WO2016203873A1 - 炭素質粒体の熱処理装置およびその方法 - Google Patents

炭素質粒体の熱処理装置およびその方法 Download PDF

Info

Publication number
WO2016203873A1
WO2016203873A1 PCT/JP2016/063899 JP2016063899W WO2016203873A1 WO 2016203873 A1 WO2016203873 A1 WO 2016203873A1 JP 2016063899 W JP2016063899 W JP 2016063899W WO 2016203873 A1 WO2016203873 A1 WO 2016203873A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonaceous
heat treatment
carbonaceous particles
tubular structure
lower electrode
Prior art date
Application number
PCT/JP2016/063899
Other languages
English (en)
French (fr)
Inventor
啓永 鈴木
雄一 蒲
晋次郎 戸田
Original Assignee
日本電極株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電極株式会社 filed Critical 日本電極株式会社
Priority to CN201680034486.8A priority Critical patent/CN107709231B/zh
Priority to US15/736,300 priority patent/US10967348B2/en
Priority to PL16811348T priority patent/PL3309489T3/pl
Priority to EP16811348.8A priority patent/EP3309489B1/en
Publication of WO2016203873A1 publication Critical patent/WO2016203873A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/005Shaft or like vertical or substantially vertical furnaces wherein no smelting of the charge occurs, e.g. calcining or sintering furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/921Titanium carbide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B19/00Heating of coke ovens by electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/08Shaft or like vertical or substantially vertical furnaces heated otherwise than by solid fuel mixed with charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • F27D11/04Ohmic resistance heating with direct passage of current through the material being heated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a carbonaceous particle heat treatment apparatus and method for heat-treating a carbonaceous particle continuously and uniformly at a high temperature by directly energizing the carbonaceous particle.
  • an electric roasting technique is a method in which carbonaceous particles such as anthracite are put into a vertical electric furnace and the carbonaceous particles are directly heated to about 1500 ° C. to 2000 ° C. Widely used. Further, Patent Document 1 discloses a method of uniformly graphitizing uniformly at about 3000 ° C.
  • the prior art has the following problems. That is, in a device that performs continuous heat treatment using a vertical electric furnace used for electric roasting, there has been a problem of poor thermal efficiency. In addition, in the prior art, the variation in the treatment temperature is large, and it has been difficult to obtain a heat treatment recovered product having uniform characteristics. At present, there is a tendency that a high level of characteristics and quality is required, and there is an urgent need to improve the uniformity of heat treatment for carbonaceous particles.
  • the electrical resistivity of the carbonaceous particles is likely to change due to changes in the degree of filling.
  • the change in electrical resistivity affects the current path.
  • a phenomenon in which a current flows locally in the furnace filled with the carbonaceous particles that is, drift.
  • the present invention has been made to solve the above-mentioned problems, and heat treatment of carbonaceous particles is continued at a high temperature for a long period of time without causing a drift or blockage in a direct energization type furnace.
  • An object of the present invention is to provide a carbonaceous particle heat treatment apparatus and method that can improve productivity and workability.
  • the present invention is a heat treatment apparatus for carbonaceous particles that performs heat treatment by directly energizing the carbonaceous particles charged into the furnace, and includes the following components (1) and (2): have. (1) A columnar upper electrode and a cylindrical lower electrode disposed vertically along the central axis of the furnace body. (2) A conductive tubular structure electrically connected to the upper end of the lower electrode so as to surround the upper electrode.
  • the present invention is a particle electrical specific resistance at the time of light filling filled with only the own weight of the carbonaceous particles, and the particle electrical specific resistance when a predetermined load is applied after tapping the carbonaceous particles.
  • the change rate may be 70% or less.
  • a gas blowing part for blowing gas into the furnace body may be provided.
  • the present invention is also an embodiment of a carbonaceous particle heat treatment method using the above heat treatment apparatus.
  • a conductive tubular structure is electrically connected to the upper end of the lower electrode, and since this tubular structure surrounds the upper electrode, the upper part is passed through the carbonaceous particles filled in the furnace when energized.
  • a current flows between the electrode and the lower electrode and between the upper electrode and the tubular structure, the carbonaceous particles themselves generate resistance heat, and a uniform heating zone can be formed near the upper end of the lower electrode at a high temperature. Uniform heat treatment to the body can be continued stably over a long period of time, and productivity and workability have been greatly improved.
  • the block diagram of 1st Embodiment The lineblock diagram of the measuring device used for a 1st embodiment.
  • the heat treatment apparatus for carbonaceous particles according to the first embodiment of the present invention will be specifically described with reference to FIGS. 1 and 2.
  • the carbonaceous particles A gradually descend in the furnace body 11 while the carbonaceous particles A are charged into the furnace body 11 that is a vertical electric furnace and directly energized.
  • the carbonaceous particle heat treatment apparatus continuously performs the heat treatment of the carbonaceous particles A.
  • a heat treatment unit 10 including a furnace body 11 is provided on the upper side, and a cooling unit 20 for cooling the heat treated carbonaceous particles A is attached to the lower side.
  • the furnace body 11 is formed of a cylindrical furnace shell lined with a refractory, and a columnar upper electrode 12 is disposed at a position on the central axis thereof.
  • a gas blowing hole 16 is formed in the upper electrode 12 so as to penetrate in the longitudinal direction (vertical direction in FIG. 1).
  • a charging port 17 for carbonaceous particles A is formed in the upper portion of the furnace body 11.
  • a lower electrode 13 is disposed at a position on the central axis in the furnace body 11 so as to face the upper electrode 12 and be separated by a predetermined distance.
  • the lower electrode 13 has a cylindrical shape, and the carbonaceous particles A enter from the upper opening and descend inside at a speed corresponding to the discharge amount, so that the carbonaceous particles A are discharged from the lower opening. It has become.
  • a conductive tubular structure 14 is disposed on the lower electrode 13 so as to surround the upper electrode 12.
  • the tubular structure 14 is filled with the carbonaceous particles A introduced from the introduction port 17.
  • the carbonaceous particles A in the tubular structure 14 enter the upper opening, descend the inside at a speed corresponding to the discharge amount, and flow into the lower electrode 13 from the lower opening. Yes.
  • the tubular structure 14 is electrically connected to the upper end portion of the lower electrode 13 by a support ring 15. Therefore, when the upper electrode 12 and the lower electrode 13 are energized, a heating zone is formed from the upper end of the tubular structure 14 to the opening above the lower electrode 13.
  • the inner diameter of the tubular structure 14 is set larger than the inner diameter of the lower electrode 13.
  • the cooling unit 20 is provided with a cylindrical water cooling jacket 21 and a hood unit 22 attached integrally therewith. Below the water cooling jacket 21 and inside the hood portion 22, a water cooling board 23 is installed in the vicinity of the lower end portion of the lower electrode 13.
  • the hood portion 22 is formed in a disk shape on the upper side and a funnel shape on the lower side, and a small-diameter discharge portion 24 is provided in the lower portion.
  • a pipe (not shown) through which cooling water flows is arranged inside the water cooling jacket 21 and the water cooling board 23.
  • the water cooling board 23 receives the carbonaceous particles A that have passed through the water cooling jacket 21.
  • a rotary blade (not shown) is installed on the upper surface of the water cooling board 23, and the discharge amount of the carbonaceous particles A from the discharge unit 24 is quantitatively controlled by this rotary blade.
  • a gas blowing hole 25 is also provided in the vicinity of the upper end portion of the water cooling jacket 21.
  • an inert gas such as argon gas or nitrogen gas is blown into the lower electrode 13 and the tubular structure 14 from these gas blowing holes 16 and 25.
