WO2016204015A1 - Transmission - Google Patents

Transmission Download PDF

Info

Publication number
WO2016204015A1
WO2016204015A1 PCT/JP2016/066850 JP2016066850W WO2016204015A1 WO 2016204015 A1 WO2016204015 A1 WO 2016204015A1 JP 2016066850 W JP2016066850 W JP 2016066850W WO 2016204015 A1 WO2016204015 A1 WO 2016204015A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
output
input
output shaft
shaft
Prior art date
Application number
PCT/JP2016/066850
Other languages
French (fr)
Japanese (ja)
Inventor
昌夫 泉
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2016204015A1 publication Critical patent/WO2016204015A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/093Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts

Definitions

  • the present invention includes first to third auxiliary input shafts arranged coaxially with respect to an input shaft, and a pair of auxiliary output shafts arranged coaxially with respect to a pair of output shafts, respectively,
  • the present invention relates to a triple clutch type transmission that selectively inputs to one of the auxiliary input shafts via three friction clutches and selectively outputs the driving force from one of the output shafts.
  • a so-called dual clutch type transmission that selectively outputs the driving force from any output shaft
  • a simple flow power transmission path that directly outputs the driving force from the input shaft to one output shaft
  • an input Combined with a complex flow power transmission path that outputs driving force from the shaft through both output shafts the limited number of gears can be used effectively, avoiding an increase in the size of the skeleton and increasing to 10 stages.
  • a transmission (see FIG. 25) having a multistage structure is known from Patent Document 1 below.
  • German Patent Publication No. DE 10 2011 2011 117 046 A1 German Patent Publication No. DE 10 2011 2011 117 046 A1
  • the shift of the transmission includes a sequential shift that shifts between consecutive shift stages and a jump shift that shifts between non-continuous shift stages.
  • the conventional transmission which is a type of dual clutch transmission, can shift without torque loss by shifting two friction clutches in a state where the next shift stage is pre-shifted in advance when performing sequential shifts. It becomes possible. However, if a jump shift without torque loss is attempted, it is not possible to jump directly from the current shift stage to the target shift stage, and in many cases, a plurality of temporary shifts are required in the process of shifting from the current shift stage to the target shift stage. There is a need to shift while preventing torque loss via the shift speed (multi-step shift), and there is a problem that shift response is reduced.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a transmission capable of avoiding as many steps as possible during a jump shift while miniaturizing and increasing the number of stages.
  • an input shaft to which a driving force from a driving source is input and the input shaft that is arranged coaxially with the input shaft via the first friction engagement device.
  • the second input gear meshes with the third output gear, the third input gear meshes with the second output gear and the fourth output gear, and the fourth input gear meshes with the fifth output gear.
  • a first auxiliary output shaft that is rotatably supported by the first sub output shaft and can be coupled to the first sub output shaft via a fifth output engagement device.
  • 6 output gears, the fourth input gear meshes with the sixth output gear, and the fifth output gear is supported by the second auxiliary output shaft so as to be relatively rotatable, via a sixth output engagement device.
  • a transmission having the second feature of being capable of being coupled to the second auxiliary output shaft is proposed.
  • a fifth input gear fixed to the second sub-input shaft and a seventh output supported by the first sub-output shaft are rotatably supported relative to each other.
  • An eighth output gear that can be coupled to a shaft is provided, and a transmission is proposed in which the fifth input gear meshes with the seventh output gear and the eighth output gear.
  • the engine P of the embodiment corresponds to the drive source of the present invention
  • the first friction clutch CL1 to the third friction clutch CL3 of the embodiment correspond to the first to third friction engagement devices of the present invention, respectively.
  • the synchronizing device A1 and the synchronizing device A2 of the embodiment correspond to the first engaging device and the second engaging device of the present invention, respectively
  • the synchronizing device B1 of the embodiment corresponds to the first output engaging device of the present invention.
  • the synchronizing device C1 and the synchronizing device C2 of the embodiment respectively correspond to the second output engaging device and the fourth output engaging device of the present invention
  • the synchronizing device D of the embodiment corresponds to the third output of the present invention.
  • the synchronizing device E1 and the synchronizing device E2 of the embodiment correspond to the fifth output engaging device and the sixth output engaging device of the present invention, respectively, and the synchronizing device F1 and the synchronizing device of the embodiment.
  • the device F2 corresponds to the seventh output engagement device and the eighth output engagement device of the present invention, respectively, and the first final drive gear Gf1 and the second final drive gear Gf2 of the embodiment are the final output gear of the present invention.
  • the first to third auxiliary input shafts arranged coaxially with each other and receiving the driving force of the input shaft via the first to third friction engagement devices,
  • a first sub-output shaft that outputs a driving force to one output shaft and a second sub-output shaft that outputs a driving force to a second output shaft are arranged on three parallel axes, and the first to third shafts connecting these three axes are connected.
  • the driving force of the driving source is selectively input to the two systems of the first input shaft and the second input shaft.
  • the driving force of the driving source is the first auxiliary shaft. Since it is selectively input to the three systems of the input shaft to the third auxiliary input shaft, it becomes difficult to generate an interlock at the time of gear shifting, and it is possible to improve the gear shifting responsiveness by suppressing multi-steps at the time of jump gear shifting. .
  • the friction engagement device engaged at the current gear stage and the friction engagement device engaged at the target gear stage since the number of friction engagement devices is increased from two to three with respect to a normal dual clutch transmission, the friction engagement device engaged at the current gear stage and the friction engagement device engaged at the target gear stage. The probability of matching with the combined device decreases, and the probability that clutch-to-clutch shift can be performed without causing torque loss increases, thereby effectively suppressing the multi-step at the time of jump shift. Shift response can be improved.
  • a sixth output gear that is rotatably supported by the first sub output shaft and can be coupled to the first sub output shaft via a fifth output engagement device.
  • the fourth input gear meshes with the sixth output gear
  • the fifth output gear is rotatably supported by the second sub output shaft and can be coupled to the second sub output shaft via the sixth output engagement device. Therefore, by adding the fifth and sixth output engagement devices and the sixth output gear, it is possible to obtain a forward 10-speed transmission while exhibiting the function and effect of the first feature of the present invention.
  • the fifth input gear fixed to the second sub-input shaft and the first sub-output shaft are supported so as to be rotatable relative to each other via the seventh output engagement device.
  • An output gear, and the fifth input gear meshes with the seventh output gear and the eighth output gear, so the seventh and eighth output engagement devices, the fifth input gear, and the seventh and eighth output gears are added.
  • FIG. 1 is a skeleton diagram of a forward eight-stage transmission.
  • FIG. 2 is a view in the axial direction of FIG.
  • FIG. 3 is a diagram showing the number of teeth of each input gear and each output gear.
  • FIG. 4 is a diagram showing the ratio of each gear and the common ratio of each gear.
  • FIG. 5 is an engagement table of the friction clutch and the synchro device.
  • FIG. 6 is an explanatory diagram of the sequential shift process from the first gear to the second gear.
  • FIG. 7 is an explanatory diagram of the sequential shift process from the second gear stage to the third gear stage.
  • FIG. 1 is a skeleton diagram of a forward eight-stage transmission.
  • FIG. 2 is a view in the axial direction of FIG.
  • FIG. 3 is a diagram showing the number of teeth of each input gear and each output gear.
  • FIG. 4 is a diagram showing the ratio of each gear and the common ratio of each gear.
  • FIG. 5 is an engagement table of the friction clutch and the synchro
  • FIG. 8 is an explanatory diagram of the sequential shift process from the third speed shift stage to the fourth speed shift stage.
  • FIG. 9 is an explanatory diagram of the sequential shift process from the fourth speed shift stage to the fifth speed shift stage.
  • FIG. 10 is an explanatory diagram of the sequential shift process from the fifth gear to the sixth gear.
  • FIG. 11 is an explanatory diagram of the sequential shift process from the sixth speed shift stage to the seventh speed shift stage.
  • FIG. 12 is an explanatory diagram of the sequential shift process from the seventh gear to the eighth gear.
  • FIG. 13 is an explanatory diagram of the shift process from the first gear to the reverse gear. (First embodiment) FIG.
  • FIG. 14 is a diagram showing the number of gear meshes at each shift stage according to the conventional example and the embodiment.
  • FIG. 15 is a diagram showing a simplified torque flow at each gear stage.
  • FIG. 16 is an explanatory view of the effect of providing three friction clutches.
  • FIG. 17 is a diagram illustrating the number of steps of the jump shift according to the embodiment.
  • FIG. 18 is a diagram showing the number of steps of the conventional jump shift.
  • FIG. 19 is a skeleton diagram of a 10-speed forward transmission.
  • FIG. 20 is a diagram showing a simplified torque flow at each gear stage.
  • FIG. 20 is a diagram showing a simplified torque flow at each gear stage.
  • FIG. 21 is a skeleton diagram of a 13-stage forward transmission.
  • FIG. 22 is a diagram showing a simplified torque flow at each gear stage.
  • FIG. 23 is a skeleton diagram of a 9-speed forward transmission.
  • FIG. 24 is a diagram showing a simplified torque flow at each gear stage.
  • FIG. 25 is a skeleton diagram of a 10-speed forward transmission.
  • the eight-step forward triple clutch transmission T of the present embodiment is connected to an input shaft Im, which is a crankshaft of the engine P, via a first friction clutch CL1.
  • the first friction clutch CL1, the second friction clutch CL2, and the third friction clutch CL3 include shaft ends of the first sub input shaft Is1, the second sub input shaft Is2, and the third sub input shaft Is3 and the shaft end of the input shaft Im. Are arranged together.
  • the first output shaft Om1 and the second output shaft Om2 are arranged in parallel to the first sub input shaft Is1, the second sub input shaft Is2, and the third sub input shaft Is3, and are arranged on the outer periphery of the first output shaft Om1.
  • the first sub output shaft Os1 is fitted so as to be relatively rotatable
  • the second sub output shaft Os2 is fitted to the outer periphery of the second output shaft Om2 so as to be relatively rotatable.
  • the first input gear Gi1 and the second input gear Gi2 are fixed to the first sub input shaft Is1
  • the third input gear Gi3 is fixed to the second sub input shaft Is2
  • the gear Gi4 is fixed.
  • the first input gear Gi1 meshes with the first output gear Go1 supported relative to the first auxiliary output shaft Os1, and the second input gear Gi2 is supported relative to the second auxiliary output shaft Os2.
  • the third output gear Go3 meshes with the third output gear Go3, and the third input gear Gi3 is supported on the first sub output shaft Os1 so as to be relatively rotatable, and the fourth output is supported on the second sub output shaft Os2.
  • the fourth input gear Gi4 meshes with the gear Go4, and the fourth input gear Gi4 meshes with the fifth output gear Go5 fixed to the second sub output shaft Os2.
  • the reverse drive gear Gr1 that is rotatably supported by the first sub output shaft Os1 meshes with the reverse driven gear Gr2 that is fixed to the second sub output shaft Os2.
  • the first output shaft Om1 and the first sub output shaft Os1 can be coupled by the synchronizer A1, and the first output gear Go1 can be coupled to the first sub output shaft Os1 via the synchronizer B1, and the second output
  • the gear Go2 can be coupled to the first secondary output shaft Os1 via the synchronization device C1, and the reverse drive gear Gr1 can be coupled to the first secondary output shaft Os1 via the synchronization device B2.
  • the second output shaft Om2 and the second sub output shaft Os2 can be coupled by the synchronizer A2, and the third output gear Go3 can be coupled to the second sub output shaft Os2 via the synchronizer D.
  • the output gear Go4 can be coupled to the second auxiliary output shaft Os2 via the synchronizer C2.
  • the synchronizer A1 and the synchronizer A2 are operated by a common hydraulic actuator, and the synchronizer A1 is operated by the right movement of the hydraulic actuator, the first output shaft Om1 and the first sub output shaft Os1 are coupled, and the hydraulic actuator The left-hand movement activates the synchronizer A2 to couple the second output shaft Om2 and the second auxiliary output shaft Os2.
  • the synchronizer B1 and the synchronizer B2 are operated by a common hydraulic actuator.
  • the hydraulic actuator When the hydraulic actuator is moved to the left, the synchronizer B1 is operated to couple the first output gear Go1 to the first sub output shaft Os1.
  • the right-hand movement activates the synchronizer B2 to couple the reverse drive gear Gr1 to the first auxiliary output shaft Os1.
  • the synchronizer C1 and the synchronizer C2 are operated by a common hydraulic actuator.
  • the synchronizer C1 is activated by the right movement of the hydraulic actuator, the second output gear Go2 is coupled to the first sub output shaft Os1, and the hydraulic actuator
  • the left-hand movement activates the synchronizer C2, and the fourth output gear Go4 is coupled to the second auxiliary output shaft Os2.
  • a differential gear in which a first final drive gear Gf1 fixed to the first output shaft Om1 and a second final drive gear Gf2 fixed to the second output shaft Om2 distribute driving force to the left and right drive wheels W, W. It meshes with a final driven gear Gf fixed to the case of Gd.
  • the transmission T having such a skeleton has the selective engagement of the first friction clutch CL1 to the third friction clutch CL3 and the seven synchronizing devices A1, A2, B1, B2, C1, C2, D.
  • a total of 11 forward shift stages can be established in combination with selective engagement, but in this embodiment, a total of 8 forward shift stages are selected from a total of 11 forward shift stages. And use it.
  • FIG. 3 shows the number of teeth of the first input gear Gi1 to the fourth input gear Gi4 and the first output gear Go1 to the fifth output gear Go5, and the ratio of the number of teeth of the meshing gears among them.
  • FIG. 4 (A) and FIG. 4 (B) show the ratio of the first gear to the eighth gear achieved by setting the number of teeth and the common ratio between adjacent gears. It can be seen that the ratios of the 1st to 8th gears are distributed at appropriate intervals.
  • FIG. 5 is an engagement table of the first to third friction clutches CL1 to CL3 and the seven synchro devices A1, A2, B1, B2, C1, C2, and D.
  • the synchro device is indicated by a circle.
  • 6 to 12 are explanatory diagrams of the process of sequential upshifting from the first gear to the eighth gear
  • FIG. 13 is an explanatory diagram of the gear shifting process from the first gear to the reverse gear.
  • the engaged sync device is shown in black and the disengaged sync device is shown in white.
  • the driving force of the engine P is: input shaft Im ⁇ third friction clutch CL3 ⁇ third auxiliary input shaft Is3 ⁇ fourth input gear Gi4 ⁇ fifth output gear Go5 ⁇ Second sub output shaft Os2 ⁇ Synchronizer D ⁇ Third output gear Go3 ⁇ Second input gear Gi2 ⁇ First sub input shaft Is1 ⁇ First input gear Gi1 ⁇ First output gear Go1 ⁇ Synchronizer B1 ⁇ First sub output It is transmitted to the drive wheels W, W through the path of the shaft Os1, the synchronizer A1, the first output shaft Om1, the first final drive gear Gf1, the final driven gear Gf, and the differential gear Gd.
  • the driving force of the engine P is such that the input shaft Im ⁇ second friction clutch CL2 ⁇ second auxiliary input shaft Is2 ⁇ third input gear Gi3 ⁇ fourth output gear Go4 ⁇ Sync device C2 ⁇ second sub output shaft Os2 ⁇ sync device D ⁇ third output gear Go3 ⁇ second input gear Gi2 ⁇ first sub input shaft Is1 ⁇ first input gear Gi1 ⁇ first output gear Go1 ⁇ sync device B1 ⁇
  • the first sub output shaft Os1, the synchronizer A1, the first output shaft Om1, the first final drive gear Gf1, the final driven gear Gf, and the differential gear Gd are transmitted to the drive wheels W and W.
  • the driving force of the engine P is: input shaft Im ⁇ second friction clutch CL2 ⁇ second auxiliary input shaft Is2 ⁇ third input gear Gi3 ⁇ second output gear Go2 ⁇ Synchronizer C1 ⁇ first auxiliary output shaft Os1 ⁇ synchronizer B1 ⁇ first output gear Go1 ⁇ first input gear Gi1 ⁇ first auxiliary input shaft Is1 ⁇ second input gear Gi2 ⁇ third output gear Go3 ⁇ synchronizer D ⁇ It is transmitted to the drive wheels W and W through the path of the second auxiliary output shaft Os2, the synchronizer A2, the second output shaft Om2, the second final drive gear Gf2, the final driven gear Gf, and the differential gear Gd.
  • the neutral gear position is achieved.
  • the first to eighth gears and the reverse gear are established.
  • torque loss is generated by so-called clutch-to-clutch shift, that is, by gripping the first to third friction clutches CL1, CL2, CL3 in a state where pre-shifting is performed.
  • the upshift sequential shift can be completed without any problem.
  • the downshift sequential shift can be completed without causing torque loss by the clutch-to-clutch shift.
  • 10 shift stages can be established with a total of 12 gears including 4 input gears supported on the input shaft and 8 output gears supported on the pair of output shafts.
  • eight shift stages can be established with a total of nine gears consisting of four input gears supported on the input shaft and five output gears supported on the pair of output shafts.
  • the number of gears per gear is comparable to the conventional example.
  • FIG. 15 simply shows the torque flow for each gear position of the transmission T according to the present embodiment.
  • the torque flow is such that the driving force of the first sub-input shaft Is1, the second sub-input shaft Is2, or the third sub-input shaft Is3 passes through only one of the first sub-output shaft Os1 and the second sub-output shaft Os2.
  • Torque flow is simple flow Because a reduction in power transmission efficiency can be minimized by the number of gear meshes in torque by the ratio of the gear stage becomes much simpler flow is reduced.
  • it is possible to combine the 3rd to 7th gears, which are simple flow gears with the number of meshes 2, into the medium-speed gears that are frequently used. be able to.
  • the present embodiment is similar in torque flow between the first and second speed gears, which are the low speed gears, and the third to seventh speed gears that are the medium speed gears. Since the torque flow of the third gear stage and the fourth gear stage is similar, and the torque flow of the fifth gear stage to the seventh gear stage is similar, the power transmission path between adjacent gear stages during sequential gear shifting By minimizing the change in speed, that is, by minimizing the frequency of operation of the synchronizer, it is possible to improve the power transmission efficiency and the shift response.
  • the first speed gear change.
  • the second input gear Gi2 and the first input gear Gi1 function as a reduction gear at the second gear and the second gear to increase the gear ratio of the lower gear, and the first input gear Gi1 and the second input at the eighth gear.
  • the gear orange of the transmission T can be expanded by causing the gear Gi2 to function as a speed-up gear and reducing the gear ratio of the high speed gear.
  • the driving force is all output from the first output shaft Om1 at the first to fourth gears, which are the low speed gears, and is driven at the fifth to eighth gears, which are the high speed gears. Since all the force is output from the second output shaft Om2, the change in the power transmission path between adjacent gears during sequential shifts can be minimized, that is, the frequency of operation of the synchro device can be minimized. Thus, the power transmission efficiency can be further improved and the shift response can be further improved.
  • a jump shift that requires two or more temporary shift stages to be interposed between the current shift stage and the target shift stage is called a multi-step shift.
  • the great advantage of the present embodiment over the conventional example is in avoiding multi-step shifting at the time of jump shifting.
  • the reason why the multi-step shift is avoided in the present embodiment will be described.
  • the engagement of the first friction clutch CL1 causes the driving force of the engine P to be changed from the first input gear Gi1 and the second input gear Gi2 of the first auxiliary input shaft Is1 to the first. Due to the engagement of the second friction clutch CL2 with the power transmission path that is transmitted to the first output gear Go1 of the sub output shaft Os1 or the third output gear Go3 of the second sub output shaft Os2, the driving force of the engine P is second.
  • clutch-to-clutch transmission without torque loss is possible by re-holding two friction clutches, so that the clutch engaged with the current gear stage and the target gear shift can be achieved.
  • the clutch engaged in the step is the same clutch, that is, in the case of the jumping shift of one step jumping or the jumping shift of three step jumping, it is impossible to perform the clutch-to-clutch shift directly.
  • the clutch-to-clutch shift without torque loss is enabled by changing the gripping of the three friction clutches CL1, CL2, CL3.
  • the friction clutch that is engaged at the target gear stage is the same clutch, that is, in the case of a three-step jump gear shift or a six-step jump gear shift, it is impossible to perform a clutch-to-clutch shift directly.
  • the transmission T according to the present embodiment has not only the three friction clutches CL1, CL2, and CL3, but also the three friction clutches CL1, CL2, and CL3 are alternately engaged in the order of the shift speeds. Therefore, with respect to the conventional transmission having two friction clutches, the probability that the friction clutch engaged at the current gear stage and the friction clutch engaged at the target gear stage are the same clutch is 1 ⁇ 2 to 1. By decreasing to / 3, the probability that a clutch-to-clutch shift can be performed without going through the temporary shift speed increases.
  • FIG. 17 shows the number of steps when the transmission T according to the present embodiment performs a sequential shift, a one-step jump shift, a two-step jump shift, a three-step jump shift, and a four-step jump shift.
  • a display of “1 ⁇ 2” indicates that a sequential shift from the first gear to the second gear is possible without causing torque loss or interlock and without using a temporary gear.
  • “2 ⁇ (3) ⁇ 4” is displayed in order to perform a one-step jump shift from the second gear to the fourth gear without causing torque loss or interlock. This shows that it is necessary to interpose a temporary third-speed shift stage between the shift stage and the fourth-speed shift stage that is the target shift stage.
  • FIG. 18 shows the number of steps when the conventional transmission shown in FIG. 25 performs a sequential shift, a one-step jump shift, a two-step jump shift, a three-step jump shift, and a four-step jump shift.
  • this conventional example among all patterns of sequential shift to four-step jump shift, there are 11 multi-step shifts that require two or more temporary shift steps to be interposed. There is a concern that will decrease.
  • the input system is increased to three systems by the three friction clutches of the first friction clutch CL1, the second friction clutch CL2, and the third friction clutch CL3, thereby generating an interlock. And reducing the probability that the same friction clutch will be engaged at the current shift speed and the target shift speed, thereby avoiding the occurrence of multi-step shifts and improving the shift response and reducing the number of gears. Can produce many gears.
  • a transmission T having 10 forward speeds is obtained by adding a sixth output gear Go6, a synchronizing device E1, and a synchronizing device E2 to the skeleton of the first embodiment (see FIG. 1). Is.
  • the sixth output gear Go6 is rotatably supported by the first sub-output shaft Os1, meshed with the fourth input gear Gi4, and can be coupled to the first sub-output shaft Os1 by the synchronizer E1. It is. Further, the fifth output gear Go5 fixed to the second sub output shaft Os2 in the first embodiment is supported by the second sub output shaft Os2 so as to be relatively rotatable in the present embodiment, and the synchronizer E2 is installed. To the second auxiliary output shaft Os2.
  • the transmission T is a 13-stage transmission T.
  • the fifth input gear Gi5 is fixed to the second auxiliary input shaft Is2, and the seventh output gear Go7 meshing with the fifth input gear Gi5 is rotatable relative to the first auxiliary output shaft Os1.
  • the eighth output gear Go8 that is supported and can be coupled to the first sub output shaft Os1 by the synchronizer F1 and that meshes with the fifth input gear Gi5 is supported by the second sub output shaft Os2 so as to be relatively rotatable, and is synchronized with the synchronizer F2. Can be coupled to the second auxiliary output shaft Os2.
  • 13 forward speeds can be established with the torque flow shown in FIG. 22, and the same operational effects as in the first embodiment can be achieved.
  • the fourth embodiment is a transmission T having nine forward gears by adding a ninth output gear Go9 and a synchronizing device G to the skeleton (see FIG. 1) of the first embodiment.
  • the ninth output gear Go9 meshed with the first input gear Gi1 is supported by the second sub output shaft Os2 so as to be relatively rotatable, and can be coupled to the second sub output shaft Os2 by the synchronizer G. Yes, the synchronizing device G and the synchronizing device D are connected and interlocked with each other.
  • nine forward speeds can be established with the torque flow shown in FIG. 24, and the same operational effects as those of the first embodiment can be achieved.
  • the drive source of the present invention is not limited to the engine P of the embodiment, and may be any other drive source such as a motor / generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)

