WO2016204231A1 - Laminate film, and laminate-film production method - Google Patents
Laminate film, and laminate-film production method Download PDFInfo
- Publication number
- WO2016204231A1 WO2016204231A1 PCT/JP2016/067946 JP2016067946W WO2016204231A1 WO 2016204231 A1 WO2016204231 A1 WO 2016204231A1 JP 2016067946 W JP2016067946 W JP 2016067946W WO 2016204231 A1 WO2016204231 A1 WO 2016204231A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- laminate
- meth
- laminated film
- acrylate
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 45
- 239000005001 laminate film Substances 0.000 title abstract 4
- 239000010410 layer Substances 0.000 claims abstract description 608
- 239000002346 layers by function Substances 0.000 claims abstract description 224
- 230000004888 barrier function Effects 0.000 claims abstract description 195
- 238000007789 sealing Methods 0.000 claims abstract description 120
- 239000002096 quantum dot Substances 0.000 claims abstract description 114
- 229910052751 metal Inorganic materials 0.000 claims abstract description 91
- 239000002184 metal Substances 0.000 claims abstract description 91
- 230000003287 optical effect Effects 0.000 claims abstract description 91
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 219
- 150000001875 compounds Chemical class 0.000 claims description 83
- 238000000034 method Methods 0.000 claims description 78
- 238000007747 plating Methods 0.000 claims description 47
- 239000000463 material Substances 0.000 claims description 41
- 239000000203 mixture Substances 0.000 claims description 33
- 230000015572 biosynthetic process Effects 0.000 claims description 32
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 30
- 125000004432 carbon atom Chemical group C* 0.000 claims description 27
- 238000004544 sputter deposition Methods 0.000 claims description 24
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 16
- 125000000217 alkyl group Chemical group 0.000 claims description 16
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims description 16
- 229910052719 titanium Inorganic materials 0.000 claims description 16
- 239000010936 titanium Substances 0.000 claims description 16
- 238000001771 vacuum deposition Methods 0.000 claims description 16
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 15
- 239000000956 alloy Substances 0.000 claims description 15
- 229910045601 alloy Inorganic materials 0.000 claims description 15
- 238000007733 ion plating Methods 0.000 claims description 15
- 229910052759 nickel Inorganic materials 0.000 claims description 15
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 14
- 229910052804 chromium Inorganic materials 0.000 claims description 14
- 239000011651 chromium Substances 0.000 claims description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 13
- 239000010949 copper Substances 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 13
- 125000001931 aliphatic group Chemical group 0.000 claims description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 239000010931 gold Substances 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 239000011135 tin Substances 0.000 claims description 6
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 claims description 4
- 239000002344 surface layer Substances 0.000 claims description 4
- RHNJVKIVSXGYBD-UHFFFAOYSA-N 10-prop-2-enoyloxydecyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCCCCCOC(=O)C=C RHNJVKIVSXGYBD-UHFFFAOYSA-N 0.000 claims description 3
- 241001455273 Tetrapoda Species 0.000 claims description 3
- FHLPGTXWCFQMIU-UHFFFAOYSA-N [4-[2-(4-prop-2-enoyloxyphenyl)propan-2-yl]phenyl] prop-2-enoate Chemical class C=1C=C(OC(=O)C=C)C=CC=1C(C)(C)C1=CC=C(OC(=O)C=C)C=C1 FHLPGTXWCFQMIU-UHFFFAOYSA-N 0.000 claims description 3
- VEBCLRKUSAGCDF-UHFFFAOYSA-N ac1mi23b Chemical compound C1C2C3C(COC(=O)C=C)CCC3C1C(COC(=O)C=C)C2 VEBCLRKUSAGCDF-UHFFFAOYSA-N 0.000 claims description 3
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 claims description 2
- 239000007789 gas Substances 0.000 abstract description 167
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 31
- 239000001301 oxygen Substances 0.000 abstract description 31
- 229910052760 oxygen Inorganic materials 0.000 abstract description 31
- 230000006866 deterioration Effects 0.000 abstract description 4
- 230000002401 inhibitory effect Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 230
- 239000012044 organic layer Substances 0.000 description 80
- 239000000178 monomer Substances 0.000 description 47
- -1 polyethylene terephthalate Polymers 0.000 description 40
- 238000000576 coating method Methods 0.000 description 39
- 239000011248 coating agent Substances 0.000 description 37
- 238000005520 cutting process Methods 0.000 description 27
- 229920005989 resin Polymers 0.000 description 27
- 239000011347 resin Substances 0.000 description 26
- 239000000243 solution Substances 0.000 description 23
- 239000011159 matrix material Substances 0.000 description 19
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 17
- 230000006870 function Effects 0.000 description 17
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 16
- 230000035699 permeability Effects 0.000 description 16
- 230000003746 surface roughness Effects 0.000 description 16
- 125000003700 epoxy group Chemical group 0.000 description 15
- 238000011156 evaluation Methods 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 14
- 229920001223 polyethylene glycol Polymers 0.000 description 14
- 239000000758 substrate Substances 0.000 description 14
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 13
- 125000000524 functional group Chemical group 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 12
- 125000003566 oxetanyl group Chemical group 0.000 description 12
- 239000011241 protective layer Substances 0.000 description 11
- 239000010409 thin film Substances 0.000 description 11
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 10
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- IISBACLAFKSPIT-UHFFFAOYSA-N Bisphenol A Natural products C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 8
- 239000008199 coating composition Substances 0.000 description 8
- 238000001723 curing Methods 0.000 description 8
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 8
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 7
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 7
- 125000002947 alkylene group Chemical group 0.000 description 7
- 230000001588 bifunctional effect Effects 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- 230000005284 excitation Effects 0.000 description 7
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 239000004925 Acrylic resin Substances 0.000 description 6
- 229920000178 Acrylic resin Polymers 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 6
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- XUCHXOAWJMEFLF-UHFFFAOYSA-N bisphenol F diglycidyl ether Chemical compound C1OC1COC(C=C1)=CC=C1CC(C=C1)=CC=C1OCC1CO1 XUCHXOAWJMEFLF-UHFFFAOYSA-N 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 6
- 150000002314 glycerols Chemical class 0.000 description 6
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 6
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 5
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 239000003999 initiator Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- ZZEANNAZZVVPKU-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-(2-hydroxypropoxy)propoxy]propoxy]propoxy]propoxy]propoxy]propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)COC(C)COC(C)COC(C)COC(C)COC(C)CO ZZEANNAZZVVPKU-UHFFFAOYSA-N 0.000 description 4
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 125000002723 alicyclic group Chemical group 0.000 description 4
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 4
- 125000004103 aminoalkyl group Chemical group 0.000 description 4
- 125000003710 aryl alkyl group Chemical group 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 125000000623 heterocyclic group Chemical class 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000013008 thixotropic agent Substances 0.000 description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 4
- 239000004034 viscosity adjusting agent Substances 0.000 description 4
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 3
- TXZNVWGSLKSTDH-XCADPSHZSA-N (1Z,3Z,5Z)-cyclodeca-1,3,5-triene Chemical compound C1CC\C=C/C=C\C=C/C1 TXZNVWGSLKSTDH-XCADPSHZSA-N 0.000 description 3
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 3
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000005058 Isophorone diisocyanate Substances 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 3
- 101100063942 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) dot-1 gene Proteins 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 150000005215 alkyl ethers Chemical class 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 238000007772 electroless plating Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- IIRDTKBZINWQAW-UHFFFAOYSA-N hexaethylene glycol Chemical compound OCCOCCOCCOCCOCCOCCO IIRDTKBZINWQAW-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 150000002484 inorganic compounds Chemical class 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000000113 methacrylic resin Substances 0.000 description 3
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 229920001515 polyalkylene glycol Polymers 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 150000003077 polyols Chemical class 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- GERCTIYUFJWFIY-UHFFFAOYSA-N (3-dodecoxy-3-hydroxypropyl) prop-2-enoate Chemical compound CCCCCCCCCCCCOC(O)CCOC(=O)C=C GERCTIYUFJWFIY-UHFFFAOYSA-N 0.000 description 2
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 2
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 2
- CZZVAVMGKRNEAT-UHFFFAOYSA-N 2,2-dimethylpropane-1,3-diol;3-hydroxy-2,2-dimethylpropanoic acid Chemical compound OCC(C)(C)CO.OCC(C)(C)C(O)=O CZZVAVMGKRNEAT-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- SYEWHONLFGZGLK-UHFFFAOYSA-N 2-[1,3-bis(oxiran-2-ylmethoxy)propan-2-yloxymethyl]oxirane Chemical compound C1OC1COCC(OCC1OC1)COCC1CO1 SYEWHONLFGZGLK-UHFFFAOYSA-N 0.000 description 2
- WMYINDVYGQKYMI-UHFFFAOYSA-N 2-[2,2-bis(hydroxymethyl)butoxymethyl]-2-ethylpropane-1,3-diol Chemical compound CCC(CO)(CO)COCC(CC)(CO)CO WMYINDVYGQKYMI-UHFFFAOYSA-N 0.000 description 2
- COBPKKZHLDDMTB-UHFFFAOYSA-N 2-[2-(2-butoxyethoxy)ethoxy]ethanol Chemical compound CCCCOCCOCCOCCO COBPKKZHLDDMTB-UHFFFAOYSA-N 0.000 description 2
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 2
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 2
- LSRXVFLSSBNNJC-UHFFFAOYSA-N 2-[2-[2-[2-[2-(2-phenoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound OCCOCCOCCOCCOCCOCCOC1=CC=CC=C1 LSRXVFLSSBNNJC-UHFFFAOYSA-N 0.000 description 2
- SHKUUQIDMUMQQK-UHFFFAOYSA-N 2-[4-(oxiran-2-ylmethoxy)butoxymethyl]oxirane Chemical compound C1OC1COCCCCOCC1CO1 SHKUUQIDMUMQQK-UHFFFAOYSA-N 0.000 description 2
- WTYYGFLRBWMFRY-UHFFFAOYSA-N 2-[6-(oxiran-2-ylmethoxy)hexoxymethyl]oxirane Chemical compound C1OC1COCCCCCCOCC1CO1 WTYYGFLRBWMFRY-UHFFFAOYSA-N 0.000 description 2
- RCXHRHWRRACBTK-UHFFFAOYSA-N 3-(oxiran-2-ylmethoxy)propane-1,2-diol Chemical class OCC(O)COCC1CO1 RCXHRHWRRACBTK-UHFFFAOYSA-N 0.000 description 2
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 2
- MECNWXGGNCJFQJ-UHFFFAOYSA-N 3-piperidin-1-ylpropane-1,2-diol Chemical compound OCC(O)CN1CCCCC1 MECNWXGGNCJFQJ-UHFFFAOYSA-N 0.000 description 2
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 2
- OECTYKWYRCHAKR-UHFFFAOYSA-N 4-vinylcyclohexene dioxide Chemical compound C1OC1C1CC2OC2CC1 OECTYKWYRCHAKR-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GFFMZGDPPVXDMI-UHFFFAOYSA-N C1(=CC=CC=C1)O.C1(=CC=CC=C1)O.[Br] Chemical compound C1(=CC=CC=C1)O.C1(=CC=CC=C1)O.[Br] GFFMZGDPPVXDMI-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 2
- 239000004713 Cyclic olefin copolymer Substances 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000003848 UV Light-Curing Methods 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 125000005013 aryl ether group Chemical group 0.000 description 2
- 150000008378 aryl ethers Chemical class 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 125000002511 behenyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 125000006226 butoxyethyl group Chemical group 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- TUEYHEWXYWCDHA-UHFFFAOYSA-N ethyl 5-methylthiadiazole-4-carboxylate Chemical compound CCOC(=O)C=1N=NSC=1C TUEYHEWXYWCDHA-UHFFFAOYSA-N 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- FHHGCKHKTAJLOM-UHFFFAOYSA-N hexaethylene glycol monomethyl ether Chemical compound COCCOCCOCCOCCOCCOCCO FHHGCKHKTAJLOM-UHFFFAOYSA-N 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 125000005395 methacrylic acid group Chemical group 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 150000002924 oxiranes Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- MFTPIWFEXJRWQY-UHFFFAOYSA-N phosphoric acid prop-2-enoic acid Chemical class OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OP(O)(O)=O MFTPIWFEXJRWQY-UHFFFAOYSA-N 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- 230000005476 size effect Effects 0.000 description 2
- 229910021647 smectite Inorganic materials 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- ODIGIKRIUKFKHP-UHFFFAOYSA-N (n-propan-2-yloxycarbonylanilino) acetate Chemical compound CC(C)OC(=O)N(OC(C)=O)C1=CC=CC=C1 ODIGIKRIUKFKHP-UHFFFAOYSA-N 0.000 description 1
- MJYFYGVCLHNRKB-UHFFFAOYSA-N 1,1,2-trifluoroethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(F)(F)CF MJYFYGVCLHNRKB-UHFFFAOYSA-N 0.000 description 1
- WGYZMNBUZFHYRX-UHFFFAOYSA-N 1-(1-methoxypropan-2-yloxy)propan-2-ol Chemical compound COCC(C)OCC(C)O WGYZMNBUZFHYRX-UHFFFAOYSA-N 0.000 description 1
- OWRNLGZKEZSHGO-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-(2-hydroxypropoxy)propoxy]propoxy]propoxy]propoxy]propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)COC(C)COC(C)COC(C)COC(C)CO OWRNLGZKEZSHGO-UHFFFAOYSA-N 0.000 description 1
- XDEKOZXTBXBBAP-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-(2-methoxypropoxy)propoxy]propoxy]propoxy]propoxy]propoxy]propan-1-ol Chemical compound COC(C)COC(C)COC(C)COC(C)COC(C)COC(C)COC(C)CO XDEKOZXTBXBBAP-UHFFFAOYSA-N 0.000 description 1
- SZGNWRSFHADOMY-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound COCCOCCOCCOCCOCCOCCOCCOCCO SZGNWRSFHADOMY-UHFFFAOYSA-N 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- WGKYSFRFMQHMOF-UHFFFAOYSA-N 3-bromo-5-methylpyridine-2-carbonitrile Chemical compound CC1=CN=C(C#N)C(Br)=C1 WGKYSFRFMQHMOF-UHFFFAOYSA-N 0.000 description 1
- CYUZOYPRAQASLN-UHFFFAOYSA-N 3-prop-2-enoyloxypropanoic acid Chemical compound OC(=O)CCOC(=O)C=C CYUZOYPRAQASLN-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- YPCHGLDQZXOZFW-UHFFFAOYSA-N [2-[[4-methyl-3-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]carbonylamino]phenyl]carbamoyloxymethyl]-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound CC1=CC=C(NC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C)C=C1NC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C YPCHGLDQZXOZFW-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- CAVCGVPGBKGDTG-UHFFFAOYSA-N alumanylidynemethyl(alumanylidynemethylalumanylidenemethylidene)alumane Chemical compound [Al]#C[Al]=C=[Al]C#[Al] CAVCGVPGBKGDTG-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- VNSBYDPZHCQWNB-UHFFFAOYSA-N calcium;aluminum;dioxido(oxo)silane;sodium;hydrate Chemical compound O.[Na].[Al].[Ca+2].[O-][Si]([O-])=O VNSBYDPZHCQWNB-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- VVHAVLIDQNWEKF-UHFFFAOYSA-N nonaethylene glycol monomethyl ether Chemical compound COCCOCCOCCOCCOCCOCCOCCOCCOCCO VVHAVLIDQNWEKF-UHFFFAOYSA-N 0.000 description 1
- 229920000847 nonoxynol Polymers 0.000 description 1
- 229910000273 nontronite Inorganic materials 0.000 description 1
- GLZWNFNQMJAZGY-UHFFFAOYSA-N octaethylene glycol Chemical compound OCCOCCOCCOCCOCCOCCOCCOCCO GLZWNFNQMJAZGY-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229940105570 ornex Drugs 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 238000007539 photo-oxidation reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- AZIQALWHRUQPHV-UHFFFAOYSA-N prop-2-eneperoxoic acid Chemical class OOC(=O)C=C AZIQALWHRUQPHV-UHFFFAOYSA-N 0.000 description 1
- 229910052903 pyrophyllite Inorganic materials 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 229910000275 saponite Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/26—Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
- B05D1/265—Extrusion coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/02—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
- B05D3/0254—After-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/06—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
- B05D3/061—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
- B05D3/065—After-treatment
- B05D3/067—Curing or cross-linking the coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B23/00—Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
- B32B23/04—Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B23/08—Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/281—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/302—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/304—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
- B32B27/325—Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
- B32B27/365—Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/02—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/02—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
- B32B3/08—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D147/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/20—Metallic material, boron or silicon on organic substrates
- C23C14/205—Metallic material, boron or silicon on organic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3464—Sputtering using more than one target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/345—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/54—Electroplating of non-metallic surfaces
- C25D5/56—Electroplating of non-metallic surfaces of plastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/60—Deposition of organic layers from vapour phase
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/02—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
- B05D7/04—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/02—2 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/20—Inorganic coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/20—Inorganic coating
- B32B2255/205—Metallic coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/28—Multiple coating on one surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/51—Elastic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/538—Roughness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7244—Oxygen barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7246—Water vapor barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
- B32B2457/202—LCD, i.e. liquid crystal displays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
Definitions
- the present invention relates to a laminated film and a method for producing the laminated film.
- LCDs Liquid crystal display devices
- LCDs consume less power and are increasingly used year by year as space-saving image display devices. Further, in recent liquid crystal display devices, further power saving, color reproducibility improvement and the like are required as LCD performance improvement.
- a quantum dot is a crystal in an electronic state in which the direction of movement is restricted in all three dimensions.
- the nanoparticle Becomes a quantum dot.
- Quantum dots exhibit various quantum effects. For example, the “quantum size effect” in which the density of states of electrons (energy level) is discretized appears. According to this quantum size effect, the absorption wavelength and emission wavelength of light can be controlled by changing the size of the quantum dot.
- quantum dots are dispersed in a resin or the like, and are used, for example, as a quantum dot film that performs wavelength conversion and disposed between a backlight and a liquid crystal panel.
- the quantum dots When excitation light enters the film containing quantum dots from the backlight, the quantum dots are excited and emit fluorescence.
- quantum dots having different light emission characteristics it is possible to realize white light by emitting light having a narrow half-value width of red light, green light, and blue light. Since the half-value width of the fluorescence due to quantum dots is narrow, it is possible to design white light obtained by appropriately selecting the wavelength to have high luminance or excellent color reproducibility.
- quantum dot layer a resin layer containing quantum dots (hereinafter also referred to as “quantum dot layer”) to protect the quantum dot layer.
- quantum dot layer a resin layer containing quantum dots
- Patent Document 1 describes a composition in which a quantum dot phosphor is dispersed in a cycloolefin (co) polymer in a concentration range of 0.01% by mass to 20% by mass.
- covers the whole surface of the made resin molding is described. Further, it is described that the gas barrier layer is a gas barrier film in which a silica film or an alumina film is formed on at least one surface of the resin layer.
- Patent Document 2 describes a display backlight unit including a remote phosphor film containing a light-emitting quantum dot (QD) population.
- the QD phosphor material is sandwiched between two gas barrier films, and the QD phosphor material
- surroundings is described.
- Patent Document 3 discloses a light emitting device including a color conversion layer that converts at least a part of the color light emitted from the light source unit into another color light, and an impermeable sealing sheet that seals the color conversion layer.
- the apparatus is described, and has a second bonding layer provided in a frame shape along the outer periphery of the phosphor layer, that is, surrounding the planar shape of the phosphor layer, and this second bonding layer is A configuration made of an adhesive material having gas barrier properties is described.
- Patent Document 3 describes a configuration in which the upper layer and / or the bottom layer, which is a barrier layer for sealing the QD film, is narrowed to prevent the entry of oxygen and water by narrowing the opening at the end.
- Patent Document 4 includes a quantum point that converts the wavelength of excitation light to generate wavelength-converted light, a wavelength conversion unit that includes a dispersion medium that disperses the quantum point, and a sealing member that seals the wavelength conversion unit.
- a quantum point wavelength converter is described, and it is described that the wavelength conversion part is sealed by heating and thermally sticking the end region of the sealing sheet.
- the film including quantum dots used for the LCD is a thin film of about 50 ⁇ m to 350 ⁇ m. It was very difficult to coat the entire surface of the thin quantum dot layer with a gas barrier film, and there was a problem that productivity was poor. In addition, when the gas barrier film is bent, the barrier layer is broken and the gas barrier property is lowered.
- the protective layer and the resin layer are formed by a so-called dam fill method.
- a dam fill method can be considered. That is, after forming a protective layer on the peripheral portion on one gas barrier film, a resin layer is formed in a region surrounded by the protective layer, and then the other gas barrier film is laminated on the protective layer and the resin layer. It is conceivable to produce a film containing quantum dots.
- the material of the protective layer that can be formed by such a method is an adhesive material or the like, high barrier properties cannot be imparted, and gas barrier properties and durability are not sufficient.
- such a dam fill method has a problem that productivity is extremely poor because all processes are batch methods.
- the thickness of the quantum dot layer at the end becomes thin.
- the size of the area that can be used effectively becomes small, and the frame portion becomes large.
- a barrier layer having a high gas barrier property is hard and brittle, if the gas barrier film having such a barrier layer is suddenly bent, the barrier layer is cracked, and the gas barrier property is lowered. There has been a problem that it becomes impossible to prevent moisture and oxygen from entering the layer.
- the object of the present invention is to solve such problems of the prior art, can prevent optical functional layers such as quantum dot layers from being deteriorated by moisture and oxygen, has high durability,
- An object of the present invention is to provide a laminated film and a method for producing the laminated film that can be narrowed and have high productivity.
- the present inventors have obtained a functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer, and a functional layer.
- An end face sealing layer formed so as to cover at least a part of the end face of the laminate, and the end face sealing layer is composed of at least two layers, and each layer is made of a metal, whereby the above-described problems can be solved.
- the headline and the present invention were completed. That is, this invention provides the laminated film of the following structures, and its manufacturing method.
- a functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer, and An end face sealing layer formed to cover at least a part of the end face of the functional layer laminate,
- the end face sealing layer is composed of at least two layers, and each layer is a laminated film made of metal.
- the thickness of the first layer is 0.001 ⁇ m to 0.5 ⁇ m
- the laminated film according to (4), wherein the thickness of the metal plating layer is 0.01 ⁇ m to 100 ⁇ m.
- the material of the first layer in contact with the functional layer laminate is at least one selected from the group consisting of aluminum, titanium, chromium, copper, and nickel, or an alloy containing at least one of these.
- each layer other than the first layer is at least one selected from the group consisting of aluminum, titanium, chromium, nickel, tin, copper, silver, and gold, or an alloy containing at least one of these.
- (1) The laminated film as described in any one of (5).
- (7) The laminated film according to any one of (1) to (6), wherein the end face sealing layer has a thickness of 0.1 ⁇ m to 100 ⁇ m.
- the functional layer laminate having an optical functional layer and a gas barrier layer has at least two layers on each side surface, and each layer has an end face sealing layer made of metal.
- a method for producing a laminated film for producing a laminated film A first layer forming step of forming a first layer in contact with the functional layer laminate on an end face of a laminate in which a plurality of functional layer laminates are stacked; An outermost layer forming step of forming an outermost layer on the first layer formed on the end face of the laminate, A method for producing a laminated film, wherein the formation method of the first layer is one selected from the group consisting of a sputtering method, a vacuum deposition method, an ion plating method, and a plasma CVD method. (9) The method for producing a laminated film according to (8), wherein the formation method of at least one layer other than the first layer of the end face sealing layer is a metal plating process.
- a functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer, and An end face sealing layer formed to cover at least a part of the end face of the functional layer laminate,
- the end face sealing layer is composed of at least two layers, and each layer is a laminated film made of metal
- the optical functional layer is a laminated film that is a cured layer formed by curing a polymerizable composition containing a phosphor and at least two or more polymerizable compounds.
- the first polymerizable compound is an aliphatic or aromatic alkyl (meth) acrylate having an alkyl group having 4 to 30 carbon atoms
- the second polymerizable compound is 1,6-hexanediol diacrylate, 1,10-decanediol diacrylate, 1,9-nonanediol di (meth) acrylate, tricyclodecane dimethanol diacrylate, dicyclopentanyl.
- the laminated film according to (11) selected from di (meth) acrylate and ethoxylated bisphenol A diacrylate.
- the phosphor of the optical functional layer is a quantum dot, a quantum rod, or a tetrapod type quantum dot.
- the material of the first layer in contact with the functional layer laminate is at least one selected from the group consisting of aluminum, titanium, chromium, copper, and nickel, or an alloy containing at least one of these.
- the material of each layer other than the first layer is at least one selected from the group consisting of aluminum, titanium, chromium, nickel, tin, copper, silver, and gold, or an alloy containing at least one of these.
- the functional layer laminate having an optical functional layer and a gas barrier layer has at least two layers on each side surface, and each layer has an end face sealing layer made of metal.
- a method for producing a laminated film for producing a laminated film On the gas barrier film having the gas barrier layer, a functional layer laminate is formed by applying and curing a polymerizable composition containing a phosphor and at least two or more polymerizable compounds, A first layer forming step of forming a first layer in contact with the functional layer laminate on an end face of a laminate in which a plurality of functional layer laminates are stacked; An outermost layer forming step of forming an outermost layer on the first layer formed on the end face of the laminate, A method for producing a laminated film, wherein the formation method of the first layer is one selected from the group consisting of a sputtering method, a vacuum deposition method, an ion plating method, and a plasma CVD method.
- the present invention as described above, it is possible to prevent the quantum dots from being deteriorated by moisture or oxygen, to have high durability, to be able to narrow the frame, and to have high productivity.
- the manufacturing method of can be provided.
- a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
- the laminated film of the first aspect of the present invention includes an optical functional layer, a functional layer laminate having a gas barrier layer laminated on at least one main surface of the optical functional layer, and an end surface of the functional layer laminate.
- the end surface sealing layer is formed so as to cover at least a part
- the end surface sealing layer is a laminated film composed of at least two layers, and each layer is made of metal.
- the laminated film according to the second aspect of the present invention includes an optical functional layer obtained by curing a polymerizable composition containing a phosphor and at least two or more polymerizable compounds, and at least one principal surface of the optical functional layer.
- a functional layer laminate having a gas barrier layer, and an end face sealing layer formed so as to cover at least a part of the end faces of the functional layer laminate. It is a laminated film consisting of two layers, each layer consisting of metal.
- FIG. 1 is a cross-sectional view conceptually showing an example of the laminated film of the present invention.
- a laminated film 10 a shown in FIG. 1 covers a functional layer laminate 11 having two gas barrier layers 14 laminated on both main surfaces of the optical functional layer 12 and the optical functional layer 12, and a side surface of the functional layer laminate 11.
- the end surface sealing layer 16a is formed as described above.
- the optical function layer 12 is a layer for expressing a desired function such as wavelength conversion.