  • the heat-treated recovered product true specific gravity, ash content, electrical resistivity, fluorescent X-ray, ICP, or the like depending on the purpose.
  • the characteristics of the heat-treated recovered product are evaluated by elemental analysis by analytical method or analysis by X-ray diffraction of graphite.
  • the uniformity which is one of the characteristics of the heat-treated recovered product, is evaluated.
  • a method of measuring the electrical resistivity by making the heat-treated recovered product powdery is convenient. Since it is an electrical specific resistance of the heat-treated recovered product in a powder form, this is called a powder resistance. Powder resistance greatly depends on the type of material, particle size, and heat treatment temperature. Therefore, it is effective to obtain the coefficient of variation (standard deviation / average value ⁇ 100) of the powder resistance of a plurality of heat-treated recovered products arbitrarily collected, and thereby evaluate the uniformity of the heat-treated recovered products.
  • the carbonaceous particles A are directly energized to generate Joule heat and heat treatment.
  • the carbonaceous granule A anthracite, calcine coal coke, calcine petroleum coke, artificial graphite and a mixture or granule thereof, a mixed granule of metal oxide and carbon, or the like can be used.
  • the conductivity of the carbonaceous granule A is evaluated by measuring the electrical resistivity.
  • the electrical specific resistance of the carbonaceous particles A that is, the resistance of the particles is hereinafter referred to as particle resistance.
  • the above-mentioned powder resistance was an index for evaluating the characteristics of the recovered product after the heat treatment, whereas the particle resistance is the conductivity of the carbonaceous particles A before being put into the heat treatment apparatus. It is an index for evaluating sex.
  • the grain resistance is greatly influenced not only by the electrical specific resistance of the carbonaceous particles themselves constituting the granules A but also by the contact resistance caused by the contact points between the particles. That is, under the influence of the shape, surface state, particle size distribution, and filling degree of the carbonaceous granules A, the grain resistance of the carbonaceous granules A varies greatly. Therefore, in the present embodiment, attention is paid to the difference in the state of the carbonaceous particles A during light filling and tap filling, the particle resistance of the carbonaceous particles A during light filling and the particles of the carbonaceous particles A during tap filling.
  • the rate of change from resistance is defined as 70% or less. The rate of change is obtained from (1 ⁇ tap / lightly loaded) ⁇ 100.
  • Lightly filled refers to a state in which the carbonaceous particles A are put into an insulating container by the weight of the carbonaceous particles A alone.
  • the state of the carbonaceous particles A at the time of light filling is assumed to be an initial state in which the carbonaceous particles A which are materials are put into the tubular structure 14.
  • Tap filling refers to a state in which the entire measuring device is moved up and down until the filling density is saturated, thereby filling the carbonaceous particles A in an insulating container.
  • measurement is performed by applying a load corresponding to the load applied to the carbonaceous granule A in the tubular structure 14.
  • the load is 0.1 kgf / cm 2 .
  • the state of the carbonaceous granule A at the time of tap filling assumes a state in which the carbonaceous granule A as a material descends in the tubular structure 14 and reaches the center thereof.
  • the carbonaceous particles A may be passed through the tubular structure 14 during the energization operation unless they are nonconductive. Current will flow. Therefore, heat treatment by resistance heat generation is started in the carbonaceous particle A when it enters the tubular structure 14.
  • the temperature near the upper opening of the tubular structure 14 is set to 1000 ° C. Therefore, in the case of the carbonaceous particles A that are remarkably inferior in conductivity, if the material is heat-treated at 1000 ° C. and then the resistance of the material is measured, whether or not the carbonaceous particles A in this embodiment are charged can be determined in advance. It is possible to evaluate. Specifically, after the carbonaceous particles A are heat-treated at 1000 ° C. in a reducing atmosphere such as nitrogen gas and cooled to room temperature, the particle resistance of the carbonaceous particles A is measured.
  • an electrically conductive material for example, a calcine petroleum coke lump of about 10 mm to 20 mm is filled in the furnace body 11 and then the upper electrode 12 and the lower electrode 13 are energized to thereby open the upper opening of the tubular structure 14. It is preferable to raise the vicinity of the part to about 1000 ° C.
  • the carbonaceous granules A that are initially charged into the furnace body 11 are charged into a preheated state in which the temperature is raised to about 1000 ° C.
  • the carbonaceous particles A newly introduced into the tubular structure 14 are preheated by heat transfer and radiation from the existing carbonaceous particles A.
  • all the carbonaceous particles A charged into the furnace body 11 can exhibit better conductivity. Therefore, the carbonaceous particles A are continuously and efficiently energized, and continuous heat treatment is possible.
  • Table 1 summarizes examples having the characteristics of the present embodiment and comparative examples not included in the present embodiment.
  • the coefficient of variation of the powder resistance is obtained by arbitrarily collecting 10 samples from the obtained heat treatment recovered material.
  • the powder resistance is an index for evaluating the characteristics of the heat-treated recovered product. (Table 1)
  • Example 1 and 2 and Comparative Examples 1 and 2 In Examples 1 and 2 and Comparative Example 2, the tubular structure 14 is electrically connected to the upper end of the lower electrode 13 by a support ring 15. On the other hand, in Comparative Example 1, there is no support ring 15, the tubular structure 14 is not connected to the lower electrode 13, and the tubular structure 14 is simply installed near the upper portion of the lower electrode 13.
  • Comparative Example 1 is the heat treatment apparatus shown in FIG. 1, but is partially different. That is, Example 1 and Comparative Example 1 differ only in the presence or absence of the connection of the tubular structure 14 to the upper end of the lower electrode 13, and other conditions are the same.
  • Examples 1 and 2 and Comparative Examples 1 and 2 Calcine Petroleum Coke having a true specific gravity of 2.02, an ash content of 0.4%, and a volatile content of 0.6% was used as the carbonaceous granule A.
  • the heat treatment apparatus of the present embodiment shown continuous heat treatment at a processing rate of 100 kg per hour was performed while introducing nitrogen gas of 30 to 100 liter / min.
  • the heat treatment temperatures of Examples 1 and 2 were 2100 ° C. and 3000 ° C.
  • the heat treatment temperatures of Comparative Examples 1 and 2 were 2100 ° C. and 3000 ° C.
  • the particle size of the carbonaceous granule A is 10 to 20 mm in Example 1 and Comparative Example 1, 3 to 35 mm in Example 2, and 0.3 to 30 mm in Comparative Example 2.
  • a screening test was conducted according to JIS8815, and the average The particle size (d50) was measured.
  • the average particle diameter (d50) was 14 mm in Example 1 and Comparative Example 1, 20 mm in Example 2, and 12.5 mm in Comparative Example 2.
  • the rate of change in the electrical resistivity of the grain resistance of the carbonaceous granules A is 70% or less. That is, the change rates of the grain resistance in Examples 1 and 2 are 56% and 67%, respectively.
  • the rate of change in the electrical resistivity of the grain resistance of the carbonaceous granules A is 71%.
  • Example 3 (Example 3 and Comparative Example 3)
  • Example 3 the same calcine petroleum coke as in Example 1 was pulverized with a ball mill to obtain a powder having a total amount of 75 ⁇ m or less.
  • 6% corn starch powder and 2% polyvinyl alcohol are added as a binder, kneaded in a double-arm kneader, granulated with a disk pelleter, and a granulated body having a diameter of 10 mm and a length of 15 mm. did.
  • This granulated body was dried at 170 ° C. with an electric heating dryer to obtain a carbonaceous granulated body A.
  • the average particle diameter (d50) was 9 mm in Example 3 and 6 mm in Comparative Example 3. Using these carbonaceous granules A, continuous heat treatment was performed at 2400 ° C. in the same manner as in Example 1.
  • Example 3 and Comparative Example 4 have poor conductivity, a separate heat treatment is required when measuring the particle resistance.