Abstract

In a normal dual-clutch transmission, the drive force of a drive source is selectively inputted to two systems, namely a first input shaft and a second input shaft. In an embodiment of the present invention, the drive force of a drive source (P) is selectively inputted to three systems, namely first to third auxiliary input shafts (Is1-Is3), and thus interlocking does not readily occur during gear changes, and, not only can a reduction in the size of a framework be achieved, but an increase in the number of steps during skip gear changes can be inhibited, and gear change responsiveness can be improved. Moreover, as a result of increasing the number of frictional engagement devices (CL1-CL3) from two to three in comparison to a normal dual-clutch transmission, the probability of a frictional engagement device engaged at a current speed coinciding with a frictional engagement device engaged at a target speed is reduced, and the probability of a clutch-to-clutch gear change without any torque loss becoming possible is increased. Accordingly, provided is a triple-clutch transmission which can more effectively inhibit an increase in the number of steps during skip gear changes, and can improve gear change responsiveness.

Description

変速機transmission
 本発明は、入力軸に対して同軸に配置した第1~第3副入力軸と、一対の出力軸に対してそれぞれ同軸に配置した一対の副出力軸とを備え、駆動源の駆動力を3個の摩擦クラッチを介して何れかの副入力軸に選択的に入力するとともに、その駆動力を何れかの出力軸から選択的に出力するトリプルクラッチ式の変速機に関する。 The present invention includes first to third auxiliary input shafts arranged coaxially with respect to an input shaft, and a pair of auxiliary output shafts arranged coaxially with respect to a pair of output shafts, respectively, The present invention relates to a triple clutch type transmission that selectively inputs to one of the auxiliary input shafts via three friction clutches and selectively outputs the driving force from one of the output shafts.
 同軸2重に配置した入力軸と、それぞれ同軸2重に配置した一対の出力軸とを備え、駆動源の駆動力を2個の摩擦クラッチを介して何れかの入力軸に選択的に入力するとともに、その駆動力を何れかの出力軸から選択的に出力する、いわゆるデュアルクラッチ式の変速機において、入力軸から一方の出力軸に直接駆動力を出力する単純フローの動力伝達経路と、入力軸から両方の出力軸を経て駆動力を出力する複雑フローの動力伝達経路とを併用することで、限られた個数のギヤを有効に利用して骨格の大型化を回避しながら10段への多段化を図った変速機(図25参照)が、下記特許文献1により公知である。 An input shaft arranged coaxially and a pair of output shafts arranged coaxially respectively, and a driving force of a driving source is selectively inputted to any of the input shafts via two friction clutches In addition, in a so-called dual clutch type transmission that selectively outputs the driving force from any output shaft, a simple flow power transmission path that directly outputs the driving force from the input shaft to one output shaft, and an input Combined with a complex flow power transmission path that outputs driving force from the shaft through both output shafts, the limited number of gears can be used effectively, avoiding an increase in the size of the skeleton and increasing to 10 stages. A transmission (see FIG. 25) having a multistage structure is known from Patent Document 1 below.
ドイツ特許公開公報 DE 10 2011 117 046 A1 号German Patent Publication No. DE 10 2011 2011 117 046 A1
 ところで、変速機の変速には、連続する変速段間で変速する順次変速と、連続しない変速段間で変速する飛び変速とがあり、飛び変速には、例えば1速変速段から2速変速段を飛ばして3速変速段に変速する1段飛び変速や、1速変速段から2速変速段および3速変速段を飛ばして4速変速段に変速する2段飛び変速等がある。 By the way, the shift of the transmission includes a sequential shift that shifts between consecutive shift stages and a jump shift that shifts between non-continuous shift stages. There is a one-step jump shift that shifts to the third speed shift step and the two-step jump shift that shifts from the first speed shift step to the second speed shift step and the third speed shift step to the fourth speed shift step.
 デュアルクラッチ式の変速機の一種である上記従来の変速機は、順次変速を行う場合に予め次変速段をプリシフトした状態で2個の摩擦クラッチを掴み換えすることで、トルク抜けのない変速が可能になる。しかしながら、トルク抜けのない飛び変速を行おうとした場合、現変速段から目標変速段に直接飛び変速することができず、多くの場合に現変速段から目標変速段に変速する過程で複数の仮変速段を経由してトルク抜けを防止しながら変速する必要が生じてしまい(多ステップ変速)、そのために変速応答性が低下する問題がある。 The conventional transmission, which is a type of dual clutch transmission, can shift without torque loss by shifting two friction clutches in a state where the next shift stage is pre-shifted in advance when performing sequential shifts. It becomes possible. However, if a jump shift without torque loss is attempted, it is not possible to jump directly from the current shift stage to the target shift stage, and in many cases, a plurality of temporary shifts are required in the process of shifting from the current shift stage to the target shift stage. There is a need to shift while preventing torque loss via the shift speed (multi-step shift), and there is a problem that shift response is reduced.
 本発明は前述の事情に鑑みてなされたもので、小型化および多段化を図りながら飛び変速時の多ステップ化を極力回避可能な変速機を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a transmission capable of avoiding as many steps as possible during a jump shift while miniaturizing and increasing the number of stages.
 上記目的を達成するために、本発明によれば、駆動源からの駆動力が入力される入力軸と、前記入力軸と同軸に配置されて第1摩擦係合装置を介して該入力軸に結合可能な第1副入力軸と、前記入力軸と同軸に配置されて第2摩擦係合装置を介して該入力軸に結合可能な第2副入力軸と、前記入力軸と同軸に配置されて第3摩擦係合装置を介して該入力軸に結合可能な第3副入力軸と、前記第1副入力軸に固設された第1入力ギヤおよび第2入力ギヤと、前記第2副入力軸に固設された第3入力ギヤと、前記第3副入力軸に固設された第4入力ギヤと、前記入力軸と平行に配置された第1出力軸および第2出力軸と、前記第1出力軸と同軸に配置されて第1係合装置を介して該第1出力軸に結合可能な第1副出力軸と、前記第2出力軸と同軸に配置されて第2係合装置を介して該第2出力軸に結合可能な第2副出力軸と、前記第1副出力軸に相対回転自在に支持されて第1出力係合装置を介して該第1副出力軸に結合可能な第1出力ギヤと、前記第1副出力軸に相対回転自在に支持されて第2出力係合装置を介して該第1副出力軸に結合可能な第2出力ギヤと、前記第2副出力軸に相対回転自在に支持されて第3出力係合装置を介して該第2副出力軸に結合可能な第3出力ギヤと、前記第2副出力軸に相対回転自在に支持されて第4出力係合装置を介して該第2副出力軸に結合可能な第4出力ギヤと、前記第2副出力軸に固設された第5出力ギヤと、前記第1出力軸および前記第2出力軸にそれぞれ設けられた最終出力ギヤとを備え、前記第1入力ギヤは前記第1出力ギヤに噛合し、前記第2入力ギヤは前記第3出力ギヤに噛合し、前記第3入力ギヤは前記第2出力ギヤおよび前記第4出力ギヤに噛合し、前記第4入力ギヤは前記第5出力ギヤに噛合することを第1の特徴とする変速機が提案される。 In order to achieve the above object, according to the present invention, an input shaft to which a driving force from a driving source is input, and the input shaft that is arranged coaxially with the input shaft via the first friction engagement device. A first sub-input shaft that can be coupled, a second sub-input shaft that is disposed coaxially with the input shaft and that can be coupled to the input shaft via a second friction engagement device, and is disposed coaxially with the input shaft. A third sub-input shaft that can be coupled to the input shaft via a third friction engagement device, a first input gear and a second input gear fixed to the first sub-input shaft, and the second sub-input gear. A third input gear fixed to the input shaft, a fourth input gear fixed to the third sub-input shaft, a first output shaft and a second output shaft arranged in parallel with the input shaft, A first sub-output shaft disposed coaxially with the first output shaft and connectable to the first output shaft via a first engagement device; and the same as the second output shaft And a second sub output shaft that can be coupled to the second output shaft via a second engagement device, and is supported by the first sub output shaft so as to be relatively rotatable, via the first output engagement device. A first output gear that can be coupled to the first sub output shaft, and a first output gear that is rotatably supported by the first sub output shaft and can be coupled to the first sub output shaft via a second output engagement device. A second output gear, a third output gear supported relative to the second secondary output shaft so as to be relatively rotatable, and coupled to the second secondary output shaft via a third output engagement device; and the second secondary output A fourth output gear supported relative to the shaft and capable of being coupled to the second secondary output shaft via a fourth output engagement device; and a fifth output gear fixed to the second secondary output shaft; A final output gear provided on each of the first output shaft and the second output shaft, and the first input gear meshes with the first output gear. The second input gear meshes with the third output gear, the third input gear meshes with the second output gear and the fourth output gear, and the fourth input gear meshes with the fifth output gear. A transmission having the first feature is proposed.
 また本発明によれば、前記第1の特徴に加えて、前記第1副出力軸に相対回転自在に支持されて第5出力係合装置を介して該第1副出力軸に結合可能な第6出力ギヤを備え、前記第4入力ギヤは前記第6出力ギヤに噛合し、前記第5出力ギヤは前記第2副出力軸に相対回転自在に支持されて第6出力係合装置を介して該第2副出力軸に結合可能であることを第2の特徴とする変速機が提案される。 According to the invention, in addition to the first feature, a first auxiliary output shaft that is rotatably supported by the first sub output shaft and can be coupled to the first sub output shaft via a fifth output engagement device. 6 output gears, the fourth input gear meshes with the sixth output gear, and the fifth output gear is supported by the second auxiliary output shaft so as to be relatively rotatable, via a sixth output engagement device. A transmission having the second feature of being capable of being coupled to the second auxiliary output shaft is proposed.
 また本発明によれば、前記第2の特徴に加えて、前記第2副入力軸に固設された第5入力ギヤと、前記第1副出力軸に相対回転自在に支持されて第7出力係合装置を介して該第1副出力軸に結合可能な第7出力ギヤと、前記第2副出力軸に相対回転自在に支持されて第8出力係合装置を介して該第2副出力軸に結合可能な第8出力ギヤとを備え、前記第5入力ギヤは前記第7出力ギヤおよび前記第8出力ギヤに噛合することを第3の特徴とする変速機が提案される。 According to the invention, in addition to the second feature, a fifth input gear fixed to the second sub-input shaft and a seventh output supported by the first sub-output shaft are rotatably supported relative to each other. A seventh output gear that can be coupled to the first sub output shaft via an engagement device; and a second sub output that is supported by the second sub output shaft so as to be relatively rotatable. An eighth output gear that can be coupled to a shaft is provided, and a transmission is proposed in which the fifth input gear meshes with the seventh output gear and the eighth output gear.
 尚、実施の形態のエンジンPは本発明の駆動源に対応し、実施の形態の第1摩擦クラッチCL1~第3摩擦クラッチCL3はそれぞれ本発明の第1~第3摩擦係合装置に対応し、実施の形態のシンクロ装置A1およびシンクロ装置A2はそれぞれ本発明の第1係合装置および第2係合装置に対応し、実施の形態のシンクロ装置B1は本発明の第1出力係合装置に対応し、実施の形態のシンクロ装置C1およびシンクロ装置C2はそれぞれ本発明の第2出力係合装置および第4出力係合装置に対応し、実施の形態のシンクロ装置Dは本発明の第3出力係合装置に対応し、実施の形態のシンクロ装置E1およびシンクロ装置E2はそれぞれ本発明の第5出力係合装置および第6出力係合装置に対応し、実施の形態のシンクロ装置F1およびシンクロ装置F2はそれぞれ本発明の第7出力係合装置および第8出力係合装置に対応し、実施の形態の第1ファイナルドライブギヤGf1および第2ファイナルドライブギヤGf2は本発明の最終出力ギヤに対応する。 The engine P of the embodiment corresponds to the drive source of the present invention, and the first friction clutch CL1 to the third friction clutch CL3 of the embodiment correspond to the first to third friction engagement devices of the present invention, respectively. The synchronizing device A1 and the synchronizing device A2 of the embodiment correspond to the first engaging device and the second engaging device of the present invention, respectively, and the synchronizing device B1 of the embodiment corresponds to the first output engaging device of the present invention. Correspondingly, the synchronizing device C1 and the synchronizing device C2 of the embodiment respectively correspond to the second output engaging device and the fourth output engaging device of the present invention, and the synchronizing device D of the embodiment corresponds to the third output of the present invention. Corresponding to the engaging device, the synchronizing device E1 and the synchronizing device E2 of the embodiment correspond to the fifth output engaging device and the sixth output engaging device of the present invention, respectively, and the synchronizing device F1 and the synchronizing device of the embodiment. The device F2 corresponds to the seventh output engagement device and the eighth output engagement device of the present invention, respectively, and the first final drive gear Gf1 and the second final drive gear Gf2 of the embodiment are the final output gear of the present invention. Correspond.
 本発明の第1の特徴によれば、相互に同軸に配置されて入力軸の駆動力が第1~第3摩擦係合装置を介して入力される第1~第3副入力軸と、第1出力軸に駆動力を出力する第1副出力軸と、第2出力軸に駆動力を出力する第2副出力軸とを平行3軸に配置し、それら3軸間を接続する第1~第4入力ギヤおよび第1~第5出力ギヤよりなる動力伝達経路を第1~第3摩擦係合装置、第1、第2係合装置および第1~第4出力係合装置で切り換えるので、合計9個のギヤで最大11段の前進変速段を確立可能となり、各ギヤの歯数の設定により、前進11段の変速段のうちから前進8段の有効変速段を選択することで、少ないギヤ数で前進8段への多段化が可能となる。 According to the first aspect of the present invention, the first to third auxiliary input shafts arranged coaxially with each other and receiving the driving force of the input shaft via the first to third friction engagement devices, A first sub-output shaft that outputs a driving force to one output shaft and a second sub-output shaft that outputs a driving force to a second output shaft are arranged on three parallel axes, and the first to third shafts connecting these three axes are connected. Since the power transmission path composed of the fourth input gear and the first to fifth output gears is switched between the first to third friction engagement devices, the first and second engagement devices, and the first to fourth output engagement devices, It is possible to establish a maximum of 11 forward shift speeds with a total of 9 gears, and by selecting the effective forward speed of 8 forward speeds from among the 11 forward shift speeds by setting the number of teeth of each gear, there are few The number of gears can be increased to 8 forward stages.
 また通常のデュアルクラッチ式の変速機では、駆動源の駆動力が第1入力軸および第2入力軸の2系統に選択的に入力されるが、本発明では駆動源の駆動力が第1副入力軸~第3副入力軸の3系統に選択的に入力されるために変速時のインターロックが発生し難くなり、飛び変速時の多ステップ化を抑制して変速応答性を高めることができる。しかも通常のデュアルクラッチ式の変速機に対して摩擦係合装置の数が2個から3個に増加するので、現変速段で係合する摩擦係合装置と目標変速段で係合する摩擦係合装置とが一致してしまう確率が減少し、トルク抜けを発生させずにクラッチtoクラッチ変速が可能になる確率が増加することで、飛び変速時の多ステップ化を一層効果的に抑制して変速応答性を高めることができる。 In a normal dual clutch transmission, the driving force of the driving source is selectively input to the two systems of the first input shaft and the second input shaft. In the present invention, the driving force of the driving source is the first auxiliary shaft. Since it is selectively input to the three systems of the input shaft to the third auxiliary input shaft, it becomes difficult to generate an interlock at the time of gear shifting, and it is possible to improve the gear shifting responsiveness by suppressing multi-steps at the time of jump gear shifting. . Moreover, since the number of friction engagement devices is increased from two to three with respect to a normal dual clutch transmission, the friction engagement device engaged at the current gear stage and the friction engagement device engaged at the target gear stage. The probability of matching with the combined device decreases, and the probability that clutch-to-clutch shift can be performed without causing torque loss increases, thereby effectively suppressing the multi-step at the time of jump shift. Shift response can be improved.