- the optical functional layer 12 is a quantum dot layer in which a large number of phosphors (quantum dots) are dispersed in a matrix such as a curable resin, and converts the wavelength of light incident on the optical functional layer 12. And has a function of emitting light. For example, when blue light emitted from a backlight (not shown) enters the optical functional layer 12, the optical functional layer 12 converts at least part of the blue light into red light or green light due to the effect of quantum dots contained therein. The wavelength is converted into and emitted.
- the blue light is light having an emission center wavelength in a wavelength band of 400 nm to 500 nm
- the green light is light having an emission center wavelength in a wavelength band exceeding 500 nm and 600 nm.
- the wavelength conversion function exhibited by the quantum dot layer is not limited to a configuration that converts the wavelength of blue light into red light or green light, and may convert at least part of incident light into light of a different wavelength. That's fine.
- the quantum dots emit fluorescence by being excited at least by incident excitation light.
- the type of quantum dots contained in the quantum dot layer and various known quantum dots may be appropriately selected according to the required wavelength conversion performance or the like.
- quantum dots for example, JP 2012-169271 A paragraphs 0060 to 0066 can be referred to, but are not limited to those described here.
- the quantum dots commercially available products can be used without any limitation.
- the emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles.
- the quantum dots are preferably dispersed uniformly in the matrix, but may be dispersed with a bias in the matrix. Moreover, only 1 type may be used for a quantum dot and it may use 2 or more types together. When using 2 or more types together, you may use 2 or more types of quantum dots from which the wavelength of emitted light differs.
- the known quantum dots include a quantum dot (A) having an emission center wavelength in the wavelength band exceeding 600 nm and in the range of 680 nm, and a quantum dot having an emission center wavelength in the wavelength band exceeding 500 nm and 600 nm. (B), there is a quantum dot (C) having an emission center wavelength in the wavelength band of 400 nm to 500 nm.
- the quantum dot (A) is excited by excitation light to emit red light, and the quantum dot (B) is green light.
- the quantum dot (C) emits blue light.
- red light emitted from the quantum dots (A) and light emitted from the quantum dots (B) can be realized by the green light and the blue light transmitted through the quantum dot layer.
- ultraviolet light incident on the quantum dot layer including the quantum dots (A), (B), and (C) as excitation light
- quantum dots (B) White light can be realized by green light emitted by the blue light and blue light emitted by the quantum dots (C).
- quantum dot a so-called quantum rod or a tetrapod type quantum dot that has a rod shape and has directivity and emits polarized light may be used.
- the type of matrix of the quantum dot layer is not particularly limited, and various resins used in known quantum dot layers can be used. Examples thereof include polyester resins (for example, polyethylene terephthalate, polyethylene naphthalate), (meth) acrylic resins, polyvinyl chloride resins, and polyvinylidene chloride resins.
- a curable compound having a polymerizable group can be used as the matrix.
- the kind of polymeric group is not specifically limited, Preferably, it is a (meth) acrylate group, a vinyl group, or an epoxy group, More preferably, it is a (meth) acrylate group, More preferably, it is an acrylate group.
- each polymeric group may be the same and may differ.
- a resin containing the following first polymerizable compound and second polymerizable compound can be used as a matrix.
- the first polymerizable compound is one or more selected from the group consisting of a bifunctional or higher functional (meth) acrylate monomer and a monomer having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups.
- a bifunctional or higher functional (meth) acrylate monomer and a monomer having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups.
- it is a compound.
- the bifunctional (meth) acrylate monomers include neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tripropylene glycol di (meth) ) Acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclo Pentenyloxyethyl (meth) acrylate, dicyclopentanyl di (meth) acrylate and the like are preferable examples.
- the trifunctional or higher functional (meth) acrylate monomers include ECH-modified glycerol tri (meth) acrylate, EO-modified glycerol tri (meth) acrylate, and PO-modified glycerol tri (meta).
- Monomers having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups include, for example, aliphatic cyclic epoxy compounds, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, bromine Bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, brominated bisphenol S diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 1,4 -Butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether , Polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ethers; polyether
- Examples of commercially available products that can be suitably used as monomers having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups include Daicel Chemical Industries, Ltd. Celoxide 2021P, Celoxide 8000, Sigma-Aldrich 4- Examples include vinylcyclohexene dioxide. These can be used alone or in combination of two or more.
- a monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group may be produced by any method.
- Maruzen KK Publishing Co., Ltd., Fourth Edition Experimental Chemistry Course 20 Organic Synthesis II, 213, 1992, Ed.by Alfred Hasfner The chemistry of heterocyclic compounds-Small Ring Heterocycles part3 Oxiranes, John & Wiley and Sons, An Interscience Publication, New York, 1985, Yoshimura, Adhesion, Vol. 29, No. 12, 32, 1985, Yoshimura, Adhesion, Vol. 30, No. 5, 42, 1986, Yoshimura, Adhesion, Vol. 30, No. 7, 42, 1986, Japanese Patent Laid-Open No. 11-100308, Japanese Patent No. 2906245, Japanese Patent No. 2926262, etc. Can be synthesized.
- the second polymerizable compound has a functional group having hydrogen bonding properties in the molecule and a polymerizable group capable of undergoing a polymerization reaction with the first polymerizable compound.
- the functional group having hydrogen bonding include a urethane group, a urea group, or a hydroxyl group.
- the polymerizable group capable of undergoing a polymerization reaction with the first polymerizable compound for example, when the first polymerizable compound is a bifunctional or higher (meth) acrylate monomer, it may be a (meth) acryloyl group.
- the polymerizable compound is a monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group, it may be an epoxy group or an oxetanyl group.
- (Meth) acrylate monomers containing urethane groups include diisocyanates such as TDI, MDI, HDI, IPDI, and HMDI, poly (propylene oxide) diol, poly (tetramethylene oxide) diol, ethoxylated bisphenol A, and ethoxylated bisphenol.
- an adduct of TDI and hydroxyethyl acrylate, an adduct of IPDI and hydroxyethyl acrylate, an adduct of HDI and pentaerythritol triacrylate (PETA), and an adduct of TDI and PETA remained.
- Examples include compounds obtained by reacting isocyanate and dodecyloxyhydroxypropyl acrylate, adducts of 6,6 nylon and TDI, adducts of pentaerythritol, TDI and hydroxyethyl acrylate, but are not limited thereto. Absent.
- Examples of the (meth) acrylate monomer containing a hydroxyl group include compounds synthesized by a reaction between a compound having an epoxy group and (meth) acrylic acid. Typical ones are classified into bisphenol A type, bisphenol S type, bisphenol F type, epoxidized oil type, phenol novolak type, and alicyclic type, depending on the compound having an epoxy group.
- the mass ratio between the first polymerizable compound and the second polymerizable compound may be 10:90 to 99: 1, and is preferably 10:90 to 90:10. It is also preferable that the content of the first polymerizable compound is larger than the content of the second polymerizable compound. Specifically, (content of the first polymerizable compound) / (of the second polymerizable compound) The content is preferably 2 to 10.
- the matrix further contains a monofunctional (meth) acrylate monomer.
- Monofunctional (meth) acrylate monomers include acrylic acid and methacrylic acid, derivatives thereof, and more specifically, monomers having one polymerizable unsaturated bond ((meth) acryloyl group) of (meth) acrylic acid in the molecule Can be mentioned. Specific examples thereof include the following compounds, but the present invention is not limited thereto.
- the monofunctional (meth) acrylate monomer is preferably contained in an amount of 1 to 300 parts by mass, and 50 to 150 parts by mass with respect to a total mass of 100 parts by mass of the first polymerizable compound and the second polymerizable compound. More preferably it is included.
- the first polymerizable compound, the second polymerizable compound, and the monofunctional (meth) acrylate monomer preferably has a long-chain alkyl group having 4 to 30 carbon atoms.
- the long chain alkyl group is more preferably a long chain alkyl group having 12 to 22 carbon atoms. This is because the dispersibility of the quantum dots is improved. As the dispersibility of the quantum dots improves, the amount of light that goes straight from the light conversion layer to the exit surface increases, which is effective in improving front luminance and front contrast.
- the monofunctional (meth) acrylate monomer having a long-chain alkyl group having 4 to 30 carbon atoms include butyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, and oleyl (meth) acrylate.
- lauryl (meth) acrylate, oleyl (meth) acrylate, and stearyl (meth) acrylate are particularly preferable.
- the optical functional layer is a cured layer obtained by curing a polymerizable composition containing at least two or more polymerizable compounds.
- the polymerizable groups of the polymerizable compounds used in combination of at least two may be the same or different, and preferably the at least two compounds have at least one common polymerizable group. preferable.
- the type of the polymerizable group is not particularly limited, but is preferably a (meth) acrylate group, a vinyl group or an epoxy group, or an oxetanyl group, more preferably a (meth) acrylate group, and still more preferably an acrylate group. It is.
- the polymerizable compound of the present invention preferably contains at least one first polymerizable compound composed of a monofunctional polymerizable compound and at least one second polymerizable compound composed of a polyfunctional polymerizable compound.
- first polymerizable compound composed of a monofunctional polymerizable compound
- second polymerizable compound composed of a polyfunctional polymerizable compound.
- third polymerizable compound and fourth polymerizable compound can be employed.
- the third polymerizable compound is a monofunctional (meth) acrylate monomer and a monomer having one functional group selected from the group consisting of an epoxy group and an oxetanyl group.
- Monofunctional (meth) acrylate monomers include acrylic acid and methacrylic acid, derivatives thereof, more specifically, (meth) acrylic acid polymerizable unsaturated bond (meth) acryloyl group in the molecule, alkyl Mention may be made of aliphatic or aromatic monomers whose group has 1 to 30 carbon atoms. Specific examples thereof include the following compounds, but the present invention is not limited thereto.
- Aliphatic monofunctional (meth) acrylate monomers include methyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, n-octyl ( Alkyl (meth) acrylates having 1 to 30 carbon atoms in the alkyl group, such as (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate; An alkoxyalkyl (meth) acrylate having 2 to 30 carbon atoms in the alkoxyalkyl group such as butoxyethyl (meth) acrylate; Aminoalkyl (meth) acrylates in which the total number of carbon atoms of the (monoalkyl or dialkyl) aminoalkyl group is 1-20, such as N, N-dimethylaminoe
- aromatic monofunctional acrylate monomer examples include aralkyl (meth) acrylates having 7 to 20 carbon atoms in the aralkyl group such as benzyl (meth) acrylate.
- aralkyl (meth) acrylates having 7 to 20 carbon atoms in the aralkyl group such as benzyl (meth) acrylate.
- aliphatic or aromatic alkyl (meth) acrylates having an alkyl group with 4 to 30 carbon atoms are preferred, and n-octyl (meth) acrylate, lauryl (meth) acrylate are also preferred.
- the third polymerizable compound is preferably contained in an amount of 5 to 99.9 parts by mass with respect to a total mass of 100 parts by mass of the third polymerizable compound and the fourth polymerizable compound, It is preferable for the reason mentioned later that the mass part is contained.
- the fourth polymerizable compound is a monomer having two or more functional groups in the molecule selected from the group consisting of a polyfunctional (meth) acrylate monomer and an epoxy group or an oxetanyl group.
- the bifunctional (meth) acrylate monomers include neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9- Nonanediol di (meth) acrylate, 1,10-decanediol diacrylate, tripropylene glycol di (meth) acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di Preferred examples include (meth) acrylate, polyethylene glycol di (meth) acrylate, tricyclodecane dimethanol diacrylate, ethoxylated bisphenol A diacrylate, and the like.
- trifunctional or more (meth) acrylate monomers include ECH-modified glycerol tri (meth) acrylate, EO-modified glycerol tri (meth) acrylate, and PO-modified glycerol trimethyl.
- a (meth) acrylate monomer having a urethane bond in the molecule specifically, an adduct of TDI and hydroxyethyl acrylate, an adduct of IPDI and hydroxyethyl acrylate, HDI and pentaerythritol tris.
- Adducts with acrylate (PETA) compounds obtained by reacting the remaining isocyanate with dodecyloxyhydroxypropyl acrylate, adducts of 6,6 nylon and TDI, pentaerythritol, TDI and hydroxy
- An adduct of ethyl acrylate can also be used.
- Monomers having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups include, for example, aliphatic cyclic epoxy compounds, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, bromine Bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, brominated bisphenol S diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 1,4 -Butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether , Polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ethers; polyether
- Examples of commercially available products that can be suitably used as a monomer having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups include Daicel Chemical Industries, Ltd. Celoxide 2021P, Celoxide 8000, and Sigma Aldrich 4- Examples include vinylcyclohexene dioxide.
- a monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group may be produced by any method.
- Maruzen KK Publishing Co., Ltd., Fourth Edition Experimental Chemistry Course 20 Organic Synthesis II, 213, 1992, Ed.by Alfred Hasfner The chemistry of heterocyclic compounds-Small Ring Heterocycles part3 Oxiranes, John & Wiley and Sons, An Interscience Publication, New York, 1985, Yoshimura, Adhesion, Vol. 29, No. 12, 32, 1985, Yoshimura, Adhesion, Vol. 30, No. 5, 42, 1986, Yoshimura, Adhesion, Vol. 30, No. 7, 42, 1986, Japanese Patent Laid-Open No. 11-100308, Japanese Patent No. 2906245, Japanese Patent No. 2926262, etc. Can be synthesized.
- the fourth polymerizable compound is preferably contained in an amount of 0.1 to 95 parts by mass with respect to 100 parts by mass of the total mass of the third polymerizable compound and the fourth polymerizable compound, and 15 parts by mass.
- the content is preferably from 80 parts by mass to 80 parts by mass for the reason described later.
- a metal thin film is formed on the end face of the functional laminate by sputtering, vacuum deposition, ion plating, and plasma CVD.
- a metal thin film is formed on the matrix end face of a cured product made of only a monofunctional (meth) acrylate compound by a sputtering method, the matrix cannot withstand the internal stress of the metal thin film, resulting in defects, and sufficient barrier properties cannot be imparted.
- the defect of the metal thin film does not occur, but since it is hard and brittle, the smoothness of the end face is poor, and the metal thin film cannot cover the end face uniformly. As a result, the barrier property is impaired. Therefore, in the present invention, by mixing the monofunctional (meth) acrylate monomer and the polyfunctional (meth) acrylate monomer in the appropriate range described above, the film can withstand film shrinkage during the formation of the metal thin film, and defects in the metal thin film on the matrix end face. In addition, it is possible to ensure smoothness and to form an end surface sealing layer having high barrier properties on the end surface.
- the elastic modulus at 50 ° C. of the cured matrix forming the optical functional layer of the present application is preferably 1 MPa or more and 4000 MPa or less, and more preferably 10 MPa or more and 3000 MPa or less.
- the reason why the elastic modulus at 50 ° C. is used is that, for example, in the sputtering method, the film surface temperature reaches about 50 ° C. during film formation, so that the physical property value of the matrix that resists film shrinkage is used. By setting it in this range, it becomes possible to reduce defects in the metal thin film of the end sealing layer.
- the polymerizable composition may contain a viscosity modifier as necessary.
- the viscosity modifier is preferably a filler having a particle size of 5 nm to 300 nm.
- the viscosity modifier is also preferably a thixotropic agent.
- thixotropic property refers to a property of reducing the viscosity with respect to an increase in shear rate in a liquid composition
- a thixotropic agent is a composition obtained by including it in the liquid composition. It refers to a material having a function of imparting thixotropy to an object.
- thixotropic agents include fumed silica, alumina, silicon nitride, titanium dioxide, calcium carbonate, zinc oxide, talc, mica, feldspar, kaolinite (kaolin clay), pyrophyllite (waxite clay), and sericite.
- sericite bentonite, smectite vermiculites (montmorillonite, beidellite, nontronite, saponite, etc.), organic bentonite, organic smectite and the like.
- the polymerizable composition has a viscosity of 3 mPa ⁇ s to 50 mPa ⁇ s when the shear rate is 500 s ⁇ 1 , and preferably 100 mPa ⁇ s or more when the shear rate is 1 s ⁇ 1 .
- a thixotropic agent In order to adjust the viscosity in this way, it is preferable to use a thixotropic agent.
- the viscosity of the polymerizable composition is a 3mPa ⁇ s ⁇ 50mPa ⁇ s when the shear rate 500 s -1, why is preferably 100 mPa ⁇ s or more at a shear rate of 1s -1 is as follows .
- the second substrate is pasted on the polymerizable composition.
- a production method including the step of curing the polymerizable composition to form the wavelength conversion layer can be mentioned.
- the coating solution polymerizable composition
- the coating solution preferably has a low viscosity.
- the resistance to pressure at the time of bonding is high.
- a coating solution is preferred.
- the shear rate of 500 s ⁇ 1 is a representative value of the shear rate applied to the coating solution applied to the first substrate, and the shear rate of 1 s ⁇ 1 is immediately before the second substrate is bonded to the coating solution. This is a representative value of the shear rate applied to the coating solution. Note that the shear rate 1 s ⁇ 1 is merely a representative value.
- the applied shear rate is approximately 0 s ⁇ 1 , and the shear rate applied to the coating solution in the actual manufacturing process is not limited to 1 s ⁇ 1 .
- the shear rate of 500 s ⁇ 1 is merely a representative value, and the shear rate applied to the coating solution in the actual manufacturing process is not limited to 500 s ⁇ 1 .
- the viscosity of the polymerizable composition is 3 mPa ⁇ s when the representative value of the shear rate applied to the coating liquid is 500 s ⁇ 1 when the coating liquid is applied to the first substrate.
- the said polymerizable composition may contain the solvent as needed.
- the type and amount of the solvent used are not particularly limited.
- one or a mixture of two or more organic solvents can be used as the solvent.
- trifluoroethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, (perfluorobutyl) ethyl (meth) acrylate, perfluorobutyl-hydroxypropyl (meth) acrylate, (perfluoro Hexyl) ethyl (meth) acrylate, octafluoropentyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate and other compounds having a fluorine atom may be included. By including these compounds, the coating property can be improved.
- the total amount of the resin serving as a matrix in the quantum dot layer is not particularly limited, but is preferably 90 to 99.9 parts by mass with respect to 100 parts by mass of the total amount of the quantum dot layer, and 92 parts by mass. More preferred is from 99 parts by mass to 99 parts by mass.
- the thickness of the quantum dot layer is not particularly limited, but is preferably 5 ⁇ m to 200 ⁇ m and more preferably 10 ⁇ m to 150 ⁇ m from the viewpoints of handleability and light emission characteristics.
- the said thickness intends average thickness, average thickness calculates
- the method for forming the quantum dot layer is not particularly limited, and may be formed by a known method.
- it can be formed by preparing a coating composition in which quantum dots, a matrix resin, and a solvent are mixed, applying the coating composition on the gas barrier layer 14, and curing the coating composition.
- the quantum dot layer is formed by adjusting a polymerizable composition containing a phosphor (quantum dot) and at least two or more polymerizable compounds, and applying this coating composition on the gas barrier layer 14. Then, it can be formed by curing.
- the gas barrier layer 14 is a layer having a gas barrier property, which is laminated on the main surface of the optical functional layer 12. That is, the gas barrier layer 14 is a member that covers the main surface of the optical functional layer 12 and suppresses the intrusion of moisture and oxygen from the main surface of the optical functional layer 12.
- the gas barrier layer 14 preferably has a water vapor permeability of 1 ⁇ 10 ⁇ 3 [g / (m 2 ⁇ day)] or less.
- the gas barrier layer 14 preferably has an oxygen permeability of 1 ⁇ 10 ⁇ 2 [cc / (m 2 ⁇ day ⁇ atm)] or less.
- the thickness of the gas barrier layer 14 is preferably 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 70 ⁇ m, and particularly preferably 15 ⁇ m to 55 ⁇ m. Setting the thickness of the gas barrier layer 14 to 100 ⁇ m or less is preferable in that the thickness of the entire laminated film 10a including the optical functional layer 12 can be reduced. Further, the thickness of the gas barrier layer 14 is preferably 5 ⁇ m or more, which is preferable in that the thickness of the optical functional layer 12 can be made uniform when the optical functional layer 12 is formed between the two gas barrier layers 14. .
- FIG. 2 is a sectional view conceptually showing an example of the gas barrier film.
- a gas barrier film (gas barrier layer) 14 shown in FIG. 2 has a barrier layer 32 formed by laminating an organic layer 34, an inorganic layer 36, and an organic layer 38 in this order, and a gas barrier support 30 that supports the barrier layer 32. It becomes.
- the gas barrier film 14 only needs to have at least one inorganic layer 36 on the gas barrier support 30, and one combination of the inorganic layer 36 and the organic layer 34 that is the base of the inorganic layer 36. It is preferable to have the above. Accordingly, the gas barrier layer 14 may have two combinations of the inorganic layer 36 and the underlying organic layer 34, or may have three or more.
- the organic layer 34 functions as a base layer for properly forming the inorganic layer 36, and has an excellent gas barrier property as the number of layers of the combination of the base organic layer 34 and the inorganic layer 36 increases. A gas barrier film can be obtained.
- the outermost layer of the barrier layer 32 (the layer opposite to the gas barrier support 30) is the organic layer 38, but is not limited thereto, and the outermost layer may be the inorganic layer 36.
- the optical functional layer 12 is basically laminated on the barrier layer 32 side. Therefore, even when outgas is released from the gas barrier support 30 or the organic layer 34 by stacking the optical functional layer 12 on the barrier layer 32 side by forming the outermost layer of the barrier layer 32 as an inorganic layer 36, the outgas is not removed from the inorganic layer. It is shielded by 36 and can be prevented from reaching the optical function layer 12.
- gas barrier support 30 of the gas barrier layer 14 various types that are used as a support in a known gas barrier film can be used.
- films made of various plastics are preferably used in that they are easy to be thinned and lightened and are suitable for flexibility.
- polyethylene polyethylene
- PEN polyethylene naphthalate
- PA polyethylene terephthalate
- PVC polyvinyl chloride
- PVA polyvinyl alcohol
- PAN polyacrylonitrile
- PI polyacrylonitrile
- PC polycarbonate
- PC polyacrylate
- PP polypropylene
- PS polystyrene
- ABS cyclic olefin copolymer
- COC cycloolefin polymer
- COP plastic film made of triacetyl cellulose
- the thickness of the gas barrier support body 30 is preferably about 10 ⁇ m to 100 ⁇ m.
- the gas barrier support 30 may be provided with functions such as antireflection, retardation control, and improvement of light extraction efficiency on the surface of such a plastic film.
- the barrier layer 32 includes an inorganic layer 36 that mainly exhibits gas barrier properties, an organic layer 34 that serves as a base layer for the inorganic layer 36, and an organic layer 38 that protects the inorganic layer 36.
- the organic layer 34 is a base layer of the inorganic layer 36 that mainly exhibits gas barrier properties in the gas barrier film 14.
- the organic layer 34 various types of known gas barrier films that are used as the organic layer 34 can be used.
- the organic layer 34 is a film containing an organic compound as a main component, and basically formed by crosslinking monomers and / or oligomers.
- the gas barrier film 14 includes the organic layer 34 that is the base of the inorganic layer 36, thereby embedding irregularities on the surface of the gas barrier support 30, foreign matters attached to the surface, and the like to form the inorganic layer 36.
- the surface can be made appropriate. As a result, the appropriate inorganic layer 36 can be formed on the entire surface of the film formation without gaps and without cracks or cracks.
- the water vapor permeability is 1 ⁇ 10 ⁇ 3 [g / (m 2 ⁇ day)] or less
- the oxygen permeability is 1 ⁇ 10 ⁇ 2 [cc / (m 2 ⁇ day ⁇ atm)] or less.
- gas barrier film 14 since the gas barrier film 14 has the organic layer 34 as the base, the organic layer 34 also functions as a cushion for the inorganic layer 36. Therefore, the inorganic layer 36 can be prevented from being damaged by the cushion effect of the organic layer 34 when the inorganic layer 36 receives an impact from the outside. Thereby, in laminated film 10a, gas barrier film 14 expresses gas barrier performance appropriately, and can prevent degradation of optical function layer 12 by moisture or oxygen suitably.
- various organic compounds can be used as a material for forming the organic layer 34.
- polyester acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane, poly Ether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, acryloyl compound, thermoplastic resin, or polysiloxane, etc.
- An organic silicon compound film is preferably exemplified. A plurality of these may be used in combination.
- the organic layer 34 composed of a polymer of a radical polymerizable compound and / or a cationic polymerizable compound having an ether group as a functional group is preferable in terms of excellent glass transition temperature and strength.
- the glass transition temperature is 120 ° C. mainly composed of acrylate and / or methacrylate monomers and oligomer polymers in terms of low refractive index, high transparency and excellent optical properties.
- the above acrylic resin and methacrylic resin are preferably exemplified as the organic layer 34.
- DPGDA dipropylene glycol di (meth) acrylate
- TMPTA trimethylolpropane tri (meth) acrylate
- DPHA dipentaerythritol hexa (meth) acrylate
- Acrylic resins and methacrylic resins which are mainly composed of a polymer of acrylate and / or methacrylate monomers or oligomers, are preferred. It is also preferable to use a plurality of these acrylic resins and methacrylic resins.
- the organic layer 34 By forming the organic layer 34 with such an acrylic resin or methacrylic resin, the inorganic layer 36 can be formed on the base having a solid skeleton, so that the inorganic layer 36 with higher density and higher gas barrier properties can be formed. .
- the thickness of the organic layer 34 is preferably 1 ⁇ m to 5 ⁇ m.
- the film-forming surface of the inorganic layer 36 is made more suitable, and the appropriate inorganic layer 36 without cracks or cracks is formed over the entire film-forming surface. A film can be formed.
- the thickness of the organic layer 34 is more preferably 1 ⁇ m to 5 ⁇ m.
- the thickness of each organic layer may be the same or different from each other.
- the formation material of each organic layer may be the same or different. However, in terms of productivity and the like, it is preferable to form all organic layers with the same material.
- the organic layer 34 may be formed by a known method such as a coating method or flash vapor deposition. Moreover, in order to improve adhesiveness with the inorganic layer 36 which is the lower layer of the organic layer 34, the organic layer 34 preferably contains a silane coupling agent.
- An inorganic layer 36 is formed on the organic layer 34 with the organic layer 34 as a base.
- the inorganic layer 36 is a film containing an inorganic compound as a main component, and the gas barrier layer 14 mainly exhibits gas barrier properties.
- the inorganic layer 36 various kinds of films made of an inorganic compound such as oxide, nitride, oxynitride and the like that exhibit gas barrier properties can be used.
- metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride; metal carbides such as aluminum carbide; silicon oxide, Silicon oxides such as silicon oxynitride, silicon oxycarbide and silicon oxynitride carbide; silicon nitrides such as silicon nitride and silicon nitride carbide; silicon carbides such as silicon carbide; hydrides thereof; mixtures of two or more of these; and Films made of inorganic compounds such as these hydrogen-containing materials are preferably exemplified.