  • About 30 kg of each carbonaceous granule A was sampled for measurement of grain resistance, placed in an iron container, and heat treated at 1000 ° C. in a nitrogen gas atmosphere in an electric furnace. After cooling to room temperature, the particle resistance of the carbonaceous granules A was measured.
  • the change rate of the grain resistance in Example 3 was 61%, while the change rate of the grain resistance of the carbonaceous granule A of Comparative Example 3 was 72%.
  • the carbonaceous particles A that have been heat-treated at 1000 ° C. for measuring the particle resistance are not used for the continuous heat treatment.
  • Example 3 stable operation was possible, and the coefficient of variation in powder resistance of the obtained heat-treated recovered product was 4.3, which was uniform.
  • Comparative Example 3 a stable operation could not be performed due to the blockage in the furnace body 11, the coefficient of variation in powder resistance was 16.2, and the obtained heat-treated product was non-uniform.
  • Example 4 In Example 4, anthracite having a true specific gravity of 1.42, an ash content of 5%, a volatile content of 5.5%, and a particle size of 6 to 18 mm was used as the carbonaceous granule A, and the heat treatment apparatus of the present embodiment shown in FIG. Then, a continuous heat treatment at a processing rate of 200 kg per hour was performed. In Example 4, stable operation was possible, the coefficient of variation in powder resistance was 4.8, and the obtained heat-treated product was uniform.
  • Example 5 artificial graphite having a true specific gravity of 2.2 and titanium oxide having a true specific gravity of 4.2 were mixed at 65% and 35%, respectively, and pulverized with a vibration ball mill to obtain a 7 ⁇ m powder.
  • a 20% liquid phenolic resin KC1300 (manufactured by Gunei Chemical Co., Ltd.) is added to the powder as a binder, kneaded with a double-arm kneader, granulated with a disk pelleter, and granulated with a diameter of 15 mm and a length of 15 mm. The body.
  • This granulated material was heat-treated at 500 ° C. in a firing furnace to obtain a carbonaceous particle A.
  • a carbonaceous granule A continuous heat treatment was performed at a treatment rate of 100 kg per hour using the heat treatment apparatus shown in FIG.
  • the reaction of TiO2 + 3C ⁇ TiC + 2CO progressed during the heat treatment process, and titanium carbide could be obtained continuously.
  • the degree of titanium carbide formation was stable, and the coefficient of variation in powder resistance was 4.5.
  • the operation and effects of the first embodiment as described above are as follows.
  • the carbonaceous particles A introduced from the upper part of the furnace body 11 are filled in the furnace body 11, and are directly applied to the carbonaceous particles A in the furnace body 11 by the upper electrode 12 and the lower electrode 13. Energize. Therefore, the carbonaceous particles A themselves generate resistance heat and heat treatment is performed.
  • the electrodes 12 and 13 are energized, a current flows between the upper electrode 12 and the lower electrode 13 through the carbonaceous particles A, but the conductive tubular structure 14 is electrically connected to the upper end of the lower electrode 13. Current also flows here.
  • the carbonaceous particles A are uniformly and uniformly heat treated, a sudden temperature rise is suppressed and no drift occurs in the tubular structure 14 filled with the carbonaceous particles A. For this reason, there is no local consumption of the electrode due to carbon sublimation, and there is no blockage in the furnace body 11 because the sublimated gas is not cooled and condensed. As a result, the carbonaceous particles A smoothly flow from the tubular structure 14 toward the lower electrode 13, and stable continuous operation can be continued for a long period of time, and excellent productivity can be obtained.
  • a heating zone is formed from the upper end of the tubular structure 14 to the upper opening of the lower electrode 13.
  • the inner diameter of the tubular structure 14 is set to be sufficiently larger than the inner diameter of the lower electrode 13. ing. Therefore, the region near the upper end of the lower electrode 13 to which the tubular structure 14 is connected can be enlarged, and a large heating zone that is uniform at a high temperature can be realized.
  • the change rate of the grain resistance between the light filling and the tap filling of the carbonaceous granules A is set to 70% or less. Therefore, the occurrence of drift can be suppressed, and uniform heat treatment and furnace blockage can be reliably prevented. Therefore, it is possible to contribute to the realization of an efficient and long-term uniform heat treatment continuous operation with high productivity.
  • the gas blowing hole 16 is formed in the upper electrode 12, and in addition to this, the gas blowing hole 25 is also provided in the vicinity of the upper end portion of the water cooling jacket 21. Then, an inert gas such as argon gas can be blown into the lower electrode 13 and the tubular structure 14 from the gas blowing holes 16 and 25. At this time, the gas blown into the lower electrode 13 and the tubular structure 14 flows upward in the lower electrode 13 and the tubular structure 14 in the direction opposite to the flow of the carbonaceous particles A.
  • an inert gas such as argon gas
  • the gas from the gas blowing holes 16 and 25 can effectively exhaust the gas volatilized from the carbonaceous particles A with the heat treatment from the lower part of the lower electrode 13 and the tubular structure 14 toward the upper part. Is possible. As a result, the continuous operation of the heat treatment apparatus could be continued for a long time, and the productivity was further improved.
  • the cooling unit 20 for cooling the carbonaceous particles A is provided below the lower electrode 13, the carbonaceous particles A can be quickly cooled, and the heat-treated carbonaceous particles A are efficiently recovered. It is possible. Thereby, the productivity of the heat treatment recovered product can be further increased.
  • the above embodiment is presented as an example in the present specification, and is not limited to the above embodiment.
  • the upper electrode may be prismatic instead of cylindrical.
  • the tip shape of the upper electrode is not limited, but is preferably hemispherical or conical.
  • the lower electrode may also be a square cylinder instead of a cylinder.
  • These electrodes can be either carbonaceous or graphite, but artificial graphite electrodes are preferred.
  • the shape and material of the tubular structure can be appropriately changed.
  • an inclined portion may be provided on the inner wall portion of the tubular structure so that the carbonaceous particles slide toward the lower electrode.
  • the inclined portion may be provided uniformly from the upper end surface to the lower end surface of the tubular structure, or may be provided from the middle to the lower end surface of the tubular structure. According to such an embodiment, the carbonaceous particles can be smoothly lowered from the tubular structure to the lower electrode, and the heat treatment of the carbonaceous particles can be performed with high quality.
  • the ratio of the maximum inner diameter of the tubular structure to the inner diameter of the lower electrode or the ratio of the maximum inner diameter of the tubular structure to the outer diameter of the upper electrode should be within the range where the carbonaceous particles smoothly flow from the tubular structure to the lower electrode. Can be selected as appropriate.
  • the distance between the upper electrode and the lower electrode can be appropriately changed as long as the electrode is less consumed and the carbonaceous particles smoothly flow from the tubular structure to the lower electrode.
  • the connection ring for connecting the tubular structure to the lower electrode the shape and configuration thereof can be appropriately changed corresponding to the tubular structure and the lower electrode.
  • a gas blowing portion for blowing gas into the lower electrode or the tubular structure may be provided in the tubular structure or the furnace body itself.
  • the blending method and kneading method with the binder when the powder is granulated into carbonaceous granules are arbitrary, and for example, a double-armed batch kneader can be used.
  • the type of binder can be selected as appropriate, and any material that has binding properties during carbonization, such as starch powder, pitch, solid resin, coal tar, and liquid resin, may be used in combination.
  • starch powder, pitch, solid resin, coal tar, and liquid resin may be used in combination.
  • starch starch, wheat starch, rice starch, legume starch, potato starch and the like, and starch starch obtained by pre-gelatinizing them can be used as the binder.
  • the granulation method is arbitrary, and for example, a granulator such as a disk pelleter can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