 また本発明の第2の特徴によれば、第1副出力軸に相対回転自在に支持されて第5出力係合装置を介して該第1副出力軸に結合可能な第6出力ギヤを備え、第4入力ギヤは第6出力ギヤに噛合し、第5出力ギヤは第2副出力軸に相対回転自在に支持されて第6出力係合装置を介して該第2副出力軸に結合可能であるので、第5、第6出力係合装置および第6出力ギヤを追加することで、本発明の第1の特徴の作用効果を発揮しながら前進10段の変速機を得ることができる。 According to a second aspect of the present invention, there is provided a sixth output gear that is rotatably supported by the first sub output shaft and can be coupled to the first sub output shaft via a fifth output engagement device. The fourth input gear meshes with the sixth output gear, and the fifth output gear is rotatably supported by the second sub output shaft and can be coupled to the second sub output shaft via the sixth output engagement device. Therefore, by adding the fifth and sixth output engagement devices and the sixth output gear, it is possible to obtain a forward 10-speed transmission while exhibiting the function and effect of the first feature of the present invention.
 また本発明の第3の特徴によれば、第2副入力軸に固設された第5入力ギヤと、第1副出力軸に相対回転自在に支持されて第7出力係合装置を介して該第1副出力軸に結合可能な第7出力ギヤと、第2副出力軸に相対回転自在に支持されて第8出力係合装置を介して該第2副出力軸に結合可能な第8出力ギヤとを備え、第5入力ギヤは第7出力ギヤおよび第8出力ギヤに噛合するので、第7、第8出力係合装置、第5入力ギヤおよび第7、第8出力ギヤを追加することで、本発明の第2の特徴の作用効果を発揮しながら前進13段の変速機を得ることができる。 According to the third aspect of the present invention, the fifth input gear fixed to the second sub-input shaft and the first sub-output shaft are supported so as to be rotatable relative to each other via the seventh output engagement device. A seventh output gear that can be coupled to the first sub-output shaft; and an eighth gear that is rotatably supported by the second sub-output shaft and can be coupled to the second sub-output shaft via an eighth output engagement device. An output gear, and the fifth input gear meshes with the seventh output gear and the eighth output gear, so the seventh and eighth output engagement devices, the fifth input gear, and the seventh and eighth output gears are added. Thus, a forward 13-speed transmission can be obtained while exhibiting the operational effects of the second feature of the present invention.
図1は前進8段の変速機のスケルトン図である。(第1の実施の形態)FIG. 1 is a skeleton diagram of a forward eight-stage transmission. (First embodiment) 図2は図1の軸方向矢視図である。(第1の実施の形態)FIG. 2 is a view in the axial direction of FIG. (First embodiment) 図3は各入力ギヤおよび各出力ギヤの歯数を示す図である。(第1の実施の形態)FIG. 3 is a diagram showing the number of teeth of each input gear and each output gear. (First embodiment) 図4は各変速段のレシオおよび各変速段の公比を示す図である。(第1の実施の形態)FIG. 4 is a diagram showing the ratio of each gear and the common ratio of each gear. (First embodiment) 図5は摩擦クラッチおよびシンクロ装置の係合表である。(第1の実施の形態)FIG. 5 is an engagement table of the friction clutch and the synchro device. (First embodiment) 図6は1速変速段→2速変速段の順次変速過程の説明図である。(第1の実施の形態)FIG. 6 is an explanatory diagram of the sequential shift process from the first gear to the second gear. (First embodiment) 図7は2速変速段→3速変速段の順次変速過程の説明図である。(第1の実施の形態)FIG. 7 is an explanatory diagram of the sequential shift process from the second gear stage to the third gear stage. (First embodiment) 図8は3速変速段→4速変速段の順次変速過程の説明図である。(第1の実施の形態)FIG. 8 is an explanatory diagram of the sequential shift process from the third speed shift stage to the fourth speed shift stage. (First embodiment) 図9は4速変速段→5速変速段の順次変速過程の説明図である。(第1の実施の形態)FIG. 9 is an explanatory diagram of the sequential shift process from the fourth speed shift stage to the fifth speed shift stage. (First embodiment) 図10は5速変速段→6速変速段の順次変速過程の説明図である。(第1の実施の形態)FIG. 10 is an explanatory diagram of the sequential shift process from the fifth gear to the sixth gear. (First embodiment) 図11は6速変速段→7速変速段の順次変速過程の説明図である。(第1の実施の形態)FIG. 11 is an explanatory diagram of the sequential shift process from the sixth speed shift stage to the seventh speed shift stage. (First embodiment) 図12は7速変速段→8速変速段の順次変速過程の説明図である。(第1の実施の形態)FIG. 12 is an explanatory diagram of the sequential shift process from the seventh gear to the eighth gear. (First embodiment) 図13は1速変速段→リバース変速段の変速過程の説明図である。(第1の実施の形態)FIG. 13 is an explanatory diagram of the shift process from the first gear to the reverse gear. (First embodiment) 図14は従来例および実施の形態の各変速段のギヤ噛み合い数を示す図である。(第1の実施の形態)FIG. 14 is a diagram showing the number of gear meshes at each shift stage according to the conventional example and the embodiment. (First embodiment) 図15は各変速段の簡略なトルクフローを示す図である。(第1の実施の形態)FIG. 15 is a diagram showing a simplified torque flow at each gear stage. (First embodiment) 図16は3個の摩擦クラッチを設けたことの効果の説明図である。(第1の実施の形態)FIG. 16 is an explanatory view of the effect of providing three friction clutches. (First embodiment) 図17は実施の形態の飛び変速のステップ数を示す図である。(第1の実施の形態)FIG. 17 is a diagram illustrating the number of steps of the jump shift according to the embodiment. (First embodiment) 図18は従来例の飛び変速のステップ数を示す図である。(第1の実施の形態)FIG. 18 is a diagram showing the number of steps of the conventional jump shift. (First embodiment) 図19は前進10段の変速機のスケルトン図である。(第2の実施の形態)FIG. 19 is a skeleton diagram of a 10-speed forward transmission. (Second Embodiment) 図20は各変速段の簡略なトルクフローを示す図である。(第2の実施の形態)FIG. 20 is a diagram showing a simplified torque flow at each gear stage. (Second Embodiment) 図21は前進13段の変速機のスケルトン図である。(第3の実施の形態)FIG. 21 is a skeleton diagram of a 13-stage forward transmission. (Third embodiment) 図22は各変速段の簡略なトルクフローを示す図である。(第3の実施の形態)FIG. 22 is a diagram showing a simplified torque flow at each gear stage. (Third embodiment) 図23は前進9段の変速機のスケルトン図である。(第4の実施の形態)FIG. 23 is a skeleton diagram of a 9-speed forward transmission. (Fourth embodiment) 図24は各変速段の簡略なトルクフローを示す図である。(第4の実施の形態)FIG. 24 is a diagram showing a simplified torque flow at each gear stage. (Fourth embodiment) 図25は前進10段の変速機のスケルトン図である。(従来例)FIG. 25 is a skeleton diagram of a 10-speed forward transmission. (Conventional example)
CL1    第1摩擦クラッチ(第1摩擦係合装置)
CL2    第2摩擦クラッチ(第2摩擦係合装置)
CL3    第3摩擦クラッチ(第3摩擦係合装置)
Im    入力軸
Is1   第1副入力軸
Is2   第2副入力軸
Is3   第3副入力軸
Om1   第1出力軸
Om2   第2出力軸
Os1   第1副出力軸
Os2   第2副出力軸
P     エンジン(駆動源)
A1    シンクロ装置(第1係合装置)
A2    シンクロ装置(第2係合装置)
B1    シンクロ装置(第1出力係合装置)
C1    シンクロ装置(第2出力係合装置)
C2    シンクロ装置(第4出力係合装置)
D     シンクロ装置(第3出力係合装置)
E1    シンクロ装置(第5出力係合装置)
E2    シンクロ装置(第6出力係合装置)
F1    シンクロ装置(第7出力係合装置)
F2    シンクロ装置(第8出力係合装置)
Gi1   第1入力ギヤ
Gi2   第2入力ギヤ
Gi3   第3入力ギヤ
Gi4   第4入力ギヤ
Gi5   第5入力ギヤ
Go1   第1出力ギヤ
Go2   第2出力ギヤ
Go3   第3出力ギヤ
Go4   第4出力ギヤ
Go5   第5出力ギヤ
Go6   第6出力ギヤ
Go7   第7出力ギヤ
Go8   第8出力ギヤ
Gf1   第1ファイナルドライブギヤ(最終出力ギヤ)
Gf2   第2ファイナルドライブギヤ(最終出力ギヤ)
CL1 first friction clutch (first friction engagement device)
CL2 second friction clutch (second friction engagement device)
CL3 third friction clutch (third friction engagement device)
Im input shaft Is1 first sub input shaft Is2 second sub input shaft Is3 third sub input shaft Om1 first output shaft Om2 second output shaft Os1 first sub output shaft Os2 second sub output shaft P engine (drive source)
A1 Synchro device (first engagement device)
A2 Synchro device (second engagement device)
B1 Synchro device (first output engagement device)
C1 Synchro device (second output engagement device)
C2 synchro device (fourth output engagement device)
D Synchro device (third output engagement device)
E1 Synchro device (Fifth output engagement device)
E2 synchro device (sixth output engagement device)
F1 synchro device (seventh output engagement device)
F2 synchro device (8th output engagement device)
Gi1 1st input gear Gi2 2nd input gear Gi3 3rd input gear Gi4 4th input gear Gi5 5th input gear Go1 1st output gear Go2 2nd output gear Go3 3rd output gear Go4 4th output gear Go5 5th output gear Go6 6th output gear Go7 7th output gear Go8 8th output gear Gf1 1st final drive gear (final output gear)
Gf2 Second final drive gear (final output gear)
 以下、添付図面に基づいて、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
第1の実施の形態First embodiment
 先ず、図1~図18に基づいて本発明の第1の実施の形態を説明する。 First, a first embodiment of the present invention will be described with reference to FIGS.
 図1および図2に示すように、本実施の形態の前進8段のトリプルクラッチ式の変速機Tは、エンジンPのクランクシャフトである入力軸Imに第1摩擦クラッチCL1を介して接続された第1副入力軸Is1と、第1副入力軸Is1の外周に相対回転自在に嵌合して入力軸Imに第2摩擦クラッチCL2を介して接続された第2副入力軸Is2と、第2副入力軸Is2の外周に相対回転自在に嵌合して入力軸Imに第3摩擦クラッチCL3を介して接続された第3副入力軸Is3とを備える。第1摩擦クラッチCL1、第2摩擦クラッチCL2および第3摩擦クラッチCL3は、第1副入力軸Is1、第2副入力軸Is2および第3副入力軸Is3の軸端と入力軸Imの軸端との間に一纏めにして配置される。 As shown in FIGS. 1 and 2, the eight-step forward triple clutch transmission T of the present embodiment is connected to an input shaft Im, which is a crankshaft of the engine P, via a first friction clutch CL1. A first sub input shaft Is1, a second sub input shaft Is2 fitted to the outer periphery of the first sub input shaft Is1 so as to be relatively rotatable and connected to the input shaft Im via a second friction clutch CL2, and a second And a third sub input shaft Is3 which is fitted to the outer periphery of the sub input shaft Is2 so as to be relatively rotatable and is connected to the input shaft Im via a third friction clutch CL3. The first friction clutch CL1, the second friction clutch CL2, and the third friction clutch CL3 include shaft ends of the first sub input shaft Is1, the second sub input shaft Is2, and the third sub input shaft Is3 and the shaft end of the input shaft Im. Are arranged together.
 第1副入力軸Is1、第2副入力軸Is2および第3副入力軸Is3に対して第1出力軸Om1および第2出力軸Om2が平行に配置されており、第1出力軸Om1の外周に第1副出力軸Os1が相対回転自在に嵌合するとともに、第2出力軸Om2の外周に第2副出力軸Os2が相対回転自在に嵌合する。 The first output shaft Om1 and the second output shaft Om2 are arranged in parallel to the first sub input shaft Is1, the second sub input shaft Is2, and the third sub input shaft Is3, and are arranged on the outer periphery of the first output shaft Om1. The first sub output shaft Os1 is fitted so as to be relatively rotatable, and the second sub output shaft Os2 is fitted to the outer periphery of the second output shaft Om2 so as to be relatively rotatable.
 第1副入力軸Is1に第1入力ギヤGi1および第2入力ギヤGi2が固設され、第2副入力軸Is2に第3入力ギヤGi3が固設され、第3副入力軸Is3に第4入力ギヤGi4が固設される。 The first input gear Gi1 and the second input gear Gi2 are fixed to the first sub input shaft Is1, the third input gear Gi3 is fixed to the second sub input shaft Is2, and the fourth input to the third sub input shaft Is3. The gear Gi4 is fixed.
 第1入力ギヤGi1は、第1副出力軸Os1に相対回転自在に支持した第1出力ギヤGo1に噛合し、第2入力ギヤGi2は、第2副出力軸Os2に相対回転自在に支持した第3出力ギヤGo3に噛合し、第3入力ギヤGi3は、第1副出力軸Os1に相対回転自在に支持した第2出力ギヤGo2と第2副出力軸Os2に相対回転自在に支持した第4出力ギヤGo4とに噛合し、第4入力ギヤGi4は、第2副出力軸Os2に固設した第5出力ギヤGo5に噛合する。また第1副出力軸Os1に相対回転自在に支持したリバースドライブギヤGr1が、第2副出力軸Os2に固設したリバースドリブンギヤGr2に噛合する。 The first input gear Gi1 meshes with the first output gear Go1 supported relative to the first auxiliary output shaft Os1, and the second input gear Gi2 is supported relative to the second auxiliary output shaft Os2. The third output gear Go3 meshes with the third output gear Go3, and the third input gear Gi3 is supported on the first sub output shaft Os1 so as to be relatively rotatable, and the fourth output is supported on the second sub output shaft Os2. The fourth input gear Gi4 meshes with the gear Go4, and the fourth input gear Gi4 meshes with the fifth output gear Go5 fixed to the second sub output shaft Os2. Further, the reverse drive gear Gr1 that is rotatably supported by the first sub output shaft Os1 meshes with the reverse driven gear Gr2 that is fixed to the second sub output shaft Os2.
 第1出力軸Om1と第1副出力軸Os1とはシンクロ装置A1により結合可能であり、第1出力ギヤGo1はシンクロ装置B1を介して第1副出力軸Os1に結合可能であり、第2出力ギヤGo2はシンクロ装置C1を介して第1副出力軸Os1に結合可能であり、リバースドライブギヤGr1はシンクロ装置B2を介して第1副出力軸Os1に結合可能である。また第2出力軸Om2と第2副出力軸Os2とはシンクロ装置A2により結合可能であり、第3出力ギヤGo3はシンクロ装置Dを介して第2副出力軸Os2に結合可能であり、第4出力ギヤGo4はシンクロ装置C2を介して第2副出力軸Os2に結合可能である。 The first output shaft Om1 and the first sub output shaft Os1 can be coupled by the synchronizer A1, and the first output gear Go1 can be coupled to the first sub output shaft Os1 via the synchronizer B1, and the second output The gear Go2 can be coupled to the first secondary output shaft Os1 via the synchronization device C1, and the reverse drive gear Gr1 can be coupled to the first secondary output shaft Os1 via the synchronization device B2. Further, the second output shaft Om2 and the second sub output shaft Os2 can be coupled by the synchronizer A2, and the third output gear Go3 can be coupled to the second sub output shaft Os2 via the synchronizer D. The output gear Go4 can be coupled to the second auxiliary output shaft Os2 via the synchronizer C2.
 シンクロ装置A1およびシンクロ装置A2は共通の油圧アクチュエータで作動するもので、油圧アクチュエータの右動によりシンクロ装置A1が作動して第1出力軸Om1および第1副出力軸Os1が結合され、油圧アクチュエータの左動によりシンクロ装置A2が作動して第2出力軸Om2および第2副出力軸Os2が結合される。 The synchronizer A1 and the synchronizer A2 are operated by a common hydraulic actuator, and the synchronizer A1 is operated by the right movement of the hydraulic actuator, the first output shaft Om1 and the first sub output shaft Os1 are coupled, and the hydraulic actuator The left-hand movement activates the synchronizer A2 to couple the second output shaft Om2 and the second auxiliary output shaft Os2.
 シンクロ装置B1およびシンクロ装置B2は共通の油圧アクチュエータで作動するもので、油圧アクチュエータの左動によりシンクロ装置B1が作動して第1出力ギヤGo1が第1副出力軸Os1に結合され、油圧アクチュエータの右動によりシンクロ装置B2が作動してリバースドライブギヤGr1が第1副出力軸Os1に結合される。 The synchronizer B1 and the synchronizer B2 are operated by a common hydraulic actuator. When the hydraulic actuator is moved to the left, the synchronizer B1 is operated to couple the first output gear Go1 to the first sub output shaft Os1. The right-hand movement activates the synchronizer B2 to couple the reverse drive gear Gr1 to the first auxiliary output shaft Os1.
 シンクロ装置C1およびシンクロ装置C2は共通の油圧アクチュエータで作動するもので、油圧アクチュエータの右動によりシンクロ装置C1が作動して第2出力ギヤGo2が第1副出力軸Os1に結合され、油圧アクチュエータの左動によりシンクロ装置C2が作動して第4出力ギヤGo4が第2副出力軸Os2に結合される。 The synchronizer C1 and the synchronizer C2 are operated by a common hydraulic actuator. The synchronizer C1 is activated by the right movement of the hydraulic actuator, the second output gear Go2 is coupled to the first sub output shaft Os1, and the hydraulic actuator The left-hand movement activates the synchronizer C2, and the fourth output gear Go4 is coupled to the second auxiliary output shaft Os2.
 第1出力軸Om1に固設した第1ファイナルドライブギヤGf1と、第2出力軸Om2に固設した第2ファイナルドライブギヤGf2とが、左右の駆動輪W,Wに駆動力を配分するディファレンシャルギヤGdのケースに固設したファイナルドリブンギヤGfに噛合する。 A differential gear in which a first final drive gear Gf1 fixed to the first output shaft Om1 and a second final drive gear Gf2 fixed to the second output shaft Om2 distribute driving force to the left and right drive wheels W, W. It meshes with a final driven gear Gf fixed to the case of Gd.
 このような骨格を備えた変速機Tは、第1摩擦クラッチCL1~第3摩擦クラッチCL3の選択的な係合と、7個のシンクロ装置A1,A2,B1,B2,C1,C2,Dの選択的な係合との組み合わせにより最大で合計11段の前進変速段を確立可能であるが、本実施の形態では、合計11段の前進変速段のうちから合計8段の前進変速段を選択して使用する。 The transmission T having such a skeleton has the selective engagement of the first friction clutch CL1 to the third friction clutch CL3 and the seven synchronizing devices A1, A2, B1, B2, C1, C2, D. A total of 11 forward shift stages can be established in combination with selective engagement, but in this embodiment, a total of 8 forward shift stages are selected from a total of 11 forward shift stages. And use it.
 図3には、第1入力ギヤGi1~第4入力ギヤGi4および第1出力ギヤGo1~第5出力ギヤGo5の歯数と、それらのうちの相互に噛合するギヤの歯数比とが示される。図4(A)および図4(B)には、上記歯数設定により達成される1速変速段~8速変速段のレシオと、隣接する変速段間の公比とが示されており、1速変速段~8速変速段のレシオが適切な間隔で配分されていることが分かる。 FIG. 3 shows the number of teeth of the first input gear Gi1 to the fourth input gear Gi4 and the first output gear Go1 to the fifth output gear Go5, and the ratio of the number of teeth of the meshing gears among them. . FIG. 4 (A) and FIG. 4 (B) show the ratio of the first gear to the eighth gear achieved by setting the number of teeth and the common ratio between adjacent gears. It can be seen that the ratios of the 1st to 8th gears are distributed at appropriate intervals.
