side surface, and each layer has an end face sealing layer made of metal.
  • a method for producing a laminated film for producing a laminated film A first layer forming step of forming a first layer in contact with the functional layer laminate on an end face of a laminate in which a plurality of functional layer laminates are stacked; An outermost layer forming step of forming an outermost layer on the first layer formed on the end face of the laminate, A method for producing a laminated film, wherein the formation method of the first layer is one selected from the group consisting of a sputtering method, a vacuum deposition method, an ion plating method, and a plasma CVD method. (9) The method for producing a laminated film according to (8), wherein the formation method of at least one layer other than the first layer of the end face sealing layer is a metal plating process.
  • a functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer, and An end face sealing layer formed to cover at least a part of the end face of the functional layer laminate,
  • the end face sealing layer is composed of at least two layers, and each layer is a laminated film made of metal
  • the optical functional layer is a laminated film that is a cured layer formed by curing a polymerizable composition containing a phosphor and at least two or more polymerizable compounds.
  • the first polymerizable compound is an aliphatic or aromatic alkyl (meth) acrylate having an alkyl group having 4 to 30 carbon atoms
  • the second polymerizable compound is 1,6-hexanediol diacrylate, 1,10-decanediol diacrylate, 1,9-nonanediol di (meth) acrylate, tricyclodecane dimethanol diacrylate, dicyclopentanyl.
  • the laminated film according to (11) selected from di (meth) acrylate and ethoxylated bisphenol A diacrylate.
  • the phosphor of the optical functional layer is a quantum dot, a quantum rod, or a tetrapod type quantum dot.
  • the material of the first layer in contact with the functional layer laminate is at least one selected from the group consisting of aluminum, titanium, chromium, copper, and nickel, or an alloy containing at least one of these.
  • the material of each layer other than the first layer is at least one selected from the group consisting of aluminum, titanium, chromium, nickel, tin, copper, silver, and gold, or an alloy containing at least one of these.
  • the functional layer laminate having an optical functional layer and a gas barrier layer has at least two layers on each side surface, and each layer has an end face sealing layer made of metal.
  • a method for producing a laminated film for producing a laminated film On the gas barrier film having the gas barrier layer, a functional layer laminate is formed by applying and curing a polymerizable composition containing a phosphor and at least two or more polymerizable compounds, A first layer forming step of forming a first layer in contact with the functional layer laminate on an end face of a laminate in which a plurality of functional layer laminates are stacked; An outermost layer forming step of forming an outermost layer on the first layer formed on the end face of the laminate, A method for producing a laminated film, wherein the formation method of the first layer is one selected from the group consisting of a sputtering method, a vacuum deposition method, an ion plating method, and a plasma CVD method.
  • the present invention as described above, it is possible to prevent the quantum dots from being deteriorated by moisture or oxygen, to have high durability, to be able to narrow the frame, and to have high productivity.
  • the manufacturing method of can be provided.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the laminated film of the first aspect of the present invention includes an optical functional layer, a functional layer laminate having a gas barrier layer laminated on at least one main surface of the optical functional layer, and an end surface of the functional layer laminate.
  • the end surface sealing layer is formed so as to cover at least a part
  • the end surface sealing layer is a laminated film composed of at least two layers, and each layer is made of metal.
  • the laminated film according to the second aspect of the present invention includes an optical functional layer obtained by curing a polymerizable composition containing a phosphor and at least two or more polymerizable compounds, and at least one principal surface of the optical functional layer.
  • a functional layer laminate having a gas barrier layer, and an end face sealing layer formed so as to cover at least a part of the end faces of the functional layer laminate. It is a laminated film consisting of two layers, each layer consisting of metal.
  • FIG. 1 is a cross-sectional view conceptually showing an example of the laminated film of the present invention.
  • a laminated film 10 a shown in FIG. 1 covers a functional layer laminate 11 having two gas barrier layers 14 laminated on both main surfaces of the optical functional layer 12 and the optical functional layer 12, and a side surface of the functional layer laminate 11.
  • the end surface sealing layer 16a is formed as described above.
  • the optical function layer 12 is a layer for expressing a desired function such as wavelength conversion.
  • the optical functional layer 12 is a quantum dot layer in which a large number of phosphors (quantum dots) are dispersed in a matrix such as a curable resin, and converts the wavelength of light incident on the optical functional layer 12. And has a function of emitting light. For example, when blue light emitted from a backlight (not shown) enters the optical functional layer 12, the optical functional layer 12 converts at least part of the blue light into red light or green light due to the effect of quantum dots contained therein. The wavelength is converted into and emitted.
  • the blue light is light having an emission center wavelength in a wavelength band of 400 nm to 500 nm
  • the green light is light having an emission center wavelength in a wavelength band exceeding 500 nm and 600 nm.
  • the wavelength conversion function exhibited by the quantum dot layer is not limited to a configuration that converts the wavelength of blue light into red light or green light, and may convert at least part of incident light into light of a different wavelength. That's fine.
  • the quantum dots emit fluorescence by being excited at least by incident excitation light.
  • the type of quantum dots contained in the quantum dot layer and various known quantum dots may be appropriately selected according to the required wavelength conversion performance or the like.
  • quantum dots for example, JP 2012-169271 A paragraphs 0060 to 0066 can be referred to, but are not limited to those described here.
  • the quantum dots commercially available products can be used without any limitation.
  • the emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles.
  • the quantum dots are preferably dispersed uniformly in the matrix, but may be dispersed with a bias in the matrix. Moreover, only 1 type may be used for a quantum dot and it may use 2 or more types together. When using 2 or more types together, you may use 2 or more types of quantum dots from which the wavelength of emitted light differs.
  • the known quantum dots include a quantum dot (A) having an emission center wavelength in the wavelength band exceeding 600 nm and in the range of 680 nm, and a quantum dot having an emission center wavelength in the wavelength band exceeding 500 nm and 600 nm. (B), there is a quantum dot (C) having an emission center wavelength in the wavelength band of 400 nm to 500 nm.
  • the quantum dot (A) is excited by excitation light to emit red light, and the quantum dot (B) is green light.
  • the quantum dot (C) emits blue light.
  • red light emitted from the quantum dots (A) and light emitted from the quantum dots (B) can be realized by the green light and the blue light transmitted through the quantum dot layer.
  • ultraviolet light incident on the quantum dot layer including the quantum dots (A), (B), and (C) as excitation light
  • quantum dots (B) White light can be realized by green light emitted by the blue light and blue light emitted by the quantum dots (C).
  • quantum dot a so-called quantum rod or a tetrapod type quantum dot that has a rod shape and has directivity and emits polarized light may be used.
  • the type of matrix of the quantum dot layer is not particularly limited, and various resins used in known quantum dot layers can be used. Examples thereof include polyester resins (for example, polyethylene terephthalate, polyethylene naphthalate), (meth) acrylic resins, polyvinyl chloride resins, and polyvinylidene chloride resins.
  • a curable compound having a polymerizable group can be used as the matrix.
  • the kind of polymeric group is not specifically limited, Preferably, it is a (meth) acrylate group, a vinyl group, or an epoxy group, More preferably, it is a (meth) acrylate group, More preferably, it is an acrylate group.
  • each polymeric group may be the same and may differ.
  • a resin containing the following first polymerizable compound and second polymerizable compound can be used as a matrix.
  • the first polymerizable compound is one or more selected from the group consisting of a bifunctional or higher functional (meth) acrylate monomer and a monomer having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups.
  • a bifunctional or higher functional (meth) acrylate monomer and a monomer having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups.
  • it is a compound.
  • the bifunctional (meth) acrylate monomers include neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tripropylene glycol di (meth) ) Acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclo Pentenyloxyethyl (meth) acrylate, dicyclopentanyl di (meth) acrylate and the like are preferable examples.
  • the trifunctional or higher functional (meth) acrylate monomers include ECH-modified glycerol tri (meth) acrylate, EO-modified glycerol tri (meth) acrylate, and PO-modified glycerol tri (meta).
  • Monomers having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups include, for example, aliphatic cyclic epoxy compounds, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, bromine Bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, brominated bisphenol S diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 1,4 -Butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether , Polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ethers; polyether
  • Examples of commercially available products that can be suitably used as monomers having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups include Daicel Chemical Industries, Ltd. Celoxide 2021P, Celoxide 8000, Sigma-Aldrich 4- Examples include vinylcyclohexene dioxide. These can be used alone or in combination of two or more.
  • a monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group may be produced by any method.
  • Maruzen KK Publishing Co., Ltd., Fourth Edition Experimental Chemistry Course 20 Organic Synthesis II, 213, 1992, Ed.by Alfred Hasfner The chemistry of heterocyclic compounds-Small Ring Heterocycles part3 Oxiranes, John & Wiley and Sons, An Interscience Publication, New York, 1985, Yoshimura, Adhesion, Vol. 29, No. 12, 32, 1985, Yoshimura, Adhesion, Vol. 30, No. 5, 42, 1986, Yoshimura, Adhesion, Vol. 30, No. 7, 42, 1986, Japanese Patent Laid-Open No. 11-100308, Japanese Patent No. 2906245, Japanese Patent No. 2926262, etc. Can be synthesized.
  • the second polymerizable compound has a functional group having hydrogen bonding properties in the molecule and a polymerizable group capable of undergoing a polymerization reaction with the first polymerizable compound.
  • the functional group having hydrogen bonding include a urethane group, a urea group, or a hydroxyl group.
  • the polymerizable group capable of undergoing a polymerization reaction with the first polymerizable compound for example, when the first polymerizable compound is a bifunctional or higher (meth) acrylate monomer, it may be a (meth) acryloyl group.
  • the polymerizable compound is a monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group, it may be an epoxy group or an oxetanyl group.
  • (Meth) acrylate monomers containing urethane groups include diisocyanates such as TDI, MDI, HDI, IPDI, and HMDI, poly (propylene oxide) diol, poly (tetramethylene oxide) diol, ethoxylated bisphenol A, and ethoxylated bisphenol.
  • an adduct of TDI and hydroxyethyl acrylate, an adduct of IPDI and hydroxyethyl acrylate, an adduct of HDI and pentaerythritol triacrylate (PETA), and an adduct of TDI and PETA remained.
  • Examples include compounds obtained by reacting isocyanate and dodecyloxyhydroxypropyl acrylate, adducts of 6,6 nylon and TDI, adducts of pentaerythritol, TDI and hydroxyethyl acrylate, but are not limited thereto. Absent.
  • Examples of the (meth) acrylate monomer containing a hydroxyl group include compounds synthesized by a reaction between a compound having an epoxy group and (meth) acrylic acid. Typical ones are classified into bisphenol A type, bisphenol S type, bisphenol F type, epoxidized oil type, phenol novolak type, and alicyclic type, depending on the compound having an epoxy group.
  • the mass ratio between the first polymerizable compound and the second polymerizable compound may be 10:90 to 99: 1, and is preferably 10:90 to 90:10. It is also preferable that the content of the first polymerizable compound is larger than the content of the second polymerizable compound. Specifically, (content of the first polymerizable compound) / (of the second polymerizable compound) The content is preferably 2 to 10.
  • the matrix further contains a monofunctional (meth) acrylate monomer.
  • Monofunctional (meth) acrylate monomers include acrylic acid and methacrylic acid, derivatives thereof, and more specifically, monomers having one polymerizable unsaturated bond ((meth) acryloyl group) of (meth) acrylic acid in the molecule Can be mentioned. Specific examples thereof include the following compounds, but the present invention is not limited thereto.
  • the monofunctional (meth) acrylate monomer is preferably contained in an amount of 1 to 300 parts by mass, and 50 to 150 parts by mass with respect to a total mass of 100 parts by mass of the first polymerizable compound and the second polymerizable compound. More preferably it is included.
  • the first polymerizable compound, the second polymerizable compound, and the monofunctional (meth) acrylate monomer preferably has a long-chain alkyl group having 4 to 30 carbon atoms.
  • the long chain alkyl group is more preferably a long chain alkyl group having 12 to 22 carbon atoms. This is because the dispersibility of the quantum dots is improved. As the dispersibility of the quantum dots improves, the amount of light that goes straight from the light conversion layer to the exit surface increases, which is effective in improving front luminance and front contrast.
  • the monofunctional (meth) acrylate monomer having a long-chain alkyl group having 4 to 30 carbon atoms include butyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, and oleyl (meth) acrylate.
  • lauryl (meth) acrylate, oleyl (meth) acrylate, and stearyl (meth) acrylate are particularly preferable.
  • the optical functional layer is a cured layer obtained by curing a polymerizable composition containing at least two or more polymerizable compounds.
  • the polymerizable groups of the polymerizable compounds used in combination of at least two may be the same or different, and preferably the at least two compounds have at least one common polymerizable group. preferable.
  • the type of the polymerizable group is not particularly limited, but is preferably a (meth) acrylate group, a vinyl group or an epoxy group, or an oxetanyl group, more preferably a (meth) acrylate group, and still more preferably an acrylate group. It is.
  • the polymerizable compound of the present invention preferably contains at least one first polymerizable compound composed of a monofunctional polymerizable compound and at least one second polymerizable compound composed of a polyfunctional polymerizable compound.
  • first polymerizable compound composed of a monofunctional polymerizable compound
  • second polymerizable compound composed of a polyfunctional polymerizable compound.
  • third polymerizable compound and fourth polymerizable compound can be employed.
  • the third polymerizable compound is a monofunctional (meth) acrylate monomer and a monomer having one functional group selected from the group consisting of an epoxy group and an oxetanyl group.
  • Monofunctional (meth) acrylate monomers include acrylic acid and methacrylic acid, derivatives thereof, more specifically, (meth) acrylic acid polymerizable unsaturated bond (meth) acryloyl group in the molecule, alkyl Mention may be made of aliphatic or aromatic monomers whose group has 1 to 30 carbon atoms. Specific examples thereof include the following compounds, but the present invention is not limited thereto.
  • Aliphatic monofunctional (meth) acrylate monomers include methyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, n-octyl ( Alkyl (meth) acrylates having 1 to 30 carbon atoms in the alkyl group, such as (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate; An alkoxyalkyl (meth) acrylate having 2 to 30 carbon atoms in the alkoxyalkyl group such as butoxyethyl (meth) acrylate; Aminoalkyl (meth) acrylates in which the total number of carbon atoms of the (monoalkyl or dialkyl) aminoalkyl group is 1-20, such as N, N-dimethylaminoe
  • aromatic monofunctional acrylate monomer examples include aralkyl (meth) acrylates having 7 to 20 carbon atoms in the aralkyl group such as benzyl (meth) acrylate.
  • aralkyl (meth) acrylates having 7 to 20 carbon atoms in the aralkyl group such as benzyl (meth) acrylate.
  • aliphatic or aromatic alkyl (meth) acrylates having an alkyl group with 4 to 30 carbon atoms are preferred, and n-octyl (meth) acrylate, lauryl (meth) acrylate are also preferred.
  • the third polymerizable compound is preferably contained in an amount of 5 to 99.9 parts by mass with respect to a total mass of 100 parts by mass of the third polymerizable compound and the fourth polymerizable compound, It is preferable for the reason mentioned later that the mass part is contained.
  • the fourth polymerizable compound is a monomer having two or more functional groups in the molecule selected from the group consisting of a polyfunctional (meth) acrylate monomer and an epoxy group or an oxetanyl group.
  • the bifunctional (meth) acrylate monomers include neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9- Nonanediol di (meth) acrylate, 1,10-decanediol diacrylate, tripropylene glycol di (meth) acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di Preferred examples include (meth) acrylate, polyethylene glycol di (meth) acrylate, tricyclodecane dimethanol diacrylate, ethoxylated bisphenol A diacrylate, and the like.
  • trifunctional or more (meth) acrylate monomers include ECH-modified glycerol tri (meth) acrylate, EO-modified glycerol tri (meth) acrylate, and PO-modified glycerol trimethyl.
  • a (meth) acrylate monomer having a urethane bond in the molecule specifically, an adduct of TDI and hydroxyethyl acrylate, an adduct of IPDI and hydroxyethyl acrylate, HDI and pentaerythritol tris.
  • Adducts with acrylate (PETA) compounds obtained by reacting the remaining isocyanate with dodecyloxyhydroxypropyl acrylate, adducts of 6,6 nylon and TDI, pentaerythritol, TDI and hydroxy
  • An adduct of ethyl acrylate can also be used.
  • Monomers having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups include, for example, aliphatic cyclic epoxy compounds, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, bromine Bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, brominated bisphenol S diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 1,4 -Butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether , Polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ethers; polyether
  • Examples of commercially available products that can be suitably used as a monomer having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups include Daicel Chemical Industries, Ltd. Celoxide 2021P, Celoxide 8000, and Sigma Aldrich 4- Examples include vinylcyclohexene dioxide.
  • a monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group may be produced by any method.
  • Maruzen KK Publishing Co., Ltd., Fourth Edition Experimental Chemistry Course 20 Organic Synthesis II, 213, 1992, Ed.by Alfred Hasfner The chemistry of heterocyclic compounds-Small Ring Heterocycles part3 Oxiranes, John & Wiley and Sons, An Interscience Publication, New York, 1985, Yoshimura, Adhesion, Vol. 29, No. 12, 32, 1985, Yoshimura, Adhesion, Vol. 30, No. 5, 42, 1986, Yoshimura, Adhesion, Vol. 30, No. 7, 42, 1986, Japanese Patent Laid-Open No. 11-100308, Japanese Patent No. 2906245, Japanese Patent No. 2926262, etc. Can be synthesized.
  • the fourth polymerizable compound is preferably contained in an amount of 0.1 to 95 parts by mass with respect to 100 parts by mass of the total mass of the third polymerizable compound and the fourth polymerizable compound, and 15 parts by mass.
  • the content is preferably from 80 parts by mass to 80 parts by mass for the reason described later.
  • a metal thin film is formed on the end face of the functional laminate by sputtering, vacuum deposition, ion plating, and plasma CVD.
  • a metal thin film is formed on the matrix end face of a cured product made of only a monofunctional (meth) acrylate compound by a sputtering method, the matrix cannot withstand the internal stress of the metal thin film, resulting in defects, and sufficient barrier properties cannot be imparted.
  • the defect of the metal thin film does not occur, but since it is hard and brittle, the smoothness of the end face is poor, and the metal thin film cannot cover the end face uniformly. As a result, the barrier property is impaired. Therefore, in the present invention, by mixing the monofunctional (meth) acrylate monomer and the polyfunctional (meth) acrylate monomer in the appropriate range described above, the film can withstand film shrinkage during the formation of the metal thin film, and defects in the metal thin film on the matrix end face. In addition, it is possible to ensure smoothness and to form an end surface sealing layer having high barrier properties on the end surface.
  • the elastic modulus at 50 ° C. of the cured matrix forming the optical functional layer of the present application is preferably 1 MPa or more and 4000 MPa or less, and more preferably 10 MPa or more and 3000 MPa or less.
  • the reason why the elastic modulus at 50 ° C. is used is that, for example, in the sputtering method, the film surface temperature reaches about 50 ° C. during film formation, so that the physical property value of the matrix that resists film shrinkage is used. By setting it in this range, it becomes possible to reduce defects in the metal thin film of the end sealing layer.
  • the polymerizable composition may contain a viscosity modifier as necessary.
  • the viscosity modifier is preferably a filler having a particle size of 5 nm to 300 nm.
  • the viscosity modifier is also preferably a thixotropic agent.
  • thixotropic property refers to a property of reducing the viscosity with respect to an increase in shear rate in a liquid composition
  • a thixotropic agent is a composition obtained by including it in the liquid composition. It refers to a material having a function of imparting thixotropy to an object.
  • thixotropic agents include fumed silica, alumina, silicon nitride, titanium dioxide, calcium carbonate, zinc oxide, talc, mica, feldspar, kaolinite (kaolin clay), pyrophyllite (waxite clay), and sericite.
  • sericite bentonite, smectite vermiculites (montmorillonite, beidellite, nontronite, saponite, etc.), organic bentonite, organic smectite and the like.
  • the polymerizable composition has a viscosity of 3 mPa ⁇ s to 50 mPa ⁇ s when the shear rate is 500 s ⁇ 1 , and preferably 100 mPa ⁇ s or more when the shear rate is 1 s ⁇ 1 .
  • a thixotropic agent In order to adjust the viscosity in this way, it is preferable to use a thixotropic agent.
  • the viscosity of the polymerizable composition is a 3mPa ⁇ s ⁇ 50mPa ⁇ s when the shear rate 500 s -1, why is preferably 100 mPa ⁇ s or more at a shear rate of 1s -1 is as follows .
  • the second substrate is pasted on the polymerizable composition.
  • a production method including the step of curing the polymerizable composition to form the wavelength conversion layer can be mentioned.
  • the coating solution polymerizable composition
  • the coating solution preferably has a low viscosity.
  • the resistance to pressure at the time of bonding is high.
  • a coating solution is preferred.
  • the shear rate of 500 s ⁇ 1 is a representative value of the shear rate applied to the coating solution applied to the first substrate, and the shear rate of 1 s ⁇ 1 is immediately before the second substrate is bonded to the coating solution. This is a representative value of the shear rate applied to the coating solution. Note that the shear rate 1 s ⁇ 1 is merely a representative value.
  • the applied shear rate is approximately 0 s ⁇ 1 , and the shear rate applied to the coating solution in the actual manufacturing process is not limited to 1 s ⁇ 1 .
  • the shear rate of 500 s ⁇ 1 is merely a representative value, and the shear rate applied to the coating solution in the actual manufacturing process is not limited to 500 s ⁇ 1 .
  • the viscosity of the polymerizable composition is 3 mPa ⁇ s when the representative value of the shear rate applied to the coating liquid is 500 s ⁇ 1 when the coating liquid is applied to the first substrate.
  • the said polymerizable composition may contain the solvent as needed.
  • the type and amount of the solvent used are not particularly limited.
  • one or a mixture of two or more organic solvents can be used as the solvent.
  • trifluoroethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, (perfluorobutyl) ethyl (meth) acrylate, perfluorobutyl-hydroxypropyl (meth) acrylate, (perfluoro Hexyl) ethyl (meth) acrylate, octafluoropentyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate and other compounds having a fluorine atom may be included. By including these compounds, the coating property can be improved.
  • the total amount of the resin serving as a matrix in the quantum dot layer is not particularly limited, but is preferably 90 to 99.9 parts by mass with respect to 100 parts by mass of the total amount of the quantum dot layer, and 92 parts by mass. More preferred is from 99 parts by mass to 99 parts by mass.
  • the thickness of the quantum dot layer is not particularly limited, but is preferably 5 ⁇ m to 200 ⁇ m and more preferably 10 ⁇ m to 150 ⁇ m from the viewpoints of handleability and light emission characteristics.
  • the said thickness intends average thickness, average thickness calculates
  • the method for forming the quantum dot layer is not particularly limited, and may be formed by a known method.
  • it can be formed by preparing a coating composition in which quantum dots, a matrix resin, and a solvent are mixed, applying the coating composition on the gas barrier layer 14, and curing the coating composition.
  • the quantum dot layer is formed by adjusting a polymerizable composition containing a phosphor (quantum dot) and at least two or more polymerizable compounds, and applying this coating composition on the gas barrier layer 14. Then, it can be formed by curing.
  • the gas barrier layer 14 is a layer having a gas barrier property, which is laminated on the main surface of the optical functional layer 12. That is, the gas barrier layer 14 is a member that covers the main surface of the optical functional layer 12 and suppresses the intrusion of moisture and oxygen from the main surface of the optical functional layer 12.
  • the gas barrier layer 14 preferably has a water vapor permeability of 1 ⁇ 10 ⁇ 3 [g / (m 2 ⁇ day)] or less.
  • the gas barrier layer 14 preferably has an oxygen permeability of 1 ⁇ 10 ⁇ 2 [cc / (m 2 ⁇ day ⁇ atm)] or less.
  • the thickness of the gas barrier layer 14 is preferably 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 70 ⁇ m, and particularly preferably 15 ⁇ m to 55 ⁇ m. Setting the thickness of the gas barrier layer 14 to 100 ⁇ m or less is preferable in that the thickness of the entire laminated film 10a including the optical functional layer 12 can be reduced. Further, the thickness of the gas barrier layer 14 is preferably 5 ⁇ m or more, which is preferable in that the thickness of the optical functional layer 12 can be made uniform when the optical functional layer 12 is formed between the two gas barrier layers 14. .
  • FIG. 2 is a sectional view conceptually showing an example of the gas barrier film.
  • a gas barrier film (gas barrier layer) 14 shown in FIG. 2 has a barrier layer 32 formed by laminating an organic layer 34, an inorganic layer 36, and an organic layer 38 in this order, and a gas barrier support 30 that supports the barrier layer 32. It becomes.
  • the gas barrier film 14 only needs to have at least one inorganic layer 36 on the gas barrier support 30, and one combination of the inorganic layer 36 and the organic layer 34 that is the base of the inorganic layer 36. It is preferable to have the above. Accordingly, the gas barrier layer 14 may have two combinations of the inorganic layer 36 and the underlying organic layer 34, or may have three or more.
  • the organic layer 34 functions as a base layer for properly forming the inorganic layer 36, and has an excellent gas barrier property as the number of layers of the combination of the base organic layer 34 and the inorganic layer 36 increases. A gas barrier film can be obtained.
  • the outermost layer of the barrier layer 32 (the layer opposite to the gas barrier support 30) is the organic layer 38, but is not limited thereto, and the outermost layer may be the inorganic layer 36.
  • the optical functional layer 12 is basically laminated on the barrier layer 32 side. Therefore, even when outgas is released from the gas barrier support 30 or the organic layer 34 by stacking the optical functional layer 12 on the barrier layer 32 side by forming the outermost layer of the barrier layer 32 as an inorganic layer 36, the outgas is not removed from the inorganic layer. It is shielded by 36 and can be prevented from reaching the optical function layer 12.
  • gas barrier support 30 of the gas barrier layer 14 various types that are used as a support in a known gas barrier film can be used.
  • films made of various plastics are preferably used in that they are easy to be thinned and lightened and are suitable for flexibility.
  • polyethylene polyethylene
  • PEN polyethylene naphthalate
  • PA polyethylene terephthalate
  • PVC polyvinyl chloride
  • PVA polyvinyl alcohol
  • PAN polyacrylonitrile
  • PI polyacrylonitrile
  • PC polycarbonate
  • PC polyacrylate
  • PP polypropylene
  • PS polystyrene
  • ABS cyclic olefin copolymer
  • COC cycloolefin polymer
  • COP plastic film made of triacetyl cellulose
  • the thickness of the gas barrier support body 30 is preferably about 10 ⁇ m to 100 ⁇ m.
  • the gas barrier support 30 may be provided with functions such as antireflection, retardation control, and improvement of light extraction efficiency on the surface of such a plastic film.
  • the barrier layer 32 includes an inorganic layer 36 that mainly exhibits gas barrier properties, an organic layer 34 that serves as a base layer for the inorganic layer 36, and an organic layer 38 that protects the inorganic layer 36.
  • the organic layer 34 is a base layer of the inorganic layer 36 that mainly exhibits gas barrier properties in the gas barrier film 14.
  • the organic layer 34 various types of known gas barrier films that are used as the organic layer 34 can be used.
  • the organic layer 34 is a film containing an organic compound as a main component, and basically formed by crosslinking monomers and / or oligomers.
  • the gas barrier film 14 includes the organic layer 34 that is the base of the inorganic layer 36, thereby embedding irregularities on the surface of the gas barrier support 30, foreign matters attached to the surface, and the like to form the inorganic layer 36.
  • the surface can be made appropriate. As a result, the appropriate inorganic layer 36 can be formed on the entire surface of the film formation without gaps and without cracks or cracks.
  • the water vapor permeability is 1 ⁇ 10 ⁇ 3 [g / (m 2 ⁇ day)] or less
  • the oxygen permeability is 1 ⁇ 10 ⁇ 2 [cc / (m 2 ⁇ day ⁇ atm)] or less.
  • gas barrier film 14 since the gas barrier film 14 has the organic layer 34 as the base, the organic layer 34 also functions as a cushion for the inorganic layer 36. Therefore, the inorganic layer 36 can be prevented from being damaged by the cushion effect of the organic layer 34 when the inorganic layer 36 receives an impact from the outside. Thereby, in laminated film 10a, gas barrier film 14 expresses gas barrier performance appropriately, and can prevent degradation of optical function layer 12 by moisture or oxygen suitably.
  • various organic compounds can be used as a material for forming the organic layer 34.
  • polyester acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane, poly Ether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, acryloyl compound, thermoplastic resin, or polysiloxane, etc.
  • An organic silicon compound film is preferably exemplified. A plurality of these may be used in combination.
  • the organic layer 34 composed of a polymer of a radical polymerizable compound and / or a cationic polymerizable compound having an ether group as a functional group is preferable in terms of excellent glass transition temperature and strength.
  • the glass transition temperature is 120 ° C. mainly composed of acrylate and / or methacrylate monomers and oligomer polymers in terms of low refractive index, high transparency and excellent optical properties.
  • the above acrylic resin and methacrylic resin are preferably exemplified as the organic layer 34.
  • DPGDA dipropylene glycol di (meth) acrylate
  • TMPTA trimethylolpropane tri (meth) acrylate
  • DPHA dipentaerythritol hexa (meth) acrylate
  • Acrylic resins and methacrylic resins which are mainly composed of a polymer of acrylate and / or methacrylate monomers or oligomers, are preferred. It is also preferable to use a plurality of these acrylic resins and methacrylic resins.
  • the organic layer 34 By forming the organic layer 34 with such an acrylic resin or methacrylic resin, the inorganic layer 36 can be formed on the base having a solid skeleton, so that the inorganic layer 36 with higher density and higher gas barrier properties can be formed. .
  • the thickness of the organic layer 34 is preferably 1 ⁇ m to 5 ⁇ m.
  • the film-forming surface of the inorganic layer 36 is made more suitable, and the appropriate inorganic layer 36 without cracks or cracks is formed over the entire film-forming surface. A film can be formed.
  • the thickness of the organic layer 34 is more preferably 1 ⁇ m to 5 ⁇ m.
  • the thickness of each organic layer may be the same or different from each other.
  • the formation material of each organic layer may be the same or different. However, in terms of productivity and the like, it is preferable to form all organic layers with the same material.
  • the organic layer 34 may be formed by a known method such as a coating method or flash vapor deposition. Moreover, in order to improve adhesiveness with the inorganic layer 36 which is the lower layer of the organic layer 34, the organic layer 34 preferably contains a silane coupling agent.
  • An inorganic layer 36 is formed on the organic layer 34 with the organic layer 34 as a base.
  • the inorganic layer 36 is a film containing an inorganic compound as a main component, and the gas barrier layer 14 mainly exhibits gas barrier properties.
  • the inorganic layer 36 various kinds of films made of an inorganic compound such as oxide, nitride, oxynitride and the like that exhibit gas barrier properties can be used.
  • metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride; metal carbides such as aluminum carbide; silicon oxide, Silicon oxides such as silicon oxynitride, silicon oxycarbide and silicon oxynitride carbide; silicon nitrides such as silicon nitride and silicon nitride carbide; silicon carbides such as silicon carbide; hydrides thereof; mixtures of two or more of these; and Films made of inorganic compounds such as these hydrogen-containing materials are preferably exemplified.
  • a film made of a silicon compound such as silicon oxide, silicon nitride, silicon oxynitride and silicon oxide is preferably exemplified in that it has high transparency and can exhibit excellent gas barrier properties.
  • a film made of silicon nitride is preferable because it has high transparency in addition to more excellent gas barrier properties.
  • the formation material of the inorganic layer 36 may mutually differ. However, if productivity etc. are considered, it is preferable to form all the inorganic layers 36 with the same material.
  • the thickness of the inorganic layer 36 is preferably 10 nm to 200 nm.
  • the inorganic layer 36 that stably exhibits sufficient gas barrier performance can be formed.
  • the inorganic layer 36 is generally brittle, and if it is too thick, there is a possibility of causing cracks, cracks, peeling, etc. Can be prevented.
  • the thickness of the inorganic layer 36 is preferably 10 nm to 100 nm, and more preferably 15 nm to 75 nm.
  • the thickness of each inorganic layer 36 may be the same or different.
  • the inorganic layer 36 may be formed by a known method according to the forming material. Specifically, CCP (Capacitively upCoupled CVDPlasma capacitively coupled plasma) -CVD (chemical vapor deposition) and ICP (Inductively Coupled Plasma inductively coupled plasma) -CVD etc., plasma CVD, sputtering such as magnetron sputtering and reactive sputtering, vacuum deposition
  • a vapor deposition method is preferably exemplified.
  • the organic layer 38 is a layer formed as the outermost layer of the barrier layer 32 and is a layer for protecting the inorganic layer 36.
  • the organic layer 38 various types similar to the organic layer 34 described above can be used.
  • the organic layer 38 may be formed by a known method such as a coating method or flash vapor deposition as in the case of the organic layer 34 described above.
  • the thickness of the organic layer 38 which is the outermost layer of the barrier layer 32 is preferably 80 nm to 1000 nm.
  • the inorganic layer 36 can be sufficiently protected.
  • the organic layer 38 as the protective layer and the organic layer 34 as the underlayer may be formed of the same material or different materials. However, in terms of productivity and the like, it is preferable to form all organic layers with the same material. Moreover, in order to improve adhesiveness with the inorganic layer 36 which is the lower layer of the organic layer 38, the organic layer 38 preferably contains a silane coupling agent.
  • the end surface sealing layer 16a is a member formed to cover at least a part of the end surface of the functional layer laminate 11 including the optical functional layer 12 and the two gas barrier layers 14 laminated so as to sandwich the optical functional layer 12. It is.
  • the end-face sealing layer 16a is a member that is made of at least two layers, each layer is made of metal, exhibits gas barrier properties, and suppresses intrusion of moisture and oxygen from the end face of the optical functional layer 12. .
  • the end surface sealing layer 16 a includes a first layer 18 formed in contact with the end surface of the functional layer laminated body 11 and a functional layer laminated body laminated on the first layer 18. 11 and the outermost layer 20 which is the farthest layer from 11.
  • an end surface sealing layer is not limited to 2 layer structure, Three layers or more may be sufficient.
  • FIG. 1 and 3 the end surface sealing layer 16 is laminated on the end surface of the functional layer laminate 11, and therefore each layer constituting the end surface sealing layer 16 (the first layer 18 and the second layer 22).
  • the stacking direction of the outermost layer 20) is a direction perpendicular to the end face of the functional layer stack 11, and is a direction orthogonal to the stacking direction of the functional layer stack 11.
  • each of the layers constituting the end face sealing layer 16 is a layer made of metal. That is, in the laminated film 10a shown in FIG. 1, the first layer 18 and the outermost layer 20 are made of metal, and in the laminated film 10b shown in FIG. 3, the first layer 18, the second layer 22 and the outermost layer are formed.
  • Reference numeral 20 denotes a metal layer.
  • gas barrier films are laminated on both main surfaces of a quantum dot layer including quantum dots that are easily deteriorated by moisture and oxygen to protect the quantum dot layer. If only the gas barrier film is protected, moisture and oxygen enter from the end face not protected by the gas barrier film, and the quantum dots deteriorate.
  • the structure of protecting the entire surface of the quantum dot layer with a gas barrier film, or the end face region of the quantum dot layer sandwiched between two gas barrier films A configuration for forming a protective layer having a gas barrier property, a configuration for narrowing the openings at the ends of two gas barrier films sandwiching the quantum dot layer, and the like have been proposed.
  • the thickness of the quantum dot layer at the end portion becomes thin, so that the end portion has sufficient function. In other words, the size of the area that can be used effectively is reduced, and the frame portion is increased.
  • a barrier layer having a high gas barrier property is hard and brittle, if the gas barrier film having such a barrier layer is suddenly bent, the barrier layer is cracked, and the gas barrier property is lowered. There has been a problem that it becomes impossible to prevent moisture and oxygen from entering the layer.
  • the present invention provides a functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer, and at least one of end faces of the functional layer laminate.
  • the end surface sealing layer is formed so as to cover the part, and the end surface sealing layer is composed of at least two layers, and each layer is composed of a metal.
  • the end face sealing layer made of metal is only formed on the end face of the functional layer laminate, the optical functional layer is not thinned and the gas barrier layer is not curved.
  • the available area can be kept large and the frame can be narrowed.
  • the first layer of the end face sealing layer that is in contact with the end face of the functional layer laminate is a material having high adhesion to the functional layer laminate, and is formed by a formation method that can increase adhesion, and the second and subsequent layers. Since a layer exhibiting high gas barrier properties can be formed, the end face sealing layer can be prevented from peeling off from the functional layer laminate, and high durability can be obtained. Further, as will be described in detail later, when forming the end surface sealing layer, each layer of the end surface sealing layer can be formed in a state where a plurality of functional layer stacks are stacked. And the productivity can be increased.
  • the end face sealing layer 16 preferably has an oxygen permeability of 1 ⁇ 10 ⁇ 2 [cc / (m 2 ⁇ day ⁇ atm)] or less.
  • the end face sealing layer 16 having a low oxygen permeability, that is, a high gas barrier property, on the end face of the functional layer laminate 11, it is possible to more suitably prevent moisture and oxygen from entering the optical functional layer 12. Deterioration of the optical function layer 12 can be more suitably prevented.
  • the thickness of the end face sealing layer 16 in the direction perpendicular to the end face of the functional layer laminate 11 is preferably in the range of 0.1 ⁇ m to 100 ⁇ m, more preferably 0.5 ⁇ m to 50 ⁇ m. It is particularly preferable that the thickness is ⁇ 10 ⁇ m.
  • the laminated film of the present invention is preferably produced by forming an end face sealing layer on the end face in a state where a plurality of functional layer laminates are stacked, and then separating the end face sealing layer. Since it will become difficult to isolate
  • the end surface sealing layer 16 should just be formed so that at least one part of the end surface of the functional layer laminated body 11 may be covered, but it is preferable that it is formed covering the perimeter of an end surface.
  • the main surface of the functional layer laminate 11 is rectangular, it is sufficient that the end surface sealing layer 16 is formed on at least one end surface, and the end surface sealing layer 16 is formed on all four end surfaces. It is preferable.
  • the shape of the main surface of the functional layer laminate 11 (the shape of the laminated film 10) is not limited to a rectangular shape, and may be various shapes such as a square shape, a circular shape, and a polygonal shape. Therefore, the end surface protective layer may be formed so as to cover at least a part of the end surface, and is preferably formed so as to cover the entire circumference.
  • the end surface sealing layer 16 is preferably formed only on the end surface of the functional layer laminate 11, and it is preferable that there is little wraparound to the main surface of the functional layer laminate 11.
  • the wraparound portion functions as a light shielding layer.
  • a non-light emitting area is generated at the end of 10 and the frame portion becomes large, and the area that can be effectively used becomes narrow, that is, it may be an obstacle when applied to a narrow frame module such as a mobile display.
  • the wraparound width d see FIG.
  • the wraparound width d of the end face sealing layer 16 can be measured, for example, by cutting a cross section of the laminated film with a retotom REM-710 manufactured by Daiwa Kogyo Co., Ltd. and observing the cross section with an optical microscope. As shown in FIG.
  • the wraparound width d is the main surface of the functional layer laminate 11 of the end surface sealing layer 16 when viewed in a cross section orthogonal to the extending direction of the end surface of the functional layer laminate 11.
  • the width of the region formed above (the width in the direction perpendicular to the end face of the functional layer stack 11).
  • the end face sealing layer 16 has few pinholes.
  • the pinhole in the present invention means an uncovered portion (a missing portion of the metal film) having a size of 1 ⁇ m or more, which is seen when the end face sealing layer 16 is observed with an optical microscope, and the shape thereof is a circle or a polygon. , Any shape such as a line.
  • the number of pinholes is preferably 50 / mm 2 or less, more preferably 20 / mm 2 or less, and particularly preferably 5 / mm 2 or less. The smaller the number of pinholes, the better. There is no particular lower limit.
  • the end surface of the functional layer laminate 11 on which the end surface sealing layer 16 is formed is preferably smooth.
  • the surface roughness of the end face of the functional layer laminate 11 is preferably 0.001 ⁇ m to 10 ⁇ m, and more preferably 0.001 ⁇ m to 2 ⁇ m.
  • At least one layer other than the first layer 18 in contact with the functional layer laminate 11 among the layers constituting the end face sealing layer 16 is a metal plating layer.
  • the outermost layer 20 farthest from the functional layer laminate 11 is a metal plating layer.
  • the outermost layer 20 is more preferably a metal plating layer.
  • the first layer 18 provided in contact with the end surface of the functional layer stack 11 is a metal layer formed by any one of sputtering, vacuum deposition, ion plating, and plasma CVD. It is preferable to use a sputtering method that has good adhesion and enables low-temperature film formation. Since the functional layer laminate 11 is mainly formed of resin, when a metal plating layer is directly formed on the functional layer laminate 11 by electrolytic plating, a metal film cannot be obtained because there is no conductive path. In addition, when a metal plating layer is formed by electroless plating, the adhesion between the functional layer laminate 11 and the metal plating layer is poor, and sufficient durability and gas barrier properties cannot be obtained, and only the end surface is selected. Film cannot be formed.
  • this invention has the 1st layer 18 which consists of a metal formed by said method on the side surface of the functional layer laminated body 11, and it is the functional layer laminated body 11 and the end surface sealing layer 16 between. Adhesion can be improved.
  • the metal plating layer is formed as a layer other than the first layer 18, by having the first layer 18 made of metal on the side surface of the functional layer laminate 11, the first layer acts as an electrode. A metal plating layer can be formed appropriately.
  • the first layer protects the functional layer laminate 11 and can prevent the functional layer laminate 11 from being damaged.
  • the adhesion with the functional layer laminate is Although it can be improved, it is difficult to form a thick thickness or it is unavoidable to form a thick one because the productivity is very poor. Therefore, it cannot be formed with a uniform thickness on the end surface of the functional layer laminate, and sufficient gas barrier properties cannot be obtained.
  • the first layer formed by any one of the sputtering method, the vacuum deposition method, the ion plating method, and the plasma CVD method, and the metal plating layer are used. Adhesion with the layer laminate can be improved and sufficient gas barrier properties can be obtained.
  • the thickness of the metal plating layer formed as a layer other than the first layer 18 is preferably thicker than the thickness of the first layer 18 in contact with the functional layer laminate 11. By making the thickness of the metal plating layer thicker than the thickness of the first layer 18, sufficient gas barrier properties can be expressed more reliably.
  • the thickness of the first layer 18 and the thickness of the metal plating layer are thicknesses in the direction perpendicular to the end surface of the functional layer laminate 11.
  • the thickness of the first layer 18 is preferably 0.001 ⁇ m to 0.5 ⁇ m, and preferably 0.01 ⁇ m to 0.5 ⁇ m from the viewpoint of adhesion to the functional layer laminate 11, productivity, and the like. More preferably, it is 3 ⁇ m.
  • the thickness of the metal plating layer is preferably 0.01 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 10 ⁇ m, from the viewpoint of ensuring gas barrier properties and productivity.
  • the material for forming the first layer 18 in contact with the functional layer laminate 11 is not particularly limited as long as it is a metal, but any one of the above-described sputtering method, vacuum deposition method, ion plating method, and plasma CVD method may be used. It is preferable that the metal can be formed by a method, and it is preferable to use a metal having a high ionization tendency from the viewpoint of improving the adhesion with the resin constituting the functional layer laminate 11. Accordingly, at least one selected from the group consisting of aluminum, titanium, chromium, copper, and nickel, or an alloy containing at least one of these is preferable, and selected from the group consisting of aluminum, titanium, and chromium.
  • At least one selected from the above, or alloys containing at least one of these are at least one selected from the above, or alloys containing at least one of these. If a metal with a high ionization tendency is used, the metal, such as oxygen atoms, nitrogen atoms, and carbon atoms that form the resin, forms a compound, and metal oxides, metal nitrides, and metal carbides are easily formed at the interface with the resin. It is presumed that the adhesion will be high. By using these metals or alloys as the material for forming the first layer 18, the first layer 18 can be formed by any one of sputtering, vacuum deposition, ion plating, and plasma CVD. The adhesion between the layer 18 and the side surface of the functional layer laminate 11 can be increased.
  • the material for forming each layer other than the first layer 18 is not particularly limited as long as it is a metal, but at least selected from the group consisting of aluminum, titanium, chromium, nickel, tin, copper, silver, and gold. One kind or an alloy containing at least one of these is preferable. By using these metals or alloys as the material for forming each layer other than the first layer 18, it can be formed by plating and can exhibit high gas barrier properties.
  • At least one layer other than the first layer 18 may be formed by plating, and any of the sputtering method, the vacuum deposition method, the ion plating method, or the plasma CVD method may be used except for the metal plating layer. It may be formed by a method.
  • at least the outermost layer 20 is preferably formed by plating.
  • the laminated film 10b shown in FIG. 3 has the end surface sealing layer 16b in which the first layer 18 and the second layer 22 are each formed by sputtering and the outermost layer 20 is formed by plating.
  • the first layer 18 may be formed by a sputtering method
  • the second layer 22 may be formed by a plating process
  • the outermost layer 20 may be formed by a sputtering method.
  • each layer constituting the end face sealing layer 16 may be the same or different from each other. That is, for example, the first layer 18 may be a nickel layer formed by sputtering, and the outermost layer 20 may be a nickel layer formed by plating.
  • the laminated film 10a shown in FIG. 1 has a configuration in which three layers of the gas barrier layer 14, the optical functional layer 12, and the gas barrier layer 14 are laminated, and the end face sealing layer 16a is disposed on the end face. Is not limited to this, and may have other layers. For example, you may have a hard-coat layer, an optical compensation layer, a transparent conductive layer, etc.
  • the method for producing a laminated film according to the first aspect of the present invention comprises: A side surface of a functional layer laminate having an optical functional layer and a gas barrier layer is a method for producing a laminated film, which comprises a laminated film having at least two layers, each layer having an end face sealing layer made of metal, A first layer forming step of forming a first layer in contact with the functional layer laminate on an end face of a laminate in which a plurality of functional layer laminates are stacked; An outermost layer forming step of forming an outermost layer on the first layer formed on the end face of the laminate,
  • the first layer forming method is a method for producing a laminated film which is one selected from the group consisting of sputtering, vacuum deposition, ion plating, and plasma CVD.
  • a side surface of a functional layer laminate having an optical functional layer and a gas barrier layer is a method for producing a laminated film, which comprises a laminated film having at least two layers, each layer having an end face sealing layer made of metal,
  • a functional layer laminate is formed by applying and curing a polymerizable composition containing a phosphor and at least two or more polymerizable compounds,
  • An outermost layer forming step of forming an outermost layer on the first layer formed on the end face of the laminate, and the first layer forming method includes a sputtering method, a vacuum evaporation method, an ion plating method, an electroless method
  • the method for forming at least one layer other than the first layer of the end face sealing layer is a metal plating treatment.
  • a metal plating treatment an example of the manufacturing method of the present invention will be described with reference to FIGS. 5A to 5D.
  • a functional layer laminate 11 having an optical functional layer 12 and two gas barrier layers 14 laminated on both main surfaces of the optical functional layer 12 is prepared.
  • a coating composition in which quantum dots, a matrix resin and a solvent are mixed is prepared, and this coating composition is applied on the gas barrier film 14 and cured.
  • the optical functional layer (quantum dot layer) 12 can be formed, and the other gas barrier film 14 can be laminated on the other main surface of the formed optical functional layer 12.
  • the gas barrier layer may be laminated on at least one main surface of the optical functional layer. In this case, when the laminated film of the present invention is finally assembled with a backlight unit such as an LCD together with other members, the other main surface is protected from intrusion of oxygen and moisture, thereby Performance degradation can be prevented.
  • the functional layer laminate 11 may be produced by a so-called single-wafer type method in which the functional layer laminate 11 is produced one by one, or while the long gas barrier film 14 is conveyed in the longitudinal direction,
  • the optical functional layer 12 is formed on the optical functional layer, and another gas barrier film is laminated on the optical functional layer thus formed to continuously produce the functional layer laminate 11, so-called roll-to-roll (hereinafter referred to as “Roll to Roll”). Or RtoR).
  • the cutting method of the functional layer laminate 11 is not limited, and various known methods such as a method of physically cutting using a cutting tool such as a Thomson blade and a method of cutting by irradiating with a laser can be used.
  • a method of physically cutting using a cutting tool such as a Thomson blade
  • a method of cutting by irradiating with a laser can be used.
  • the surface roughness of the end face of the functional layer laminate 11 can be reduced.
  • polishing process etc. for controlling the surface roughness of an end surface.
  • the surface roughness can be controlled by cutting, polishing, and melting the end face after cutting with a blade.
  • the surface roughness can be controlled by cutting the end face of the cut functional layer laminate 11 with a retotome REM-710 manufactured by Daiwa Kogyo Co., Ltd. or the like. More specifically, the smoothness increases as the angle at which the cutting blade hits the functional layer laminate 11, that is, the angle formed by the blade traveling direction and the blade surface is closer to the right angle.
  • the angle at which the cutting blade strikes the functional layer laminate 11 is preferably in the range of 70 ° to 110 °, more preferably in the range of 80 to 100 °, and still more preferably in the range of 85 ° to 95 °.
  • an angle formed by a direction perpendicular to the moving direction of the blade and the blade surface may be referred to as a “blade angle”.
  • the surface roughness can also be controlled by appropriately controlling the width (cut amount) of the removed portion by cutting.
  • the cutting depth is preferably in the range of 1 to 20 ⁇ m, more preferably in the range of 5 to 15 ⁇ m.
  • the change in the surface roughness due to such cutting conditions is presumed to be caused by the rocking of the cut surface caused by distortion or twist of the functional layer laminate 11 that occurs when the cutting blade hits the functional layer laminate 11. Therefore, it is preferable to appropriately set conditions according to the balance of hardness, brittleness and viscosity of the functional layer laminate 11 to be applied.
  • cutting waste generated during cutting may cause problems in the subsequent first layer forming step and the outermost layer forming step, it is preferably removed as soon as possible after cutting.
  • the process for removing cutting waste include air cleaning, ultrasonic cleaning in a state immersed in a cleaning liquid, adhesion and peeling method of an adhesive sheet, and a wiping method.
  • the first layer forming step a plurality of the prepared functional layer laminates 11 are stacked to form a laminate 50 (see FIG. 5A), and the first layer 18A is formed on the end face of the laminate 50 (FIG. 5B). reference).
  • the first layer 18A is formed by any one of sputtering, vacuum deposition, ion plating, electroless plating, and plasma CVD, and the first layer 18A is made of aluminum.
  • a layer made of at least one selected from the group consisting of titanium, chromium, copper, and nickel, or an alloy containing at least one of these is formed on the end face of the laminate 50.
  • the first layer 18A may be formed by a conventionally known processing method and processing conditions. Further, a masking process or the like is performed by a known method on a region other than the end surface of the functional layer stack 11, that is, a region where the first layer 18 A is not formed, and the first layer 18 A is formed on the end surface of the functional layer stack 11. What is necessary is just to form.
  • the number of functional layer laminates 11 in the laminate 50 when forming the first layer 18A is not particularly limited, and the size of the device for forming the first layer 18A and the thickness of the functional layer laminate 11 are not limited.
  • the first layer 18A is preferably formed by stacking 500 to 4000 functional layer laminates 11 in a suitable manner.
  • the outermost layer 20A is formed on the first layer 18A of the laminate 52 having the first layer 18A formed on the end face (FIG. 5C).
  • the outermost layer 20A is preferably formed by plating.
  • the outermost layer 20A is selected from the group consisting of aluminum, titanium, chromium, nickel, tin, copper, silver, and gold.
  • a layer made of at least one or an alloy containing at least one of these is formed on the first layer 18A of the laminate 52.
  • the treatment method, treatment conditions, and the like of the plating treatment when forming the outermost layer 20A there are no particular limitations on the treatment method, treatment conditions, and the like of the plating treatment when forming the outermost layer 20A, and the outermost layer 20A may be formed by a conventionally known treatment method and treatment conditions according to the forming material and the like.
  • the laminate 54 in which the outermost layer 20A is formed is separated for each functional layer laminate 11 to obtain the functional layer laminate 11 having the end surface sealing layer 16a formed on the end face, that is, the laminated film 10a.
  • a method for separating the laminated film 10a from the laminate 54 is not particularly limited, but the laminate 54 on which the outermost layer 20A is formed is sheared by applying an external force in the horizontal direction with respect to the surface, such as bending and twisting. It can be separated by a method or a method of inserting a sharp tip such as a blade into the interface of the functional layer laminate 10a. From the viewpoint of preventing the end face sealing layer from peeling, chipping or cracking, it is preferable to separate the laminated film 10a by shearing with an external force.
  • the manufacturing method of this invention can form each layer of the end surface sealing layer 16 in the state which accumulated the several function layer laminated body 11, when forming each layer of the end surface sealing layer 16 in this way. Therefore, the several laminated
  • the surface roughness Ra of the end face of the functional layer laminate 11 is preferably 2.0 ⁇ m or less. Adhesiveness with the 1st layer 18 formed in an end surface can be improved more by making surface roughness Ra of the end surface of functional layer layered product 11 into 2.0 micrometers or less.
  • each layer after the 2nd layer can be formed by a method similar to the formation method in the first layer formation step or the formation method in the outermost layer formation step, except that the underlying layer is different.
  • rust prevention treatment or the like may be performed in order to prevent the end face sealing layer 16 made of metal from rusting.
  • Example 1 For the laminated film of the second aspect of the present invention, a laminated film 10b shown in FIG.
  • gas barrier film 14 As the gas barrier film 14, a gas barrier film in which an organic layer 34, an inorganic layer 36, and an organic layer 38 were formed in this order on a gas barrier support 30 was used.
  • gas barrier support 30 As the gas barrier support 30, a polyethylene terephthalate film (PET film, manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine A4300, thickness 50 ⁇ m, width 1000 mm, length 100 m) was used.
  • PET film polyethylene terephthalate film, manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine A4300, thickness 50 ⁇ m, width 1000 mm, length 100 m
  • a coating liquid (first organic layer forming coating liquid) for forming the first organic layer was prepared as follows. Prepare TMPTA (trimethylolpropane triacrylate, manufactured by Daicel Cytec Co., Ltd.) and a photopolymerization initiator (Lamberti, ESACUREKTO46) so that the weight ratio of TMPTA: photopolymerization initiator is 95: 5. Then, these were weighed and dissolved in methyl ethyl ketone to prepare a coating solution having a solid concentration of 15%.
  • TMPTA trimethylolpropane triacrylate
  • a photopolymerization initiator Liberti, ESACUREKTO46
  • This coating solution for forming the first organic layer was applied to the gas barrier support 30 by roll-to-roll using a die coater.
  • the gas barrier support 30 after coating was passed through a drying zone at 50 ° C. for 3 minutes, and then irradiated with ultraviolet rays (integrated irradiation amount: about 600 mJ / cm 2 ), and cured by UV curing.
  • a protective film of polyethylene film PE film, manufactured by Sanei Kaken Co., Ltd., trade name: PAC2-30-T
  • the thickness of the first organic layer 34 formed on the gas barrier support 30 was 1 ⁇ m.
  • an inorganic layer 36 having a thickness of 50 nm was formed on the first organic layer 34 by CCP-CVD using a general RtoR CVD apparatus. Specifically, the first organic layer 34 is formed on the gas barrier support 30, and the laminate in which the protective film is stuck on the first organic layer 34 is sent out from the feeder and before the inorganic layer is formed. After passing through the last film surface touch roll, the protective film was peeled off to form an inorganic layer 36 on the exposed first organic layer 34. Silane gas (SiH 4 ), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and hydrogen gas (H 2 ) were used as source gases.
  • the supply amounts of gas were 160 sccm for silane gas, 370 sccm for ammonia gas, 240 sccm for nitrogen gas, and 590 sccm for hydrogen gas.
  • the film forming pressure was 40 Pa. That is, the inorganic layer 36 is a silicon nitride film.
  • the plasma excitation power was 2.5 kW at a frequency of 13.56 MHz.
  • an organic layer 38 (hereinafter referred to as a second organic layer) that protects the inorganic layer was formed on the surface of the formed inorganic layer 36.
  • a coating solution (second organic layer forming coating solution) for forming the second organic layer was prepared as follows. Urethane bond-containing acrylic polymer (Acrit 8BR500 manufactured by Taisei Fine Chemical Co., Ltd., weight average molecular weight 250,000) and photopolymerization initiator (Irgacure 184 manufactured by BASF) were weighed to a mass ratio of 95: 5, and these were methyl ethyl ketone. And a coating solution having a solid content concentration of 15% by mass was prepared.
  • the prepared coating liquid for forming the second organic layer was applied to the surface of the inorganic layer 36 by a roll-to-roll using a die coater, passed through a drying zone at 100 ° C. for 3 minutes, and wound up.
  • the thickness of the second organic layer thus formed was 1 ⁇ m.
  • a protective PE film was attached at the film surface touch roll part, and the second organic layer was transported without touching the pass roll, and then wound.
  • the gas barrier film 14 in which the first organic layer 34, the inorganic layer 36, and the second organic layer 38 were laminated in this order on the gas barrier support 30 was produced.
  • the oxygen permeability of the produced gas barrier film 14 was measured by the APIMS method, the oxygen permeability at a temperature of 25 ° C. and a humidity of 60% RH was 1 ⁇ 10 ⁇ 3 [cc / (m 2 ⁇ day ⁇ atm)]. It was.
  • a coating solution for forming the optical functional layer 12 (a coating solution for forming an optical functional layer) is applied on the second organic layer 38 of the gas barrier film 14 to form a coating film.
  • the gas barrier film 14 produced in the same manner as described above was laminated on the coating film, and the coating film was sandwiched between the gas barrier film 14 in a nitrogen atmosphere, and then the UV coating was applied in a nitrogen atmosphere to cure the coating film.
  • the optical functional layer 12 was formed.
  • composition of coating solution for forming optical functional layer Composition of coating solution for forming optical functional layer
  • Quantum dot 1 in toluene dispersion maximum emission: 520 nm
  • quantum dot 2 emission maximum: 630 nm
  • quantum dot 2 emission maximum: 630 nm
  • Quantum dots 1 and 2 nanocrystals having the following core-shell structure (InP / ZnS) were used.
  • Quantum dot 1 INP530-10 (manufactured by NN-labs)
  • Quantum dot 2 INP620-10 (manufactured by NN-labs)
  • the viscosity of the coating solution for forming an optical functional layer was 50 mPa ⁇ s.
  • the first layer 18A was formed on the side surface of a laminate 50 in which 1000 functional layer laminates 11 cut into a sheet were stacked and a plurality of functional layer laminates 11 were stacked using a general sputtering apparatus. Titanium was used as the target and argon was used as the discharge gas. The film formation pressure was 0.5 Pa, the film formation output was 400 W, and the ultimate film thickness was 10 nm.
  • a second layer having a thickness of 75 nm was formed on the first layer 18A in the same manner as the formation of the first layer except that the target was changed from titanium to copper.
  • the outermost layer 20A was formed on the second layer as follows. First, the laminate on which the first layer 18A and the second layer were formed was washed with pure water and immersed in a bathtub filled with a commercially available surfactant for 20 seconds for degreasing. Next, after washing with water, it was immersed in a 5% aqueous sulfuric acid solution for 5 seconds to perform acid activation treatment, and washed again with water. The laminate washed with water was fixed on a jig and fixed with a tester.
  • Electrolytic plating treatment was performed under the conditions of minutes to form an outermost layer as a metal plating layer on the second layer. Then, after passing through water washing and rusting treatment, excess moisture was removed with air to obtain a laminate in which three metal layers were formed on the end faces.
  • Example 1 except that the material, film thickness, and surface roughness Ra of the end surface of the functional layer laminate 11 were changed as shown in Table 1 below for each of the first layer 18, the second layer 22, and the outermost layer 20. In the same manner as above, a laminated film 10b was produced.
  • Quantum dots 1 (CZ520-10, manufactured by NN-labs) and quantum dots 4 (CZ620-10, manufactured by NN-labs) of the quantum dot 1 and quantum dot 2 of the coating liquid for forming an optical functional layer were used.
  • a laminated film 10b was produced in the same manner as in Example 19 except that the toluene dispersion was used.
  • the change rate ( ⁇ Y) of the luminance (Y1) after the high-temperature and high-humidity test with respect to the initial luminance value (Y0) was calculated, and evaluated as the luminance change index according to the following criteria.
  • ⁇ Y [%] (Y0 ⁇ Y1) / Y0 ⁇ 100 If the evaluation result is C or more, it can be determined that the light emission efficiency at the end is well maintained even after the high temperature and high humidity test.
  • Adhesiveness between the end face of the functional layer laminate and the end face sealing layer using the sample in which the end face sealing layer is formed on the end face of the laminate of the plurality of functional layer laminates before the separation step A cross cut test of 100 squares (in accordance with JIS D0202-1988) was performed, and the evaluation was performed based on the number of squares that did not peel off.
  • the evaluation criteria for adhesion are as follows. A to C are acceptable and D is unacceptable. A: 100 B: 95 or more and 99 or less C: 90 or more and 94 or less D: Less than 90
  • a composition for preparing a model film is prepared by removing the toluene dispersion of quantum dots 1 and 2 from the composition of the quantum dot-containing polymerizable composition used in each example and comparative example.
  • a model film having a thickness of 60 ⁇ m was prepared. Specifically, a model film was produced by the following method.
  • model film composition After applying the model film composition to a release film (Lumirror # 50 manufactured by Toray Industries Inc., 50 ⁇ m thick) with a wire bar, another release film is laminated thereon, and an air-cooled metal halide lamp of 200 W / cm (Made by Eye Graphics Co., Ltd.) was used to cure by irradiating ultraviolet rays with 1000 mJ / cm 2 from the coated surface.
  • the above steps were all performed in a nitrogen atmosphere.
  • the model film was cut into 5 mm ⁇ 30 mm, and the release films on both sides of the cured film thus obtained were peeled off to obtain a single resin layer film (model film) having a thickness of 60 ⁇ m.
  • the model membrane was conditioned at 25 ° C.
  • the non-light emitting region at the end is reduced as compared with the comparative example, and the end surface is composed of two or more metal layers. It can be seen that deterioration of the quantum dot layer (optical functional layer) can be prevented by blocking oxygen and water by the sealing layer.
  • the monofunctional polymerizable compound and the polyfunctional polymerizable compound are used in combination, and the elastic modulus is set within a predetermined range, so that the film stress during the formation of the metal thin film can be reduced.
  • the matrix can withstand, the defects of the metal thin film on the end face can be eliminated, smoothness can be ensured, and an end face sealing layer having a high barrier property on the end face can be obtained.
  • Example 24 for the laminated film of the first aspect of the present invention, a laminated film 10b shown in FIG.
  • the composition of the coating solution for forming an optical functional layer was changed to the following composition, and in the sheet processing step, 1000 laminated laminates cut into a sheet shape were stacked, and then Daiwa Koki Kogyo Co., Ltd. It was produced in the same manner as in Example 1 except that the end surface of the laminate was adjusted by cutting the laminate end surface under the conditions of a blade angle of 0 ° and a cutting depth of 10 ⁇ m using a company retotome REM-710.
  • the surface roughness Ra of the end surface of the produced functional layer laminate 11 was measured with an interference microscope (vertscan 2.0, manufactured by Ryoka Systems Co., Ltd.), the surface roughness Ra was 0.6 ⁇ m.
  • composition of coating solution for forming optical functional layer -Toluene dispersion of quantum dots 1 (luminescence maximum: 520 nm) 10 parts by mass-Toluene dispersion of quantum dots 2 (luminescence maximum: 630 nm) 1 part by weight-Lauryl methacrylate 2.4 parts by weight-Trimethylolpropane triacrylate 0. 54 parts by mass / photopolymerization initiator 0.009 parts by mass (Irgacure 819 (manufactured by BASF))
  • Example 24 except that the material, film thickness, and surface roughness Ra of the end surface of the functional layer laminate 11 were changed as shown in Table 2 below for each of the first layer 18, the second layer 22, and the outermost layer 20.
  • a laminated film 10b was produced.
  • end face cutting was performed under the conditions of a blade angle of 0 ° and a cutting depth of 20 ⁇ m.
  • end face cutting was performed under the conditions of a blade angle of 25 ° and a cutting depth of 20 ⁇ m.
  • Example 30 Example 24, except that the second layer 22 is not formed and the first layer 18 and the outermost layer 20 are formed in two layers, and the material and film thickness of the first layer 18 are changed as shown in Table 2 below. In the same manner as above, a laminated film 10a was produced.
  • the number of pinholes in the end face sealing layer of the produced laminated film was measured as follows. The end face sealing layers on the four sides were observed with an optical microscope, an uncoated portion having a size of 1 ⁇ m or more was used as a pinhole, and the number x was measured to obtain the number of pinholes per 1 mm 2 . Evaluation was made according to the following criteria as an index of the number of pinholes. If the evaluation result is C or more, it can be determined that the number of pinholes is small and the end sealing layer has a sufficient gas barrier property.
  • the wraparound width to the main surface of the end face sealing layer of the produced laminated film was measured as follows.
  • the laminated film was cut in a cross section under the conditions of a blade angle of 0 ° and a cutting depth of 10 ⁇ m using a Retotom REM-710 manufactured by Daiwa Koki Kogyo Co., Ltd., and the cross section was observed with an optical microscope to obtain a wraparound width d.
  • evaluation was performed according to the following criteria. If the evaluation result is C or more, it can be determined that the wraparound width is small and the non-light-emitting portion at the end of the film can be suppressed.
  • the non-light-emitting region at the end is reduced compared to the comparative example, and the end surface is composed of two or more metal layers. It turns out that deterioration of a quantum dot (optical function layer) can be prevented by interrupting
  • Example 24, Example 27, and Example 29 sealing performance becomes higher, so that the surface roughness Ra of a functional layer laminated body is small. It is presumed that this is because if the surface roughness Ra of the functional layer laminate is large, it is difficult to uniformly cover the end face sealing layer, and pinholes are generated. From this result, it can be seen that the surface roughness Ra of the functional layer laminate is preferably 2.0 ⁇ m or less. Further, from the comparison of Example 24, Example 28, and Example 30, the material of the first layer in contact with the end face of the functional layer laminate is higher than any one of aluminum, titanium, chromium, and nickel. It can be seen that adhesion can be obtained. From the above results, the effects of the present invention are clear.