直接通電方式の炉内に偏流や炉内閉塞が発生することなく、均一に高温で炭素質粒体の熱処理を長期にわたり継続することができ、生産性及び作業性の向上を図った炭素質粒体の熱処理装置およびその方法を提供する。下部電極13の上部には上部電極12を囲うようにして導電性の管状構造体14が電気的に接続されている。軽装充填時の粒体電気比抵抗と、タップ充填時の粒体電気比抵抗との変化率を(1-タップ充填時/軽装充填時)×100と規定し、この変化率を70%以下とする。

Description

炭素質粒体の熱処理装置およびその方法
 本発明は、炭素質粒体に直接通電することにより連続的かつ均一に高温で炭素質粒体を熱処理する炭素質粒体の熱処理装置およびその方法に関するものである。
 無煙炭、石油コークス、炭素質造粒体、金属酸化物と炭素の混合造粒体等の炭素質粒体の物理特性は加熱処理温度によって著しく変化するので、電極用原料や炭素質耐火物用の原料、電子材料あるいは電池材料などとして使用する場合には、均一な加熱処理が必要である。また、金属酸化物と炭素の混合品を熱処理により還元反応させて各種金属の炭化物を得る場合においても、狙った反応を確実にするためには均一に熱処理することが不可欠である。
 そこで従来から、無煙炭などの炭素質粒体を縦型電気炉内に投入し、炭素質粒体に直接通電することにより連続的に1500℃~2000℃程度で加熱処理する方法が、電気焙焼技術として広く使用されている。また、3000℃程度で均一に連続黒鉛化する方法が特許文献1に開示されている。
特開2002-167208号公報
 しかしながら、従来技術には、次のような課題があった。すなわち、電気焙焼に用いられる縦型電気炉によって連続加熱処理する装置では、熱効率が悪いことが問題となっていた。それに加えて、従来技術では処理温度のばらつきが大きく、均一な特性の熱処理回収物を得ることは難しかった。現在では、特性や品質に高水準なものが求められる傾向にあり、炭素質粒体に対する熱処理の均一性を高めることが急務となっている。
 また、炭素質粒体は、その充填度の変化等により電気比抵抗が変化し易い。炭素質粒体に直接通電することにより連続的に加熱処理する技術では、その電気比抵抗の変化は電流の経路に影響を与えることになる。その結果、炭素質粒体が充填されている炉体内に電流が局所的に流れる現象、すなわち偏流が発生する可能性がある。
 直接通電方式の炉内において偏流が発生した場合、炭素質粒体を均一に加熱処理することができなくなるだけでなく、偏流箇所が著しく高温となることがある。このように局所的に著しい高温部が生じると、炉内の炭素質粒体において、炭素の昇華が起こる。その結果、電極の局所的な消耗を引き起こしたり、昇華したガスが冷えて凝結し、いわゆるブリッジ部ができてしまい、炉内閉塞を引き起こす。炉内に炭素質粒体の閉塞が発生すると、連続操業を継続することは困難となり、生産性が低下した。
 本発明は、上記の課題を解決するためになされたものであって、直接通電方式の炉内に偏流や炉内閉塞が発生することなく、均一に高温で炭素質粒体の熱処理を長期にわたり継続することができ、生産性及び作業性の向上を図った炭素質粒体の熱処理装置およびその方法を提供することを目的としている。
 上記目的を達成するために、本発明は、炉体内へ投入した炭素質粒体に直接通電することにより熱処理を行う炭素質粒体の熱処理装置であって、次の構成要素(1)、(2)を有している。
(1)前記炉体の中心軸に沿って上下に配置される柱状の上部電極および筒状の下部電極。
(2)前記上部電極を囲うように前記下部電極の上端に電気的に接続される導電性の管状構造体。
 また、本発明は、前記炭素質粒体の自重だけで充填した軽装充填時の粒体電気比抵抗と、前記炭素質粒体をタップ充填した後に所定の荷重をかけた時の粒体電気比抵抗との変化率を70%以下とするようにしてもよい。また、本発明は、前記炉体の内部にガスを吹き込むためのガス吹込み部を設けるようにしてもよい。さらに、本発明は、上記の熱処理装置を用いた炭素質粒体の熱処理方法もその一態様である。
 本発明においては、下部電極の上端に導電性の管状構造体を電気的に接続し、この管状構造体が上部電極を囲むので、通電時には炉内に満たされた炭素質粒体を介して、上部電極および下部電極間ならびに上部電極および管状構造体間に電流が流れて炭素質粒体自身が抵抗発熱し、下部電極の上端部付近に、高温で均一な加熱帯を形成することができ、炭素質粒体に対する均一な熱処理を長期にわたり安定して継続可能となり、生産性及び作業性が大幅に向上した。
第1の実施形態の構成図。 第1の実施形態に用いる測定装置の構成図。
(1)第1の実施形態
[構成]
 以下、本発明の第1の実施形態に係る炭素質粒体の熱処理装置について、図1および図2を参照して具体的に説明する。図1に示すように、本実施形態は、縦型電気炉である炉体11の内部に炭素質粒体Aを投入し直接通電しながら、炉体11内部を炭素質粒体Aが徐々に降下することにより、炭素質粒体Aの熱処理を連続的に行う炭素質粒体の熱処理装置である。この熱処理装置には、上側に炉体11を含む熱処理部10が設けられ、その下側に熱処理した炭素質粒体Aを冷却するための冷却部20が取り付けられている。
 炉体11は、耐火物で内張りされた円筒状の炉殻からなり、その中心軸上の位置に円柱状の上部電極12が配置されている。上部電極12には長手方向(図1の上下方向)に貫通して、ガス吹込み孔16が形成されている。また、炉体11の上部には炭素質粒体Aの投入口17が形成されている。
 炉体11内の中心軸上の位置には上部電極12に対向し且つ所定の距離だけ離して、下部電極13が配置されている。下部電極13は、円筒状であり、上部の開口部から炭素質粒体Aが入って内部を排出量に応じた速度で降下してゆき、下部の開口部から炭素質粒体Aが排出されるようになっている。
 下部電極13の上部には上部電極12を囲うようにして導電性の管状構造体14が配置されている。管状構造体14内には投入口17から投入された炭素質粒体Aが充填される。管状構造体14内の炭素質粒体Aは、上部の開口部から入って内部を排出量に応じた速度で降下してゆき、下部の開口部から下部電極13内へと流入するようになっている。管状構造体14は、下部電極13の上端部と支持リング15によって電気的に接続されている。したがって、上部電極12及び下部電極13が通電されると、管状構造体14の上端部から下部電極13の上部の開口部にかけて加熱帯が形成されることになる。また、管状構造体14の内径は下部電極13の内径よりも大きく設定されている。
 冷却部20には、円筒形の水冷ジャケット21と、それと一体的に取り付けられたフード部22が設けられている。水冷ジャケット21の下方でフード部22の内部には、下部電極13の下端部に近接して水冷盤23が設置されている。フード部22は上側がディスク状、下側が漏斗状に形成されており、下部には小径の排出部24が設けられている。
 水冷ジャケット21及び水冷盤23の内部には冷却水が流れる配管(図示せず)が配置されている。水冷盤23は、水冷ジャケット21を通過してきた炭素質粒体Aを受け止めるようになっている。水冷盤23の上面部には回転羽根(図示せず)が設置されており、排出部24からの炭素質粒体Aの排出量はこの回転羽根によって定量管理されている
 また、上部電極12に形成されたガス吹込み孔16に加えて、水冷ジャケット21の上端部付近にもガス吹込み孔25が設けられている。本実施形態においては、これらのガス吹込み孔16、25から、アルゴンガスや窒素ガスなどの不活性ガスを、下部電極13及び管状構造体14内部へ吹き込むようになっている。
 ところで、冷却部20の排出部24から排出され、回収された熱処理後の炭素質粒体Aつまり熱処理回収品については、その目的に応じて真比重、灰分や電気比抵抗、あるいは蛍光X線やICP分析法による元素分析や黒鉛のX線回折法による分析などによって、熱処理回収品の特性を評価する。
 本実施形態では、熱処理回収品の特性の一つである、均一性について評価するものとする。この場合、熱処理回収品の均一性を評価する簡易的な方法としては、熱処理回収品を粉末状とし電気比抵抗を測定する方法が便利である。粉末状とした熱処理回収品の電気比抵抗なので、これを粉末抵抗と呼ぶこととする。粉末抵抗は材料の種類や粒度、熱処理温度に大きく依存する。したがって、任意に採取した複数の熱処理回収品の粉末抵抗の変動係数(標準偏差/平均値×100)を求めて、これにより熱処理回収品の均一性を評価することが有効である。