 図5は第1摩擦クラッチCL1~第3摩擦クラッチCL3および7個のシンクロ装置A1,A2,B1,B2,C1,C2,Dの係合表であり、各変速段で係合する摩擦クラッチおよびシンクロ装置が○印で示される。図6~図12は1速変速段~8速変速段の順次アップシフトの過程の説明図であり、また図13は1速変速段からリバース変速段への変速過程の説明図であり、そこでは係合しているシンクロ装置が黒塗りで示され、係合解除しているシンクロ装置が白抜きで示される。 FIG. 5 is an engagement table of the first to third friction clutches CL1 to CL3 and the seven synchro devices A1, A2, B1, B2, C1, C2, and D. The synchro device is indicated by a circle. 6 to 12 are explanatory diagrams of the process of sequential upshifting from the first gear to the eighth gear, and FIG. 13 is an explanatory diagram of the gear shifting process from the first gear to the reverse gear. The engaged sync device is shown in black and the disengaged sync device is shown in white.
 以下、ニュートラル変速段、1速変速段~8速変速段およびリバース変速段のトルクフローを順番に説明する。 Hereinafter, the torque flow of the neutral gear, the first gear to the eighth gear, and the reverse gear will be described in order.
 <ニュートラル変速段>
 ニュートラル変速段では、本来ならば全てのシンクロ装置を係合解除することが可能であるが、本実施の形態では、シンクロ装置A1およびシンクロ装置Dを敢えて係合する。その理由は、シンクロ装置A1およびシンクロ装置Dがニュートラル変速段を挟む1速変速段およびリバース変速段の両方で係合するため、ニュートラル変速段でもシンクロ装置A1およびシンクロ装置Dを係合状態に維持することで、1速変速段およびリバース変速段間の変速を速やかに行うためである。
<Neutral gear>
At the neutral gear stage, it is possible to disengage all of the synchro devices originally, but in the present embodiment, the synchro devices A1 and D are intentionally engaged. The reason is that the synchronizing device A1 and the synchronizing device D are engaged at both the first gear and the reverse gear that sandwich the neutral gear, so that the synchronizing device A1 and the synchronizing device D are kept engaged even at the neutral gear. This is because the speed change between the first gear and the reverse gear is quickly performed.
 <1速変速段>
 1速変速段の確立時には、第3摩擦クラッチCL3が係合し、シンクロ装置A1、シンクロ装置B1およびシンクロ装置Dが係合する。その結果、図6(A)から明らかなように、エンジンPの駆動力は、入力軸Im→第3摩擦クラッチCL3→第3副入力軸Is3→第4入力ギヤGi4→第5出力ギヤGo5→第2副出力軸Os2→シンクロ装置D→第3出力ギヤGo3→第2入力ギヤGi2→第1副入力軸Is1→第1入力ギヤGi1→第1出力ギヤGo1→シンクロ装置B1→第1副出力軸Os1→シンクロ装置A1→第1出力軸Om1→第1ファイナルドライブギヤGf1→ファイナルドリブンギヤGf→ディファレンシャルギヤGdの経路で駆動輪W,Wに伝達される。
<1st gear stage>
When the first gear is established, the third friction clutch CL3 is engaged, and the synchronization device A1, the synchronization device B1, and the synchronization device D are engaged. As a result, as apparent from FIG. 6 (A), the driving force of the engine P is: input shaft Im → third friction clutch CL3 → third auxiliary input shaft Is3 → fourth input gear Gi4 → fifth output gear Go5 → Second sub output shaft Os2 → Synchronizer D → Third output gear Go3 → Second input gear Gi2 → First sub input shaft Is1 → First input gear Gi1 → First output gear Go1 → Synchronizer B1 → First sub output It is transmitted to the drive wheels W, W through the path of the shaft Os1, the synchronizer A1, the first output shaft Om1, the first final drive gear Gf1, the final driven gear Gf, and the differential gear Gd.
 <2速変速段>
 2速変速段の確立時には、第2摩擦クラッチCL2が係合し、シンクロ装置A1、シンクロ装置B1、シンクロ装置C2およびシンクロ装置Dが係合する。その結果、図7(A)から明らかなように、エンジンPの駆動力は、入力軸Im→第2摩擦クラッチCL2→第2副入力軸Is2→第3入力ギヤGi3→第4出力ギヤGo4→シンクロ装置C2→第2副出力軸Os2→シンクロ装置D→第3出力ギヤGo3→第2入力ギヤGi2→第1副入力軸Is1→第1入力ギヤGi1→第1出力ギヤGo1→シンクロ装置B1→第1副出力軸Os1→シンクロ装置A1→第1出力軸Om1→第1ファイナルドライブギヤGf1→ファイナルドリブンギヤGf→ディファレンシャルギヤGdの経路で駆動輪W,Wに伝達される。
<2nd gear stage>
When the second gear is established, the second friction clutch CL2 is engaged, and the synchronization device A1, the synchronization device B1, the synchronization device C2, and the synchronization device D are engaged. As a result, as is clear from FIG. 7A, the driving force of the engine P is such that the input shaft Im → second friction clutch CL2 → second auxiliary input shaft Is2 → third input gear Gi3 → fourth output gear Go4 → Sync device C2 → second sub output shaft Os2 → sync device D → third output gear Go3 → second input gear Gi2 → first sub input shaft Is1 → first input gear Gi1 → first output gear Go1 → sync device B1 → The first sub output shaft Os1, the synchronizer A1, the first output shaft Om1, the first final drive gear Gf1, the final driven gear Gf, and the differential gear Gd are transmitted to the drive wheels W and W.
 <3速変速段>
 3速変速段の確立時には、第1摩擦クラッチCL1が係合し、シンクロ装置A1およびシンクロ装置B1が係合する。その結果、図8(A)から明らかなように、エンジンPの駆動力は、入力軸Im→第1摩擦クラッチCL1→第1副入力軸Is1→第1入力ギヤGi1→第1出力ギヤGo1→シンクロ装置B1→第1副出力軸Os1→シンクロ装置A1→第1出力軸Om1→第1ファイナルドライブギヤGf1→ファイナルドリブンギヤGf→ディファレンシャルギヤGdの経路で駆動輪W,Wに伝達される。
<3rd gear stage>
When the third speed is established, the first friction clutch CL1 is engaged, and the synchronization device A1 and the synchronization device B1 are engaged. As a result, as is clear from FIG. 8A, the driving force of the engine P is as follows: input shaft Im → first friction clutch CL1 → first auxiliary input shaft Is1 → first input gear Gi1 → first output gear Go1 → It is transmitted to the drive wheels W and W through the path of the synchronizing device B1, the first auxiliary output shaft Os1, the synchronizing device A1, the first output shaft Om1, the first final drive gear Gf1, the final driven gear Gf, and the differential gear Gd.
 <4速変速段>
 4速変速段の確立時には、第2摩擦クラッチCL2が係合し、シンクロ装置A1およびシンクロ装置C1が係合する。その結果、図9(A)から明らかなように、エンジンPの駆動力は、入力軸Im→第2摩擦クラッチCL2→第2副入力軸Is2→第3入力ギヤGi3→第2出力ギヤGo2→シンクロ装置C1→第1副出力軸Os1→シンクロ装置A1→第1出力軸Om1→第1ファイナルドライブギヤGf1→ファイナルドリブンギヤGf→ディファレンシャルギヤGdの経路で駆動輪W,Wに伝達される。
<4th gear>
When the fourth speed is established, the second friction clutch CL2 is engaged, and the synchronization device A1 and the synchronization device C1 are engaged. As a result, as is apparent from FIG. 9A, the driving force of the engine P is as follows: input shaft Im → second friction clutch CL2 → second auxiliary input shaft Is2 → third input gear Gi3 → second output gear Go2 → It is transmitted to the drive wheels W and W through the path of the synchronizing device C1, the first auxiliary output shaft Os1, the synchronizing device A1, the first output shaft Om1, the first final drive gear Gf1, the final driven gear Gf, and the differential gear Gd.
 <5速変速段>
 5速変速段の確立時には、第3摩擦クラッチCL3が係合し、シンクロ装置A2が係合する。その結果、図10(A)から明らかなように、エンジンPの駆動力は、入力軸Im→第3摩擦クラッチCL3→第3副入力軸Is3→第4入力ギヤGi4→第5出力ギヤGo5→第2副出力軸Os2→シンクロ装置A2→第2出力軸Om2→第2ファイナルドライブギヤGf2→ファイナルドリブンギヤGf→ディファレンシャルギヤGdの経路で駆動輪W,Wに伝達される。
<5-speed shift stage>
When the fifth gear is established, the third friction clutch CL3 is engaged and the synchro device A2 is engaged. As a result, as is clear from FIG. 10A, the driving force of the engine P is such that the input shaft Im → the third friction clutch CL3 → the third auxiliary input shaft Is3 → the fourth input gear Gi4 → the fifth output gear Go5 → It is transmitted to the drive wheels W and W through the path of the second auxiliary output shaft Os2, the synchronizer A2, the second output shaft Om2, the second final drive gear Gf2, the final driven gear Gf, and the differential gear Gd.
 <6速変速段>
 6速変速段の確立時には、第2摩擦クラッチCL2が係合し、シンクロ装置A2およびシンクロ装置C2が係合する。その結果、図11(A)から明らかなように、エンジンPの駆動力は、入力軸Im→第2摩擦クラッチCL2→第2副入力軸Is2→第3入力ギヤGi3→第4出力ギヤGo4→シンクロ装置C2→第2副出力軸Os2→シンクロ装置A2→第2出力軸Om2→第2ファイナルドライブギヤGf2→ファイナルドリブンギヤGf→ディファレンシャルギヤGdの経路で駆動輪W,Wに伝達される。
<6-speed shift stage>
When the sixth speed is established, the second friction clutch CL2 is engaged, and the synchronization device A2 and the synchronization device C2 are engaged. As a result, as is clear from FIG. 11A, the driving force of the engine P is as follows: input shaft Im → second friction clutch CL2 → second auxiliary input shaft Is2 → third input gear Gi3 → fourth output gear Go4 → It is transmitted to the drive wheels W, W through the path of the synchronizing device C2, the second auxiliary output shaft Os2, the synchronizing device A2, the second output shaft Om2, the second final drive gear Gf2, the final driven gear Gf, and the differential gear Gd.
 <7速変速段>
 7速変速段の確立時には、第1摩擦クラッチCL1が係合し、シンクロ装置A2およびシンクロ装置Dが係合する。その結果、図12(A)から明らかなように、エンジンPの駆動力は、入力軸Im→第1摩擦クラッチCL1→第1副入力軸Is1→第2入力ギヤGi2→第3出力ギヤGo3→シンクロ装置D→第2副出力軸Os2→シンクロ装置A2→第2出力軸Om2→第2ファイナルドライブギヤGf2→ファイナルドリブンギヤGf→ディファレンシャルギヤGdの経路で駆動輪W,Wに伝達される。
<7-speed gear stage>
When the seventh speed is established, the first friction clutch CL1 is engaged, and the synchronization device A2 and the synchronization device D are engaged. As a result, as is clear from FIG. 12A, the driving force of the engine P is as follows: input shaft Im → first friction clutch CL1 → first auxiliary input shaft Is1 → second input gear Gi2 → third output gear Go3 → It is transmitted to the drive wheels W and W through the path of the synchronizing device D → second auxiliary output shaft Os2 → synchronizing device A2 → second output shaft Om2 → second final drive gear Gf2 → final driven gear Gf → differential gear Gd.
 <8速変速段>
 8速変速段の確立時には、第2摩擦クラッチCL2が係合し、シンクロ装置A2、シンクロ装置B1、シンクロ装置C1およびシンクロ装置Dが係合する。その結果、図12(D)から明らかなように、エンジンPの駆動力は、入力軸Im→第2摩擦クラッチCL2→第2副入力軸Is2→第3入力ギヤGi3→第2出力ギヤGo2→シンクロ装置C1→第1副出力軸Os1→シンクロ装置B1→第1出力ギヤGo1→第1入力ギヤGi1→第1副入力軸Is1→第2入力ギヤGi2→第3出力ギヤGo3→シンクロ装置D→第2副出力軸Os2→シンクロ装置A2→第2出力軸Om2→第2ファイナルドライブギヤGf2→ファイナルドリブンギヤGf→ディファレンシャルギヤGdの経路で駆動輪W,Wに伝達される。
<8-speed gear stage>
At the time of establishment of the eighth gear, the second friction clutch CL2 is engaged, and the synchronization device A2, the synchronization device B1, the synchronization device C1, and the synchronization device D are engaged. As a result, as apparent from FIG. 12 (D), the driving force of the engine P is: input shaft Im → second friction clutch CL2 → second auxiliary input shaft Is2 → third input gear Gi3 → second output gear Go2 → Synchronizer C1 → first auxiliary output shaft Os1 → synchronizer B1 → first output gear Go1 → first input gear Gi1 → first auxiliary input shaft Is1 → second input gear Gi2 → third output gear Go3 → synchronizer D → It is transmitted to the drive wheels W and W through the path of the second auxiliary output shaft Os2, the synchronizer A2, the second output shaft Om2, the second final drive gear Gf2, the final driven gear Gf, and the differential gear Gd.
 <リバース変速段>
 リバース変速段の確立時には、第1摩擦クラッチCL1が係合出力、シンクロ装置A1、シンクロ装置B2およびシンクロ装置Dが係合する。その結果、図13(D)から明らかなように、エンジンPの駆動力は、入力軸Im→第1摩擦クラッチCL1→第1副入力軸Is1→第2入力ギヤGi2→第3出力ギヤGo3→シンクロ装置D→第2副出力軸Os2→リバースドリブンギヤGr2→リバースドライブギヤGr1→シンクロ装置B2→第1副出力軸Os1→シンクロ装置A1→第1出力軸Om1→第1ファイナルドライブギヤGf1→ファイナルドリブンギヤGf→ディファレンシャルギヤGdの経路で、逆回転となって駆動輪W,Wに伝達される。
<Reverse gear>
When the reverse gear is established, the first friction clutch CL1 is engaged and the synchronizing device A1, the synchronizing device B2, and the synchronizing device D are engaged. As a result, as is clear from FIG. 13D, the driving force of the engine P is as follows: input shaft Im → first friction clutch CL1 → first auxiliary input shaft Is1 → second input gear Gi2 → third output gear Go3 → Synchronizer D → second auxiliary output shaft Os2 → reverse driven gear Gr2 → reverse drive gear Gr1 → synchronizer B2 → first auxiliary output shaft Os1 → synchronizer A1 → first output shaft Om1 → first final drive gear Gf1 → final driven gear In the path of Gf → differential gear Gd, reverse rotation is transmitted to the drive wheels W, W.
 以上のように、第1摩擦クラッチCL1~第3摩擦クラッチCL3の係合および7個のシンクロ装置A1,A2,B1,B2,C1,C2,Dの係合を制御することで、ニュートラル変速段、1速変速段~8速変速段およびリバース変速段が確立する。 As described above, by controlling the engagement of the first friction clutch CL1 to the third friction clutch CL3 and the engagement of the seven synchronizers A1, A2, B1, B2, C1, C2, and D, the neutral gear position is achieved. The first to eighth gears and the reverse gear are established.
 次に、1速変速段から8速変速段へのアップシフトの順次変速の手順と、1速変速段からリバース変速段への変速の手順とを説明する。 Next, a description will be given of a sequential shift procedure for upshifting from the first gear to the eighth gear and a shift procedure from the first gear to the reverse gear.
 <1速変速段→2速変速段>
 図6(A)に示す1速変速段での走行状態から、図6(B)に示すシフト準備過程で、シンクロ装置C2を係合して第4出力ギヤGo4を第2副出力軸Os2に結合することで、2速変速段へのプリシフトを行う。このとき、第2摩擦クラッチCL2は未だ係合解除状態にあるため、1速変速段の動力伝達経路で駆動力が伝達されている第1出力軸Om1に破線で示す動力伝達経路で同時に駆動力が伝達されることはなく、インターロックが発生する虞はない。
<1st gear stage → 2nd gear stage>
In the shift preparation process shown in FIG. 6 (B) from the traveling state at the first gear shown in FIG. 6 (A), the synchronizing device C2 is engaged and the fourth output gear Go4 is moved to the second auxiliary output shaft Os2. By combining, pre-shift to the second gear is performed. At this time, since the second friction clutch CL2 is still in the disengaged state, the driving force is simultaneously transmitted through the power transmission path indicated by the broken line to the first output shaft Om1 to which the driving power is transmitted through the power transmission path of the first gear. Is not transmitted, and there is no possibility of occurrence of an interlock.
 図6(C)に示すクラッチ切替過程で、第3摩擦クラッチCL3を係合解除して第2摩擦クラッチCL2を係合すると、1速変速段の動力伝達経路によるトルク伝達が行われなくなり、新たに駆動力が実線で示す動力伝達経路で伝達されることで、トルク抜けが発生することなく2速変速段が確立する。そして図6(D)に示すシフト解除過程で、特にシンクロ装置の係合解除を行うことなく、2速変速段へのアップシフトを完了する。 When the third friction clutch CL3 is disengaged and the second friction clutch CL2 is engaged in the clutch switching process shown in FIG. 6C, torque transmission through the power transmission path of the first gear is not performed. When the driving force is transmitted through the power transmission path indicated by the solid line, the second gear is established without torque loss. In the shift release process shown in FIG. 6D, the upshift to the second gear is completed without particularly releasing the engagement of the synchro device.
 <2速変速段→3速変速段>
 2速変速段に対して3速変速段で新たに係合するシンクロ装置は存在しないため、図7(A)に示す2速変速段での走行状態から図7(B)に示すシフト準備過程に移行するときには、特に操作は行われない。
<2nd gear stage → 3rd gear stage>
Since there is no synchronization device that newly engages with the second gear in the third gear, the shift preparation process shown in FIG. 7 (B) from the traveling state in the second gear shown in FIG. 7 (A). No particular operation is performed when shifting to.
 図7(C)に示すクラッチ切替過程で、第2摩擦クラッチCL2を係合解除して第1摩擦クラッチCL1を係合すると、2速変速段の動力伝達経路によるトルク伝達が行われなくなり、新たに駆動力が実線で示す動力伝達経路で伝達されるようになり、トルク抜けが発生することなく3速変速段が確立する。そして図7(D)に示すシフト解除過程で、2速変速段で係合していたが3速変速段では不要なシンクロ装置C2およびシンクロ装置Dを係合解除することで、3速変速段へのアップシフトを完了する。 In the clutch switching process shown in FIG. 7C, when the second friction clutch CL2 is disengaged and the first friction clutch CL1 is engaged, torque transmission through the power transmission path of the second gear is not performed, and a new Thus, the driving force is transmitted through the power transmission path indicated by the solid line, and the third gear is established without torque loss. Then, in the shift release process shown in FIG. 7D, the third gear is engaged by releasing the synchronization device C2 and the synchronization device D that were engaged at the second gear, but unnecessary at the third gear. Complete upshift to
 <3速変速段→4速変速段>