Abstract

Provided are: a laminate film which is capable of inhibiting deterioration of quantum dots due to moisture and oxygen, and exhibits high durability, and with which a narrow frame can be achieved, and high productivity is achieved; and a laminate-film production method. The present invention is provided with: a functional layer laminate which is provided with an optical functional layer, and a gas barrier layer laminated on at least one of the main surfaces of the optical functional layer; and end-surface sealing layers formed so as to cover at least portions of end surfaces of the functional layer laminate. The end-surface sealing layers are laminates each comprising at least two layers. Each of the layers comprises metal.

Description

積層フィルムおよび積層フィルムの製造方法LAMINATED FILM AND METHOD FOR PRODUCING LAMINATED FILM
 本発明は、積層フィルムおよび積層フィルムの製造方法に関する。 The present invention relates to a laminated film and a method for producing the laminated film.
 液晶表示装置(以下、LCDともいう)は、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっている。また、近年の液晶表示装置において、LCD性能改善としてさらなる省電力化、色再現性向上等が求められている。 Liquid crystal display devices (hereinafter also referred to as LCDs) consume less power and are increasingly used year by year as space-saving image display devices. Further, in recent liquid crystal display devices, further power saving, color reproducibility improvement and the like are required as LCD performance improvement.
 LCDのバックライトの省電力化に伴って、光利用効率を高め、また、色再現性を向上するために、入射光の波長を変換して出射する量子ドットを利用することが提案されている。
 量子ドットとは、三次元全方向において移動方向が制限された電子の状態の結晶のことであり、半導体のナノ粒子が、高いポテンシャル障壁で三次元的に囲まれている場合に、このナノ粒子は量子ドットとなる。量子ドットは種々の量子効果を発現する。例えば、電子の状態密度(エネルギー準位)が離散化される「量子サイズ効果」が発現する。この量子サイズ効果によれば、量子ドットの大きさを変化させることで、光の吸収波長・発光波長を制御できる。
Along with the power saving of LCD backlights, it has been proposed to use quantum dots that change the wavelength of incident light and emit light in order to increase light utilization efficiency and improve color reproducibility. .
A quantum dot is a crystal in an electronic state in which the direction of movement is restricted in all three dimensions. When a semiconductor nanoparticle is three-dimensionally surrounded by a high potential barrier, the nanoparticle Becomes a quantum dot. Quantum dots exhibit various quantum effects. For example, the “quantum size effect” in which the density of states of electrons (energy level) is discretized appears. According to this quantum size effect, the absorption wavelength and emission wavelength of light can be controlled by changing the size of the quantum dot.
 一般に、このような量子ドットは、樹脂等の中に分散されて、例えば、波長変換を行う量子ドットフィルムとして、バックライトと液晶パネルとの間に配置されて用いられる。
 バックライトから量子ドットを含むフィルムに励起光が入射すると、量子ドットが励起され蛍光を発光する。ここで異なる発光特性を有する量子ドットを用いることで、赤色光、緑色光、青色光の半値幅の狭い光を発光させて白色光を具現化することができる。量子ドットによる蛍光は半値幅が狭いため、波長を適切に選択することで得られる白色光を高輝度にしたり色再現性に優れる設計にすることが可能である。
In general, such quantum dots are dispersed in a resin or the like, and are used, for example, as a quantum dot film that performs wavelength conversion and disposed between a backlight and a liquid crystal panel.
When excitation light enters the film containing quantum dots from the backlight, the quantum dots are excited and emit fluorescence. Here, by using quantum dots having different light emission characteristics, it is possible to realize white light by emitting light having a narrow half-value width of red light, green light, and blue light. Since the half-value width of the fluorescence due to quantum dots is narrow, it is possible to design white light obtained by appropriately selecting the wavelength to have high luminance or excellent color reproducibility.
 ところで、量子ドットは、水分や酸素により劣化しやすく、光酸化反応により発光強度が低下するという課題がある。そのため、量子ドットを含む樹脂層(以下、「量子ドット層」ともいう)の両面にガスバリアフィルムを積層して量子ドット層を保護することが行われている。
 しかしながら、量子ドット層の両主面をガスバリアフィルムで保護するのみでは、ガスバリアフィルムで保護されていない端面から水分や酸素が浸入し、量子ドットが劣化するという問題があった。
 そのため、量子ドット層の周囲全部をガスバリアフィルムで保護することが提案されている。
By the way, the quantum dot is easily deteriorated by moisture and oxygen, and there is a problem that the light emission intensity is reduced by the photooxidation reaction. Therefore, a gas barrier film is laminated on both surfaces of a resin layer containing quantum dots (hereinafter also referred to as “quantum dot layer”) to protect the quantum dot layer.
However, if both main surfaces of the quantum dot layer are only protected by the gas barrier film, there is a problem that moisture and oxygen enter from an end surface not protected by the gas barrier film, and the quantum dots deteriorate.
Therefore, it has been proposed to protect the entire periphery of the quantum dot layer with a gas barrier film.
 例えば、特許文献1には、量子ドット蛍光体を濃度0.01質量%~20質量%の範囲でシク口オレフィン(共)重合体に分散させた組成物が記載されており、量子ドットが分散された樹脂成型体の全面を被覆するガスバリア層を有する構成が記載されている。また、このガスバリア層は、樹脂層の少なくとも一方の面にシリカ膜またはアルミナ膜を形成したガスバリアフィルムであることが記載されている。 For example, Patent Document 1 describes a composition in which a quantum dot phosphor is dispersed in a cycloolefin (co) polymer in a concentration range of 0.01% by mass to 20% by mass. The structure which has the gas barrier layer which coat | covers the whole surface of the made resin molding is described. Further, it is described that the gas barrier layer is a gas barrier film in which a silica film or an alumina film is formed on at least one surface of the resin layer.
 また、特許文献2には、発光量子ドット(QD)集団を含むリモート蛍光体フィルムを備えるディスプレイバックライトユニットが記載されており、QD蛍光体材料を2つのガスバリアフィルムで挟み、QD蛍光体材料の周囲周辺の2つのガスバリアフィルムに挟まれた領域にガスバリア性を有する不活性領域を有する構成が記載されている。
 また、特許文献3には、光源部から発せられた色光の少なくとも一部を他の色光に変換する色変換層と、色変換層を封止する不透水性の封止シートとを備えた発光装置が記載されており、蛍光体層の外周に沿って、すなわち蛍光体層の平面形状を囲むように枠形状に設けられている第2貼合層を有し、この第2貼合層がガスバリア性を有する接着材料からなる構成が記載されている。
Patent Document 2 describes a display backlight unit including a remote phosphor film containing a light-emitting quantum dot (QD) population. The QD phosphor material is sandwiched between two gas barrier films, and the QD phosphor material The structure which has the inactive area | region which has gas barrier property in the area | region pinched | interposed into two gas barrier films of the circumference | surroundings is described.
Patent Document 3 discloses a light emitting device including a color conversion layer that converts at least a part of the color light emitted from the light source unit into another color light, and an impermeable sealing sheet that seals the color conversion layer. The apparatus is described, and has a second bonding layer provided in a frame shape along the outer periphery of the phosphor layer, that is, surrounding the planar shape of the phosphor layer, and this second bonding layer is A configuration made of an adhesive material having gas barrier properties is described.
 また、特許文献3には、QDフィルムを密封するバリア層である上部層および/または底部層が狭圧されて、端部の開口を狭くすることで酸素や水の浸入を抑制する構成が記載されている。
 また、特許文献4には、励起光を波長変換して波長変換光を発生させる量子点及び量子点を分散させる分散媒質を含む波長変換部と、波長変換部を密封する密封部材と、を含む量子点波長変換体が記載されており、密封シートの端部領域を加熱して熱粘着させることで波長変換部を密封することが記載されている。
Patent Document 3 describes a configuration in which the upper layer and / or the bottom layer, which is a barrier layer for sealing the QD film, is narrowed to prevent the entry of oxygen and water by narrowing the opening at the end. Has been.
Patent Document 4 includes a quantum point that converts the wavelength of excitation light to generate wavelength-converted light, a wavelength conversion unit that includes a dispersion medium that disperses the quantum point, and a sealing member that seals the wavelength conversion unit. A quantum point wavelength converter is described, and it is described that the wavelength conversion part is sealed by heating and thermally sticking the end region of the sealing sheet.
国際公開第2012/102107号International Publication No. 2012/102107 特表2013-544018号公報Special table 2013-544018 gazette 特開2009-283441号公報JP 2009-283441 A 特開2010-061098号公報JP 2010-061098 A
 ところで、LCDに用いられる、量子ドットを含むフィルムは、50μm~350μm程度の薄型のフィルムである。
 薄い量子ドット層の全面をガスバリアフィルムで被覆するのは非常に困難であり、生産性が悪いという問題があった。また、ガスバリアフィルムを折り曲げるとバリア層が割れてガスバリア性が低下するという問題もあった。
By the way, the film including quantum dots used for the LCD is a thin film of about 50 μm to 350 μm.
It was very difficult to coat the entire surface of the thin quantum dot layer with a gas barrier film, and there was a problem that productivity was poor. In addition, when the gas barrier film is bent, the barrier layer is broken and the gas barrier property is lowered.
 一方、2つのガスバリアフィルムで挟まれた、量子ドット層の端面領域に、ガスバリア性を有する保護層を形成する構成の場合には、例えば、いわゆるダムフィル方式で、保護層および樹脂層を形成することが考えられる。すなわち、一方のガスバリアフィルム上の周縁部分に保護層を形成した後に、保護層に囲まれた領域内に樹脂層を形成し、その後、保護層および樹脂層上に、他方のガスバリアフィルムを積層することで量子ドットを含むフィルムを作製することが考えられる。
 しかしながら、このような方法で形成可能な保護層の材料は、接着材料等であるため高いバリア性を付与することができず、ガスバリア性や耐久性が十分でなかった。
 また、このようなダムフィル方式では、全工程がバッチ方式となるため生産性が極めて悪いという問題があった。
On the other hand, in the case of a configuration in which a protective layer having a gas barrier property is formed in the end face region of the quantum dot layer sandwiched between two gas barrier films, for example, the protective layer and the resin layer are formed by a so-called dam fill method. Can be considered. That is, after forming a protective layer on the peripheral portion on one gas barrier film, a resin layer is formed in a region surrounded by the protective layer, and then the other gas barrier film is laminated on the protective layer and the resin layer. It is conceivable to produce a film containing quantum dots.
However, since the material of the protective layer that can be formed by such a method is an adhesive material or the like, high barrier properties cannot be imparted, and gas barrier properties and durability are not sufficient.
In addition, such a dam fill method has a problem that productivity is extremely poor because all processes are batch methods.
 また、量子ドット層を挟む2つのガスバリアフィルムの端部の開口を狭くする、あるいは、密封する構成では、端部での、量子ドット層の厚さが薄くなってしまうため、端部ではその機能を十分に発現することができず、有効に利用できる領域の大きさが小さくなり、額縁部分が大きくなってしまうという問題があった。また、一般に、高いガスバリア性を備えるバリア層は、硬く脆いため、このようなバリア層を有するガスバリアフィルムを、急に湾曲させると、バリア層が割れてしまい、ガスバリア性が低下して、量子ドット層への水分や酸素の浸入を抑制できなくなるという問題があった。 In addition, in the configuration in which the opening at the end of the two gas barrier films sandwiching the quantum dot layer is narrowed or sealed, the thickness of the quantum dot layer at the end becomes thin. Cannot be fully expressed, the size of the area that can be used effectively becomes small, and the frame portion becomes large. In general, since a barrier layer having a high gas barrier property is hard and brittle, if the gas barrier film having such a barrier layer is suddenly bent, the barrier layer is cracked, and the gas barrier property is lowered. There has been a problem that it becomes impossible to prevent moisture and oxygen from entering the layer.
 本発明の目的は、このような従来技術の問題点を解決することにあり、量子ドット層などの光学機能層が水分や酸素により劣化することを防止でき、高い耐久性を有し、また、狭額縁化が可能であり、高い生産性を有する積層フィルムおよび積層フィルムの製造方法を提供することにある。 The object of the present invention is to solve such problems of the prior art, can prevent optical functional layers such as quantum dot layers from being deteriorated by moisture and oxygen, has high durability, An object of the present invention is to provide a laminated film and a method for producing the laminated film that can be narrowed and have high productivity.
 本発明者らは、上記課題を達成すべく鋭意研究した結果、光学機能層と、光学機能層の少なくとも一方の主面に積層される、ガスバリア層とを有する機能層積層体、および、機能層積層体の端面のうち少なくとも一部を覆って形成される端面封止層、を有し、端面封止層は、少なくとも2層からなり、各層が金属からなることにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、本発明は以下の構成の積層フィルムおよびその製造方法を提供する。
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have obtained a functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer, and a functional layer. An end face sealing layer formed so as to cover at least a part of the end face of the laminate, and the end face sealing layer is composed of at least two layers, and each layer is made of a metal, whereby the above-described problems can be solved. The headline and the present invention were completed.
That is, this invention provides the laminated film of the following structures, and its manufacturing method.
 (1) 光学機能層と、光学機能層の少なくとも一方の主面に積層される、ガスバリア層とを有する機能層積層体、および、
 機能層積層体の端面のうち少なくとも一部を覆って形成される端面封止層、を有し、
 端面封止層は、少なくとも2層からなり、各層が金属からなる積層フィルム。
 (2) 端面封止層の、機能層積層体に接する第1層以外の少なくとも1層が、金属メッキ層である(1)に記載の積層フィルム。
 (3) 端面封止層の、機能層積層体から最も遠い最表層が、金属メッキ層である(1)または(2)に記載の積層フィルム。
 (4) 金属メッキ層の厚さが、機能層積層体に接する第1層の厚さよりも厚い(2)または(3)に記載の積層フィルム。
 (5) 第1層の厚さが、0.001μm~0.5μmであり、
 金属メッキ層の厚さが、0.01μm~100μmである(4)に記載の積層フィルム。
 (6) 機能層積層体に接する第1層の材料が、アルミニウム、チタン、クロム、銅、および、ニッケルからなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金であり、
 第1層以外の各層の材料が、アルミニウム、チタン、クロム、ニッケル、錫、銅、銀、および、金からなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金である(1)~(5)のいずれかに記載の積層フィルム。
 (7) 端面封止層の厚さが、0.1μm~100μmである(1)~(6)のいずれかに記載の積層フィルム。
 (8) 光学機能層とガスバリア層とを有する機能層積層体の側面に、少なくとも2層からなり、各層が金属からなる端面封止層を有する(1)~(7)のいずれかに記載の積層フィルムを製造する積層フィルムの製造方法であって、
 機能層積層体を複数枚重ねた積層物の端面に、機能層積層体に接する第1層を形成する第1層形成工程と、
 積層物の端面に形成された第1層上に最表層を形成する最表層形成工程と、を有し、
 第1層の形成方法が、スパッタリング法、真空蒸着法、イオンプレーティング法、および、プラズマCVD法からなる群から選択される1種である積層フィルムの製造方法。
 (9) 端面封止層の、第1層以外の少なくとも1層の形成方法が、金属メッキ処理である(8)に記載の積層フィルムの製造方法。
(1) A functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer, and
An end face sealing layer formed to cover at least a part of the end face of the functional layer laminate,
The end face sealing layer is composed of at least two layers, and each layer is a laminated film made of metal.
(2) The laminated film according to (1), wherein at least one layer other than the first layer in contact with the functional layer laminate of the end face sealing layer is a metal plating layer.
(3) The laminated film according to (1) or (2), wherein the outermost surface layer of the end face sealing layer that is farthest from the functional layer laminate is a metal plating layer.
(4) The laminated film according to (2) or (3), wherein the thickness of the metal plating layer is thicker than the thickness of the first layer in contact with the functional layer laminate.
(5) The thickness of the first layer is 0.001 μm to 0.5 μm,
The laminated film according to (4), wherein the thickness of the metal plating layer is 0.01 μm to 100 μm.
(6) The material of the first layer in contact with the functional layer laminate is at least one selected from the group consisting of aluminum, titanium, chromium, copper, and nickel, or an alloy containing at least one of these. ,
The material of each layer other than the first layer is at least one selected from the group consisting of aluminum, titanium, chromium, nickel, tin, copper, silver, and gold, or an alloy containing at least one of these. (1) The laminated film as described in any one of (5).
(7) The laminated film according to any one of (1) to (6), wherein the end face sealing layer has a thickness of 0.1 μm to 100 μm.
(8) The functional layer laminate having an optical functional layer and a gas barrier layer has at least two layers on each side surface, and each layer has an end face sealing layer made of metal. A method for producing a laminated film for producing a laminated film,
A first layer forming step of forming a first layer in contact with the functional layer laminate on an end face of a laminate in which a plurality of functional layer laminates are stacked;
An outermost layer forming step of forming an outermost layer on the first layer formed on the end face of the laminate,
A method for producing a laminated film, wherein the formation method of the first layer is one selected from the group consisting of a sputtering method, a vacuum deposition method, an ion plating method, and a plasma CVD method.
(9) The method for producing a laminated film according to (8), wherein the formation method of at least one layer other than the first layer of the end face sealing layer is a metal plating process.
 (10) 光学機能層と、光学機能層の少なくとも一方の主面に積層される、ガスバリア層とを有する機能層積層体、および、
 機能層積層体の端面のうち少なくとも一部を覆って形成される端面封止層、を有し、
 端面封止層は、少なくとも2層からなり、各層がそれぞれ金属からなる積層フィルムであって、
 光学機能層は、蛍光体および少なくとも2種以上の重合性化合物を含む重合性組成物を硬化させてなる硬化層である積層フィルム。
(10) A functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer, and
An end face sealing layer formed to cover at least a part of the end face of the functional layer laminate,
The end face sealing layer is composed of at least two layers, and each layer is a laminated film made of metal,
The optical functional layer is a laminated film that is a cured layer formed by curing a polymerizable composition containing a phosphor and at least two or more polymerizable compounds.
 (11) 重合性化合物は単官能重合性化合物からなる第一の重合性化合物の少なくとも一種と多官能重合性化合物からなる第二の重合性化合物の少なくとも一種とを含む(10)に記載の積層フィルム。
 (12) 第一の重合性化合物が、アルキル基の炭素数が4~30である脂肪族または芳香族アルキル(メタ)アクリレートであり、
 第二の重合性化合物が、1,6-ヘキサンジオールジアクリレート、1,10-デカンジオールジアクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジアクリレート、ジシクロペンタニルジ(メタ)アクリレート、エトキシ化ビスフェノールAジアクリレートの中から選ばれる(11)に記載の積層フィルム。
 (13) 光学機能層の50℃における弾性率が1MPa~4000MPaである(10)~(12)のいずれかに記載の積層フィルム。
 (14) ガスバリア層が光学機能層の両方の主面に積層されてなる(10)~(13)のいずれかに記載の積層フィルム。
 (15) 光学機能層の蛍光体は、量子ドット、量子ロッド、テトラポッド型量子ドットである(10)~(14)のいずれかに記載の積層フィルム。
 (16) 端面封止層の、機能層積層体に接する第1層以外の少なくとも1層が、金属メッキ層である(10)~(15)のいずれかに記載の積層フィルム。
 (17) 端面封止層の、機能層積層体から最も遠い最表層が、金属メッキ層である(10)~(16)のいずれかに記載の積層フィルム。
 (18) 金属メッキ層の厚さが、機能層積層体に接する第1層の厚さよりも厚い(16)または(17)に記載の積層フィルム。
 (19) 第1層の厚さが、0.001μm~0.5μmであり、
 金属メッキ層の厚さが、0.01μm~100μmである(18)に記載の積層フィルム。
 (20) 機能層積層体に接する第1層の材料が、アルミニウム、チタン、クロム、銅、および、ニッケルからなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金であり、
 第1層以外の各層の材料が、アルミニウム、チタン、クロム、ニッケル、錫、銅、銀、および、金からなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金である(10)~(19)のいずれかに記載の積層フィルム。
 (21) 端面封止層の厚さが、0.1μm~100μmである(10)~(20)のいずれかに記載の積層フィルム。
 (22) 光学機能層とガスバリア層とを有する機能層積層体の側面に、少なくとも2層からなり、各層が金属からなる端面封止層を有する(10)~(21)のいずれかに記載の積層フィルムを製造する積層フィルムの製造方法であって、
 ガスバリア層を有するガスバリアフィルムの上に、蛍光体および少なくとも2種以上の重合性化合物を含む重合性組成物を塗布し硬化させてなる機能層積層体を形成し、
 機能層積層体を複数枚重ねた積層物の端面に、機能層積層体に接する第1層を形成する第1層形成工程と、
 積層物の端面に形成された第1層上に最表層を形成する最表層形成工程と、を有し、
 第1層の形成方法が、スパッタリング法、真空蒸着法、イオンプレーティング法、および、プラズマCVD法からなる群から選択される1種である積層フィルムの製造方法。
 (23) 端面封止層の、第1層以外の少なくとも1層の形成方法が、金属メッキ処理である(22)に記載の積層フィルムの製造方法。
(11) The laminate according to (10), wherein the polymerizable compound includes at least one first polymerizable compound composed of a monofunctional polymerizable compound and at least one second polymerizable compound composed of a polyfunctional polymerizable compound. the film.
(12) The first polymerizable compound is an aliphatic or aromatic alkyl (meth) acrylate having an alkyl group having 4 to 30 carbon atoms,
The second polymerizable compound is 1,6-hexanediol diacrylate, 1,10-decanediol diacrylate, 1,9-nonanediol di (meth) acrylate, tricyclodecane dimethanol diacrylate, dicyclopentanyl. The laminated film according to (11) selected from di (meth) acrylate and ethoxylated bisphenol A diacrylate.
(13) The laminated film according to any one of (10) to (12), wherein the optical function layer has an elastic modulus at 50 ° C. of 1 MPa to 4000 MPa.
(14) The laminated film according to any one of (10) to (13), wherein the gas barrier layer is laminated on both main surfaces of the optical functional layer.
(15) The laminated film according to any one of (10) to (14), wherein the phosphor of the optical functional layer is a quantum dot, a quantum rod, or a tetrapod type quantum dot.
(16) The laminated film according to any one of (10) to (15), wherein at least one layer of the end face sealing layer other than the first layer in contact with the functional layer laminate is a metal plating layer.
(17) The laminated film according to any one of (10) to (16), wherein the outermost surface layer of the end face sealing layer farthest from the functional layer laminate is a metal plating layer.
(18) The laminated film according to (16) or (17), wherein the thickness of the metal plating layer is thicker than the thickness of the first layer in contact with the functional layer laminate.
(19) The thickness of the first layer is 0.001 μm to 0.5 μm,
The laminated film according to (18), wherein the metal plating layer has a thickness of 0.01 μm to 100 μm.
(20) The material of the first layer in contact with the functional layer laminate is at least one selected from the group consisting of aluminum, titanium, chromium, copper, and nickel, or an alloy containing at least one of these. ,
The material of each layer other than the first layer is at least one selected from the group consisting of aluminum, titanium, chromium, nickel, tin, copper, silver, and gold, or an alloy containing at least one of these. (10) The laminated film as described in any one of (19).
(21) The laminated film according to any one of (10) to (20), wherein the end face sealing layer has a thickness of 0.1 μm to 100 μm.
(22) The functional layer laminate having an optical functional layer and a gas barrier layer has at least two layers on each side surface, and each layer has an end face sealing layer made of metal. A method for producing a laminated film for producing a laminated film,
On the gas barrier film having the gas barrier layer, a functional layer laminate is formed by applying and curing a polymerizable composition containing a phosphor and at least two or more polymerizable compounds,
A first layer forming step of forming a first layer in contact with the functional layer laminate on an end face of a laminate in which a plurality of functional layer laminates are stacked;
An outermost layer forming step of forming an outermost layer on the first layer formed on the end face of the laminate,
A method for producing a laminated film, wherein the formation method of the first layer is one selected from the group consisting of a sputtering method, a vacuum deposition method, an ion plating method, and a plasma CVD method.
(23) The method for producing a laminated film according to (22), wherein the formation method of at least one layer other than the first layer of the end face sealing layer is metal plating.
 このような本発明によれば、量子ドットが水分や酸素により劣化することを防止でき、高い耐久性を有し、また、狭額縁化が可能であり、高い生産性を有する積層フィルムおよび積層フィルムの製造方法を提供することができる。 According to the present invention as described above, it is possible to prevent the quantum dots from being deteriorated by moisture or oxygen, to have high durability, to be able to narrow the frame, and to have high productivity. The manufacturing method of can be provided.
本発明の積層フィルムの一例を概念的に示す断面図である。It is sectional drawing which shows notionally an example of the laminated | multilayer film of this invention. 積層フィルムに用いられるガスバリアフィルムの一例を概念的に示す断面図である。It is sectional drawing which shows notionally an example of the gas barrier film used for a laminated | multilayer film. 本発明の積層フィルムの他の一例を概念的に示す断面図である。It is sectional drawing which shows notionally another example of the laminated | multilayer film of this invention. 端面封止層の回り込み量を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the amount of wraparound of an end surface sealing layer. 本発明の積層フィルムの製造方法の一例を説明するための概略図である。It is the schematic for demonstrating an example of the manufacturing method of the laminated | multilayer film of this invention. 本発明の積層フィルムの製造方法の一例を説明するための概略図である。It is the schematic for demonstrating an example of the manufacturing method of the laminated | multilayer film of this invention. 本発明の積層フィルムの製造方法の一例を説明するための概略図である。It is the schematic for demonstrating an example of the manufacturing method of the laminated | multilayer film of this invention. 本発明の積層フィルムの製造方法の一例を説明するための概略図である。It is the schematic for demonstrating an example of the manufacturing method of the laminated | multilayer film of this invention. 比較例3の積層フィルムの端面の断面の光学顕微鏡写真である。6 is an optical micrograph of a cross section of an end face of a laminated film of Comparative Example 3.
 以下、本発明の積層フィルムおよび積層フィルムの製造方法について、添付の図面に示される好適実施例を基に、詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, the laminated film and the method for producing the laminated film of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
 本発明の第1の態様の積層フィルムは、光学機能層と、光学機能層の少なくとも一方の主面に積層される、ガスバリア層とを有する機能層積層体、および、機能層積層体の端面のうち少なくとも一部を覆って形成される端面封止層、を有し、端面封止層は、少なくとも2層からなり、各層が金属からなる積層フィルムである。 The laminated film of the first aspect of the present invention includes an optical functional layer, a functional layer laminate having a gas barrier layer laminated on at least one main surface of the optical functional layer, and an end surface of the functional layer laminate. Among these, the end surface sealing layer is formed so as to cover at least a part, and the end surface sealing layer is a laminated film composed of at least two layers, and each layer is made of metal.
 また、本発明の第2の態様の積層フィルムは、蛍光体および少なくとも2種以上の重合性化合物を含む重合性組成物を硬化させてなる光学機能層と、光学機能層の少なくとも一方の主面に積層される、ガスバリア層とを有する機能層積層体、および、機能層積層体の端面のうち少なくとも一部を覆って形成される端面封止層、を有し、端面封止層は、少なくとも2層からなり、各層が金属からなる積層フィルムである。 The laminated film according to the second aspect of the present invention includes an optical functional layer obtained by curing a polymerizable composition containing a phosphor and at least two or more polymerizable compounds, and at least one principal surface of the optical functional layer. A functional layer laminate having a gas barrier layer, and an end face sealing layer formed so as to cover at least a part of the end faces of the functional layer laminate. It is a laminated film consisting of two layers, each layer consisting of metal.
 図1は、本発明の積層フィルムの一例を概念的に示す断面図である。
 図1に示す積層フィルム10aは、光学機能層12および光学機能層12の両主面にそれぞれ積層される2つのガスバリア層14を有する機能層積層体11と、機能層積層体11の側面を覆うように形成される端面封止層16aとを有する。
FIG. 1 is a cross-sectional view conceptually showing an example of the laminated film of the present invention.
A laminated film 10 a shown in FIG. 1 covers a functional layer laminate 11 having two gas barrier layers 14 laminated on both main surfaces of the optical functional layer 12 and the optical functional layer 12, and a side surface of the functional layer laminate 11. The end surface sealing layer 16a is formed as described above.
 光学機能層12は、波長変換等の所望の機能を発現するための層である。
 一例として、光学機能層12は、多数の蛍光体(量子ドット)を硬化性の樹脂等のマトリックス中に分散してなる量子ドット層であり、光学機能層12に入射した光の波長を変換して出射する機能を有するものである。
 例えば、図示しないバックライトから出射された青色光が光学機能層12に入射すると、光学機能層12は、内部に含有する量子ドットの効果により、この青色光の少なくとも一部を赤色光あるいは緑色光に波長変換して出射する。
The optical function layer 12 is a layer for expressing a desired function such as wavelength conversion.
As an example, the optical functional layer 12 is a quantum dot layer in which a large number of phosphors (quantum dots) are dispersed in a matrix such as a curable resin, and converts the wavelength of light incident on the optical functional layer 12. And has a function of emitting light.
For example, when blue light emitted from a backlight (not shown) enters the optical functional layer 12, the optical functional layer 12 converts at least part of the blue light into red light or green light due to the effect of quantum dots contained therein. The wavelength is converted into and emitted.
 ここで、青色光とは、400nm~500nmの波長帯域に発光中心波長を有する光であり、緑色光とは、500nmを超え600nmの波長帯域に発光中心波長を有する光のことであり、赤色光とは、600nmを超え680nm以下の波長帯域に発光中心波長を有する光のことである。
 なお、量子ドット層が発現する波長変換の機能は、青色光を赤色光あるいは緑色光に波長変換する構成に限定はされず、入射光の少なくとも一部を異なる波長の光に変換するものであればよい。
Here, the blue light is light having an emission center wavelength in a wavelength band of 400 nm to 500 nm, and the green light is light having an emission center wavelength in a wavelength band exceeding 500 nm and 600 nm. Means light having an emission center wavelength in a wavelength band of more than 600 nm and 680 nm or less.
The wavelength conversion function exhibited by the quantum dot layer is not limited to a configuration that converts the wavelength of blue light into red light or green light, and may convert at least part of incident light into light of a different wavelength. That's fine.
 量子ドットは、少なくとも、入射する励起光により励起され蛍光を発光する。
 量子ドット層に含有される量子ドットの種類には特に限定はなく、求められる波長変換の性能等に応じて、種々の公知の量子ドットを適宜選択すればよい。
The quantum dots emit fluorescence by being excited at least by incident excitation light.
There are no particular limitations on the type of quantum dots contained in the quantum dot layer, and various known quantum dots may be appropriately selected according to the required wavelength conversion performance or the like.
 量子ドットについては、例えば特開2012-169271号公報段落0060~0066を参照することができるが、ここに記載のものに限定されるものではない。量子ドットとしては、市販品を何ら制限なく用いることができる。量子ドットの発光波長は、通常、粒子の組成、サイズにより調整することができる。 Regarding quantum dots, for example, JP 2012-169271 A paragraphs 0060 to 0066 can be referred to, but are not limited to those described here. As the quantum dots, commercially available products can be used without any limitation. The emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles.
 量子ドットは、マトリックス中に均一に分散されるのが好ましいが、マトリックス中に偏りをもって分散されてもよい。また、量子ドットは、1種のみを用いてもよいし、2種以上を併用してもよい。
 2種以上併用する場合は、発光光の波長が異なる2種以上の量子ドットを使用してもよい。
The quantum dots are preferably dispersed uniformly in the matrix, but may be dispersed with a bias in the matrix. Moreover, only 1 type may be used for a quantum dot and it may use 2 or more types together.
When using 2 or more types together, you may use 2 or more types of quantum dots from which the wavelength of emitted light differs.
 具体的には、公知の量子ドットには、600nmを超え680nmの範囲の波長帯域に発光中心波長を有する量子ドット(A)、500nmを超え600nmの範囲の波長帯域に発光中心波長を有する量子ドット(B)、400nm~500nmの波長帯域に発光中心波長を有する量子ドット(C)があり、量子ドット(A)は、励起光により励起され赤色光を発光し、量子ドット(B)は緑色光を、量子ドット(C)は青色光を発光する。例えば、量子ドット(A)と量子ドット(B)を含む量子ドット含有積層体へ励起光として青色光を入射させると、量子ドット(A)により発光される赤色光、量子ドット(B)により発光される緑色光と、量子ドット層を透過した青色光により、白色光を具現化することができる。または、量子ドット(A)、(B)、および(C)を含む量子ドット層に励起光として紫外光を入射させることにより、量子ドット(A)により発光される赤色光、量子ドット(B)により発光される緑色光、および量子ドット(C)により発光される青色光により、白色光を具現化することができる。 Specifically, the known quantum dots include a quantum dot (A) having an emission center wavelength in the wavelength band exceeding 600 nm and in the range of 680 nm, and a quantum dot having an emission center wavelength in the wavelength band exceeding 500 nm and 600 nm. (B), there is a quantum dot (C) having an emission center wavelength in the wavelength band of 400 nm to 500 nm. The quantum dot (A) is excited by excitation light to emit red light, and the quantum dot (B) is green light. The quantum dot (C) emits blue light. For example, when blue light is incident as excitation light on a quantum dot-containing laminate including quantum dots (A) and (B), red light emitted from the quantum dots (A) and light emitted from the quantum dots (B) The white light can be realized by the green light and the blue light transmitted through the quantum dot layer. Alternatively, by making ultraviolet light incident on the quantum dot layer including the quantum dots (A), (B), and (C) as excitation light, red light emitted from the quantum dots (A), quantum dots (B) White light can be realized by green light emitted by the blue light and blue light emitted by the quantum dots (C).
 また、量子ドットとして、形状がロッド状で指向性を持ち偏光を発する、いわゆる量子ロッドや、テトラポッド型量子ドットを用いてもよい。 Further, as the quantum dot, a so-called quantum rod or a tetrapod type quantum dot that has a rod shape and has directivity and emits polarized light may be used.
 第1の態様において、量子ドット層のマトリックスの種類としては、特に限定はなく、公知の量子ドット層で用いられる各種の樹脂を用いることができる。
 例えば、ポリエステル系樹脂(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート)、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂などが挙げられる。あるいは、マトリックスとして、重合性基を有する硬化性化合物を用いることができる。重合性基の種類は、特に限定されないが、好ましくは、(メタ)アクリレート基、ビニル基またはエポキシ基であり、より好ましくは、(メタ)アクリレート基であり、さらに好ましくは、アクリレート基である。また、2つ以上の重合性基を有する重合性単量体は、それぞれの重合性基が同一であってもよいし、異なっていても良い。
In the first aspect, the type of matrix of the quantum dot layer is not particularly limited, and various resins used in known quantum dot layers can be used.
Examples thereof include polyester resins (for example, polyethylene terephthalate, polyethylene naphthalate), (meth) acrylic resins, polyvinyl chloride resins, and polyvinylidene chloride resins. Alternatively, a curable compound having a polymerizable group can be used as the matrix. Although the kind of polymeric group is not specifically limited, Preferably, it is a (meth) acrylate group, a vinyl group, or an epoxy group, More preferably, it is a (meth) acrylate group, More preferably, it is an acrylate group. Moreover, as for the polymerizable monomer which has two or more polymeric groups, each polymeric group may be the same and may differ.
 具体的には、例えば、以下の第1の重合性化合物と第2の重合性化合物とを含む樹脂をマトリックスとして用いることができる。 Specifically, for example, a resin containing the following first polymerizable compound and second polymerizable compound can be used as a matrix.
 第1の重合性化合物は、2官能以上の(メタ)アクリレートモノマー、ならびにエポキシ基およびオキセタニル基からなる群から選択される官能基を2つ以上有するモノマーからなる群から選択される1つ以上の化合物であるのが好ましい。 The first polymerizable compound is one or more selected from the group consisting of a bifunctional or higher functional (meth) acrylate monomer and a monomer having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups. Preferably it is a compound.
 2官能以上の(メタ)アクリレートモノマーのうち、2官能の(メタ)アクリレートモノマーとしては、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート等が好ましい例として挙げられる。 Among the bifunctional or higher functional (meth) acrylate monomers, the bifunctional (meth) acrylate monomers include neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tripropylene glycol di (meth) ) Acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclo Pentenyloxyethyl (meth) acrylate, dicyclopentanyl di (meth) acrylate and the like are preferable examples.
 また、2官能以上の(メタ)アクリレートモノマーのうち、3官能以上の(メタ)アクリレートモノマーとしては、ECH変性グリセロールトリ(メタ)アクリレート、EO変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、EO変性リン酸トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が好ましい例として挙げられる。 Among the bifunctional or higher functional (meth) acrylate monomers, the trifunctional or higher functional (meth) acrylate monomers include ECH-modified glycerol tri (meth) acrylate, EO-modified glycerol tri (meth) acrylate, and PO-modified glycerol tri (meta). ) Acrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, EO modified phosphoric acid triacrylate, trimethylolpropane tri (meth) acrylate, caprolactone modified trimethylolpropane tri (meth) acrylate, EO modified trimethylolpropane tri (meth) acrylate , PO-modified trimethylolpropane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, dipentaerythritol hexa (meth) a Relate, dipentaerythritol penta (meth) acrylate, caprolactone-modified dipentaerythritol hexa (meth) acrylate, dipentaerythritol hydroxypenta (meth) acrylate, alkyl-modified dipentaerythritol penta (meth) acrylate, dipentaerythritol poly (meth) Preferred examples include acrylate, alkyl-modified dipentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, pentaerythritol tetra (meth) acrylate and the like.