- a film made of a silicon compound such as silicon oxide, silicon nitride, silicon oxynitride and silicon oxide is preferably exemplified in that it has high transparency and can exhibit excellent gas barrier properties.
- a film made of silicon nitride is preferable because it has high transparency in addition to more excellent gas barrier properties.
- the formation material of the inorganic layer 36 may mutually differ. However, if productivity etc. are considered, it is preferable to form all the inorganic layers 36 with the same material.
- the thickness of the inorganic layer 36 is preferably 10 nm to 200 nm.
- the inorganic layer 36 that stably exhibits sufficient gas barrier performance can be formed.
- the inorganic layer 36 is generally brittle, and if it is too thick, there is a possibility of causing cracks, cracks, peeling, etc. Can be prevented.
- the thickness of the inorganic layer 36 is preferably 10 nm to 100 nm, and more preferably 15 nm to 75 nm.
- the thickness of each inorganic layer 36 may be the same or different.
- the inorganic layer 36 may be formed by a known method according to the forming material. Specifically, CCP (Capacitively upCoupled CVDPlasma capacitively coupled plasma) -CVD (chemical vapor deposition) and ICP (Inductively Coupled Plasma inductively coupled plasma) -CVD etc., plasma CVD, sputtering such as magnetron sputtering and reactive sputtering, vacuum deposition
- a vapor deposition method is preferably exemplified.
- the organic layer 38 is a layer formed as the outermost layer of the barrier layer 32 and is a layer for protecting the inorganic layer 36.
- the organic layer 38 various types similar to the organic layer 34 described above can be used.
- the organic layer 38 may be formed by a known method such as a coating method or flash vapor deposition as in the case of the organic layer 34 described above.
- the thickness of the organic layer 38 which is the outermost layer of the barrier layer 32 is preferably 80 nm to 1000 nm.
- the inorganic layer 36 can be sufficiently protected.
- the organic layer 38 as the protective layer and the organic layer 34 as the underlayer may be formed of the same material or different materials. However, in terms of productivity and the like, it is preferable to form all organic layers with the same material. Moreover, in order to improve adhesiveness with the inorganic layer 36 which is the lower layer of the organic layer 38, the organic layer 38 preferably contains a silane coupling agent.
- the end surface sealing layer 16a is a member formed to cover at least a part of the end surface of the functional layer laminate 11 including the optical functional layer 12 and the two gas barrier layers 14 laminated so as to sandwich the optical functional layer 12. It is.
- the end-face sealing layer 16a is a member that is made of at least two layers, each layer is made of metal, exhibits gas barrier properties, and suppresses intrusion of moisture and oxygen from the end face of the optical functional layer 12. .
- the end surface sealing layer 16 a includes a first layer 18 formed in contact with the end surface of the functional layer laminated body 11 and a functional layer laminated body laminated on the first layer 18. 11 and the outermost layer 20 which is the farthest layer from 11.
- an end surface sealing layer is not limited to 2 layer structure, Three layers or more may be sufficient.
- FIG. 1 and 3 the end surface sealing layer 16 is laminated on the end surface of the functional layer laminate 11, and therefore each layer constituting the end surface sealing layer 16 (the first layer 18 and the second layer 22).
- the stacking direction of the outermost layer 20) is a direction perpendicular to the end face of the functional layer stack 11, and is a direction orthogonal to the stacking direction of the functional layer stack 11.
- each of the layers constituting the end face sealing layer 16 is a layer made of metal. That is, in the laminated film 10a shown in FIG. 1, the first layer 18 and the outermost layer 20 are made of metal, and in the laminated film 10b shown in FIG. 3, the first layer 18, the second layer 22 and the outermost layer are formed.
- Reference numeral 20 denotes a metal layer.
- gas barrier films are laminated on both main surfaces of a quantum dot layer including quantum dots that are easily deteriorated by moisture and oxygen to protect the quantum dot layer. If only the gas barrier film is protected, moisture and oxygen enter from the end face not protected by the gas barrier film, and the quantum dots deteriorate.
- the structure of protecting the entire surface of the quantum dot layer with a gas barrier film, or the end face region of the quantum dot layer sandwiched between two gas barrier films A configuration for forming a protective layer having a gas barrier property, a configuration for narrowing the openings at the ends of two gas barrier films sandwiching the quantum dot layer, and the like have been proposed.
- the thickness of the quantum dot layer at the end portion becomes thin, so that the end portion has sufficient function. In other words, the size of the area that can be used effectively is reduced, and the frame portion is increased.
- a barrier layer having a high gas barrier property is hard and brittle, if the gas barrier film having such a barrier layer is suddenly bent, the barrier layer is cracked, and the gas barrier property is lowered. There has been a problem that it becomes impossible to prevent moisture and oxygen from entering the layer.
- the present invention provides a functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer, and at least one of end faces of the functional layer laminate.
- the end surface sealing layer is formed so as to cover the part, and the end surface sealing layer is composed of at least two layers, and each layer is composed of a metal.
- the end face sealing layer made of metal is only formed on the end face of the functional layer laminate, the optical functional layer is not thinned and the gas barrier layer is not curved.
- the available area can be kept large and the frame can be narrowed.
- the first layer of the end face sealing layer that is in contact with the end face of the functional layer laminate is a material having high adhesion to the functional layer laminate, and is formed by a formation method that can increase adhesion, and the second and subsequent layers. Since a layer exhibiting high gas barrier properties can be formed, the end face sealing layer can be prevented from peeling off from the functional layer laminate, and high durability can be obtained. Further, as will be described in detail later, when forming the end surface sealing layer, each layer of the end surface sealing layer can be formed in a state where a plurality of functional layer stacks are stacked. And the productivity can be increased.
- the end face sealing layer 16 preferably has an oxygen permeability of 1 ⁇ 10 ⁇ 2 [cc / (m 2 ⁇ day ⁇ atm)] or less.
- the end face sealing layer 16 having a low oxygen permeability, that is, a high gas barrier property, on the end face of the functional layer laminate 11, it is possible to more suitably prevent moisture and oxygen from entering the optical functional layer 12. Deterioration of the optical function layer 12 can be more suitably prevented.
- the thickness of the end face sealing layer 16 in the direction perpendicular to the end face of the functional layer laminate 11 is preferably in the range of 0.1 ⁇ m to 100 ⁇ m, more preferably 0.5 ⁇ m to 50 ⁇ m. It is particularly preferable that the thickness is ⁇ 10 ⁇ m.
- the laminated film of the present invention is preferably produced by forming an end face sealing layer on the end face in a state where a plurality of functional layer laminates are stacked, and then separating the end face sealing layer. Since it will become difficult to isolate
- the end surface sealing layer 16 should just be formed so that at least one part of the end surface of the functional layer laminated body 11 may be covered, but it is preferable that it is formed covering the perimeter of an end surface.
- the main surface of the functional layer laminate 11 is rectangular, it is sufficient that the end surface sealing layer 16 is formed on at least one end surface, and the end surface sealing layer 16 is formed on all four end surfaces. It is preferable.
- the shape of the main surface of the functional layer laminate 11 (the shape of the laminated film 10) is not limited to a rectangular shape, and may be various shapes such as a square shape, a circular shape, and a polygonal shape. Therefore, the end surface protective layer may be formed so as to cover at least a part of the end surface, and is preferably formed so as to cover the entire circumference.
- the end surface sealing layer 16 is preferably formed only on the end surface of the functional layer laminate 11, and it is preferable that there is little wraparound to the main surface of the functional layer laminate 11.
- the wraparound portion functions as a light shielding layer.
- a non-light emitting area is generated at the end of 10 and the frame portion becomes large, and the area that can be effectively used becomes narrow, that is, it may be an obstacle when applied to a narrow frame module such as a mobile display.
- the wraparound width d see FIG.
- the wraparound width d of the end face sealing layer 16 can be measured, for example, by cutting a cross section of the laminated film with a retotom REM-710 manufactured by Daiwa Kogyo Co., Ltd. and observing the cross section with an optical microscope. As shown in FIG.
- the wraparound width d is the main surface of the functional layer laminate 11 of the end surface sealing layer 16 when viewed in a cross section orthogonal to the extending direction of the end surface of the functional layer laminate 11.
- the width of the region formed above (the width in the direction perpendicular to the end face of the functional layer stack 11).
- the end face sealing layer 16 has few pinholes.
- the pinhole in the present invention means an uncovered portion (a missing portion of the metal film) having a size of 1 ⁇ m or more, which is seen when the end face sealing layer 16 is observed with an optical microscope, and the shape thereof is a circle or a polygon. , Any shape such as a line.
- the number of pinholes is preferably 50 / mm 2 or less, more preferably 20 / mm 2 or less, and particularly preferably 5 / mm 2 or less. The smaller the number of pinholes, the better. There is no particular lower limit.
- the end surface of the functional layer laminate 11 on which the end surface sealing layer 16 is formed is preferably smooth.
- the surface roughness of the end face of the functional layer laminate 11 is preferably 0.001 ⁇ m to 10 ⁇ m, and more preferably 0.001 ⁇ m to 2 ⁇ m.
- At least one layer other than the first layer 18 in contact with the functional layer laminate 11 among the layers constituting the end face sealing layer 16 is a metal plating layer.
- the outermost layer 20 farthest from the functional layer laminate 11 is a metal plating layer.
- the outermost layer 20 is more preferably a metal plating layer.
- the first layer 18 provided in contact with the end surface of the functional layer stack 11 is a metal layer formed by any one of sputtering, vacuum deposition, ion plating, and plasma CVD. It is preferable to use a sputtering method that has good adhesion and enables low-temperature film formation. Since the functional layer laminate 11 is mainly formed of resin, when a metal plating layer is directly formed on the functional layer laminate 11 by electrolytic plating, a metal film cannot be obtained because there is no conductive path. In addition, when a metal plating layer is formed by electroless plating, the adhesion between the functional layer laminate 11 and the metal plating layer is poor, and sufficient durability and gas barrier properties cannot be obtained, and only the end surface is selected. Film cannot be formed.
- this invention has the 1st layer 18 which consists of a metal formed by said method on the side surface of the functional layer laminated body 11, and it is the functional layer laminated body 11 and the end surface sealing layer 16 between. Adhesion can be improved.
- the metal plating layer is formed as a layer other than the first layer 18, by having the first layer 18 made of metal on the side surface of the functional layer laminate 11, the first layer acts as an electrode. A metal plating layer can be formed appropriately.
- the first layer protects the functional layer laminate 11 and can prevent the functional layer laminate 11 from being damaged.
- the adhesion with the functional layer laminate is Although it can be improved, it is difficult to form a thick thickness or it is unavoidable to form a thick one because the productivity is very poor. Therefore, it cannot be formed with a uniform thickness on the end surface of the functional layer laminate, and sufficient gas barrier properties cannot be obtained.
- the first layer formed by any one of the sputtering method, the vacuum deposition method, the ion plating method, and the plasma CVD method, and the metal plating layer are used. Adhesion with the layer laminate can be improved and sufficient gas barrier properties can be obtained.
- the thickness of the metal plating layer formed as a layer other than the first layer 18 is preferably thicker than the thickness of the first layer 18 in contact with the functional layer laminate 11. By making the thickness of the metal plating layer thicker than the thickness of the first layer 18, sufficient gas barrier properties can be expressed more reliably.
- the thickness of the first layer 18 and the thickness of the metal plating layer are thicknesses in the direction perpendicular to the end surface of the functional layer laminate 11.
- the thickness of the first layer 18 is preferably 0.001 ⁇ m to 0.5 ⁇ m, and preferably 0.01 ⁇ m to 0.5 ⁇ m from the viewpoint of adhesion to the functional layer laminate 11, productivity, and the like. More preferably, it is 3 ⁇ m.
- the thickness of the metal plating layer is preferably 0.01 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 10 ⁇ m, from the viewpoint of ensuring gas barrier properties and productivity.
- the material for forming the first layer 18 in contact with the functional layer laminate 11 is not particularly limited as long as it is a metal, but any one of the above-described sputtering method, vacuum deposition method, ion plating method, and plasma CVD method may be used. It is preferable that the metal can be formed by a method, and it is preferable to use a metal having a high ionization tendency from the viewpoint of improving the adhesion with the resin constituting the functional layer laminate 11. Accordingly, at least one selected from the group consisting of aluminum, titanium, chromium, copper, and nickel, or an alloy containing at least one of these is preferable, and selected from the group consisting of aluminum, titanium, and chromium.
- At least one selected from the above, or alloys containing at least one of these are at least one selected from the above, or alloys containing at least one of these. If a metal with a high ionization tendency is used, the metal, such as oxygen atoms, nitrogen atoms, and carbon atoms that form the resin, forms a compound, and metal oxides, metal nitrides, and metal carbides are easily formed at the interface with the resin. It is presumed that the adhesion will be high. By using these metals or alloys as the material for forming the first layer 18, the first layer 18 can be formed by any one of sputtering, vacuum deposition, ion plating, and plasma CVD. The adhesion between the layer 18 and the side surface of the functional layer laminate 11 can be increased.
- the material for forming each layer other than the first layer 18 is not particularly limited as long as it is a metal, but at least selected from the group consisting of aluminum, titanium, chromium, nickel, tin, copper, silver, and gold. One kind or an alloy containing at least one of these is preferable. By using these metals or alloys as the material for forming each layer other than the first layer 18, it can be formed by plating and can exhibit high gas barrier properties.
- At least one layer other than the first layer 18 may be formed by plating, and any of the sputtering method, the vacuum deposition method, the ion plating method, or the plasma CVD method may be used except for the metal plating layer. It may be formed by a method.
- at least the outermost layer 20 is preferably formed by plating.
- the laminated film 10b shown in FIG. 3 has the end surface sealing layer 16b in which the first layer 18 and the second layer 22 are each formed by sputtering and the outermost layer 20 is formed by plating.
- the first layer 18 may be formed by a sputtering method
- the second layer 22 may be formed by a plating process
- the outermost layer 20 may be formed by a sputtering method.
- each layer constituting the end face sealing layer 16 may be the same or different from each other. That is, for example, the first layer 18 may be a nickel layer formed by sputtering, and the outermost layer 20 may be a nickel layer formed by plating.
- the laminated film 10a shown in FIG. 1 has a configuration in which three layers of the gas barrier layer 14, the optical functional layer 12, and the gas barrier layer 14 are laminated, and the end face sealing layer 16a is disposed on the end face. Is not limited to this, and may have other layers. For example, you may have a hard-coat layer, an optical compensation layer, a transparent conductive layer, etc.
- the method for producing a laminated film according to the first aspect of the present invention comprises: A side surface of a functional layer laminate having an optical functional layer and a gas barrier layer is a method for producing a laminated film, which comprises a laminated film having at least two layers, each layer having an end face sealing layer made of metal, A first layer forming step of forming a first layer in contact with the functional layer laminate on an end face of a laminate in which a plurality of functional layer laminates are stacked; An outermost layer forming step of forming an outermost layer on the first layer formed on the end face of the laminate,
- the first layer forming method is a method for producing a laminated film which is one selected from the group consisting of sputtering, vacuum deposition, ion plating, and plasma CVD.
- a side surface of a functional layer laminate having an optical functional layer and a gas barrier layer is a method for producing a laminated film, which comprises a laminated film having at least two layers, each layer having an end face sealing layer made of metal,
- a functional layer laminate is formed by applying and curing a polymerizable composition containing a phosphor and at least two or more polymerizable compounds,
- An outermost layer forming step of forming an outermost layer on the first layer formed on the end face of the laminate, and the first layer forming method includes a sputtering method, a vacuum evaporation method, an ion plating method, an electroless method
- the method for forming at least one layer other than the first layer of the end face sealing layer is a metal plating treatment.
- a metal plating treatment an example of the manufacturing method of the present invention will be described with reference to FIGS. 5A to 5D.
- a functional layer laminate 11 having an optical functional layer 12 and two gas barrier layers 14 laminated on both main surfaces of the optical functional layer 12 is prepared.
- a coating composition in which quantum dots, a matrix resin and a solvent are mixed is prepared, and this coating composition is applied on the gas barrier film 14 and cured.
- the optical functional layer (quantum dot layer) 12 can be formed, and the other gas barrier film 14 can be laminated on the other main surface of the formed optical functional layer 12.
- the gas barrier layer may be laminated on at least one main surface of the optical functional layer. In this case, when the laminated film of the present invention is finally assembled with a backlight unit such as an LCD together with other members, the other main surface is protected from intrusion of oxygen and moisture, thereby Performance degradation can be prevented.
- the functional layer laminate 11 may be produced by a so-called single-wafer type method in which the functional layer laminate 11 is produced one by one, or while the long gas barrier film 14 is conveyed in the longitudinal direction,
- the optical functional layer 12 is formed on the optical functional layer, and another gas barrier film is laminated on the optical functional layer thus formed to continuously produce the functional layer laminate 11, so-called roll-to-roll (hereinafter referred to as “Roll to Roll”). Or RtoR).
- the cutting method of the functional layer laminate 11 is not limited, and various known methods such as a method of physically cutting using a cutting tool such as a Thomson blade and a method of cutting by irradiating with a laser can be used.
- a method of physically cutting using a cutting tool such as a Thomson blade
- a method of cutting by irradiating with a laser can be used.
- the surface roughness of the end face of the functional layer laminate 11 can be reduced.
- polishing process etc. for controlling the surface roughness of an end surface.
- the surface roughness can be controlled by cutting, polishing, and melting the end face after cutting with a blade.
- the surface roughness can be controlled by cutting the end face of the cut functional layer laminate 11 with a retotome REM-710 manufactured by Daiwa Kogyo Co., Ltd. or the like. More specifically, the smoothness increases as the angle at which the cutting blade hits the functional layer laminate 11, that is, the angle formed by the blade traveling direction and the blade surface is closer to the right angle.
- the angle at which the cutting blade strikes the functional layer laminate 11 is preferably in the range of 70 ° to 110 °, more preferably in the range of 80 to 100 °, and still more preferably in the range of 85 ° to 95 °.
- an angle formed by a direction perpendicular to the moving direction of the blade and the blade surface may be referred to as a “blade angle”.
- the surface roughness can also be controlled by appropriately controlling the width (cut amount) of the removed portion by cutting.
- the cutting depth is preferably in the range of 1 to 20 ⁇ m, more preferably in the range of 5 to 15 ⁇ m.
- the change in the surface roughness due to such cutting conditions is presumed to be caused by the rocking of the cut surface caused by distortion or twist of the functional layer laminate 11 that occurs when the cutting blade hits the functional layer laminate 11. Therefore, it is preferable to appropriately set conditions according to the balance of hardness, brittleness and viscosity of the functional layer laminate 11 to be applied.
- cutting waste generated during cutting may cause problems in the subsequent first layer forming step and the outermost layer forming step, it is preferably removed as soon as possible after cutting.
- the process for removing cutting waste include air cleaning, ultrasonic cleaning in a state immersed in a cleaning liquid, adhesion and peeling method of an adhesive sheet, and a wiping method.
- the first layer forming step a plurality of the prepared functional layer laminates 11 are stacked to form a laminate 50 (see FIG. 5A), and the first layer 18A is formed on the end face of the laminate 50 (FIG. 5B). reference).
- the first layer 18A is formed by any one of sputtering, vacuum deposition, ion plating, electroless plating, and plasma CVD, and the first layer 18A is made of aluminum.
- a layer made of at least one selected from the group consisting of titanium, chromium, copper, and nickel, or an alloy containing at least one of these is formed on the end face of the laminate 50.
- the first layer 18A may be formed by a conventionally known processing method and processing conditions. Further, a masking process or the like is performed by a known method on a region other than the end surface of the functional layer stack 11, that is, a region where the first layer 18 A is not formed, and the first layer 18 A is formed on the end surface of the functional layer stack 11. What is necessary is just to form.
- the number of functional layer laminates 11 in the laminate 50 when forming the first layer 18A is not particularly limited, and the size of the device for forming the first layer 18A and the thickness of the functional layer laminate 11 are not limited.
- the first layer 18A is preferably formed by stacking 500 to 4000 functional layer laminates 11 in a suitable manner.
- the outermost layer 20A is formed on the first layer 18A of the laminate 52 having the first layer 18A formed on the end face (FIG. 5C).
- the outermost layer 20A is preferably formed by plating.
- the outermost layer 20A is selected from the group consisting of aluminum, titanium, chromium, nickel, tin, copper, silver, and gold.
- a layer made of at least one or an alloy containing at least one of these is formed on the first layer 18A of the laminate 52.
- the treatment method, treatment conditions, and the like of the plating treatment when forming the outermost layer 20A there are no particular limitations on the treatment method, treatment conditions, and the like of the plating treatment when forming the outermost layer 20A, and the outermost layer 20A may be formed by a conventionally known treatment method and treatment conditions according to the forming material and the like.
- the laminate 54 in which the outermost layer 20A is formed is separated for each functional layer laminate 11 to obtain the functional layer laminate 11 having the end surface sealing layer 16a formed on the end face, that is, the laminated film 10a.
- a method for separating the laminated film 10a from the laminate 54 is not particularly limited, but the laminate 54 on which the outermost layer 20A is formed is sheared by applying an external force in the horizontal direction with respect to the surface, such as bending and twisting. It can be separated by a method or a method of inserting a sharp tip such as a blade into the interface of the functional layer laminate 10a. From the viewpoint of preventing the end face sealing layer from peeling, chipping or cracking, it is preferable to separate the laminated film 10a by shearing with an external force.
- the manufacturing method of this invention can form each layer of the end surface sealing layer 16 in the state which accumulated the several function layer laminated body 11, when forming each layer of the end surface sealing layer 16 in this way. Therefore, the several laminated
- the surface roughness Ra of the end face of the functional layer laminate 11 is preferably 2.0 ⁇ m or less. Adhesiveness with the 1st layer 18 formed in an end surface can be improved more by making surface roughness Ra of the end surface of functional layer layered product 11 into 2.0 micrometers or less.
- each layer after the 2nd layer can be formed by a method similar to the formation method in the first layer formation step or the formation method in the outermost layer formation step, except that the underlying layer is different.
- rust prevention treatment or the like may be performed in order to prevent the end face sealing layer 16 made of metal from rusting.
- Example 1 For the laminated film of the second aspect of the present invention, a laminated film 10b shown in FIG.
- gas barrier film 14 As the gas barrier film 14, a gas barrier film in which an organic layer 34, an inorganic layer 36, and an organic layer 38 were formed in this order on a gas barrier support 30 was used.
- gas barrier support 30 As the gas barrier support 30, a polyethylene terephthalate film (PET film, manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine A4300, thickness 50 ⁇ m, width 1000 mm, length 100 m) was used.
- PET film polyethylene terephthalate film, manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine A4300, thickness 50 ⁇ m, width 1000 mm, length 100 m
- a coating liquid (first organic layer forming coating liquid) for forming the first organic layer was prepared as follows. Prepare TMPTA (trimethylolpropane triacrylate, manufactured by Daicel Cytec Co., Ltd.) and a photopolymerization initiator (Lamberti, ESACUREKTO46) so that the weight ratio of TMPTA: photopolymerization initiator is 95: 5. Then, these were weighed and dissolved in methyl ethyl ketone to prepare a coating solution having a solid concentration of 15%.
- TMPTA trimethylolpropane triacrylate
- a photopolymerization initiator Liberti, ESACUREKTO46
- This coating solution for forming the first organic layer was applied to the gas barrier support 30 by roll-to-roll using a die coater.
- the gas barrier support 30 after coating was passed through a drying zone at 50 ° C. for 3 minutes, and then irradiated with ultraviolet rays (integrated irradiation amount: about 600 mJ / cm 2 ), and cured by UV curing.
- a protective film of polyethylene film PE film, manufactured by Sanei Kaken Co., Ltd., trade name: PAC2-30-T
- the thickness of the first organic layer 34 formed on the gas barrier support 30 was 1 ⁇ m.
- an inorganic layer 36 having a thickness of 50 nm was formed on the first organic layer 34 by CCP-CVD using a general RtoR CVD apparatus. Specifically, the first organic layer 34 is formed on the gas barrier support 30, and the laminate in which the protective film is stuck on the first organic layer 34 is sent out from the feeder and before the inorganic layer is formed. After passing through the last film surface touch roll, the protective film was peeled off to form an inorganic layer 36 on the exposed first organic layer 34. Silane gas (SiH 4 ), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and hydrogen gas (H 2 ) were used as source gases.
- the supply amounts of gas were 160 sccm for silane gas, 370 sccm for ammonia gas, 240 sccm for nitrogen gas, and 590 sccm for hydrogen gas.
- the film forming pressure was 40 Pa. That is, the inorganic layer 36 is a silicon nitride film.
- the plasma excitation power was 2.5 kW at a frequency of 13.56 MHz.
- an organic layer 38 (hereinafter referred to as a second organic layer) that protects the inorganic layer was formed on the surface of the formed inorganic layer 36.
- a coating solution (second organic layer forming coating solution) for forming the second organic layer was prepared as follows. Urethane bond-containing acrylic polymer (Acrit 8BR500 manufactured by Taisei Fine Chemical Co., Ltd., weight average molecular weight 250,000) and photopolymerization initiator (Irgacure 184 manufactured by BASF) were weighed to a mass ratio of 95: 5, and these were methyl ethyl ketone. And a coating solution having a solid content concentration of 15% by mass was prepared.
- the prepared coating liquid for forming the second organic layer was applied to the surface of the inorganic layer 36 by a roll-to-roll using a die coater, passed through a drying zone at 100 ° C. for 3 minutes, and wound up.
- the thickness of the second organic layer thus formed was 1 ⁇ m.
- a protective PE film was attached at the film surface touch roll part, and the second organic layer was transported without touching the pass roll, and then wound.
- the gas barrier film 14 in which the first organic layer 34, the inorganic layer 36, and the second organic layer 38 were laminated in this order on the gas barrier support 30 was produced.
- the oxygen permeability of the produced gas barrier film 14 was measured by the APIMS method, the oxygen permeability at a temperature of 25 ° C. and a humidity of 60% RH was 1 ⁇ 10 ⁇ 3 [cc / (m 2 ⁇ day ⁇ atm)]. It was.
- a coating solution for forming the optical functional layer 12 (a coating solution for forming an optical functional layer) is applied on the second organic layer 38 of the gas barrier film 14 to form a coating film.
- the gas barrier film 14 produced in the same manner as described above was laminated on the coating film, and the coating film was sandwiched between the gas barrier film 14 in a nitrogen atmosphere, and then the UV coating was applied in a nitrogen atmosphere to cure the coating film.
- the optical functional layer 12 was formed.
- composition of coating solution for forming optical functional layer Composition of coating solution for forming optical functional layer
- Quantum dot 1 in toluene dispersion maximum emission: 520 nm
- quantum dot 2 emission maximum: 630 nm
- quantum dot 2 emission maximum: 630 nm
- Quantum dots 1 and 2 nanocrystals having the following core-shell structure (InP / ZnS) were used.