 図8(A)に示す3速変速段での走行状態から、図8(B)に示すシフト準備過程で、シンクロ装置C1を係合して第2出力ギヤGo2を第1副出力軸Os1に結合することで、4速変速段へのプリシフトを行う。このとき、第2摩擦クラッチCL2は未だ係合解除状態にあるため、3速変速段の動力伝達経路で駆動力が伝達されている第1出力軸Om1に破線で示す動力伝達経路で同時に駆動力が伝達されることはなく、インターロックが発生する虞はない。
<3rd gear stage → 4th gear stage>
In the shift preparation process shown in FIG. 8 (B) from the traveling state at the third speed gear stage shown in FIG. 8 (A), the synchronizer C1 is engaged and the second output gear Go2 is moved to the first sub output shaft Os1. By combining, pre-shifting to the fourth gear is performed. At this time, since the second friction clutch CL2 is still in the disengaged state, the driving force is simultaneously transmitted through the power transmission path indicated by the broken line to the first output shaft Om1 to which the driving power is transmitted through the power transmission path of the third gear. Is not transmitted, and there is no possibility of occurrence of an interlock.
 図8(C)に示すクラッチ切替過程で、第1摩擦クラッチCL1を係合解除して第2摩擦クラッチCL2を係合すると、3速変速段の動力伝達経路によるトルク伝達が行われなくなり、新たに駆動力が実線で示す動力伝達経路で伝達されることで、トルク抜けが発生することなく4速変速段が確立する。そして図8(D)に示すシフト解除過程で、3速変速段で係合していたが4速変速段では不要なシンクロ装置B1を係合解除することで、4速変速段へのアップシフトを完了する。 When the first friction clutch CL1 is disengaged and the second friction clutch CL2 is engaged in the clutch switching process shown in FIG. 8 (C), torque transmission through the power transmission path of the third gear is not performed. When the driving force is transmitted through the power transmission path indicated by the solid line, the fourth gear is established without torque loss. Then, in the shift release process shown in FIG. 8D, up-shifting to the fourth gear is achieved by releasing the synchronization device B1, which was engaged at the third gear, but is not necessary at the fourth gear. To complete.
 <4速変速段→5速変速段>
 図9(A)に示す4速変速段での走行状態から、図9(B)に示すシフト準備過程で、シンクロ装置A2を係合して第2副出力軸Os2を第2出力軸Om2に結合することで、5速変速段へのプリシフトを行う。このとき、4速変速段の動力伝達経路と5速変速段の動力伝達装置とは全く交差しないため、インターロックが発生する虞はない。
<4th gear stage → 5th gear stage>
In the shift preparation process shown in FIG. 9 (B) from the running state at the fourth speed gear stage shown in FIG. 9 (A), the synchronizer A2 is engaged to change the second sub output shaft Os2 to the second output shaft Om2. By combining, pre-shift to the fifth gear is performed. At this time, since the power transmission path of the fourth speed gear stage and the power transmission device of the fifth speed gear stage do not intersect at all, there is no possibility of occurrence of an interlock.
 図9(C)に示すクラッチ切替過程で、第2摩擦クラッチCL2を係合解除して第3摩擦クラッチCL3を係合すると、4速変速段の動力伝達経路によるトルク伝達が行われなくなり、新たに駆動力が実線で示す動力伝達経路で伝達されることで、トルク抜けが発生することなく5速変速段が確立する。そして図9(D)に示すシフト解除過程で、4速変速段で係合していたが5速変速段では不要なシンクロ装置A1およびシンクロ装置C1を係合解除することで、5速変速段へのアップシフトを完了する。 When the second friction clutch CL2 is disengaged and the third friction clutch CL3 is engaged in the clutch switching process shown in FIG. 9C, torque transmission through the power transmission path of the fourth speed shift stage is not performed. When the driving force is transmitted through the power transmission path indicated by the solid line, the fifth gear is established without torque loss. Then, in the shift release process shown in FIG. 9D, the fifth gear is engaged by disengaging the synchronizer A1 and the synchronizer C1 that were engaged at the fourth gear, but unnecessary at the fifth gear. Complete upshift to
 <5速変速段→6速変速段>
 図10(A)に示す5速変速段での走行状態から、図10(B)に示すシフト準備過程で、シンクロ装置C2を係合して第4出力ギヤGo4を第2副出力軸Os2に結合することで、6速変速段へのプリシフトを行う。このとき、第2摩擦クラッチCL2は未だ係合解除状態にあるため、5速変速段の動力伝達経路で駆動力が伝達されている第2出力軸Om2に破線で示す動力伝達経路で同時に駆動力が伝達されることはなく、インターロックが発生する虞はない。
<5-speed shift stage → 6-speed shift stage>
In the shift preparation process shown in FIG. 10 (B) from the traveling state at the fifth speed gear stage shown in FIG. 10 (A), the synchronizing device C2 is engaged and the fourth output gear Go4 is moved to the second auxiliary output shaft Os2. By combining, pre-shifting to the sixth gear is performed. At this time, since the second friction clutch CL2 is still in the disengaged state, the driving force is simultaneously transmitted through the power transmission path indicated by the broken line to the second output shaft Om2 to which the driving power is transmitted through the power transmission path of the fifth gear. Is not transmitted, and there is no possibility of occurrence of an interlock.
 図10(C)に示すクラッチ切替過程で、第3摩擦クラッチCL3を係合解除して第2摩擦クラッチCL2を係合すると、5速変速段の動力伝達経路によるトルク伝達が行われなくなり、新たに駆動力が実線で示す動力伝達経路で伝達されることで、トルク抜けが発生することなく6速変速段が確立する。そして図10(D)に示すシフト解除過程で、特にシンクロ装置を係合解除することなく、6速変速段へのアップシフトを完了する。 When the third friction clutch CL3 is disengaged and the second friction clutch CL2 is engaged in the clutch switching process shown in FIG. 10C, torque transmission through the power transmission path of the fifth gear is not performed. As a result, the 6th speed is established without torque loss. Then, in the shift release process shown in FIG. 10D, the upshift to the sixth gear is completed without particularly releasing the synchronization device.
 <6速変速段→7速変速段>
 図11(A)に示す6速変速段での走行状態から、図11(B)に示すシフト準備過程で、シンクロ装置Dを係合して第3出力ギヤGo3を第2副出力軸Os2に結合することで、7速変速段へのプリシフトを行う。このとき、第1摩擦クラッチCL1は未だ係合解除状態にあるため、6速変速段の動力伝達経路で駆動力が伝達されている第2出力軸Om2に破線で示す動力伝達経路で同時に駆動力が伝達されることはなく、インターロックが発生する虞はない。
<6th gear shift stage → 7th gear shift stage>
In the shift preparation process shown in FIG. 11 (B) from the running state at the sixth speed gear stage shown in FIG. 11 (A), the synchronizer D is engaged to move the third output gear Go3 to the second auxiliary output shaft Os2. By combining, pre-shift to the seventh gear is performed. At this time, since the first friction clutch CL1 is still in the disengaged state, the driving force is simultaneously transmitted through the power transmission path indicated by the broken line to the second output shaft Om2 to which the driving power is transmitted through the power transmission path of the sixth gear. Is not transmitted, and there is no possibility of occurrence of an interlock.
 図11(C)に示すクラッチ切替過程で、第2摩擦クラッチCL2を係合解除して第1摩擦クラッチCL1を係合すると、6速変速段の動力伝達経路によるトルク伝達が行われなくなり、新たに駆動力が実線で示す動力伝達経路で伝達されることで、トルク抜けが発生することなく7速変速段が確立する。そして図11(D)に示すシフト解除過程で、6速変速段で係合していたが7速変速段では不要なシンクロ装置C2を係合解除することで、7速変速段へのアップシフトを完了する。 When the second friction clutch CL2 is disengaged and the first friction clutch CL1 is engaged in the clutch switching process shown in FIG. 11C, torque transmission through the power transmission path of the sixth gear is not performed. When the driving force is transmitted through the power transmission path indicated by the solid line, the seventh gear is established without torque loss. Then, in the shift release process shown in FIG. 11 (D), up-shifting to the seventh speed shift stage is performed by releasing the synchronization device C2 that was engaged at the sixth speed shift stage but is not necessary at the seventh speed shift stage. To complete.
 <7速変速段→8速変速段>
 図12(A)に示す7速変速段での走行状態から、図12(B)に示すシフト準備過程で、シンクロ装置B1およびシンクロ装置C1を係合して第1出力ギヤGo1および第2出力ギヤGo2を第2副出力軸Os2に結合することで、8速変速段へのプリシフトを行う。このとき、第2摩擦クラッチCL2は未だ係合解除状態にあるため、7速変速段の動力伝達経路で駆動力が伝達されている第2出力軸Om2に破線で示す動力伝達経路で同時に駆動力が伝達されることはなく、インターロックが発生する虞はない。
<7th gear shift stage → 8th gear shift stage>
In the shift preparation process shown in FIG. 12 (B) from the running state at the seventh gear shown in FIG. 12 (A), the synchronizing device B1 and the synchronizing device C1 are engaged, and the first output gear Go1 and the second output. The gear Go2 is coupled to the second auxiliary output shaft Os2, thereby pre-shifting to the eighth gear. At this time, since the second friction clutch CL2 is still in the disengaged state, the driving force is simultaneously transmitted through the power transmission path indicated by the broken line to the second output shaft Om2 to which the driving power is transmitted through the power transmission path of the seventh gear. Is not transmitted, and there is no possibility of occurrence of an interlock.
 図12(C)に示すクラッチ切替過程で、第1摩擦クラッチCL1を係合解除して第2摩擦クラッチCL2を係合すると、7速変速段の動力伝達経路によるトルク伝達が行われなくなり、新たに駆動力が実線で示す動力伝達経路で伝達されることで、トルク抜けが発生することなく8速変速段が確立する。そして図12(D)に示すシフト解除過程で、特にシンクロ装置を係合解除することなく、8速変速段へのアップシフトを完了する。 When the first friction clutch CL1 is disengaged and the second friction clutch CL2 is engaged in the clutch switching process shown in FIG. 12 (C), torque transmission through the power transmission path of the seventh gear is not performed. When the driving force is transmitted through the power transmission path indicated by the solid line, the eighth gear is established without torque loss. Then, in the shift release process shown in FIG. 12D, the upshift to the eighth gear is completed without particularly releasing the synchronization device.
 <1速変速段→リバース変速段>
 図13(A)に示す1速変速段での走行状態から、図13(B)に示すクラッチ係合解除過程で、1速変速段で係合していた第3摩擦クラッチCL3を係合解除する。続いて、図13(C)に示すシンクロ装置切替過程で、シンクロ装置B1を係合解除して第1出力ギヤGo1を第1副出力軸Os1から切り離すとともに、シンクロ装置B2を係合してリバースドライブギヤGr1を第2副出力軸Os2に結合する。そして図13(D)に示すクラッチ係合過程で、第1摩擦クラッチCL1を係合することでリバース変速段を確立するする。
<1st gear stage → Reverse gear stage>
From the running state at the first gear shown in FIG. 13A, the third friction clutch CL3 engaged at the first gear is disengaged in the clutch disengagement process shown in FIG. 13B. To do. Subsequently, in the synchronization device switching process shown in FIG. 13C, the synchronization device B1 is disengaged to disconnect the first output gear Go1 from the first auxiliary output shaft Os1, and the synchronization device B2 is engaged to reverse. The drive gear Gr1 is coupled to the second auxiliary output shaft Os2. Then, in the clutch engagement process shown in FIG. 13D, the reverse gear is established by engaging the first friction clutch CL1.
 以上のように、本実施の形態によれば、いわゆるクラッチtoクラッチ変速により、つまりプリシフトを行った状態で第1~第3摩擦クラッチCL1,CL2,CL3を掴み替えることにより、トルク抜けを発生させることなくアップシフトの順次変速を完了することができる。同様にして、クラッチtoクラッチ変速により、トルク抜けを発生させることなくダウンシフトの順次変速を完了することができる。 As described above, according to this embodiment, torque loss is generated by so-called clutch-to-clutch shift, that is, by gripping the first to third friction clutches CL1, CL2, CL3 in a state where pre-shifting is performed. The upshift sequential shift can be completed without any problem. Similarly, the downshift sequential shift can be completed without causing torque loss by the clutch-to-clutch shift.
 次に、上記特許文献1に記載の変速機(以下、従来例という)に対する、本実施の形態の変速機Tの利点を説明する。 Next, advantages of the transmission T according to the present embodiment over the transmission described in Patent Document 1 (hereinafter referred to as a conventional example) will be described.
 図25に示す従来例は、入力軸に支持した4個の入力ギヤと、一対の出力軸に支持した8個の出力ギヤとからなる合計12個のギヤで10段の変速段が確立可能であるが、本実施の形態は、入力軸に支持した4個の入力ギヤと、一対の出力軸に支持した5個の出力ギヤとからなる合計9個のギヤで8段の変速段が確立可能であり、ギヤ数当たりの変速段数は従来例に比べて遜色がない。 In the conventional example shown in FIG. 25, 10 shift stages can be established with a total of 12 gears including 4 input gears supported on the input shaft and 8 output gears supported on the pair of output shafts. However, in this embodiment, eight shift stages can be established with a total of nine gears consisting of four input gears supported on the input shaft and five output gears supported on the pair of output shafts. Thus, the number of gears per gear is comparable to the conventional example.
 また図14に示すように、従来例は10段の変速段のうちの3段でギヤの噛み合い数=2であるが、残りの7段でギヤの噛み合い数が4であり、噛み合い数=2となる2噛み合い率が30%と低くなっている。変速機の動力伝達効率はギヤの噛み合い1カ所毎に1.5%低下するといわれており、従来例は噛み合い数=4の変速段が多いために動力伝達効率が低下する問題がある。 Further, as shown in FIG. 14, in the conventional example, the number of gear meshes is 2 in 3 of 10 gears, but the number of gear meshes is 4 in the remaining 7 gears, and the number of meshes = 2. The two meshing rate is as low as 30%. It is said that the power transmission efficiency of the transmission is reduced by 1.5% at each meshing position of the gear, and the conventional example has a problem that the power transmission efficiency is lowered because there are many gear stages with the number of meshing = 4.
 本実施の形態は8段の変速段のうちの5段でギヤの噛み合い数=2であり、残りの3段でギヤの噛み合い数=4であり、噛み合い数=2となる2噛み合い率が63%と高くなっている。このように、本実施の形態は噛み合い数=4の変速段の比率が減少することで、動力伝達効率の低下が最小限に抑えられる。 In the present embodiment, the gear meshing number = 2 in 5 of the 8 gears, the gear meshing number = 4 in the remaining 3 gears, and the 2-meshing rate in which the meshing number = 2 is 63. % Is high. As described above, in the present embodiment, the ratio of the shift stage with the number of meshes = 4 is reduced, so that the reduction in power transmission efficiency is minimized.
 図15は、本実施の形態の変速機Tの変速段毎のトルクフローを簡略的に示すものである。トルクフローは、第1副入力軸Is1、第2副入力軸Is2あるいは第3副入力軸Is3の駆動力が、第1副出力軸Os1および第2副出力軸Os2の何れか一方だけを経由してディファレンシャルギヤGdに出力される単純フロー(噛み合い数=2)と、第1副入力軸Is1、第2副入力軸Is2あるいは第3副入力軸Is3の駆動力が、第1副出力軸Os1および第2副出力軸Os2の両方を経由してディファレンシャルギヤGdに出力される複雑フロー(噛み合い数=4)とに分類されるが、本実施の形態では、低速変速段である1速変速段および2速変速段と、高速変速段である8速変速段との合計3個の変速段のトルクフローが複雑フローとなり、残りの3速変速段~7速変速段の合計5個の変速段のトルクフローが単純フローとなるため、単純フローの変速段の比率が多くなってギヤの噛み合い数が減少することで動力伝達効率の低下が最小限に抑えられる。しかも噛み合い数=2の単純フローの変速段である3速変速段~7速変速段を、使用頻度の高い中速変速段に纏めることが可能となるため、常用域での燃費向上を期待することができる。 FIG. 15 simply shows the torque flow for each gear position of the transmission T according to the present embodiment. The torque flow is such that the driving force of the first sub-input shaft Is1, the second sub-input shaft Is2, or the third sub-input shaft Is3 passes through only one of the first sub-output shaft Os1 and the second sub-output shaft Os2. The simple flow (number of meshes = 2) output to the differential gear Gd and the driving force of the first sub input shaft Is1, the second sub input shaft Is2, or the third sub input shaft Is3 are the first sub output shaft Os1 and Although classified into a complex flow (mesh number = 4) that is output to the differential gear Gd via both of the second sub-output shafts Os2, in the present embodiment, the first-speed gear stage that is a low-speed gear stage and The torque flow of a total of three gear stages, the second speed gear stage and the eighth speed gear stage, which is a high speed gear stage, becomes a complex flow, and a total of five gear speed stages including the remaining three speed gear stages to the seventh speed gear stage. Torque flow is simple flow Because a reduction in power transmission efficiency can be minimized by the number of gear meshes in torque by the ratio of the gear stage becomes much simpler flow is reduced. In addition, it is possible to combine the 3rd to 7th gears, which are simple flow gears with the number of meshes = 2, into the medium-speed gears that are frequently used. be able to.
 一方、従来例は10段の変速段のうちの3段だけが単純フローであり、残りの7段が複雑フローであるため、複雑フローの変速段の比率が多くなってギヤの噛み合い数が増加することで、動力伝達効率が低下してしまう。 On the other hand, in the conventional example, only 3 of the 10 shift speeds are simple flows, and the remaining 7 speeds are complex flows, so the ratio of gear stages of the complex flow increases and the number of gear meshes increases. As a result, the power transmission efficiency decreases.