 エポキシ基およびオキセタニル基からなる群から選択される官能基を2つ以上有するモノマーとしては、例えば、脂肪族環状エポキシ化合物、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル、臭素化ビスフェノールFジグリシジルエーテル、臭素化ビスフェノールSジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールSジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル類;エチレングリコール、プロピレングリコール、グリセリンなどの脂肪族多価アルコールに1種または2種以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル類;脂肪族長鎖二塩基酸のジグリシジルエステル類;高級脂肪酸のグリシジルエステル類;エポキシシクロアルカンを含む化合物等が好適に用いられる。 Monomers having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups include, for example, aliphatic cyclic epoxy compounds, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, bromine Bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, brominated bisphenol S diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 1,4 -Butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether , Polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ethers; polyether polyols obtained by adding one or more alkylene oxides to aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin Glycidyl ethers; diglycidyl esters of aliphatic long-chain dibasic acids; glycidyl esters of higher fatty acids; compounds containing epoxycycloalkanes, etc. are preferably used.
 エポキシ基およびオキセタニル基からなる群から選択される官能基を2つ以上有するモノマーとして好適に使用できる市販品としては、ダイセル化学工業(株)のセロキサイド2021P、セロキサイド8000、シグマアルドリッチ社製の4-ビニルシクロヘキセンジオキシド等が挙げられる。これらは、1種単独で、または2種以上組み合わせて用いることができる。 Examples of commercially available products that can be suitably used as monomers having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups include Daicel Chemical Industries, Ltd. Celoxide 2021P, Celoxide 8000, Sigma-Aldrich 4- Examples include vinylcyclohexene dioxide. These can be used alone or in combination of two or more.
 また、エポキシ基およびオキセタニル基からなる群から選択される官能基を2つ以上有するモノマーはその製法は問わないが、例えば、丸善KK出版、第四版実験化学講座20有機合成II、213~、平成4年、Ed.by Alfred Hasfner,The chemistry of heterocyclic compounds-Small Ring Heterocycles part3 Oxiranes,John & Wiley and Sons,An Interscience Publication,New York,1985、吉村、接着、29巻12号、32、1985、吉村、接着、30巻5号、42、1986、吉村、接着、30巻7号、42、1986、特開平11-100378号公報、特許第2906245号公報、特許第2926262号公報などの文献を参考にして合成できる。 A monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group may be produced by any method. For example, Maruzen KK Publishing Co., Ltd., Fourth Edition Experimental Chemistry Course 20 Organic Synthesis II, 213, 1992, Ed.by Alfred Hasfner, The chemistry of heterocyclic compounds-Small Ring Heterocycles part3 Oxiranes, John & Wiley and Sons, An Interscience Publication, New York, 1985, Yoshimura, Adhesion, Vol. 29, No. 12, 32, 1985, Yoshimura, Adhesion, Vol. 30, No. 5, 42, 1986, Yoshimura, Adhesion, Vol. 30, No. 7, 42, 1986, Japanese Patent Laid-Open No. 11-100308, Japanese Patent No. 2906245, Japanese Patent No. 2926262, etc. Can be synthesized.
 第2の重合性化合物は、分子中に水素結合性を有する官能基を有し、かつ、第1の重合性化合物と重合反応できる重合性基を有する。
 水素結合性を有する官能基としては、ウレタン基、ウレア基、またはヒドロキシル基等が挙げられる。
 第1の重合性化合物と重合反応できる重合性基としては、例えば、第1の重合性化合物が2官能以上の(メタ)アクリレートモノマーであるときは(メタ)アクリロイル基であればよく、第1の重合性化合物がエポキシ基およびオキセタニル基からなる群から選択される官能基を2つ以上有するモノマーであるときはエポキシ基またはオキセタニル基であればよい。
The second polymerizable compound has a functional group having hydrogen bonding properties in the molecule and a polymerizable group capable of undergoing a polymerization reaction with the first polymerizable compound.
Examples of the functional group having hydrogen bonding include a urethane group, a urea group, or a hydroxyl group.
As the polymerizable group capable of undergoing a polymerization reaction with the first polymerizable compound, for example, when the first polymerizable compound is a bifunctional or higher (meth) acrylate monomer, it may be a (meth) acryloyl group. When the polymerizable compound is a monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group, it may be an epoxy group or an oxetanyl group.
 ウレタン基を含む(メタ)アクリレートモノマーとしては、TDI、MDI、HDI、IPDI、HMDI等のジイソシアナートとポリ(プロピレンオキサイド)ジオール、ポリ(テトラメチレンオキサイド)ジオール、エトキシ化ビスフェノールA、エトキシ化ビスフェノールSスピログリコール、カプロラクトン変性ジオール、カーボネートジオール等のポリオール、および2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、グリシドールジ(メタ)アクリレート、ペンタエリスリトールトリアクリレート等のヒドロキシアクリレートを反応させて得られるモノマー、オリゴマーであり、特開2002-265650公報や、特開2002-355936号公報、特開2002-067238号公報等に記載の多官能ウレタンモノマーを挙げることができる。具体的には、TDIとヒドロキシエチルアクリレートとの付加物、IPDIとヒドロキシエチルアクリレートとの付加物、HDIとペンタエリスリトールトリアクリレート(PETA)との付加物、TDIとPETAとの付加物を作り残ったイソシアナートとドデシルオキシヒドロキシプロピルアクリレートを反応させた化合物、6,6ナイロンとTDIの付加物、ペンタエリスリトールとTDIとヒドロキシエチルアクリレートの付加物等をあげることができるが、これに限定されるものではない。 (Meth) acrylate monomers containing urethane groups include diisocyanates such as TDI, MDI, HDI, IPDI, and HMDI, poly (propylene oxide) diol, poly (tetramethylene oxide) diol, ethoxylated bisphenol A, and ethoxylated bisphenol. Reaction of polyols such as S spiro glycol, caprolactone-modified diol, carbonate diol, and hydroxy acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, glycidol di (meth) acrylate, pentaerythritol triacrylate Monomers and oligomers obtained by the above-described methods. JP-A Nos. 2002-265650, 2002-355936, and 2002-06723 It can be mentioned polyfunctional urethane monomers described in JP-like. Specifically, an adduct of TDI and hydroxyethyl acrylate, an adduct of IPDI and hydroxyethyl acrylate, an adduct of HDI and pentaerythritol triacrylate (PETA), and an adduct of TDI and PETA remained. Examples include compounds obtained by reacting isocyanate and dodecyloxyhydroxypropyl acrylate, adducts of 6,6 nylon and TDI, adducts of pentaerythritol, TDI and hydroxyethyl acrylate, but are not limited thereto. Absent.
 ウレタン基を含む(メタ)アクリレートモノマーとして好適に使用できる市販品としては、共栄社化学(株)製のAH-600、AT-600、UA-306H、UA-306T、UA-306I、UA-510H、UF-8001G、DAUA-167、新中村化学工業(株)製のUA-160TM、大阪有機化学工業(株)製のUV-4108F、UV-4117F等が挙げられる。これらは、1種単独で、または2種以上組み合わせて用いることができる。 Commercially available products that can be suitably used as a (meth) acrylate monomer containing a urethane group include AH-600, AT-600, UA-306H, UA-306T, UA-306I, UA-510H, manufactured by Kyoeisha Chemical Co., Ltd. UF-8001G, DAUA-167, UA-160TM manufactured by Shin-Nakamura Chemical Co., Ltd., UV-4108F manufactured by Osaka Organic Chemical Industry Co., Ltd., UV-4117F, and the like. These can be used alone or in combination of two or more.
 ヒドロキシル基を含む(メタ)アクリレートモノマーとしては、エポキシ基を有する化合物と(メタ)アクリル酸との反応により合成される化合物を挙げることができる。代表的なものは、エポキシ基を有する化合物により、ビスフェノールA型、ビスフェノールS型、ビスフェノールF型、エポキシ化油型、フェノールのノボラック型、脂環型に分類される。具体的な例としては、ビスフェノールAとエピクロルヒドリンの付加物に(メタ)アクリル酸を反応させた(メタ)アクリレート、フェノールノボラックにエピクロロヒドリンを反応させ、(メタ)アクリル酸を反応させた(メタ)アクリレート、ビスフェノールSとエピクロロヒドリンの付加物に(メタ)アクリル酸を反応させた(メタ)アクリレート、ビスフェノールSとエピクロロヒドリンの付加物に(メタ)アクリル酸を反応させた(メタ)アクリレート、エポキシ化大豆油に(メタ)アクリル酸を反応させた(メタ)アクリレート等を挙げることができる。また、ヒドロキシル基を含む(メタ)アクリレートモノマーとして他には、末端にカルボキシ基、またはリン酸基を有する(メタ)アクリレートモノマー等を挙げることができるが、これらに限定されるものではない。 Examples of the (meth) acrylate monomer containing a hydroxyl group include compounds synthesized by a reaction between a compound having an epoxy group and (meth) acrylic acid. Typical ones are classified into bisphenol A type, bisphenol S type, bisphenol F type, epoxidized oil type, phenol novolak type, and alicyclic type, depending on the compound having an epoxy group. As a specific example, (meth) acrylate obtained by reacting (meth) acrylic acid with an adduct of bisphenol A and epichlorohydrin, epichlorohydrin was reacted with phenol novolak, and (meth) acrylic acid was reacted ( (Meth) acrylate, bisphenol S and epichlorohydrin adduct was reacted with (meth) acrylic acid (meth) acrylate, bisphenol S and epichlorohydrin adduct was reacted with (meth) acrylic acid ( Examples include (meth) acrylate, (meth) acrylate obtained by reacting (meth) acrylic acid with epoxidized soybean oil, and the like. Other examples of the (meth) acrylate monomer containing a hydroxyl group include, but are not limited to, a (meth) acrylate monomer having a carboxy group or a phosphate group at the terminal.
 ヒドロキシル基を含む第2の重合性化合物として好適に使用できる市販品としては、共栄社化学(株)製のエポキシエステル、M-600A、40EM、70PA、200PA、80MFA、3002M、3002A、3000MK、3000A、日本化成(株)製の4-ヒドロキシブチルアクリレート、新中村化学工業(株)製の単官能アクリレートA-SA、単官能メタクリレートSA、ダイセル・オルネクス(株)製の単官能アクリレートβ-カルボキシエチルアクリレート、城北化学工業(株)製のJPA-514等が挙げられる。これらは、1種単独で、または2種以上組み合わせて用いることができる。
 第1の重合性化合物と第2の重合性化合物との質量比は10:90~99:1であればよく、10:90~90:10であることが好ましい。第2の重合性化合物の含有量に対し第1の重合性化合物の含有量が多いことも好ましく、具体的には(第1の重合性化合物の含有量)/(第2の重合性化合物の含有量)が2~10であることが好ましい。
As a commercially available product that can be suitably used as the second polymerizable compound containing a hydroxyl group, an epoxy ester manufactured by Kyoeisha Chemical Co., Ltd., M-600A, 40EM, 70PA, 200PA, 80MFA, 3002M, 3002A, 3000MK, 3000A, 4-hydroxybutyl acrylate manufactured by Nippon Kasei Co., Ltd., monofunctional acrylate A-SA manufactured by Shin-Nakamura Chemical Co., Ltd., monofunctional methacrylate SA, monofunctional acrylate β-carboxyethyl acrylate manufactured by Daicel Ornex Co., Ltd. And JPA-514 manufactured by Johoku Chemical Industry Co., Ltd. These can be used alone or in combination of two or more.
The mass ratio between the first polymerizable compound and the second polymerizable compound may be 10:90 to 99: 1, and is preferably 10:90 to 90:10. It is also preferable that the content of the first polymerizable compound is larger than the content of the second polymerizable compound. Specifically, (content of the first polymerizable compound) / (of the second polymerizable compound) The content is preferably 2 to 10.
 第1の重合性化合物と第2の重合性化合物とを含む樹脂をマトリックスとして用いる場合には、マトリックス中に、さらに単官能(メタ)アクリレートモノマーを含むことが好ましい。単官能(メタ)アクリレートモノマーとしては、アクリル酸およびメタクリル酸、それらの誘導体、より詳しくは、(メタ)アクリル酸の重合性不飽和結合((メタ)アクリロイル基)を分子内に1個有するモノマーを挙げることができる。それらの具体例として以下に化合物を挙げるが、本発明はこれに限定されるものではない。
 メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル基の炭素数が1~30であるアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート等のアラルキル基の炭素数が7~20であるアラルキル(メタ)アクリレート;ブトキシエチル(メタ)アクリレート等のアルコキシアルキル基の炭素数が2~30であるアルコキシアルキル(メタ)アクリレート;N,N-ジメチルアミノエチル(メタ)アクリレート等の(モノアルキルまたはジアルキル)アミノアルキル基の総炭素数が1~20であるアミノアルキル(メタ)アクリレート;ジエチレングリコールエチルエーテルの(メタ)アクリレート、トリエチレングリコールブチルエーテルの(メタ)アクリレート、テトラエチレングリコールモノメチルエーテルの(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテルの(メタ)アクリレート、オクタエチレングリコールのモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールのモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールのモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールのモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールのモノエチルエーテル(メタ)アクリレート等のアルキレン鎖の炭素数が1~10で末端アルキルエーテルの炭素数が1~10のポリアルキレングリコールアルキルエーテルの(メタ)アクリレート;ヘキサエチレングリコールフェニルエーテルの(メタ)アクリレート等のアルキレン鎖の炭素数が1~30で末端アリールエーテルの炭素数が6~20のポリアルキレングリコールアリールエーテルの(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチレンオキシド付加シクロデカトリエン(メタ)アクリレート等の脂環構造を有する総炭素数4~30の(メタ)アクリレート;ヘプタデカフロロデシル(メタ)アクリレート等の総炭素数4~30のフッ素化アルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、トリエチレングリコールのモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート、グリセロールのモノまたはジ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート;テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等のアルキレン鎖の炭素数が1~30のポリエチレングリコールモノ(メタ)アクリレート;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリルアミド、アクリロイルモルホリン等の(メタ)アクリルアミドなどが挙げられる。
 単官能(メタ)アクリレートモノマーは第1の重合性化合物と第2の重合性化合物との総質量100質量部に対して、1~300質量部含まれていることが好ましく、50~150質量部含まれていることがより好ましい。
When a resin containing the first polymerizable compound and the second polymerizable compound is used as the matrix, it is preferable that the matrix further contains a monofunctional (meth) acrylate monomer. Monofunctional (meth) acrylate monomers include acrylic acid and methacrylic acid, derivatives thereof, and more specifically, monomers having one polymerizable unsaturated bond ((meth) acryloyl group) of (meth) acrylic acid in the molecule Can be mentioned. Specific examples thereof include the following compounds, but the present invention is not limited thereto.
Methyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, stearyl ( Alkyl (meth) acrylates having an alkyl group such as meth) acrylate having 1 to 30 carbon atoms; aralkyl (meth) acrylates having an aralkyl group such as benzyl (meth) acrylate having 7 to 20 carbon atoms; butoxyethyl (meth) ) An alkoxyalkyl (meth) acrylate having 2 to 30 carbon atoms of an alkoxyalkyl group such as acrylate; the total carbon number of a (monoalkyl or dialkyl) aminoalkyl group such as N, N-dimethylaminoethyl (meth) acrylate; 1-2 An aminoalkyl (meth) acrylate which is: (meth) acrylate of diethylene glycol ethyl ether, (meth) acrylate of triethylene glycol butyl ether, (meth) acrylate of tetraethylene glycol monomethyl ether, (meth) acrylate of hexaethylene glycol monomethyl ether, Octaethylene glycol monomethyl ether (meth) acrylate, nonaethylene glycol monomethyl ether (meth) acrylate, dipropylene glycol monomethyl ether (meth) acrylate, heptapropylene glycol monomethyl ether (meth) acrylate, tetraethylene glycol monoethyl Alkyl chain such as ether (meth) acrylate has 1 to 10 carbon atoms and terminal alkyl (Meth) acrylate of polyalkylene glycol alkyl ether having 1 to 10 carbon atoms in ether; alkylene chain such as (meth) acrylate of hexaethylene glycol phenyl ether having 1 to 30 carbon atoms and terminal aryl ether having 6 carbon atoms (Meth) acrylate of -20 polyalkylene glycol aryl ethers; cycloaliphatic structures such as cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, and methylene oxide-added cyclodecatriene (meth) acrylate (Meth) acrylates having a total carbon number of 4 to 30; fluorinated alkyl (meth) acrylates having a total carbon number of 4 to 30 such as heptadecafluorodecyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, mono (meth) acrylate of triethylene glycol, tetraethylene glycol mono (meth) acrylate, hexaethylene glycol mono (meth) acrylate, octapropylene glycol mono (Meth) acrylate, (meth) acrylate having a hydroxyl group such as glycerol mono- or di (meth) acrylate; (meth) acrylate having a glycidyl group such as glycidyl (meth) acrylate; tetraethylene glycol mono (meth) acrylate, hexa Polyethylene glycol mono (meth) having an alkylene chain of 1 to 30 carbon atoms such as ethylene glycol mono (meth) acrylate and octapropylene glycol mono (meth) acrylate. ) Acrylate; (meth) acrylamide, N, N- dimethyl (meth) acrylamide, N- isopropyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylamide, acryloyl morpholine (meth) acrylamide and the like.
The monofunctional (meth) acrylate monomer is preferably contained in an amount of 1 to 300 parts by mass, and 50 to 150 parts by mass with respect to a total mass of 100 parts by mass of the first polymerizable compound and the second polymerizable compound. More preferably it is included.
 また、炭素数4~30の長鎖アルキル基を有する化合物を含むことが好ましい。具体的には第1の重合性化合物、第2の重合性化合物、または単官能(メタ)アクリレートモノマーの少なくともいずれかが、炭素数4~30の長鎖アルキル基を有することが好ましい。上記長鎖アルキル基は炭素数12~22の長鎖アルキル基であることがより好ましい。これにより、量子ドットの分散性が向上するからである。量子ドットの分散性が向上するほど、光変換層から出射面に直行する光量が増えるため、正面輝度および正面コントラストの向上に有効である。
 炭素数4~30の長鎖アルキル基を有する単官能(メタ)アクリレートモノマーとしては、具体的には、ブチル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、オレイル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、ブチル(メタ)アクリルアミド、オクチル(メタ)アクリルアミド、ラウリル(メタ)アクリルアミド、オレイル(メタ)アクリルアミド、ステアリル(メタ)アクリルアミド、ベヘニル(メタ)アクリルアミド等が好ましい。中でもラウリル(メタ)アクリレート、オレイル(メタ)アクリレート、ステアリル(メタ)アクリレートが特に好ましい。
Further, it preferably contains a compound having a long-chain alkyl group having 4 to 30 carbon atoms. Specifically, at least one of the first polymerizable compound, the second polymerizable compound, and the monofunctional (meth) acrylate monomer preferably has a long-chain alkyl group having 4 to 30 carbon atoms. The long chain alkyl group is more preferably a long chain alkyl group having 12 to 22 carbon atoms. This is because the dispersibility of the quantum dots is improved. As the dispersibility of the quantum dots improves, the amount of light that goes straight from the light conversion layer to the exit surface increases, which is effective in improving front luminance and front contrast.
Specific examples of the monofunctional (meth) acrylate monomer having a long-chain alkyl group having 4 to 30 carbon atoms include butyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, and oleyl (meth) acrylate. , Stearyl (meth) acrylate, behenyl (meth) acrylate, butyl (meth) acrylamide, octyl (meth) acrylamide, lauryl (meth) acrylamide, oleyl (meth) acrylamide, stearyl (meth) acrylamide, behenyl (meth) acrylamide, etc. preferable. Of these, lauryl (meth) acrylate, oleyl (meth) acrylate, and stearyl (meth) acrylate are particularly preferable.
 また、本発明の第2の態様の積層フィルムにおいて、光学機能層は、少なくとも2種以上の重合性化合物を含む重合性組成物を硬化させてなる硬化層である。また少なくとも2種以上併用する重合性化合物の重合性基は、同一であっても異なっていてもよく、好ましくは該少なくとも2種の化合物は少なくとも1つ以上の共通の重合性基を有することが好ましい。
 重合性基の種類は、特に限定されないが、好ましくは、(メタ)アクリレート基、ビニル基またはエポキシ基、オキセタニル基であり、より好ましくは、(メタ)アクリレート基であり、さらに好ましくは、アクリレート基である。
In the laminated film of the second aspect of the present invention, the optical functional layer is a cured layer obtained by curing a polymerizable composition containing at least two or more polymerizable compounds. The polymerizable groups of the polymerizable compounds used in combination of at least two may be the same or different, and preferably the at least two compounds have at least one common polymerizable group. preferable.
The type of the polymerizable group is not particularly limited, but is preferably a (meth) acrylate group, a vinyl group or an epoxy group, or an oxetanyl group, more preferably a (meth) acrylate group, and still more preferably an acrylate group. It is.
 本発明の重合性化合物は、単官能の重合性化合物からなる第一の重合性化合物の少なくとも一種と多官能重合性化合物からなる第二の重合性化合物の少なくとも一種とを含むことが好ましい。
 具体的には、例えば、以下の第3の重合性化合物と第4の重合性化合物とを含む態様をとることができる。
The polymerizable compound of the present invention preferably contains at least one first polymerizable compound composed of a monofunctional polymerizable compound and at least one second polymerizable compound composed of a polyfunctional polymerizable compound.
Specifically, for example, an embodiment including the following third polymerizable compound and fourth polymerizable compound can be employed.
 第3の重合性化合物は、単官能(メタ)アクリレートモノマー、ならびにエポキシ基、オキセタニル基からなる群から選択される官能基を1つ有するモノマーである。 The third polymerizable compound is a monofunctional (meth) acrylate monomer and a monomer having one functional group selected from the group consisting of an epoxy group and an oxetanyl group.
 単官能(メタ)アクリレートモノマーとしては、アクリル酸およびメタクリル酸、それらの誘導体、より詳しくは、(メタ)アクリル酸の重合性不飽和結合(メタ)アクリロイル基を分子内に1個有し、アルキル基の炭素数が1~30である脂肪族または芳香族モノマーを挙げることができる。それらの具体例として以下に化合物を挙げるが、本発明はこれに限定されるものではない。
 脂肪族単官能(メタ)アクリレートモノマーとしては、メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル基の炭素数が1~30であるアルキル(メタ)アクリレート;
 ブトキシエチル(メタ)アクリレート等のアルコキシアルキル基の炭素数が2~30であるアルコキシアルキル(メタ)アクリレート;
 N,N-ジメチルアミノエチル(メタ)アクリレート等の(モノアルキルまたはジアルキル)アミノアルキル基の総炭素数が1~20であるアミノアルキル(メタ)アクリレート;
 ジエチレングリコールエチルエーテルの(メタ)アクリレート、トリエチレングリコールブチルエーテルの(メタ)アクリレート、テトラエチレングリコールモノメチルエーテルの(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテルの(メタ)アクリレート、オクタエチレングリコールのモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールのモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールのモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールのモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールのモノエチルエーテル(メタ)アクリレート等のアルキレン鎖の炭素数が1~10で末端アルキルエーテルの炭素数が1~10のポリアルキレングリコールアルキルエーテルの(メタ)アクリレート;
 ヘキサエチレングリコールフェニルエーテルの(メタ)アクリレート等のアルキレン鎖の炭素数が1~30で末端アリールエーテルの炭素数が6~20のポリアルキレングリコールアリールエーテルの(メタ)アクリレート;
 シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチレンオキシド付加シクロデカトリエン(メタ)アクリレート等の脂環構造を有する総炭素数4~30の(メタ)アクリレート;ヘプタデカフロロデシル(メタ)アクリレート等の総炭素数4~30のフッ素化アルキル(メタ)アクリレート;
 2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、トリエチレングリコールのモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート、グリセロールのモノ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート;
 グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート;
 テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等のアルキレン鎖の炭素数が1~30のポリエチレングリコールモノ(メタ)アクリレート;
 (メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリルアミド、アクリロイルモルホリン等の(メタ)アクリルアミドなどが挙げられる。
 芳香族単官能アクリレートモノマーとしては、ベンジル(メタ)アクリレート等のアラルキル基の炭素数が7~20であるアラルキル(メタ)アクリレートが挙げられる。
 また、第1の重合性化合物のなかでも、アルキル基の炭素数が4~30である脂肪族または芳香族アルキル(メタ)アクリレートが好ましく、更には、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチレンオキシド付加シクロデカトリエン(メタ)アクリレートが好ましい。これにより、量子ドットの分散性が向上するからである。量子ドットの分散性が向上するほど、光変換層から出射面に直行する光量が増えるため、正面輝度および正面コントラストの向上に有効である。
Monofunctional (meth) acrylate monomers include acrylic acid and methacrylic acid, derivatives thereof, more specifically, (meth) acrylic acid polymerizable unsaturated bond (meth) acryloyl group in the molecule, alkyl Mention may be made of aliphatic or aromatic monomers whose group has 1 to 30 carbon atoms. Specific examples thereof include the following compounds, but the present invention is not limited thereto.
Aliphatic monofunctional (meth) acrylate monomers include methyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, n-octyl ( Alkyl (meth) acrylates having 1 to 30 carbon atoms in the alkyl group, such as (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate;
An alkoxyalkyl (meth) acrylate having 2 to 30 carbon atoms in the alkoxyalkyl group such as butoxyethyl (meth) acrylate;
Aminoalkyl (meth) acrylates in which the total number of carbon atoms of the (monoalkyl or dialkyl) aminoalkyl group is 1-20, such as N, N-dimethylaminoethyl (meth) acrylate;
(Meth) acrylate of diethylene glycol ethyl ether, (meth) acrylate of triethylene glycol butyl ether, (meth) acrylate of tetraethylene glycol monomethyl ether, (meth) acrylate of hexaethylene glycol monomethyl ether, monomethyl ether of octaethylene glycol (meth) Alkylene chain such as acrylate, monomethyl ether (meth) acrylate of nonaethylene glycol, monomethyl ether (meth) acrylate of dipropylene glycol, monomethyl ether (meth) acrylate of heptapropylene glycol, monoethyl ether (meth) acrylate of tetraethylene glycol A polyalkylene having 1 to 10 carbon atoms and a terminal alkyl ether having 1 to 10 carbon atoms Recall alkyl ether (meth) acrylate;
(Meth) acrylates of polyalkylene glycol aryl ethers having an alkylene chain of 1 to 30 carbon atoms and a terminal aryl ether of 6 to 20 carbon atoms such as (meth) acrylate of hexaethylene glycol phenyl ether;
(Meth) acrylates having a total carbon number of 4 to 30 and having an alicyclic structure such as cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, and methylene oxide-added cyclodecatriene (meth) acrylate; Fluorinated alkyl (meth) acrylates having 4 to 30 carbon atoms in total, such as heptadecafluorodecyl (meth) acrylate;
2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, triethylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, hexaethylene glycol mono (Meth) acrylate having a hydroxyl group such as (meth) acrylate, octapropylene glycol mono (meth) acrylate, mono (meth) acrylate of glycerol;
(Meth) acrylates having a glycidyl group such as glycidyl (meth) acrylate;
Polyethylene glycol mono (meth) acrylate having 1 to 30 carbon atoms in the alkylene chain, such as tetraethylene glycol mono (meth) acrylate, hexaethylene glycol mono (meth) acrylate and octapropylene glycol mono (meth) acrylate;
Examples include (meth) acrylamide such as (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylamide, acryloylmorpholine, and the like.
Examples of the aromatic monofunctional acrylate monomer include aralkyl (meth) acrylates having 7 to 20 carbon atoms in the aralkyl group such as benzyl (meth) acrylate.
Of the first polymerizable compounds, aliphatic or aromatic alkyl (meth) acrylates having an alkyl group with 4 to 30 carbon atoms are preferred, and n-octyl (meth) acrylate, lauryl (meth) acrylate are also preferred. ) Acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, and methylene oxide-added cyclodecatriene (meth) acrylate. This is because the dispersibility of the quantum dots is improved. As the dispersibility of the quantum dots improves, the amount of light that goes straight from the light conversion layer to the exit surface increases, which is effective in improving front luminance and front contrast.
 第3の重合性化合物は、第3の重合性化合物と第4の重合性化合物との総質量100質量部に対して、5~99.9質量部含まれていることが好ましく、20~85質量部含まれていることが後述する理由より好ましい。 The third polymerizable compound is preferably contained in an amount of 5 to 99.9 parts by mass with respect to a total mass of 100 parts by mass of the third polymerizable compound and the fourth polymerizable compound, It is preferable for the reason mentioned later that the mass part is contained.
 第4の重合性化合物は、多官能(メタ)アクリレートモノマー、ならびにエポキシ基、オキセタニル基からなる群から選択される官能基を分子内に2つ以上有するモノマーである。 The fourth polymerizable compound is a monomer having two or more functional groups in the molecule selected from the group consisting of a polyfunctional (meth) acrylate monomer and an epoxy group or an oxetanyl group.
 2官能以上の多官能(メタ)アクリレートモノマーのうち、2官能の(メタ)アクリレートモノマーとしては、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジアクリレート、トリプロピレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジアクリレート、エトキシ化ビスフェノールAジアクリレート等が好ましい例として挙げられる。 Among the bifunctional or higher polyfunctional (meth) acrylate monomers, the bifunctional (meth) acrylate monomers include neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9- Nonanediol di (meth) acrylate, 1,10-decanediol diacrylate, tripropylene glycol di (meth) acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di Preferred examples include (meth) acrylate, polyethylene glycol di (meth) acrylate, tricyclodecane dimethanol diacrylate, ethoxylated bisphenol A diacrylate, and the like.
 また、2官能以上の多官能(メタ)アクリレートモノマーのうち、3官能以上の(メタ)アクリレートモノマーとしては、ECH変性グリセロールトリ(メタ)アクリレート、EO変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、EO変性リン酸トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が好ましい例として挙げられる。 Among polyfunctional (meth) acrylate monomers having two or more functions, trifunctional or more (meth) acrylate monomers include ECH-modified glycerol tri (meth) acrylate, EO-modified glycerol tri (meth) acrylate, and PO-modified glycerol trimethyl. (Meth) acrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, EO modified phosphoric acid triacrylate, trimethylolpropane tri (meth) acrylate, caprolactone modified trimethylolpropane tri (meth) acrylate, EO modified trimethylolpropane tri (meta ) Acrylate, PO-modified trimethylolpropane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, dipentaerythritol hexa (meth) ) Acrylate, dipentaerythritol penta (meth) acrylate, caprolactone modified dipentaerythritol hexa (meth) acrylate, dipentaerythritol hydroxypenta (meth) acrylate, alkyl modified dipentaerythritol penta (meth) acrylate, dipentaerythritol poly (meta) ) Acrylate, alkyl-modified dipentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, and the like.
 また、多官能モノマーとして、分子内にウレタン結合を有する(メタ)アクリレートモノマー、具体的には、TDIとヒドロキシエチルアクリレートとの付加物、IPDIとヒドロキシエチルアクリレートとの付加物、HDIとペンタエリスリトールトリアクリレート(PETA)との付加物、TDIとPETAとの付加物を作り残ったイソシアナートとドデシルオキシヒドロキシプロピルアクリレートを反応させた化合物、6,6ナイロンとTDIの付加物、ペンタエリスリトールとTDIとヒドロキシエチルアクリレートの付加物等を用いることもできる。 Further, as a polyfunctional monomer, a (meth) acrylate monomer having a urethane bond in the molecule, specifically, an adduct of TDI and hydroxyethyl acrylate, an adduct of IPDI and hydroxyethyl acrylate, HDI and pentaerythritol tris. Adducts with acrylate (PETA), compounds obtained by reacting the remaining isocyanate with dodecyloxyhydroxypropyl acrylate, adducts of 6,6 nylon and TDI, pentaerythritol, TDI and hydroxy An adduct of ethyl acrylate can also be used.
 エポキシ基およびオキセタニル基からなる群から選択される官能基を2つ以上有するモノマーとしては、例えば、脂肪族環状エポキシ化合物、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル、臭素化ビスフェノールFジグリシジルエーテル、臭素化ビスフェノールSジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールSジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル類;エチレングリコール、プロピレングリコール、グリセリンなどの脂肪族多価アルコールに1種または2種以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル類;脂肪族長鎖二塩基酸のジグリシジルエステル類;高級脂肪酸のグリシジルエステル類;エポキシシクロアルカンを含む化合物等が好適に用いられる。 Monomers having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups include, for example, aliphatic cyclic epoxy compounds, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, bromine Bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, brominated bisphenol S diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 1,4 -Butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether , Polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ethers; polyether polyols obtained by adding one or more alkylene oxides to aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin Glycidyl ethers; diglycidyl esters of aliphatic long-chain dibasic acids; glycidyl esters of higher fatty acids; compounds containing epoxycycloalkanes, etc. are preferably used.
 エポキシ基およびオキセタニル基からなる群から選択される官能基を2つ以上有するモノマーとして好適に使用できる市販品としては、ダイセル化学工業(株)のセロキサイド2021P、セロキサイド8000、シグマアルドリッチ社製の4-ビニルシクロヘキセンジオキシド等が挙げられる。 Examples of commercially available products that can be suitably used as a monomer having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups include Daicel Chemical Industries, Ltd. Celoxide 2021P, Celoxide 8000, and Sigma Aldrich 4- Examples include vinylcyclohexene dioxide.
 また、エポキシ基およびオキセタニル基からなる群から選択される官能基を2つ以上有するモノマーはその製法は問わないが、例えば、丸善KK出版、第四版実験化学講座20有機合成II、213~、平成4年、Ed.by Alfred Hasfner,The chemistry of heterocyclic compounds-Small Ring Heterocycles part3 Oxiranes,John & Wiley and Sons,An Interscience Publication,New York,1985、吉村、接着、29巻12号、32、1985、吉村、接着、30巻5号、42、1986、吉村、接着、30巻7号、42、1986、特開平11-100378号公報、特許第2906245号公報、特許第2926262号公報などの文献を参考にして合成できる。 A monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group may be produced by any method. For example, Maruzen KK Publishing Co., Ltd., Fourth Edition Experimental Chemistry Course 20 Organic Synthesis II, 213, 1992, Ed.by Alfred Hasfner, The chemistry of heterocyclic compounds-Small Ring Heterocycles part3 Oxiranes, John & Wiley and Sons, An Interscience Publication, New York, 1985, Yoshimura, Adhesion, Vol. 29, No. 12, 32, 1985, Yoshimura, Adhesion, Vol. 30, No. 5, 42, 1986, Yoshimura, Adhesion, Vol. 30, No. 7, 42, 1986, Japanese Patent Laid-Open No. 11-100308, Japanese Patent No. 2906245, Japanese Patent No. 2926262, etc. Can be synthesized.
 第4の重合性化合物は第3の重合性化合物と第4の重合性化合物との総質量100質量部に対して、0.1質量部~95質量部含まれていることが好ましく、15質量部~80質量部含まれていることが後述する理由より好ましい。 The fourth polymerizable compound is preferably contained in an amount of 0.1 to 95 parts by mass with respect to 100 parts by mass of the total mass of the third polymerizable compound and the fourth polymerizable compound, and 15 parts by mass. The content is preferably from 80 parts by mass to 80 parts by mass for the reason described later.
 ここで、本願の光学機能層に対して後述する端面封止層を設けるにあたり、スパッタリング法、真空蒸着法、イオンプレーティング法、および、プラズマCVD法より機能性積層体端面に金属薄膜を形成する。例えば単官能(メタ)アクリレート化合物のみからなる硬化物のマトリックス端面に、スパッタリング法で金属薄膜を形成すると金属薄膜の内部応力にマトリックスが耐え切れず欠陥が生じ、十分なバリア性を付与できない。一方、多官能(メタ)アクリレート化合物のみからなるマトリックスでは、金属薄膜の欠陥は生じないが、硬く脆いために端面の平滑性が悪く、金属薄膜が端面を均一に被覆することができず、その結果バリア性が損なわれる。そこで、本発明では単官能(メタ)アクリレートモノマーと、多官能(メタ)アクリレートモノマーを上述した適切な範囲に混合することで、金属薄膜形成時の膜収縮に耐え、マトリックス端面の金属薄膜の欠陥をなくし、且つ平滑性を確保することができ、端面に高いバリア性を有する端面封止層を形成することができる。 Here, in providing an end face sealing layer to be described later on the optical functional layer of the present application, a metal thin film is formed on the end face of the functional laminate by sputtering, vacuum deposition, ion plating, and plasma CVD. . For example, if a metal thin film is formed on the matrix end face of a cured product made of only a monofunctional (meth) acrylate compound by a sputtering method, the matrix cannot withstand the internal stress of the metal thin film, resulting in defects, and sufficient barrier properties cannot be imparted. On the other hand, in the matrix consisting only of the polyfunctional (meth) acrylate compound, the defect of the metal thin film does not occur, but since it is hard and brittle, the smoothness of the end face is poor, and the metal thin film cannot cover the end face uniformly. As a result, the barrier property is impaired. Therefore, in the present invention, by mixing the monofunctional (meth) acrylate monomer and the polyfunctional (meth) acrylate monomer in the appropriate range described above, the film can withstand film shrinkage during the formation of the metal thin film, and defects in the metal thin film on the matrix end face. In addition, it is possible to ensure smoothness and to form an end surface sealing layer having high barrier properties on the end surface.
 本願の光学機能層を形成する硬化物マトリックスの50℃における弾性率としては、1MPa以上4000MPa以下であることが好ましく、10MPa以上3000MPa以下であることが更に好ましい。50℃における弾性率を用いているのは、例えばスパッタリング法では製膜時に膜面温度が50℃程度に到達するため、膜収縮に抵抗するマトリックスの物性値としているためである。この範囲にすることで、端部封止層の金属薄膜の欠陥を少なくすることが可能となる。 The elastic modulus at 50 ° C. of the cured matrix forming the optical functional layer of the present application is preferably 1 MPa or more and 4000 MPa or less, and more preferably 10 MPa or more and 3000 MPa or less. The reason why the elastic modulus at 50 ° C. is used is that, for example, in the sputtering method, the film surface temperature reaches about 50 ° C. during film formation, so that the physical property value of the matrix that resists film shrinkage is used. By setting it in this range, it becomes possible to reduce defects in the metal thin film of the end sealing layer.
(粘度調整剤)
 重合性組成物は、必要に応じて粘度調整剤を含んでいてもよい。粘度調整剤は、粒径が5nm~300nmであるフィラーであることが好ましい。また、粘度調整剤はチキソトロピー剤であることも好ましい。なお本発明および本明細書中、チキソトロピー性とは、液状組成物において、せん断速度の増加に対して粘性を減じる性質を指し、チキソトロピー剤とは、それを液状組成物に含ませることによって、組成物にチキソトロピー性を付与する機能を有する素材のことを指す。チキソトロピー剤の具体例としては、ヒュームドシリカ、アルミナ、窒化珪素、二酸化チタン、炭酸カルシウム、酸化亜鉛、タルク、雲母、長石、カオリナイト(カオリンクレー)、パイロフィライト(ろう石クレー)、セリサイト(絹雲母)、ベントナイト、スメクタイト・バーミキュライト類(モンモリロナイト、バイデライト、ノントロナイト、サポナイトなど)、有機ベントナイト、有機スメクタイト等が挙げられる。