 [粉末抵抗の測定法]
 ここで、図2を用いて、炭素質粒体Aの粉末抵抗を測定する測定装置の構成について説明する。炭素質粒体Aを粉砕あるいは解砕し粉末状とした試料1を、管内断面積S(mm)の絶縁性のシリンダー2に投入し、押し棒3を上から差し込み一定の荷重をかける。本実施形態では荷重を30kgf/cmした。その状態で押し棒と底板4の間に電流I(A)を流し、その間の電圧測定用端子間H(m)の電圧E(V)を測定する。粉末抵抗r(Ωmm2/m)は、次の式(1)により計算する。
(数1)
r=(E×S)/(I×H)   …(1)
 [炭素質粒体]
 本実施形態では、炭素質粒体Aが直接通電されることによりジュール熱を発生し、加熱処理される。炭素質粒体Aとしては、無煙炭、カルサイン石炭コークス、カルサイン石油コークス、人造黒鉛およびこれらの混合物や造粒体、金属酸化物と炭素の混合造粒体などが使用することが可能である。
 炭素質粒体Aの導電性は電気比抵抗を測定して評価する。この炭素質粒体Aの電気比抵抗つまり粒体の抵抗を、以下では粒抵抗と呼ぶこととする。前述した粉末抵抗は、熱処理をした後の回収品の特性を評価するための指標であったが、これに対して、粒抵抗は、熱処理装置に投入される前段階の炭素質粒体Aの導電性を評価するための指標である。
 粒抵抗は、粒体Aを構成する炭素質粒子自身の電気比抵抗のみならず、粒子間の接触点に起因する接触抵抗が大きく影響する。すなわち、炭素質粒体Aの形状、表面状態、粒度分布、充填度の影響を受けて、炭素質粒体Aの粒抵抗は大きく変化する。そこで本実施形態では、軽装充填時とタップ充填時との炭素質粒体Aの状態の違いに着眼し、軽装充填時の炭素質粒体Aの粒抵抗と、タップ充填時の炭素質粒体Aの粒抵抗との変化率を、70%以下と規定している。変化率は(1-タップ時/軽装時)×100から求める。
 軽装充填とは、単に炭素質粒体Aの自重だけで炭素質粒体Aを、絶縁性の容器内に投入した状態を指す。軽装充填時の炭素質粒体Aの状態は、材料である炭素質粒体Aを管状構造体14内に投入した初期状態を想定したものである。
 タップ充填とは、充填密度が飽和するまで測定装置全体を上下動させることにより、炭素質粒体Aを、絶縁性の容器内に充填した状態を指す。また、タップ充填時の粒抵抗測定では、管状構造体14内で炭素質粒体Aにかかる荷重相当の荷重をかけて測定している。本実施形態では荷重を0.1kgf/cmとした。タップ充填時の炭素質粒体Aの状態は、材料である炭素質粒体Aが管状構造体14内を降下してその中央部に達した状態を想定したものである。
 炭素質粒体Aは適度な導電性を有することが望ましいが、著しく導電性に劣る場合であったとしても、不導体でない限り、通電運転時には管状構造体14を介して、炭素質粒体Aには電流が流れることになる。そのため、炭素質粒体Aには、管状構造体14内に入った段階で、抵抗発熱による熱処理が始まる。
 ところで、本実施形態の通電運転時は管状構造体14の上部開口部付近の温度は1000℃とする。従って、著しく導電性に劣る炭素質粒体Aの場合は、材料を1000℃で加熱処理し、その後で当該材料の抵抗を測定すれば、本実施形態における炭素質粒体Aの投入適否を、事前に評価することが可能である。具体的には、窒素ガスなどの還元雰囲気で、炭素質粒体Aを1000℃で熱処理し、室温まで冷却した後、炭素質粒体Aの粒抵抗を測定する。
[粒抵抗測定]
 炭素質粒体Aにおける粒抵抗の測定原理は、前述した粉末抵抗のそれと同様である。断面積S(m)の絶縁性の器に炭素質粒体Aを入れ、電流端子を通じて炭素質粒体Aに電流を流し、間隔L(m)で設置した端子間の電気比抵抗r(Ω)を測定する。炭素質粒体Aの粒抵抗R(Ωm)は、次の式(2)によって求まる。
(数2)
R=r×S/L        …(2)
 [運転方法]
 本実施形態では、最初から処理対象とする炭素質粒体Aで炉体11内を満たしたうえで通電して昇温するのは、時間的、電力的に無駄が多い場合がある。そこで、あらかじめ導電性のある材料、例えば10mm~20mm程度のカルサイン石油コークス塊などを炉体11内に満たし、その後で上部電極12および下部電極13を通電することにより、管状構造体14の上部開口部付近を1000℃程度にまで上げておくことが好ましい。
 このような状態にすることで、最初期に炉体11に投入される炭素質粒体Aは、1000℃程度に昇温された予熱状態の中に投入されることになる。また以後、新規に連続して管状構造体14へ投入された炭素質粒体Aは、既存の炭素質粒体Aからの熱の伝達や輻射によって予熱されることになる。これらの予熱によって、炉体11内に投入される全ての炭素質粒体Aはさらに良好な導電性が発現することが可能となる。したがって、炭素質粒体Aは継続的に効率良く通電がなされ、連続的な熱処理が可能となる。
[実施例]
 本実施形態の作用および効果を説明するために、本実施形態の特徴を有する実施例と、本実施形態には包含されない比較例について表1にまとめた。粉末抵抗の変動係数は、得られた熱処理回収物から任意に10点のサンプルを採取して求めたものである。既に述べたように粉末抵抗とは、熱処理回収品の特性を評価するための指標である。
(表1)
Figure JPOXMLDOC01-appb-I000001
(実施例1、2および比較例1、2)
 実施例1、2および比較例2では、下部電極13上端に対し管状構造体14が支持リング15により電気的に接続されている。一方、比較例1では、支持リング15がなく下部電極13に管状構造体14が接続されておらず、下部電極13上部付近に管状構造体14を単に設置しただけである。比較例1は図1に示した熱処理装置ではあるが、一部が異なるものである。すなわち、実施例1および比較例1とは、下部電極13上端への管状構造体14の接続の有無が異なるだけであり、他の条件は同じである。
 このような実施例1、2および比較例1、2では、真比重2.02、灰分0.4%、揮発分0.6%のカルサイン石油コークスを炭素質粒体Aとして使用し、図1に示した本実施形態の熱処理装置で30~100リットル/minの窒素ガスを導入しながら、1時間当たり100kgの処理速度連続熱処理を行った。また、実施例1、2の熱処理温度は2100℃、3000℃とし、比較例1、2の熱処理温度は2100℃、3000℃とした。
 炭素質粒体Aの粒径は実施例1と比較例1が10~20mm、実施例2が3~35mm、比較例2は0.3~30mmであり、JIS8815に準じてふるい分け試験を行い、平均粒径(d50)を測定した。平均粒径(d50)は、実施例1と比較例1が14mm、実施例2が20mm、比較例2は12.5mmであった。
 また、実施例1、2は、炭素質粒体Aの粒抵抗の電気比抵抗の変化率が70%以下である。すなわち、実施例1、2における粒抵抗抗の変化率はそれぞれ、56%、67%である。一方、比較例2では、炭素質粒体Aの粒抵抗の電気比抵抗の変化率が71%である。
 表1に示したように、実施例1、2の各粉末抵抗の変動係数はそれぞれ、1.8、4.2と、いずれも5以下であった。したがって、実施例1、2では、安定した運転が可能であり、得られた熱処理物においても均一な熱処理がなされていることが判明した。一方、比較例1、2においては、粉末抵抗の変動係数はそれぞれ、31.7、38.3であり、均一に所望の熱処理ができなかったことを示している。また、比較例1、2においては、炉体11内の閉塞により安定した運転ができなかった。さらに、比較例2においては、運転後の炉体11を観察したところ、上部電極12に偏流によると思われる著しい消耗が認められた。
(実施例3および比較例3)
 実施例3では、実施例1と同様のカルサイン石油コークスをボールミルで粉砕し、全量75μm以下の粉体とした。この粉体に対し、バインダーとして外割りでコーンスターチ粉6%とポリビニールアルコール2%を加え双腕型ニーダーで混練後、ディスクペレッターにて造粒し直径10mm、長さ15mmの造粒体とした。
 この造粒体を電熱式乾燥機で170℃で乾燥して炭素質造粒体Aを得た。これを実施例3とする。この炭素質粒体Aの生産過程でハンドリング等が適切でない場合、一部損傷し欠片が生じることになる。そこで、欠片が生じた炭素質粒体Aを比較例3として用意した。平均粒径(d50)は、実施例3が9mm、比較例3が6mmであった。これら炭素質粒体Aを使用して、実施例1と同様に2400℃で連続熱処理を行った。
 ところで、実施例3および比較例4の炭素質粒体Aは導電性に乏しいため、粒抵抗を測定する場合には別途熱処理が必要となる。粒抵抗測定用に各炭素質粒体Aを約30kg採取し鉄製の容器に入れ、電気炉で窒素ガス雰囲気下で1000℃で熱処理した。室温まで冷却した後、炭素質粒体Aの粒抵抗を測定した。その結果、実施例3における粒抵抗の変化率は61%であり、一方、比較例3の炭素質粒体Aの粒抵抗の変化率が72%であった。粒抵抗測定用に1000℃熱処理した炭素質粒体Aは、連続熱処理には使用しない。
 その結果、実施例3においては安定した運転が可能で、得られた熱処理回収品の粉末抵抗の変動係数が4.3であり、均一なものであった。一方、比較例3においては炉体11内の閉塞により安定した運転ができず、粉末抵抗の変動係数は16.2であり、得られた熱処理物は不均一なものであった。
(実施例4)
 実施例4では、真比重1.42、灰分5%、揮発分5.5%、粒径6~18mmの無煙炭を、炭素質粒体Aとして使用し、図1に示した本実施形態の熱処理装置で、1時間当たり200kgの処理速度連続熱処理を行った。実施例4においては安定した運転が可能で、粉末抵抗の変動係数が4.8であり、得られた熱処理物も均一なものであった。
(実施例5)
 実施例5では、真比重2.2の人造黒鉛と真比重4.2の酸化チタンをそれぞれ65%、35%で混合し、振動ボールミルで粉砕し、7μmの粉体とした。この粉体に対しバインダーとして外割りで20%の液状フェノール樹脂KC1300(群栄化学製)を加え双腕型ニーダーで混練後、ディスクペレッターにて造粒し直径15mm、長さ15mmの造粒体とした。
 この造粒体を焼成炉で500℃で熱処理し炭素質粒体Aを得た。この炭素質粒体Aを使用して図1に示した熱処理装置で1時間当たり100kgの処理速度で連続熱処理を行った。その結果、熱処理過程でTiO2+3C→TiC+2COの反応が進行し、連続して炭化チタンを得ることができた。炭化チタンの生成度合は安定しており、粉末抵抗の変動係数も4.5であった。
[作用および効果]
 以上のような第1の実施形態の作用および効果は次の通りである。
(1)本実施形態では、炉体11上部より投入された炭素質粒体Aが、炉体11の内部に満たされ、上部電極12および下部電極13によって炉体11内の炭素質粒体Aに直接通電する。そのため、炭素質粒体A自身が抵抗発熱して加熱処理が行われる。電極12、13の通電時は、炭素質粒体Aを介して上部電極12と下部電極13の間に電流が流れることになるが、下部電極13の上端には導電性の管状構造体14を電気的に接続しているので、ここにも電流が流れる。
 つまり、上部電極12と管状構造体14との間にも炭素質粒体Aを介して電流が流れる。その結果、炭素質粒体Aが管状構造体14内を降下していく過程で、徐々にまんべんなく抵抗発熱による熱処理を行うことができる。このため、均一な特性の熱処理回収物を得ることができ、高水準な特性や品質を求めるニーズに応えることができる。
 また、炭素質粒体Aがまんべんなく徐々に均一に熱処理されるので、急激な温度上昇が抑制され炭素質粒体Aが充填された管状構造体14内に偏流が発生することがない。このため、炭素の昇華による電極の局所的な消耗もなく、昇華したガスが冷えて凝結したブリッジ部ができることもないので炉体11内の閉塞もない。これにより、管状構造体14から下部電極13に向かって炭素質粒体Aがスムーズに流れることになり、安定した連続操業を長期にわたり継続することが可能となり、優れた生産性を得ることができる。
(2)本実施形態では、管状構造体14の上端から下部電極13の上部の開口部にかけて加熱帯を形成するが、管状構造体14の内径は下部電極13の内径よりも十分に大きく設定されている。そのため、管状構造体14が接続された下部極電極13上端付近の領域を大きくすることができ、高い温度で均一な状態の、大きな加熱帯を実現することができる。
 したがって、排出速度に応じた速度で降下してきた全ての炭素質粒体Aは、この高温且つ均一で大きな加熱帯を必ず経て熱処理されることとなり、炭素質粒体Aの最終的な処理温度を、安定化することができる。しかも、本実施形態においては直接通電方式であるため、電流制御などにより設定した所望の温度に保つことが容易であり、温度精度が極めて良好である。したがって、炭素質粒体Aの最終的な処理温度を、正確に制御することが可能である。
(3)炭素質粒体Aが管状構造体14内を降下して上部から下部に至る過程で、その流下状況によっては、水平方向における炭素質粒体Aの充填度に、差異が生じる場合もある。しかし、本実施形態では、炭素質粒体Aの軽装充填時とタップ充填時における粒抵抗の変化率を、70%以下としている。そのため、偏流の発生を抑制することができ、均一な加熱処理と炉内閉塞を確実に防止することができる。したがって、生産性の高い効率的な長期間の均一加熱処理連続操業の実現に寄与することができる。
(4)さらに本実施形態においては、上部電極12にガス吹込み孔16を形成し、これに加えて、水冷ジャケット21の上端部付近にもガス吹込み孔25を設けている。そして、これらのガス吹込み孔16、25から、アルゴンガスなどの不活性ガスを、下部電極13及び管状構造体14の内部に吹き込むことができる。このとき、下部電極13及び管状構造体14の内部へ吹き込まれるガスは、炭素質粒体Aの流下とは逆向きに、下部電極13及び管状構造体14の内部を上昇するように流れる。
 したがって、ガス吹込み孔16、25からのガスは、熱処理に伴って炭素質粒体Aから揮散するガスを、下部電極13及び管状構造体14の下部から上部に向かって効果的に排出することが可能である。その結果、熱処理装置の連続操業を長期にわたり継続することができ、生産性がいっそう向上した。
(5)下部電極13の下側に炭素質粒体Aを冷却する冷却部20を備えているので、迅速に炭素質粒体Aを冷却することができ、熱処理した炭素質粒体Aを効率良く回収することが可能である。これにより、熱処理回収品の生産性をより高めることができる。
[他の実施形態]
 上記の実施形態は、本明細書において一例として提示したものであって、上記の実施形態に限定されるものではない。例えば、上部電極は円柱状ではなく角柱状であってもよい。上部電極の先端形状は限定されないが、半球状あるいは円錐状が好ましい。下部電極も円筒状ではなく、角型の筒状であってもよい。これらの電極は炭素質、黒鉛質の何れも使用可能であるが、人造黒鉛電極が好ましい。
 また、管状構造体の形状や材質なども適宜変更可能である。例えば、管状構造体の内壁部に炭素質粒体が下部電極に向かって滑るように傾斜部を設けるようにしてもよい。この傾斜部は管状構造体の上端面から下端面にわたり均一に設けてもよいし、管状構造体の中ほどから下端面にかけて設けるようにしてもよい。このような実施形態によれば、炭素質粒体が管状構造体から下部電極へとスムーズに降下することができ、炭素質粒体の熱処理を高品位に実施することが可能となる。
 管状構造体の最大内径と下部電極の内径との比率あるいは管状構造体の最大内径と上部電極の外径との比率なども、管状構造体から下部電極へ炭素質粒体がスムーズに流れる範囲であれば、適宜選択可能である。上部電極と下部電極との距離に関しても、電極の消耗が少なく、管状構造体から下部電極へ炭素質粒体がスムーズに流れる範囲であれば、適宜変更可能である。また、管状構造体を下部電極に接続する接続リングに関しても、その形状や構成などは管状構造体や下部電極に対応して適宜変更可能である。さらには、下部電極や管状構造体の内部にガスを吹き込むガス吹込み部を、管状構造体や炉体自体に設けるようにしてもよい。
 粉体を造粒して炭素質粒体とする場合のバインダーとの配合方法、混練方法などは任意であり、例えば双腕型バッチ式ニーダーなどが使用できる。バインダーの種類は適宜選択可能であり、でんぷん粉やピッチ、固形レジン、コールタールや液状レジンなど、炭化時において結合性を有する材料であれば良く、さらには複数種を組み合わせて使用してもよい。例えば、でんぷん粉としては、小麦でんぷん、米でんぷん、豆類でんぷん、いも類でんぷんなどが、またそれらをα化したでんぷん粉がバインダーに使用することができる。さらに造粒方法も任意であり、例えばディスクペレッターなどの造粒機が使用できる。
1  試料
2  シリンダー
3  押し棒
4  底板
5  電気抵抗測定器
10 熱処理部
11 炉体
12 上部電極
13 下部電極
14 管状構造体
15 支持リング
16、25 ガス吹込み孔
17 投入口
20 冷却部
21 水冷ジャケット
22 フード部
23 水冷盤
24 排出部
A  炭素質粒体