 また図15から明らかなように、本実施の形態は、低速変速段である1速変速段および2速変速段のトルクフローが類似し、中速変速段である3速変速段~7速変速段のうちの3速変速段および4速変速段のトルクフローが類似し、かつ5速変速段~7速変速段のトルクフローが類似するため、順次変速時に隣接する変速段間の動力伝達経路の変化が最小限に抑えられることで、つまりシンクロ装置の作動頻度が最小限に抑えられることで、動力伝達効率の向上および変速応答性の向上が可能になる。 As is apparent from FIG. 15, the present embodiment is similar in torque flow between the first and second speed gears, which are the low speed gears, and the third to seventh speed gears that are the medium speed gears. Since the torque flow of the third gear stage and the fourth gear stage is similar, and the torque flow of the fifth gear stage to the seventh gear stage is similar, the power transmission path between adjacent gear stages during sequential gear shifting By minimizing the change in speed, that is, by minimizing the frequency of operation of the synchronizer, it is possible to improve the power transmission efficiency and the shift response.
 しかも、低速変速段および高速変速段では第1副出力軸Os1および第2副出力軸Os2間で第1入力ギヤGi1および第2入力ギヤGi2を介して駆動力が伝達されるため、1速変速段および2速変速段では第2入力ギヤGi2および第1入力ギヤGi1を減速ギヤとして機能させて低速変速段の変速比を増加させるとともに、8速変速段では第1入力ギヤGi1および第2入力ギヤGi2を増速ギヤとして機能させて高速変速段の変速比を減少させることで、変速機Tのレシオレンジを拡大することができる。 In addition, since the driving force is transmitted between the first sub output shaft Os1 and the second sub output shaft Os2 via the first input gear Gi1 and the second input gear Gi2 at the low speed gear stage and the high speed gear stage, the first speed gear change. The second input gear Gi2 and the first input gear Gi1 function as a reduction gear at the second gear and the second gear to increase the gear ratio of the lower gear, and the first input gear Gi1 and the second input at the eighth gear. The gear orange of the transmission T can be expanded by causing the gear Gi2 to function as a speed-up gear and reducing the gear ratio of the high speed gear.
 更に、低速側の変速段である1速変速段~4速変速段では駆動力が全て第1出力軸Om1から出力され、高速側の変速段である5速変速段~8速変速段では駆動力が全て第2出力軸Om2から出力されるため、順次変速時に隣接する変速段間の動力伝達経路の変化が最小限に抑えられることで、つまりシンクロ装置の作動頻度が最小限に抑えられることで、動力伝達効率の更なる向上および変速応答性の更なる向上が可能になる。 In addition, the driving force is all output from the first output shaft Om1 at the first to fourth gears, which are the low speed gears, and is driven at the fifth to eighth gears, which are the high speed gears. Since all the force is output from the second output shaft Om2, the change in the power transmission path between adjacent gears during sequential shifts can be minimized, that is, the frequency of operation of the synchro device can be minimized. Thus, the power transmission efficiency can be further improved and the shift response can be further improved.
 ところで、現変速段から目標変速段に飛び変速する際に、トルク抜けやインターロックの発生を回避するために、現変速段および目標変速段間に仮変速段を介在させながら変速を行う必要がある場合がある。現変速段および目標変速段間に二つ以上の仮変速段を介在させる必要がある飛び変速を多ステップ変速と呼ぶ。従来例に対する本実施の形態の大きな利点は、飛び変速時における多ステップ変速の回避にある。以下、本実施の形態において多ステップ変速が回避される理由を説明する。 By the way, when jumping from the current gear to the target gear, it is necessary to perform a shift while interposing a temporary gear between the current gear and the target gear to avoid torque loss and interlock. There may be. A jump shift that requires two or more temporary shift stages to be interposed between the current shift stage and the target shift stage is called a multi-step shift. The great advantage of the present embodiment over the conventional example is in avoiding multi-step shifting at the time of jump shifting. Hereinafter, the reason why the multi-step shift is avoided in the present embodiment will be described.
 図16に示すように、本実施の形態では、第1摩擦クラッチCL1の係合により、エンジンPの駆動力が第1副入力軸Is1の第1入力ギヤGi1および第2入力ギヤGi2から第1副出力軸Os1の第1出力ギヤGo1あるいは第2副出力軸Os2の第3出力ギヤGo3に伝達される動力伝達経路と、第2摩擦クラッチCL2の係合により、エンジンPの駆動力が第2副入力軸Is2の第2入力ギヤGi2から第1副出力軸Os1の第2出力ギヤGo2あるいは第2副出力軸Os2の第4出力ギヤGo4に伝達される動力伝達経路と、第3摩擦クラッチCL3の係合により、エンジンPの駆動力が第3副入力軸Is3の第4入力ギヤGi4から第2副出力軸Os2の第5出力ギヤGo5に伝達される動力伝達経路とが存在する。このように、第1~第3摩擦クラッチCL1,CL2,CL3を用いて入力を3系統化したことにより、変速過程でインターロックが発生する確率を小さくし、必要な仮変速段の数を減少させることができる。 As shown in FIG. 16, in the present embodiment, the engagement of the first friction clutch CL1 causes the driving force of the engine P to be changed from the first input gear Gi1 and the second input gear Gi2 of the first auxiliary input shaft Is1 to the first. Due to the engagement of the second friction clutch CL2 with the power transmission path that is transmitted to the first output gear Go1 of the sub output shaft Os1 or the third output gear Go3 of the second sub output shaft Os2, the driving force of the engine P is second. A power transmission path that is transmitted from the second input gear Gi2 of the sub input shaft Is2 to the second output gear Go2 of the first sub output shaft Os1 or the fourth output gear Go4 of the second sub output shaft Os2, and a third friction clutch CL3 There is a power transmission path through which the driving force of the engine P is transmitted from the fourth input gear Gi4 of the third auxiliary input shaft Is3 to the fifth output gear Go5 of the second auxiliary output shaft Os2. In this way, by using the first to third friction clutches CL1, CL2, and CL3, the input is made into three systems, thereby reducing the probability of occurrence of an interlock during the shift process and reducing the number of necessary temporary shift stages. Can be made.
 また2段クラッチを有する従来のデュアルクラッチ式の変速機では、2個の摩擦クラッチの掴み替えによりトルク抜けのないクラッチtoクラッチ変速を可能にするので、現変速段で係合するクラッチと目標変速段で係合するクラッチとが同一クラッチである場合に、つまり1段飛びの飛び変速や3段飛びの飛び変速の場合に直接クラッチtoクラッチ変速することが不能になる。 Also, in the conventional dual clutch type transmission having a two-stage clutch, clutch-to-clutch transmission without torque loss is possible by re-holding two friction clutches, so that the clutch engaged with the current gear stage and the target gear shift can be achieved. When the clutch engaged in the step is the same clutch, that is, in the case of the jumping shift of one step jumping or the jumping shift of three step jumping, it is impossible to perform the clutch-to-clutch shift directly.
 一方、本実施の形態の変速機Tでは、3個の摩擦クラッチCL1,CL2,CL3の掴み替えによりトルク抜けのないクラッチtoクラッチ変速を可能にするので、現変速段で係合する摩擦クラッチと目標変速段で係合する摩擦クラッチとが同一クラッチである場合に、つまり3段飛びの飛び変速や6段飛びの飛び変速の場合に直接クラッチtoクラッチ変速することが不能になる。 On the other hand, in the transmission T according to the present embodiment, the clutch-to-clutch shift without torque loss is enabled by changing the gripping of the three friction clutches CL1, CL2, CL3. When the friction clutch that is engaged at the target gear stage is the same clutch, that is, in the case of a three-step jump gear shift or a six-step jump gear shift, it is impossible to perform a clutch-to-clutch shift directly.
 このように、本実施の形態の変速機Tは3個の摩擦クラッチCL1,CL2,CL3を有するだけでなく、3個の摩擦クラッチCL1,CL2,CL3が変速段の並び順に交互に係合するので、2個の摩擦クラッチを有する従来例の変速機に対して、現変速段で係合する摩擦クラッチと目標変速段で係合する摩擦クラッチとが同一クラッチである確率が1/2から1/3に減少することで、仮変速段を介さずにクラッチtoクラッチ変速が可能になる確率が増加する。 As described above, the transmission T according to the present embodiment has not only the three friction clutches CL1, CL2, and CL3, but also the three friction clutches CL1, CL2, and CL3 are alternately engaged in the order of the shift speeds. Therefore, with respect to the conventional transmission having two friction clutches, the probability that the friction clutch engaged at the current gear stage and the friction clutch engaged at the target gear stage are the same clutch is ½ to 1. By decreasing to / 3, the probability that a clutch-to-clutch shift can be performed without going through the temporary shift speed increases.
 図17は、本実施の形態の変速機Tが順次変速、1段飛び変速、2段飛び変速、3段飛び変速および4段飛び変速する場合のステップ数を示すものである。例えば、「1→2」の表示は、1速変速段から2速変速段への順次変速が、トルク抜けやインターロックを起こさずに、かつ仮変速段を介さずに可能であることを示している。また「2→(3)→4」の表示は、2速変速段から4速変速段への1段飛び変速をトルク抜けやインターロックを起こさずに行うには、現変速段である2速変速段と目標変速段である4速変速段との間に仮3速変速段を介在させる必要があることを示している。 FIG. 17 shows the number of steps when the transmission T according to the present embodiment performs a sequential shift, a one-step jump shift, a two-step jump shift, a three-step jump shift, and a four-step jump shift. For example, a display of “1 → 2” indicates that a sequential shift from the first gear to the second gear is possible without causing torque loss or interlock and without using a temporary gear. ing. In addition, “2 → (3) → 4” is displayed in order to perform a one-step jump shift from the second gear to the fourth gear without causing torque loss or interlock. This shows that it is necessary to interpose a temporary third-speed shift stage between the shift stage and the fourth-speed shift stage that is the target shift stage.
 本実施の形態では、順次変速~4段飛び変速の全てのパターンのうち、仮変速段を1個介在させる必要がある場合が10回存在するが、仮変速段を2個以上介在させる必要がある場合、つまり多ステップ変速が必要となる場合は1回も存在しない。これは、単純フローのみを採用する従来のデュアルクラッチ式の変速機と同等である。 In the present embodiment, among all the patterns of sequential shift to four-step jump shift, there are 10 cases where one temporary shift stage needs to be interposed, but two or more temporary shift stages need to be interposed. In some cases, that is, when a multi-step shift is required, there is no one time. This is equivalent to a conventional dual clutch transmission that employs only a simple flow.
 一方、図18は、図25に示す従来例の変速機が順次変速、1段飛び変速、2段飛び変速、3段飛び変速および4段飛び変速する場合のステップ数を示すものである。この従来例では、順次変速~4段飛び変速の全てのパターンのうち、仮変速段を2個以上介在させる必要がある多ステップ変速が11回も存在しており、多ステップ変速により変速応答性が低下する懸念がある。 On the other hand, FIG. 18 shows the number of steps when the conventional transmission shown in FIG. 25 performs a sequential shift, a one-step jump shift, a two-step jump shift, a three-step jump shift, and a four-step jump shift. In this conventional example, among all patterns of sequential shift to four-step jump shift, there are 11 multi-step shifts that require two or more temporary shift steps to be interposed. There is a concern that will decrease.
 以上のように、本実施の形態によれば、第1摩擦クラッチCL1、第2摩擦クラッチCL2および第3摩擦クラッチCL3の3個の摩擦クラッチにより入力系統を3系統に増加してインターロックの発生を抑制したことと、現変速段と目標変速段とで同一摩擦クラッチが係合する確率を減らしたこととにより、多ステップ変速の発生を回避して変速応答性を高めるとともに、より少ないギヤ数で多くの変速段を作り出すことができる。 As described above, according to the present embodiment, the input system is increased to three systems by the three friction clutches of the first friction clutch CL1, the second friction clutch CL2, and the third friction clutch CL3, thereby generating an interlock. And reducing the probability that the same friction clutch will be engaged at the current shift speed and the target shift speed, thereby avoiding the occurrence of multi-step shifts and improving the shift response and reducing the number of gears. Can produce many gears.
第2の実施の形態Second embodiment
 次に、図19および図20に基づいて本発明の第2の実施の形態を説明する。 Next, a second embodiment of the present invention will be described based on FIG. 19 and FIG.
 第2の実施の形態は、第1の実施の形態の骨格(図1参照)に第6出力ギヤGo6、シンクロ装置E1およびシンクロ装置E2を追加することで、前進10段の変速機Tとしたものである。 In the second embodiment, a transmission T having 10 forward speeds is obtained by adding a sixth output gear Go6, a synchronizing device E1, and a synchronizing device E2 to the skeleton of the first embodiment (see FIG. 1). Is.
 図19から明らかなように、第6出力ギヤGo6は第1副出力軸Os1に相対回転自在に支持されて第4入力ギヤGi4に噛合し、シンクロ装置E1により第1副出力軸Os1に結合可能である。また第1の実施の形態では第2副出力軸Os2に固設されていた第5出力ギヤGo5が、本実施の形態では第2副出力軸Os2に相対回転自在に支持され、シンクロ装置E2を介して第2副出力軸Os2に結合可能である。 As is clear from FIG. 19, the sixth output gear Go6 is rotatably supported by the first sub-output shaft Os1, meshed with the fourth input gear Gi4, and can be coupled to the first sub-output shaft Os1 by the synchronizer E1. It is. Further, the fifth output gear Go5 fixed to the second sub output shaft Os2 in the first embodiment is supported by the second sub output shaft Os2 so as to be relatively rotatable in the present embodiment, and the synchronizer E2 is installed. To the second auxiliary output shaft Os2.
 本実施の形態によれば、図20に示すトルクフローで前進10段の変速段を確立可能であり、第1の実施の形態と同様の作用効果を達成することができる。 According to the present embodiment, it is possible to establish 10 forward speeds with the torque flow shown in FIG. 20, and the same operational effects as in the first embodiment can be achieved.
第3の実施の形態Third embodiment
 次に、図21および図22に基づいて本発明の第3の実施の形態を説明する。 Next, a third embodiment of the present invention will be described based on FIG. 21 and FIG.
 第3の実施の形態は、第2の実施の形態の骨格(図19参照)に第5入力ギヤGi5、第7出力ギヤGo7、第8出力ギヤGo8、シンクロ装置F1およびシンクロ装置F2を追加することで、前進13段の変速機Tとしたものである。 In the third embodiment, a fifth input gear Gi5, a seventh output gear Go7, an eighth output gear Go8, a synchronization device F1, and a synchronization device F2 are added to the skeleton of the second embodiment (see FIG. 19). Thus, the transmission T is a 13-stage transmission T.
 図21から明らかなように、第5入力ギヤGi5は第2副入力軸Is2に固設され、第5入力ギヤGi5に噛合する第7出力ギヤGo7は第1副出力軸Os1に相対回転自在に支持されてシンクロ装置F1により第1副出力軸Os1に結合可能であり、第5入力ギヤGi5に噛合する第8出力ギヤGo8は第2副出力軸Os2に相対回転自在に支持されてシンクロ装置F2により第2副出力軸Os2に結合可能である。 As is apparent from FIG. 21, the fifth input gear Gi5 is fixed to the second auxiliary input shaft Is2, and the seventh output gear Go7 meshing with the fifth input gear Gi5 is rotatable relative to the first auxiliary output shaft Os1. The eighth output gear Go8 that is supported and can be coupled to the first sub output shaft Os1 by the synchronizer F1 and that meshes with the fifth input gear Gi5 is supported by the second sub output shaft Os2 so as to be relatively rotatable, and is synchronized with the synchronizer F2. Can be coupled to the second auxiliary output shaft Os2.
 本実施の形態によれば、図22に示すトルクフローで前進13段の変速段を確立可能であり、第1の実施の形態と同様の作用効果を達成することができる。 According to the present embodiment, 13 forward speeds can be established with the torque flow shown in FIG. 22, and the same operational effects as in the first embodiment can be achieved.
第4の実施の形態Fourth embodiment
 次に、図23および図24に基づいて本発明の第4の実施の形態を説明する。 Next, a fourth embodiment of the present invention will be described based on FIG. 23 and FIG.
 第4の実施の形態は、第1の実施の形態の骨格(図1参照)に第9出力ギヤGo9およびシンクロ装置Gを追加することで、前進9段の変速機Tとしたものである。 The fourth embodiment is a transmission T having nine forward gears by adding a ninth output gear Go9 and a synchronizing device G to the skeleton (see FIG. 1) of the first embodiment.
 図23から明らかなように、第1入力ギヤGi1に噛合する第9出力ギヤGo9は第2副出力軸Os2に相対回転自在に支持されてシンクロ装置Gにより第2副出力軸Os2に結合可能であり、シンクロ装置Gおよびシンクロ装置Dは相互に接続されて連動する。 As is apparent from FIG. 23, the ninth output gear Go9 meshed with the first input gear Gi1 is supported by the second sub output shaft Os2 so as to be relatively rotatable, and can be coupled to the second sub output shaft Os2 by the synchronizer G. Yes, the synchronizing device G and the synchronizing device D are connected and interlocked with each other.
 本実施の形態によれば、図24に示すトルクフローで前進9段の変速段を確立可能であり、第1の実施の形態と同様の作用効果を達成することができる。 According to the present embodiment, nine forward speeds can be established with the torque flow shown in FIG. 24, and the same operational effects as those of the first embodiment can be achieved.
 以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。 Although the embodiments of the present invention have been described above, various design changes can be made without departing from the scope of the present invention.
 例えば、本発明の駆動源は実施の形態のエンジンPに限定されず、モータ・ジェネレータのような他の任意の駆動源であっても良い。 For example, the drive source of the present invention is not limited to the engine P of the embodiment, and may be any other drive source such as a motor / generator.