 一態様では、重合性組成物は、粘度がせん断速度500s-1の時に3mPa・s~50mPa・sであり、せん断速度1s-1の時に100mPa・s以上であることが好ましい。このように粘度調整するために、チキソトロピー剤を用いることが好ましい。また、重合性組成物の粘度がせん断速度500s-1の時に3mPa・s~50mPa・sであり、せん断速度1s-1の時に100mPa・s以上であることが好ましい理由は、以下の通りである。
 機能性積層体の製造方法の一例としては、後述するように、第1の基材に重合性組成物を塗布したのちに、重合性性組成物の上に第2の基材を貼り付けてから、重合性組成物を硬化して波長変換層を形成する工程を含む製造方法を挙げることができる。上記製造方法では、第1の基材に重合性組成物を塗布する際に塗布スジが生じないように均一に塗布して塗膜の膜厚を均一にすることが望ましく、そのためには塗布性とレベリング性の観点から塗布液(重合性組成物)の粘度は低いことが好ましい。一方、第1の基材に塗布された塗布液の上に第2の基材を均一に貼り合せるためには貼り合せ時の圧力への抵抗力が高いことが好ましく、この点から高粘度の塗布液が好ましい。上記のせん断速度500s-1とは、第1の基材に塗布される塗布液に加わるせん断速度の代表値であり、せん断速度1s-1とは塗布液に第2の基材を貼り合せる直前に塗布液に加わるせん断速度の代表値である。なお、せん断速度1s-1とはあくまでも代表値に過ぎない。第1の基材に塗布された塗布液の上に第2の基材を貼り合せる際、第1の基材と第2の基材を同速度で搬送しつつ貼り合せるのであれば塗布液に加わるせん断速度はほぼ0s-1であり、実製造工程において塗布液に加わるせん断速度が1s-1に限定されるものではない。せん断速度500s-1も同様に代表値に過ぎず、実製造工程において塗布液に加わるせん断速度が500s-1に限定されるものではない。そして均一な塗布および貼り合せの観点から、重合性組成物の粘度を、第1の基材に塗布液を塗布する際に塗布液に加わるせん断速度の代表値500s-1の時に3mPa・s~50mPa・sであり、第1の基材に塗布された塗布液上に第2の基材を貼り合せる直前に塗布液に加わるせん断速度の代表値1s-1の時に100mPa・s以上であるように調整することが好ましい。
(Viscosity modifier)
The polymerizable composition may contain a viscosity modifier as necessary. The viscosity modifier is preferably a filler having a particle size of 5 nm to 300 nm. The viscosity modifier is also preferably a thixotropic agent. In the present invention and the present specification, thixotropic property refers to a property of reducing the viscosity with respect to an increase in shear rate in a liquid composition, and a thixotropic agent is a composition obtained by including it in the liquid composition. It refers to a material having a function of imparting thixotropy to an object. Specific examples of thixotropic agents include fumed silica, alumina, silicon nitride, titanium dioxide, calcium carbonate, zinc oxide, talc, mica, feldspar, kaolinite (kaolin clay), pyrophyllite (waxite clay), and sericite. (Sericite), bentonite, smectite vermiculites (montmorillonite, beidellite, nontronite, saponite, etc.), organic bentonite, organic smectite and the like.
In one embodiment, the polymerizable composition has a viscosity of 3 mPa · s to 50 mPa · s when the shear rate is 500 s −1 , and preferably 100 mPa · s or more when the shear rate is 1 s −1 . In order to adjust the viscosity in this way, it is preferable to use a thixotropic agent. The viscosity of the polymerizable composition is a 3mPa · s ~ 50mPa · s when the shear rate 500 s -1, why is preferably 100 mPa · s or more at a shear rate of 1s -1 is as follows .
As an example of the method for producing the functional laminate, as described later, after applying the polymerizable composition to the first substrate, the second substrate is pasted on the polymerizable composition. From the above, a production method including the step of curing the polymerizable composition to form the wavelength conversion layer can be mentioned. In the above production method, it is desirable to uniformly apply the coating composition so that no coating stripes are formed when the polymerizable composition is applied to the first substrate, and for this purpose, the coating property is uniform. From the viewpoint of leveling properties, the coating solution (polymerizable composition) preferably has a low viscosity. On the other hand, in order to uniformly bond the second substrate onto the coating solution applied to the first substrate, it is preferable that the resistance to pressure at the time of bonding is high. A coating solution is preferred. The shear rate of 500 s −1 is a representative value of the shear rate applied to the coating solution applied to the first substrate, and the shear rate of 1 s −1 is immediately before the second substrate is bonded to the coating solution. This is a representative value of the shear rate applied to the coating solution. Note that the shear rate 1 s −1 is merely a representative value. When the second substrate is bonded onto the coating solution applied to the first substrate, the first substrate and the second substrate are bonded to each other while being transported at the same speed. The applied shear rate is approximately 0 s −1 , and the shear rate applied to the coating solution in the actual manufacturing process is not limited to 1 s −1 . Similarly, the shear rate of 500 s −1 is merely a representative value, and the shear rate applied to the coating solution in the actual manufacturing process is not limited to 500 s −1 . From the viewpoint of uniform application and bonding, the viscosity of the polymerizable composition is 3 mPa · s when the representative value of the shear rate applied to the coating liquid is 500 s −1 when the coating liquid is applied to the first substrate. 50 mPa · s, which is 100 mPa · s or more when the representative value of the shear rate applied to the coating solution is 1 s −1 immediately before the second substrate is bonded onto the coating solution applied to the first substrate. It is preferable to adjust to.
(溶媒)
 上記重合性組成物は、必要に応じて溶媒を含んでいてもよい。この場合に使用される溶媒の種類および添加量は、特に限定されない。例えば溶媒として、有機溶媒を一種または二種以上混合して用いることができる。
(solvent)
The said polymerizable composition may contain the solvent as needed. In this case, the type and amount of the solvent used are not particularly limited. For example, one or a mixture of two or more organic solvents can be used as the solvent.
 また、マトリックスとなる樹脂中に、トリフルオロエチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、(パーフルオロブチル)エチル(メタ)アクリレート、パーフルオロブチル-ヒドロキシプロピル(メタ)アクリレート、(パーフルオロヘキシル)エチル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート等のフッ素原子を有する化合物を含んでいてもよい。これらの化合物を含むことにより塗布性を向上させることができる。
 また、量子ドット層中のマトリックスとなる樹脂の総量には特に限定はないが、量子ドット層の全量100質量部に対して、90質量部~99.9質量部であることが好ましく、92質量部~99質量部であることがより好ましい。
In addition, in the matrix resin, trifluoroethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, (perfluorobutyl) ethyl (meth) acrylate, perfluorobutyl-hydroxypropyl (meth) acrylate, (perfluoro Hexyl) ethyl (meth) acrylate, octafluoropentyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate and other compounds having a fluorine atom may be included. By including these compounds, the coating property can be improved.
Further, the total amount of the resin serving as a matrix in the quantum dot layer is not particularly limited, but is preferably 90 to 99.9 parts by mass with respect to 100 parts by mass of the total amount of the quantum dot layer, and 92 parts by mass. More preferred is from 99 parts by mass to 99 parts by mass.
 量子ドット層の厚みは特に制限されないが、取り扱い性および発光特性の点で、5μm~200μmが好ましく、10μm~150μmがより好ましい。
 なお、上記厚みは平均厚みを意図し、平均厚みは量子ドット層の任意の10点以上の厚みを測定して、それらを算術平均して求める。
The thickness of the quantum dot layer is not particularly limited, but is preferably 5 μm to 200 μm and more preferably 10 μm to 150 μm from the viewpoints of handleability and light emission characteristics.
In addition, the said thickness intends average thickness, average thickness calculates | requires the thickness of arbitrary 10 points | pieces or more of a quantum dot layer, and calculates | requires them arithmetically.
 第1の態様において、量子ドット層の形成方法には特に限定はなく、公知の方法で形成すればよい。例えば、量子ドットとマトリックスとなる樹脂と溶剤とを混合した塗布組成物を調整し、この塗布組成物をガスバリア層14上に塗布し、硬化させることで形成することができる。
 第2の態様において、量子ドット層の形成方法は、蛍光体(量子ドット)および少なくとも2種以上の重合性化合物を含む重合性組成物を調整し、この塗布組成物をガスバリア層14上に塗布し、硬化させることで形成することができる。
 なお、量子ドット層となる塗布組成物には、必要に応じて、重合開始剤やシランカップリング剤等を添加してもよい。
In the first aspect, the method for forming the quantum dot layer is not particularly limited, and may be formed by a known method. For example, it can be formed by preparing a coating composition in which quantum dots, a matrix resin, and a solvent are mixed, applying the coating composition on the gas barrier layer 14, and curing the coating composition.
In the second embodiment, the quantum dot layer is formed by adjusting a polymerizable composition containing a phosphor (quantum dot) and at least two or more polymerizable compounds, and applying this coating composition on the gas barrier layer 14. Then, it can be formed by curing.
In addition, you may add a polymerization initiator, a silane coupling agent, etc. to the coating composition used as a quantum dot layer as needed.
 ガスバリア層14は、光学機能層12の主面に積層される、ガスバリア性を有する層である。すなわち、ガスバリア層14は、光学機能層12の主面を覆って、光学機能層12の主面からの水分や酸素の浸入を抑制するための部材である。 The gas barrier layer 14 is a layer having a gas barrier property, which is laminated on the main surface of the optical functional layer 12. That is, the gas barrier layer 14 is a member that covers the main surface of the optical functional layer 12 and suppresses the intrusion of moisture and oxygen from the main surface of the optical functional layer 12.
 ガスバリア層14は、水蒸気透過度が1×10-3[g/(m2・day)]以下であるのが好ましい。
 また、ガスバリア層14は、酸素透過度が1×10-2[cc/(m2・day・atm)]以下であるのが好ましい。
 水蒸気透過度ならびに酸素透過度が低い、すなわち、ガスバリア性が高いガスバリア層14を用いることで、光学機能層12への水分や酸素の浸入を防止して光学機能層12の劣化をより好適に防止することができる。
 なお、水蒸気透過度は、温度40℃、相対湿度90%RHの条件下でモコン法によって測定した。また、水蒸気透過度が、モコン法の測定限界を超えた場合には、カルシウム腐食法(特開2005-283561号公報に記載される方法)によって測定した。
 また、酸素透過度は、APIMS法(大気圧イオン化質量分析法)による測定装置(株式会社日本エイピーアイ社製)を用いて、温度25℃、湿度60%RHの条件下で測定した。なお、酸素透過度のSI単位として、fm/(s・Pa)があることが知られている。1fm/(s・Pa)=8.752cc/(m2・day・atm)で換算できる(fm:フェムトメートル)。
The gas barrier layer 14 preferably has a water vapor permeability of 1 × 10 −3 [g / (m 2 · day)] or less.
The gas barrier layer 14 preferably has an oxygen permeability of 1 × 10 −2 [cc / (m 2 · day · atm)] or less.
By using the gas barrier layer 14 having a low water vapor permeability and oxygen permeability, that is, a high gas barrier property, the penetration of moisture and oxygen into the optical functional layer 12 is prevented, and the optical functional layer 12 is more preferably prevented from being deteriorated. can do.
The water vapor permeability was measured by the Mocon method under the conditions of a temperature of 40 ° C. and a relative humidity of 90% RH. When the water vapor permeability exceeded the measurement limit of the Mocon method, it was measured by the calcium corrosion method (the method described in JP-A-2005-283561).
Moreover, the oxygen permeability was measured under the conditions of a temperature of 25 ° C. and a humidity of 60% RH using a measuring device (manufactured by Nippon API Co., Ltd.) using an APIMS method (atmospheric pressure ionization mass spectrometry). It is known that there is fm / (s · Pa) as an SI unit of oxygen permeability. 1 fm / (s · Pa) = 8.752 cc / (m 2 · day · atm) (fm: femtometer).
 また、ガスバリア層14の厚さは、5μm~100μmであるのが好ましく、10μm~70μmがより好ましく、15μm~55μmが特に好ましい。
 ガスバリア層14の厚さを100μm以下とすることで、光学機能層12を含む積層フィルム10a全体の厚さを薄くできる等の点で好ましい。
 また、ガスバリア層14の厚さを5μm以上とすることで、2つのガスバリア層14の間に光学機能層12を形成する際に、光学機能層12の厚さを均一にできる等の点で好ましい。
The thickness of the gas barrier layer 14 is preferably 5 μm to 100 μm, more preferably 10 μm to 70 μm, and particularly preferably 15 μm to 55 μm.
Setting the thickness of the gas barrier layer 14 to 100 μm or less is preferable in that the thickness of the entire laminated film 10a including the optical functional layer 12 can be reduced.
Further, the thickness of the gas barrier layer 14 is preferably 5 μm or more, which is preferable in that the thickness of the optical functional layer 12 can be made uniform when the optical functional layer 12 is formed between the two gas barrier layers 14. .
 ここで、ガスバリア層14としては、特に限定はなく、所望のガスバリア性を有するガスバリアフィルムが適宜利用可能である。
 一例として、ガスバリア支持体30の上に、バリア層32として、少なくとも1層の有機層と、少なくとも1層の無機層とを有するガスバリアフィルムが好適に用いられる。
 図2に、ガスバリアフィルムの一例を概念的に表す断面図を示す。
 図2に示すガスバリアフィルム(ガスバリア層)14は、有機層34、無機層36および有機層38をこの順に積層してなるバリア層32と、バリア層32を支持するガスバリア支持体30とを有してなる。
Here, there is no limitation in particular as the gas barrier layer 14, The gas barrier film which has desired gas barrier property can be utilized suitably.
As an example, a gas barrier film having at least one organic layer and at least one inorganic layer as the barrier layer 32 on the gas barrier support 30 is preferably used.
FIG. 2 is a sectional view conceptually showing an example of the gas barrier film.
A gas barrier film (gas barrier layer) 14 shown in FIG. 2 has a barrier layer 32 formed by laminating an organic layer 34, an inorganic layer 36, and an organic layer 38 in this order, and a gas barrier support 30 that supports the barrier layer 32. It becomes.
 なお、ガスバリアフィルム14は、ガスバリア支持体30の上に、少なくとも1つの無機層36を有していればよく、無機層36と、無機層36の下地となる有機層34との組み合わせを1つ以上有するのが好ましい。従って、ガスバリア層14は、無機層36と下地の有機層34との組み合わせを2つ有するものでもよく、あるいは、3つ以上、有するものでもよい。有機層34は、無機層36を適正に形成するための下地層としてとして作用するものであり、下地の有機層34と無機層36との組み合わせの積層数が多いほど、優れたガスバリア性を有するガスバリアフィルムを得られる。 The gas barrier film 14 only needs to have at least one inorganic layer 36 on the gas barrier support 30, and one combination of the inorganic layer 36 and the organic layer 34 that is the base of the inorganic layer 36. It is preferable to have the above. Accordingly, the gas barrier layer 14 may have two combinations of the inorganic layer 36 and the underlying organic layer 34, or may have three or more. The organic layer 34 functions as a base layer for properly forming the inorganic layer 36, and has an excellent gas barrier property as the number of layers of the combination of the base organic layer 34 and the inorganic layer 36 increases. A gas barrier film can be obtained.
 また、図示例においては、バリア層32の最表層(ガスバリア支持体30とは反対側の層)は、有機層38としたが、これに限定はされず、最表層が無機層36でもよい。
 ここで、光学機能層12が積層されるのは、基本的に、バリア層32側である。したがって、バリア層32の最表層を無機層36とし、光学機能層12をバリア層32側に積層することにより、ガスバリア支持体30や有機層34からアウトガスが放出されても、このアウトガスは無機層36で遮蔽され、光学機能層12に至ることを防止できる。
In the illustrated example, the outermost layer of the barrier layer 32 (the layer opposite to the gas barrier support 30) is the organic layer 38, but is not limited thereto, and the outermost layer may be the inorganic layer 36.
Here, the optical functional layer 12 is basically laminated on the barrier layer 32 side. Therefore, even when outgas is released from the gas barrier support 30 or the organic layer 34 by stacking the optical functional layer 12 on the barrier layer 32 side by forming the outermost layer of the barrier layer 32 as an inorganic layer 36, the outgas is not removed from the inorganic layer. It is shielded by 36 and can be prevented from reaching the optical function layer 12.
 ガスバリア層14のガスバリア支持体30としては、公知のガスバリアフィルムで支持体として用いられているものが、各種、利用可能である。
 中でも、薄手化や軽量化が容易である、フレキシブル化に好適である等の点で、各種のプラスチック(高分子材料/樹脂材料)からなるフィルムが好適に利用される。
 具体的には、ポリエチレン(PE)、ポリエチレンナフタレート(PEN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、ポリアクリトニトリル(PAN)、ポリイミド(PI)、透明ポリイミド、ポリメタクリル酸メチル樹脂(PMMA)、ポリカーボネート(PC)、ポリアクリレート、ポリメタクリレート、ポリプロピレン(PP)、ポリスチレン(PS)、ABS、環状オレフィン・コポリマー(COC)、シクロオレフィンポリマー(COP)、および、トリアセチルセルロース(TAC)からなるプラスチックフィルムが、好適に例示される。
As the gas barrier support 30 of the gas barrier layer 14, various types that are used as a support in a known gas barrier film can be used.
Among them, films made of various plastics (polymer materials / resin materials) are preferably used in that they are easy to be thinned and lightened and are suitable for flexibility.
Specifically, polyethylene (PE), polyethylene naphthalate (PEN), polyamide (PA), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinyl alcohol (PVA), polyacrylonitrile (PAN), polyimide ( PI), transparent polyimide, polymethyl methacrylate resin (PMMA), polycarbonate (PC), polyacrylate, polymethacrylate, polypropylene (PP), polystyrene (PS), ABS, cyclic olefin copolymer (COC), cycloolefin polymer ( COP) and a plastic film made of triacetyl cellulose (TAC) are preferably exemplified.
 ガスバリア支持体30の厚さは、用途や大きさによって、適宜、設定すればよい。ここで、本発明者の検討によれば、ガスバリア支持体30の厚さは、10μm~100μm程度が好ましい。ガスバリア支持体30の厚さを、この範囲にすることにより、軽量化や薄手化、等の点で、好ましい結果を得る。
 なお、ガスバリア支持体30は、このようなプラスチックフィルムの表面に、反射防止や位相差制御、光取り出し効率向上等の機能が付与されていてもよい。
What is necessary is just to set the thickness of the gas barrier support body 30 suitably according to a use or a magnitude | size. Here, according to the study of the present inventor, the thickness of the gas barrier support 30 is preferably about 10 μm to 100 μm. By setting the thickness of the gas barrier support 30 within this range, preferable results are obtained in terms of weight reduction and thinning.
The gas barrier support 30 may be provided with functions such as antireflection, retardation control, and improvement of light extraction efficiency on the surface of such a plastic film.
 バリア層32は、主にガスバリア性を発現する無機層36と、無機層36の下地層となる有機層34と、無機層36を保護する有機層38を有する。 The barrier layer 32 includes an inorganic layer 36 that mainly exhibits gas barrier properties, an organic layer 34 that serves as a base layer for the inorganic layer 36, and an organic layer 38 that protects the inorganic layer 36.
 有機層34は、ガスバリアフィルム14において主にガスバリア性を発現する無機層36の下地層となるものである。
 有機層34は、公知のガスバリアフィルムで有機層34として用いられているものが、各種、利用可能である。例えば、有機層34は、有機化合物を主成分とする膜で、基本的に、モノマーおよび/またはオリゴマを、架橋して形成されるものが利用できる。
 ガスバリアフィルム14は、無機層36の下地となる有機層34を有することにより、ガスバリア支持体30の表面の凹凸や、表面に付着している異物等を包埋して、無機層36の成膜面を適正にできる。その結果、成膜面の全面に、隙間無く、割れやヒビ等の無い適正な無機層36を成膜できる。これにより、水蒸気透過度が1×10-3[g/(m2・day)]以下、および、酸素透過度が1×10-2[cc/(m2・day・atm)]以下となるような、高いガスバリア性能を得ることができる。
The organic layer 34 is a base layer of the inorganic layer 36 that mainly exhibits gas barrier properties in the gas barrier film 14.
As the organic layer 34, various types of known gas barrier films that are used as the organic layer 34 can be used. For example, the organic layer 34 is a film containing an organic compound as a main component, and basically formed by crosslinking monomers and / or oligomers.
The gas barrier film 14 includes the organic layer 34 that is the base of the inorganic layer 36, thereby embedding irregularities on the surface of the gas barrier support 30, foreign matters attached to the surface, and the like to form the inorganic layer 36. The surface can be made appropriate. As a result, the appropriate inorganic layer 36 can be formed on the entire surface of the film formation without gaps and without cracks or cracks. As a result, the water vapor permeability is 1 × 10 −3 [g / (m 2 · day)] or less, and the oxygen permeability is 1 × 10 −2 [cc / (m 2 · day · atm)] or less. Such a high gas barrier performance can be obtained.
 また、ガスバリアフィルム14は、この下地となる有機層34を有することにより、この有機層34が、無機層36のクッションとしても作用する。そのため、無機層36が外部から衝撃を受けた場合などに、この有機層34のクッション効果によって、無機層36の損傷を防止できる。
 これにより、積層フィルム10aにおいて、ガスバリアフィルム14が適正にガスバリア性能を発現して、水分や酸素による光学機能層12の劣化を、好適に防止できる。
Further, since the gas barrier film 14 has the organic layer 34 as the base, the organic layer 34 also functions as a cushion for the inorganic layer 36. Therefore, the inorganic layer 36 can be prevented from being damaged by the cushion effect of the organic layer 34 when the inorganic layer 36 receives an impact from the outside.
Thereby, in laminated film 10a, gas barrier film 14 expresses gas barrier performance appropriately, and can prevent degradation of optical function layer 12 by moisture or oxygen suitably.
 ガスバリアフィルム14において、有機層34の形成材料としては、各種の有機化合物(樹脂/高分子化合物)が、利用可能である。
 具体的には、ポリエステル、アクリル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、セルロースアシレート、ポリウレタン、ポリエーテルエーテルケトン、ポリカーボネート、脂環式ポリオレフィン、ポリアリレート、ポリエーテルスルホン、ポリスルホン、フルオレン環変性ポリカーボネート、脂環変性ポリカーボネート、フルオレン環変性ポリエステル、アクリロイル化合物、などの熱可塑性樹脂、あるいはポリシロキサン、その他の有機ケイ素化合物の膜が好適に例示される。これらは、複数を併用してもよい。
In the gas barrier film 14, various organic compounds (resins / polymer compounds) can be used as a material for forming the organic layer 34.
Specifically, polyester, acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane, poly Ether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, acryloyl compound, thermoplastic resin, or polysiloxane, etc. An organic silicon compound film is preferably exemplified. A plurality of these may be used in combination.
 中でも、ガラス転移温度や強度に優れる等の点で、ラジカル重合性化合物および/またはエーテル基を官能基に有するカチオン重合性化合物の重合物から構成された有機層34は、好適である。
 中でも特に、上記強度に加え、屈折率が低い、透明性が高く光学特性に優れる等の点で、アクリレートおよび/またはメタクリレートのモノマーやオリゴマの重合体を主成分とする、ガラス転移温度が120℃以上のアクリル樹脂やメタクリル樹脂は、有機層34として好適に例示される。その中でも特に、ジプロピレングリコールジ(メタ)アクリレート(DPGDA)、トリメチロールプロパントリ(メタ)アクリレート(TMPTA)、ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA)などの、2官能以上、特に3官能以上のアクリレートおよび/またはメタクリレートのモノマーやオリゴマの重合体を主成分とする、アクリル樹脂やメタクリル樹脂は、好適に例示される。また、これらのアクリル樹脂やメタクリル樹脂を、複数、用いるのも好ましい。
 有機層34を、このようなアクリル樹脂やメタクリル樹脂で形成することにより、骨格がしっかりした下地の上に無機層36を成膜できるので、より緻密でガスバリア性が高い無機層36を成膜できる。
Among them, the organic layer 34 composed of a polymer of a radical polymerizable compound and / or a cationic polymerizable compound having an ether group as a functional group is preferable in terms of excellent glass transition temperature and strength.
In particular, in addition to the above strength, the glass transition temperature is 120 ° C. mainly composed of acrylate and / or methacrylate monomers and oligomer polymers in terms of low refractive index, high transparency and excellent optical properties. The above acrylic resin and methacrylic resin are preferably exemplified as the organic layer 34. Among them, in particular, dipropylene glycol di (meth) acrylate (DPGDA), trimethylolpropane tri (meth) acrylate (TMPTA), dipentaerythritol hexa (meth) acrylate (DPHA), etc. Acrylic resins and methacrylic resins, which are mainly composed of a polymer of acrylate and / or methacrylate monomers or oligomers, are preferred. It is also preferable to use a plurality of these acrylic resins and methacrylic resins.
By forming the organic layer 34 with such an acrylic resin or methacrylic resin, the inorganic layer 36 can be formed on the base having a solid skeleton, so that the inorganic layer 36 with higher density and higher gas barrier properties can be formed. .
 有機層34の厚さは、1μm~5μmが好ましい。
 有機層34の厚さを1μm以上とすることにより、より好適に無機層36の成膜面を適正にして、割れやヒビ等の無い適正な無機層36を、成膜面の全面に渡って成膜できる。
 また、有機層34の厚さを5μm以下とすることにより、有機層34が厚すぎることに起因する、有機層34のクラックや、ガスバリアフィルム14のカール等の問題の発生を、好適に防止することができる。
 以上の点を考慮すると、有機層34の厚さは、1μm~5μmとするのが、より好ましい。
The thickness of the organic layer 34 is preferably 1 μm to 5 μm.
By setting the thickness of the organic layer 34 to 1 μm or more, the film-forming surface of the inorganic layer 36 is made more suitable, and the appropriate inorganic layer 36 without cracks or cracks is formed over the entire film-forming surface. A film can be formed.
Further, by setting the thickness of the organic layer 34 to 5 μm or less, it is possible to suitably prevent the occurrence of problems such as cracks in the organic layer 34 and curling of the gas barrier film 14 due to the organic layer 34 being too thick. be able to.
Considering the above points, the thickness of the organic layer 34 is more preferably 1 μm to 5 μm.
 なお、ガスバリアフィルムが下地層としての有機層34を複数有する場合には、各有機層の厚さは、同じでも、互いに異なってもよい。
 また、有機層34を複数有する場合には、各有機層の形成材料は、同じでも異なってもよい。しかしながら、生産性等の点からは、全ての有機層を、同じ材料で形成するのが好ましい。
In addition, when the gas barrier film has a plurality of organic layers 34 as the underlayer, the thickness of each organic layer may be the same or different from each other.
Moreover, when it has two or more organic layers 34, the formation material of each organic layer may be the same or different. However, in terms of productivity and the like, it is preferable to form all organic layers with the same material.
 有機層34は、塗布法やフラッシュ蒸着等の公知の方法で成膜すればよい。
 また、有機層34の下層となる無機層36との密着性を向上するために、有機層34は、シランカップリング剤を含有するのが好ましい。
The organic layer 34 may be formed by a known method such as a coating method or flash vapor deposition.
Moreover, in order to improve adhesiveness with the inorganic layer 36 which is the lower layer of the organic layer 34, the organic layer 34 preferably contains a silane coupling agent.
 有機層34の上には、この有機層34を下地として、無機層36が成膜される。無機層36は、無機化合物を主成分とする膜で、ガスバリア層14において、ガスバリア性を主に発現するものである。 An inorganic layer 36 is formed on the organic layer 34 with the organic layer 34 as a base. The inorganic layer 36 is a film containing an inorganic compound as a main component, and the gas barrier layer 14 mainly exhibits gas barrier properties.
 無機層36としては、ガスバリア性を発現する、酸化物、窒化物、酸窒化物等の無機化合物からなる膜が、各種、利用可能である。
 具体的には、酸化アルミニウム、酸化マグネシウム、酸化タンタル、酸化ジルコニウム、酸化チタン、酸化インジウムスズ(ITO)などの金属酸化物; 窒化アルミニウムなどの金属窒化物; 炭化アルミニウムなどの金属炭化物; 酸化ケイ素、酸化窒化ケイ素、酸炭化ケイ素、酸化窒化炭化ケイ素などのケイ素酸化物; 窒化ケイ素、窒化炭化ケイ素などのケイ素窒化物; 炭化ケイ素等のケイ素炭化物; これらの水素化物; これら2種以上の混合物; および、これらの水素含有物等の、無機化合物からなる膜が、好適に例示される。
 特に、透明性が高く、かつ、優れたガスバリア性を発現できる点で、ケイ素酸化物、ケイ素窒化物、ケイ素酸窒化物およびケイ素酸化物等のケイ素化合物からなる膜は、好適に例示される。その中でも特に、窒化ケイ素からなる膜は、より優れたガスバリア性に加え、透明性も高く、好適に例示される。
As the inorganic layer 36, various kinds of films made of an inorganic compound such as oxide, nitride, oxynitride and the like that exhibit gas barrier properties can be used.
Specifically, metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride; metal carbides such as aluminum carbide; silicon oxide, Silicon oxides such as silicon oxynitride, silicon oxycarbide and silicon oxynitride carbide; silicon nitrides such as silicon nitride and silicon nitride carbide; silicon carbides such as silicon carbide; hydrides thereof; mixtures of two or more of these; and Films made of inorganic compounds such as these hydrogen-containing materials are preferably exemplified.
In particular, a film made of a silicon compound such as silicon oxide, silicon nitride, silicon oxynitride and silicon oxide is preferably exemplified in that it has high transparency and can exhibit excellent gas barrier properties. Among these, in particular, a film made of silicon nitride is preferable because it has high transparency in addition to more excellent gas barrier properties.
 なお、ガスバリアフィルムが複数の無機層36を有する場合には、無機層36の形成材料は、互いに異なってもよい。しかしながら、生産性等を考慮すれば、全ての無機層36を、同じ材料で形成するのが好ましい。 In addition, when a gas barrier film has the some inorganic layer 36, the formation material of the inorganic layer 36 may mutually differ. However, if productivity etc. are considered, it is preferable to form all the inorganic layers 36 with the same material.
 無機層36の厚さは、形成材料に応じて、目的とするガスバリア性を発現できる厚さを、適宜、決定すればよい。なお、本発明者の検討によれば、無機層36の厚さは、10nm~200nmとするのが好ましい。
 無機層36の厚さを10nm以上とすることにより、十分なガスバリア性能を安定して発現する無機層36が形成できる。また、無機層36は、一般的に脆く、厚過ぎると、割れやヒビ、剥がれ等を生じる可能性が有るが、無機層36の厚さを200nm以下とすることにより、割れが発生することを防止できる。
 また、このような点を考慮すると、無機層36の厚さは、10nm~100nmにするのが好ましく、特に、15nm~75nmとするのが好ましい。
 なお、ガスバリアフィルムが複数の無機層36を有する場合には、各無機層36の厚さは、同じでも異なってもよい。
What is necessary is just to determine the thickness of the inorganic layer 36 suitably according to a forming material, the thickness which can express the target gas barrier property. According to the study of the present inventors, the thickness of the inorganic layer 36 is preferably 10 nm to 200 nm.
By setting the thickness of the inorganic layer 36 to 10 nm or more, the inorganic layer 36 that stably exhibits sufficient gas barrier performance can be formed. In addition, the inorganic layer 36 is generally brittle, and if it is too thick, there is a possibility of causing cracks, cracks, peeling, etc. Can be prevented.
In consideration of such points, the thickness of the inorganic layer 36 is preferably 10 nm to 100 nm, and more preferably 15 nm to 75 nm.
When the gas barrier film has a plurality of inorganic layers 36, the thickness of each inorganic layer 36 may be the same or different.
 無機層36は、形成材料に応じて、公知の方法で形成すればよい。具体的には、CCP(Capacitively Coupled Plasma 容量結合プラズマ)-CVD(chemical vapor deposition)やICP(Inductively Coupled Plasma 誘導結合プラズマ)-CVD等のプラズマCVD、マグネトロンスパッタリングや反応性スパッタリング等のスパッタリング、真空蒸着など、気相堆積法が好適に例示される。 The inorganic layer 36 may be formed by a known method according to the forming material. Specifically, CCP (Capacitively upCoupled CVDPlasma capacitively coupled plasma) -CVD (chemical vapor deposition) and ICP (Inductively Coupled Plasma inductively coupled plasma) -CVD etc., plasma CVD, sputtering such as magnetron sputtering and reactive sputtering, vacuum deposition For example, a vapor deposition method is preferably exemplified.
 有機層38は、バリア層32の最表層に形成された層であり、無機層36を保護するための層である。
 有機層38としては、上述した有機層34と同様のものが、各種、利用可能である。
 また、有機層38の形成方法も、上述の有機層34と同様に、塗布法やフラッシュ蒸着等の公知の方法で成膜すればよい。
The organic layer 38 is a layer formed as the outermost layer of the barrier layer 32 and is a layer for protecting the inorganic layer 36.
As the organic layer 38, various types similar to the organic layer 34 described above can be used.
Also, the organic layer 38 may be formed by a known method such as a coating method or flash vapor deposition as in the case of the organic layer 34 described above.
 また、バリア層32の最表層となる有機層38の厚さは、80nm~1000nmとすることが好ましい。有機層38の厚さを80nm以上とすることにより、無機層36を十分に保護することができる。また、割れを防止し、透過率の低下を防止することができる等の点で、有機層38の厚さを1000nm以下とすること好ましい。
 以上の観点から、有機層38の厚さは、80nm~500nmとすることがより好ましい。
In addition, the thickness of the organic layer 38 which is the outermost layer of the barrier layer 32 is preferably 80 nm to 1000 nm. By setting the thickness of the organic layer 38 to 80 nm or more, the inorganic layer 36 can be sufficiently protected. Moreover, it is preferable to make the thickness of the organic layer 38 into 1000 nm or less at the point which can prevent a crack and the fall of the transmittance | permeability etc.
From the above viewpoint, the thickness of the organic layer 38 is more preferably 80 nm to 500 nm.
 なお、保護層としての有機層38と、下地層としての有機層34とは、形成材料が同じでも異なってもよい。しかしながら、生産性等の点からは、全ての有機層を、同じ材料で形成するのが好ましい。
 また、有機層38の下層となる無機層36との密着性を向上するために、有機層38は、シランカップリング剤を含有するのが好ましい。
Note that the organic layer 38 as the protective layer and the organic layer 34 as the underlayer may be formed of the same material or different materials. However, in terms of productivity and the like, it is preferable to form all organic layers with the same material.
Moreover, in order to improve adhesiveness with the inorganic layer 36 which is the lower layer of the organic layer 38, the organic layer 38 preferably contains a silane coupling agent.
 次に、端面封止層16aについて説明する。
 端面封止層16aは、光学機能層12と、光学機能層12を挟むように積層される2つのガスバリア層14とを有する機能層積層体11の端面の少なくとも一部を覆って形成される部材である。
 本発明において、端面封止層16aは、少なくとも2層からなり、各層が金属からなり、ガスバリア性を発現し、光学機能層12の端面からの水分や酸素の浸入を抑制するための部材である。
Next, the end surface sealing layer 16a will be described.
The end surface sealing layer 16a is a member formed to cover at least a part of the end surface of the functional layer laminate 11 including the optical functional layer 12 and the two gas barrier layers 14 laminated so as to sandwich the optical functional layer 12. It is.
In the present invention, the end-face sealing layer 16a is a member that is made of at least two layers, each layer is made of metal, exhibits gas barrier properties, and suppresses intrusion of moisture and oxygen from the end face of the optical functional layer 12. .
 図1に示す積層フィルム10aにおいては、端面封止層16aは、機能層積層体11の端面に接して形成される第1層18と、第1層18上に積層される、機能層積層体11から最も遠い層である最表層20との2層からなる。
 ここで、本発明においては、端面封止層は、2層構成に限定はされず、3層以上であってもよい。例えば、図3に示す積層フィルム10bの端面封止層16bのように、機能層積層体11の端面に接して形成される第1層18と、第1層18上に積層される第2層22と、第2層22上に積層される、機能層積層体11から最も遠い層である最表層20と、を有する3層構成としてもよい。
 なお、図1および図3に示すとおり、端面封止層16は、機能層積層体11の端面に積層されるため、端面封止層16を構成する各層(第1層18、第2層22、最表層20)の積層方向は、機能層積層体11の端面に垂直な方向であり、機能層積層体11の積層方向とは直交する方向である。
In the laminated film 10 a shown in FIG. 1, the end surface sealing layer 16 a includes a first layer 18 formed in contact with the end surface of the functional layer laminated body 11 and a functional layer laminated body laminated on the first layer 18. 11 and the outermost layer 20 which is the farthest layer from 11.
Here, in this invention, an end surface sealing layer is not limited to 2 layer structure, Three layers or more may be sufficient. For example, like the end surface sealing layer 16b of the laminated film 10b shown in FIG. 3, the first layer 18 formed in contact with the end surface of the functional layer laminate 11, and the second layer laminated on the first layer 18 It is good also as a 3 layer structure which has 22 and the outermost layer 20 which is laminated | stacked on the 2nd layer 22, and is the layer farthest from the functional layer laminated body 11. FIG.
As shown in FIGS. 1 and 3, the end surface sealing layer 16 is laminated on the end surface of the functional layer laminate 11, and therefore each layer constituting the end surface sealing layer 16 (the first layer 18 and the second layer 22). The stacking direction of the outermost layer 20) is a direction perpendicular to the end face of the functional layer stack 11, and is a direction orthogonal to the stacking direction of the functional layer stack 11.
 また、本発明において、端面封止層16を構成する各層は、いずれも金属からなる層である。すなわち、図1に示す積層フィルム10aにおいては、第1層18および最表層20は、金属からなり、また、図3に示す積層フィルム10bにおいては、第1層18、第2層22および最表層20は、いずれも金属からなる層である。 In the present invention, each of the layers constituting the end face sealing layer 16 is a layer made of metal. That is, in the laminated film 10a shown in FIG. 1, the first layer 18 and the outermost layer 20 are made of metal, and in the laminated film 10b shown in FIG. 3, the first layer 18, the second layer 22 and the outermost layer are formed. Reference numeral 20 denotes a metal layer.
 前述のとおり、水分や酸素により劣化しやすい量子ドットを含む量子ドット層の両主面にガスバリアフィルムを積層して量子ドット層を保護することが行われているが、量子ドット層の両主面をガスバリアフィルムで保護するのみでは、ガスバリアフィルムで保護されていない端面から水分や酸素が浸入し、量子ドットが劣化するという問題があった。
 これに対して、端面からの水分や酸素の浸入を抑制するために、量子ドット層の全面をガスバリアフィルムで保護する構成や、2つのガスバリアフィルムで挟まれた、量子ドット層の端面領域に、ガスバリア性を有する保護層を形成する構成や、量子ドット層を挟む2つのガスバリアフィルムの端部の開口を狭くする構成等が提案されている。
As described above, gas barrier films are laminated on both main surfaces of a quantum dot layer including quantum dots that are easily deteriorated by moisture and oxygen to protect the quantum dot layer. If only the gas barrier film is protected, moisture and oxygen enter from the end face not protected by the gas barrier film, and the quantum dots deteriorate.
On the other hand, in order to suppress the intrusion of moisture and oxygen from the end face, the structure of protecting the entire surface of the quantum dot layer with a gas barrier film, or the end face region of the quantum dot layer sandwiched between two gas barrier films, A configuration for forming a protective layer having a gas barrier property, a configuration for narrowing the openings at the ends of two gas barrier films sandwiching the quantum dot layer, and the like have been proposed.