- Quantum dot 1 INP530-10 (manufactured by NN-labs)
- Quantum dot 2 INP620-10 (manufactured by NN-labs)
- the viscosity of the coating solution for forming an optical functional layer was 50 mPa ⁇ s.
- the first layer 18A was formed on the side surface of a laminate 50 in which 1000 functional layer laminates 11 cut into a sheet were stacked and a plurality of functional layer laminates 11 were stacked using a general sputtering apparatus. Titanium was used as the target and argon was used as the discharge gas. The film formation pressure was 0.5 Pa, the film formation output was 400 W, and the ultimate film thickness was 10 nm.
- a second layer having a thickness of 75 nm was formed on the first layer 18A in the same manner as the formation of the first layer except that the target was changed from titanium to copper.
- the outermost layer 20A was formed on the second layer as follows. First, the laminate on which the first layer 18A and the second layer were formed was washed with pure water and immersed in a bathtub filled with a commercially available surfactant for 20 seconds for degreasing. Next, after washing with water, it was immersed in a 5% aqueous sulfuric acid solution for 5 seconds to perform acid activation treatment, and washed again with water. The laminate washed with water was fixed on a jig and fixed with a tester.
- Electrolytic plating treatment was performed under the conditions of minutes to form an outermost layer as a metal plating layer on the second layer. Then, after passing through water washing and rusting treatment, excess moisture was removed with air to obtain a laminate in which three metal layers were formed on the end faces.
- Example 1 except that the material, film thickness, and surface roughness Ra of the end surface of the functional layer laminate 11 were changed as shown in Table 1 below for each of the first layer 18, the second layer 22, and the outermost layer 20. In the same manner as above, a laminated film 10b was produced.
- Quantum dots 1 (CZ520-10, manufactured by NN-labs) and quantum dots 4 (CZ620-10, manufactured by NN-labs) of the quantum dot 1 and quantum dot 2 of the coating liquid for forming an optical functional layer were used.
- a laminated film 10b was produced in the same manner as in Example 19 except that the toluene dispersion was used.
- the change rate ( ⁇ Y) of the luminance (Y1) after the high-temperature and high-humidity test with respect to the initial luminance value (Y0) was calculated, and evaluated as the luminance change index according to the following criteria.
- ⁇ Y [%] (Y0 ⁇ Y1) / Y0 ⁇ 100 If the evaluation result is C or more, it can be determined that the light emission efficiency at the end is well maintained even after the high temperature and high humidity test.
- Adhesiveness between the end face of the functional layer laminate and the end face sealing layer using the sample in which the end face sealing layer is formed on the end face of the laminate of the plurality of functional layer laminates before the separation step A cross cut test of 100 squares (in accordance with JIS D0202-1988) was performed, and the evaluation was performed based on the number of squares that did not peel off.
- the evaluation criteria for adhesion are as follows. A to C are acceptable and D is unacceptable. A: 100 B: 95 or more and 99 or less C: 90 or more and 94 or less D: Less than 90
- a composition for preparing a model film is prepared by removing the toluene dispersion of quantum dots 1 and 2 from the composition of the quantum dot-containing polymerizable composition used in each example and comparative example.
- a model film having a thickness of 60 ⁇ m was prepared. Specifically, a model film was produced by the following method.
- model film composition After applying the model film composition to a release film (Lumirror # 50 manufactured by Toray Industries Inc., 50 ⁇ m thick) with a wire bar, another release film is laminated thereon, and an air-cooled metal halide lamp of 200 W / cm (Made by Eye Graphics Co., Ltd.) was used to cure by irradiating ultraviolet rays with 1000 mJ / cm 2 from the coated surface.
- the above steps were all performed in a nitrogen atmosphere.
- the model film was cut into 5 mm ⁇ 30 mm, and the release films on both sides of the cured film thus obtained were peeled off to obtain a single resin layer film (model film) having a thickness of 60 ⁇ m.
- the model membrane was conditioned at 25 ° C.
- the non-light emitting region at the end is reduced as compared with the comparative example, and the end surface is composed of two or more metal layers. It can be seen that deterioration of the quantum dot layer (optical functional layer) can be prevented by blocking oxygen and water by the sealing layer.
- the monofunctional polymerizable compound and the polyfunctional polymerizable compound are used in combination, and the elastic modulus is set within a predetermined range, so that the film stress during the formation of the metal thin film can be reduced.
- the matrix can withstand, the defects of the metal thin film on the end face can be eliminated, smoothness can be ensured, and an end face sealing layer having a high barrier property on the end face can be obtained.
- Example 24 for the laminated film of the first aspect of the present invention, a laminated film 10b shown in FIG.
- the composition of the coating solution for forming an optical functional layer was changed to the following composition, and in the sheet processing step, 1000 laminated laminates cut into a sheet shape were stacked, and then Daiwa Koki Kogyo Co., Ltd. It was produced in the same manner as in Example 1 except that the end surface of the laminate was adjusted by cutting the laminate end surface under the conditions of a blade angle of 0 ° and a cutting depth of 10 ⁇ m using a company retotome REM-710.
- the surface roughness Ra of the end surface of the produced functional layer laminate 11 was measured with an interference microscope (vertscan 2.0, manufactured by Ryoka Systems Co., Ltd.), the surface roughness Ra was 0.6 ⁇ m.
- composition of coating solution for forming optical functional layer -Toluene dispersion of quantum dots 1 (luminescence maximum: 520 nm) 10 parts by mass-Toluene dispersion of quantum dots 2 (luminescence maximum: 630 nm) 1 part by weight-Lauryl methacrylate 2.4 parts by weight-Trimethylolpropane triacrylate 0. 54 parts by mass / photopolymerization initiator 0.009 parts by mass (Irgacure 819 (manufactured by BASF))
- Example 24 except that the material, film thickness, and surface roughness Ra of the end surface of the functional layer laminate 11 were changed as shown in Table 2 below for each of the first layer 18, the second layer 22, and the outermost layer 20.
- a laminated film 10b was produced.
- end face cutting was performed under the conditions of a blade angle of 0 ° and a cutting depth of 20 ⁇ m.
- end face cutting was performed under the conditions of a blade angle of 25 ° and a cutting depth of 20 ⁇ m.
- Example 30 Example 24, except that the second layer 22 is not formed and the first layer 18 and the outermost layer 20 are formed in two layers, and the material and film thickness of the first layer 18 are changed as shown in Table 2 below. In the same manner as above, a laminated film 10a was produced.
- the number of pinholes in the end face sealing layer of the produced laminated film was measured as follows. The end face sealing layers on the four sides were observed with an optical microscope, an uncoated portion having a size of 1 ⁇ m or more was used as a pinhole, and the number x was measured to obtain the number of pinholes per 1 mm 2 . Evaluation was made according to the following criteria as an index of the number of pinholes. If the evaluation result is C or more, it can be determined that the number of pinholes is small and the end sealing layer has a sufficient gas barrier property.
- the wraparound width to the main surface of the end face sealing layer of the produced laminated film was measured as follows.
- the laminated film was cut in a cross section under the conditions of a blade angle of 0 ° and a cutting depth of 10 ⁇ m using a Retotom REM-710 manufactured by Daiwa Koki Kogyo Co., Ltd., and the cross section was observed with an optical microscope to obtain a wraparound width d.
- evaluation was performed according to the following criteria. If the evaluation result is C or more, it can be determined that the wraparound width is small and the non-light-emitting portion at the end of the film can be suppressed.
- the non-light-emitting region at the end is reduced compared to the comparative example, and the end surface is composed of two or more metal layers. It turns out that deterioration of a quantum dot (optical function layer) can be prevented by interrupting
- Example 24, Example 27, and Example 29 sealing performance becomes higher, so that the surface roughness Ra of a functional layer laminated body is small. It is presumed that this is because if the surface roughness Ra of the functional layer laminate is large, it is difficult to uniformly cover the end face sealing layer, and pinholes are generated. From this result, it can be seen that the surface roughness Ra of the functional layer laminate is preferably 2.0 ⁇ m or less. Further, from the comparison of Example 24, Example 28, and Example 30, the material of the first layer in contact with the end face of the functional layer laminate is higher than any one of aluminum, titanium, chromium, and nickel. It can be seen that adhesion can be obtained. From the above results, the effects of the present invention are clear.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Laminated Bodies (AREA)
- Optical Filters (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
量子ドットとは、三次元全方向において移動方向が制限された電子の状態の結晶のことであり、半導体のナノ粒子が、高いポテンシャル障壁で三次元的に囲まれている場合に、このナノ粒子は量子ドットとなる。量子ドットは種々の量子効果を発現する。例えば、電子の状態密度(エネルギー準位)が離散化される「量子サイズ効果」が発現する。この量子サイズ効果によれば、量子ドットの大きさを変化させることで、光の吸収波長・発光波長を制御できる。 Along with the power saving of LCD backlights, it has been proposed to use quantum dots that change the wavelength of incident light and emit light in order to increase light utilization efficiency and improve color reproducibility. .
A quantum dot is a crystal in an electronic state in which the direction of movement is restricted in all three dimensions. When a semiconductor nanoparticle is three-dimensionally surrounded by a high potential barrier, the nanoparticle Becomes a quantum dot. Quantum dots exhibit various quantum effects. For example, the “quantum size effect” in which the density of states of electrons (energy level) is discretized appears. According to this quantum size effect, the absorption wavelength and emission wavelength of light can be controlled by changing the size of the quantum dot.
バックライトから量子ドットを含むフィルムに励起光が入射すると、量子ドットが励起され蛍光を発光する。ここで異なる発光特性を有する量子ドットを用いることで、赤色光、緑色光、青色光の半値幅の狭い光を発光させて白色光を具現化することができる。量子ドットによる蛍光は半値幅が狭いため、波長を適切に選択することで得られる白色光を高輝度にしたり色再現性に優れる設計にすることが可能である。 In general, such quantum dots are dispersed in a resin or the like, and are used, for example, as a quantum dot film that performs wavelength conversion and disposed between a backlight and a liquid crystal panel.
When excitation light enters the film containing quantum dots from the backlight, the quantum dots are excited and emit fluorescence. Here, by using quantum dots having different light emission characteristics, it is possible to realize white light by emitting light having a narrow half-value width of red light, green light, and blue light. Since the half-value width of the fluorescence due to quantum dots is narrow, it is possible to design white light obtained by appropriately selecting the wavelength to have high luminance or excellent color reproducibility.
しかしながら、量子ドット層の両主面をガスバリアフィルムで保護するのみでは、ガスバリアフィルムで保護されていない端面から水分や酸素が浸入し、量子ドットが劣化するという問題があった。
そのため、量子ドット層の周囲全部をガスバリアフィルムで保護することが提案されている。 By the way, the quantum dot is easily deteriorated by moisture and oxygen, and there is a problem that the light emission intensity is reduced by the photooxidation reaction. Therefore, a gas barrier film is laminated on both surfaces of a resin layer containing quantum dots (hereinafter also referred to as “quantum dot layer”) to protect the quantum dot layer.
However, if both main surfaces of the quantum dot layer are only protected by the gas barrier film, there is a problem that moisture and oxygen enter from an end surface not protected by the gas barrier film, and the quantum dots deteriorate.
Therefore, it has been proposed to protect the entire periphery of the quantum dot layer with a gas barrier film.
また、特許文献3には、光源部から発せられた色光の少なくとも一部を他の色光に変換する色変換層と、色変換層を封止する不透水性の封止シートとを備えた発光装置が記載されており、蛍光体層の外周に沿って、すなわち蛍光体層の平面形状を囲むように枠形状に設けられている第2貼合層を有し、この第2貼合層がガスバリア性を有する接着材料からなる構成が記載されている。 Patent Document 2 describes a display backlight unit including a remote phosphor film containing a light-emitting quantum dot (QD) population. The QD phosphor material is sandwiched between two gas barrier films, and the QD phosphor material The structure which has the inactive area | region which has gas barrier property in the area | region pinched | interposed into two gas barrier films of the circumference | surroundings is described.
Patent Document 3 discloses a light emitting device including a color conversion layer that converts at least a part of the color light emitted from the light source unit into another color light, and an impermeable sealing sheet that seals the color conversion layer. The apparatus is described, and has a second bonding layer provided in a frame shape along the outer periphery of the phosphor layer, that is, surrounding the planar shape of the phosphor layer, and this second bonding layer is A configuration made of an adhesive material having gas barrier properties is described.
また、特許文献4には、励起光を波長変換して波長変換光を発生させる量子点及び量子点を分散させる分散媒質を含む波長変換部と、波長変換部を密封する密封部材と、を含む量子点波長変換体が記載されており、密封シートの端部領域を加熱して熱粘着させることで波長変換部を密封することが記載されている。 Patent Document 3 describes a configuration in which the upper layer and / or the bottom layer, which is a barrier layer for sealing the QD film, is narrowed to prevent the entry of oxygen and water by narrowing the opening at the end. Has been.
Patent Document 4 includes a quantum point that converts the wavelength of excitation light to generate wavelength-converted light, a wavelength conversion unit that includes a dispersion medium that disperses the quantum point, and a sealing member that seals the wavelength conversion unit. A quantum point wavelength converter is described, and it is described that the wavelength conversion part is sealed by heating and thermally sticking the end region of the sealing sheet.
薄い量子ドット層の全面をガスバリアフィルムで被覆するのは非常に困難であり、生産性が悪いという問題があった。また、ガスバリアフィルムを折り曲げるとバリア層が割れてガスバリア性が低下するという問題もあった。 By the way, the film including quantum dots used for the LCD is a thin film of about 50 μm to 350 μm.
It was very difficult to coat the entire surface of the thin quantum dot layer with a gas barrier film, and there was a problem that productivity was poor. In addition, when the gas barrier film is bent, the barrier layer is broken and the gas barrier property is lowered.
しかしながら、このような方法で形成可能な保護層の材料は、接着材料等であるため高いバリア性を付与することができず、ガスバリア性や耐久性が十分でなかった。
また、このようなダムフィル方式では、全工程がバッチ方式となるため生産性が極めて悪いという問題があった。 On the other hand, in the case of a configuration in which a protective layer having a gas barrier property is formed in the end face region of the quantum dot layer sandwiched between two gas barrier films, for example, the protective layer and the resin layer are formed by a so-called dam fill method. Can be considered. That is, after forming a protective layer on the peripheral portion on one gas barrier film, a resin layer is formed in a region surrounded by the protective layer, and then the other gas barrier film is laminated on the protective layer and the resin layer. It is conceivable to produce a film containing quantum dots.
However, since the material of the protective layer that can be formed by such a method is an adhesive material or the like, high barrier properties cannot be imparted, and gas barrier properties and durability are not sufficient.
In addition, such a dam fill method has a problem that productivity is extremely poor because all processes are batch methods.
すなわち、本発明は以下の構成の積層フィルムおよびその製造方法を提供する。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have obtained a functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer, and a functional layer. An end face sealing layer formed so as to cover at least a part of the end face of the laminate, and the end face sealing layer is composed of at least two layers, and each layer is made of a metal, whereby the above-described problems can be solved. The headline and the present invention were completed.
That is, this invention provides the laminated film of the following structures, and its manufacturing method.
機能層積層体の端面のうち少なくとも一部を覆って形成される端面封止層、を有し、
端面封止層は、少なくとも2層からなり、各層が金属からなる積層フィルム。
(2) 端面封止層の、機能層積層体に接する第1層以外の少なくとも1層が、金属メッキ層である(1)に記載の積層フィルム。
(3) 端面封止層の、機能層積層体から最も遠い最表層が、金属メッキ層である(1)または(2)に記載の積層フィルム。
(4) 金属メッキ層の厚さが、機能層積層体に接する第1層の厚さよりも厚い(2)または(3)に記載の積層フィルム。
(5) 第1層の厚さが、0.001μm~0.5μmであり、
金属メッキ層の厚さが、0.01μm~100μmである(4)に記載の積層フィルム。
(6) 機能層積層体に接する第1層の材料が、アルミニウム、チタン、クロム、銅、および、ニッケルからなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金であり、
第1層以外の各層の材料が、アルミニウム、チタン、クロム、ニッケル、錫、銅、銀、および、金からなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金である(1)~(5)のいずれかに記載の積層フィルム。
(7) 端面封止層の厚さが、0.1μm~100μmである(1)~(6)のいずれかに記載の積層フィルム。
(8) 光学機能層とガスバリア層とを有する機能層積層体の側面に、少なくとも2層からなり、各層が金属からなる端面封止層を有する(1)~(7)のいずれかに記載の積層フィルムを製造する積層フィルムの製造方法であって、
機能層積層体を複数枚重ねた積層物の端面に、機能層積層体に接する第1層を形成する第1層形成工程と、
積層物の端面に形成された第1層上に最表層を形成する最表層形成工程と、を有し、
第1層の形成方法が、スパッタリング法、真空蒸着法、イオンプレーティング法、および、プラズマCVD法からなる群から選択される1種である積層フィルムの製造方法。
(9) 端面封止層の、第1層以外の少なくとも1層の形成方法が、金属メッキ処理である(8)に記載の積層フィルムの製造方法。 (1) A functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer, and
An end face sealing layer formed to cover at least a part of the end face of the functional layer laminate,
The end face sealing layer is composed of at least two layers, and each layer is a laminated film made of metal.
(2) The laminated film according to (1), wherein at least one layer other than the first layer in contact with the functional layer laminate of the end face sealing layer is a metal plating layer.
(3) The laminated film according to (1) or (2), wherein the outermost surface layer of the end face sealing layer that is farthest from the functional layer laminate is a metal plating layer.
(4) The laminated film according to (2) or (3), wherein the thickness of the metal plating layer is thicker than the thickness of the first layer in contact with the functional layer laminate.
(5) The thickness of the first layer is 0.001 μm to 0.5 μm,
The laminated film according to (4), wherein the thickness of the metal plating layer is 0.01 μm to 100 μm.
(6) The material of the first layer in contact with the functional layer laminate is at least one selected from the group consisting of aluminum, titanium, chromium, copper, and nickel, or an alloy containing at least one of these. ,
The material of each layer other than the first layer is at least one selected from the group consisting of aluminum, titanium, chromium, nickel, tin, copper, silver, and gold, or an alloy containing at least one of these. (1) The laminated film as described in any one of (5).
(7) The laminated film according to any one of (1) to (6), wherein the end face sealing layer has a thickness of 0.1 μm to 100 μm.
(8) The functional layer laminate having an optical functional layer and a gas barrier layer has at least two layers on each side surface, and each layer has an end face sealing layer made of metal. A method for producing a laminated film for producing a laminated film,
A first layer forming step of forming a first layer in contact with the functional layer laminate on an end face of a laminate in which a plurality of functional layer laminates are stacked;
An outermost layer forming step of forming an outermost layer on the first layer formed on the end face of the laminate,
A method for producing a laminated film, wherein the formation method of the first layer is one selected from the group consisting of a sputtering method, a vacuum deposition method, an ion plating method, and a plasma CVD method.
(9) The method for producing a laminated film according to (8), wherein the formation method of at least one layer other than the first layer of the end face sealing layer is a metal plating process.
機能層積層体の端面のうち少なくとも一部を覆って形成される端面封止層、を有し、
端面封止層は、少なくとも2層からなり、各層がそれぞれ金属からなる積層フィルムであって、
光学機能層は、蛍光体および少なくとも2種以上の重合性化合物を含む重合性組成物を硬化させてなる硬化層である積層フィルム。 (10) A functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer, and
An end face sealing layer formed to cover at least a part of the end face of the functional layer laminate,
The end face sealing layer is composed of at least two layers, and each layer is a laminated film made of metal,
The optical functional layer is a laminated film that is a cured layer formed by curing a polymerizable composition containing a phosphor and at least two or more polymerizable compounds.
(12) 第一の重合性化合物が、アルキル基の炭素数が4~30である脂肪族または芳香族アルキル(メタ)アクリレートであり、
第二の重合性化合物が、1,6-ヘキサンジオールジアクリレート、1,10-デカンジオールジアクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジアクリレート、ジシクロペンタニルジ(メタ)アクリレート、エトキシ化ビスフェノールAジアクリレートの中から選ばれる(11)に記載の積層フィルム。
(13) 光学機能層の50℃における弾性率が1MPa~4000MPaである(10)~(12)のいずれかに記載の積層フィルム。
(14) ガスバリア層が光学機能層の両方の主面に積層されてなる(10)~(13)のいずれかに記載の積層フィルム。
(15) 光学機能層の蛍光体は、量子ドット、量子ロッド、テトラポッド型量子ドットである(10)~(14)のいずれかに記載の積層フィルム。
(16) 端面封止層の、機能層積層体に接する第1層以外の少なくとも1層が、金属メッキ層である(10)~(15)のいずれかに記載の積層フィルム。
(17) 端面封止層の、機能層積層体から最も遠い最表層が、金属メッキ層である(10)~(16)のいずれかに記載の積層フィルム。
(18) 金属メッキ層の厚さが、機能層積層体に接する第1層の厚さよりも厚い(16)または(17)に記載の積層フィルム。
(19) 第1層の厚さが、0.001μm~0.5μmであり、
金属メッキ層の厚さが、0.01μm~100μmである(18)に記載の積層フィルム。
(20) 機能層積層体に接する第1層の材料が、アルミニウム、チタン、クロム、銅、および、ニッケルからなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金であり、
第1層以外の各層の材料が、アルミニウム、チタン、クロム、ニッケル、錫、銅、銀、および、金からなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金である(10)~(19)のいずれかに記載の積層フィルム。
(21) 端面封止層の厚さが、0.1μm~100μmである(10)~(20)のいずれかに記載の積層フィルム。
(22) 光学機能層とガスバリア層とを有する機能層積層体の側面に、少なくとも2層からなり、各層が金属からなる端面封止層を有する(10)~(21)のいずれかに記載の積層フィルムを製造する積層フィルムの製造方法であって、
ガスバリア層を有するガスバリアフィルムの上に、蛍光体および少なくとも2種以上の重合性化合物を含む重合性組成物を塗布し硬化させてなる機能層積層体を形成し、
機能層積層体を複数枚重ねた積層物の端面に、機能層積層体に接する第1層を形成する第1層形成工程と、
積層物の端面に形成された第1層上に最表層を形成する最表層形成工程と、を有し、
第1層の形成方法が、スパッタリング法、真空蒸着法、イオンプレーティング法、および、プラズマCVD法からなる群から選択される1種である積層フィルムの製造方法。
(23) 端面封止層の、第1層以外の少なくとも1層の形成方法が、金属メッキ処理である(22)に記載の積層フィルムの製造方法。 (11) The laminate according to (10), wherein the polymerizable compound includes at least one first polymerizable compound composed of a monofunctional polymerizable compound and at least one second polymerizable compound composed of a polyfunctional polymerizable compound. the film.
(12) The first polymerizable compound is an aliphatic or aromatic alkyl (meth) acrylate having an alkyl group having 4 to 30 carbon atoms,
The second polymerizable compound is 1,6-hexanediol diacrylate, 1,10-decanediol diacrylate, 1,9-nonanediol di (meth) acrylate, tricyclodecane dimethanol diacrylate, dicyclopentanyl. The laminated film according to (11) selected from di (meth) acrylate and ethoxylated bisphenol A diacrylate.
(13) The laminated film according to any one of (10) to (12), wherein the optical function layer has an elastic modulus at 50 ° C. of 1 MPa to 4000 MPa.
(14) The laminated film according to any one of (10) to (13), wherein the gas barrier layer is laminated on both main surfaces of the optical functional layer.
(15) The laminated film according to any one of (10) to (14), wherein the phosphor of the optical functional layer is a quantum dot, a quantum rod, or a tetrapod type quantum dot.
(16) The laminated film according to any one of (10) to (15), wherein at least one layer of the end face sealing layer other than the first layer in contact with the functional layer laminate is a metal plating layer.
(17) The laminated film according to any one of (10) to (16), wherein the outermost surface layer of the end face sealing layer farthest from the functional layer laminate is a metal plating layer.
(18) The laminated film according to (16) or (17), wherein the thickness of the metal plating layer is thicker than the thickness of the first layer in contact with the functional layer laminate.
(19) The thickness of the first layer is 0.001 μm to 0.5 μm,
The laminated film according to (18), wherein the metal plating layer has a thickness of 0.01 μm to 100 μm.
(20) The material of the first layer in contact with the functional layer laminate is at least one selected from the group consisting of aluminum, titanium, chromium, copper, and nickel, or an alloy containing at least one of these. ,
The material of each layer other than the first layer is at least one selected from the group consisting of aluminum, titanium, chromium, nickel, tin, copper, silver, and gold, or an alloy containing at least one of these. (10) The laminated film as described in any one of (19).
(21) The laminated film according to any one of (10) to (20), wherein the end face sealing layer has a thickness of 0.1 μm to 100 μm.
(22) The functional layer laminate having an optical functional layer and a gas barrier layer has at least two layers on each side surface, and each layer has an end face sealing layer made of metal. A method for producing a laminated film for producing a laminated film,
On the gas barrier film having the gas barrier layer, a functional layer laminate is formed by applying and curing a polymerizable composition containing a phosphor and at least two or more polymerizable compounds,
A first layer forming step of forming a first layer in contact with the functional layer laminate on an end face of a laminate in which a plurality of functional layer laminates are stacked;
An outermost layer forming step of forming an outermost layer on the first layer formed on the end face of the laminate,
A method for producing a laminated film, wherein the formation method of the first layer is one selected from the group consisting of a sputtering method, a vacuum deposition method, an ion plating method, and a plasma CVD method.
(23) The method for producing a laminated film according to (22), wherein the formation method of at least one layer other than the first layer of the end face sealing layer is metal plating.
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。 Hereinafter, the laminated film and the method for producing the laminated film of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
図1に示す積層フィルム10aは、光学機能層12および光学機能層12の両主面にそれぞれ積層される2つのガスバリア層14を有する機能層積層体11と、機能層積層体11の側面を覆うように形成される端面封止層16aとを有する。 FIG. 1 is a cross-sectional view conceptually showing an example of the laminated film of the present invention.
A
一例として、光学機能層12は、多数の蛍光体(量子ドット)を硬化性の樹脂等のマトリックス中に分散してなる量子ドット層であり、光学機能層12に入射した光の波長を変換して出射する機能を有するものである。
例えば、図示しないバックライトから出射された青色光が光学機能層12に入射すると、光学機能層12は、内部に含有する量子ドットの効果により、この青色光の少なくとも一部を赤色光あるいは緑色光に波長変換して出射する。 The
As an example, the optical
For example, when blue light emitted from a backlight (not shown) enters the optical
なお、量子ドット層が発現する波長変換の機能は、青色光を赤色光あるいは緑色光に波長変換する構成に限定はされず、入射光の少なくとも一部を異なる波長の光に変換するものであればよい。 Here, the blue light is light having an emission center wavelength in a wavelength band of 400 nm to 500 nm, and the green light is light having an emission center wavelength in a wavelength band exceeding 500 nm and 600 nm. Means light having an emission center wavelength in a wavelength band of more than 600 nm and 680 nm or less.
The wavelength conversion function exhibited by the quantum dot layer is not limited to a configuration that converts the wavelength of blue light into red light or green light, and may convert at least part of incident light into light of a different wavelength. That's fine.
量子ドット層に含有される量子ドットの種類には特に限定はなく、求められる波長変換の性能等に応じて、種々の公知の量子ドットを適宜選択すればよい。 The quantum dots emit fluorescence by being excited at least by incident excitation light.
There are no particular limitations on the type of quantum dots contained in the quantum dot layer, and various known quantum dots may be appropriately selected according to the required wavelength conversion performance or the like.
2種以上併用する場合は、発光光の波長が異なる2種以上の量子ドットを使用してもよい。 The quantum dots are preferably dispersed uniformly in the matrix, but may be dispersed with a bias in the matrix. Moreover, only 1 type may be used for a quantum dot and it may use 2 or more types together.
When using 2 or more types together, you may use 2 or more types of quantum dots from which the wavelength of emitted light differs.
例えば、ポリエステル系樹脂(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート)、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂などが挙げられる。あるいは、マトリックスとして、重合性基を有する硬化性化合物を用いることができる。重合性基の種類は、特に限定されないが、好ましくは、(メタ)アクリレート基、ビニル基またはエポキシ基であり、より好ましくは、(メタ)アクリレート基であり、さらに好ましくは、アクリレート基である。また、2つ以上の重合性基を有する重合性単量体は、それぞれの重合性基が同一であってもよいし、異なっていても良い。 In the first aspect, the type of matrix of the quantum dot layer is not particularly limited, and various resins used in known quantum dot layers can be used.
Examples thereof include polyester resins (for example, polyethylene terephthalate, polyethylene naphthalate), (meth) acrylic resins, polyvinyl chloride resins, and polyvinylidene chloride resins. Alternatively, a curable compound having a polymerizable group can be used as the matrix. Although the kind of polymeric group is not specifically limited, Preferably, it is a (meth) acrylate group, a vinyl group, or an epoxy group, More preferably, it is a (meth) acrylate group, More preferably, it is an acrylate group. Moreover, as for the polymerizable monomer which has two or more polymeric groups, each polymeric group may be the same and may differ.
水素結合性を有する官能基としては、ウレタン基、ウレア基、またはヒドロキシル基等が挙げられる。
第1の重合性化合物と重合反応できる重合性基としては、例えば、第1の重合性化合物が2官能以上の(メタ)アクリレートモノマーであるときは(メタ)アクリロイル基であればよく、第1の重合性化合物がエポキシ基およびオキセタニル基からなる群から選択される官能基を2つ以上有するモノマーであるときはエポキシ基またはオキセタニル基であればよい。 The second polymerizable compound has a functional group having hydrogen bonding properties in the molecule and a polymerizable group capable of undergoing a polymerization reaction with the first polymerizable compound.
Examples of the functional group having hydrogen bonding include a urethane group, a urea group, or a hydroxyl group.
As the polymerizable group capable of undergoing a polymerization reaction with the first polymerizable compound, for example, when the first polymerizable compound is a bifunctional or higher (meth) acrylate monomer, it may be a (meth) acryloyl group. When the polymerizable compound is a monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group, it may be an epoxy group or an oxetanyl group.
第1の重合性化合物と第2の重合性化合物との質量比は10:90~99:1であればよく、10:90~90:10であることが好ましい。第2の重合性化合物の含有量に対し第1の重合性化合物の含有量が多いことも好ましく、具体的には(第1の重合性化合物の含有量)/(第2の重合性化合物の含有量)が2~10であることが好ましい。 As a commercially available product that can be suitably used as the second polymerizable compound containing a hydroxyl group, an epoxy ester manufactured by Kyoeisha Chemical Co., Ltd., M-600A, 40EM, 70PA, 200PA, 80MFA, 3002M, 3002A, 3000MK, 3000A, 4-hydroxybutyl acrylate manufactured by Nippon Kasei Co., Ltd., monofunctional acrylate A-SA manufactured by Shin-Nakamura Chemical Co., Ltd., monofunctional methacrylate SA, monofunctional acrylate β-carboxyethyl acrylate manufactured by Daicel Ornex Co., Ltd. And JPA-514 manufactured by Johoku Chemical Industry Co., Ltd. These can be used alone or in combination of two or more.
The mass ratio between the first polymerizable compound and the second polymerizable compound may be 10:90 to 99: 1, and is preferably 10:90 to 90:10. It is also preferable that the content of the first polymerizable compound is larger than the content of the second polymerizable compound. Specifically, (content of the first polymerizable compound) / (of the second polymerizable compound) The content is preferably 2 to 10.
メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル基の炭素数が1~30であるアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート等のアラルキル基の炭素数が7~20であるアラルキル(メタ)アクリレート;ブトキシエチル(メタ)アクリレート等のアルコキシアルキル基の炭素数が2~30であるアルコキシアルキル(メタ)アクリレート;N,N-ジメチルアミノエチル(メタ)アクリレート等の(モノアルキルまたはジアルキル)アミノアルキル基の総炭素数が1~20であるアミノアルキル(メタ)アクリレート;ジエチレングリコールエチルエーテルの(メタ)アクリレート、トリエチレングリコールブチルエーテルの(メタ)アクリレート、テトラエチレングリコールモノメチルエーテルの(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテルの(メタ)アクリレート、オクタエチレングリコールのモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールのモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールのモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールのモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールのモノエチルエーテル(メタ)アクリレート等のアルキレン鎖の炭素数が1~10で末端アルキルエーテルの炭素数が1~10のポリアルキレングリコールアルキルエーテルの(メタ)アクリレート;ヘキサエチレングリコールフェニルエーテルの(メタ)アクリレート等のアルキレン鎖の炭素数が1~30で末端アリールエーテルの炭素数が6~20のポリアルキレングリコールアリールエーテルの(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチレンオキシド付加シクロデカトリエン(メタ)アクリレート等の脂環構造を有する総炭素数4~30の(メタ)アクリレート;ヘプタデカフロロデシル(メタ)アクリレート等の総炭素数4~30のフッ素化アルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、トリエチレングリコールのモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート、グリセロールのモノまたはジ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート;テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等のアルキレン鎖の炭素数が1~30のポリエチレングリコールモノ(メタ)アクリレート;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリルアミド、アクリロイルモルホリン等の(メタ)アクリルアミドなどが挙げられる。
単官能(メタ)アクリレートモノマーは第1の重合性化合物と第2の重合性化合物との総質量100質量部に対して、1~300質量部含まれていることが好ましく、50~150質量部含まれていることがより好ましい。 When a resin containing the first polymerizable compound and the second polymerizable compound is used as the matrix, it is preferable that the matrix further contains a monofunctional (meth) acrylate monomer. Monofunctional (meth) acrylate monomers include acrylic acid and methacrylic acid, derivatives thereof, and more specifically, monomers having one polymerizable unsaturated bond ((meth) acryloyl group) of (meth) acrylic acid in the molecule Can be mentioned. Specific examples thereof include the following compounds, but the present invention is not limited thereto.
Methyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, stearyl ( Alkyl (meth) acrylates having an alkyl group such as meth) acrylate having 1 to 30 carbon atoms; aralkyl (meth) acrylates having an aralkyl group such as benzyl (meth) acrylate having 7 to 20 carbon atoms; butoxyethyl (meth) ) An alkoxyalkyl (meth) acrylate having 2 to 30 carbon atoms of an alkoxyalkyl group such as acrylate; the total carbon number of a (monoalkyl or dialkyl) aminoalkyl group such as N, N-dimethylaminoethyl (meth) acrylate; 1-2 An aminoalkyl (meth) acrylate which is: (meth) acrylate of diethylene glycol ethyl ether, (meth) acrylate of triethylene glycol butyl ether, (meth) acrylate of tetraethylene glycol monomethyl ether, (meth) acrylate of hexaethylene glycol monomethyl ether, Octaethylene glycol monomethyl ether (meth) acrylate, nonaethylene glycol monomethyl ether (meth) acrylate, dipropylene glycol monomethyl ether (meth) acrylate, heptapropylene glycol monomethyl ether (meth) acrylate, tetraethylene glycol monoethyl Alkyl chain such as ether (meth) acrylate has 1 to 10 carbon atoms and terminal alkyl (Meth) acrylate of polyalkylene glycol alkyl ether having 1 to 10 carbon atoms in ether; alkylene chain such as (meth) acrylate of hexaethylene glycol phenyl ether having 1 to 30 carbon atoms and terminal aryl ether having 6 carbon atoms (Meth) acrylate of -20 polyalkylene glycol aryl ethers; cycloaliphatic structures such as cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, and methylene oxide-added cyclodecatriene (meth) acrylate (Meth) acrylates having a total carbon number of 4 to 30; fluorinated alkyl (meth) acrylates having a total carbon number of 4 to 30 such as heptadecafluorodecyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, mono (meth) acrylate of triethylene glycol, tetraethylene glycol mono (meth) acrylate, hexaethylene glycol mono (meth) acrylate, octapropylene glycol mono (Meth) acrylate, (meth) acrylate having a hydroxyl group such as glycerol mono- or di (meth) acrylate; (meth) acrylate having a glycidyl group such as glycidyl (meth) acrylate; tetraethylene glycol mono (meth) acrylate, hexa Polyethylene glycol mono (meth) having an alkylene chain of 1 to 30 carbon atoms such as ethylene glycol mono (meth) acrylate and octapropylene glycol mono (meth) acrylate. ) Acrylate; (meth) acrylamide, N, N- dimethyl (meth) acrylamide, N- isopropyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylamide, acryloyl morpholine (meth) acrylamide and the like.
The monofunctional (meth) acrylate monomer is preferably contained in an amount of 1 to 300 parts by mass, and 50 to 150 parts by mass with respect to a total mass of 100 parts by mass of the first polymerizable compound and the second polymerizable compound. More preferably it is included.
炭素数4~30の長鎖アルキル基を有する単官能(メタ)アクリレートモノマーとしては、具体的には、ブチル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、オレイル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、ブチル(メタ)アクリルアミド、オクチル(メタ)アクリルアミド、ラウリル(メタ)アクリルアミド、オレイル(メタ)アクリルアミド、ステアリル(メタ)アクリルアミド、ベヘニル(メタ)アクリルアミド等が好ましい。中でもラウリル(メタ)アクリレート、オレイル(メタ)アクリレート、ステアリル(メタ)アクリレートが特に好ましい。 Further, it preferably contains a compound having a long-chain alkyl group having 4 to 30 carbon atoms. Specifically, at least one of the first polymerizable compound, the second polymerizable compound, and the monofunctional (meth) acrylate monomer preferably has a long-chain alkyl group having 4 to 30 carbon atoms. The long chain alkyl group is more preferably a long chain alkyl group having 12 to 22 carbon atoms. This is because the dispersibility of the quantum dots is improved. As the dispersibility of the quantum dots improves, the amount of light that goes straight from the light conversion layer to the exit surface increases, which is effective in improving front luminance and front contrast.
Specific examples of the monofunctional (meth) acrylate monomer having a long-chain alkyl group having 4 to 30 carbon atoms include butyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, and oleyl (meth) acrylate. , Stearyl (meth) acrylate, behenyl (meth) acrylate, butyl (meth) acrylamide, octyl (meth) acrylamide, lauryl (meth) acrylamide, oleyl (meth) acrylamide, stearyl (meth) acrylamide, behenyl (meth) acrylamide, etc. preferable. Of these, lauryl (meth) acrylate, oleyl (meth) acrylate, and stearyl (meth) acrylate are particularly preferable.
重合性基の種類は、特に限定されないが、好ましくは、(メタ)アクリレート基、ビニル基またはエポキシ基、オキセタニル基であり、より好ましくは、(メタ)アクリレート基であり、さらに好ましくは、アクリレート基である。 In the laminated film of the second aspect of the present invention, the optical functional layer is a cured layer obtained by curing a polymerizable composition containing at least two or more polymerizable compounds. The polymerizable groups of the polymerizable compounds used in combination of at least two may be the same or different, and preferably the at least two compounds have at least one common polymerizable group. preferable.
The type of the polymerizable group is not particularly limited, but is preferably a (meth) acrylate group, a vinyl group or an epoxy group, or an oxetanyl group, more preferably a (meth) acrylate group, and still more preferably an acrylate group. It is.
具体的には、例えば、以下の第3の重合性化合物と第4の重合性化合物とを含む態様をとることができる。 The polymerizable compound of the present invention preferably contains at least one first polymerizable compound composed of a monofunctional polymerizable compound and at least one second polymerizable compound composed of a polyfunctional polymerizable compound.
Specifically, for example, an embodiment including the following third polymerizable compound and fourth polymerizable compound can be employed.
脂肪族単官能(メタ)アクリレートモノマーとしては、メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル基の炭素数が1~30であるアルキル(メタ)アクリレート;
ブトキシエチル(メタ)アクリレート等のアルコキシアルキル基の炭素数が2~30であるアルコキシアルキル(メタ)アクリレート;
N,N-ジメチルアミノエチル(メタ)アクリレート等の(モノアルキルまたはジアルキル)アミノアルキル基の総炭素数が1~20であるアミノアルキル(メタ)アクリレート;
ジエチレングリコールエチルエーテルの(メタ)アクリレート、トリエチレングリコールブチルエーテルの(メタ)アクリレート、テトラエチレングリコールモノメチルエーテルの(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテルの(メタ)アクリレート、オクタエチレングリコールのモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールのモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールのモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールのモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールのモノエチルエーテル(メタ)アクリレート等のアルキレン鎖の炭素数が1~10で末端アルキルエーテルの炭素数が1~10のポリアルキレングリコールアルキルエーテルの(メタ)アクリレート;
ヘキサエチレングリコールフェニルエーテルの(メタ)アクリレート等のアルキレン鎖の炭素数が1~30で末端アリールエーテルの炭素数が6~20のポリアルキレングリコールアリールエーテルの(メタ)アクリレート;
シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチレンオキシド付加シクロデカトリエン(メタ)アクリレート等の脂環構造を有する総炭素数4~30の(メタ)アクリレート;ヘプタデカフロロデシル(メタ)アクリレート等の総炭素数4~30のフッ素化アルキル(メタ)アクリレート;
2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、トリエチレングリコールのモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート、グリセロールのモノ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート;
グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート;
テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等のアルキレン鎖の炭素数が1~30のポリエチレングリコールモノ(メタ)アクリレート;
(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリルアミド、アクリロイルモルホリン等の(メタ)アクリルアミドなどが挙げられる。
芳香族単官能アクリレートモノマーとしては、ベンジル(メタ)アクリレート等のアラルキル基の炭素数が7~20であるアラルキル(メタ)アクリレートが挙げられる。
また、第1の重合性化合物のなかでも、アルキル基の炭素数が4~30である脂肪族または芳香族アルキル(メタ)アクリレートが好ましく、更には、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチレンオキシド付加シクロデカトリエン(メタ)アクリレートが好ましい。これにより、量子ドットの分散性が向上するからである。量子ドットの分散性が向上するほど、光変換層から出射面に直行する光量が増えるため、正面輝度および正面コントラストの向上に有効である。 Monofunctional (meth) acrylate monomers include acrylic acid and methacrylic acid, derivatives thereof, more specifically, (meth) acrylic acid polymerizable unsaturated bond (meth) acryloyl group in the molecule, alkyl Mention may be made of aliphatic or aromatic monomers whose group has 1 to 30 carbon atoms. Specific examples thereof include the following compounds, but the present invention is not limited thereto.
Aliphatic monofunctional (meth) acrylate monomers include methyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, n-octyl ( Alkyl (meth) acrylates having 1 to 30 carbon atoms in the alkyl group, such as (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate;
An alkoxyalkyl (meth) acrylate having 2 to 30 carbon atoms in the alkoxyalkyl group such as butoxyethyl (meth) acrylate;
Aminoalkyl (meth) acrylates in which the total number of carbon atoms of the (monoalkyl or dialkyl) aminoalkyl group is 1-20, such as N, N-dimethylaminoethyl (meth) acrylate;
(Meth) acrylate of diethylene glycol ethyl ether, (meth) acrylate of triethylene glycol butyl ether, (meth) acrylate of tetraethylene glycol monomethyl ether, (meth) acrylate of hexaethylene glycol monomethyl ether, monomethyl ether of octaethylene glycol (meth) Alkylene chain such as acrylate, monomethyl ether (meth) acrylate of nonaethylene glycol, monomethyl ether (meth) acrylate of dipropylene glycol, monomethyl ether (meth) acrylate of heptapropylene glycol, monoethyl ether (meth) acrylate of tetraethylene glycol A polyalkylene having 1 to 10 carbon atoms and a terminal alkyl ether having 1 to 10 carbon atoms Recall alkyl ether (meth) acrylate;
(Meth) acrylates of polyalkylene glycol aryl ethers having an alkylene chain of 1 to 30 carbon atoms and a terminal aryl ether of 6 to 20 carbon atoms such as (meth) acrylate of hexaethylene glycol phenyl ether;
(Meth) acrylates having a total carbon number of 4 to 30 and having an alicyclic structure such as cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, and methylene oxide-added cyclodecatriene (meth) acrylate; Fluorinated alkyl (meth) acrylates having 4 to 30 carbon atoms in total, such as heptadecafluorodecyl (meth) acrylate;
2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, triethylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, hexaethylene glycol mono (Meth) acrylate having a hydroxyl group such as (meth) acrylate, octapropylene glycol mono (meth) acrylate, mono (meth) acrylate of glycerol;
(Meth) acrylates having a glycidyl group such as glycidyl (meth) acrylate;
Polyethylene glycol mono (meth) acrylate having 1 to 30 carbon atoms in the alkylene chain, such as tetraethylene glycol mono (meth) acrylate, hexaethylene glycol mono (meth) acrylate and octapropylene glycol mono (meth) acrylate;
Examples include (meth) acrylamide such as (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylamide, acryloylmorpholine, and the like.
Examples of the aromatic monofunctional acrylate monomer include aralkyl (meth) acrylates having 7 to 20 carbon atoms in the aralkyl group such as benzyl (meth) acrylate.
Of the first polymerizable compounds, aliphatic or aromatic alkyl (meth) acrylates having an alkyl group with 4 to 30 carbon atoms are preferred, and n-octyl (meth) acrylate, lauryl (meth) acrylate are also preferred. ) Acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, and methylene oxide-added cyclodecatriene (meth) acrylate. This is because the dispersibility of the quantum dots is improved. As the dispersibility of the quantum dots improves, the amount of light that goes straight from the light conversion layer to the exit surface increases, which is effective in improving front luminance and front contrast.
重合性組成物は、必要に応じて粘度調整剤を含んでいてもよい。粘度調整剤は、粒径が5nm~300nmであるフィラーであることが好ましい。また、粘度調整剤はチキソトロピー剤であることも好ましい。なお本発明および本明細書中、チキソトロピー性とは、液状組成物において、せん断速度の増加に対して粘性を減じる性質を指し、チキソトロピー剤とは、それを液状組成物に含ませることによって、組成物にチキソトロピー性を付与する機能を有する素材のことを指す。チキソトロピー剤の具体例としては、ヒュームドシリカ、アルミナ、窒化珪素、二酸化チタン、炭酸カルシウム、酸化亜鉛、タルク、雲母、長石、カオリナイト(カオリンクレー)、パイロフィライト(ろう石クレー)、セリサイト(絹雲母)、ベントナイト、スメクタイト・バーミキュライト類(モンモリロナイト、バイデライト、ノントロナイト、サポナイトなど)、有機ベントナイト、有機スメクタイト等が挙げられる。
一態様では、重合性組成物は、粘度がせん断速度500s-1の時に3mPa・s~50mPa・sであり、せん断速度1s-1の時に100mPa・s以上であることが好ましい。このように粘度調整するために、チキソトロピー剤を用いることが好ましい。また、重合性組成物の粘度がせん断速度500s-1の時に3mPa・s~50mPa・sであり、せん断速度1s-1の時に100mPa・s以上であることが好ましい理由は、以下の通りである。
機能性積層体の製造方法の一例としては、後述するように、第1の基材に重合性組成物を塗布したのちに、重合性性組成物の上に第2の基材を貼り付けてから、重合性組成物を硬化して波長変換層を形成する工程を含む製造方法を挙げることができる。上記製造方法では、第1の基材に重合性組成物を塗布する際に塗布スジが生じないように均一に塗布して塗膜の膜厚を均一にすることが望ましく、そのためには塗布性とレベリング性の観点から塗布液(重合性組成物)の粘度は低いことが好ましい。一方、第1の基材に塗布された塗布液の上に第2の基材を均一に貼り合せるためには貼り合せ時の圧力への抵抗力が高いことが好ましく、この点から高粘度の塗布液が好ましい。上記のせん断速度500s-1とは、第1の基材に塗布される塗布液に加わるせん断速度の代表値であり、せん断速度1s-1とは塗布液に第2の基材を貼り合せる直前に塗布液に加わるせん断速度の代表値である。なお、せん断速度1s-1とはあくまでも代表値に過ぎない。第1の基材に塗布された塗布液の上に第2の基材を貼り合せる際、第1の基材と第2の基材を同速度で搬送しつつ貼り合せるのであれば塗布液に加わるせん断速度はほぼ0s-1であり、実製造工程において塗布液に加わるせん断速度が1s-1に限定されるものではない。せん断速度500s-1も同様に代表値に過ぎず、実製造工程において塗布液に加わるせん断速度が500s-1に限定されるものではない。そして均一な塗布および貼り合せの観点から、重合性組成物の粘度を、第1の基材に塗布液を塗布する際に塗布液に加わるせん断速度の代表値500s-1の時に3mPa・s~50mPa・sであり、第1の基材に塗布された塗布液上に第2の基材を貼り合せる直前に塗布液に加わるせん断速度の代表値1s-1の時に100mPa・s以上であるように調整することが好ましい。 (Viscosity modifier)
The polymerizable composition may contain a viscosity modifier as necessary. The viscosity modifier is preferably a filler having a particle size of 5 nm to 300 nm. The viscosity modifier is also preferably a thixotropic agent. In the present invention and the present specification, thixotropic property refers to a property of reducing the viscosity with respect to an increase in shear rate in a liquid composition, and a thixotropic agent is a composition obtained by including it in the liquid composition. It refers to a material having a function of imparting thixotropy to an object. Specific examples of thixotropic agents include fumed silica, alumina, silicon nitride, titanium dioxide, calcium carbonate, zinc oxide, talc, mica, feldspar, kaolinite (kaolin clay), pyrophyllite (waxite clay), and sericite. (Sericite), bentonite, smectite vermiculites (montmorillonite, beidellite, nontronite, saponite, etc.), organic bentonite, organic smectite and the like.
In one embodiment, the polymerizable composition has a viscosity of 3 mPa · s to 50 mPa · s when the shear rate is 500 s −1 , and preferably 100 mPa · s or more when the shear rate is 1 s −1 . In order to adjust the viscosity in this way, it is preferable to use a thixotropic agent. The viscosity of the polymerizable composition is a 3mPa · s ~ 50mPa · s when the shear rate 500 s -1, why is preferably 100 mPa · s or more at a shear rate of 1s -1 is as follows .
As an example of the method for producing the functional laminate, as described later, after applying the polymerizable composition to the first substrate, the second substrate is pasted on the polymerizable composition. From the above, a production method including the step of curing the polymerizable composition to form the wavelength conversion layer can be mentioned. In the above production method, it is desirable to uniformly apply the coating composition so that no coating stripes are formed when the polymerizable composition is applied to the first substrate, and for this purpose, the coating property is uniform. From the viewpoint of leveling properties, the coating solution (polymerizable composition) preferably has a low viscosity. On the other hand, in order to uniformly bond the second substrate onto the coating solution applied to the first substrate, it is preferable that the resistance to pressure at the time of bonding is high. A coating solution is preferred. The shear rate of 500 s −1 is a representative value of the shear rate applied to the coating solution applied to the first substrate, and the shear rate of 1 s −1 is immediately before the second substrate is bonded to the coating solution. This is a representative value of the shear rate applied to the coating solution. Note that the shear rate 1 s −1 is merely a representative value. When the second substrate is bonded onto the coating solution applied to the first substrate, the first substrate and the second substrate are bonded to each other while being transported at the same speed. The applied shear rate is approximately 0 s −1 , and the shear rate applied to the coating solution in the actual manufacturing process is not limited to 1 s −1 . Similarly, the shear rate of 500 s −1 is merely a representative value, and the shear rate applied to the coating solution in the actual manufacturing process is not limited to 500 s −1 . From the viewpoint of uniform application and bonding, the viscosity of the polymerizable composition is 3 mPa · s when the representative value of the shear rate applied to the coating liquid is 500 s −1 when the coating liquid is applied to the first substrate. 50 mPa · s, which is 100 mPa · s or more when the representative value of the shear rate applied to the coating solution is 1 s −1 immediately before the second substrate is bonded onto the coating solution applied to the first substrate. It is preferable to adjust to.
上記重合性組成物は、必要に応じて溶媒を含んでいてもよい。この場合に使用される溶媒の種類および添加量は、特に限定されない。例えば溶媒として、有機溶媒を一種または二種以上混合して用いることができる。 (solvent)
The said polymerizable composition may contain the solvent as needed. In this case, the type and amount of the solvent used are not particularly limited. For example, one or a mixture of two or more organic solvents can be used as the solvent.
また、量子ドット層中のマトリックスとなる樹脂の総量には特に限定はないが、量子ドット層の全量100質量部に対して、90質量部~99.9質量部であることが好ましく、92質量部~99質量部であることがより好ましい。 In addition, in the matrix resin, trifluoroethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, (perfluorobutyl) ethyl (meth) acrylate, perfluorobutyl-hydroxypropyl (meth) acrylate, (perfluoro Hexyl) ethyl (meth) acrylate, octafluoropentyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate and other compounds having a fluorine atom may be included. By including these compounds, the coating property can be improved.
Further, the total amount of the resin serving as a matrix in the quantum dot layer is not particularly limited, but is preferably 90 to 99.9 parts by mass with respect to 100 parts by mass of the total amount of the quantum dot layer, and 92 parts by mass. More preferred is from 99 parts by mass to 99 parts by mass.
なお、上記厚みは平均厚みを意図し、平均厚みは量子ドット層の任意の10点以上の厚みを測定して、それらを算術平均して求める。 The thickness of the quantum dot layer is not particularly limited, but is preferably 5 μm to 200 μm and more preferably 10 μm to 150 μm from the viewpoints of handleability and light emission characteristics.
In addition, the said thickness intends average thickness, average thickness calculates | requires the thickness of arbitrary 10 points | pieces or more of a quantum dot layer, and calculates | requires them arithmetically.