Claims (3)

  1.  駆動源(P)からの駆動力が入力される入力軸(Im)と、
     前記入力軸(Im)と同軸に配置されて第1摩擦係合装置(CL1)を介して該入力軸(Im)に結合可能な第1副入力軸(Is1)と、
     前記入力軸(Im)と同軸に配置されて第2摩擦係合装置(CL2)を介して該入力軸(Im))に結合可能な第2副入力軸(Is2)と、
     前記入力軸(Im)と同軸に配置されて第3摩擦係合装置(CL3)を介して該入力軸(Im))に結合可能な第3副入力軸(Is3)と、
     前記第1副入力軸(Is1)に固設された第1入力ギヤ(Gi1)および第2入力ギヤ(Gi2)と、
     前記第2副入力軸(Is2)に固設された第3入力ギヤ(Gi3)と、
     前記第3副入力軸(Is3)に固設された第4入力ギヤ(Gi4)と、
     前記入力軸(Im)と平行に配置された第1出力軸(Om1)および第2出力軸(Om2)と、
     前記第1出力軸(Om1)と同軸に配置されて第1係合装置(A1)を介して該第1出力軸(Om1)に結合可能な第1副出力軸(Os1)と、
     前記第2出力軸(Om2)と同軸に配置されて第2係合装置(A2)を介して該第2出力軸(Om2)に結合可能な第2副出力軸(Os2)と、
     前記第1副出力軸(Os1)に相対回転自在に支持されて第1出力係合装置(B1)を介して該第1副出力軸(Os1)に結合可能な第1出力ギヤ(Go1)と、
     前記第1副出力軸(Os1)に相対回転自在に支持されて第2出力係合装置(C1)を介して該第1副出力軸(Os1)に結合可能な第2出力ギヤ(Go2)と、
     前記第2副出力軸(Os2)に相対回転自在に支持されて第3出力係合装置(D)を介して該第2副出力軸(Os2)に結合可能な第3出力ギヤ(Go3)と、
     前記第2副出力軸(Os2)に相対回転自在に支持されて第4出力係合装置(C2)を介して該第2副出力軸(Os2)に結合可能な第4出力ギヤ(Go4)と、
     前記第2副出力軸(Os2)に固設された第5出力ギヤ(Go5)と、
     前記第1出力軸(Om1)および前記第2出力軸(Om2)にそれぞれ設けられた最終出力ギヤ(Gf1,Gf2)とを備え、
     前記第1入力ギヤ(Gi1)は前記第1出力ギヤ(Go1)に噛合し、前記第2入力ギヤ(Gi2)は前記第3出力ギヤ(Go3)に噛合し、前記第3入力ギヤ(Gi3)は前記第2出力ギヤ(Go2)および前記第4出力ギヤ(Go4)に噛合し、前記第4入力ギヤ(Gi4)は前記第5出力ギヤ(Go5)に噛合することを特徴とする変速機。
    An input shaft (Im) to which a driving force from the driving source (P) is input;
    A first auxiliary input shaft (Is1) that is arranged coaxially with the input shaft (Im) and can be coupled to the input shaft (Im) via a first friction engagement device (CL1);
    A second auxiliary input shaft (Is2) disposed coaxially with the input shaft (Im) and connectable to the input shaft (Im) via a second frictional engagement device (CL2);
    A third auxiliary input shaft (Is3) that is coaxially arranged with the input shaft (Im) and can be coupled to the input shaft (Im) via a third friction engagement device (CL3);
    A first input gear (Gi1) and a second input gear (Gi2) fixed to the first auxiliary input shaft (Is1);
    A third input gear (Gi3) fixed to the second auxiliary input shaft (Is2);
    A fourth input gear (Gi4) fixed to the third auxiliary input shaft (Is3);
    A first output shaft (Om1) and a second output shaft (Om2) arranged in parallel with the input shaft (Im);
    A first auxiliary output shaft (Os1) that is arranged coaxially with the first output shaft (Om1) and is connectable to the first output shaft (Om1) via a first engagement device (A1);
    A second auxiliary output shaft (Os2) that is arranged coaxially with the second output shaft (Om2) and can be coupled to the second output shaft (Om2) via a second engagement device (A2);
    A first output gear (Go1) supported relative to the first sub-output shaft (Os1) and capable of being coupled to the first sub-output shaft (Os1) via a first output engagement device (B1); ,
    A second output gear (Go2) supported by the first sub output shaft (Os1) so as to be relatively rotatable and coupled to the first sub output shaft (Os1) via a second output engagement device (C1); ,
    A third output gear (Go3) supported relative to the second secondary output shaft (Os2) so as to be relatively rotatable and coupled to the second secondary output shaft (Os2) via a third output engagement device (D); ,
    A fourth output gear (Go4) supported by the second secondary output shaft (Os2) so as to be relatively rotatable and coupled to the second secondary output shaft (Os2) via a fourth output engagement device (C2); ,
    A fifth output gear (Go5) fixed to the second auxiliary output shaft (Os2);
    A final output gear (Gf1, Gf2) provided on each of the first output shaft (Om1) and the second output shaft (Om2);
    The first input gear (Gi1) meshes with the first output gear (Go1), the second input gear (Gi2) meshes with the third output gear (Go3), and the third input gear (Gi3). Is engaged with the second output gear (Go2) and the fourth output gear (Go4), and the fourth input gear (Gi4) is engaged with the fifth output gear (Go5).
  2.  前記第1副出力軸(Os1)に相対回転自在に支持されて第5出力係合装置(E1)を介して該第1副出力軸(Os1)に結合可能な第6出力ギヤ(Go6)を備え、前記第4入力ギヤ(Gi4)は前記第6出力ギヤ(Go6)に噛合し、前記第5出力ギヤ(Go5)は前記第2副出力軸(Os2)に相対回転自在に支持されて第6出力係合装置(E2)を介して該第2副出力軸(Os2)に結合可能であることを特徴とする、請求項1に記載の変速機。 A sixth output gear (Go6) supported by the first sub output shaft (Os1) so as to be relatively rotatable and coupled to the first sub output shaft (Os1) via a fifth output engagement device (E1). The fourth input gear (Gi4) meshes with the sixth output gear (Go6), and the fifth output gear (Go5) is supported by the second auxiliary output shaft (Os2) in a relatively rotatable manner. The transmission according to claim 1, characterized in that it can be coupled to the second auxiliary output shaft (Os2) via a six-output engagement device (E2).
  3.  前記第2副入力軸(Is2)に固設された第5入力ギヤ(Gi5)と、前記第1副出力軸(Os1)に相対回転自在に支持されて第7出力係合装置(F1)を介して該第1副出力軸(Os1)に結合可能な第7出力ギヤ(Go7)と、前記第2副出力軸(Os2)に相対回転自在に支持されて第8出力係合装置(F2)を介して該第2副出力軸(Os2)に結合可能な第8出力ギヤ(Go8)とを備え、前記第5入力ギヤ(Gi5)は前記第7出力ギヤ(Go7)および前記第8出力ギヤ(Go8)に噛合することを特徴とする、請求項2に記載の変速機。 A fifth input gear (Gi5) fixed to the second sub input shaft (Is2) and a seventh output engagement device (F1) supported by the first sub output shaft (Os1) so as to be relatively rotatable. A seventh output gear (Go7) that can be coupled to the first sub output shaft (Os1) through the second sub output shaft (Os2) and an eighth output engagement device (F2). An eighth output gear (Go8) that can be coupled to the second auxiliary output shaft (Os2) via the second output gear (Gos), and the fifth input gear (Gi5) is the seventh output gear (Go7) and the eighth output gear. The transmission according to claim 2, which meshes with (Go8).
PCT/JP2016/066850 2015-06-19 2016-06-07 Transmission WO2016204015A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015123654 2015-06-19
JP2015-123654 2015-06-19