 しかしながら、薄い量子ドット層の全面をガスバリアフィルムで被覆するのは非常に困難であり、生産性が悪く、また、ガスバリアフィルムを折り曲げるとバリア層が割れてガスバリア性が低下するという問題があった。
 また、2つのガスバリアフィルムで挟まれた、量子ドット層の端面領域に、ガスバリア性を有する保護層を形成する構成の場合には、保護層の材料として高いバリア性を有する材料を用いることができず、ガスバリア性や耐久性が十分でなく、また、このような積層フィルムを作製する際には、全工程がバッチ方式となるため生産性が極めて悪いという問題があった。
 また、量子ドット層を挟む2つのガスバリアフィルムの端部の開口を狭くする構成の場合には、端部での、量子ドット層の厚さが薄くなってしまうため、端部ではその機能を十分に発現することができず、有効に利用できる領域の大きさが小さくなり、額縁部分が大きくなってしまうという問題があった。また、一般に、高いガスバリア性を備えるバリア層は、硬く脆いため、このようなバリア層を有するガスバリアフィルムを、急に湾曲させると、バリア層が割れてしまい、ガスバリア性が低下して、量子ドット層への水分や酸素の浸入を抑制できなくなるという問題があった。
However, it is very difficult to cover the entire surface of the thin quantum dot layer with a gas barrier film, resulting in poor productivity. Further, when the gas barrier film is bent, there is a problem that the barrier layer is broken and the gas barrier property is lowered.
In the case where a protective layer having a gas barrier property is formed in the end face region of the quantum dot layer sandwiched between two gas barrier films, a material having a high barrier property can be used as the material of the protective layer. In addition, gas barrier properties and durability are not sufficient, and when such a laminated film is produced, there is a problem that productivity is extremely poor because all processes are batch processes.
In addition, in the case of a configuration in which the opening of the end portion of the two gas barrier films sandwiching the quantum dot layer is narrowed, the thickness of the quantum dot layer at the end portion becomes thin, so that the end portion has sufficient function. In other words, the size of the area that can be used effectively is reduced, and the frame portion is increased. In general, since a barrier layer having a high gas barrier property is hard and brittle, if the gas barrier film having such a barrier layer is suddenly bent, the barrier layer is cracked, and the gas barrier property is lowered. There has been a problem that it becomes impossible to prevent moisture and oxygen from entering the layer.
 これに対して、本発明は、光学機能層と、光学機能層の少なくとも一方の主面に積層される、ガスバリア層とを有する機能層積層体、および、機能層積層体の端面のうち少なくとも一部を覆って形成される端面封止層、を有し、端面封止層は、少なくとも2層からなり、各層が金属からなる構成を有する。
 機能層積層体の端面を2層以上の金属層で封止することで、高いガスバリア性を発現でき、光学機能層への水分や酸素の浸入を抑制して、量子ドットが水分や酸素により劣化することを防止でき、寿命をより長くすることができ、耐久性を向上できる。
 また、機能層積層体の端面に、金属からなる端面封止層を形成するのみであるので、光学機能層が薄くなったり、ガスバリア層が湾曲されることがないため、光学機能層を有効に利用できる領域を大きく維持でき、狭額縁化が可能である。
 また、端面封止層の、機能層積層体の端面に接する第1層は、機能層積層体との密着性の高い材料で、密着性を高くできる形成方法で形成し、2層目以降に、高いガスバリア性を発現する層を形成することができるので、端面封止層が機能層積層体から剥離することを防止でき高い耐久性を得られる。
 また、後に詳述するが、端面封止層を形成する際に、機能層積層体を複数枚重ねた状態で、端面封止層の各層を形成することができるので、複数の積層フィルムをまとめて作製することができ、生産性を高くすることができる。
On the other hand, the present invention provides a functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer, and at least one of end faces of the functional layer laminate. The end surface sealing layer is formed so as to cover the part, and the end surface sealing layer is composed of at least two layers, and each layer is composed of a metal.
By sealing the end face of the functional layer laminate with two or more metal layers, high gas barrier properties can be achieved, and the penetration of moisture and oxygen into the optical functional layer is suppressed, and the quantum dots deteriorate due to moisture and oxygen. Can be prevented, the life can be extended, and the durability can be improved.
In addition, since the end face sealing layer made of metal is only formed on the end face of the functional layer laminate, the optical functional layer is not thinned and the gas barrier layer is not curved. The available area can be kept large and the frame can be narrowed.
In addition, the first layer of the end face sealing layer that is in contact with the end face of the functional layer laminate is a material having high adhesion to the functional layer laminate, and is formed by a formation method that can increase adhesion, and the second and subsequent layers. Since a layer exhibiting high gas barrier properties can be formed, the end face sealing layer can be prevented from peeling off from the functional layer laminate, and high durability can be obtained.
Further, as will be described in detail later, when forming the end surface sealing layer, each layer of the end surface sealing layer can be formed in a state where a plurality of functional layer stacks are stacked. And the productivity can be increased.
 ここで、端面封止層16は、酸素透過度が、1×10-2[cc/(m2・day・atm)]以下であるのが好ましい。
 機能層積層体11の端面に、酸素透過度が低い、すなわち、ガスバリア性が高い端面封止層16を形成することで、光学機能層12への水分や酸素の浸入をより好適に防止して光学機能層12の劣化をより好適に防止することができる。
Here, the end face sealing layer 16 preferably has an oxygen permeability of 1 × 10 −2 [cc / (m 2 · day · atm)] or less.
By forming the end face sealing layer 16 having a low oxygen permeability, that is, a high gas barrier property, on the end face of the functional layer laminate 11, it is possible to more suitably prevent moisture and oxygen from entering the optical functional layer 12. Deterioration of the optical function layer 12 can be more suitably prevented.
 また、端面封止層16の、機能層積層体11の端面に垂直な方向の厚みは、0.1μm~100μmの範囲にあるのが好ましく、0.5μm~50μmであるのがより好ましく、1μm~10μmであるのが特に好ましい。
 端面封止層16の厚みを0.1μm以上とすることにより、十分なガスバリア性能を安定して発現させることができる。また、端面封止層16の厚さを100μm以下とすることにより、割れが発生することを好適に防止できる。
 また、後述するとおり、本発明の積層フィルムは、複数枚の機能層積層体を重ねた状態で、端面に端面封止層を形成し、その後、分離することで作製するのが好ましいが、端面封止層16が厚すぎると、分離しにくくなるため、この点からも端面封止層16の厚さは100μm以下とするのが好ましい。
The thickness of the end face sealing layer 16 in the direction perpendicular to the end face of the functional layer laminate 11 is preferably in the range of 0.1 μm to 100 μm, more preferably 0.5 μm to 50 μm. It is particularly preferable that the thickness is ˜10 μm.
By setting the thickness of the end surface sealing layer 16 to 0.1 μm or more, sufficient gas barrier performance can be stably exhibited. Moreover, it can prevent suitably that a crack generate | occur | produces by making the thickness of the end surface sealing layer 16 into 100 micrometers or less.
Further, as described later, the laminated film of the present invention is preferably produced by forming an end face sealing layer on the end face in a state where a plurality of functional layer laminates are stacked, and then separating the end face sealing layer. Since it will become difficult to isolate | separate if the sealing layer 16 is too thick, it is preferable also from this point that the thickness of the end surface sealing layer 16 shall be 100 micrometers or less.
 また、端面封止層16は、機能層積層体11の端面の少なくとも一部を覆うように形成されていればよいが、端面の全周を覆って形成されるのが好ましい。
 例えば、機能層積層体11の主面が、矩形状の場合には、少なくとも1つの端面に端面封止層16が形成されていればよく、4つの端面全てに端面封止層16が形成されるのが好ましい。
 なお、機能層積層体11の主面の形状(積層フィルム10の形状)は、矩形状に限定はされず、正方形状、円形状、多角形状等、種々の形状とすることができる。従って、端面保護層は、端面のうち少なくとも一部を覆うように形成されていればよく、全周を覆って形成されるのが好ましい。
Moreover, the end surface sealing layer 16 should just be formed so that at least one part of the end surface of the functional layer laminated body 11 may be covered, but it is preferable that it is formed covering the perimeter of an end surface.
For example, when the main surface of the functional layer laminate 11 is rectangular, it is sufficient that the end surface sealing layer 16 is formed on at least one end surface, and the end surface sealing layer 16 is formed on all four end surfaces. It is preferable.
In addition, the shape of the main surface of the functional layer laminate 11 (the shape of the laminated film 10) is not limited to a rectangular shape, and may be various shapes such as a square shape, a circular shape, and a polygonal shape. Therefore, the end surface protective layer may be formed so as to cover at least a part of the end surface, and is preferably formed so as to cover the entire circumference.
 また、端面封止層16は、機能層積層体11の端面のみに形成され、機能層積層体11の主面への回りこみが少ないことが好ましい。理由としては、回り込みが大きいと端面封止層16の主面への回り込み部分の盛り上がりにより、積層フィルム10全体の平坦性が損なわれるおそれがあること、回り込み部が遮光層として働くことによって積層フィルム10端部に非発光領域が生じ、額縁部分が大きくなってしまい、有効に利用可能な領域が狭くなってしまうこと、すなわち、モバイルディスプレイ等の狭額縁モジュールへ適用する際の妨げになる恐れがあること等が挙げられる。
 上述する観点から、端面封止層16の機能層積層体11の主面への回り込み幅d(図4参照)は1mm以下であることが好ましく、0.5mm以下であることがより好ましく、回り込み領域の存在が目視困難となる0.1mm以下であることが特に好ましい。
 端面封止層16の回り込み幅dは、例えば、積層フィルムを大和光機工業株式会社製リトラトームREM-710などで断面切削し、その断面を光学顕微鏡で観察することで測定できる。
 なお、図4に示すように、回り込み幅dは、機能層積層体11の端面の延在方向に直交する断面で見た際の、端面封止層16の、機能層積層体11の主面上に形成された領域の幅(機能層積層体11の端面に垂直な方向の幅)である。
In addition, the end surface sealing layer 16 is preferably formed only on the end surface of the functional layer laminate 11, and it is preferable that there is little wraparound to the main surface of the functional layer laminate 11. The reason is that if the wraparound is large, the flatness of the entire laminated film 10 may be impaired due to the rise of the wraparound portion of the end surface sealing layer 16 to the main surface, and the wraparound portion functions as a light shielding layer. There is a possibility that a non-light emitting area is generated at the end of 10 and the frame portion becomes large, and the area that can be effectively used becomes narrow, that is, it may be an obstacle when applied to a narrow frame module such as a mobile display. There are some things.
From the viewpoint described above, the wraparound width d (see FIG. 4) of the end surface sealing layer 16 to the main surface of the functional layer laminate 11 is preferably 1 mm or less, more preferably 0.5 mm or less, and the wraparound. It is particularly preferable that the area is 0.1 mm or less where the presence of the region is difficult to see.
The wraparound width d of the end face sealing layer 16 can be measured, for example, by cutting a cross section of the laminated film with a retotom REM-710 manufactured by Daiwa Kogyo Co., Ltd. and observing the cross section with an optical microscope.
As shown in FIG. 4, the wraparound width d is the main surface of the functional layer laminate 11 of the end surface sealing layer 16 when viewed in a cross section orthogonal to the extending direction of the end surface of the functional layer laminate 11. The width of the region formed above (the width in the direction perpendicular to the end face of the functional layer stack 11).
 また、端面封止層16のガスバリア性を高める観点から、端面封止層16のピンホールが少ないことが好ましい。本発明におけるピンホールとは、端面封止層16を光学顕微鏡で観察した際に見られる、大きさ1μm以上の非被覆部(金属膜の欠落部分)を意味し、その形状は円、多角形、線状など任意の形である。ピンホールの数は50個/mm2以下であることが好ましく、20個/mm2以下であることがより好ましく、5個/mm2以下であることが特に好ましい。ピンホール数は少なければ少ないほど好ましく、下限値は特にない。 In addition, from the viewpoint of improving the gas barrier property of the end face sealing layer 16, it is preferable that the end face sealing layer 16 has few pinholes. The pinhole in the present invention means an uncovered portion (a missing portion of the metal film) having a size of 1 μm or more, which is seen when the end face sealing layer 16 is observed with an optical microscope, and the shape thereof is a circle or a polygon. , Any shape such as a line. The number of pinholes is preferably 50 / mm 2 or less, more preferably 20 / mm 2 or less, and particularly preferably 5 / mm 2 or less. The smaller the number of pinholes, the better. There is no particular lower limit.
 また、ピンホールの少ない端面封止層16を形成する観点から、端面封止層16が形成される機能層積層体11の端面は、平滑であるのが好ましい。機能層積層体11の端面の表面粗さは、0.001μm~10μmが好ましく、0.001μm~2μmがより好ましい。 Further, from the viewpoint of forming the end surface sealing layer 16 with few pinholes, the end surface of the functional layer laminate 11 on which the end surface sealing layer 16 is formed is preferably smooth. The surface roughness of the end face of the functional layer laminate 11 is preferably 0.001 μm to 10 μm, and more preferably 0.001 μm to 2 μm.
 ここで、端面封止層16を構成する層のうち、機能層積層体11に接する第1層18以外の少なくとも1層が、金属メッキ層であるのが好ましい。また、図1および図3に示す積層フィルムはそれぞれ、機能層積層体11から最も遠い最表層20が、金属メッキ層である。このように、最表層20を金属メッキ層とするのがより好ましい。
 第1層18以外の少なくとも1層を金属メッキ層とすることで、この層を厚く形成することができ、十分なガスバリア性を発現することができる。
Here, it is preferable that at least one layer other than the first layer 18 in contact with the functional layer laminate 11 among the layers constituting the end face sealing layer 16 is a metal plating layer. In each of the laminated films shown in FIGS. 1 and 3, the outermost layer 20 farthest from the functional layer laminate 11 is a metal plating layer. Thus, the outermost layer 20 is more preferably a metal plating layer.
By forming at least one layer other than the first layer 18 as a metal plating layer, this layer can be formed thick and sufficient gas barrier properties can be exhibited.
 また、機能層積層体11の端面に接して設けられる第1層18は、スパッタリング法、真空蒸着法、イオンプレーティング法、および、プラズマCVD法のいずれかの方法により形成される金属層であるのが好ましく、密着性が良く、低温成膜が可能なスパッタリング法であるのがより好ましい。
 機能層積層体11は、主に樹脂で形成されているため、機能層積層体11に直接、電解メッキにより金属メッキ層を形成した場合には、導電路がないため金属膜が得られない。また、無電解メッキにより金属メッキ層を形成した場合には、機能層積層体11と金属メッキ層との密着性が悪く、十分な耐久性およびガスバリア性を得ることができず、端面のみに選択的に製膜することができない。
The first layer 18 provided in contact with the end surface of the functional layer stack 11 is a metal layer formed by any one of sputtering, vacuum deposition, ion plating, and plasma CVD. It is preferable to use a sputtering method that has good adhesion and enables low-temperature film formation.
Since the functional layer laminate 11 is mainly formed of resin, when a metal plating layer is directly formed on the functional layer laminate 11 by electrolytic plating, a metal film cannot be obtained because there is no conductive path. In addition, when a metal plating layer is formed by electroless plating, the adhesion between the functional layer laminate 11 and the metal plating layer is poor, and sufficient durability and gas barrier properties cannot be obtained, and only the end surface is selected. Film cannot be formed.
 これに対して、本発明では、機能層積層体11の側面に、上記の方法で形成された金属からなる第1層18を有することで、機能層積層体11と端面封止層16との密着性を向上できる。
 また、第1層18以外の層として金属メッキ層を形成する際に、機能層積層体11の側面に金属からなる第1層18を有することで、この第1層が電極として作用するので、金属メッキ層を適正に形成することができる。また、メッキ処理の際に、この第1層が機能層積層体11を保護して、機能層積層体11が損傷するのを防止できる。
On the other hand, in this invention, it has the 1st layer 18 which consists of a metal formed by said method on the side surface of the functional layer laminated body 11, and it is the functional layer laminated body 11 and the end surface sealing layer 16 between. Adhesion can be improved.
In addition, when the metal plating layer is formed as a layer other than the first layer 18, by having the first layer 18 made of metal on the side surface of the functional layer laminate 11, the first layer acts as an electrode. A metal plating layer can be formed appropriately. In addition, during the plating process, the first layer protects the functional layer laminate 11 and can prevent the functional layer laminate 11 from being damaged.
 ここで、スパッタリング法、真空蒸着法、イオンプレーティング法、および、プラズマCVD法のいずれかの方法により形成される金属層のみの1層とした場合には、機能層積層体との密着性は良好にできるものの、厚さを厚く形成するのが困難であったり、あるいは、厚く形成するのは生産性が非常に悪いため、薄くせざるを得ない。そのため、機能層積層体の端面に均一な厚さで形成することができず、十分なガスバリア性を得ることができない。
 これに対して、本発明では、スパッタリング法、真空蒸着法、イオンプレーティング法、および、プラズマCVD法のいずれかの方法により形成される第1層と、金属メッキ層とを有することで、機能層積層体との密着性は良好にして、かつ、十分なガスバリア性を得ることができる。
Here, when only one metal layer is formed by any of the sputtering method, the vacuum deposition method, the ion plating method, and the plasma CVD method, the adhesion with the functional layer laminate is Although it can be improved, it is difficult to form a thick thickness or it is unavoidable to form a thick one because the productivity is very poor. Therefore, it cannot be formed with a uniform thickness on the end surface of the functional layer laminate, and sufficient gas barrier properties cannot be obtained.
On the other hand, in the present invention, the first layer formed by any one of the sputtering method, the vacuum deposition method, the ion plating method, and the plasma CVD method, and the metal plating layer are used. Adhesion with the layer laminate can be improved and sufficient gas barrier properties can be obtained.
 また、第1層18以外の層として形成される金属メッキ層の厚さが、機能層積層体11に接する第1層18の厚さよりも厚いのが好ましい。
 金属メッキ層の厚さを、第1層18の厚さよりも厚くすることで、十分なガスバリア性をより確実に発現することができる。
 なお、第1層18の厚さ、および、金属メッキ層の厚さとは、機能層積層体11の端面に垂直な方向における厚さである。
In addition, the thickness of the metal plating layer formed as a layer other than the first layer 18 is preferably thicker than the thickness of the first layer 18 in contact with the functional layer laminate 11.
By making the thickness of the metal plating layer thicker than the thickness of the first layer 18, sufficient gas barrier properties can be expressed more reliably.
The thickness of the first layer 18 and the thickness of the metal plating layer are thicknesses in the direction perpendicular to the end surface of the functional layer laminate 11.
 具体的には、第1層18の厚さは、機能層積層体11との密着性、生産性等の観点から、0.001μm~0.5μmとするのが好ましく、0.01μm~0.3μmとするのがより好ましい。
 また、金属メッキ層の厚さは、ガスバリア性を確保する、生産性等の観点から、0.01μm~100μmとするのが好ましく、1μm~10μmとするのがより好ましい。
Specifically, the thickness of the first layer 18 is preferably 0.001 μm to 0.5 μm, and preferably 0.01 μm to 0.5 μm from the viewpoint of adhesion to the functional layer laminate 11, productivity, and the like. More preferably, it is 3 μm.
The thickness of the metal plating layer is preferably 0.01 μm to 100 μm, more preferably 1 μm to 10 μm, from the viewpoint of ensuring gas barrier properties and productivity.
 機能層積層体11に接する第1層18の形成材料としては、金属であれば特に限定はないが、上述したスパッタリング法、真空蒸着法、イオンプレーティング法、および、プラズマCVD法のいずれかの方法で形成可能であるのが好ましく、また、機能層積層体11を構成する樹脂との密着性を高める観点からイオン化傾向が高い金属を用いることが好ましい。したがって、アルミニウム、チタン、クロム、銅、および、ニッケルからなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金であるのが好ましく、アルミニウム、チタン、クロムからなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金が特に好ましい。イオン化傾向が高い金属を用いると、樹脂を構成する酸素原子、窒素原子、炭素原子等と金属が化合物を形成し、樹脂との界面において金属酸化物、金属窒化物、金属炭化物が形成されやすいため密着性が高くなると推測される。
 第1層18の形成材料として、これらの金属あるいは合金を用いることで、スパッタリング法、真空蒸着法、イオンプレーティング法、および、プラズマCVD法のいずれかの方法で形成することができ、第1層18と機能層積層体11の側面との密着性を高くできる。
The material for forming the first layer 18 in contact with the functional layer laminate 11 is not particularly limited as long as it is a metal, but any one of the above-described sputtering method, vacuum deposition method, ion plating method, and plasma CVD method may be used. It is preferable that the metal can be formed by a method, and it is preferable to use a metal having a high ionization tendency from the viewpoint of improving the adhesion with the resin constituting the functional layer laminate 11. Accordingly, at least one selected from the group consisting of aluminum, titanium, chromium, copper, and nickel, or an alloy containing at least one of these is preferable, and selected from the group consisting of aluminum, titanium, and chromium. Particularly preferred are at least one selected from the above, or alloys containing at least one of these. If a metal with a high ionization tendency is used, the metal, such as oxygen atoms, nitrogen atoms, and carbon atoms that form the resin, forms a compound, and metal oxides, metal nitrides, and metal carbides are easily formed at the interface with the resin. It is presumed that the adhesion will be high.
By using these metals or alloys as the material for forming the first layer 18, the first layer 18 can be formed by any one of sputtering, vacuum deposition, ion plating, and plasma CVD. The adhesion between the layer 18 and the side surface of the functional layer laminate 11 can be increased.
 また、第1層18以外の各層の形成材料としては、金属であれば特に限定はないが、アルミニウム、チタン、クロム、ニッケル、錫、銅、銀、および、金からなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金であるのが好ましい。
 第1層18以外の各層の形成材料として、これらの金属あるいは合金を用いることで、メッキ処理により形成することができ、高いガスバリア性を発現することができる。
The material for forming each layer other than the first layer 18 is not particularly limited as long as it is a metal, but at least selected from the group consisting of aluminum, titanium, chromium, nickel, tin, copper, silver, and gold. One kind or an alloy containing at least one of these is preferable.
By using these metals or alloys as the material for forming each layer other than the first layer 18, it can be formed by plating and can exhibit high gas barrier properties.
 なお、第1層18以外の少なくとも1層が、メッキ処理により形成されていればよく、金属メッキ層以外は、スパッタリング法、真空蒸着法、イオンプレーティング法、あるいは、プラズマCVD法のいずれかの方法で形成されていてもよい。その際、少なくとも最表層20が、メッキ処理により形成されているのが好ましい。
 例えば、図3に示す積層フィルム10bは、第1層18および第2層22がそれぞれスパッタリング法により形成され、最表層20がメッキ処理により形成された端面封止層16bを有するものであるが、これに限定はされず、例えば、第1層18がスパッタリング法により形成され、第2層22がメッキ処理により形成され、最表層20がスパッタリング法により形成されてもよい。
It should be noted that at least one layer other than the first layer 18 may be formed by plating, and any of the sputtering method, the vacuum deposition method, the ion plating method, or the plasma CVD method may be used except for the metal plating layer. It may be formed by a method. At this time, at least the outermost layer 20 is preferably formed by plating.
For example, the laminated film 10b shown in FIG. 3 has the end surface sealing layer 16b in which the first layer 18 and the second layer 22 are each formed by sputtering and the outermost layer 20 is formed by plating. For example, the first layer 18 may be formed by a sputtering method, the second layer 22 may be formed by a plating process, and the outermost layer 20 may be formed by a sputtering method.
 また、端面封止層16を構成する各層の形成材料は、同じであっても、互いに異なっていてもよい。すなわち、例えば、第1層18をスパッタリング法により形成したニッケル層とし、最表層20をメッキ処理により形成したニッケル層としてもよい。 Further, the forming material of each layer constituting the end face sealing layer 16 may be the same or different from each other. That is, for example, the first layer 18 may be a nickel layer formed by sputtering, and the outermost layer 20 may be a nickel layer formed by plating.
 なお、図1に示す積層フィルム10aは、ガスバリア層14と、光学機能層12と、ガスバリア層14との3層を積層し、端面に端面封止層16aを配置した構成としたが、本発明はこれに限定はされず、他の層を有していてもよい。例えば、ハードコート層、光学補償層、透明導電層等を有していてもよい。 The laminated film 10a shown in FIG. 1 has a configuration in which three layers of the gas barrier layer 14, the optical functional layer 12, and the gas barrier layer 14 are laminated, and the end face sealing layer 16a is disposed on the end face. Is not limited to this, and may have other layers. For example, you may have a hard-coat layer, an optical compensation layer, a transparent conductive layer, etc.
 次に、本発明の積層フィルムの製造方法(以下、「本発明の製造方法」ともいう)について説明する。
 本発明の第1の態様の積層フィルムの製造方法は、
 光学機能層とガスバリア層とを有する機能層積層体の側面に、少なくとも2層からなり、各層が金属からなる端面封止層を有する積層フィルムを製造する積層フィルムの製造方法であって、
 機能層積層体を複数枚重ねた積層物の端面に、機能層積層体に接する第1層を形成する第1層形成工程と、
 積層物の端面に形成された第1層上に最表層を形成する最表層形成工程と、を有し、
 第1層の形成方法が、スパッタリング法、真空蒸着法、イオンプレーティング法、および、プラズマCVD法からなる群から選択される1種である積層フィルムの製造方法である。
 また、本発明の第2の態様の積層フィルムの製造方法は、
 光学機能層とガスバリア層とを有する機能層積層体の側面に、少なくとも2層からなり、各層が金属からなる端面封止層を有する積層フィルムを製造する積層フィルムの製造方法であって、
 ガスバリア層を有するガスバリアフィルムの上に、蛍光体および少なくとも2種以上の重合性化合物を含む重合性組成物を塗布し硬化させてなる機能層積層体を形成し、
 機能層積層体を複数枚重ねた積層物の端面に、機能層積層体に接する第1層を形成する第1層形成工程と、
 積層物の端面に形成された第1層上に最表層を形成する最表層形成工程と、を有し、第1層の形成方法が、スパッタリング法、真空蒸着法、イオンプレーティング法、無電解メッキ、および、プラズマCVD法からなる群から選択される1種である積層フィルムの製造方法である。
Next, the manufacturing method of the laminated film of the present invention (hereinafter also referred to as “the manufacturing method of the present invention”) will be described.
The method for producing a laminated film according to the first aspect of the present invention comprises:
A side surface of a functional layer laminate having an optical functional layer and a gas barrier layer is a method for producing a laminated film, which comprises a laminated film having at least two layers, each layer having an end face sealing layer made of metal,
A first layer forming step of forming a first layer in contact with the functional layer laminate on an end face of a laminate in which a plurality of functional layer laminates are stacked;
An outermost layer forming step of forming an outermost layer on the first layer formed on the end face of the laminate,
The first layer forming method is a method for producing a laminated film which is one selected from the group consisting of sputtering, vacuum deposition, ion plating, and plasma CVD.
Moreover, the manufacturing method of the laminated | multilayer film of the 2nd aspect of this invention is as follows.
A side surface of a functional layer laminate having an optical functional layer and a gas barrier layer is a method for producing a laminated film, which comprises a laminated film having at least two layers, each layer having an end face sealing layer made of metal,
On the gas barrier film having the gas barrier layer, a functional layer laminate is formed by applying and curing a polymerizable composition containing a phosphor and at least two or more polymerizable compounds,
A first layer forming step of forming a first layer in contact with the functional layer laminate on an end face of a laminate in which a plurality of functional layer laminates are stacked;
An outermost layer forming step of forming an outermost layer on the first layer formed on the end face of the laminate, and the first layer forming method includes a sputtering method, a vacuum evaporation method, an ion plating method, an electroless method This is a method for producing a laminated film which is one type selected from the group consisting of plating and plasma CVD.
 また、本発明の製造方法は、好ましい態様として、端面封止層の、第1層以外の少なくとも1層の形成方法が、金属メッキ処理である。以下、図5A~図5Dを用いて、本発明の製造方法の一例を説明する。 In the production method of the present invention, as a preferred embodiment, the method for forming at least one layer other than the first layer of the end face sealing layer is a metal plating treatment. Hereinafter, an example of the manufacturing method of the present invention will be described with reference to FIGS. 5A to 5D.
 まず、光学機能層12と、この光学機能層12の両主面に積層された2つのガスバリア層14を有する機能層積層体11を準備する。
 前述のとおり、機能層積層体11の作製方法としては例えば、量子ドットとマトリックスとなる樹脂と溶剤とを混合した塗布組成物を調整し、この塗布組成物をガスバリアフィルム14上に塗布し、硬化させることで、光学機能層(量子ドット層)12を形成し、形成した光学機能層12の他方の主面にもう一方のガスバリアフィルム14を積層して形成することができる。
 本発明においては、ガスバリア層は少なくとも光学機能層の一方の主面に積層されていれば良い。この場合は、最終的に本発明の積層フィルムをLCDなどのバックライトユニットに他の部材とともに組み上げた場合に、もう一方の主面が酸素や水分の侵入から保護されていることで機能層の性能の劣化を防ぐことができる。
First, a functional layer laminate 11 having an optical functional layer 12 and two gas barrier layers 14 laminated on both main surfaces of the optical functional layer 12 is prepared.
As described above, as a method for producing the functional layer laminate 11, for example, a coating composition in which quantum dots, a matrix resin and a solvent are mixed is prepared, and this coating composition is applied on the gas barrier film 14 and cured. Thus, the optical functional layer (quantum dot layer) 12 can be formed, and the other gas barrier film 14 can be laminated on the other main surface of the formed optical functional layer 12.
In the present invention, the gas barrier layer may be laminated on at least one main surface of the optical functional layer. In this case, when the laminated film of the present invention is finally assembled with a backlight unit such as an LCD together with other members, the other main surface is protected from intrusion of oxygen and moisture, thereby Performance degradation can be prevented.
 また、機能層積層体11は、1枚ずつ作製する、いわゆる枚葉式の方法で作製してもよく、あるいは、長尺なガスバリアフィルム14を長手方向に搬送しつつ、このガスバリアフィルム14の上に光学機能層12を形成し、さらに、形成した光学機能層にもう一方のガスバリアフィルムを積層して、連続的に機能層積層体11を作製する、いわゆるロール・ツー・ロール(Roll to Roll 以下、RtoRともいう)で作製してもよい。 Further, the functional layer laminate 11 may be produced by a so-called single-wafer type method in which the functional layer laminate 11 is produced one by one, or while the long gas barrier film 14 is conveyed in the longitudinal direction, The optical functional layer 12 is formed on the optical functional layer, and another gas barrier film is laminated on the optical functional layer thus formed to continuously produce the functional layer laminate 11, so-called roll-to-roll (hereinafter referred to as “Roll to Roll”). Or RtoR).
 また、必要に応じて、作製した機能層積層体11を所望の大きさにカットする工程を有していてもよい。
 機能層積層体11の切断方法には限定はなく、トムソン刃等の刃物を用いて物理的に切断する方法、レーザーを照射して切断する方法等の公知の方法が各種利用可能である。
 レーザー切断で切断すれば、機能層積層体11の端面の表面粗さを小さくできる。
 また、機能層積層体11を所定形状に加工した後、端面の表面粗さを制御するための研磨加工等を行ってもよい。例えば、刃物による切断の後、端面を切削処理、研磨処理、溶融処理することによって表面粗さを制御することができる。
 具体的な一例として、裁断した機能層積層体11を大和光機工業株式会社製リトラトームREM-710等で端面切削し、表面粗さを制御することができる。より具体的には、切削刃が機能層積層体11に当たる角度、すなわち、刃の進行方向と刃面とが為す角度が直交に近いほど平滑性が増す。切削刃が機能層積層体11に当たる角度は、70°~110°の範囲が好ましく、80~100°の範囲がより好ましく、85°~95°の範囲がさらに好ましい。慣例として、刃の進行方向の直交方向と刃面のなす角度を「刃角」と呼ぶこともある。加えて、切削による除去部分の幅(切込量)を適切に制御することでも表面粗さを制御できる。切込量は、1~20μmの範囲が好ましく、5~15μmの範囲がより好ましい。こうした切削条件による表面粗さの変化は、切削刃が機能層積層体11に当たる際に生じる機能層積層体11の歪みや捩れに伴う切断面の揺動が原因と推定している。ゆえに、適用する機能層積層体11の硬さや脆性・粘性のバランスに応じて適宜条件を定めることが好ましい。
 また、切削に際し発生する切削くずは、後続する第1層形成工程や最表層形成工程での不具合の原因となるので切削後なるべくすぐに除くことが好ましい。切削くずを除去する工程として、エアー噴きつけや洗浄液に漬けた状態での超音波洗浄、粘着シートの貼合及び剥離による方法、拭き上げ法などが例示される。
Moreover, you may have the process of cutting the produced functional layer laminated body 11 to a desired magnitude | size as needed.
The cutting method of the functional layer laminate 11 is not limited, and various known methods such as a method of physically cutting using a cutting tool such as a Thomson blade and a method of cutting by irradiating with a laser can be used.
By cutting by laser cutting, the surface roughness of the end face of the functional layer laminate 11 can be reduced.
Moreover, after processing the functional layer laminated body 11 into a predetermined shape, you may perform the grinding | polishing process etc. for controlling the surface roughness of an end surface. For example, the surface roughness can be controlled by cutting, polishing, and melting the end face after cutting with a blade.
As a specific example, the surface roughness can be controlled by cutting the end face of the cut functional layer laminate 11 with a retotome REM-710 manufactured by Daiwa Kogyo Co., Ltd. or the like. More specifically, the smoothness increases as the angle at which the cutting blade hits the functional layer laminate 11, that is, the angle formed by the blade traveling direction and the blade surface is closer to the right angle. The angle at which the cutting blade strikes the functional layer laminate 11 is preferably in the range of 70 ° to 110 °, more preferably in the range of 80 to 100 °, and still more preferably in the range of 85 ° to 95 °. Conventionally, an angle formed by a direction perpendicular to the moving direction of the blade and the blade surface may be referred to as a “blade angle”. In addition, the surface roughness can also be controlled by appropriately controlling the width (cut amount) of the removed portion by cutting. The cutting depth is preferably in the range of 1 to 20 μm, more preferably in the range of 5 to 15 μm. The change in the surface roughness due to such cutting conditions is presumed to be caused by the rocking of the cut surface caused by distortion or twist of the functional layer laminate 11 that occurs when the cutting blade hits the functional layer laminate 11. Therefore, it is preferable to appropriately set conditions according to the balance of hardness, brittleness and viscosity of the functional layer laminate 11 to be applied.
In addition, since cutting waste generated during cutting may cause problems in the subsequent first layer forming step and the outermost layer forming step, it is preferably removed as soon as possible after cutting. Examples of the process for removing cutting waste include air cleaning, ultrasonic cleaning in a state immersed in a cleaning liquid, adhesion and peeling method of an adhesive sheet, and a wiping method.
 次に、第1層形成工程として、準備した機能層積層体11を複数枚重ねて、積層物50とし(図5A参照)、この積層物50の端面に第1層18Aを形成する(図5B参照)。
 前述のとおり、第1層18Aの形成方法としては、スパッタリング法、真空蒸着法、イオンプレーティング法、無電解メッキ、および、プラズマCVD法のいずれかの方法であり、第1層18Aとして、アルミニウム、チタン、クロム、銅、および、ニッケルからなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金からなる層を積層物50の端面に形成する。
Next, as the first layer forming step, a plurality of the prepared functional layer laminates 11 are stacked to form a laminate 50 (see FIG. 5A), and the first layer 18A is formed on the end face of the laminate 50 (FIG. 5B). reference).
As described above, the first layer 18A is formed by any one of sputtering, vacuum deposition, ion plating, electroless plating, and plasma CVD, and the first layer 18A is made of aluminum. A layer made of at least one selected from the group consisting of titanium, chromium, copper, and nickel, or an alloy containing at least one of these is formed on the end face of the laminate 50.
 なお、第1層18Aを形成する際の、スパッタリング法、真空蒸着法、イオンプレーティング法、無電解メッキ、あるいは、プラズマCVD法における処理方法、処理条件等には特に限定はなく、形成材料等に応じて、従来公知の処理方法、処理条件で第1層18Aを形成すればよい。
 また、機能層積層体11の端面以外の領域、すなわち、第1層18Aを形成しない領域には、公知の方法でマスキング処理等を行って、機能層積層体11の端面に第1層18Aの形成を行えばよい。
Note that there are no particular limitations on the processing method, processing conditions, etc. in the sputtering method, vacuum deposition method, ion plating method, electroless plating, or plasma CVD method when forming the first layer 18A. Accordingly, the first layer 18A may be formed by a conventionally known processing method and processing conditions.
Further, a masking process or the like is performed by a known method on a region other than the end surface of the functional layer stack 11, that is, a region where the first layer 18 A is not formed, and the first layer 18 A is formed on the end surface of the functional layer stack 11. What is necessary is just to form.
 また、第1層18Aを形成する際の、積層物50における、機能層積層体11の枚数には特に限定はなく、第1層18Aを形成する装置の大きさ、機能層積層体11の厚さ等に応じて適宜設定すればよいが、500枚~4000枚の機能層積層体11を重ねて第1層18Aを形成するのが好ましい。 Further, the number of functional layer laminates 11 in the laminate 50 when forming the first layer 18A is not particularly limited, and the size of the device for forming the first layer 18A and the thickness of the functional layer laminate 11 are not limited. The first layer 18A is preferably formed by stacking 500 to 4000 functional layer laminates 11 in a suitable manner.
 次に、最表層形成工程として、端面に第1層18Aを形成された積層物52の第1層18A上に、最表層20Aを形成する(図5C)。
 前述のとおり、最表層20Aの形成方法としては、メッキ処理であるのが好ましく、最表層20Aとして、アルミニウム、チタン、クロム、ニッケル、錫、銅、銀、および、金からなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金からなる層を積層物52の第1層18A上に形成する。
Next, as the outermost layer forming step, the outermost layer 20A is formed on the first layer 18A of the laminate 52 having the first layer 18A formed on the end face (FIG. 5C).
As described above, the outermost layer 20A is preferably formed by plating. The outermost layer 20A is selected from the group consisting of aluminum, titanium, chromium, nickel, tin, copper, silver, and gold. A layer made of at least one or an alloy containing at least one of these is formed on the first layer 18A of the laminate 52.
 最表層20Aを形成する際のメッキ処理の処理方法、処理条件等には特に限定はなく、形成材料等に応じて、従来公知の処理方法、処理条件で最表層20Aを形成すればよい。 There are no particular limitations on the treatment method, treatment conditions, and the like of the plating treatment when forming the outermost layer 20A, and the outermost layer 20A may be formed by a conventionally known treatment method and treatment conditions according to the forming material and the like.
 次に、最表層20Aを形成した積層物54を、機能層積層体11ごとに分離して、端面に端面封止層16aが形成された機能層積層体11、すなわち、積層フィルム10aを得ることができる(図5D)。
 積層物54から積層フィルム10aを分離する方法としては、特に限定はないが、最表層20Aを形成した積層物54に、曲げ、捻りなどの、表面と水平方向への外力を加えることにより剪断する方法、または、機能層積層体10aの界面への、例えば刃物などの鋭利な先端の挿し込む方法等により分離することができる。
 端面封止層の剥離や欠けやクラックの発生を防止する等の観点から、外力による剪断にて積層フィルム10aを分離するのが好ましい。
Next, the laminate 54 in which the outermost layer 20A is formed is separated for each functional layer laminate 11 to obtain the functional layer laminate 11 having the end surface sealing layer 16a formed on the end face, that is, the laminated film 10a. (FIG. 5D).
A method for separating the laminated film 10a from the laminate 54 is not particularly limited, but the laminate 54 on which the outermost layer 20A is formed is sheared by applying an external force in the horizontal direction with respect to the surface, such as bending and twisting. It can be separated by a method or a method of inserting a sharp tip such as a blade into the interface of the functional layer laminate 10a.
From the viewpoint of preventing the end face sealing layer from peeling, chipping or cracking, it is preferable to separate the laminated film 10a by shearing with an external force.
 本発明の製造方法は、このように、端面封止層16の各層を形成する際に、機能層積層体11を複数枚重ねた状態で、端面封止層16の各層を形成することができるので、複数の積層フィルム10をまとめて作製することができ、生産性を高くすることができる。 Thus, the manufacturing method of this invention can form each layer of the end surface sealing layer 16 in the state which accumulated the several function layer laminated body 11, when forming each layer of the end surface sealing layer 16 in this way. Therefore, the several laminated | multilayer film 10 can be produced collectively, and productivity can be made high.
 ここで、機能層積層体11の端面の表面粗さRaは2.0μm以下であるのが好ましい。機能層積層体11の端面の表面粗さRaを2.0μm以下とすることで、端面に形成される第1層18との密着性をより向上できる。 Here, the surface roughness Ra of the end face of the functional layer laminate 11 is preferably 2.0 μm or less. Adhesiveness with the 1st layer 18 formed in an end surface can be improved more by making surface roughness Ra of the end surface of functional layer layered product 11 into 2.0 micrometers or less.
 また、上記においては、一例として、端面封止層16が2層の積層フィルム10aを作製する場合の製造方法を説明したが、端面封止層16が3層以上の場合には、第1層形成工程と、最表層形成工程との間に、第2層以降の各層を形成する工程を有していればよい。
 第2層以降の各層は、下地となる層が異なる以外は、上述の第1層形成工程における形成方法、あるいは、最表層形成工程における形成方法と同様の方法で形成することができる。
Moreover, in the above, although the manufacturing method in case the end surface sealing layer 16 produces the laminated film 10a of 2 layers was demonstrated as an example, when the end surface sealing layer 16 is three layers or more, it is 1st layer. What is necessary is just to have the process of forming each layer after the 2nd layer between a formation process and an outermost layer formation process.
Each layer after the second layer can be formed by a method similar to the formation method in the first layer formation step or the formation method in the outermost layer formation step, except that the underlying layer is different.
 また、本発明の製造方法は、さらに、金属からなる端面封止層16が錆びるのを抑制するため、サビ止め処理等を行ってもよい。 Further, in the manufacturing method of the present invention, rust prevention treatment or the like may be performed in order to prevent the end face sealing layer 16 made of metal from rusting.
 以上、本発明の積層フィルムおよびその製造方法について詳細に説明したが、本発明は、上記実施形態に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行なってもよいのは、もちろんである。 As mentioned above, although the laminated | multilayer film of this invention and its manufacturing method were demonstrated in detail, this invention is not limited to the said embodiment, Even if various improvements and changes are performed in the range which does not deviate from the summary of this invention. Of course it is good.
 以下、本発明の具体的実施例を挙げ、本発明を、より詳細に説明する。なお、本発明は以下に記載する実施例に限定されるものではなく、以下の実施例に示す材料、使用量、割合、処理内容、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更することができる。 Hereinafter, specific examples of the present invention will be given and the present invention will be described in more detail. In addition, this invention is not limited to the Example described below, The material, usage-amount, ratio, processing content, processing procedure, etc. which are shown in the following Example are suitably changed unless it deviates from the meaning of this invention. can do.
 [実施例1]
 本発明の第2の態様の積層フィルムについて、実施例1として、図3に示す積層フィルム10bを作製した。
[Example 1]
For the laminated film of the second aspect of the present invention, a laminated film 10b shown in FIG.
 <ガスバリアフィルムの作製>
 (ガスバリア支持体)
 ガスバリアフィルム14としては、ガスバリア支持体30上に、有機層34、無機層36および有機層38がこの順に形成されたガスバリアフィルムを用いた。
 ガスバリア支持体30として、ポリエチレンテレフタレートフィルム(PETフィルム、東洋紡株式会社製、商品名:コスモシャインA4300、厚さ50μmm、幅1000mm、長さ100m)を用いた。
<Production of gas barrier film>
(Gas barrier support)
As the gas barrier film 14, a gas barrier film in which an organic layer 34, an inorganic layer 36, and an organic layer 38 were formed in this order on a gas barrier support 30 was used.
As the gas barrier support 30, a polyethylene terephthalate film (PET film, manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine A4300, thickness 50 μm, width 1000 mm, length 100 m) was used.
 (第1有機層の形成)
 このガスバリア支持体30の一方の主面に有機層(以下、第1有機層という)34を形成した。
 まず、第1有機層を形成するための塗布液(第1有機層形成用塗布液)を以下のとおり調製した。
 TMPTA(トリメチロールプロパントリアクリレート、ダイセルサイテック株式会社製)、および、光重合開始剤(ランベルティ社製、ESACUREKTO46)を用意し、TMPTA:光重合開始剤の重量比率が、95:5となるように、秤量し、これらをメチルエチルケトンに溶解させ、固形分濃度15%の塗布液を調整した。
(Formation of the first organic layer)
An organic layer (hereinafter referred to as a first organic layer) 34 was formed on one main surface of the gas barrier support 30.
First, a coating liquid (first organic layer forming coating liquid) for forming the first organic layer was prepared as follows.
Prepare TMPTA (trimethylolpropane triacrylate, manufactured by Daicel Cytec Co., Ltd.) and a photopolymerization initiator (Lamberti, ESACUREKTO46) so that the weight ratio of TMPTA: photopolymerization initiator is 95: 5. Then, these were weighed and dissolved in methyl ethyl ketone to prepare a coating solution having a solid concentration of 15%.
 この第1有機層形成用塗布液を、ダイコーターを用いて、ロール・ツー・ロールによりガスバリア支持体30に塗布した。塗布後のガスバリア支持体30を50℃の乾燥ゾーンを3分間通過させた後、紫外線を照射し(積算照射量約600mJ/cm2)、UV硬化により硬化させた。UV硬化直後のパスロールにて保護フィルムのポリエチレンフィルム(PEフィルム、株式会社サンエー科研製、商品名:PAC2-30-T)を貼り付け、搬送し、巻き取った。ガスバリア支持体30上に形成された第1有機層34の厚みは1μmであった。 This coating solution for forming the first organic layer was applied to the gas barrier support 30 by roll-to-roll using a die coater. The gas barrier support 30 after coating was passed through a drying zone at 50 ° C. for 3 minutes, and then irradiated with ultraviolet rays (integrated irradiation amount: about 600 mJ / cm 2 ), and cured by UV curing. A protective film of polyethylene film (PE film, manufactured by Sanei Kaken Co., Ltd., trade name: PAC2-30-T) was attached with a pass roll immediately after UV curing, conveyed, and wound. The thickness of the first organic layer 34 formed on the gas barrier support 30 was 1 μm.
 (無機層の形成)
 次に、一般的なRtoRのCVD装置を用いて、CCP-CVDにより、第1有機層34上に、厚さ50nmの無機層36を形成した。
 具体的には、ガスバリア支持体30上に第1有機層34が形成され、この第1有機層34上に保護フィルムが貼着された積層体を、送出機より送り出し、無機層の成膜前の最後の膜面タッチロール通過後に保護フィルムを剥離し、暴露された第1有機層34の上に無機層36を形成した。
 原料ガスは、シランガス(SiH4)、アンモニアガス(NH3)、窒素ガス(N2)および水素ガス(H2)を用いた。ガスの供給量は、シランガスが160sccm、アンモニアガスが370sccm、窒素ガスが240sccm、水素ガスが590sccmとした。また、成膜圧力は40Paとした。すなわち、無機層36は、窒化珪素膜である。プラズマ励起電力は、周波数13.56MHzで2.5kWとした。
(Formation of inorganic layer)
Next, an inorganic layer 36 having a thickness of 50 nm was formed on the first organic layer 34 by CCP-CVD using a general RtoR CVD apparatus.
Specifically, the first organic layer 34 is formed on the gas barrier support 30, and the laminate in which the protective film is stuck on the first organic layer 34 is sent out from the feeder and before the inorganic layer is formed. After passing through the last film surface touch roll, the protective film was peeled off to form an inorganic layer 36 on the exposed first organic layer 34.
Silane gas (SiH 4 ), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and hydrogen gas (H 2 ) were used as source gases. The supply amounts of gas were 160 sccm for silane gas, 370 sccm for ammonia gas, 240 sccm for nitrogen gas, and 590 sccm for hydrogen gas. The film forming pressure was 40 Pa. That is, the inorganic layer 36 is a silicon nitride film. The plasma excitation power was 2.5 kW at a frequency of 13.56 MHz.
 (第2有機層の形成)
 次に、形成した無機層36の表面に、無機層を保護する有機層38(以下、第2有機層という)を形成した。
 まず、第2有機層を形成するための塗布液(第2有機層形成用塗布液)を以下のとおり調製した。
 ウレタン結合含有アクリルポリマー(大成ファインケミカル株式会社製 アクリット8BR500、重量平均分子量250,000)と光重合開始剤(BASF社製 イルガキュア184)を質量比率として95:5となるように秤量し、これらをメチルエチルケトンに溶解させ、固形分濃度15質量%の塗布液を調製した。
(Formation of second organic layer)
Next, an organic layer 38 (hereinafter referred to as a second organic layer) that protects the inorganic layer was formed on the surface of the formed inorganic layer 36.
First, a coating solution (second organic layer forming coating solution) for forming the second organic layer was prepared as follows.
Urethane bond-containing acrylic polymer (Acrit 8BR500 manufactured by Taisei Fine Chemical Co., Ltd., weight average molecular weight 250,000) and photopolymerization initiator (Irgacure 184 manufactured by BASF) were weighed to a mass ratio of 95: 5, and these were methyl ethyl ketone. And a coating solution having a solid content concentration of 15% by mass was prepared.
 調製した第2有機層形成用塗布液を、ダイコーターを用いて、ロール・ツー・ロールにて無機層36の表面に塗布し、100℃の乾燥ゾーンを3分間通過させ、巻き取った。こうして形成された第2有機層の厚さは、1μmであった。
 第2有機層の形成直後、膜面タッチロール部にて、保護PEフィルムを貼り付け、第2有機層がパスロールに触れることなく、搬送した後、巻き取った。
The prepared coating liquid for forming the second organic layer was applied to the surface of the inorganic layer 36 by a roll-to-roll using a die coater, passed through a drying zone at 100 ° C. for 3 minutes, and wound up. The thickness of the second organic layer thus formed was 1 μm.
Immediately after the formation of the second organic layer, a protective PE film was attached at the film surface touch roll part, and the second organic layer was transported without touching the pass roll, and then wound.
 以上のようにして、ガスバリア支持体30上に、第1有機層34、無機層36および第2有機層38がこの順に積層されたガスバリアフィルム14を作製した。
 作製したガスバリアフィルム14の酸素透過度をAPIMS法で測定したところ、温度25℃、湿度60%RHにおける酸素透過度は、1×10-3[cc/(m2・day・atm)]であった。
As described above, the gas barrier film 14 in which the first organic layer 34, the inorganic layer 36, and the second organic layer 38 were laminated in this order on the gas barrier support 30 was produced.
When the oxygen permeability of the produced gas barrier film 14 was measured by the APIMS method, the oxygen permeability at a temperature of 25 ° C. and a humidity of 60% RH was 1 × 10 −3 [cc / (m 2 · day · atm)]. It was.
 <機能層積層体の作製>
 (光学機能層の形成)
 次に、保護PEフィルムを剥離した後、ガスバリアフィルム14の第2有機層38上に光学機能層12を形成するための塗布液(光学機能層形成用塗布液)を塗布して塗膜を形成し、塗膜の上に上記と同様にして作製したガスバリアフィルム14を積層して塗膜を窒素雰囲気下でガスバリアフィルム14で挟み込んだ後、窒素雰囲気下でUV照射して塗膜を硬化させて光学機能層12を形成した。
<Production of functional layer laminate>
(Formation of optical functional layer)
Next, after peeling off the protective PE film, a coating solution for forming the optical functional layer 12 (a coating solution for forming an optical functional layer) is applied on the second organic layer 38 of the gas barrier film 14 to form a coating film. The gas barrier film 14 produced in the same manner as described above was laminated on the coating film, and the coating film was sandwiched between the gas barrier film 14 in a nitrogen atmosphere, and then the UV coating was applied in a nitrogen atmosphere to cure the coating film. The optical functional layer 12 was formed.
 (光学機能層形成用塗布液の組成)
・量子ドット1のトルエン分散液(発光極大:520nm)  10質量部
・量子ドット2のトルエン分散液(発光極大:630nm)   1質量部
・ラウリルアクリレート                 2.4質量部
・1,9-ノナンジオールジアクリレート         0.54質量部
・光重合開始剤                   0.003質量部
 (イルガキュア819(BASF社製))
 量子ドット1、2としては、下記のコア-シェル構造(InP/ZnS)を有するナノ結晶を用いた。
(Composition of coating solution for forming optical functional layer)
-Quantum dot 1 in toluene dispersion (maximum emission: 520 nm)-10 parts by mass-Toluene dispersion in quantum dot 2 (emission maximum: 630 nm)-1 part by mass-Lauryl acrylate-2.4 parts by mass-1,9-nonanediol di Acrylate 0.54 parts by mass / photopolymerization initiator 0.003 parts by mass (Irgacure 819 (manufactured by BASF))
As the quantum dots 1 and 2, nanocrystals having the following core-shell structure (InP / ZnS) were used.
 ・量子ドット1:INP530-10(NN-labs社製)
 ・量子ドット2:INP620-10(NN-labs社製)
 光学機能層形成用塗布液の粘度は50mPa・sであった。
・ Quantum dot 1: INP530-10 (manufactured by NN-labs)
Quantum dot 2: INP620-10 (manufactured by NN-labs)
The viscosity of the coating solution for forming an optical functional layer was 50 mPa · s.
 (シート加工)
 2つのガスバリアフィルム14と光学機能層12との積層体を、刃先角度17°のトムソン刃を使用し、A4サイズのシート状に打ち抜き、機能層積層体11を得た。
(Sheet processing)
The laminated body of the two gas barrier films 14 and the optical functional layer 12 was punched into an A4 size sheet using a Thomson blade having a blade edge angle of 17 ° to obtain a functional layer laminated body 11.
 <端面封止層の形成>
 (第1層の形成)
 シート状にカットした機能層積層体11を、1000枚重ね、一般的なスパッタリング装置を用いて、機能層積層体11を複数枚重ねた積層物50の側面に第1層18Aを形成した。ターゲットとしてチタン、放電ガスとしてアルゴンを用いた。成膜圧力は0.5Pa、成膜出力は400W、到達膜厚は10nmであった。
<Formation of end face sealing layer>
(Formation of the first layer)
The first layer 18A was formed on the side surface of a laminate 50 in which 1000 functional layer laminates 11 cut into a sheet were stacked and a plurality of functional layer laminates 11 were stacked using a general sputtering apparatus. Titanium was used as the target and argon was used as the discharge gas. The film formation pressure was 0.5 Pa, the film formation output was 400 W, and the ultimate film thickness was 10 nm.
 (第2層の形成)
 続いて、ターゲットをチタンから銅へ変更した以外は第1層の形成と同様にして、第1層18A上に膜厚75nmの第2層を形成した。
(Formation of the second layer)
Subsequently, a second layer having a thickness of 75 nm was formed on the first layer 18A in the same manner as the formation of the first layer except that the target was changed from titanium to copper.
 (最表層の形成)
 さらに、以下のようにして、第2層上に最表層20Aを形成した。
 まず、第1層18Aおよび第2層を形成した積層物を純水で水洗し、市販の界面活性剤を満たした浴槽に20秒浸漬して脱脂した。次いで、水洗したのちに、5%硫酸水溶液中に5秒間浸漬し酸活性処理を行い、再び水洗した。
 水洗した積層物をひっかけジグに固定し、テスターにて導通確認した後、5%硝酸水溶液中に10秒間浸漬し酸活性処理を行い、硫酸銅浴にて電流密度3.0A/dm2で5分の条件で電解めっき処理を行い、第2層上に金属メッキ層である最表層を形成した。その後、水洗、サビ留め処理を経て、エアーで余分な水分を除去し、端面に3層の金属層が形成された積層物を得た。
(Formation of the outermost layer)
Further, the outermost layer 20A was formed on the second layer as follows.
First, the laminate on which the first layer 18A and the second layer were formed was washed with pure water and immersed in a bathtub filled with a commercially available surfactant for 20 seconds for degreasing. Next, after washing with water, it was immersed in a 5% aqueous sulfuric acid solution for 5 seconds to perform acid activation treatment, and washed again with water.
The laminate washed with water was fixed on a jig and fixed with a tester. After immersing it in a 5% nitric acid aqueous solution for 10 seconds, it was subjected to an acid activation treatment, and a current density of 3.0 A / dm 2 in a copper sulfate bath. Electrolytic plating treatment was performed under the conditions of minutes to form an outermost layer as a metal plating layer on the second layer. Then, after passing through water washing and rusting treatment, excess moisture was removed with air to obtain a laminate in which three metal layers were formed on the end faces.
 (分離工程)
 次に、端面に3層の金属層が形成された積層物を、機能層積層体11の表面と水平方向への外力による剪断により、機能層積層体11ごとに分離して、端面に端面封止層16bが形成された機能層積層体11、すなわち、積層フィルム10bを得た。
(Separation process)
Next, the laminate in which the three metal layers are formed on the end face is separated for each functional layer laminate 11 by shearing with the surface of the functional layer laminate 11 by an external force in the horizontal direction, and the end face is sealed on the end face. The functional layer laminated body 11 in which the stop layer 16b was formed, ie, the laminated film 10b, was obtained.
 [実施例2~22、比較例1~4]
 第1層18、第2層22および最表層20それぞれの材料、膜厚、ならびに、機能層積層体11の端面の表面粗さRaを下記表1に示すように変更した以外は、実施例1と同様にして、積層フィルム10bを作製した。
[Examples 2 to 22, Comparative Examples 1 to 4]
Example 1 except that the material, film thickness, and surface roughness Ra of the end surface of the functional layer laminate 11 were changed as shown in Table 1 below for each of the first layer 18, the second layer 22, and the outermost layer 20. In the same manner as above, a laminated film 10b was produced.
 [実施例23]
 光学機能層形成用塗布液の量子ドット1および量子ドット2のトルエン分散液を量子ドット3(CZ520-10、NN-labs社製)および量子ドット4(CZ620-10、NN-labs社製)のトルエン分散液に変更した以外は実施例19と同様にして積層フィルム10bを作製した。
[Example 23]
Quantum dots 1 (CZ520-10, manufactured by NN-labs) and quantum dots 4 (CZ620-10, manufactured by NN-labs) of the quantum dot 1 and quantum dot 2 of the coating liquid for forming an optical functional layer were used. A laminated film 10b was produced in the same manner as in Example 19 except that the toluene dispersion was used.
 [評価]
 <端面封止性能の評価>
 作製した実施例1~23および比較例1~4の積層フィルムについて、以下の試験を行い、端面の封止性能を評価した。
 まず、分離した1枚の積層フィルムの初期輝度(Y0)を以下の手順で測定した。市販のタブレット端末(Amazon社製Kindle(登録商標) Fire HDX 7”)を分解し、バックライトユニットを取り出した。取り出したバックライトユニットの導光板上に積層フィルムを置き、その上に、向きが直交した2枚のプリズムシートを重ね置いた。青色光源から発し、積層フィルムおよび2枚のプリズムシートを透過した光の輝度を、導光板の面に対して垂直方向740mmの位置に設置した輝度計(SR3、TOPCON社製)にて測定し、積層フィルムの輝度とした。
 次に、60℃相対湿度90%に保たれた恒温槽に積層フィルムを投入し、1000時間保管した。1000時間後、積層フィルムを取り出し、上記と同様の手順で、高温高湿試験後の輝度(Y1)を測定した。下記式のように、初期の輝度値(Y0)に対する、高温高湿試験後の輝度(Y1)の変化率(ΔY)を算出し、輝度変化の指標として、以下の基準で評価した。
  ΔY[%]=(Y0-Y1)/Y0×100
 評価結果が、C以上であれば、高温高湿試験後も端部の発光効率が良好に維持されていると判断することができる。
  A:ΔY≦5%
  B:5%<ΔY<10%
  C:10%≦ΔY<15%
  D:15%≦ΔY
[Evaluation]
<Evaluation of end face sealing performance>
The laminated films of Examples 1 to 23 and Comparative Examples 1 to 4 thus prepared were subjected to the following tests to evaluate the end face sealing performance.
First, the initial luminance (Y0) of one separated laminated film was measured by the following procedure. A commercially available tablet device (Amazon Kindle (registered trademark) Fire HDX 7 ”) was disassembled and the backlight unit was taken out. A laminated film was placed on the light guide plate of the taken out backlight unit, and the orientation was placed on it. Two prism sheets orthogonal to each other were placed on top of each other, and a luminance meter in which the luminance of light emitted from a blue light source and transmitted through the laminated film and the two prism sheets was set at a position of 740 mm perpendicular to the surface of the light guide plate (SR3, manufactured by TOPCON) and measured as the brightness of the laminated film.
Next, the laminated film was put into a thermostat kept at 60 ° C. and a relative humidity of 90%, and stored for 1000 hours. After 1000 hours, the laminated film was taken out, and the luminance (Y1) after the high temperature and high humidity test was measured in the same procedure as described above. Like the following formula, the change rate (ΔY) of the luminance (Y1) after the high-temperature and high-humidity test with respect to the initial luminance value (Y0) was calculated, and evaluated as the luminance change index according to the following criteria.
ΔY [%] = (Y0−Y1) / Y0 × 100
If the evaluation result is C or more, it can be determined that the light emission efficiency at the end is well maintained even after the high temperature and high humidity test.
A: ΔY ≦ 5%
B: 5% <ΔY <10%
C: 10% ≦ ΔY <15%
D: 15% ≦ ΔY
 <密着性の評価>
 分離工程の前の、複数枚の機能層積層体の積層物の端面に端面封止層が形成された状態のサンプルを用いて、機能層積層体の端面と、端面封止層との密着性を、100マスのクロスカット試験(JIS D0202-1988に準拠)を行い、剥離しなかったマスの数により評価した。
 密着性の評価基準は以下である。なお、A~Cが合格にあたり、Dが不合格にあたる。
  A:100
  B:95以上99以下
  C:90以上94以下
  D:90未満
<Evaluation of adhesion>
Adhesiveness between the end face of the functional layer laminate and the end face sealing layer using the sample in which the end face sealing layer is formed on the end face of the laminate of the plurality of functional layer laminates before the separation step A cross cut test of 100 squares (in accordance with JIS D0202-1988) was performed, and the evaluation was performed based on the number of squares that did not peel off.
The evaluation criteria for adhesion are as follows. A to C are acceptable and D is unacceptable.
A: 100
B: 95 or more and 99 or less C: 90 or more and 94 or less D: Less than 90
<弾性率の測定>
 各実施例、比較例で用いた量子ドット含有重合性組成物の組成から、量子ドット1および量子ドット2のトルエン分散液を除いたモデル膜作製用組成物を用意し、前述の手段1により厚さ60μmのモデル膜を作製した。具体的には、以下の方法によりモデル膜を作製した。
 モデル膜作製用組成物を離型フィルム(東レ社製ルミラー#50、50μm厚)にワイヤーバーで塗布した後、その上にもう一枚の離型フィルムをラミネートし、200W/cmの空冷メタルハライドランプ(アイグラフィックス社製)を用いて、紫外線を塗布面より1000mJ/cm照射して硬化させた。なお、上記工程は全て窒素雰囲気下で実施した。モデル膜を5mm×30mmに裁断し、こうして得られた硬化膜の両面にある離型フィルムを剥離し、厚み60μmの樹脂層単膜(モデル膜)を得た。
 モデル膜を、25℃60%RHで2時間以上調湿した後に動的粘弾性測定装置(バイブロン:DVA-225(アイティー計測制御(株)製))で、つかみ間距離20mm、昇温速度2℃/分、測定温度範囲30℃~150℃、周波数1Hzで測定し、50℃における貯蔵弾性率の値を、弾性率として用いた。
 結果を下記の表1に示す。
<Measurement of elastic modulus>
A composition for preparing a model film is prepared by removing the toluene dispersion of quantum dots 1 and 2 from the composition of the quantum dot-containing polymerizable composition used in each example and comparative example. A model film having a thickness of 60 μm was prepared. Specifically, a model film was produced by the following method.
After applying the model film composition to a release film (Lumirror # 50 manufactured by Toray Industries Inc., 50 μm thick) with a wire bar, another release film is laminated thereon, and an air-cooled metal halide lamp of 200 W / cm (Made by Eye Graphics Co., Ltd.) was used to cure by irradiating ultraviolet rays with 1000 mJ / cm 2 from the coated surface. The above steps were all performed in a nitrogen atmosphere. The model film was cut into 5 mm × 30 mm, and the release films on both sides of the cured film thus obtained were peeled off to obtain a single resin layer film (model film) having a thickness of 60 μm.
The model membrane was conditioned at 25 ° C. and 60% RH for 2 hours or more and then measured with a dynamic viscoelasticity measuring device (Vibron: DVA-225 (produced by IT Measurement Control Co., Ltd.)). Measurement was performed at 2 ° C./minute, a measurement temperature range of 30 ° C. to 150 ° C., and a frequency of 1 Hz, and the value of the storage elastic modulus at 50 ° C. was used as the elastic modulus.
The results are shown in Table 1 below.
[規則26に基づく補充 24.08.2016] 
Figure WO-DOC-TABLE-1
Figure WO-DOC-TABLE-1-a
[Supplement under rule 26 24.08.2016]
Figure WO-DOC-TABLE-1
Figure WO-DOC-TABLE-1-a
 上記表1に示されるように、本発明の第2の態様の積層フィルムの実施例は、比較例に対して、端部の非発光領域が低減されており、2層以上金属層からなる端面封止層により酸素、水を遮断することで量子ドット層(光学機能層)の劣化を防ぐことができることがわかる。
 また、実施例および比較例の対比から、単官能重合性化合物と多官能重合性化合物とを併用し、弾性率を所定の範囲にすることで、金属薄膜形成時の膜応力に光学機能層のマトリックスが耐え、端面の金属薄膜の欠陥をなくし、且つ平滑性を確保することができ、端面に高いバリア性を有する端面封止層が得られる。
As shown in Table 1 above, in the example of the laminated film of the second aspect of the present invention, the non-light emitting region at the end is reduced as compared with the comparative example, and the end surface is composed of two or more metal layers. It can be seen that deterioration of the quantum dot layer (optical functional layer) can be prevented by blocking oxygen and water by the sealing layer.
In addition, from the comparison between the examples and the comparative examples, the monofunctional polymerizable compound and the polyfunctional polymerizable compound are used in combination, and the elastic modulus is set within a predetermined range, so that the film stress during the formation of the metal thin film can be reduced. The matrix can withstand, the defects of the metal thin film on the end face can be eliminated, smoothness can be ensured, and an end face sealing layer having a high barrier property on the end face can be obtained.
 [実施例24]
 次に、本発明の第1の態様の積層フィルムについて、実施例24として、図3に示す積層フィルム10bを作製した。
 実施例24の積層フィルムは、光学機能層形成用塗布液の組成を以下の組成を変更し、シート加工工程において、シート状にカットした積層体を、1000枚重ねた後、大和光機工業株式会社製リトラトームREM-710を用いて刃角0°、切込量10μmの条件で積層体端面を切削して端面の表面粗さを調整した以外は、実施例1と同様にして作製した。
 作製した機能層積層体11の端面の表面粗さRaを干渉顕微鏡(株式会社菱化システム社製 vertscan2.0)にて測定したところ、表面粗さRaは0.6μmであった。
[Example 24]
Next, for the laminated film of the first aspect of the present invention, a laminated film 10b shown in FIG.
In the laminated film of Example 24, the composition of the coating solution for forming an optical functional layer was changed to the following composition, and in the sheet processing step, 1000 laminated laminates cut into a sheet shape were stacked, and then Daiwa Koki Kogyo Co., Ltd. It was produced in the same manner as in Example 1 except that the end surface of the laminate was adjusted by cutting the laminate end surface under the conditions of a blade angle of 0 ° and a cutting depth of 10 μm using a company retotome REM-710.
When the surface roughness Ra of the end surface of the produced functional layer laminate 11 was measured with an interference microscope (vertscan 2.0, manufactured by Ryoka Systems Co., Ltd.), the surface roughness Ra was 0.6 μm.
 (光学機能層形成用塗布液の組成)
・量子ドット1のトルエン分散液(発光極大:520nm)  10質量部
・量子ドット2のトルエン分散液(発光極大:630nm)   1質量部
・ラウリルメタクリレート                2.4質量部
・トリメチロールプロパントリアクリレート       0.54質量部
・光重合開始剤                   0.009質量部
 (イルガキュア819(BASF社製))
(Composition of coating solution for forming optical functional layer)
-Toluene dispersion of quantum dots 1 (luminescence maximum: 520 nm) 10 parts by mass-Toluene dispersion of quantum dots 2 (luminescence maximum: 630 nm) 1 part by weight-Lauryl methacrylate 2.4 parts by weight-Trimethylolpropane triacrylate 0. 54 parts by mass / photopolymerization initiator 0.009 parts by mass (Irgacure 819 (manufactured by BASF))
 [実施例25~29]
 第1層18、第2層22および最表層20それぞれの材料、膜厚、ならびに、機能層積層体11の端面の表面粗さRaを下記表2に示すように変更した以外は、実施例24と同様にして、積層フィルム10bを作製した。
 なお、実施例27においては、刃角0°、切込量20μmの条件で端面切削を行い、実施例29においては、刃角25°、切込量20μmの条件で端面切削を行った。
[Examples 25 to 29]
Example 24, except that the material, film thickness, and surface roughness Ra of the end surface of the functional layer laminate 11 were changed as shown in Table 2 below for each of the first layer 18, the second layer 22, and the outermost layer 20. In the same manner as above, a laminated film 10b was produced.
In Example 27, end face cutting was performed under the conditions of a blade angle of 0 ° and a cutting depth of 20 μm. In Example 29, end face cutting was performed under the conditions of a blade angle of 25 ° and a cutting depth of 20 μm.
 [実施例30]
 第2層22を形成せずに、第1層18と最表層20との2層構成とし、第1層18の材料および膜厚を下記表2に示すように変更した以外は、実施例24と同様にして、積層フィルム10aを作製した。
[Example 30]
Example 24, except that the second layer 22 is not formed and the first layer 18 and the outermost layer 20 are formed in two layers, and the material and film thickness of the first layer 18 are changed as shown in Table 2 below. In the same manner as above, a laminated film 10a was produced.
 [比較例5]
 端面封止層を形成しない以外は、実施例24と同様にして、積層フィルムを作製した。
[Comparative Example 5]
A laminated film was produced in the same manner as in Example 24 except that the end face sealing layer was not formed.
 [比較例6]
 端面封止層を1層とし、この層の材料、膜厚を下記表2に示すように変更した以外は、実施例24と同様にして、積層フィルムを作製した。
[Comparative Example 6]
A laminated film was produced in the same manner as in Example 24 except that the end face sealing layer was one layer and the material and film thickness of this layer were changed as shown in Table 2 below.
 [比較例7]
 端面封止層として、機能層積層体の端面に、ヘンケル・ジャパン社製、ロックタイトE-30CLをディップ法で形成した。
[Comparative Example 7]
As an end face sealing layer, Loctite E-30CL manufactured by Henkel Japan Co., Ltd. was formed on the end face of the functional layer laminate by a dip method.
 [評価]
 <端面封止性能の評価>
 作製した実施例24~30および比較例5~7の積層フィルムについて、上記と同様にして端面の封止性能を評価した。
[Evaluation]
<Evaluation of end face sealing performance>
For the produced laminated films of Examples 24 to 30 and Comparative Examples 5 to 7, the end face sealing performance was evaluated in the same manner as described above.
 <密着性の評価>
 作製した実施例24~30および比較例5~7の積層フィルムについて、上記と同様にして密着性を評価した。
<Evaluation of adhesion>
The adhesion of the produced laminated films of Examples 24 to 30 and Comparative Examples 5 to 7 was evaluated in the same manner as described above.
 <ピンホール数の評価>
 作製した積層フィルムの端面封止層のピンホール数を以下のようにして測定した。
 4辺の端面封止層を光学顕微鏡で観察し、大きさ1μm以上の非被覆部をピンホールとし、その数xを計測して、1mm2当たりのピンホール数を求めた。
 ピンホール数の指標として、以下の基準で評価した。評価結果が、C以上であれば、ピンホール数が少なく、端部封止層が十分なガスバリア性を有していると判断することができる。
  A:x≦5個/mm2
  B:5個/mm2<x<10個/mm2
  C:10個/mm2≦x<20個/mm2
  D:20個/mm2≦x
<Evaluation of the number of pinholes>
The number of pinholes in the end face sealing layer of the produced laminated film was measured as follows.
The end face sealing layers on the four sides were observed with an optical microscope, an uncoated portion having a size of 1 μm or more was used as a pinhole, and the number x was measured to obtain the number of pinholes per 1 mm 2 .
Evaluation was made according to the following criteria as an index of the number of pinholes. If the evaluation result is C or more, it can be determined that the number of pinholes is small and the end sealing layer has a sufficient gas barrier property.
A: x ≦ 5 / mm 2
B: 5 pieces / mm 2 <x <10 pieces / mm 2
C: 10 pieces / mm 2 ≦ x <20 pieces / mm 2
D: 20 pieces / mm 2 ≦ x
 <回り込み幅の評価>
 作製した積層フィルムの端面封止層の主面への回り込み幅を以下のようにして測定した。
 積層フィルムを大和光機工業株式会社製リトラトームREM-710を用いて刃角0°、切込量10μmの条件で断面切削し、その断面を光学顕微鏡で観察し、回り込み幅dを求めた。
 回り込み幅dの指標として、以下の基準で評価した。評価結果が、C以上であれば、回り込み幅が少なく、フィルム端部の非発光部分を抑制できていると判断することができる。
  A:d≦0.1mm
  B:0.1mm<d<0.5mm
  C:0.5mm≦d<1mm
  D:1mm≦d
 また、比較例7の積層フィルムの端面の断面の光学顕微鏡写真を図6に示す。
 結果を下記の表2に示す。
<Evaluation of wraparound width>
The wraparound width to the main surface of the end face sealing layer of the produced laminated film was measured as follows.
The laminated film was cut in a cross section under the conditions of a blade angle of 0 ° and a cutting depth of 10 μm using a Retotom REM-710 manufactured by Daiwa Koki Kogyo Co., Ltd., and the cross section was observed with an optical microscope to obtain a wraparound width d.
As an index of the wraparound width d, evaluation was performed according to the following criteria. If the evaluation result is C or more, it can be determined that the wraparound width is small and the non-light-emitting portion at the end of the film can be suppressed.
A: d ≦ 0.1 mm
B: 0.1 mm <d <0.5 mm
C: 0.5 mm ≦ d <1 mm
D: 1 mm ≦ d
Moreover, the optical microscope photograph of the cross section of the end surface of the laminated film of the comparative example 7 is shown in FIG.
The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表2に示されるように、本発明の第1の態様の積層フィルムの実施例は、比較例に対して、端部の非発光領域が低減されており、2層以上金属層からなる端面封止層により酸素、水を遮断することで量子ドット(光学機能層)の劣化を防ぐことができることがわかる。
 また、実施例24、実施例26、および、比較例6の対比から、端面封止層は厚いほど、酸素透過度が低くなり、封止性能が高くなることがわかる。
As shown in Table 2 above, in the example of the laminated film of the first aspect of the present invention, the non-light-emitting region at the end is reduced compared to the comparative example, and the end surface is composed of two or more metal layers. It turns out that deterioration of a quantum dot (optical function layer) can be prevented by interrupting | blocking oxygen and water with a sealing layer.
Further, from comparison between Example 24, Example 26, and Comparative Example 6, it can be seen that the thicker the end face sealing layer, the lower the oxygen permeability and the higher the sealing performance.
 また、実施例24、実施例27、実施例29の対比から、機能層積層体の表面粗さRaが小さいほど、封止性能がより高くなることがわかる。これは、機能層積層体の表面粗さRaが大きいと、端面封止層を一様に被覆しにくくなり、ピンホールが発生するためであると推定される。この結果から、機能層積層体の表面粗さRaは、2.0μm以下であるのが好ましいことがわかる。
 また、実施例24、実施例28、実施例30の対比から、機能層積層体の端面に接する第1層の材料を、アルミニウム、チタン、クロム、および、ニッケルのいずれかとすることで、より高い密着性を得られることがわかる。
 以上の結果より、本発明の効果は明らかである。
Moreover, it turns out from the comparison of Example 24, Example 27, and Example 29 that sealing performance becomes higher, so that the surface roughness Ra of a functional layer laminated body is small. It is presumed that this is because if the surface roughness Ra of the functional layer laminate is large, it is difficult to uniformly cover the end face sealing layer, and pinholes are generated. From this result, it can be seen that the surface roughness Ra of the functional layer laminate is preferably 2.0 μm or less.
Further, from the comparison of Example 24, Example 28, and Example 30, the material of the first layer in contact with the end face of the functional layer laminate is higher than any one of aluminum, titanium, chromium, and nickel. It can be seen that adhesion can be obtained.
From the above results, the effects of the present invention are clear.
 10a、10b 積層フィルム
 11 機能層積層体
 12 光学機能層
 14 ガスバリア層(ガスバリアフィルム)
 16a、16b 端面封止層
 18、18A 第1層
 20、20A 最表層
 22 第2層
 30 ガスバリア支持体
 32 バリア層
 34 有機層
 36 無機層
 38 有機層
 50 積層物
 52 第1層を形成した積層物
 54 最表層を形成した積層物
10a, 10b Laminated film 11 Functional layer laminate 12 Optical functional layer 14 Gas barrier layer (gas barrier film)
16a, 16b End face sealing layer 18, 18A First layer 20, 20A Outermost layer 22 Second layer 30 Gas barrier support 32 Barrier layer 34 Organic layer 36 Inorganic layer 38 Organic layer 50 Laminate 52 Laminate with first layer formed 54 Laminate with outermost layer formed

Claims (23)

  1.  光学機能層と、前記光学機能層の少なくとも一方の主面に積層される、ガスバリア層とを有する機能層積層体、および、
     前記機能層積層体の端面のうち少なくとも一部を覆って形成される端面封止層、を有し、
     前記端面封止層は、少なくとも2層からなり、各層が金属からなることを特徴とする積層フィルム。
    A functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer; and
    An end face sealing layer formed to cover at least a part of the end face of the functional layer laminate,
    The end face sealing layer is composed of at least two layers, and each layer is composed of a metal.
  2.  前記端面封止層の、前記機能層積層体に接する第1層以外の少なくとも1層が、金属メッキ層である請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein at least one layer other than the first layer in contact with the functional layer laminate of the end face sealing layer is a metal plating layer.
  3.  前記端面封止層の、前記機能層積層体から最も遠い最表層が、金属メッキ層である請求項1または2に記載の積層フィルム。 The laminated film according to claim 1 or 2, wherein the outermost surface layer of the end face sealing layer farthest from the functional layer laminate is a metal plating layer.
  4.  前記金属メッキ層の厚さが、前記機能層積層体に接する第1層の厚さよりも厚い請求項2または3に記載の積層フィルム。 The laminated film according to claim 2 or 3, wherein the thickness of the metal plating layer is thicker than the thickness of the first layer in contact with the functional layer laminate.
  5.  前記第1層の厚さが、0.001μm~0.5μmであり、
     前記金属メッキ層の厚さが、0.01μm~100μmである請求項4に記載の積層フィルム。
    The first layer has a thickness of 0.001 μm to 0.5 μm;
    The laminated film according to claim 4, wherein the metal plating layer has a thickness of 0.01 μm to 100 μm.
  6.  前記機能層積層体に接する第1層の材料が、アルミニウム、チタン、クロム、銅、および、ニッケルからなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金であり、
     前記第1層以外の各層の材料が、アルミニウム、チタン、クロム、ニッケル、錫、銅、銀、および、金からなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金である請求項1~5のいずれか1項に記載の積層フィルム。
    The material of the first layer in contact with the functional layer laminate is at least one selected from the group consisting of aluminum, titanium, chromium, copper, and nickel, or an alloy containing at least one of these,
    The material of each layer other than the first layer is at least one selected from the group consisting of aluminum, titanium, chromium, nickel, tin, copper, silver, and gold, or an alloy containing at least one of these. The laminated film according to any one of claims 1 to 5.
  7.  前記端面封止層の厚さが、0.1μm~100μmである請求項1~6のいずれか1項に記載の積層フィルム。 The laminated film according to any one of claims 1 to 6, wherein the end face sealing layer has a thickness of 0.1 µm to 100 µm.
  8.  光学機能層とガスバリア層とを有する機能層積層体の側面に、少なくとも2層からなり、各層が金属からなる端面封止層を有する請求項1~7のいずれか1項に記載の積層フィルムを製造する積層フィルムの製造方法であって、
     前記機能層積層体を複数枚重ねた積層物の端面に、前記機能層積層体に接する前記第1層を形成する第1層形成工程と、
     前記積層物の端面に形成された前記第1層上に最表層を形成する最表層形成工程と、を有し、
     前記第1層の形成方法が、スパッタリング法、真空蒸着法、イオンプレーティング法、および、プラズマCVD法からなる群から選択される1種である積層フィルムの製造方法。
    The laminated film according to any one of claims 1 to 7, wherein the functional film laminate having the optical functional layer and the gas barrier layer has at least two layers, and each layer has an end face sealing layer made of metal. A method for producing a laminated film to be produced,
    A first layer forming step of forming the first layer in contact with the functional layer laminate on an end face of a laminate in which a plurality of the functional layer laminates are stacked;
    An outermost layer forming step of forming an outermost layer on the first layer formed on the end surface of the laminate,
    A method for producing a laminated film, wherein the method for forming the first layer is one selected from the group consisting of a sputtering method, a vacuum deposition method, an ion plating method, and a plasma CVD method.
  9.  前記端面封止層の、前記第1層以外の少なくとも1層の形成方法が、金属メッキ処理である請求項8に記載の積層フィルムの製造方法。 The method for producing a laminated film according to claim 8, wherein the formation method of at least one layer other than the first layer of the end face sealing layer is a metal plating process.
  10.  光学機能層と、前記光学機能層の少なくとも一方の主面に積層される、ガスバリア層とを有する機能層積層体、および、
     前記機能層積層体の端面のうち少なくとも一部を覆って形成される端面封止層、を有し、
     前記端面封止層は、少なくとも2層からなり、各層がそれぞれ金属からなる積層フィルムであって、
     前記光学機能層は、蛍光体および少なくとも2種以上の重合性化合物を含む重合性組成物を硬化させてなる硬化層であることを特徴とする積層フィルム。
    A functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer; and
    An end face sealing layer formed to cover at least a part of the end face of the functional layer laminate,
    The end face sealing layer is composed of at least two layers, and each layer is a laminated film made of metal,
    The laminated film, wherein the optical functional layer is a cured layer obtained by curing a polymerizable composition containing a phosphor and at least two or more polymerizable compounds.
  11.  前記重合性化合物は単官能重合性化合物からなる第一の重合性化合物の少なくとも一種と多官能重合性化合物からなる第二の重合性化合物の少なくとも一種とを含む請求項10に記載の積層フィルム。 The laminated film according to claim 10, wherein the polymerizable compound contains at least one kind of a first polymerizable compound made of a monofunctional polymerizable compound and at least one kind of a second polymerizable compound made of a polyfunctional polymerizable compound.
  12.  前記第一の重合性化合物が、アルキル基の炭素数が4~30である脂肪族または芳香族アルキル(メタ)アクリレートであり、
     前記第二の重合性化合物が、1,6-ヘキサンジオールジアクリレート、1,10-デカンジオールジアクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジアクリレート、ジシクロペンタニルジ(メタ)アクリレート、エトキシ化ビスフェノールAジアクリレートの中から選ばれる請求項11に記載の積層フィルム。
    The first polymerizable compound is an aliphatic or aromatic alkyl (meth) acrylate having an alkyl group with 4 to 30 carbon atoms,
    The second polymerizable compound is 1,6-hexanediol diacrylate, 1,10-decanediol diacrylate, 1,9-nonanediol di (meth) acrylate, tricyclodecane dimethanol diacrylate, dicyclopenta. The laminated film according to claim 11, which is selected from nildi (meth) acrylate and ethoxylated bisphenol A diacrylate.
  13.  前記光学機能層の50℃における弾性率が1MPa~4000MPaである請求項10~12のいずれか一項に記載の積層フィルム。 The laminated film according to any one of claims 10 to 12, wherein the optical function layer has an elastic modulus at 50 ° C of 1 MPa to 4000 MPa.
  14.  前記ガスバリア層が前記光学機能層の両方の主面に積層されてなる請求項10~13のいずれか一項に記載の積層フィルム。 The laminated film according to any one of claims 10 to 13, wherein the gas barrier layer is laminated on both main surfaces of the optical functional layer.
  15.  前記光学機能層の前記蛍光体は、量子ドット、量子ロッド、テトラポッド型量子ドットである請求項10~14のいずれか一項に記載の積層フィルム。 The laminated film according to any one of claims 10 to 14, wherein the phosphor of the optical functional layer is a quantum dot, a quantum rod, or a tetrapod type quantum dot.
  16.  前記端面封止層の、前記機能層積層体に接する第1層以外の少なくとも1層が、金属メッキ層である請求項10~15のいずれか一項に記載の積層フィルム。 The laminated film according to any one of claims 10 to 15, wherein at least one layer other than the first layer in contact with the functional layer laminate in the end face sealing layer is a metal plating layer.
  17.  前記端面封止層の、前記機能層積層体から最も遠い最表層が、金属メッキ層である請求項10~16のいずれか一項に記載の積層フィルム。 The laminated film according to any one of claims 10 to 16, wherein the outermost surface layer of the end face sealing layer that is farthest from the functional layer laminate is a metal plating layer.
  18.  前記金属メッキ層の厚さが、前記機能層積層体に接する第1層の厚さよりも厚い請求項16または17に記載の積層フィルム。 The laminated film according to claim 16 or 17, wherein the thickness of the metal plating layer is thicker than the thickness of the first layer in contact with the functional layer laminate.
  19.  前記第1層の厚さが、0.001μm~0.5μmであり、
     前記金属メッキ層の厚さが、0.01μm~100μmである請求項18に記載の積層フィルム。
    The first layer has a thickness of 0.001 μm to 0.5 μm;
    The laminated film according to claim 18, wherein the metal plating layer has a thickness of 0.01 袖 m to 100 袖 m.
  20.  前記機能層積層体に接する第1層の材料が、アルミニウム、チタン、クロム、銅、および、ニッケルからなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金であり、
     前記第1層以外の各層の材料が、アルミニウム、チタン、クロム、ニッケル、錫、銅、銀、および、金からなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金である請求項10~19のいずれか一項に記載の積層フィルム。
    The material of the first layer in contact with the functional layer laminate is at least one selected from the group consisting of aluminum, titanium, chromium, copper, and nickel, or an alloy containing at least one of these,
    The material of each layer other than the first layer is at least one selected from the group consisting of aluminum, titanium, chromium, nickel, tin, copper, silver, and gold, or an alloy containing at least one of these. The laminated film according to any one of claims 10 to 19.
  21.  前記端面封止層の厚さが、0.1μm~100μmである請求項10~20のいずれか一項に記載の積層フィルム。 The laminated film according to any one of claims 10 to 20, wherein the end face sealing layer has a thickness of 0.1 µm to 100 µm.
  22.  光学機能層とガスバリア層とを有する機能層積層体の側面に、少なくとも2層からなり、各層が金属からなる端面封止層を有する請求項10~21のいずれか一項に記載の積層フィルムを製造する積層フィルムの製造方法であって、
     ガスバリア層を有するガスバリアフィルムの上に、蛍光体および少なくとも2種以上の重合性化合物を含む重合性組成物を塗布し硬化させてなる機能層積層体を形成し、
     前記機能層積層体を複数枚重ねた積層物の端面に、前記機能層積層体に接する前記第1層を形成する第1層形成工程と、
     前記積層物の端面に形成された前記第1層上に最表層を形成する最表層形成工程と、を有し、
     前記第1層の形成方法が、スパッタリング法、真空蒸着法、イオンプレーティング法、および、プラズマCVD法からなる群から選択される1種であることを特徴とする積層フィルムの製造方法。
    The laminated film according to any one of claims 10 to 21, which comprises at least two layers on each side surface of the functional layer laminate having an optical functional layer and a gas barrier layer, and each layer has an end face sealing layer made of metal. A method for producing a laminated film to be produced,
    On the gas barrier film having the gas barrier layer, a functional layer laminate is formed by applying and curing a polymerizable composition containing a phosphor and at least two or more polymerizable compounds,
    A first layer forming step of forming the first layer in contact with the functional layer laminate on an end face of a laminate in which a plurality of the functional layer laminates are stacked;
    An outermost layer forming step of forming an outermost layer on the first layer formed on the end surface of the laminate,
    A method for producing a laminated film, wherein the method for forming the first layer is one selected from the group consisting of a sputtering method, a vacuum deposition method, an ion plating method, and a plasma CVD method.
  23.  前記端面封止層の、前記第1層以外の少なくとも1層の形成方法が、金属メッキ処理である請求項22に記載の積層フィルムの製造方法。 The method for producing a laminated film according to claim 22, wherein the formation method of at least one layer other than the first layer of the end face sealing layer is a metal plating process.
PCT/JP2016/067946 2015-06-17 2016-06-16 Laminate film, and laminate-film production method WO2016204231A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680034978.7A CN107708996B (en) 2015-06-17 2016-06-16 The manufacturing method of stacked film and stacked film
JP2017525297A JP6433592B2 (en) 2015-06-17 2016-06-16 LAMINATED FILM AND METHOD FOR PRODUCING LAMINATED FILM
KR1020177035953A KR102028470B1 (en) 2015-06-17 2016-06-16 Laminated Film and Manufacturing Method of Laminated Film
US15/840,405 US20180179643A1 (en) 2015-06-17 2017-12-13 Laminated film and method for manufacturing laminated film

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015122266 2015-06-17
JP2015-122266 2015-06-17
JP2015-130410 2015-06-29
JP2015130410 2015-06-29
JP2015-158845 2015-08-11
JP2015158845 2015-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/840,405 Continuation US20180179643A1 (en) 2015-06-17 2017-12-13 Laminated film and method for manufacturing laminated film

Publications (1)

Publication Number Publication Date
WO2016204231A1 true WO2016204231A1 (en) 2016-12-22

Family

ID=57545283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067946 WO2016204231A1 (en) 2015-06-17 2016-06-16 Laminate film, and laminate-film production method

Country Status (5)

Country Link
US (1) US20180179643A1 (en)
JP (1) JP6433592B2 (en)
KR (1) KR102028470B1 (en)
CN (1) CN107708996B (en)
WO (1) WO2016204231A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6462941B1 (en) * 2018-05-28 2019-01-30 グンゼ株式会社 Cover film
JP2020116805A (en) * 2019-01-22 2020-08-06 グンゼ株式会社 Cover film

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079495A1 (en) * 2016-10-24 2018-05-03 凸版印刷株式会社 Gas barrier film and color conversion member
WO2019091346A1 (en) 2017-11-08 2019-05-16 Nano And Advanced Materials Institute Limited Barrier free stable quantum dot film
JP7056290B2 (en) * 2018-03-23 2022-04-19 Tdk株式会社 Thin film capacitors and methods for manufacturing thin film capacitors
US20220227555A1 (en) * 2019-05-31 2022-07-21 Mitsui Chemicals Tohcello, Inc. Packaging film, package, and method of manufacturing laminated film
CN111020503B (en) * 2019-12-10 2021-07-30 湖北大学 Application of montmorillonite in magnetron sputtering target material, montmorillonite film obtained by using montmorillonite and application of montmorillonite film
TWI741598B (en) * 2020-05-12 2021-10-01 睿亞光電股份有限公司 Wavelength-converting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036092A1 (en) * 2010-09-17 2012-03-22 住友化学株式会社 Laminated film, laminated film having electrode, and organic el element
JP2014069454A (en) * 2012-09-28 2014-04-21 Fujifilm Corp Electronic module
JP2016068556A (en) * 2014-09-26 2016-05-09 富士フイルム株式会社 Laminate film, backlight unit, liquid crystal display device, and production method of laminate film

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2904437B1 (en) * 2006-07-28 2008-10-24 Saint Gobain ACTIVE DEVICE HAVING VARIABLE ENERGY / OPTICAL PROPERTIES
KR20080013752A (en) * 2006-08-08 2008-02-13 스미또모 가가꾸 가부시끼가이샤 Polarizing sheet and production method thereof
JP5418762B2 (en) 2008-04-25 2014-02-19 ソニー株式会社 Light emitting device and display device
KR100982991B1 (en) 2008-09-03 2010-09-17 삼성엘이디 주식회사 Quantum dot-wavelength conversion device, preparing method of the same and light-emitting device comprising the same
US9199842B2 (en) 2008-12-30 2015-12-01 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
JP4988782B2 (en) * 2009-03-02 2012-08-01 富士フイルム株式会社 Sealed element
EA201200862A1 (en) 2009-12-11 2013-01-30 Басф Се LOOP FOR RODENTS, PACKED IN A BIO-DETACHABLE FILM
JP2012037558A (en) * 2010-08-03 2012-02-23 Hitachi Chem Co Ltd Light-controlling structure
JP2012094608A (en) * 2010-10-26 2012-05-17 Fujifilm Corp Solar cell module
JP2014220194A (en) * 2013-05-10 2014-11-20 株式会社フジクラ Oxide superconductive wire material and production method thereof
JP5796038B2 (en) * 2013-06-18 2015-10-21 デクセリアルズ株式会社 Phosphor sheet
WO2016039079A1 (en) * 2014-09-12 2016-03-17 富士フイルム株式会社 Functional laminate film and method for producing functional laminate film
US9739926B2 (en) * 2014-09-26 2017-08-22 Fujifilm Corporation Laminate film, backlight unit, and liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036092A1 (en) * 2010-09-17 2012-03-22 住友化学株式会社 Laminated film, laminated film having electrode, and organic el element
JP2014069454A (en) * 2012-09-28 2014-04-21 Fujifilm Corp Electronic module
JP2016068556A (en) * 2014-09-26 2016-05-09 富士フイルム株式会社 Laminate film, backlight unit, liquid crystal display device, and production method of laminate film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6462941B1 (en) * 2018-05-28 2019-01-30 グンゼ株式会社 Cover film
JP2019206163A (en) * 2018-05-28 2019-12-05 グンゼ株式会社 Cover film
JP2020116805A (en) * 2019-01-22 2020-08-06 グンゼ株式会社 Cover film

Also Published As

Publication number Publication date
CN107708996B (en) 2019-11-01
US20180179643A1 (en) 2018-06-28
KR20180011147A (en) 2018-01-31
JPWO2016204231A1 (en) 2018-04-26
CN107708996A (en) 2018-02-16
KR102028470B1 (en) 2019-10-04
JP6433592B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6433592B2 (en) LAMINATED FILM AND METHOD FOR PRODUCING LAMINATED FILM
JP6570638B2 (en) Laminated film
US20180022881A1 (en) Functional film and method for producing functional film
US20170320307A1 (en) Functional composite film and quantum dot film
US10480751B2 (en) Wavelength conversion laminated film
JP6577874B2 (en) Wavelength conversion film
JP6599992B2 (en) Laminated film
JP6433591B2 (en) Laminated film
JP6608447B2 (en) LAMINATED FILM AND METHOD FOR PRODUCING LAMINATED FILM
JP6714591B2 (en) Functional film and method for producing functional film
US20180170009A1 (en) Laminated film
JP6316443B2 (en) Functional laminated film and method for producing functional laminated film
JP6611350B2 (en) Backlight film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017525297

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177035953

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811705

Country of ref document: EP

Kind code of ref document: A1