Claims (4)

  1.  炉体の内部に投入した炭素質粒体を直接通電することにより熱処理を行う炭素質粒体の熱処理装置であって、
     前記炉体の中心軸に沿って上下に配置される柱状の上部電極および筒状の下部電極と、
     前記上部電極を囲うように前記下部電極の上端に電気的に接続される導電性の管状構造体と、を備えたことを特徴とする炭素質粒体の熱処理装置。
  2.  前記炭素質粒体の自重だけで充填した軽装充填時の粒体電気比抵抗と、前記炭素質粒体をタップ充填した後に所定の荷重をかけた時の粒体電気比抵抗との変化率を、(1-タップ充填時/軽装充填時)×100と規定し、この変化率を70%以下とすることを特徴とする請求項1に記載の炭素質粒体の熱処理装置。
  3.  前記炉体の内部にガスを吹き込むためのガス吹込み部を設けたことを特徴とする請求項1又は2に記載の熱処理装置。
  4.  請求項1~3のいずれか1項に記載の熱処理装置を用いたことを特徴とする炭素質粒体の熱処理方法。
PCT/JP2016/063899 2015-06-15 2016-05-10 炭素質粒体の熱処理装置およびその方法 WO2016203873A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680034486.8A CN107709231B (zh) 2015-06-15 2016-05-10 碳质粒体的热处理装置及其方法
US15/736,300 US10967348B2 (en) 2015-06-15 2016-05-10 Heat treatment apparatus for carbonaceous grains and method therefor
PL16811348T PL3309489T3 (pl) 2015-06-15 2016-05-10 Urządzenie do obróbki cieplnej materiału ziarnistego zawierającego węgiel i jej sposób
EP16811348.8A EP3309489B1 (en) 2015-06-15 2016-05-10 Heat treatment apparatus for carbonaceous grains and method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-120264 2015-06-15
JP2015120264A JP6621603B2 (ja) 2015-06-15 2015-06-15 炭素質粒体の熱処理装置およびその方法

Publications (1)

Publication Number Publication Date
WO2016203873A1 true WO2016203873A1 (ja) 2016-12-22

Family

ID=57545175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063899 WO2016203873A1 (ja) 2015-06-15 2016-05-10 炭素質粒体の熱処理装置およびその方法

Country Status (6)

Country Link
US (1) US10967348B2 (ja)
EP (1) EP3309489B1 (ja)
JP (1) JP6621603B2 (ja)
CN (1) CN107709231B (ja)
PL (1) PL3309489T3 (ja)
WO (1) WO2016203873A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109081336A (zh) * 2018-10-24 2018-12-25 中铝国际工程股份有限公司 一种电煅高温石墨化炉

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021105492A (ja) * 2019-12-26 2021-07-26 日本電極株式会社 炭素質粒体の熱処理装置及びその方法
JP2021105493A (ja) * 2019-12-26 2021-07-26 日本電極株式会社 炭素質粒体の熱処理装置及びその方法
JP2021147259A (ja) * 2020-03-17 2021-09-27 日本電極株式会社 炭素質粒体の熱処理装置及びその組み立て方法
JP2021173507A (ja) * 2020-04-30 2021-11-01 日本電極株式会社 炭素質粒体の熱処理装置
KR102604723B1 (ko) * 2021-12-16 2023-11-22 포스코홀딩스 주식회사 흑연의 제조 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5090601A (ja) * 1973-12-15 1975-07-19
JPS58135700U (ja) * 1982-03-05 1983-09-12 日本軽金属株式会社 竪型電気加熱炉
JPH08135938A (ja) * 1994-11-11 1996-05-31 Rasa Shoji Kk 還元溶融スラグ生成用の直流電気溶融炉
US20110194583A1 (en) * 2010-02-10 2011-08-11 Yinghe Li Shaft High Temperature Continuous Graphitizing Furnace

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2303973A (en) * 1939-09-22 1942-12-01 Armstrong Harry Howard Method of and apparatus for production of master alloys
JPS463470Y1 (ja) 1969-04-25 1971-02-05
US4025610A (en) 1973-12-15 1977-05-24 Nippon Kokan Kabushiki Kaisha Method and apparatus for denitrifying coke
US4261857A (en) * 1974-05-09 1981-04-14 Kyoritsu Yuki Kogyo Kenkyusho Method and apparatus for regenerating used active carbon
US4288407A (en) * 1975-07-01 1981-09-08 Markel Richard F Method and apparatus for treating material in a fluidized bed
DE2846352A1 (de) 1978-10-25 1980-05-08 Hoechst Ag Verfahren und vorrichtung zur erhoehung des graphitierungsgrades von russen sowie die verwendung dieser russe
JPS58135700A (ja) 1982-02-08 1983-08-12 富士通株式会社 磁気遮蔽方法
DE3341748A1 (de) * 1983-11-18 1985-05-30 Kraftwerk Union AG, 4330 Mülheim Verfahren und ofen zur beseitigung radioaktiver abfaelle
US4645008A (en) * 1985-05-20 1987-02-24 Benning James M Racing-type horseshoe
JP2002167208A (ja) 2000-11-30 2002-06-11 Ishikawajima Harima Heavy Ind Co Ltd 連続式黒鉛化炉
US20050063892A1 (en) * 2003-09-18 2005-03-24 Deepak Tandon Thermally modified carbon blacks for various type applications and a process for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5090601A (ja) * 1973-12-15 1975-07-19
JPS58135700U (ja) * 1982-03-05 1983-09-12 日本軽金属株式会社 竪型電気加熱炉
JPH08135938A (ja) * 1994-11-11 1996-05-31 Rasa Shoji Kk 還元溶融スラグ生成用の直流電気溶融炉
US20110194583A1 (en) * 2010-02-10 2011-08-11 Yinghe Li Shaft High Temperature Continuous Graphitizing Furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109081336A (zh) * 2018-10-24 2018-12-25 中铝国际工程股份有限公司 一种电煅高温石墨化炉

Also Published As

Publication number Publication date
US20180185805A1 (en) 2018-07-05
EP3309489B1 (en) 2021-09-01
PL3309489T3 (pl) 2022-01-17
EP3309489A1 (en) 2018-04-18
CN107709231B (zh) 2020-10-09
CN107709231A (zh) 2018-02-16
US10967348B2 (en) 2021-04-06
EP3309489A4 (en) 2019-01-02
JP2017001923A (ja) 2017-01-05
JP6621603B2 (ja) 2019-12-18

Similar Documents

Publication Publication Date Title
JP6621603B2 (ja) 炭素質粒体の熱処理装置およびその方法
JP6320023B2 (ja) 黒鉛粉の製造装置及びその方法
US6157667A (en) Method and calcining furnace for electric calcining of carbonaceous material
JP6230944B2 (ja) 縦型黒鉛化炉および黒鉛の製造方法
CN101808435A (zh) 一种大直径半石墨质炭电极及其生产方法
JP6230945B2 (ja) 二段加熱方式縦型黒鉛化炉および黒鉛の製造方法
CN101723353B (zh) 一种高密度型焦炭的生产方法
JP2015189646A (ja) 高周波を使用した二段加熱方式縦型黒鉛化炉および黒鉛の製造方法
CN105645396B (zh) 一种连续式直流超高温石墨化电炉及使用方法
US1277899A (en) Electric furnace.
JP7119856B2 (ja) 酸化鉱石の製錬方法
BR112018010072B1 (pt) Método para preparar um minério de ilmenita pré-reduzido para fundição
JP6264517B1 (ja) 炭材内装焼結鉱の製造方法
US3116997A (en) Process for making aluminumsilicon alloys
WO2020046229A2 (en) Production of boron carbide, metal carbide and/or metal boride at high temperature and in continuous production line
RU2352524C1 (ru) Способ получения технического кремния
RU2311599C2 (ru) Устройство для прокаливания углеродистых материалов (электрокальцинатор)
WO2021131352A1 (ja) 炭素質粒体の熱処理装置及びその方法
RU2544833C1 (ru) Способ получения углеродсодержащего электропроводного материала
CN106986646A (zh) 一种抗氧化石墨电极
Martynenko et al. Study of Thermal Processing of Carbon-Containing Material in a Fluidized Bed
JP2024010514A (ja) ニッケル酸化鉱石の製錬方法
JP2018070408A (ja) 炭化珪素粉末及びその製造方法
Gasik et al. Self-baking Electrodes
SU737387A1 (ru) Шихта дл онгеупорных изделий

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016811348

Country of ref document: EP