第2の態様において、量子ドット層の形成方法は、蛍光体(量子ドット)および少なくとも2種以上の重合性化合物を含む重合性組成物を調整し、この塗布組成物をガスバリア層14上に塗布し、硬化させることで形成することができる。
なお、量子ドット層となる塗布組成物には、必要に応じて、重合開始剤やシランカップリング剤等を添加してもよい。 In the first aspect, the method for forming the quantum dot layer is not particularly limited, and may be formed by a known method. For example, it can be formed by preparing a coating composition in which quantum dots, a matrix resin, and a solvent are mixed, applying the coating composition on the
In the second embodiment, the quantum dot layer is formed by adjusting a polymerizable composition containing a phosphor (quantum dot) and at least two or more polymerizable compounds, and applying this coating composition on the
In addition, you may add a polymerization initiator, a silane coupling agent, etc. to the coating composition used as a quantum dot layer as needed.
また、ガスバリア層14は、酸素透過度が1×10-2[cc/(m2・day・atm)]以下であるのが好ましい。
水蒸気透過度ならびに酸素透過度が低い、すなわち、ガスバリア性が高いガスバリア層14を用いることで、光学機能層12への水分や酸素の浸入を防止して光学機能層12の劣化をより好適に防止することができる。
なお、水蒸気透過度は、温度40℃、相対湿度90%RHの条件下でモコン法によって測定した。また、水蒸気透過度が、モコン法の測定限界を超えた場合には、カルシウム腐食法(特開2005-283561号公報に記載される方法)によって測定した。
また、酸素透過度は、APIMS法(大気圧イオン化質量分析法)による測定装置(株式会社日本エイピーアイ社製)を用いて、温度25℃、湿度60%RHの条件下で測定した。なお、酸素透過度のSI単位として、fm/(s・Pa)があることが知られている。1fm/(s・Pa)=8.752cc/(m2・day・atm)で換算できる(fm:フェムトメートル)。 The
The
By using the
The water vapor permeability was measured by the Mocon method under the conditions of a temperature of 40 ° C. and a relative humidity of 90% RH. When the water vapor permeability exceeded the measurement limit of the Mocon method, it was measured by the calcium corrosion method (the method described in JP-A-2005-283561).
Moreover, the oxygen permeability was measured under the conditions of a temperature of 25 ° C. and a humidity of 60% RH using a measuring device (manufactured by Nippon API Co., Ltd.) using an APIMS method (atmospheric pressure ionization mass spectrometry). It is known that there is fm / (s · Pa) as an SI unit of oxygen permeability. 1 fm / (s · Pa) = 8.752 cc / (m 2 · day · atm) (fm: femtometer).
ガスバリア層14の厚さを100μm以下とすることで、光学機能層12を含む積層フィルム10a全体の厚さを薄くできる等の点で好ましい。
また、ガスバリア層14の厚さを5μm以上とすることで、2つのガスバリア層14の間に光学機能層12を形成する際に、光学機能層12の厚さを均一にできる等の点で好ましい。 The thickness of the
Setting the thickness of the
Further, the thickness of the
一例として、ガスバリア支持体30の上に、バリア層32として、少なくとも1層の有機層と、少なくとも1層の無機層とを有するガスバリアフィルムが好適に用いられる。
図2に、ガスバリアフィルムの一例を概念的に表す断面図を示す。
図2に示すガスバリアフィルム(ガスバリア層)14は、有機層34、無機層36および有機層38をこの順に積層してなるバリア層32と、バリア層32を支持するガスバリア支持体30とを有してなる。 Here, there is no limitation in particular as the
As an example, a gas barrier film having at least one organic layer and at least one inorganic layer as the
FIG. 2 is a sectional view conceptually showing an example of the gas barrier film.
A gas barrier film (gas barrier layer) 14 shown in FIG. 2 has a
ここで、光学機能層12が積層されるのは、基本的に、バリア層32側である。したがって、バリア層32の最表層を無機層36とし、光学機能層12をバリア層32側に積層することにより、ガスバリア支持体30や有機層34からアウトガスが放出されても、このアウトガスは無機層36で遮蔽され、光学機能層12に至ることを防止できる。 In the illustrated example, the outermost layer of the barrier layer 32 (the layer opposite to the gas barrier support 30) is the
Here, the optical
中でも、薄手化や軽量化が容易である、フレキシブル化に好適である等の点で、各種のプラスチック(高分子材料/樹脂材料)からなるフィルムが好適に利用される。
具体的には、ポリエチレン(PE)、ポリエチレンナフタレート(PEN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、ポリアクリトニトリル(PAN)、ポリイミド(PI)、透明ポリイミド、ポリメタクリル酸メチル樹脂(PMMA)、ポリカーボネート(PC)、ポリアクリレート、ポリメタクリレート、ポリプロピレン(PP)、ポリスチレン(PS)、ABS、環状オレフィン・コポリマー(COC)、シクロオレフィンポリマー(COP)、および、トリアセチルセルロース(TAC)からなるプラスチックフィルムが、好適に例示される。 As the
Among them, films made of various plastics (polymer materials / resin materials) are preferably used in that they are easy to be thinned and lightened and are suitable for flexibility.
Specifically, polyethylene (PE), polyethylene naphthalate (PEN), polyamide (PA), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinyl alcohol (PVA), polyacrylonitrile (PAN), polyimide ( PI), transparent polyimide, polymethyl methacrylate resin (PMMA), polycarbonate (PC), polyacrylate, polymethacrylate, polypropylene (PP), polystyrene (PS), ABS, cyclic olefin copolymer (COC), cycloolefin polymer ( COP) and a plastic film made of triacetyl cellulose (TAC) are preferably exemplified.
なお、ガスバリア支持体30は、このようなプラスチックフィルムの表面に、反射防止や位相差制御、光取り出し効率向上等の機能が付与されていてもよい。 What is necessary is just to set the thickness of the gas
The
有機層34は、公知のガスバリアフィルムで有機層34として用いられているものが、各種、利用可能である。例えば、有機層34は、有機化合物を主成分とする膜で、基本的に、モノマーおよび/またはオリゴマを、架橋して形成されるものが利用できる。
ガスバリアフィルム14は、無機層36の下地となる有機層34を有することにより、ガスバリア支持体30の表面の凹凸や、表面に付着している異物等を包埋して、無機層36の成膜面を適正にできる。その結果、成膜面の全面に、隙間無く、割れやヒビ等の無い適正な無機層36を成膜できる。これにより、水蒸気透過度が1×10-3[g/(m2・day)]以下、および、酸素透過度が1×10-2[cc/(m2・day・atm)]以下となるような、高いガスバリア性能を得ることができる。 The
As the
The
これにより、積層フィルム10aにおいて、ガスバリアフィルム14が適正にガスバリア性能を発現して、水分や酸素による光学機能層12の劣化を、好適に防止できる。 Further, since the
Thereby, in
具体的には、ポリエステル、アクリル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、セルロースアシレート、ポリウレタン、ポリエーテルエーテルケトン、ポリカーボネート、脂環式ポリオレフィン、ポリアリレート、ポリエーテルスルホン、ポリスルホン、フルオレン環変性ポリカーボネート、脂環変性ポリカーボネート、フルオレン環変性ポリエステル、アクリロイル化合物、などの熱可塑性樹脂、あるいはポリシロキサン、その他の有機ケイ素化合物の膜が好適に例示される。これらは、複数を併用してもよい。 In the
Specifically, polyester, acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane, poly Ether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, acryloyl compound, thermoplastic resin, or polysiloxane, etc. An organic silicon compound film is preferably exemplified. A plurality of these may be used in combination.
中でも特に、上記強度に加え、屈折率が低い、透明性が高く光学特性に優れる等の点で、アクリレートおよび/またはメタクリレートのモノマーやオリゴマの重合体を主成分とする、ガラス転移温度が120℃以上のアクリル樹脂やメタクリル樹脂は、有機層34として好適に例示される。その中でも特に、ジプロピレングリコールジ(メタ)アクリレート(DPGDA)、トリメチロールプロパントリ(メタ)アクリレート(TMPTA)、ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA)などの、2官能以上、特に3官能以上のアクリレートおよび/またはメタクリレートのモノマーやオリゴマの重合体を主成分とする、アクリル樹脂やメタクリル樹脂は、好適に例示される。また、これらのアクリル樹脂やメタクリル樹脂を、複数、用いるのも好ましい。
有機層34を、このようなアクリル樹脂やメタクリル樹脂で形成することにより、骨格がしっかりした下地の上に無機層36を成膜できるので、より緻密でガスバリア性が高い無機層36を成膜できる。 Among them, the
In particular, in addition to the above strength, the glass transition temperature is 120 ° C. mainly composed of acrylate and / or methacrylate monomers and oligomer polymers in terms of low refractive index, high transparency and excellent optical properties. The above acrylic resin and methacrylic resin are preferably exemplified as the
By forming the
有機層34の厚さを1μm以上とすることにより、より好適に無機層36の成膜面を適正にして、割れやヒビ等の無い適正な無機層36を、成膜面の全面に渡って成膜できる。
また、有機層34の厚さを5μm以下とすることにより、有機層34が厚すぎることに起因する、有機層34のクラックや、ガスバリアフィルム14のカール等の問題の発生を、好適に防止することができる。
以上の点を考慮すると、有機層34の厚さは、1μm~5μmとするのが、より好ましい。 The thickness of the
By setting the thickness of the
Further, by setting the thickness of the
Considering the above points, the thickness of the
また、有機層34を複数有する場合には、各有機層の形成材料は、同じでも異なってもよい。しかしながら、生産性等の点からは、全ての有機層を、同じ材料で形成するのが好ましい。 In addition, when the gas barrier film has a plurality of
Moreover, when it has two or more
また、有機層34の下層となる無機層36との密着性を向上するために、有機層34は、シランカップリング剤を含有するのが好ましい。 The
Moreover, in order to improve adhesiveness with the
具体的には、酸化アルミニウム、酸化マグネシウム、酸化タンタル、酸化ジルコニウム、酸化チタン、酸化インジウムスズ(ITO)などの金属酸化物; 窒化アルミニウムなどの金属窒化物; 炭化アルミニウムなどの金属炭化物; 酸化ケイ素、酸化窒化ケイ素、酸炭化ケイ素、酸化窒化炭化ケイ素などのケイ素酸化物; 窒化ケイ素、窒化炭化ケイ素などのケイ素窒化物; 炭化ケイ素等のケイ素炭化物; これらの水素化物; これら2種以上の混合物; および、これらの水素含有物等の、無機化合物からなる膜が、好適に例示される。
特に、透明性が高く、かつ、優れたガスバリア性を発現できる点で、ケイ素酸化物、ケイ素窒化物、ケイ素酸窒化物およびケイ素酸化物等のケイ素化合物からなる膜は、好適に例示される。その中でも特に、窒化ケイ素からなる膜は、より優れたガスバリア性に加え、透明性も高く、好適に例示される。 As the
Specifically, metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride; metal carbides such as aluminum carbide; silicon oxide, Silicon oxides such as silicon oxynitride, silicon oxycarbide and silicon oxynitride carbide; silicon nitrides such as silicon nitride and silicon nitride carbide; silicon carbides such as silicon carbide; hydrides thereof; mixtures of two or more of these; and Films made of inorganic compounds such as these hydrogen-containing materials are preferably exemplified.
In particular, a film made of a silicon compound such as silicon oxide, silicon nitride, silicon oxynitride and silicon oxide is preferably exemplified in that it has high transparency and can exhibit excellent gas barrier properties. Among these, in particular, a film made of silicon nitride is preferable because it has high transparency in addition to more excellent gas barrier properties.
無機層36の厚さを10nm以上とすることにより、十分なガスバリア性能を安定して発現する無機層36が形成できる。また、無機層36は、一般的に脆く、厚過ぎると、割れやヒビ、剥がれ等を生じる可能性が有るが、無機層36の厚さを200nm以下とすることにより、割れが発生することを防止できる。
また、このような点を考慮すると、無機層36の厚さは、10nm~100nmにするのが好ましく、特に、15nm~75nmとするのが好ましい。
なお、ガスバリアフィルムが複数の無機層36を有する場合には、各無機層36の厚さは、同じでも異なってもよい。 What is necessary is just to determine the thickness of the
By setting the thickness of the
In consideration of such points, the thickness of the
When the gas barrier film has a plurality of
有機層38としては、上述した有機層34と同様のものが、各種、利用可能である。
また、有機層38の形成方法も、上述の有機層34と同様に、塗布法やフラッシュ蒸着等の公知の方法で成膜すればよい。 The
As the
Also, the
以上の観点から、有機層38の厚さは、80nm~500nmとすることがより好ましい。 In addition, the thickness of the
From the above viewpoint, the thickness of the
また、有機層38の下層となる無機層36との密着性を向上するために、有機層38は、シランカップリング剤を含有するのが好ましい。 Note that the
Moreover, in order to improve adhesiveness with the
端面封止層16aは、光学機能層12と、光学機能層12を挟むように積層される2つのガスバリア層14とを有する機能層積層体11の端面の少なくとも一部を覆って形成される部材である。
本発明において、端面封止層16aは、少なくとも2層からなり、各層が金属からなり、ガスバリア性を発現し、光学機能層12の端面からの水分や酸素の浸入を抑制するための部材である。 Next, the end
The end
In the present invention, the end-
ここで、本発明においては、端面封止層は、2層構成に限定はされず、3層以上であってもよい。例えば、図3に示す積層フィルム10bの端面封止層16bのように、機能層積層体11の端面に接して形成される第1層18と、第1層18上に積層される第2層22と、第2層22上に積層される、機能層積層体11から最も遠い層である最表層20と、を有する3層構成としてもよい。
なお、図1および図3に示すとおり、端面封止層16は、機能層積層体11の端面に積層されるため、端面封止層16を構成する各層(第1層18、第2層22、最表層20)の積層方向は、機能層積層体11の端面に垂直な方向であり、機能層積層体11の積層方向とは直交する方向である。 In the
Here, in this invention, an end surface sealing layer is not limited to 2 layer structure, Three layers or more may be sufficient. For example, like the end
As shown in FIGS. 1 and 3, the end
これに対して、端面からの水分や酸素の浸入を抑制するために、量子ドット層の全面をガスバリアフィルムで保護する構成や、2つのガスバリアフィルムで挟まれた、量子ドット層の端面領域に、ガスバリア性を有する保護層を形成する構成や、量子ドット層を挟む2つのガスバリアフィルムの端部の開口を狭くする構成等が提案されている。 As described above, gas barrier films are laminated on both main surfaces of a quantum dot layer including quantum dots that are easily deteriorated by moisture and oxygen to protect the quantum dot layer. If only the gas barrier film is protected, moisture and oxygen enter from the end face not protected by the gas barrier film, and the quantum dots deteriorate.
On the other hand, in order to suppress the intrusion of moisture and oxygen from the end face, the structure of protecting the entire surface of the quantum dot layer with a gas barrier film, or the end face region of the quantum dot layer sandwiched between two gas barrier films, A configuration for forming a protective layer having a gas barrier property, a configuration for narrowing the openings at the ends of two gas barrier films sandwiching the quantum dot layer, and the like have been proposed.
また、2つのガスバリアフィルムで挟まれた、量子ドット層の端面領域に、ガスバリア性を有する保護層を形成する構成の場合には、保護層の材料として高いバリア性を有する材料を用いることができず、ガスバリア性や耐久性が十分でなく、また、このような積層フィルムを作製する際には、全工程がバッチ方式となるため生産性が極めて悪いという問題があった。
また、量子ドット層を挟む2つのガスバリアフィルムの端部の開口を狭くする構成の場合には、端部での、量子ドット層の厚さが薄くなってしまうため、端部ではその機能を十分に発現することができず、有効に利用できる領域の大きさが小さくなり、額縁部分が大きくなってしまうという問題があった。また、一般に、高いガスバリア性を備えるバリア層は、硬く脆いため、このようなバリア層を有するガスバリアフィルムを、急に湾曲させると、バリア層が割れてしまい、ガスバリア性が低下して、量子ドット層への水分や酸素の浸入を抑制できなくなるという問題があった。 However, it is very difficult to cover the entire surface of the thin quantum dot layer with a gas barrier film, resulting in poor productivity. Further, when the gas barrier film is bent, there is a problem that the barrier layer is broken and the gas barrier property is lowered.
In the case where a protective layer having a gas barrier property is formed in the end face region of the quantum dot layer sandwiched between two gas barrier films, a material having a high barrier property can be used as the material of the protective layer. In addition, gas barrier properties and durability are not sufficient, and when such a laminated film is produced, there is a problem that productivity is extremely poor because all processes are batch processes.
In addition, in the case of a configuration in which the opening of the end portion of the two gas barrier films sandwiching the quantum dot layer is narrowed, the thickness of the quantum dot layer at the end portion becomes thin, so that the end portion has sufficient function. In other words, the size of the area that can be used effectively is reduced, and the frame portion is increased. In general, since a barrier layer having a high gas barrier property is hard and brittle, if the gas barrier film having such a barrier layer is suddenly bent, the barrier layer is cracked, and the gas barrier property is lowered. There has been a problem that it becomes impossible to prevent moisture and oxygen from entering the layer.
機能層積層体の端面を2層以上の金属層で封止することで、高いガスバリア性を発現でき、光学機能層への水分や酸素の浸入を抑制して、量子ドットが水分や酸素により劣化することを防止でき、寿命をより長くすることができ、耐久性を向上できる。
また、機能層積層体の端面に、金属からなる端面封止層を形成するのみであるので、光学機能層が薄くなったり、ガスバリア層が湾曲されることがないため、光学機能層を有効に利用できる領域を大きく維持でき、狭額縁化が可能である。
また、端面封止層の、機能層積層体の端面に接する第1層は、機能層積層体との密着性の高い材料で、密着性を高くできる形成方法で形成し、2層目以降に、高いガスバリア性を発現する層を形成することができるので、端面封止層が機能層積層体から剥離することを防止でき高い耐久性を得られる。
また、後に詳述するが、端面封止層を形成する際に、機能層積層体を複数枚重ねた状態で、端面封止層の各層を形成することができるので、複数の積層フィルムをまとめて作製することができ、生産性を高くすることができる。 On the other hand, the present invention provides a functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer, and at least one of end faces of the functional layer laminate. The end surface sealing layer is formed so as to cover the part, and the end surface sealing layer is composed of at least two layers, and each layer is composed of a metal.
By sealing the end face of the functional layer laminate with two or more metal layers, high gas barrier properties can be achieved, and the penetration of moisture and oxygen into the optical functional layer is suppressed, and the quantum dots deteriorate due to moisture and oxygen. Can be prevented, the life can be extended, and the durability can be improved.
In addition, since the end face sealing layer made of metal is only formed on the end face of the functional layer laminate, the optical functional layer is not thinned and the gas barrier layer is not curved. The available area can be kept large and the frame can be narrowed.
In addition, the first layer of the end face sealing layer that is in contact with the end face of the functional layer laminate is a material having high adhesion to the functional layer laminate, and is formed by a formation method that can increase adhesion, and the second and subsequent layers. Since a layer exhibiting high gas barrier properties can be formed, the end face sealing layer can be prevented from peeling off from the functional layer laminate, and high durability can be obtained.
Further, as will be described in detail later, when forming the end surface sealing layer, each layer of the end surface sealing layer can be formed in a state where a plurality of functional layer stacks are stacked. And the productivity can be increased.
機能層積層体11の端面に、酸素透過度が低い、すなわち、ガスバリア性が高い端面封止層16を形成することで、光学機能層12への水分や酸素の浸入をより好適に防止して光学機能層12の劣化をより好適に防止することができる。 Here, the end
By forming the end
端面封止層16の厚みを0.1μm以上とすることにより、十分なガスバリア性能を安定して発現させることができる。また、端面封止層16の厚さを100μm以下とすることにより、割れが発生することを好適に防止できる。
また、後述するとおり、本発明の積層フィルムは、複数枚の機能層積層体を重ねた状態で、端面に端面封止層を形成し、その後、分離することで作製するのが好ましいが、端面封止層16が厚すぎると、分離しにくくなるため、この点からも端面封止層16の厚さは100μm以下とするのが好ましい。 The thickness of the end
By setting the thickness of the end
Further, as described later, the laminated film of the present invention is preferably produced by forming an end face sealing layer on the end face in a state where a plurality of functional layer laminates are stacked, and then separating the end face sealing layer. Since it will become difficult to isolate | separate if the
例えば、機能層積層体11の主面が、矩形状の場合には、少なくとも1つの端面に端面封止層16が形成されていればよく、4つの端面全てに端面封止層16が形成されるのが好ましい。
なお、機能層積層体11の主面の形状(積層フィルム10の形状)は、矩形状に限定はされず、正方形状、円形状、多角形状等、種々の形状とすることができる。従って、端面保護層は、端面のうち少なくとも一部を覆うように形成されていればよく、全周を覆って形成されるのが好ましい。 Moreover, the end
For example, when the main surface of the
In addition, the shape of the main surface of the functional layer laminate 11 (the shape of the laminated film 10) is not limited to a rectangular shape, and may be various shapes such as a square shape, a circular shape, and a polygonal shape. Therefore, the end surface protective layer may be formed so as to cover at least a part of the end surface, and is preferably formed so as to cover the entire circumference.
上述する観点から、端面封止層16の機能層積層体11の主面への回り込み幅d(図4参照)は1mm以下であることが好ましく、0.5mm以下であることがより好ましく、回り込み領域の存在が目視困難となる0.1mm以下であることが特に好ましい。
端面封止層16の回り込み幅dは、例えば、積層フィルムを大和光機工業株式会社製リトラトームREM-710などで断面切削し、その断面を光学顕微鏡で観察することで測定できる。
なお、図4に示すように、回り込み幅dは、機能層積層体11の端面の延在方向に直交する断面で見た際の、端面封止層16の、機能層積層体11の主面上に形成された領域の幅(機能層積層体11の端面に垂直な方向の幅)である。 In addition, the end
From the viewpoint described above, the wraparound width d (see FIG. 4) of the end
The wraparound width d of the end
As shown in FIG. 4, the wraparound width d is the main surface of the
第1層18以外の少なくとも1層を金属メッキ層とすることで、この層を厚く形成することができ、十分なガスバリア性を発現することができる。 Here, it is preferable that at least one layer other than the
By forming at least one layer other than the
機能層積層体11は、主に樹脂で形成されているため、機能層積層体11に直接、電解メッキにより金属メッキ層を形成した場合には、導電路がないため金属膜が得られない。また、無電解メッキにより金属メッキ層を形成した場合には、機能層積層体11と金属メッキ層との密着性が悪く、十分な耐久性およびガスバリア性を得ることができず、端面のみに選択的に製膜することができない。 The
Since the
また、第1層18以外の層として金属メッキ層を形成する際に、機能層積層体11の側面に金属からなる第1層18を有することで、この第1層が電極として作用するので、金属メッキ層を適正に形成することができる。また、メッキ処理の際に、この第1層が機能層積層体11を保護して、機能層積層体11が損傷するのを防止できる。 On the other hand, in this invention, it has the
In addition, when the metal plating layer is formed as a layer other than the
これに対して、本発明では、スパッタリング法、真空蒸着法、イオンプレーティング法、および、プラズマCVD法のいずれかの方法により形成される第1層と、金属メッキ層とを有することで、機能層積層体との密着性は良好にして、かつ、十分なガスバリア性を得ることができる。 Here, when only one metal layer is formed by any of the sputtering method, the vacuum deposition method, the ion plating method, and the plasma CVD method, the adhesion with the functional layer laminate is Although it can be improved, it is difficult to form a thick thickness or it is unavoidable to form a thick one because the productivity is very poor. Therefore, it cannot be formed with a uniform thickness on the end surface of the functional layer laminate, and sufficient gas barrier properties cannot be obtained.
On the other hand, in the present invention, the first layer formed by any one of the sputtering method, the vacuum deposition method, the ion plating method, and the plasma CVD method, and the metal plating layer are used. Adhesion with the layer laminate can be improved and sufficient gas barrier properties can be obtained.
金属メッキ層の厚さを、第1層18の厚さよりも厚くすることで、十分なガスバリア性をより確実に発現することができる。
なお、第1層18の厚さ、および、金属メッキ層の厚さとは、機能層積層体11の端面に垂直な方向における厚さである。 In addition, the thickness of the metal plating layer formed as a layer other than the
By making the thickness of the metal plating layer thicker than the thickness of the
The thickness of the
また、金属メッキ層の厚さは、ガスバリア性を確保する、生産性等の観点から、0.01μm~100μmとするのが好ましく、1μm~10μmとするのがより好ましい。 Specifically, the thickness of the
The thickness of the metal plating layer is preferably 0.01 μm to 100 μm, more preferably 1 μm to 10 μm, from the viewpoint of ensuring gas barrier properties and productivity.
第1層18の形成材料として、これらの金属あるいは合金を用いることで、スパッタリング法、真空蒸着法、イオンプレーティング法、および、プラズマCVD法のいずれかの方法で形成することができ、第1層18と機能層積層体11の側面との密着性を高くできる。 The material for forming the
By using these metals or alloys as the material for forming the
第1層18以外の各層の形成材料として、これらの金属あるいは合金を用いることで、メッキ処理により形成することができ、高いガスバリア性を発現することができる。 The material for forming each layer other than the
By using these metals or alloys as the material for forming each layer other than the
例えば、図3に示す積層フィルム10bは、第1層18および第2層22がそれぞれスパッタリング法により形成され、最表層20がメッキ処理により形成された端面封止層16bを有するものであるが、これに限定はされず、例えば、第1層18がスパッタリング法により形成され、第2層22がメッキ処理により形成され、最表層20がスパッタリング法により形成されてもよい。 It should be noted that at least one layer other than the
For example, the
本発明の第1の態様の積層フィルムの製造方法は、
光学機能層とガスバリア層とを有する機能層積層体の側面に、少なくとも2層からなり、各層が金属からなる端面封止層を有する積層フィルムを製造する積層フィルムの製造方法であって、
機能層積層体を複数枚重ねた積層物の端面に、機能層積層体に接する第1層を形成する第1層形成工程と、
積層物の端面に形成された第1層上に最表層を形成する最表層形成工程と、を有し、
第1層の形成方法が、スパッタリング法、真空蒸着法、イオンプレーティング法、および、プラズマCVD法からなる群から選択される1種である積層フィルムの製造方法である。
また、本発明の第2の態様の積層フィルムの製造方法は、
光学機能層とガスバリア層とを有する機能層積層体の側面に、少なくとも2層からなり、各層が金属からなる端面封止層を有する積層フィルムを製造する積層フィルムの製造方法であって、
ガスバリア層を有するガスバリアフィルムの上に、蛍光体および少なくとも2種以上の重合性化合物を含む重合性組成物を塗布し硬化させてなる機能層積層体を形成し、
機能層積層体を複数枚重ねた積層物の端面に、機能層積層体に接する第1層を形成する第1層形成工程と、
積層物の端面に形成された第1層上に最表層を形成する最表層形成工程と、を有し、第1層の形成方法が、スパッタリング法、真空蒸着法、イオンプレーティング法、無電解メッキ、および、プラズマCVD法からなる群から選択される1種である積層フィルムの製造方法である。 Next, the manufacturing method of the laminated film of the present invention (hereinafter also referred to as “the manufacturing method of the present invention”) will be described.
The method for producing a laminated film according to the first aspect of the present invention comprises:
A side surface of a functional layer laminate having an optical functional layer and a gas barrier layer is a method for producing a laminated film, which comprises a laminated film having at least two layers, each layer having an end face sealing layer made of metal,
A first layer forming step of forming a first layer in contact with the functional layer laminate on an end face of a laminate in which a plurality of functional layer laminates are stacked;
An outermost layer forming step of forming an outermost layer on the first layer formed on the end face of the laminate,
The first layer forming method is a method for producing a laminated film which is one selected from the group consisting of sputtering, vacuum deposition, ion plating, and plasma CVD.
Moreover, the manufacturing method of the laminated | multilayer film of the 2nd aspect of this invention is as follows.
A side surface of a functional layer laminate having an optical functional layer and a gas barrier layer is a method for producing a laminated film, which comprises a laminated film having at least two layers, each layer having an end face sealing layer made of metal,
On the gas barrier film having the gas barrier layer, a functional layer laminate is formed by applying and curing a polymerizable composition containing a phosphor and at least two or more polymerizable compounds,
A first layer forming step of forming a first layer in contact with the functional layer laminate on an end face of a laminate in which a plurality of functional layer laminates are stacked;
An outermost layer forming step of forming an outermost layer on the first layer formed on the end face of the laminate, and the first layer forming method includes a sputtering method, a vacuum evaporation method, an ion plating method, an electroless method This is a method for producing a laminated film which is one type selected from the group consisting of plating and plasma CVD.
前述のとおり、機能層積層体11の作製方法としては例えば、量子ドットとマトリックスとなる樹脂と溶剤とを混合した塗布組成物を調整し、この塗布組成物をガスバリアフィルム14上に塗布し、硬化させることで、光学機能層(量子ドット層)12を形成し、形成した光学機能層12の他方の主面にもう一方のガスバリアフィルム14を積層して形成することができる。
本発明においては、ガスバリア層は少なくとも光学機能層の一方の主面に積層されていれば良い。この場合は、最終的に本発明の積層フィルムをLCDなどのバックライトユニットに他の部材とともに組み上げた場合に、もう一方の主面が酸素や水分の侵入から保護されていることで機能層の性能の劣化を防ぐことができる。 First, a
As described above, as a method for producing the
In the present invention, the gas barrier layer may be laminated on at least one main surface of the optical functional layer. In this case, when the laminated film of the present invention is finally assembled with a backlight unit such as an LCD together with other members, the other main surface is protected from intrusion of oxygen and moisture, thereby Performance degradation can be prevented.
機能層積層体11の切断方法には限定はなく、トムソン刃等の刃物を用いて物理的に切断する方法、レーザーを照射して切断する方法等の公知の方法が各種利用可能である。
レーザー切断で切断すれば、機能層積層体11の端面の表面粗さを小さくできる。
また、機能層積層体11を所定形状に加工した後、端面の表面粗さを制御するための研磨加工等を行ってもよい。例えば、刃物による切断の後、端面を切削処理、研磨処理、溶融処理することによって表面粗さを制御することができる。
具体的な一例として、裁断した機能層積層体11を大和光機工業株式会社製リトラトームREM-710等で端面切削し、表面粗さを制御することができる。より具体的には、切削刃が機能層積層体11に当たる角度、すなわち、刃の進行方向と刃面とが為す角度が直交に近いほど平滑性が増す。切削刃が機能層積層体11に当たる角度は、70°~110°の範囲が好ましく、80~100°の範囲がより好ましく、85°~95°の範囲がさらに好ましい。慣例として、刃の進行方向の直交方向と刃面のなす角度を「刃角」と呼ぶこともある。加えて、切削による除去部分の幅(切込量)を適切に制御することでも表面粗さを制御できる。切込量は、1~20μmの範囲が好ましく、5~15μmの範囲がより好ましい。こうした切削条件による表面粗さの変化は、切削刃が機能層積層体11に当たる際に生じる機能層積層体11の歪みや捩れに伴う切断面の揺動が原因と推定している。ゆえに、適用する機能層積層体11の硬さや脆性・粘性のバランスに応じて適宜条件を定めることが好ましい。
また、切削に際し発生する切削くずは、後続する第1層形成工程や最表層形成工程での不具合の原因となるので切削後なるべくすぐに除くことが好ましい。切削くずを除去する工程として、エアー噴きつけや洗浄液に漬けた状態での超音波洗浄、粘着シートの貼合及び剥離による方法、拭き上げ法などが例示される。 Moreover, you may have the process of cutting the produced functional layer laminated
The cutting method of the
By cutting by laser cutting, the surface roughness of the end face of the
Moreover, after processing the functional layer laminated
As a specific example, the surface roughness can be controlled by cutting the end face of the cut
In addition, since cutting waste generated during cutting may cause problems in the subsequent first layer forming step and the outermost layer forming step, it is preferably removed as soon as possible after cutting. Examples of the process for removing cutting waste include air cleaning, ultrasonic cleaning in a state immersed in a cleaning liquid, adhesion and peeling method of an adhesive sheet, and a wiping method.
前述のとおり、第1層18Aの形成方法としては、スパッタリング法、真空蒸着法、イオンプレーティング法、無電解メッキ、および、プラズマCVD法のいずれかの方法であり、第1層18Aとして、アルミニウム、チタン、クロム、銅、および、ニッケルからなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金からなる層を積層物50の端面に形成する。 Next, as the first layer forming step, a plurality of the prepared
As described above, the
また、機能層積層体11の端面以外の領域、すなわち、第1層18Aを形成しない領域には、公知の方法でマスキング処理等を行って、機能層積層体11の端面に第1層18Aの形成を行えばよい。 Note that there are no particular limitations on the processing method, processing conditions, etc. in the sputtering method, vacuum deposition method, ion plating method, electroless plating, or plasma CVD method when forming the
Further, a masking process or the like is performed by a known method on a region other than the end surface of the
前述のとおり、最表層20Aの形成方法としては、メッキ処理であるのが好ましく、最表層20Aとして、アルミニウム、チタン、クロム、ニッケル、錫、銅、銀、および、金からなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金からなる層を積層物52の第1層18A上に形成する。 Next, as the outermost layer forming step, the
As described above, the
積層物54から積層フィルム10aを分離する方法としては、特に限定はないが、最表層20Aを形成した積層物54に、曲げ、捻りなどの、表面と水平方向への外力を加えることにより剪断する方法、または、機能層積層体10aの界面への、例えば刃物などの鋭利な先端の挿し込む方法等により分離することができる。
端面封止層の剥離や欠けやクラックの発生を防止する等の観点から、外力による剪断にて積層フィルム10aを分離するのが好ましい。 Next, the laminate 54 in which the
A method for separating the
From the viewpoint of preventing the end face sealing layer from peeling, chipping or cracking, it is preferable to separate the
第2層以降の各層は、下地となる層が異なる以外は、上述の第1層形成工程における形成方法、あるいは、最表層形成工程における形成方法と同様の方法で形成することができる。 Moreover, in the above, although the manufacturing method in case the end
Each layer after the second layer can be formed by a method similar to the formation method in the first layer formation step or the formation method in the outermost layer formation step, except that the underlying layer is different.
本発明の第2の態様の積層フィルムについて、実施例1として、図3に示す積層フィルム10bを作製した。 [Example 1]
For the laminated film of the second aspect of the present invention, a
(ガスバリア支持体)
ガスバリアフィルム14としては、ガスバリア支持体30上に、有機層34、無機層36および有機層38がこの順に形成されたガスバリアフィルムを用いた。
ガスバリア支持体30として、ポリエチレンテレフタレートフィルム(PETフィルム、東洋紡株式会社製、商品名:コスモシャインA4300、厚さ50μmm、幅1000mm、長さ100m)を用いた。 <Production of gas barrier film>
(Gas barrier support)
As the
As the
このガスバリア支持体30の一方の主面に有機層(以下、第1有機層という)34を形成した。
まず、第1有機層を形成するための塗布液(第1有機層形成用塗布液)を以下のとおり調製した。
TMPTA(トリメチロールプロパントリアクリレート、ダイセルサイテック株式会社製)、および、光重合開始剤(ランベルティ社製、ESACUREKTO46)を用意し、TMPTA:光重合開始剤の重量比率が、95:5となるように、秤量し、これらをメチルエチルケトンに溶解させ、固形分濃度15%の塗布液を調整した。 (Formation of the first organic layer)
An organic layer (hereinafter referred to as a first organic layer) 34 was formed on one main surface of the
First, a coating liquid (first organic layer forming coating liquid) for forming the first organic layer was prepared as follows.
Prepare TMPTA (trimethylolpropane triacrylate, manufactured by Daicel Cytec Co., Ltd.) and a photopolymerization initiator (Lamberti, ESACUREKTO46) so that the weight ratio of TMPTA: photopolymerization initiator is 95: 5. Then, these were weighed and dissolved in methyl ethyl ketone to prepare a coating solution having a solid concentration of 15%.
次に、一般的なRtoRのCVD装置を用いて、CCP-CVDにより、第1有機層34上に、厚さ50nmの無機層36を形成した。
具体的には、ガスバリア支持体30上に第1有機層34が形成され、この第1有機層34上に保護フィルムが貼着された積層体を、送出機より送り出し、無機層の成膜前の最後の膜面タッチロール通過後に保護フィルムを剥離し、暴露された第1有機層34の上に無機層36を形成した。
原料ガスは、シランガス(SiH4)、アンモニアガス(NH3)、窒素ガス(N2)および水素ガス(H2)を用いた。ガスの供給量は、シランガスが160sccm、アンモニアガスが370sccm、窒素ガスが240sccm、水素ガスが590sccmとした。また、成膜圧力は40Paとした。すなわち、無機層36は、窒化珪素膜である。プラズマ励起電力は、周波数13.56MHzで2.5kWとした。 (Formation of inorganic layer)
Next, an
Specifically, the first
Silane gas (SiH 4 ), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and hydrogen gas (H 2 ) were used as source gases. The supply amounts of gas were 160 sccm for silane gas, 370 sccm for ammonia gas, 240 sccm for nitrogen gas, and 590 sccm for hydrogen gas. The film forming pressure was 40 Pa. That is, the
次に、形成した無機層36の表面に、無機層を保護する有機層38(以下、第2有機層という)を形成した。
まず、第2有機層を形成するための塗布液(第2有機層形成用塗布液)を以下のとおり調製した。
ウレタン結合含有アクリルポリマー(大成ファインケミカル株式会社製 アクリット8BR500、重量平均分子量250,000)と光重合開始剤(BASF社製 イルガキュア184)を質量比率として95:5となるように秤量し、これらをメチルエチルケトンに溶解させ、固形分濃度15質量%の塗布液を調製した。 (Formation of second organic layer)
Next, an organic layer 38 (hereinafter referred to as a second organic layer) that protects the inorganic layer was formed on the surface of the formed
First, a coating solution (second organic layer forming coating solution) for forming the second organic layer was prepared as follows.
Urethane bond-containing acrylic polymer (Acrit 8BR500 manufactured by Taisei Fine Chemical Co., Ltd., weight average molecular weight 250,000) and photopolymerization initiator (Irgacure 184 manufactured by BASF) were weighed to a mass ratio of 95: 5, and these were methyl ethyl ketone. And a coating solution having a solid content concentration of 15% by mass was prepared.
第2有機層の形成直後、膜面タッチロール部にて、保護PEフィルムを貼り付け、第2有機層がパスロールに触れることなく、搬送した後、巻き取った。 The prepared coating liquid for forming the second organic layer was applied to the surface of the
Immediately after the formation of the second organic layer, a protective PE film was attached at the film surface touch roll part, and the second organic layer was transported without touching the pass roll, and then wound.
作製したガスバリアフィルム14の酸素透過度をAPIMS法で測定したところ、温度25℃、湿度60%RHにおける酸素透過度は、1×10-3[cc/(m2・day・atm)]であった。 As described above, the
When the oxygen permeability of the produced
(光学機能層の形成)
次に、保護PEフィルムを剥離した後、ガスバリアフィルム14の第2有機層38上に光学機能層12を形成するための塗布液(光学機能層形成用塗布液)を塗布して塗膜を形成し、塗膜の上に上記と同様にして作製したガスバリアフィルム14を積層して塗膜を窒素雰囲気下でガスバリアフィルム14で挟み込んだ後、窒素雰囲気下でUV照射して塗膜を硬化させて光学機能層12を形成した。 <Production of functional layer laminate>
(Formation of optical functional layer)
Next, after peeling off the protective PE film, a coating solution for forming the optical functional layer 12 (a coating solution for forming an optical functional layer) is applied on the second
・量子ドット1のトルエン分散液(発光極大:520nm) 10質量部
・量子ドット2のトルエン分散液(発光極大:630nm) 1質量部
・ラウリルアクリレート 2.4質量部
・1,9-ノナンジオールジアクリレート 0.54質量部
・光重合開始剤 0.003質量部
(イルガキュア819(BASF社製))
量子ドット1、2としては、下記のコア-シェル構造(InP/ZnS)を有するナノ結晶を用いた。 (Composition of coating solution for forming optical functional layer)
-Quantum dot 1 in toluene dispersion (maximum emission: 520 nm)-10 parts by mass-Toluene dispersion in quantum dot 2 (emission maximum: 630 nm)-1 part by mass-Lauryl acrylate-2.4 parts by mass-1,9-nonanediol di Acrylate 0.54 parts by mass / photopolymerization initiator 0.003 parts by mass (Irgacure 819 (manufactured by BASF))
As the quantum dots 1 and 2, nanocrystals having the following core-shell structure (InP / ZnS) were used.
・量子ドット2:INP620-10(NN-labs社製)
光学機能層形成用塗布液の粘度は50mPa・sであった。 ・ Quantum dot 1: INP530-10 (manufactured by NN-labs)
Quantum dot 2: INP620-10 (manufactured by NN-labs)
The viscosity of the coating solution for forming an optical functional layer was 50 mPa · s.
2つのガスバリアフィルム14と光学機能層12との積層体を、刃先角度17°のトムソン刃を使用し、A4サイズのシート状に打ち抜き、機能層積層体11を得た。 (Sheet processing)
The laminated body of the two
(第1層の形成)
シート状にカットした機能層積層体11を、1000枚重ね、一般的なスパッタリング装置を用いて、機能層積層体11を複数枚重ねた積層物50の側面に第1層18Aを形成した。ターゲットとしてチタン、放電ガスとしてアルゴンを用いた。成膜圧力は0.5Pa、成膜出力は400W、到達膜厚は10nmであった。 <Formation of end face sealing layer>
(Formation of the first layer)
The
続いて、ターゲットをチタンから銅へ変更した以外は第1層の形成と同様にして、第1層18A上に膜厚75nmの第2層を形成した。 (Formation of the second layer)
Subsequently, a second layer having a thickness of 75 nm was formed on the
さらに、以下のようにして、第2層上に最表層20Aを形成した。
まず、第1層18Aおよび第2層を形成した積層物を純水で水洗し、市販の界面活性剤を満たした浴槽に20秒浸漬して脱脂した。次いで、水洗したのちに、5%硫酸水溶液中に5秒間浸漬し酸活性処理を行い、再び水洗した。
水洗した積層物をひっかけジグに固定し、テスターにて導通確認した後、5%硝酸水溶液中に10秒間浸漬し酸活性処理を行い、硫酸銅浴にて電流密度3.0A/dm2で5分の条件で電解めっき処理を行い、第2層上に金属メッキ層である最表層を形成した。その後、水洗、サビ留め処理を経て、エアーで余分な水分を除去し、端面に3層の金属層が形成された積層物を得た。 (Formation of the outermost layer)
Further, the
First, the laminate on which the
The laminate washed with water was fixed on a jig and fixed with a tester. After immersing it in a 5% nitric acid aqueous solution for 10 seconds, it was subjected to an acid activation treatment, and a current density of 3.0 A / dm 2 in a copper sulfate bath. Electrolytic plating treatment was performed under the conditions of minutes to form an outermost layer as a metal plating layer on the second layer. Then, after passing through water washing and rusting treatment, excess moisture was removed with air to obtain a laminate in which three metal layers were formed on the end faces.
次に、端面に3層の金属層が形成された積層物を、機能層積層体11の表面と水平方向への外力による剪断により、機能層積層体11ごとに分離して、端面に端面封止層16bが形成された機能層積層体11、すなわち、積層フィルム10bを得た。 (Separation process)
Next, the laminate in which the three metal layers are formed on the end face is separated for each
第1層18、第2層22および最表層20それぞれの材料、膜厚、ならびに、機能層積層体11の端面の表面粗さRaを下記表1に示すように変更した以外は、実施例1と同様にして、積層フィルム10bを作製した。 [Examples 2 to 22, Comparative Examples 1 to 4]
Example 1 except that the material, film thickness, and surface roughness Ra of the end surface of the
光学機能層形成用塗布液の量子ドット1および量子ドット2のトルエン分散液を量子ドット3(CZ520-10、NN-labs社製)および量子ドット4(CZ620-10、NN-labs社製)のトルエン分散液に変更した以外は実施例19と同様にして積層フィルム10bを作製した。 [Example 23]
Quantum dots 1 (CZ520-10, manufactured by NN-labs) and quantum dots 4 (CZ620-10, manufactured by NN-labs) of the quantum dot 1 and quantum dot 2 of the coating liquid for forming an optical functional layer were used. A
<端面封止性能の評価>
作製した実施例1~23および比較例1~4の積層フィルムについて、以下の試験を行い、端面の封止性能を評価した。
まず、分離した1枚の積層フィルムの初期輝度(Y0)を以下の手順で測定した。市販のタブレット端末(Amazon社製Kindle(登録商標) Fire HDX 7”)を分解し、バックライトユニットを取り出した。取り出したバックライトユニットの導光板上に積層フィルムを置き、その上に、向きが直交した2枚のプリズムシートを重ね置いた。青色光源から発し、積層フィルムおよび2枚のプリズムシートを透過した光の輝度を、導光板の面に対して垂直方向740mmの位置に設置した輝度計(SR3、TOPCON社製)にて測定し、積層フィルムの輝度とした。
次に、60℃相対湿度90%に保たれた恒温槽に積層フィルムを投入し、1000時間保管した。1000時間後、積層フィルムを取り出し、上記と同様の手順で、高温高湿試験後の輝度(Y1)を測定した。下記式のように、初期の輝度値(Y0)に対する、高温高湿試験後の輝度(Y1)の変化率(ΔY)を算出し、輝度変化の指標として、以下の基準で評価した。
ΔY[%]=(Y0-Y1)/Y0×100
評価結果が、C以上であれば、高温高湿試験後も端部の発光効率が良好に維持されていると判断することができる。
A:ΔY≦5%
B:5%<ΔY<10%
C:10%≦ΔY<15%
D:15%≦ΔY [Evaluation]
<Evaluation of end face sealing performance>
The laminated films of Examples 1 to 23 and Comparative Examples 1 to 4 thus prepared were subjected to the following tests to evaluate the end face sealing performance.
First, the initial luminance (Y0) of one separated laminated film was measured by the following procedure. A commercially available tablet device (Amazon Kindle (registered trademark) Fire HDX 7 ”) was disassembled and the backlight unit was taken out. A laminated film was placed on the light guide plate of the taken out backlight unit, and the orientation was placed on it. Two prism sheets orthogonal to each other were placed on top of each other, and a luminance meter in which the luminance of light emitted from a blue light source and transmitted through the laminated film and the two prism sheets was set at a position of 740 mm perpendicular to the surface of the light guide plate (SR3, manufactured by TOPCON) and measured as the brightness of the laminated film.
Next, the laminated film was put into a thermostat kept at 60 ° C. and a relative humidity of 90%, and stored for 1000 hours. After 1000 hours, the laminated film was taken out, and the luminance (Y1) after the high temperature and high humidity test was measured in the same procedure as described above. Like the following formula, the change rate (ΔY) of the luminance (Y1) after the high-temperature and high-humidity test with respect to the initial luminance value (Y0) was calculated, and evaluated as the luminance change index according to the following criteria.
ΔY [%] = (Y0−Y1) / Y0 × 100
If the evaluation result is C or more, it can be determined that the light emission efficiency at the end is well maintained even after the high temperature and high humidity test.
A: ΔY ≦ 5%
B: 5% <ΔY <10%
C: 10% ≦ ΔY <15%
D: 15% ≦ ΔY
分離工程の前の、複数枚の機能層積層体の積層物の端面に端面封止層が形成された状態のサンプルを用いて、機能層積層体の端面と、端面封止層との密着性を、100マスのクロスカット試験(JIS D0202-1988に準拠)を行い、剥離しなかったマスの数により評価した。
密着性の評価基準は以下である。なお、A~Cが合格にあたり、Dが不合格にあたる。
A:100
B:95以上99以下
C:90以上94以下
D:90未満 <Evaluation of adhesion>
Adhesiveness between the end face of the functional layer laminate and the end face sealing layer using the sample in which the end face sealing layer is formed on the end face of the laminate of the plurality of functional layer laminates before the separation step A cross cut test of 100 squares (in accordance with JIS D0202-1988) was performed, and the evaluation was performed based on the number of squares that did not peel off.
The evaluation criteria for adhesion are as follows. A to C are acceptable and D is unacceptable.
A: 100
B: 95 or more and 99 or less C: 90 or more and 94 or less D: Less than 90
各実施例、比較例で用いた量子ドット含有重合性組成物の組成から、量子ドット1および量子ドット2のトルエン分散液を除いたモデル膜作製用組成物を用意し、前述の手段1により厚さ60μmのモデル膜を作製した。具体的には、以下の方法によりモデル膜を作製した。
モデル膜作製用組成物を離型フィルム(東レ社製ルミラー#50、50μm厚)にワイヤーバーで塗布した後、その上にもう一枚の離型フィルムをラミネートし、200W/cmの空冷メタルハライドランプ(アイグラフィックス社製)を用いて、紫外線を塗布面より1000mJ/cm2照射して硬化させた。なお、上記工程は全て窒素雰囲気下で実施した。モデル膜を5mm×30mmに裁断し、こうして得られた硬化膜の両面にある離型フィルムを剥離し、厚み60μmの樹脂層単膜(モデル膜)を得た。
モデル膜を、25℃60%RHで2時間以上調湿した後に動的粘弾性測定装置(バイブロン:DVA-225(アイティー計測制御(株)製))で、つかみ間距離20mm、昇温速度2℃/分、測定温度範囲30℃~150℃、周波数1Hzで測定し、50℃における貯蔵弾性率の値を、弾性率として用いた。
結果を下記の表1に示す。 <Measurement of elastic modulus>
A composition for preparing a model film is prepared by removing the toluene dispersion of quantum dots 1 and 2 from the composition of the quantum dot-containing polymerizable composition used in each example and comparative example. A model film having a thickness of 60 μm was prepared. Specifically, a model film was produced by the following method.
After applying the model film composition to a release film (
The model membrane was conditioned at 25 ° C. and 60% RH for 2 hours or more and then measured with a dynamic viscoelasticity measuring device (Vibron: DVA-225 (produced by IT Measurement Control Co., Ltd.)). Measurement was performed at 2 ° C./minute, a measurement temperature range of 30 ° C. to 150 ° C., and a frequency of 1 Hz, and the value of the storage elastic modulus at 50 ° C. was used as the elastic modulus.
The results are shown in Table 1 below.
また、実施例および比較例の対比から、単官能重合性化合物と多官能重合性化合物とを併用し、弾性率を所定の範囲にすることで、金属薄膜形成時の膜応力に光学機能層のマトリックスが耐え、端面の金属薄膜の欠陥をなくし、且つ平滑性を確保することができ、端面に高いバリア性を有する端面封止層が得られる。 As shown in Table 1 above, in the example of the laminated film of the second aspect of the present invention, the non-light emitting region at the end is reduced as compared with the comparative example, and the end surface is composed of two or more metal layers. It can be seen that deterioration of the quantum dot layer (optical functional layer) can be prevented by blocking oxygen and water by the sealing layer.
In addition, from the comparison between the examples and the comparative examples, the monofunctional polymerizable compound and the polyfunctional polymerizable compound are used in combination, and the elastic modulus is set within a predetermined range, so that the film stress during the formation of the metal thin film can be reduced. The matrix can withstand, the defects of the metal thin film on the end face can be eliminated, smoothness can be ensured, and an end face sealing layer having a high barrier property on the end face can be obtained.
次に、本発明の第1の態様の積層フィルムについて、実施例24として、図3に示す積層フィルム10bを作製した。
実施例24の積層フィルムは、光学機能層形成用塗布液の組成を以下の組成を変更し、シート加工工程において、シート状にカットした積層体を、1000枚重ねた後、大和光機工業株式会社製リトラトームREM-710を用いて刃角0°、切込量10μmの条件で積層体端面を切削して端面の表面粗さを調整した以外は、実施例1と同様にして作製した。
作製した機能層積層体11の端面の表面粗さRaを干渉顕微鏡(株式会社菱化システム社製 vertscan2.0)にて測定したところ、表面粗さRaは0.6μmであった。 [Example 24]
Next, for the laminated film of the first aspect of the present invention, a
In the laminated film of Example 24, the composition of the coating solution for forming an optical functional layer was changed to the following composition, and in the sheet processing step, 1000 laminated laminates cut into a sheet shape were stacked, and then Daiwa Koki Kogyo Co., Ltd. It was produced in the same manner as in Example 1 except that the end surface of the laminate was adjusted by cutting the laminate end surface under the conditions of a blade angle of 0 ° and a cutting depth of 10 μm using a company retotome REM-710.
When the surface roughness Ra of the end surface of the produced
・量子ドット1のトルエン分散液(発光極大:520nm) 10質量部
・量子ドット2のトルエン分散液(発光極大:630nm) 1質量部
・ラウリルメタクリレート 2.4質量部
・トリメチロールプロパントリアクリレート 0.54質量部
・光重合開始剤 0.009質量部
(イルガキュア819(BASF社製)) (Composition of coating solution for forming optical functional layer)
-Toluene dispersion of quantum dots 1 (luminescence maximum: 520 nm) 10 parts by mass-Toluene dispersion of quantum dots 2 (luminescence maximum: 630 nm) 1 part by weight-Lauryl methacrylate 2.4 parts by weight-Trimethylolpropane triacrylate 0. 54 parts by mass / photopolymerization initiator 0.009 parts by mass (Irgacure 819 (manufactured by BASF))
第1層18、第2層22および最表層20それぞれの材料、膜厚、ならびに、機能層積層体11の端面の表面粗さRaを下記表2に示すように変更した以外は、実施例24と同様にして、積層フィルム10bを作製した。
なお、実施例27においては、刃角0°、切込量20μmの条件で端面切削を行い、実施例29においては、刃角25°、切込量20μmの条件で端面切削を行った。 [Examples 25 to 29]
Example 24, except that the material, film thickness, and surface roughness Ra of the end surface of the
In Example 27, end face cutting was performed under the conditions of a blade angle of 0 ° and a cutting depth of 20 μm. In Example 29, end face cutting was performed under the conditions of a blade angle of 25 ° and a cutting depth of 20 μm.
第2層22を形成せずに、第1層18と最表層20との2層構成とし、第1層18の材料および膜厚を下記表2に示すように変更した以外は、実施例24と同様にして、積層フィルム10aを作製した。 [Example 30]
Example 24, except that the
端面封止層を形成しない以外は、実施例24と同様にして、積層フィルムを作製した。 [Comparative Example 5]
A laminated film was produced in the same manner as in Example 24 except that the end face sealing layer was not formed.
端面封止層を1層とし、この層の材料、膜厚を下記表2に示すように変更した以外は、実施例24と同様にして、積層フィルムを作製した。 [Comparative Example 6]
A laminated film was produced in the same manner as in Example 24 except that the end face sealing layer was one layer and the material and film thickness of this layer were changed as shown in Table 2 below.
端面封止層として、機能層積層体の端面に、ヘンケル・ジャパン社製、ロックタイトE-30CLをディップ法で形成した。 [Comparative Example 7]
As an end face sealing layer, Loctite E-30CL manufactured by Henkel Japan Co., Ltd. was formed on the end face of the functional layer laminate by a dip method.
<端面封止性能の評価>
作製した実施例24~30および比較例5~7の積層フィルムについて、上記と同様にして端面の封止性能を評価した。 [Evaluation]
<Evaluation of end face sealing performance>
For the produced laminated films of Examples 24 to 30 and Comparative Examples 5 to 7, the end face sealing performance was evaluated in the same manner as described above.
作製した実施例24~30および比較例5~7の積層フィルムについて、上記と同様にして密着性を評価した。 <Evaluation of adhesion>
The adhesion of the produced laminated films of Examples 24 to 30 and Comparative Examples 5 to 7 was evaluated in the same manner as described above.
作製した積層フィルムの端面封止層のピンホール数を以下のようにして測定した。
4辺の端面封止層を光学顕微鏡で観察し、大きさ1μm以上の非被覆部をピンホールとし、その数xを計測して、1mm2当たりのピンホール数を求めた。
ピンホール数の指標として、以下の基準で評価した。評価結果が、C以上であれば、ピンホール数が少なく、端部封止層が十分なガスバリア性を有していると判断することができる。
A:x≦5個/mm2
B:5個/mm2<x<10個/mm2
C:10個/mm2≦x<20個/mm2
D:20個/mm2≦x <Evaluation of the number of pinholes>
The number of pinholes in the end face sealing layer of the produced laminated film was measured as follows.
The end face sealing layers on the four sides were observed with an optical microscope, an uncoated portion having a size of 1 μm or more was used as a pinhole, and the number x was measured to obtain the number of pinholes per 1 mm 2 .
Evaluation was made according to the following criteria as an index of the number of pinholes. If the evaluation result is C or more, it can be determined that the number of pinholes is small and the end sealing layer has a sufficient gas barrier property.
A: x ≦ 5 / mm 2
B: 5 pieces / mm 2 <x <10 pieces / mm 2
C: 10 pieces / mm 2 ≦ x <20 pieces / mm 2
D: 20 pieces / mm 2 ≦ x
作製した積層フィルムの端面封止層の主面への回り込み幅を以下のようにして測定した。
積層フィルムを大和光機工業株式会社製リトラトームREM-710を用いて刃角0°、切込量10μmの条件で断面切削し、その断面を光学顕微鏡で観察し、回り込み幅dを求めた。
回り込み幅dの指標として、以下の基準で評価した。評価結果が、C以上であれば、回り込み幅が少なく、フィルム端部の非発光部分を抑制できていると判断することができる。
A:d≦0.1mm
B:0.1mm<d<0.5mm
C:0.5mm≦d<1mm
D:1mm≦d
また、比較例7の積層フィルムの端面の断面の光学顕微鏡写真を図6に示す。
結果を下記の表2に示す。 <Evaluation of wraparound width>
The wraparound width to the main surface of the end face sealing layer of the produced laminated film was measured as follows.
The laminated film was cut in a cross section under the conditions of a blade angle of 0 ° and a cutting depth of 10 μm using a Retotom REM-710 manufactured by Daiwa Koki Kogyo Co., Ltd., and the cross section was observed with an optical microscope to obtain a wraparound width d.
As an index of the wraparound width d, evaluation was performed according to the following criteria. If the evaluation result is C or more, it can be determined that the wraparound width is small and the non-light-emitting portion at the end of the film can be suppressed.
A: d ≦ 0.1 mm
B: 0.1 mm <d <0.5 mm
C: 0.5 mm ≦ d <1 mm
D: 1 mm ≦ d
Moreover, the optical microscope photograph of the cross section of the end surface of the laminated film of the comparative example 7 is shown in FIG.
The results are shown in Table 2 below.
また、実施例24、実施例26、および、比較例6の対比から、端面封止層は厚いほど、酸素透過度が低くなり、封止性能が高くなることがわかる。 As shown in Table 2 above, in the example of the laminated film of the first aspect of the present invention, the non-light-emitting region at the end is reduced compared to the comparative example, and the end surface is composed of two or more metal layers. It turns out that deterioration of a quantum dot (optical function layer) can be prevented by interrupting | blocking oxygen and water with a sealing layer.
Further, from comparison between Example 24, Example 26, and Comparative Example 6, it can be seen that the thicker the end face sealing layer, the lower the oxygen permeability and the higher the sealing performance.
また、実施例24、実施例28、実施例30の対比から、機能層積層体の端面に接する第1層の材料を、アルミニウム、チタン、クロム、および、ニッケルのいずれかとすることで、より高い密着性を得られることがわかる。
以上の結果より、本発明の効果は明らかである。 Moreover, it turns out from the comparison of Example 24, Example 27, and Example 29 that sealing performance becomes higher, so that the surface roughness Ra of a functional layer laminated body is small. It is presumed that this is because if the surface roughness Ra of the functional layer laminate is large, it is difficult to uniformly cover the end face sealing layer, and pinholes are generated. From this result, it can be seen that the surface roughness Ra of the functional layer laminate is preferably 2.0 μm or less.
Further, from the comparison of Example 24, Example 28, and Example 30, the material of the first layer in contact with the end face of the functional layer laminate is higher than any one of aluminum, titanium, chromium, and nickel. It can be seen that adhesion can be obtained.
From the above results, the effects of the present invention are clear.
11 機能層積層体
12 光学機能層
14 ガスバリア層(ガスバリアフィルム)
16a、16b 端面封止層
18、18A 第1層
20、20A 最表層
22 第2層
30 ガスバリア支持体
32 バリア層
34 有機層
36 無機層
38 有機層
50 積層物
52 第1層を形成した積層物
54 最表層を形成した積層物 10a, 10b Laminated
16a, 16b End
Claims (23)
- 光学機能層と、前記光学機能層の少なくとも一方の主面に積層される、ガスバリア層とを有する機能層積層体、および、
前記機能層積層体の端面のうち少なくとも一部を覆って形成される端面封止層、を有し、
前記端面封止層は、少なくとも2層からなり、各層が金属からなることを特徴とする積層フィルム。 A functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer; and
An end face sealing layer formed to cover at least a part of the end face of the functional layer laminate,
The end face sealing layer is composed of at least two layers, and each layer is composed of a metal. - 前記端面封止層の、前記機能層積層体に接する第1層以外の少なくとも1層が、金属メッキ層である請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein at least one layer other than the first layer in contact with the functional layer laminate of the end face sealing layer is a metal plating layer.
- 前記端面封止層の、前記機能層積層体から最も遠い最表層が、金属メッキ層である請求項1または2に記載の積層フィルム。 The laminated film according to claim 1 or 2, wherein the outermost surface layer of the end face sealing layer farthest from the functional layer laminate is a metal plating layer.
- 前記金属メッキ層の厚さが、前記機能層積層体に接する第1層の厚さよりも厚い請求項2または3に記載の積層フィルム。 The laminated film according to claim 2 or 3, wherein the thickness of the metal plating layer is thicker than the thickness of the first layer in contact with the functional layer laminate.
- 前記第1層の厚さが、0.001μm~0.5μmであり、
前記金属メッキ層の厚さが、0.01μm~100μmである請求項4に記載の積層フィルム。 The first layer has a thickness of 0.001 μm to 0.5 μm;
The laminated film according to claim 4, wherein the metal plating layer has a thickness of 0.01 μm to 100 μm. - 前記機能層積層体に接する第1層の材料が、アルミニウム、チタン、クロム、銅、および、ニッケルからなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金であり、
前記第1層以外の各層の材料が、アルミニウム、チタン、クロム、ニッケル、錫、銅、銀、および、金からなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金である請求項1~5のいずれか1項に記載の積層フィルム。 The material of the first layer in contact with the functional layer laminate is at least one selected from the group consisting of aluminum, titanium, chromium, copper, and nickel, or an alloy containing at least one of these,
The material of each layer other than the first layer is at least one selected from the group consisting of aluminum, titanium, chromium, nickel, tin, copper, silver, and gold, or an alloy containing at least one of these. The laminated film according to any one of claims 1 to 5. - 前記端面封止層の厚さが、0.1μm~100μmである請求項1~6のいずれか1項に記載の積層フィルム。 The laminated film according to any one of claims 1 to 6, wherein the end face sealing layer has a thickness of 0.1 µm to 100 µm.
- 光学機能層とガスバリア層とを有する機能層積層体の側面に、少なくとも2層からなり、各層が金属からなる端面封止層を有する請求項1~7のいずれか1項に記載の積層フィルムを製造する積層フィルムの製造方法であって、
前記機能層積層体を複数枚重ねた積層物の端面に、前記機能層積層体に接する前記第1層を形成する第1層形成工程と、
前記積層物の端面に形成された前記第1層上に最表層を形成する最表層形成工程と、を有し、
前記第1層の形成方法が、スパッタリング法、真空蒸着法、イオンプレーティング法、および、プラズマCVD法からなる群から選択される1種である積層フィルムの製造方法。 The laminated film according to any one of claims 1 to 7, wherein the functional film laminate having the optical functional layer and the gas barrier layer has at least two layers, and each layer has an end face sealing layer made of metal. A method for producing a laminated film to be produced,
A first layer forming step of forming the first layer in contact with the functional layer laminate on an end face of a laminate in which a plurality of the functional layer laminates are stacked;
An outermost layer forming step of forming an outermost layer on the first layer formed on the end surface of the laminate,
A method for producing a laminated film, wherein the method for forming the first layer is one selected from the group consisting of a sputtering method, a vacuum deposition method, an ion plating method, and a plasma CVD method. - 前記端面封止層の、前記第1層以外の少なくとも1層の形成方法が、金属メッキ処理である請求項8に記載の積層フィルムの製造方法。 The method for producing a laminated film according to claim 8, wherein the formation method of at least one layer other than the first layer of the end face sealing layer is a metal plating process.
- 光学機能層と、前記光学機能層の少なくとも一方の主面に積層される、ガスバリア層とを有する機能層積層体、および、
前記機能層積層体の端面のうち少なくとも一部を覆って形成される端面封止層、を有し、
前記端面封止層は、少なくとも2層からなり、各層がそれぞれ金属からなる積層フィルムであって、
前記光学機能層は、蛍光体および少なくとも2種以上の重合性化合物を含む重合性組成物を硬化させてなる硬化層であることを特徴とする積層フィルム。 A functional layer laminate having an optical functional layer and a gas barrier layer laminated on at least one main surface of the optical functional layer; and
An end face sealing layer formed to cover at least a part of the end face of the functional layer laminate,
The end face sealing layer is composed of at least two layers, and each layer is a laminated film made of metal,
The laminated film, wherein the optical functional layer is a cured layer obtained by curing a polymerizable composition containing a phosphor and at least two or more polymerizable compounds. - 前記重合性化合物は単官能重合性化合物からなる第一の重合性化合物の少なくとも一種と多官能重合性化合物からなる第二の重合性化合物の少なくとも一種とを含む請求項10に記載の積層フィルム。 The laminated film according to claim 10, wherein the polymerizable compound contains at least one kind of a first polymerizable compound made of a monofunctional polymerizable compound and at least one kind of a second polymerizable compound made of a polyfunctional polymerizable compound.
- 前記第一の重合性化合物が、アルキル基の炭素数が4~30である脂肪族または芳香族アルキル(メタ)アクリレートであり、
前記第二の重合性化合物が、1,6-ヘキサンジオールジアクリレート、1,10-デカンジオールジアクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジアクリレート、ジシクロペンタニルジ(メタ)アクリレート、エトキシ化ビスフェノールAジアクリレートの中から選ばれる請求項11に記載の積層フィルム。 The first polymerizable compound is an aliphatic or aromatic alkyl (meth) acrylate having an alkyl group with 4 to 30 carbon atoms,
The second polymerizable compound is 1,6-hexanediol diacrylate, 1,10-decanediol diacrylate, 1,9-nonanediol di (meth) acrylate, tricyclodecane dimethanol diacrylate, dicyclopenta. The laminated film according to claim 11, which is selected from nildi (meth) acrylate and ethoxylated bisphenol A diacrylate. - 前記光学機能層の50℃における弾性率が1MPa~4000MPaである請求項10~12のいずれか一項に記載の積層フィルム。 The laminated film according to any one of claims 10 to 12, wherein the optical function layer has an elastic modulus at 50 ° C of 1 MPa to 4000 MPa.
- 前記ガスバリア層が前記光学機能層の両方の主面に積層されてなる請求項10~13のいずれか一項に記載の積層フィルム。 The laminated film according to any one of claims 10 to 13, wherein the gas barrier layer is laminated on both main surfaces of the optical functional layer.
- 前記光学機能層の前記蛍光体は、量子ドット、量子ロッド、テトラポッド型量子ドットである請求項10~14のいずれか一項に記載の積層フィルム。 The laminated film according to any one of claims 10 to 14, wherein the phosphor of the optical functional layer is a quantum dot, a quantum rod, or a tetrapod type quantum dot.
- 前記端面封止層の、前記機能層積層体に接する第1層以外の少なくとも1層が、金属メッキ層である請求項10~15のいずれか一項に記載の積層フィルム。 The laminated film according to any one of claims 10 to 15, wherein at least one layer other than the first layer in contact with the functional layer laminate in the end face sealing layer is a metal plating layer.
- 前記端面封止層の、前記機能層積層体から最も遠い最表層が、金属メッキ層である請求項10~16のいずれか一項に記載の積層フィルム。 The laminated film according to any one of claims 10 to 16, wherein the outermost surface layer of the end face sealing layer that is farthest from the functional layer laminate is a metal plating layer.
- 前記金属メッキ層の厚さが、前記機能層積層体に接する第1層の厚さよりも厚い請求項16または17に記載の積層フィルム。 The laminated film according to claim 16 or 17, wherein the thickness of the metal plating layer is thicker than the thickness of the first layer in contact with the functional layer laminate.
- 前記第1層の厚さが、0.001μm~0.5μmであり、
前記金属メッキ層の厚さが、0.01μm~100μmである請求項18に記載の積層フィルム。 The first layer has a thickness of 0.001 μm to 0.5 μm;
The laminated film according to claim 18, wherein the metal plating layer has a thickness of 0.01 袖 m to 100 袖 m. - 前記機能層積層体に接する第1層の材料が、アルミニウム、チタン、クロム、銅、および、ニッケルからなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金であり、
前記第1層以外の各層の材料が、アルミニウム、チタン、クロム、ニッケル、錫、銅、銀、および、金からなる群から選択される少なくとも1種、あるいは、これらの少なくとも1種を含む合金である請求項10~19のいずれか一項に記載の積層フィルム。 The material of the first layer in contact with the functional layer laminate is at least one selected from the group consisting of aluminum, titanium, chromium, copper, and nickel, or an alloy containing at least one of these,
The material of each layer other than the first layer is at least one selected from the group consisting of aluminum, titanium, chromium, nickel, tin, copper, silver, and gold, or an alloy containing at least one of these. The laminated film according to any one of claims 10 to 19. - 前記端面封止層の厚さが、0.1μm~100μmである請求項10~20のいずれか一項に記載の積層フィルム。 The laminated film according to any one of claims 10 to 20, wherein the end face sealing layer has a thickness of 0.1 µm to 100 µm.
- 光学機能層とガスバリア層とを有する機能層積層体の側面に、少なくとも2層からなり、各層が金属からなる端面封止層を有する請求項10~21のいずれか一項に記載の積層フィルムを製造する積層フィルムの製造方法であって、
ガスバリア層を有するガスバリアフィルムの上に、蛍光体および少なくとも2種以上の重合性化合物を含む重合性組成物を塗布し硬化させてなる機能層積層体を形成し、
前記機能層積層体を複数枚重ねた積層物の端面に、前記機能層積層体に接する前記第1層を形成する第1層形成工程と、
前記積層物の端面に形成された前記第1層上に最表層を形成する最表層形成工程と、を有し、
前記第1層の形成方法が、スパッタリング法、真空蒸着法、イオンプレーティング法、および、プラズマCVD法からなる群から選択される1種であることを特徴とする積層フィルムの製造方法。 The laminated film according to any one of claims 10 to 21, which comprises at least two layers on each side surface of the functional layer laminate having an optical functional layer and a gas barrier layer, and each layer has an end face sealing layer made of metal. A method for producing a laminated film to be produced,
On the gas barrier film having the gas barrier layer, a functional layer laminate is formed by applying and curing a polymerizable composition containing a phosphor and at least two or more polymerizable compounds,
A first layer forming step of forming the first layer in contact with the functional layer laminate on an end face of a laminate in which a plurality of the functional layer laminates are stacked;
An outermost layer forming step of forming an outermost layer on the first layer formed on the end surface of the laminate,
A method for producing a laminated film, wherein the method for forming the first layer is one selected from the group consisting of a sputtering method, a vacuum deposition method, an ion plating method, and a plasma CVD method. - 前記端面封止層の、前記第1層以外の少なくとも1層の形成方法が、金属メッキ処理である請求項22に記載の積層フィルムの製造方法。 The method for producing a laminated film according to claim 22, wherein the formation method of at least one layer other than the first layer of the end face sealing layer is a metal plating process.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017525297A JP6433592B2 (en) | 2015-06-17 | 2016-06-16 | LAMINATED FILM AND METHOD FOR PRODUCING LAMINATED FILM |
KR1020177035953A KR102028470B1 (en) | 2015-06-17 | 2016-06-16 | Laminated Film and Manufacturing Method of Laminated Film |
CN201680034978.7A CN107708996B (en) | 2015-06-17 | 2016-06-16 | The manufacturing method of stacked film and stacked film |
US15/840,405 US20180179643A1 (en) | 2015-06-17 | 2017-12-13 | Laminated film and method for manufacturing laminated film |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-122266 | 2015-06-17 | ||
JP2015122266 | 2015-06-17 | ||
JP2015-130410 | 2015-06-29 | ||
JP2015130410 | 2015-06-29 | ||
JP2015-158845 | 2015-08-11 | ||
JP2015158845 | 2015-08-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/840,405 Continuation US20180179643A1 (en) | 2015-06-17 | 2017-12-13 | Laminated film and method for manufacturing laminated film |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016204231A1 true WO2016204231A1 (en) | 2016-12-22 |
Family
ID=57545283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/067946 WO2016204231A1 (en) | 2015-06-17 | 2016-06-16 | Laminate film, and laminate-film production method |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180179643A1 (en) |
JP (1) | JP6433592B2 (en) |
KR (1) | KR102028470B1 (en) |
CN (1) | CN107708996B (en) |
WO (1) | WO2016204231A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6462941B1 (en) * | 2018-05-28 | 2019-01-30 | グンゼ株式会社 | Cover film |
JP2020116805A (en) * | 2019-01-22 | 2020-08-06 | グンゼ株式会社 | Cover film |
JPWO2019202992A1 (en) * | 2018-04-19 | 2021-03-11 | 東洋紡株式会社 | Polyester film for surface protection film of foldable display and its use |
JP2023070086A (en) * | 2021-11-04 | 2023-05-18 | 南亞塑膠工業股▲分▼有限公司 | Optical film and method for manufacturing the same, and backlight module |
JP2023076803A (en) * | 2021-11-23 | 2023-06-02 | 南亞塑膠工業股▲分▼有限公司 | Optical film, method for manufacturing the same, and backlight module |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6954298B2 (en) * | 2016-10-24 | 2021-10-27 | 凸版印刷株式会社 | Gas barrier film and color conversion member |
WO2019091346A1 (en) | 2017-11-08 | 2019-05-16 | Nano And Advanced Materials Institute Limited | Barrier free stable quantum dot film |
JP7056290B2 (en) * | 2018-03-23 | 2022-04-19 | Tdk株式会社 | Thin film capacitors and methods for manufacturing thin film capacitors |
CN113874429A (en) * | 2019-05-31 | 2021-12-31 | 三井化学东赛璐株式会社 | Packaging film, package, and method for producing laminated film |
CN111020503B (en) * | 2019-12-10 | 2021-07-30 | 湖北大学 | Application of montmorillonite in magnetron sputtering target material, montmorillonite film obtained by using montmorillonite and application of montmorillonite film |
TWI741598B (en) * | 2020-05-12 | 2021-10-01 | 睿亞光電股份有限公司 | Wavelength-converting device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012036092A1 (en) * | 2010-09-17 | 2012-03-22 | 住友化学株式会社 | Laminated film, laminated film having electrode, and organic el element |
JP2014069454A (en) * | 2012-09-28 | 2014-04-21 | Fujifilm Corp | Electronic module |
JP2016068556A (en) * | 2014-09-26 | 2016-05-09 | 富士フイルム株式会社 | Laminate film, backlight unit, liquid crystal display device, and production method of laminate film |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2904437B1 (en) * | 2006-07-28 | 2008-10-24 | Saint Gobain | ACTIVE DEVICE HAVING VARIABLE ENERGY / OPTICAL PROPERTIES |
KR20080013752A (en) * | 2006-08-08 | 2008-02-13 | 스미또모 가가꾸 가부시끼가이샤 | Polarizing sheet and production method thereof |
JP5418762B2 (en) | 2008-04-25 | 2014-02-19 | ソニー株式会社 | Light emitting device and display device |
KR100982991B1 (en) | 2008-09-03 | 2010-09-17 | 삼성엘이디 주식회사 | Quantum dot-wavelength conversion device, preparing method of the same and light-emitting device comprising the same |
JP4988782B2 (en) * | 2009-03-02 | 2012-08-01 | 富士フイルム株式会社 | Sealed element |
NZ600195A (en) | 2009-12-11 | 2013-07-26 | Basf Se | Rodent bait packed in a biodegradable foil |
JP2012037558A (en) * | 2010-08-03 | 2012-02-23 | Hitachi Chem Co Ltd | Light-controlling structure |
JP2012094608A (en) * | 2010-10-26 | 2012-05-17 | Fujifilm Corp | Solar cell module |
CN103228983A (en) | 2010-11-10 | 2013-07-31 | 纳米系统公司 | Quantum dot films, lighting devices, and lighting methods |
JP2014220194A (en) * | 2013-05-10 | 2014-11-20 | 株式会社フジクラ | Oxide superconductive wire material and production method thereof |
JP5796038B2 (en) * | 2013-06-18 | 2015-10-21 | デクセリアルズ株式会社 | Phosphor sheet |
WO2016039079A1 (en) * | 2014-09-12 | 2016-03-17 | 富士フイルム株式会社 | Functional laminate film and method for producing functional laminate film |
US9739926B2 (en) * | 2014-09-26 | 2017-08-22 | Fujifilm Corporation | Laminate film, backlight unit, and liquid crystal display device |
-
2016
- 2016-06-16 KR KR1020177035953A patent/KR102028470B1/en active IP Right Grant
- 2016-06-16 JP JP2017525297A patent/JP6433592B2/en active Active
- 2016-06-16 CN CN201680034978.7A patent/CN107708996B/en active Active
- 2016-06-16 WO PCT/JP2016/067946 patent/WO2016204231A1/en active Application Filing
-
2017
- 2017-12-13 US US15/840,405 patent/US20180179643A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012036092A1 (en) * | 2010-09-17 | 2012-03-22 | 住友化学株式会社 | Laminated film, laminated film having electrode, and organic el element |
JP2014069454A (en) * | 2012-09-28 | 2014-04-21 | Fujifilm Corp | Electronic module |
JP2016068556A (en) * | 2014-09-26 | 2016-05-09 | 富士フイルム株式会社 | Laminate film, backlight unit, liquid crystal display device, and production method of laminate film |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019202992A1 (en) * | 2018-04-19 | 2021-03-11 | 東洋紡株式会社 | Polyester film for surface protection film of foldable display and its use |
JP7490958B2 (en) | 2018-04-19 | 2024-05-28 | 東洋紡株式会社 | Polyester film for surface protection of folding displays and its applications |
JP6462941B1 (en) * | 2018-05-28 | 2019-01-30 | グンゼ株式会社 | Cover film |
JP2019206163A (en) * | 2018-05-28 | 2019-12-05 | グンゼ株式会社 | Cover film |
JP2020116805A (en) * | 2019-01-22 | 2020-08-06 | グンゼ株式会社 | Cover film |
JP2023070086A (en) * | 2021-11-04 | 2023-05-18 | 南亞塑膠工業股▲分▼有限公司 | Optical film and method for manufacturing the same, and backlight module |
JP2023076803A (en) * | 2021-11-23 | 2023-06-02 | 南亞塑膠工業股▲分▼有限公司 | Optical film, method for manufacturing the same, and backlight module |
Also Published As
Publication number | Publication date |
---|---|
CN107708996B (en) | 2019-11-01 |
KR102028470B1 (en) | 2019-10-04 |
JP6433592B2 (en) | 2018-12-05 |
US20180179643A1 (en) | 2018-06-28 |
KR20180011147A (en) | 2018-01-31 |
CN107708996A (en) | 2018-02-16 |
JPWO2016204231A1 (en) | 2018-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6433592B2 (en) | LAMINATED FILM AND METHOD FOR PRODUCING LAMINATED FILM | |
JP6570638B2 (en) | Laminated film | |
US20180022881A1 (en) | Functional film and method for producing functional film | |
US20170320307A1 (en) | Functional composite film and quantum dot film | |
US10480751B2 (en) | Wavelength conversion laminated film | |
JP6599992B2 (en) | Laminated film | |
JP6577874B2 (en) | Wavelength conversion film | |
JP6433591B2 (en) | Laminated film | |
JP6608447B2 (en) | LAMINATED FILM AND METHOD FOR PRODUCING LAMINATED FILM | |
JP6714591B2 (en) | Functional film and method for producing functional film | |
US20180170009A1 (en) | Laminated film | |
JP6316443B2 (en) | Functional laminated film and method for producing functional laminated film | |
JP6611350B2 (en) | Backlight film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16811705 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017525297 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177035953 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16811705 Country of ref document: EP Kind code of ref document: A1 |