Publications (1)

Publication Number Publication Date
WO2016204015A1 true WO2016204015A1 (en) 2016-12-22

Family

ID=57545165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066850 WO2016204015A1 (en) 2015-06-19 2016-06-07 Transmission

Country Status (1)

Country Link
WO (1) WO2016204015A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285062A (en) * 2009-06-11 2010-12-24 Honda Motor Co Ltd Power transmission device for vehicle
JP2012233499A (en) * 2011-04-28 2012-11-29 Toyota Motor Corp Transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285062A (en) * 2009-06-11 2010-12-24 Honda Motor Co Ltd Power transmission device for vehicle
JP2012233499A (en) * 2011-04-28 2012-11-29 Toyota Motor Corp Transmission

Similar Documents

Publication Publication Date Title
JP2008202640A (en) Gear transmission device
JP2006029476A (en) Driving force transmitting device
JP6083612B2 (en) Shift control device for automatic transmission
KR102651622B1 (en) Dual clutch transmission for vehicle
KR101262498B1 (en) Automated Manual Transmission
JP5142953B2 (en) transmission
JP2016053412A (en) transmission
WO2015064389A1 (en) Dual-clutch transmission
WO2014171267A1 (en) Transmission
JP6251161B2 (en) transmission
KR20200104955A (en) Dct for vehicle
KR20210031579A (en) Hybrid powertrain
JP2007085436A (en) Gear type multi-stage transmission
WO2016204015A1 (en) Transmission
JP2017008959A (en) Gear change device of transmission
KR20150059907A (en) Automated manual transmission for vehicle
JP2008291893A (en) Dual clutch type transmission
JP6221485B2 (en) Twin clutch transmission
WO2016204016A1 (en) Transmission
KR101836617B1 (en) Multi-stage dct for vehicle
JP2006132572A (en) Transmission device
KR20210108518A (en) Hybrid powertrain for vehicle
KR20200103221A (en) Dct for vehicle
JP2016188678A (en) Transmission device
JP6145439B2 (en) Multi-speed transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP