WO2016202258A1 - 一种天线阵列校准的方法、装置及系统 - Google Patents

一种天线阵列校准的方法、装置及系统 Download PDF

Info

Publication number
WO2016202258A1
WO2016202258A1 PCT/CN2016/085847 CN2016085847W WO2016202258A1 WO 2016202258 A1 WO2016202258 A1 WO 2016202258A1 CN 2016085847 W CN2016085847 W CN 2016085847W WO 2016202258 A1 WO2016202258 A1 WO 2016202258A1
Authority
WO
WIPO (PCT)
Prior art keywords
array element
signal
amplitude
phase
array
Prior art date
Application number
PCT/CN2016/085847
Other languages
English (en)
French (fr)
Inventor
张志伟
王伟
曹毅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2016202258A1 publication Critical patent/WO2016202258A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements

Definitions

  • the present invention relates to the field of antenna arrays, and more particularly to a method, device and system for antenna array calibration.
  • phased array antennas Due to the outstanding advantages of phased array antennas for easy installation, adaptive beam steering, strong anti-interference ability and high reliability, it is widely used in wireless communication systems.
  • the RF circuit of each channel is affected by the environment such as temperature and humidity, and the drift of the performance, etc., which will affect the formation of the beam, that is, the amplitude and phase error between the channels in the antenna array.
  • the error causes the sidelobe level to rise, resulting in beam pointing errors and reducing the beam directivity. Therefore, in order to obtain good phased array performance, it is necessary to perform amplitude and phase alignment on the antenna array to make the amplitude and phase characteristics of the array channels uniform.
  • Traditional channel calibration methods require complex calibration feed networks, dedicated or auxiliary calibration channels, and as frequency increases and the number of channels increases, the difficulty of implementation and delivery costs increase.
  • channel 1 is set as a calibration reference channel to calibrate the reciprocity of the channel and the transmission channel of channel 2.
  • the calibration process is as follows:
  • Channel 2 sends a calibration signal, using the mutual coupling of antenna 1 and antenna 2.
  • the invention provides a method, a device and a system for calibrating an antenna array, which can solve the problem that the amplitude and phase consistency between the receiving channels or between the transmitting channels cannot be calibrated in the prior art.
  • a first aspect of the present invention provides a method for antenna array calibration, the method being applied to a regularly arranged array, comprising at least one of the following steps:
  • the amplitude phase characteristic of the first transmitting channel is consistent with the amplitude phase characteristic of the second transmitting channel of the third array element, and the first signal is sent by the second array element to the first through the first transmitting channel
  • the second signal is sent by the third array element to the first array element through the second transmission channel;
  • the second array element is adjacent to the third array element
  • the first array element includes a fourth array element and a fifth array element
  • a spacing between the second array element and the fourth array element is equal to a spacing between the third array element and the fifth array element
  • the third array element and the first The spacing between the two array elements is equal to the spacing between the second array element and the fifth array element
  • the third signal includes a fifth signal and a sixth signal
  • the fourth signal includes a a seventh signal and an eighth signal
  • the fifth signal is sent by the fourth array element to the second array element
  • the sixth signal is sent to the second array element by a fifth array element
  • Seven signals are sent by the fourth array element to the third array element
  • the eighth signal is sent to the third array element by the fifth array element, according to the third signal and the
  • the fourth signal is calculated to obtain a relative amplitude coefficient of the received amplitude between the second array element and the third array element, which specifically includes:
  • the method further includes:
  • the second phase of the fourth signal, the third phase, and the third a difference between the four phases and a first phase error threshold, determining a sign of the relative amplitude of the received amplitude phase; the third phase being a phase between the second array element and the fourth array element, a fourth phase is a phase between the third array element and the fourth array element; the symbol is a positive timing, and the received amplitude phase relative coefficient is a first received amplitude phase relative coefficient, the symbol When negative, the received amplitude relative coefficient is the second received amplitude relative coefficient.
  • the second array element and the third array element are separated by the first array element And calculating, according to the third signal and the fourth signal, a relative amplitude coefficient of the received amplitude between the second array element and the third array element, specifically including:
  • the fourth signal calculates a relative coefficient of the received amplitude phase.
  • the method further includes:
  • the second array element be a k 1 array element
  • the third array element be a k 1 +m 1 array element
  • the first array element includes k 1 +2 array elements, k 1 +4 array elements...k
  • the relative amplitude coefficient R(k 1 , k 1 + m 1 ) between the second array element and the third array element is calculated according to the following formula:
  • the k 1 is a positive integer
  • the m 1 is an even number
  • R(k 1 ) is a received amplitude phase coefficient of the k 1 array element
  • R(k 1 +m 1 ) is the k 1 +m 1 array The received amplitude coefficient of the element.
  • the second array element and the third array element are adjacent to each other
  • An array of elements includes a sixth array element and a seventh array element, and a spacing between the second array element and the sixth array element, and the third array element and the seventh array element
  • the spacing between the third array element and the sixth array element is equal to the spacing between the second array element and the seventh array element
  • the first signal includes the ninth a signal and a tenth signal, the second signal comprising an eleventh signal and a twelfth signal, the ninth signal being sent by the sixth array element to the second array element, the tenth signal being Seven elements are sent to the second array element, and the eleventh signal is sent by the sixth array element to the third array element, the eighth letter
  • the number is sent to the third array element, and the calculating between the second array element and the third array element is performed according to the first signal and the second signal.
  • the method further includes:
  • the seventh phase is a phase between the second array element and the sixth array element
  • the eighth phase is a phase between the third array element and the sixth array element
  • the symbol is positive, the relative amplitude coefficient of the transmitting amplitude is the relative coefficient of the first transmitting amplitude, and when the symbol is negative, the relative coefficient of the transmitting amplitude is the relative coefficient of the second transmitting amplitude.
  • the second array element and the third array element are used by the first array And determining, according to the first signal and the second signal, a relative amplitude coefficient of a transmission amplitude between the second array element and the third array element, specifically including:
  • the second signal calculates a relative coefficient of the amplitude and amplitude of the transmission.
  • the second array element is a k 2 array element
  • the third array element is k 2 + m 2 array elements
  • the first array element includes k 2 + 2 array elements, k 2 + 4 array elements ... k 2 + m 2 - 2 array elements, the second array elements and the
  • the relative amplitude coefficient T(k 2 , k 2 +m 2 ) of the emission amplitude between the three elements is calculated according to the following formula:
  • the k 2 is a positive integer, the m 2 is an even number, T(k 2 ) is a transmission amplitude coefficient of the k 2 array element, and T(k 2 +m 2 ) is the k 2 +m 2 array The transmission amplitude coefficient of the element.
  • the first array element receives the first signal and the Second letter No.
  • the third array element receives the third signal by coupling, and the fourth array element receives the fourth signal by coupling.
  • the second array element and the third array element and the first array is a symmetric relationship.
  • a second aspect of the present invention provides a system for antenna array calibration, the system comprising:
  • At least 4 antenna elements at least 4 receiving channels, at least 4 transmitting channels, a digital signal processing unit, and at least 4 switches, each antenna element corresponding to one receiving channel and one transmitting channel, each of the receiving channels and Each of the transmitting channels is independently controlled by the switch;
  • the antenna array element is configured to transmit and/or receive signals
  • the receiving channel is configured to filter, amplify, convert, and digitally convert the received signal to obtain a digital signal, and transmit the digital signal to the digital signal processing unit;
  • the transmitting channel is configured to perform digital analog conversion on the signal input by the digital signal processing unit to the transmitting channel to obtain an analog signal, and perform filtering, modulation, frequency conversion, and amplification processing on the analog signal to obtain a processed analog signal. And transmitting the processed analog signal through the antenna array element;
  • the digital signal processing unit is used for at least one of the following functions:
  • the switch is configured to control the switching of the receiving channel and the array element, and control the switching of the transmitting channel and the array element; switch the state of the signal transmitted through the transmitting channel to the antenna element from the antenna element The state of the signal received and transmitted to the receiving channel.
  • the system when the system is a frequency division duplex FDD system, the system further includes a duplexer and a coupler;
  • the duplexer is configured to receive a signal received by the receiving channel and a signal transmitted by the transmitting channel No. for branching and combining;
  • the coupler is configured to couple a signal such that the transmit channel transmits a frequency signal and the receive channel receives a frequency signal.
  • each of the two calibrated antenna elements has a symmetric relationship with the auxiliary array elements.
  • each of the antenna array elements receives a signal through a coupling action between the array elements.
  • a third aspect of the present invention provides an apparatus for antenna calibration, the apparatus being applied to a communication device of a regularly arranged array, the apparatus comprising:
  • a first acquiring module configured to acquire the first signal and the second signal
  • a first processing module configured to calculate, according to the first signal and the second signal acquired by the first acquiring module, a relative amplitude coefficient of a transmitting amplitude between the second array element and the third array element, so that The amplitude phase characteristic of the first transmission channel of the second array element is consistent with the amplitude phase characteristic of the second transmission channel of the third array element, and the first signal is passed by the second array element by the first
  • the transmitting channel is sent to the first array element, and the second signal is sent by the third array element to the first array element through the second transmitting channel;
  • a second acquiring module configured to acquire the third signal and the fourth signal
  • a second processing module configured to calculate a received amplitude phase between the second array element and the third array element according to the third signal and the fourth signal acquired by the second acquiring module a relative coefficient, such that the amplitude and phase characteristics of the first receiving channel of the second array element are consistent with the amplitude and phase characteristics of the second receiving channel of the third array element, and the third signal is used by the second array element Receiving, by the first receiving channel, a signal sent by the first array element, where the fourth signal is received by the third array element from the second receiving channel by a signal sent by the first array element.
  • the second array element is adjacent to the third array element
  • the first array element includes a fourth array element and a fifth array element
  • a spacing between the second array element and the fourth array element is equal to a spacing between the third array element and the fifth array element
  • the third array element and the first The spacing between the two array elements is equal to the spacing between the second array element and the fifth array element
  • the third signal includes a fifth signal and a sixth signal
  • the fourth signal includes a seventh signal and an eighth signal
  • the fifth signal is sent by the fourth array element to the second array element
  • the sixth signal is sent to the second array element by a fifth array element
  • the seventh signal is sent by the fourth array element to the third array element
  • the eighth signal is sent to the third array element by the fifth array element
  • the second processing module is specifically configured to:
  • the device also includes:
  • a first determining module configured to determine the received amplitude and phase according to a first phase of the third signal, a second phase of the fourth signal, a difference between the third phase and the fourth phase, and a first phase error threshold a sign of a relative coefficient;
  • the third phase is a phase between the second array element and the fourth array element, and the fourth phase is the third array element and the fourth array element a phase between the two;
  • the symbol is positive, the received amplitude relative coefficient is a first received amplitude relative coefficient, and when the symbol is negative, the received amplitude relative coefficient is a second received amplitude Relative coefficient.
  • the second processing module is specifically configured to:
  • the second processing module is further configured to: after calculating the relative amplitude of the received amplitude and phase
  • the second array element be a k 1 array element
  • the third array element be a k 1 +m 1 array element
  • the first array element includes k 1 +2 array elements, k 1 +4 array elements...k
  • the relative amplitude coefficient R(k 1 , k 1 + m 1 ) between the second array element and the third array element is calculated according to the following formula:
  • the k 1 is a positive integer
  • the m 1 is an even number
  • R(k 1 ) is a received amplitude phase coefficient of the k 1 array element
  • R(k 1 +m 1 ) is the k 1 +m 1 array The received amplitude coefficient of the element.
  • the fourth aspect of the third aspect of the present invention In the current mode, the second array element is adjacent to the third array element, the first array element includes a sixth array element and a seventh array element, and the second array element and the sixth array element
  • the spacing between the two elements is equal to the spacing between the third array element and the seventh array element, the spacing between the third array element and the sixth array element, and the second array
  • the first signal includes a ninth signal and a tenth signal
  • the second signal includes an eleventh signal and a twelfth signal
  • the ninth signal And sent by the sixth array element to the second array element, where the tenth signal is sent to the second array element, and the eleventh signal is sent by the sixth array element
  • the third array element, the eighth signal is sent to the third array element by the seventh array element, and the first processing module is specifically configured to:
  • the device also includes:
  • a second determining module configured to determine, according to a fifth phase of the first signal, a sixth phase of the second signal, a difference between the seventh phase and the eighth phase, and a second phase error threshold a phase relative to a sign of the coefficient, the seventh phase being a phase between the second array element and the sixth array element, the eighth phase being the third array element and the sixth array.
  • the second array element and the third array element are separated by the first array element,
  • the first processing module is specific Used for:
  • the second array element is a k 2 array element
  • the third array element is k 2 + m 2 array elements
  • the first array element includes k 2 + 2 array elements, k 2 + 4 array elements ... k 2 + m 2 - 2 array elements
  • the second array element and the third array element The relative amplitude coefficient T(k 2 , k 2 +m 2 ) of the emission amplitude between the elements is calculated according to the following formula:
  • the k 2 is a positive integer, the m 2 is an even number, T(k 2 ) is a transmission amplitude coefficient of the k 2 array element, and T(k 2 +m 2 ) is the k 2 +m 2 array The transmission amplitude coefficient of the element.
  • the relative amplitude coefficients of the emitted amplitude and phase are calculated, so that the amplitude and phase characteristics of the first transmission channel and the second The amplitude and phase characteristics of the transmitting channel are consistent, or the relative amplitude coefficients of the received amplitude and phase are calculated according to the obtaining of the third signal and the fourth signal, so that the amplitude and phase characteristics of the first receiving channel are consistent with the amplitude and phase characteristics of the second receiving channel.
  • FIG. 1 is a schematic diagram of an embodiment of a method for calibrating an antenna array according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of another embodiment of a method for calibrating an antenna array according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an antenna array applied to a method for calibrating an antenna array in the embodiment
  • FIG. 4 is a schematic structural diagram of a 1*N antenna array in the embodiment.
  • FIG. 5 is another schematic structural diagram of an antenna array based on a TDD system and an FDD system in the embodiment
  • FIG. 6 is a schematic structural diagram of a system for calibrating an antenna array according to an embodiment
  • FIG. 7 is a schematic structural diagram of an apparatus for calibrating an antenna array according to an embodiment
  • FIG. 8 is another schematic structural diagram of an apparatus for calibrating an antenna array according to an embodiment
  • FIG. 9 is another schematic structural diagram of an apparatus for aligning an antenna array in the embodiment.
  • FIG. 10 is another schematic structural diagram of an apparatus for aligning an antenna array in the embodiment.
  • the coupling or direct coupling or communication connection between the components shown or discussed may be through some interfaces, and the indirect coupling or communication connection between the modules may be electrical or the like, which is not limited herein.
  • the module or the sub-module described as the separate component may or may not be physically separated, may not be a physical module, or may not be divided into a plurality of circuit modules, and may select a part thereof according to actual needs or All modules are used to achieve the objectives of the embodiments of the present invention.
  • the embodiment of the invention provides a method, a device and a system for calibrating an antenna array, which are applied to the field of antenna arrays, and can solve the problem that the amplitude and phase consistency between the receiving channels and the transmitting channels cannot be calibrated in the prior art.
  • the embodiment of the invention completes the calibration process by coupling, and is calibrated compared with the conventional method using the coupled feedback channel, and the integration degree of the whole antenna device is high and the complexity is low.
  • each array element of the antenna array is connected to a T/R component, and the T/R component represents a transmitting channel/receiving channel.
  • the antenna can be a waveguide antenna, a millimeter wave phased array antenna, and a multifunctional phased array radar. Antennas and broadband phased array antennas are not limited.
  • the method and system of the present invention can be applied to the detection, tracking, monitoring, or defense systems, navigation, communication broadcasting, telemetry remote sensing, weather forecasting, traffic control, and biomedical fields of military satellites.
  • the antenna array herein includes one-dimensional as shown in FIG. A linear uniform array, a square array, a diamond array, or a circular array, and the like, the arrangement direction of the array elements in the specific antenna array and the spacing between the array elements are determined according to the actual design, and are not limited herein. At least one of the following cases is included:
  • an embodiment of the present invention includes:
  • the first signal is sent by the second array element to the first array element through the first transmission channel, and the second signal is sent by the third array element to the first array through the second transmission channel. yuan.
  • the embodiment of the present invention includes:
  • the third signal is received by the second array element from the signal sent by the first array element by using the first receiving channel, and the fourth signal is passed by the third array element by the second
  • the receiving channel receives the signal sent from the first array element, and the sending of the fourth signal of the third signal is similar to the principle of the foregoing step 101, and details are not described herein again.
  • the amplitude and phase characteristics include the amplitude and phase of the signal.
  • the invention can calibrate the amplitude and phase consistency between the receiving channels and/or the amplitude and phase consistency between the transmitting channels, depending on actual needs, that is, both can be calibrated, or only one of them can be calibrated. Not limited.
  • calculating a relative amplitude coefficient of the transmitting amplitude, the amplitude and phase characteristics of the first transmitting channel and the amplitude and phase characteristics of the second transmitting channel are obtained.
  • calculating the relative amplitude of the received amplitude and phase so that the amplitude and phase characteristics of the first receiving channel are consistent with the amplitude and phase characteristics of the second receiving channel, effectively eliminating the inconsistent amplitude and phase characteristics.
  • the error formed by the RF signal can effectively and accurately control the shape of the beam and the direction of the beam pointing to the receiving antenna.
  • the path difference of the signal reaching the array element can be compensated, the signals of all array elements can be in phase to the set direction, the spatial phase difference between adjacent array elements can be eliminated, and the performance of the antenna array can be ensured.
  • the present invention does not require a dedicated complex calibration feed network and calibration channel, reducing hardware Complexity and hardware implementation difficulty and cost, simplify hardware design, and eliminate the need for auxiliary circuits or external auxiliary equipment to obtain channel relative coefficients, complete the amplitude and phase between the receiving channel and the receiving channel, and between the transmitting channel and the transmitting channel. Calibration to achieve true self-calibration of the array.
  • the second array element and the third array element are adjacent to each other.
  • the first array element includes a fourth array element and a fifth array element, and a spacing between the second array element and the fourth array element, and the third array element and the fifth array element
  • the spacing between the two is equal
  • the spacing between the third array element and the fourth array element is equal to the spacing between the second array element and the fifth array element
  • the third signal The fifth signal and the sixth signal are included
  • the fourth signal includes a seventh signal and an eighth signal
  • the fifth signal is sent by the fourth array element to the second array element
  • the sixth signal is The fifth array element is sent to the second array element
  • the seventh signal is sent by the fourth array element to the third array element
  • the eighth signal is sent to the fifth array element a third array element, according to the third signal and the fourth signal, calculating a relative amplitude coefficient of the received amplitude between the second array element and the
  • the method further includes:
  • the third phase is a phase between the second array element and the fourth array element, and the fourth phase is a phase between the third array element and the fourth array element;
  • the symbol is positive, the received amplitude relative coefficient is a first received amplitude relative coefficient, and when the symbol is negative, the received amplitude relative coefficient is a second received amplitude relative coefficient.
  • the relative amplitude coefficients of the received amplitude phase between the first array element and the second array element are calculated,
  • the one-element and the second-element need to receive the signals transmitted by the other two elements, as exemplified by the case where the antenna array is a uniformly distributed array of 1*N (see Figure 4), where the digital signal processing unit sends
  • the calibration signal is recorded as Sref
  • the amplitude coefficient of the nth unit transmission channel is Tn
  • the amplitude coefficient of the receiving channel is Rn
  • Sr(n-1, n) represents the signal transmitted by the nth unit receiving the nth unit
  • the coupling coefficient between the n-1th array element and the nth array element is represented, and the coupling coefficient between each two adjacent array elements is equal, and other similarities are not described herein.
  • R(n, n+1) has positive and negative two values.
  • Rx (Rn 2 /R(n+1) 2 ) 1/2 .
  • Phase[Sr(n+1,n-1)]-phase[Sr(n,n-1)]*X ⁇ phase[ant(n-1,n+1)]-phase[ant(n-1 ,n+1)] ⁇ +delta_pha (6)
  • phase represents the calculated phase
  • ant(n, n+1) represents the nth array and the n+1th array element, for example phase[ant(n,n+1)]
  • the phase of the nth array element and the n+1th array element Other similar.
  • ⁇ phase[ant(n-1,n+1)]-phase[ant(n-1,n+1)] ⁇ is the preset standard value.
  • phase[ant(n,n+1)] That is, the determined value, considering the actual engineering error, sets delta_pha as the phase error range.
  • the equation (10) in the second alternative embodiment described below can be used to continue to calculate between any receiving channels.
  • Receiving the relative coefficient of the amplitude and phase setting a receiving channel as the reference channel, calculating the relative amplitude and phase calibration coefficients between the receiving channels by using the amplitude and phase relative coefficients between the receiving channels, and completing the relative amplitude and phase calibration of the receiving channel.
  • the second array element and the second embodiment are performed on the basis of the foregoing embodiment corresponding to FIG. 1 or FIG. 2 and the foregoing first optional embodiment.
  • the receiving between the second array element and the third array element is calculated according to the third signal and the fourth signal.
  • the relative coefficient of the amplitude and phase including:
  • the relative amplitude coefficient of the received amplitude phase is calculated.
  • the method further Can include:
  • the second array element be a k 1 array element
  • the third array element be a k 1 +m 1 array element
  • the first array element includes k 1 +2 array elements, k 1 +4 array elements...k
  • the relative amplitude coefficient R(k 1 , k 1 + m 1 ) between the second array element and the third array element is calculated according to the following formula:
  • the k 1 is a positive integer
  • the m 1 is an even number
  • R(k 1 ) is a received amplitude phase coefficient of the k 1 array element
  • R(k 1 +m 1 ) is the k 1 +m 1 array The received amplitude coefficient of the element.
  • the above formula is used to obtain the receiving amplitude between any two array elements in the array.
  • the relative coefficient of phase the specific calculation number depends on the actual engineering or standard needs, this article will not repeat, not limited.
  • the 1*N array in the first alternative embodiment is taken as an example, and the process of calculating the relative amplitude of the received amplitude and phase is as follows:
  • the nth array element of the array is set to be in a transmitting state, and the n-1th array element and the n+1th array element are in a receiving state, and the signal sent by the nth array element from the nth array element is acquired.
  • the relative amplitude coefficient of the received amplitude phase between the receiving channel of the kth array element and the receiving channel of the k+m array element can be derived, and m is an even number of non-zero, as in formula (10):
  • the array element is adjacent to the third array element, the first array element includes a sixth array element and a seventh array element, and a spacing between the second array element and the sixth array element, The spacing between the third array element and the seventh array element is equal, the spacing between the third array element and the sixth array element, and the second array element and the seventh array element Between the two When the distances are equal, the first signal includes a ninth signal and a tenth signal, the second signal includes an eleventh signal and a twelfth signal, and the ninth signal is sent by the sixth array element to the a second array element, wherein the tenth signal is sent to the second array element by a seventh array element, and the eleventh signal is sent by the sixth array element to the third array element, the eighth Transmitting, by the seventh array element, the third array element, where the calculating between the second array element and the third array element is performed according to the first signal
  • the method further includes:
  • the seventh phase is a phase between the second array element and the sixth array element
  • the eighth phase is a phase between the third array element and the sixth array element
  • the symbol is positive, the relative amplitude coefficient of the transmitting amplitude is the relative coefficient of the first transmitting amplitude, and when the symbol is negative, the relative coefficient of the transmitting amplitude is the relative coefficient of the second transmitting amplitude.
  • the calculation manner of the relative amplitude coefficient of the above-mentioned transmitting amplitude and phase can be referred to the first alternative embodiment described above, and the nth array element and the n+2 array element are both set to receive state, the nth array element and The n+1th array element is in the transmitting state, and T(n,n+1) can be calculated:
  • T(n, n+1) has positive and negative two values.
  • Tx (Tn 2 /T(n+1) 2 ) 1/2 .
  • phase represents the calculated phase
  • ant(n, n+1) represents the nth array and the n+1th array element, for example phase[ant(n,n+1)]
  • the phase of the nth array element and the n+1th array element, after the antenna is determined, the phase[ant(n,n+1)] is the determined value.
  • the delta_pha is set as the phase error range.
  • the equation (13) in the fourth alternative embodiment described below can be used to continue to calculate between the arbitrary transmission channels.
  • the relative amplitude coefficient of the transmitting amplitude is set, and one transmitting channel is set as the reference channel.
  • the relative amplitude and phase calibration coefficients between the respective transmitting channels are calculated by using the amplitude and phase relative coefficients between the transmitting channels, and the relative amplitude and phase calibration of the transmitting channel is completed.
  • the array element and the third array element are separated by the first array element, a spacing between the first array element and the second array element, and the first array element and the third array element
  • the spacing between the two elements is equal
  • the relative amplitude coefficients of the transmission amplitudes between the second array element and the third array element are calculated according to the first signal and the second signal. Specifically include:
  • the two elements are k 2 array elements
  • the third array element is k 2 + m 2 array elements
  • the first array elements include k 2 + 2 array elements, k 2 + 4 array elements... k 2 + m 2 -
  • the relative amplitude coefficient T(k 2 , k 2 + m 2 ) of the emission amplitude between the second array element and the third array element is calculated according to the following formula:
  • the k 2 is a positive integer, the m 2 is an even number, T(k 2 ) is a transmission amplitude coefficient of the k 2 array element, and T(k 2 +m 2 ) is the k 2 +m 2 array The transmission amplitude coefficient of the element.
  • the calculation method of the relative amplitude of the transmitting amplitude phase is similar to that of the second alternative embodiment described above, that is, the nth unit is set to the receiving state, and the n-1th unit and the n+1th unit are both in the transmitting state. Then, the amplitude of the emission between the transmitting channel of the n-1th array element and the transmitting channel of the n+1th array element can be calculated.
  • the relative amplitude coefficient of the transmission amplitude between the transmission channel of the kth array element and the transmission channel of the k+m array element can be derived, and m is an even number of non-zero, as in formula (13):
  • the first The array element receives the first signal and the second signal by coupling, the third array element receiving the third signal by coupling, and the fourth array element receiving the fourth signal by coupling.
  • the array element and the third array element are in a symmetrical relationship with the first array element.
  • the method in this paper is also applicable to the rule symmetric arrangement array, and only the coupling characteristics between the array elements are obtained in advance, and the subsequent calculation and calibration process is the same as that described in the embodiment of the present invention.
  • the antenna array can be simulated by measuring the coupling coefficient between the array elements, or by electromagnetic simulation software such as High Frequency Structure Simulator (HFSS), and electromagnetic coupling is introduced between the array elements to obtain array elements.
  • HFSS High Frequency Structure Simulator
  • the coupling characteristics between the coupling elements and the acquisition characteristics of the specific array elements are not limited herein.
  • a method for calibrating an antenna array in the embodiment of the present invention is described above.
  • a system for calibrating an antenna in the embodiment of the present invention is described in detail below.
  • the number of receiving channels or the transmitting channel in the antenna array is no less than four.
  • each transmit channel or receive pass The state of the track can be controlled independently.
  • the system mainly has two kinds of TDD system and FDD system. For specific structure diagram, refer to FIG. 5.
  • Each antenna array element is connected to a receiving channel and a transmitting channel. Referring to FIG. 6, the system includes:
  • At least 4 antenna elements at least 4 receiving channels, at least 4 transmitting channels, a digital signal processing unit and 4 switches, each antenna element corresponding to one receiving channel and one transmitting channel, each of said receiving channels and each The transmitting channels are independently controlled by the switches;
  • the antenna array element is configured to transmit and/or receive signals
  • the receiving channel is configured to filter, amplify, convert, and digitally convert the received signal to obtain a digital signal, and transmit the digital signal to the digital signal processing unit;
  • the transmitting channel is configured to perform digital analog conversion on the signal input by the digital signal processing unit into the transmitting channel to obtain an analog signal, and perform filtering, modulation, frequency conversion, and amplification processing on the analog signal to obtain an analog signal, and pass the signal.
  • the antenna array transmits the analog signal;
  • the digital signal processing unit is used for at least one of the following functions:
  • the switch is configured to control the switching of the receiving channel and the array element, and control the switching of the transmitting channel and the array element to switch the radio frequency signal; and switch the state of the signal transmitted through the transmitting channel to A state of a signal received from the antenna element and transmitted to the receiving channel.
  • the digital signal processing unit calculates the relative amplitude coefficients of the receiving amplitudes between the receiving channels according to the digital signals received by the receiving channels, so that the amplitude and phase characteristics between the receiving channels are consistent; and the analog signals transmitted according to the transmitting channels are calculated.
  • the relative amplitude coefficients of the transmitting amplitudes between the transmitting channels are such that the amplitude and phase characteristics between the transmitting channels are consistent; effectively eliminating errors caused by RF signal formation due to inconsistent amplitude and phase characteristics, and effectively and accurately controlling beam shape and beam pointing reception The direction of the antenna.
  • the system when the system is a frequency division duplex FDD system, the system further includes Workers and couplers (Figure 5);
  • the duplexer is configured to split and combine the signal received by the receiving channel and the signal transmitted by the transmitting channel, that is, the transmitting channel cannot output the receiving frequency signal, and the receiving channel cannot receive the transmitting frequency signal, and the actual
  • the directional coupler can be set at the antenna port, and the RF switch is added to the receiving and transmitting channels, thereby realizing the function of receiving the transmitting frequency signal by the receiving channel and transmitting the receiving frequency signal by the transmitting channel;
  • the coupler is configured to couple the signal such that the transmit channel transmits a receive frequency signal and the receive channel receives a transmit frequency signal.
  • each of the two calibrated antenna arrays is selected based on the foregoing embodiment and the first optional embodiment.
  • each of the antenna arrays is provided on the basis of the foregoing embodiment corresponding to FIG. 6 and the first or second alternative embodiment.
  • the element receives the signal through the coupling between the elements.
  • the antenna array when the antenna array is a one-dimensional linear uniform array or an array of arrays whose edge features are inconsistent in other antenna arrays, it may be considered to reduce or compensate the matrix by adding dummy elements at the edges of the antenna arrays.
  • the present invention also provides an apparatus for aligning antenna arrays.
  • the antenna array is a regular arrangement type array.
  • an embodiment of the present invention provides an application of the above FIG. 1 and/or FIG. 2 .
  • the first obtaining module 301 is configured to acquire the first signal and the second signal.
  • the first processing module 302 is configured to use the first signal acquired by the first acquiring module 301 And the second signal, calculating a relative amplitude coefficient of the transmission amplitude between the second array element and the third array element, so that the amplitude and phase characteristics of the first transmission channel of the second array element and the third array
  • the amplitude and phase characteristics of the second transmission channel of the element are the same, the first signal is sent by the second array element to the first array element through the first transmission channel, and the second signal is sent by the third array element Transmitting to the first array element through the second transmitting channel;
  • the second obtaining module 303 is configured to acquire the third signal and the fourth signal
  • the second processing module 304 is configured to calculate, according to the third signal and the fourth signal, the receiving between the second array element and the third array element according to the second obtaining module 303 Amplitude and phase relative coefficients such that the amplitude and phase characteristics of the first receiving channel of the second array element coincide with the amplitude and phase characteristics of the second receiving channel of the third array element, and the third signal is
  • the array element receives a signal transmitted from the first array element through the first receiving channel, and the fourth signal is received by the third array element from the first array element through the second receiving channel. signal.
  • the first processing module 302 obtains the first phase signal and the second signal received by the first array element according to the first obtaining module 301, and calculates a relative amplitude coefficient of the emitted amplitude and phase, so that the amplitude of the first transmitting channel is obtained.
  • the characteristics are consistent with the amplitude and phase characteristics of the second transmission channel, or the second processing module 303 obtains the third and fourth signals according to the second acquisition module 303, and calculates the relative amplitude of the received amplitude and phase to make the amplitude of the first receiving channel
  • the characteristics are consistent with the amplitude and phase characteristics of the second receiving channel.
  • the second array element and the first Three array elements are adjacent, the first array element includes a fourth array element and a fifth array element, and a spacing between the second array element and the fourth array element, and the third array element and The spacing between the two array elements is equal, and the spacing between the third array element and the fourth array element is equal to the spacing between the second array element and the fifth array element.
  • the third signal includes a fifth signal and a sixth signal
  • the fourth signal includes a seventh signal and an eighth signal
  • the fifth signal is sent by the fourth array element to the second array element
  • the sixth signal is sent to the second array element by a fifth array element
  • the seventh signal is sent by the fourth array element to the third array element
  • the eighth signal is the fifth array element.
  • the array element is sent to the third array element
  • the second processing module 304 is specifically configured to:
  • the device also includes:
  • the first determining module 305 is configured to determine the receiving frame according to the first phase of the third signal, the second phase of the fourth signal, the difference between the third phase and the fourth phase, and the first phase error threshold. a sign of a phase relative coefficient; the third phase is a phase between the second array element and the fourth array element, and the fourth phase is the third array element and the fourth array. The phase between the two; the symbol is positive, the received amplitude relative coefficient is the first received amplitude relative coefficient, and when the symbol is negative, the received amplitude relative coefficient is the second received amplitude Relative coefficient.
  • the second array is performed on the basis of the foregoing embodiment corresponding to FIG. 7 and/or FIG. 8 and the first optional embodiment.
  • the second processing module 304 is specifically configured to:
  • the second processing module 304 calculates the received amplitude relative to each other. After the coefficient, it is also used to:
  • the second array element be a k 1 array element
  • the third array element be a k 1 +m 1 array element
  • the first array element includes k 1 +2 array elements, k 1 +4 array elements...k
  • the relative amplitude coefficient R(k 1 , k 1 + m 1 ) between the second array element and the third array element is calculated according to the following formula:
  • the k 1 is a positive integer
  • the m 1 is an even number
  • R(k 1 ) is a received amplitude phase coefficient of the k 1 array element
  • R(k 1 +m 1 ) is the k 1 +m 1 array The received amplitude coefficient of the element.
  • the second array element is adjacent to the third array element
  • the first array element comprises a sixth array element and a seventh array element
  • the second array element and the sixth array element are The spacing between the third array element and the seventh array element is equal to the spacing between the third array element and the sixth array element, and the second array element and
  • the first signal includes a ninth signal and a tenth signal
  • the second signal includes an eleventh signal and a twelfth signal
  • the ninth signal is Sending a sixth array element to the second array element
  • the tenth signal is sent to the second array element by a seventh array element
  • the eleventh signal is sent by the sixth array element to the
  • the first processing module 302 is specifically configured to:
  • the device also includes:
  • the second determining module 306 is configured to determine the transmitting according to a fifth phase of the first signal, a sixth phase of the second signal, a difference between the seventh phase and the eighth phase, and a second phase error threshold. a sign of a phase-to-phase relative coefficient, the seventh phase being a phase between the second array element and the sixth array element, the eighth phase being the third array element and the sixth phase. The phase between the two elements; the symbol is positive, the relative amplitude coefficient of the transmitting amplitude is the relative coefficient of the first transmitting amplitude, and when the symbol is negative, the relative coefficient of the transmitting amplitude is the second emission Amplitude and phase relative coefficient.
  • the first processing module 302 is specifically configured to:
  • the sixth embodiment of the present invention when the second array element and the third array element are separated by at least two array elements, the first processing module 302 is further configured to:
  • the second array element is a k 2 array element
  • the third array element is a k 2 +m 2 array element
  • the first array element comprises a k 2 +2 array element, a k 2 +4 array element... k 2
  • the relative amplitude coefficient T(k 2 , k 2 +m 2 ) of the emission amplitude between the second array element and the third array element is calculated according to the following formula:
  • the k 2 is a positive integer, the m 2 is an even number, T(k 2 ) is a transmission amplitude coefficient of the k 2 array element, and T(k 2 +m 2 ) is the k 2 +m 2 array The transmission amplitude coefficient of the element.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit. in.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明实施例公开了一种天线阵列校准的方法、装置及系统,所述方法至少包括如下步骤中的一个:获取第一信号和第二信号,根据第一信号和第二信号,计算得到第二阵元和第三阵元之间的发射幅相相对系数,以使第二阵元的第一发射通道的幅相特性与第三阵元的第二发射通道的幅相特性一致;获取第三信号和第四信号,根据第三信号和第四信号,计算得到第二阵元和第三阵元之间的接收幅相相对系数,以使第二阵元的第一接收通道的幅相特性与第三阵元的第二接收通道的幅相特性一致,第三信号由第二阵元通过第一接收通道接收自第一阵元发送的信号,第四信号由第三阵元通过第二接收通道接收自第一阵元发送的信号。

Description

一种天线阵列校准的方法、装置及系统
本申请要求于2015年6月16日提交中国专利局、申请号为201510332998.X、发明名称为“一种天线阵列校准的方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及天线阵列领域,尤其涉及的是一种天线阵列校准的方法、装置及系统。
背景技术
由于相控阵列天线便于安装、自适应波束控制、强抗干扰能力和高可靠性等突出优点,广泛应用于无线通信系统。相控阵列设备在运行过程中,各通道的射频电路受温度、湿度等环境的影响以及性能的漂移等,均会影响波束的形成,即天线阵列中各通道间存在幅相误差,该幅相误差导致副瓣电平升高,产生波束指向误差,降低波束的方向性。因此为了获得良好相控阵性能,需要对天线阵列进行幅相校准,使阵列通道的幅相特性一致。传统通道校准方法需要复杂校准馈电网络、专用或辅助校准通道,随着频率升高和通道数量增加,实现难度和交付成本也随之增加。
现有技术中,利用多个天线之间每两个天线之间耦合特性,校准接收通道和发射通道之间的幅相一致性。具体设定通道1为校准参考通道,以校准通道2的接收通道和发射通道互易性,校准过程如下:
设定通道1的接收通道幅相特性为R1,发射通道幅相特性为T1,令H1为T1/R1;
通道2发送校准信号,利用天线1和天线2的互耦,通道1接收到通道2发送的校准信号为ST2=Sr*T2*C12*R1,其中Sr为校准信号,T2为通道2发射通道幅相特性;令通道1发送校准信号,通道2接收通道1发送的校准信号ST1=Sr*T1*C12*R2,可以计算得到T2/R2=ST2/ST1×H1,完成了通道2相对于通道1的接收和发射通道互易性校准。
但是,现有技术无法校准发射通道之间或接收通道之间的幅相一致性。
发明内容
本发明提供一种天线阵列校准的方法、装置及系统,能够解决现有技术中无法校准接收通道之间或发射通道之间的幅相一致性的问题。
本发明第一方面提供一种天线阵列校准的方法,所述方法应用于规则排布型阵列,至少包括如下步骤中的一个:
获取第一信号和第二信号,根据所述第一信号和所述第二信号,计算得到第二阵元和第三阵元之间的发射幅相相对系数,以使所述第二阵元的第一发射通道的幅相特性与所述第三阵元的第二发射通道的幅相特性一致,所述第一信号由所述第二阵元通过所述第一发射通道发送至第一阵元,所述第二信号由所述第三阵元通过所述第二发射通道发送至所述第一阵元;
获取第三信号和第四信号,根据所述第三信号和所述第四信号,计算得到所述第二阵元和所述第三阵元之间的接收幅相相对系数,以使所述第二阵元的第一接收通道的幅相特性与所述第三阵元的第二接收通道的幅相特性一致,所述第三信号由所述第二阵元通过所述第一接收通道接收自所述第一阵元发送的信号,所述第四信号由所述第三阵元通过所述第二接收通道接收自所述第一阵元发送的信号。
结合第一方面,本发明第一方面的第一种实现方式中,所述第二阵元和所述第三阵元相邻,所述第一阵元包括第四阵元和第五阵元,且所述第二阵元和所述第四阵元两者的间距,与所述第三阵元和所述第五阵元两者的间距相等,所述第三阵元和所述第四阵元两者的间距,与所述第二阵元和所述第五阵元两者的间距相等时,所述第三信号包括第五信号和第六信号,所述第四信号包括第七信号和第八信号,所述第五信号由所述第四阵元发送给所述第二阵元,所述第六信号为第五阵元发送给所述第二阵元,所述第七信号由所述第四阵元发送给所述第三阵元,所述第八信号为所述第五阵元发送给所述第三阵元,所述根据所述第三信号和所述第四信号,计算得到所述第二阵元和所述第三阵元之间的接收幅相相对系数,具体包括:
根据所述第五信号、所述第七信号、所述第六信号和所述第八信号,计算得到所述接收幅相相对系数的绝对值;
所述方法还包括:
根据所述第三信号的第一相位、所述第四信号的第二相位、第三相位与第 四相位之差及第一相位误差阈值,确定所述接收幅相相对系数的符号;所述第三相位为所述第二阵元与所述第四阵元两者之间的相位,所述第四相位为所述第三阵元和所述第四阵元两者之间的相位;所述符号为正时,所述接收幅相相对系数为第一接收幅相相对系数,所述符号为负时,所述接收幅相相对系数为第二接收幅相相对系数。
结合第一方面及第一方面的第一种实现方式,本发明第一方面的第二种实现方式中,所述第二阵元和所述第三阵元被所述第一阵元间隔时,所述根据所述第三信号和所述第四信号,计算得到所述第二阵元和所述第三阵元之间的接收幅相相对系数,具体包括:
所述第一阵元与所述第二阵元两者之间的间距,和所述第一阵元与所述第三阵元两者之间的间距相等时,根据所述第三信号和所述第四信号,计算得到所述接收幅相相对系数。
结合第一方面的第一至第二种实现方式,本发明第一方面的第三种实现方式中,在计算得到所述接收幅相相对系数之后,所述方法还包括:
设所述第二阵元为k1阵元,第三阵元为k1+m1阵元,在所述第一阵元包括k1+2阵元、k1+4阵元……k1+m1-2阵元时,所述第二阵元和所述第三阵元之间的接收幅相相对系数R(k1,k1+m1)根据如下公式计算得到:
R(k1,k1+m1)=R(k1)/R(k1+m1)=(R(k1,k1+2))*(R(k1+2,k1+4))*……*R(k1+m1-2,k1+m1);
所述k1为正整数,所述m1为偶数,R(k1)为所述k1阵元的接收幅相系数,R(k1+m1)为所述k1+m1阵元的接收幅相系数。
结合第一方面及第一方面的第一至第三种实现方式,本发明第一方面的第四种实现方式中,所述第二阵元和所述第三阵元相邻,所述第一阵元包括第六阵元和第七阵元,且所述第二阵元和所述第六阵元两者的间距,与所述第三阵元和所述第七阵元两者的间距相等,所述第三阵元和所述第六阵元两者的间距,与所述第二阵元和所述第七阵元两者的间距相等时,所述第一信号包括第九信号和第十信号,所述第二信号包括第十一信号和第十二信号,所述第九信号由所述第六阵元发送给所述第二阵元,所述第十信号为第七阵元发送给所述第二阵元,所述第十一信号由所述第六阵元发送给所述第三阵元,所述第八信 号为所述第七阵元发送给所述第三阵元,所述根据所述第一信号和所述第二信号,计算得到所述第二阵元和所述第三阵元之间的发射幅相相对系数,具体包括:
根据所述第九信号、所述第十信号、所述第十一信号和所述第十二信号,计算得到所述发射幅相相对系数的绝对值;
所述方法还包括:
根据所述第一信号的第五相位、所述第二信号的第六相位、第七相位与第八相位的差值及第二相位误差阈值,确定所述发射幅相相对系数的符号,所述第七相位为所述第二阵元与所述第六阵元两者之间的相位,所述第八相位为所述第三阵元和所述第六阵元两者之间的相位;所述符号为正时,所述发射幅相相对系数为第一发射幅相相对系数,所述符号为负时,所述发射幅相相对系数为第二发射幅相相对系数。
结合第一方面及第一方面的第一至第四种实现方式,本发明第一方面的第五种实现方式中,所述第二阵元和所述第三阵元被所述第一阵元间隔时,所述根据所述第一信号和所述第二信号,计算得到所述第二阵元和所述第三阵元之间的发射幅相相对系数,具体包括:
所述第一阵元与所述第二阵元两者之间的间距,和所述第一阵元与所述第三阵元两者之间的间距相等时,根据所述第一信号和所述第二信号,计算得到所述发射幅相相对系数。
结合第一方面及第一方面的第四至第五种实现方式,本发明第一方面的第六种实现方式中,设所述第二阵元为k2阵元,第三阵元为k2+m2阵元,所述第一阵元包括k2+2阵元、k2+4阵元……k2+m2-2阵元时,所述第二阵元和所述第三阵元之间的发射幅相相对系数T(k2,k2+m2)根据如下公式计算得到:
T(k2,k2+m2)=T(k2)/T(k2+m2)=(T(k2,k2+2))*(T(k2+2,k2+4))*……*T(k2+m2-2,k2+m2);
所述k2为正整数,所述m2为偶数,T(k2)为所述k2阵元的发送幅相系数,T(k2+m2)为所述k2+m2阵元的发送幅相系数。
结合第一方面及第一方面的第一至第六种实现方式,本发明第一方面的第七种实现方式中,所述第一阵元通过耦合作用接收所述第一信号和所述第二信 号,所述第三阵元通过耦合作用接收所述第三信号,所述第四阵元通过耦合作用接收所述第四信号。
结合第一方面及第一方面的第一至第七种实现方式,本发明第一方面的第八种实现方式中,所述第二阵元和所述第三阵元与所述第一阵元为对称关系。
本发明第二方面提供一种天线阵列校准的系统,所述系统包括:
至少4个天线阵元、至少4个接收通道、至少4个发射通道、数字信号处理单元及至少4个开关,每个天线阵元对应一个接收通道和一个发送通道,每个所述接收通道和每个所述发射通道分别由所述开关独立控制;
所述天线阵元用于发射和/或接收信号;
所述接收通道用于对接收到的信号进行滤波、放大、变频及数字变换,得到数字信号,并将所述数字信号传输至所述数字信号处理单元;
所述发射通道用于将所述数字信号处理单元输入所述发射通道的信号进行数字模拟转换得到模拟信号,并对所述模拟信号进行滤波、调制、变频和放大处理,得到处理后的模拟信号,并通过所述天线阵元发射所述处理后的模拟信号;
所述数字信号处理单元至少用于如下功能之一:
对所述接收通道传输的所述数字信号进行数字信号处理,并根据所述数字信号计算接收通道之间的接收幅相相对系数,以使接收通道之间的幅相特性一致;
对所述接收通道传输的所述数字信号进行数字信号处理,并根据所述数字信号计算发射通道之间的发射幅相相对系数,以使发射通道之间的幅相特性一致;
所述开关用于控制所述接收通道与阵元的通断、以及控制所述发射通道与阵元的通断;将通过所述发射通道发射的信号的状态,切换至从所述天线阵元接收并传输至所述接收通道的信号的状态。
结合第二方面,本发明的第一种实现方式中,所述系统为频分双工FDD系统时,所述系统还包括双工器和耦合器;
所述双工器用于对所述接收通道接收到的信号和所述发射通道发射的信 号进行分路、合路处理;
所述耦合器用于对信号进行耦合,以使所述发射通道发送频率信号,及所述接收通道接收频率信号。
结合第二方面及第一种实现方式,本发明的第二种实现方式中,每两个被校准的所述天线阵元与辅助阵元存在对称关系。
结合第二方面、及第一或第二种实现方式,本发明的第三种实现方式中,每个所述天线阵元通过阵元之间的耦合作用接收信号。
本发明第三方面提供一种用于天线校准的装置,所述装置应用于规则排布型阵列的通信设备,所述装置包括:
第一获取模块,用于获取第一信号和第二信号;
第一处理模块,用于根据所述第一获取模块获取的所述第一信号和所述第二信号,计算得到第二阵元和第三阵元之间的发射幅相相对系数,以使所述第二阵元的第一发射通道的幅相特性与所述第三阵元的第二发射通道的幅相特性一致,所述第一信号由所述第二阵元通过所述第一发射通道发送至第一阵元,所述第二信号由所述第三阵元通过所述第二发射通道发送至所述第一阵元;
和/或,第二获取模块,用于获取第三信号和第四信号;
第二处理模块,用于根据所述第二获取模块获取的根据所述第三信号和所述第四信号,计算得到所述第二阵元和所述第三阵元之间的接收幅相相对系数,以使所述第二阵元的第一接收通道的幅相特性与所述第三阵元的第二接收通道的幅相特性一致,所述第三信号由所述第二阵元通过所述第一接收通道接收自所述第一阵元发送的信号,所述第四信号由所述第三阵元通过所述第二接收通道接收自所述第一阵元发送的信号。
结合第三方面,本发明第三方面的第一种实现方式中,所述第二阵元和所述第三阵元相邻,所述第一阵元包括第四阵元和第五阵元,且所述第二阵元和所述第四阵元两者的间距,与所述第三阵元和所述第五阵元两者的间距相等,所述第三阵元和所述第四阵元两者的间距,与所述第二阵元和所述第五阵元两者的间距相等时,所述第三信号包括第五信号和第六信号,所述第四信号包括 第七信号和第八信号,所述第五信号由所述第四阵元发送给所述第二阵元,所述第六信号为第五阵元发送给所述第二阵元,所述第七信号由所述第四阵元发送给所述第三阵元,所述第八信号为所述第五阵元发送给所述第三阵元,所述第二处理模块具体用于:
根据所述第五信号、所述第七信号、所述第六信号和所述第八信号,计算得到所述接收幅相相对系数的绝对值;
所述装置还包括:
第一判断模块,用于根据所述第三信号的第一相位、所述第四信号的第二相位、第三相位与第四相位之差及第一相位误差阈值,确定所述接收幅相相对系数的符号;所述第三相位为所述第二阵元与所述第四阵元两者之间的相位,所述第四相位为所述第三阵元和所述第四阵元两者之间的相位;所述符号为正时,所述接收幅相相对系数为第一接收幅相相对系数,所述符号为负时,所述接收幅相相对系数为第二接收幅相相对系数。
结合第三方面及上述第一种实现方式,本发明第三方面的第二种实现方式中,所述第二阵元和所述第三阵元被所述第一阵元间隔时,所述第二处理模块具体用于:
在所述第一阵元与所述第二阵元两者之间的间距,和所述第一阵元与所述第三阵元两者之间的间距相等时,根据所述第三信号和所述第四信号,计算得到所述接收幅相相对系数;
结合第三方面及上述第一至第二种实现方式,本发明第三方面的第三种实现方式中,所述第二处理模块在计算得到所述接收幅相相对系数之后,还用于:
设所述第二阵元为k1阵元,第三阵元为k1+m1阵元,在所述第一阵元包括k1+2阵元、k1+4阵元……k1+m1-2阵元时,所述第二阵元和所述第三阵元之间的接收幅相相对系数R(k1,k1+m1)根据如下公式计算得到:
R(k1,k1+m1)=R(k1)/R(k1+m1)=(R(k1,k1+2))*(R(k1+2,k1+4))*……*R(k1+m1-2,k1+m1);
所述k1为正整数,所述m1为偶数,R(k1)为所述k1阵元的接收幅相系数,R(k1+m1)为所述k1+m1阵元的接收幅相系数。
结合第三方面及上述第一至第三种实现方式,本发明第三方面的第四种实 现方式中,所述第二阵元和所述第三阵元相邻,所述第一阵元包括第六阵元和第七阵元,且所述第二阵元和所述第六阵元两者的间距,与所述第三阵元和所述第七阵元两者的间距相等,所述第三阵元和所述第六阵元两者的间距,与所述第二阵元和所述第七阵元两者的间距相等时,所述第一信号包括第九信号和第十信号,所述第二信号包括第十一信号和第十二信号,所述第九信号由所述第六阵元发送给所述第二阵元,所述第十信号为第七阵元发送给所述第二阵元,所述第十一信号由所述第六阵元发送给所述第三阵元,所述第八信号为所述第七阵元发送给所述第三阵元,所述第一处理模块具体用于:
根据所述第九信号、所述第十信号、所述第十一信号和所述第十二信号,计算得到所述发射幅相相对系数的绝对值;
所述装置还包括:
第二判断模块,用于根据所述第一信号的第五相位、所述第二信号的第六相位、第七相位与第八相位的差值及第二相位误差阈值,确定所述发射幅相相对系数的符号,所述第七相位为所述第二阵元与所述第六阵元两者之间的相位,所述第八相位为所述第三阵元和所述第六阵元两者之间的相位;所述符号为正时,所述发射幅相相对系数为第一发射幅相相对系数,所述符号为负时,所述发射幅相相对系数为第二发射幅相相对系数。
结合第三方面及上述第一至第四种实现方式,本发明第三方面的第五种实现方式中,所述第二阵元和所述第三阵元被所述第一阵元间隔,所述第一阵元与所述第二阵元两者之间的间距,和所述第一阵元与所述第三阵元两者之间的间距相等时,所述第一处理模块具体用于:
根据所述第一信号和所述第二信号,计算得到所述发射幅相相对系数;
结合第三方面及上述第四至第五种实现方式,本发明第三方面的第六五种实现方式中,设所述第二阵元为k2阵元,第三阵元为k2+m2阵元,所述第一阵元包括k2+2阵元、k2+4阵元……k2+m2-2阵元时,所述第二阵元和所述第三阵元之间的发射幅相相对系数T(k2,k2+m2)根据如下公式计算得到:
T(k2,k2+m2)=T(k2)/T(k2+m2)=(T(k2,k2+2))*(T(k2+2,k2+4))*……*T(k2+m2-2,k2+m2);
所述k2为正整数,所述m2为偶数,T(k2)为所述k2阵元的发送幅相系数, T(k2+m2)为所述k2+m2阵元的发送幅相系数。
从以上技术方案可以看出,本发明中,根据获取第一阵元接收的上述第一信号和上述第二信号,计算得到发射幅相相对系数,使第一发射通道的幅相特性和第二发射通道的幅相特性一致,或根据获取上述第三信号和第四信号,计算得到接收幅相相对系数,使第一接收通道的幅相特性和第二接收通道的幅相特性一致。
附图说明
图1为本实施例中一种天线阵列校准的方法一实施例示意图;
图2为本实施例中一种天线阵列校准的方法另一实施例示意图;
图3为本实施例中应用于一种天线阵列校准的方法的天线阵列结构示意图;
图4为本实施例中1*N天线阵列结构示意图;
图5为本实施例中基于TDD系统和FDD系统的天线阵列另一结构示意图;
图6为本实施例中一种天线阵列校准的系统一结构示意图;
图7为本实施例中一种天线阵列校准的装置一结构示意图;
图8为本实施例中一种天线阵列校准的装置另一结构示意图;
图9为本实施例中一种天线阵列校准的装置另一结构示意图;
图10为本实施例中一种天线阵列校准的装置另一结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、 方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块,本文中所出现的模块的划分,仅仅是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个模块可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块之间的间接耦合或通信连接可以是电性或其他类似的形式,本文中均不作限定。并且,作为分离部件说明的模块或子模块可以是也可以不是物理上的分离,可以是也可以不是物理模块,或者可以分不到多个电路模块中,可以根据实际的需要选择其中的部分或全部模块来实现本发明实施例方案的目的。
本发明实施例提供了一种天线阵列校准的方法、装置及系统,应用于天线阵列领域,能够解决现有技术中无法校准接收通道之间、发射通道之间的幅相一致性的问题,本发明实施例通过耦合方式完成校准过程,相对于传统的采用耦合反馈通道的方法来校准,整个天线设备的集成度较高、复杂度较低。
本文中的天线阵列的每个阵元均接一个T/R组件,T/R组件代表发射通道/接收通道,另外,天线可以是波导天线、毫米波相控阵天线、多功能相控阵列雷达天线及宽带相控阵天线等,具体不做限定。
本发明所述的方法和系统可以应用于军事卫星的探测、跟踪、监视,或防御系统、导航、通信广播、遥测遥感、气象预测预报、交通管制及生物医疗等领域。
请参照图1和图2,下面对本发明实施例中一种天线校准的方法进行详细说明,所述方法应用于规则排布型阵列,本文中的天线阵列包括如图3中所示的一维线性均匀阵列、方阵、菱形阵列或圆形阵列等类似阵列,具体天线阵列中的阵元排布方向和阵元之间的间距,根据实际设计而定,本文中均不作限定,所述方法至少包括如下情况中的一种:
第一种情况,校准发射通道之间的幅相一致性,请参阅图1,本发明实施例包括:
101、获取第一信号和第二信号;
其中,所述第一信号由第二阵元通过所述第一发射通道发送至第一阵元,所述第二信号由第三阵元通过所述第二发射通道发送至所述第一阵元。
102、根据所述第一信号和所述第二信号,计算得到所述第二阵元和所述第三阵元之间的发射幅相相对系数,以使所述第二阵元的第一发射通道的幅相特性与所述第三阵元的第二发射通道的幅相特性一致。
第二种情况,校准接收通道之间的幅相一致性,请参阅图2,本发明实施例包括:
201、获取第三信号和第四信号;
其中,所述第三信号由所述第二阵元通过所述第一接收通道接收自所述第一阵元发送的信号,所述第四信号由所述第三阵元通过所述第二接收通道接收自所述第一阵元发送的信号,其中第三信号的第四信号的发送同上述步骤101原理类似,不再赘述。
202、根据所述第三信号和所述第四信号,计算得到所述第二阵元和所述第三阵元之间的接收幅相相对系数,以使所述第二阵元的第一接收通道的幅相特性与所述第三阵元的第二接收通道的幅相特性一致。
其中,幅相特性包括信号的幅度和相位。
本发明可以校准接收通道之间的幅相一致性和/或发射通道之间的幅相一致性,具体根据实际需要而定,即可以都校准,也可以仅仅校准其中的一项,具体本文中不做限定。
本发明实施例中,根据获取第一阵元接收的上述第一信号和上述第二信号,计算得到发射幅相相对系数,使第一发射通道的幅相特性和第二发射通道的幅相特性一致,或根据获取上述第三信号和第四信号,计算得到接收幅相相对系数,使第一接收通道的幅相特性和第二接收通道的幅相特性一致,有效消除由于幅相特性不一致导致射频信号形成的误差,能够有效、准确的控制波束的形状以及波束指向接收天线的方向。
采用本发明所提供的方法,可以补偿信号到达阵元的路程差,使所有阵元的信号同相到达设定的方向,消除相邻阵元间的空间相位差,保证天线阵列的性能。并且,本发明不需要专用的复杂校准馈电网络和校准通道,降低了硬件 复杂度以及硬件实现难度和成本,简化硬件设计,也无需辅助电路或外部辅助设备,即可完成获得通道相对系数,完成接收通道与接收通道之间以及发射通道与发射通道之间的幅度和相位的校准,实现真正意义上的阵列自校准。
可选的,在上述图1或图2所对应的实施例的基础上,本发明实施例的第一个可选实施例中,所述第二阵元和所述第三阵元相邻,所述第一阵元包括第四阵元和第五阵元,且所述第二阵元和所述第四阵元两者的间距,与所述第三阵元和所述第五阵元两者的间距相等,所述第三阵元和所述第四阵元两者的间距,与所述第二阵元和所述第五阵元两者的间距相等时,所述第三信号包括第五信号和第六信号,所述第四信号包括第七信号和第八信号,所述第五信号由所述第四阵元发送给所述第二阵元,所述第六信号为第五阵元发送给所述第二阵元,所述第七信号由所述第四阵元发送给所述第三阵元,所述第八信号为所述第五阵元发送给所述第三阵元,所述根据所述第三信号和所述第四信号,计算得到所述第二阵元和所述第三阵元之间的接收幅相相对系数,具体包括:
根据所述第五信号、所述第七信号、所述第六信号和所述第八信号,计算得到所述接收幅相相对系数的绝对值;
所述方法还包括:
根据所述第三信号的第一相位、所述第四信号的第二相位、第三相位与第四相位之差及第一相位误差阈值,确定所述接收幅相相对系数的符号;所述第三相位为所述第二阵元与所述第四阵元两者之间的相位,所述第四相位为所述第三阵元和所述第四阵元两者之间的相位;所述符号为正时,所述接收幅相相对系数为第一接收幅相相对系数,所述符号为负时,所述接收幅相相对系数为第二接收幅相相对系数。
可以理解的是,例如设所述第四阵元与所述第二阵元的物理间距为D42,其他类似,故只需要保证D42=D35,D43=D25即可;
另外,本可选实施例中,在第二阵元和第三阵元为相邻的阵元时,要计算第一阵元和第二阵元两者之间的接收幅相相对系数,第一阵元和第二阵元需要先后接收另外两个阵元发射的信号,下面具体以天线阵列为1*N的均匀分布阵列时为例(参阅图4),其中,数字信号处理单元发送的校准信号记为Sref, 第n个单元发射通道幅相系数为Tn,接收通道幅相系数为Rn,Sr(n-1,n)表示第n-1单元接收第n单元发送的信号,C(n-1,n)表示第n-1阵元与第n阵元之间的耦合系数,并且,每两个相邻的阵元之间的耦合系数相等,其他类似,不再赘述。
具体计算上述接收幅相相对系数的过程如下:
1、设定第n-1阵元为发射状态,第n阵元和第n+1阵元为接收状态,获取第n阵元接收自第n-1阵元发送的信号Sr(n,n-1):
Sr(n,n-1)=Sref*T(n-1)*C(n,n-1)*Rn         (1)
以及获取第n+1阵元接收自第n-1阵元发送的信号Sr(n+1,n-1):
Sr(n+1,n-1)=Sref*T(n-1)*C(n+1,n-1)*R(n+1)         (2)
2、设定第n+2阵元为发射状态,第n阵元和第n+1阵元为接收状态,获取第n阵元接收自第n+2阵元发送的信号Sr(n,n+2):
Sr(n,n+2)=Sref*T(n+2)*C(n,n+2)*Rn         (3)
以及获取第n+1阵元接收自第n+2阵元发送的信号Sr(n+1,n+2):
Sr(n+1,n+2)=Sref*T(n+2)*C(n+1,n+2)*R(n+1)        (4)
3、利用上述公式(1)、(2)、(3)及(4)计算得到第n阵元的接收通道与第n+1阵元的接收通道之间的接收幅相相对系数R(n,n+1):
R(n,n+1)2=Rn2/R(n+1)2=|[Sr(n,n-1)*Sr(n,n+2)/(Sr(n+1,n-1)*Sr(n+1,n+2)]|   (5)
由公式(5)可知,R(n,n+1)有正负两个值,为去除符号模糊问题,则设定Rx=(Rn2/R(n+1)2)1/2,然后利用预设的判断公式对R(n,n+1)的符号进行判定,以得到不同相位时的R(n,n+1)值,上述符号为正时,R(n,n+1)=Rx;上述符号为负时,R(n,n+1)=-Rx;其中,判断公式如下:
phase[Sr(n+1,n-1)]-phase[Sr(n,n-1)]*X={phase[ant(n-1,n+1)]-phase[ant(n-1,n+1)]}+delta_pha  (6)
其中,X为变量,此处为Rx,phase表示计算相位,ant(n,n+1)表示第n阵元和第n+1阵元,例如phase[ant(n,n+1)]表示第n阵元和第n+1阵元的相位, 其他类似。{phase[ant(n-1,n+1)]-phase[ant(n-1,n+1)]}为预设标准值,天线确定后,phase[ant(n,n+1)]即为确定的值,考虑实际工程存在误差,则设定delta_pha为相位误差范围。
将Rx代入上述公式(6),具体对R(n,n+1)的符号进行判断,具体符号取值根据余弦函数随时间的变化来取值,本文中不作赘述。
可以理解的是,在计算完相邻的接收通道之间的接收幅相相对系数后,还可以利用下述第二个可选实施例中的公式(10),继续计算任意接收通道之间的接收幅相相对系数,设定一个接收通道为参考通道,利用接收通道之间的幅相相对系数,计算各个接收通道之间的相对幅相校准系数,完成接收通道的相对幅相校准。
可选的,在上述图1或图2所对应的实施例及上述第一个可选实施例的基础上,本发明实施例的第二个可选实施例中,所述第二阵元和所述第三阵元被所述第一阵元间隔时,所述根据所述第三信号和所述第四信号,计算得到所述第二阵元和所述第三阵元之间的接收幅相相对系数,具体包括:
在所述第一阵元与所述第二阵元两者之间的间距,和所述第一阵元与所述第三阵元两者之间的间距相等时,根据所述第三信号和所述第四信号,计算得到所述接收幅相相对系数。
可选的,在上述第一至第二个可选实施例的基础上,本发明实施例的第三个可选实施例中,在计算得到所述接收幅相相对系数之后,所述方法还可以包括:
设所述第二阵元为k1阵元,第三阵元为k1+m1阵元,在所述第一阵元包括k1+2阵元、k1+4阵元……k1+m1-2阵元时,所述第二阵元和所述第三阵元之间的接收幅相相对系数R(k1,k1+m1)根据如下公式计算得到:
R(k1,k1+m1)=R(k1)/R(k1+m1)=(R(k1,k1+2))*(R(k1+2,k1+4))*……*R(k1+m1-2,k1+m1);
所述k1为正整数,所述m1为偶数,R(k1)为所述k1阵元的接收幅相系数, R(k1+m1)为所述k1+m1阵元的接收幅相系数。
通过本可选实施例既可以在完成相邻阵元或单个间隔的两阵元之间的通道的接收幅相相对系数后,继续利用上述公式得到阵列中任意两个阵元之间的接收幅相相对系数,具体计算个数根据实际工程或标准需要而定,本文不赘述,不限定。
这种情况下,仍以上述第一个可选实施例中的1*N阵列为例,具体计算上述接收幅相相对系数的过程如下:
1、设定阵列的第n阵元为发射状态,第n-1阵元和第n+1阵元为接收状态,获取第n-1阵元接收自第n阵元发送的信号Sr(n-1,n):
Sr(n-1,n)=Sref*Tn*C(n-1,n)*R(n-1)       (7)
以及获取第n+1阵元接收自第n阵元发送的信号Sr(n-1,n+1):
Sr(n+1,n)=Sref*Tn*C(n+1,n)*R(n+1)         (8)
2、利用上述公式(7)和(8)计算得到第n-1阵元的接收通道与第n+1阵元的接收通道之间的接收幅相相对系数R(n-1,n+1):
R(n-1,n+1)=R(n-1)/R(n+1)=Sr(n-1,n)/Sr(n+1,n)     (9)
另外,根据公式(9)可以推导出第k阵元的接收通道与第k+m阵元的接收通道之间的接收幅相相对系数,m为非零的偶数,如公式(10):
R(k,k+m)=R(k)/R(k+m)=[R(k,k+2)]*[R(k+2,k+4)]*…*[R(k+m-2,k+m)](10)
可以理解的是,在计算被偶数个阵元相隔的两个阵元之间的接收幅相相对系数时,可以通过多种路径,本实施例仅仅以1*N作为举例说明,具体计算路径可以根据实际天线阵列的排布灵活选择,具体本文中均不作限定。
可选的,在上述图1或图2所对应的实施例及上述第一至第二个可选实施例的基础上,本发明实施例的第三个可选实施例中,所述第二阵元和所述第三阵元相邻,所述第一阵元包括第六阵元和第七阵元,且所述第二阵元和所述第六阵元两者的间距,与所述第三阵元和所述第七阵元两者的间距相等,所述第三阵元和所述第六阵元两者的间距,与所述第二阵元和所述第七阵元两者的间 距相等时,所述第一信号包括第九信号和第十信号,所述第二信号包括第十一信号和第十二信号,所述第九信号由所述第六阵元发送给所述第二阵元,所述第十信号为第七阵元发送给所述第二阵元,所述第十一信号由所述第六阵元发送给所述第三阵元,所述第八信号为所述第七阵元发送给所述第三阵元,所述根据所述第一信号和所述第二信号,计算得到所述第二阵元和所述第三阵元之间的发射幅相相对系数,具体包括:
根据所述第九信号、所述第十信号、所述第十一信号和所述第十二信号,计算得到所述发射幅相相对系数的绝对值;
所述方法还包括:
根据所述第一信号的第五相位、所述第二信号的第六相位、第七相位与第八相位的差值及第二相位误差阈值,确定所述发射幅相相对系数的符号,所述第七相位为所述第二阵元与所述第六阵元两者之间的相位,所述第八相位为所述第三阵元和所述第六阵元两者之间的相位;所述符号为正时,所述发射幅相相对系数为第一发射幅相相对系数,所述符号为负时,所述发射幅相相对系数为第二发射幅相相对系数。
这种情况下,上述发射幅相相对系数的计算方式可以参考上述第一个可选实施例,设定第n-1阵元和第n+2阵元均为接收状态,第n阵元和第n+1阵元均为发射状态,可以计算得到T(n,n+1):
T(n,n+1)2=Tn2/T(n+1)2=|[Sr(n-1,n)*Sr(n+2,n)/(Sr(n+1,n-1)*Sr(n+1,n+2)]|(11)
由公式(11)可知,T(n,n+1)有正负两个值,为去除符号模糊问题,则设定Tx=(Tn2/T(n+1)2)1/2,然后利用预设的判断公式(6)对T(n,n+1)的符号进行判定,以得到不同相位时的T(n,n+1)值,上述符号为正时,T(n,n+1)=Tx;上述符号为负时,T(n,n+1)=-Tx;其中,判断公式如下:
phase[Sr(n+1,n-1)]-phase[Sr(n,n-1)]*X=phase[ant(n,n+1)]+delta_pha(6)
其中,X为变量,此处为Tx,phase表示计算相位,ant(n,n+1)表示第n阵元和第n+1阵元,例如phase[ant(n,n+1)]表示第n阵元和第n+1阵元的相位,天线确定后,phase[ant(n,n+1)]即为确定的值,考虑实际工程存在误差,则设定delta_pha为相位误差范围。
将Tx代入上述公式(6),具体对T(n,n+1)的符号进行判断,具体符号取值根据余弦函数随时间的变化来取值,本文中不作赘述。
可以理解的是,在计算完相邻的发射通道之间的发射幅相相对系数后,还可以利用下述第四个可选实施例中的公式(13),继续计算任意发射通道之间的发射幅相相对系数,设定一个发射通道为参考通道,利用发射通道之间的幅相相对系数,计算各个发射通道之间的相对幅相校准系数,完成发射通道的相对幅相校准。
可选的,在上述图1或图2所对应的实施例及上述第一至第三个可选实施例的基础上,本发明实施例的第四个可选实施例中,所述第二阵元和所述第三阵元被所述第一阵元间隔,所述第一阵元与所述第二阵元两者之间的间距,和所述第一阵元与所述第三阵元两者之间的间距相等时,所述根据所述第一信号和所述第二信号,计算得到所述第二阵元和所述第三阵元之间的发射幅相相对系数,具体包括:
根据所述第一信号和所述第二信号,计算得到所述发射幅相相对系数;
可选的,在上述图1或图2所对应的实施例及上述第三至第四个可选实施例的基础上,本发明实施例的第五个可选实施例中,设所述第二阵元为k2阵元,第三阵元为k2+m2阵元,所述第一阵元包括k2+2阵元、k2+4阵元……k2+m2-2阵元时,所述第二阵元和所述第三阵元之间的发射幅相相对系数T(k2,k2+m2)根据如下公式计算得到:
T(k2,k2+m2)=T(k2)/T(k2+m2)=(T(k2,k2+2))*(T(k2+2,k2+4))*……*T(k2+m2-2,k2+m2);
所述k2为正整数,所述m2为偶数,T(k2)为所述k2阵元的发送幅相系数,T(k2+m2)为所述k2+m2阵元的发送幅相系数。
此种情况下,发射幅相相对系数的计算方式与上述第二个可选实施例类似,即设定第n单元为接收状态,第n-1单元和第n+1单元均为发射状态,则可以计算得到第n-1阵元的发射通道与第n+1阵元的发射通道之间的发射幅相 相对系数T(n-1,n+1):
T(n-1,n+1)=T(n-1)/T(n+1)=Sr(n,n-1)/Sr(n,n+1)        (12)
另外,根据公式(12)可以推导出第k阵元的发射通道与第k+m阵元的发射通道之间的发射幅相相对系数,m为非零的偶数,如公式(13):
T(k,k+m)=T(k)/T(k+m)=[T(k,k+2)]*[T(k+2,k+4)]*…*[T(k+m-2,k+m)](13)
可以理解的是,在计算被偶数个阵元相隔的两个阵元之间的发射幅相相对系数时,可以通过多种路径,本实施例仅仅以1*N作为举例说明,具体计算路径可以根据实际天线阵列的排布灵活选择,具体本文中均不作限定。
可选的,在上述图1或图2所对应的实施例及上述第一至第五个可选实施例的基础上,本发明实施例的第六个可选实施例中,所述第一阵元通过耦合作用接收所述第一信号和所述第二信号,所述第三阵元通过耦合作用接收所述第三信号,所述第四阵元通过耦合作用接收所述第四信号。
可选的,在上述图1或图2所对应的实施例及上述第一至第六个可选实施例的基础上,本发明实施例的第七个可选实施例中,所述第二阵元和所述第三阵元与所述第一阵元为对称关系。
可以理解的是,本文中的方法也适用于规则对称排布阵列,只需预先获取各个阵元之间的耦合特征即可,后续计算及校准的过程与本发明实施例所陈述的方案均相同,具体可以通过测量阵元之间的耦合系数,或通过电磁仿真软件如高频结构仿真器(HFSS,High Frequency Structure Simulator)对天线阵列进行仿真,在阵元间引入电磁耦合,以得到阵元之间的耦合特征,具体阵元之间的耦合特征的获取方式本文中均不作限定。
上面对本发明实施例中一种天线阵列校准的方法进行描述,下面对本发明实施例中的一种天线校准的系统进行详细说明,本发明实施例中,天线阵列中,接收通道的数量或发射通道的数量都不少于4个。并且每个发射通道或接收通 道的状态都可以独立控制。本系统主要有TDD系统和FDD系统两种,具体结构图可以参阅图5,每个天线阵元都连接接收通道和发射通道,请参阅图6,所述系统包括:
至少4个天线阵元、至少4个接收通道、至少4个发射通道、数字信号处理单元及4个开关,每个天线阵元对应一个接收通道和一个发送通道,每个所述接收通道和每个所述发射通道分别由所述开关独立控制;
所述天线阵元用于发射和/或接收信号;
所述接收通道用于对接收到的信号进行滤波、放大、变频及数字变换,得到数字信号,并将所述数字信号传输至所述数字信号处理单元;
所述发射通道用于将所述数字信号处理单元输入所述发射通道的信号进行数字模拟转换得到模拟信号,并对所述模拟信号进行滤波、调制、变频和放大处理,得到模拟信号,并通过所述天线阵列发射所述模拟信号;
所述数字信号处理单元至少用于如下功能之一:
对所述接收通道传输的所述数字信号进行数字信号处理,并根据所述数字信号计算接收通道之间的接收幅相相对系数,以使接收通道之间的幅相特性一致;
对所述接收通道传输的所述数字信号进行数字信号处理,并根据所述数字信号计算发射通道之间的发射幅相相对系数,以使发射通道之间的幅相特性一致;
所述开关用于控制所述接收通道与阵元的通断、以及控制所述发射通道与阵元的通断,以切换射频信号;可以将通过所述发射通道发射的信号的状态,切换至从所述天线阵元接收并传输至所述接收通道的信号的状态。
本发明实施例中,数字信号处理单元根据接收通道接收到的数字信号计算接收通道之间的接收幅相相对系数,以使接收通道之间的幅相特性一致;根据发射通道发射的模拟信号计算发射通道之间的发射幅相相对系数,以使发射通道之间的幅相特性一致;有效消除由于幅相特性不一致导致射频信号形成的误差,能够有效、准确的控制波束的形状以及波束指向接收天线的方向。
可选的,在上述图6所对应的实施例的基础上,本发明实施例中的第一个可选实施例中,所述系统为频分双工FDD系统时,所述系统还包括双工器和耦合器(如图5);
所述双工器用于对所述接收通道接收到的信号和所述发射通道发射的信号进行分路、合路处理,即使得发射通道不能输出接收频率信号,接收通道不能接收发射频率信号,实际应用时,可以通过在天线端口设置定向耦合器,在接收和发射通道增加射频开关,从而实现接收通道接收发射频率信号,发射通道发送接收频率信号的功能;
所述耦合器用于对信号进行耦合,以使所述发射通道发送接收频率信,及所述接收通道接收发射频率信号。
可选的,在上述图6所对应的实施例及第一个可选实施例的基础上,本发明实施例中的第二个可选实施例中,每两个被校准的所述天线阵元与辅助阵元存在对称关系。
可选的,在上述图6所对应的实施例、及第一或第二个可选实施例的基础上,本发明实施例中的第三个可选实施例中,每个所述天线阵元通过阵元之间的耦合作用接收信号。
本发明实施例中,在天线阵列为一维线性均匀阵列或其他天线阵列边缘特征密度不一致的排布型阵列时,可以考虑通过在这些天线阵列的边缘处增加哑元,以降低或补偿由于阵元排布导致的特征密度不一致性。
本发明还提供一种用于天线阵列校准的装置,所述天线阵列为规则排布型阵列,请参阅图7和图8,本发明实施例提供一种应用上述图1和/或图2中天线校准的方法的装置,所述装置应用于包含规则排布型阵列的通信设备,所述装置包括:
第一获取模块301,用于获取第一信号和第二信号;
第一处理模块302,用于根据所述第一获取模块301获取的所述第一信号 和所述第二信号,计算得到第二阵元和第三阵元之间的发射幅相相对系数,以使所述第二阵元的第一发射通道的幅相特性与所述第三阵元的第二发射通道的幅相特性一致,所述第一信号由所述第二阵元通过所述第一发射通道发送至第一阵元,所述第二信号由所述第三阵元通过所述第二发射通道发送至所述第一阵元;
和/或,第二获取模块303,用于获取第三信号和第四信号;
第二处理模块304,用于根据所述第二获取模块303获取的根据所述第三信号和所述第四信号,计算得到所述第二阵元和所述第三阵元之间的接收幅相相对系数,以使所述第二阵元的第一接收通道的幅相特性与所述第三阵元的第二接收通道的幅相特性一致,所述第三信号由所述第二阵元通过所述第一接收通道接收自所述第一阵元发送的信号,所述第四信号由所述第三阵元通过所述第二接收通道接收自所述第一阵元发送的信号。
本发明实施例中,第一处理模块302根据第一获取模块301获取第一阵元接收的上述第一信号和上述第二信号,计算得到发射幅相相对系数,使第一发射通道的幅相特性和第二发射通道的幅相特性一致,或第二处理模块303根据第二获取模块303获取上述第三信号和第四信号,计算得到接收幅相相对系数,使第一接收通道的幅相特性和第二接收通道的幅相特性一致。
可选的,在上述图7和/或图8所对应的实施例的基础上,本发明实施例的第一个可选实施例中,参阅图9,所述第二阵元和所述第三阵元相邻,所述第一阵元包括第四阵元和第五阵元,且所述第二阵元和所述第四阵元两者的间距,与所述第三阵元和所述第五阵元两者的间距相等,所述第三阵元和所述第四阵元两者的间距,与所述第二阵元和所述第五阵元两者的间距相等时,所述第三信号包括第五信号和第六信号,所述第四信号包括第七信号和第八信号,所述第五信号由所述第四阵元发送给所述第二阵元,所述第六信号为第五阵元发送给所述第二阵元,所述第七信号由所述第四阵元发送给所述第三阵元,所述第八信号为所述第五阵元发送给所述第三阵元,所述第二处理模块304具体用于:
根据所述第五信号、所述第七信号、所述第六信号和所述第八信号,计算得到所述接收幅相相对系数的绝对值;
所述装置还包括:
第一判断模块305,用于根据所述第三信号的第一相位、所述第四信号的第二相位、第三相位与第四相位之差及第一相位误差阈值,确定所述接收幅相相对系数的符号;所述第三相位为所述第二阵元与所述第四阵元两者之间的相位,所述第四相位为所述第三阵元和所述第四阵元两者之间的相位;所述符号为正时,所述接收幅相相对系数为第一接收幅相相对系数,所述符号为负时,所述接收幅相相对系数为第二接收幅相相对系数。
可选的,在上述图7和/或图8所对应的实施例、及第一个可选实施例的基础上,本发明实施例的第二个可选实施例中,所述第二阵元和所述第三阵元被所述第一阵元间隔时,所述第二处理模块304具体用于:
在所述第一阵元与所述第二阵元两者之间的间距,和所述第一阵元与所述第三阵元两者之间的间距相等时,根据所述第三信号和所述第四信号,计算得到所述接收幅相相对系数;
可选的,在上述第一至第二个可选实施例的基础上,本发明实施例的第三个可选实施例中,所述第二处理模块304在计算得到所述接收幅相相对系数之后,还用于:
设所述第二阵元为k1阵元,第三阵元为k1+m1阵元,在所述第一阵元包括k1+2阵元、k1+4阵元……k1+m1-2阵元时,所述第二阵元和所述第三阵元之间的接收幅相相对系数R(k1,k1+m1)根据如下公式计算得到:
R(k1,k1+m1)=R(k1)/R(k1+m1)=(R(k1,k1+2))*(R(k1+2,k1+4))*……*R(k1+m1-2,k1+m1);
所述k1为正整数,所述m1为偶数,R(k1)为所述k1阵元的接收幅相系数,R(k1+m1)为所述k1+m1阵元的接收幅相系数。
可选的,在上述图7和/或图8所对应的实施例、及第一至第三个可选实施例的基础上,本发明实施例的第四个可选实施例中,参阅图10,所述第二阵元和所述第三阵元相邻,所述第一阵元包括第六阵元和第七阵元,且所述第二阵元和所述第六阵元两者的间距,与所述第三阵元和所述第七阵元两者的间距相等,所述第三阵元和所述第六阵元两者的间距,与所述第二阵元和所述第七阵元两者的间距相等时,所述第一信号包括第九信号和第十信号,所述第二信号包括第十一信号和第十二信号,所述第九信号由所述第六阵元发送给所述第二阵元,所述第十信号为第七阵元发送给所述第二阵元,所述第十一信号由所述第六阵元发送给所述第三阵元,所述第八信号为所述第七阵元发送给所述第三阵元,所述第一处理模块302具体用于:
根据所述第九信号、所述第十信号、所述第十一信号和所述第十二信号,计算得到所述发射幅相相对系数的绝对值;
所述装置还包括:
第二判断模块306,用于根据所述第一信号的第五相位、所述第二信号的第六相位、第七相位与第八相位的差值及第二相位误差阈值,确定所述发射幅相相对系数的符号,所述第七相位为所述第二阵元与所述第六阵元两者之间的相位,所述第八相位为所述第三阵元和所述第六阵元两者之间的相位;所述符号为正时,所述发射幅相相对系数为第一发射幅相相对系数,所述符号为负时,所述发射幅相相对系数为第二发射幅相相对系数。
可选的,在上述图7和/或图8所对应的实施例、及第一至第四个可选实施例的基础上,本发明实施例的第五个可选实施例中,所述第二阵元和所述第三阵元被所述第一阵元间隔,所述第一阵元与所述第二阵元两者之间的间距,和所述第一阵元与所述第三阵元两者之间的间距相等时,所述第一处理模块302具体用于:
根据所述第一信号和所述第二信号,计算得到所述发射幅相相对系数;
可选的,在上述第四至第五个可选实施例的基础上,本发明实施例的第六 个可选实施例中,所述第二阵元和所述第三阵元被至少两个阵元间隔时,所述第一处理模块302还用于:
设所述第二阵元为k2阵元,第三阵元为k2+m2阵元,所述第一阵元包括k2+2阵元、k2+4阵元……k2+m2-2阵元时,所述第二阵元和所述第三阵元之间的发射幅相相对系数T(k2,k2+m2)根据如下公式计算得到:
T(k2,k2+m2)=T(k2)/T(k2+m2)=(T(k2,k2+2))*(T(k2+2,k2+4))*……*T(k2+m2-2,k2+m2);
所述k2为正整数,所述m2为偶数,T(k2)为所述k2阵元的发送幅相系数,T(k2+m2)为所述k2+m2阵元的发送幅相系数。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元 中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上对本发明所提供的一种天线阵列校准的方法、装置及系统进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (20)

  1. 一种天线阵列校准的方法,其特征在于,所述方法应用于规则排布型阵列,所述方法至少包括如下步骤中的一个:
    获取第一信号和第二信号,根据所述第一信号和所述第二信号,计算得到第二阵元和第三阵元之间的发射幅相相对系数,以使所述第二阵元的第一发射通道的幅相特性与所述第三阵元的第二发射通道的幅相特性一致,所述第一信号由所述第二阵元通过所述第一发射通道发送至第一阵元,所述第二信号由所述第三阵元通过所述第二发射通道发送至所述第一阵元;
    获取第三信号和第四信号,根据所述第三信号和所述第四信号,计算得到所述第二阵元和所述第三阵元之间的接收幅相相对系数,以使所述第二阵元的第一接收通道的幅相特性与所述第三阵元的第二接收通道的幅相特性一致,所述第三信号由所述第二阵元通过所述第一接收通道接收自所述第一阵元发送的信号,所述第四信号由所述第三阵元通过所述第二接收通道接收自所述第一阵元发送的信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第二阵元和所述第三阵元相邻,所述第一阵元包括第四阵元和第五阵元,且所述第二阵元和所述第四阵元两者的间距,与所述第三阵元和所述第五阵元两者的间距相等,所述第三阵元和所述第四阵元两者的间距,与所述第二阵元和所述第五阵元两者的间距相等时,所述第三信号包括第五信号和第六信号,所述第四信号包括第七信号和第八信号,所述第五信号由所述第四阵元发送给所述第二阵元,所述第六信号为第五阵元发送给所述第二阵元,所述第七信号由所述第四阵元发送给所述第三阵元,所述第八信号为所述第五阵元发送给所述第三阵元,所述根据所述第三信号和所述第四信号,计算得到所述第二阵元和所述第三阵元之间的接收幅相相对系数,具体包括:
    根据所述第五信号、所述第七信号、所述第六信号和所述第八信号,计算得到所述接收幅相相对系数的绝对值;
    所述方法还包括:
    根据所述第五信号的第一相位、所述第七信号的第二相位、第三相位与第 四相位之差及第一相位误差阈值,确定所述接收幅相相对系数的符号,所述第三相位为所述第二阵元与所述第四阵元两者之间的相位,所述第四相位为所述第三阵元和所述第四阵元两者之间的相位;所述符号为正时,所述接收幅相相对系数为第一接收幅相相对系数,所述符号为负时,所述接收幅相相对系数为第二接收幅相相对系数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二阵元和所述第三阵元被所述第一阵元间隔时,所述根据所述第三信号和所述第四信号,计算得到所述第二阵元和所述第三阵元之间的接收幅相相对系数,具体包括:
    所述第一阵元与所述第二阵元两者之间的间距,和所述第一阵元与所述第三阵元两者之间的间距相等时,根据所述第三信号和所述第四信号,计算得到所述接收幅相相对系数。
  4. 根据权利要求2或3所述的方法,其特征在于,在计算得到所述接收幅相相对系数之后,所述方法还包括:
    设所述第二阵元为k1阵元,第三阵元为k1+m1阵元,在所述第一阵元包括k1+2阵元、k1+4阵元……k1+m1-2阵元时,所述第二阵元和所述第三阵元之间的接收幅相相对系数R(k1,k1+m1)根据如下公式计算得到:
    R(k1,k1+m1)=R(k1)/R(k1+m1)=(R(k1,k1+2))*(R(k1+2,k1+4))*……*R(k1+m1-2,k1+m1);
    所述k1为正整数,所述m1为偶数,R(k1)为所述k1阵元的接收幅相系数,R(k1+m1)为所述k1+m1阵元的接收幅相系数。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述第二阵元和所述第三阵元相邻,所述第一阵元包括第六阵元和第七阵元,且所述第二阵元和所述第六阵元两者的间距,与所述第三阵元和所述第七阵元两者的间距相等,所述第三阵元和所述第六阵元两者的间距,与所述第二阵元和所述第七阵元两者的间距相等时,所述第一信号包括第九信号和第十信号,所述第二信号包括第十一信号和第十二信号,所述第九信号由所述第六阵元发送给所述第二阵元,所述第十信号为第七阵元发送给所述第二阵元,所述第十一信号由所述第六阵元发送给所述第三阵元,所述第八信号为所述第七阵元发送给所述第三阵元,所述根据所述第一信号和所述第二信号, 计算得到所述第二阵元和所述第三阵元之间的发射幅相相对系数,具体包括:
    根据所述第九信号、所述第十信号、所述第十一信号和所述第十二信号,计算得到所述发射幅相相对系数的绝对值;
    所述方法还包括:
    根据所述第九信号的第五相位、所述第十一信号的第六相位、第七相位与第八相位的差值及第二相位误差阈值,确定所述发射幅相相对系数的符号,所述第七相位为所述第二阵元与所述第六阵元两者之间的相位,所述第八相位为所述第三阵元和所述第六阵元两者之间的相位;所述符号为正时,所述发射幅相相对系数为第一发射幅相相对系数,所述符号为负时,所述发射幅相相对系数为第二发射幅相相对系数。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述第二阵元和所述第三阵元被所述第一阵元间隔时,所述根据所述第一信号和所述第二信号,计算得到所述第二阵元和所述第三阵元之间的发射幅相相对系数,具体包括:
    所述第一阵元与所述第二阵元两者之间的间距,和所述第一阵元与所述第三阵元两者之间的间距相等时,根据所述第一信号和所述第二信号,计算得到所述发射幅相相对系数。
  7. 根据权利要求5或6所述的方法,其特征在于,设所述第二阵元为k2阵元,第三阵元为k2+m2阵元,所述第一阵元包括k2+2阵元、k2+4阵元……k2+m2-2阵元时,所述第二阵元和所述第三阵元之间的发射幅相相对系数T(k2,k2+m2)根据如下公式计算得到:
    T(k2,k2+m2)=T(k2)/T(k2+m2)=(T(k2,k2+2))*(T(k2+2,k2+4))*……*T(k2+m2-2,k2+m2);
    所述k2为正整数,所述m2为偶数,T(k2)为所述k2阵元的发送幅相系数,T(k2+m2)为所述k2+m2阵元的发送幅相系数。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述第一阵元通过耦合作用接收所述第一信号和所述第二信号,所述第三阵元通过耦合作用接收所述第三信号,所述第四阵元通过耦合作用接收所述第四信号。
  9. 根据权利要求1至7任一所述的方法,其特征在于,所述第二阵元和 所述第三阵元与所述第一阵元为对称关系。
  10. 一种天线阵列校准的系统,其特征在于,所述系统包括:
    至少4个天线阵元、至少4个接收通道、至少4个发射通道、数字信号处理单元及至少4个开关,每个天线阵元对应一个接收通道和一个发送通道,每个所述接收通道和每个所述发射通道分别由所述开关中的一个独立控制;
    所述天线阵元用于发射和/或接收信号;
    所述接收通道用于对接收到的信号进行滤波、放大、变频及模拟数字变换,得到数字信号,并将所述数字信号传输至所述数字信号处理单元;
    所述发射通道用于将所述数字信号处理单元输入所述发射通道的信号进行数字模拟转换得到模拟信号,并对所述模拟信号进行滤波、调制、变频和放大处理,得到处理后的模拟信号,并通过所述天线阵元发射所述处理后的模拟信号;
    所述数字信号处理单元至少用于如下功能之一:
    对所述接收通道传输的所述数字信号进行数字信号处理,并根据所述数字信号计算接收通道之间的接收幅相相对系数,以使接收通道之间的幅相特性一致;
    对所述接收通道传输的所述数字信号进行数字信号处理,并根据所述数字信号计算发射通道之间的发射幅相相对系数,以使发射通道之间的幅相特性一致;
    所述开关中对应所述接收通道的用于控制所述接收通道与阵元的通断;所述开关中对应所述发射通道的用于控制所述发射通道与阵元的通断。
  11. 根据权利要求10所述的系统,其特征在于,所述系统为频分双工FDD系统时,所述系统还包括双工器和耦合器;
    所述双工器用于对所述接收通道接收到的信号和所述发射通道发射的信号进行分路、合路处理;
    所述耦合器用于对信号进行耦合,以使所述发射通道发送频率信号,及所述接收通道接收频率信号。
  12. 根据权利要求10或11所述的系统,其特征在于,每两个被校准的所述天线阵元与辅助阵元存在对称关系。
  13. 根据权利要求10至12所述的系统,其特征在于,每个所述天线阵元通过阵元之间的耦合作用接收信号。
  14. 一种用于天线阵列校准的装置,其特征在于,所述装置应用于规则排布型阵列的通信设备,所述装置包括:
    第一获取模块,用于获取第一信号和第二信号;
    第一处理模块,用于根据所述第一获取模块获取的所述第一信号和所述第二信号,计算得到第二阵元和第三阵元之间的发射幅相相对系数,以使所述第二阵元的第一发射通道的幅相特性与所述第三阵元的第二发射通道的幅相特性一致,所述第一信号由所述第二阵元通过所述第一发射通道发送至第一阵元,所述第二信号由所述第三阵元通过所述第二发射通道发送至所述第一阵元;
    和/或,第二获取模块,用于获取第三信号和第四信号;
    第二处理模块,用于根据所述第二获取模块获取的根据所述第三信号和所述第四信号,计算得到所述第二阵元和所述第三阵元之间的接收幅相相对系数,以使所述第二阵元的第一接收通道的幅相特性与所述第三阵元的第二接收通道的幅相特性一致,所述第三信号由所述第二阵元通过所述第一接收通道接收自所述第一阵元发送的信号,所述第四信号由所述第三阵元通过所述第二接收通道接收自所述第一阵元发送的信号。
  15. 根据权利要求14所述的装置,其特征在于,所述第二阵元和所述第三阵元相邻,所述第一阵元包括第四阵元和第五阵元,且所述第二阵元和所述第四阵元两者的间距,与所述第三阵元和所述第五阵元两者的间距相等,所述第三阵元和所述第四阵元两者的间距,与所述第二阵元和所述第五阵元两者的间距相等时,所述第三信号包括第五信号和第六信号,所述第四信号包括第七信号和第八信号,所述第五信号由所述第四阵元发送给所述第二阵元,所述第六信号为第五阵元发送给所述第二阵元,所述第七信号由所述第四阵元发送给所述第三阵元,所述第八信号为所述第五阵元发送给所述第三阵元,所述第二处理模块具体用于:
    根据所述第五信号、所述第七信号、所述第六信号和所述第八信号,计算得到所述接收幅相相对系数的绝对值;
    所述装置还包括:
    第一判断模块,用于根据所述第五信号的第一相位、所述第七信号的第二相位、第三相位与第四相位之差及第一相位误差阈值,确定所述接收幅相相对系数的符号;所述第三相位为所述第二阵元与所述第四阵元两者之间的相位,所述第四相位为所述第三阵元和所述第四阵元两者之间的相位;所述符号为正时,所述接收幅相相对系数为第一接收幅相相对系数,所述符号为负时,所述接收幅相相对系数为第二接收幅相相对系数。
  16. 根据权利要求14或15所述的装置,其特征在于,所述第二阵元和所述第三阵元被所述第一阵元间隔时,所述第二处理模块具体用于:
    在所述第一阵元与所述第二阵元两者之间的间距,和所述第一阵元与所述第三阵元两者之间的间距相等时,根据所述第三信号和所述第四信号,计算得到所述接收幅相相对系数。
  17. 根据权利要求14或15所述的装置,其特征在于,所述第二处理模块在计算得到所述接收幅相相对系数之后,还用于:
    设所述第二阵元为k1阵元,第三阵元为k1+m1阵元,在所述第一阵元包括k1+2阵元、k1+4阵元……k1+m1-2阵元时,所述第二阵元和所述第三阵元之间的接收幅相相对系数R(k1,k1+m1)根据如下公式计算得到:
    R(k1,k1+m1)=R(k1)/R(k1+m1)=(R(k1,k1+2))*(R(k1+2,k1+4))*……*R(k1+m1-2,k1+m1);
    所述k1为正整数,所述m1为偶数,R(k1)为所述k1阵元的接收幅相系数,R(k1+m1)为所述k1+m1阵元的接收幅相系数。
  18. 根据权利要求14至17任一所述的装置,其特征在于,所述第二阵元和所述第三阵元相邻,所述第一阵元包括第六阵元和第七阵元,且所述第二阵元和所述第六阵元两者的间距,与所述第三阵元和所述第七阵元两者的间距相等,所述第三阵元和所述第六阵元两者的间距,与所述第二阵元和所述第七阵元两者的间距相等时,所述第一信号包括第九信号和第十信号,所述第二信号包括第十一信号和第十二信号,所述第九信号由所述第六阵元发送给所述第二阵元,所述第十信号为第七阵元发送给所述第二阵元,所述第十一信号由所述第六阵元发送给所述第三阵元,所述第八信号 为所述第七阵元发送给所述第三阵元,所述第一处理模块具体用于:
    根据所述第九信号、所述第十信号、所述第十一信号和所述第十二信号,计算得到所述发射幅相相对系数的绝对值;
    所述装置还包括:
    第二判断模块,用于根据所述第九信号的第五相位、所述第十一信号的第六相位、第七相位与第八相位的差值及第二相位误差阈值,确定所述发射幅相相对系数的符号,所述第七相位为所述第二阵元与所述第六阵元两者之间的相位,所述第八相位为所述第三阵元和所述第六阵元两者之间的相位;所述符号为正时,所述发射幅相相对系数为第一发射幅相相对系数,所述符号为负时,所述发射幅相相对系数为第二发射幅相相对系数。
  19. 根据权利要求14至18任一所述的装置,其特征在于,所述第二阵元和所述第三阵元被所述第一阵元间隔,所述第一阵元与所述第二阵元两者之间的间距,和所述第一阵元与所述第三阵元两者之间的间距相等时,所述第一处理模块具体用于:
    根据所述第一信号和所述第二信号,计算得到所述发射幅相相对系数。
  20. 根据权利要求18或19所述的装置,其特征在于,设所述第二阵元为k2阵元,第三阵元为k2+m2阵元,所述第一阵元包括k2+2阵元、k2+4阵元……k2+m2-2阵元时,所述第二阵元和所述第三阵元之间的发射幅相相对系数T(k2,k2+m2)根据如下公式计算得到:
    T(k2,k2+m2)=T(k2)/T(k2+m2)=(T(k2,k2+2))*(T(k2+2,k2+4))*……*T(k2+m2-2,k2+m2);
    所述k2为正整数,所述m2为偶数,T(k2)为所述k2阵元的发送幅相系数,T(k2+m2)为所述k2+m2阵元的发送幅相系数。
PCT/CN2016/085847 2015-06-16 2016-06-15 一种天线阵列校准的方法、装置及系统 WO2016202258A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510332998.XA CN104954083B (zh) 2015-06-16 2015-06-16 一种天线阵列校准的方法、装置及系统
CN201510332998.X 2015-06-16

Publications (1)

Publication Number Publication Date
WO2016202258A1 true WO2016202258A1 (zh) 2016-12-22

Family

ID=54168470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085847 WO2016202258A1 (zh) 2015-06-16 2016-06-15 一种天线阵列校准的方法、装置及系统

Country Status (2)

Country Link
CN (1) CN104954083B (zh)
WO (1) WO2016202258A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110988786A (zh) * 2019-11-20 2020-04-10 成都大公博创信息技术有限公司 一种阵列测向校准方法
EP3614583A4 (en) * 2017-06-12 2020-05-13 Huawei Technologies Co., Ltd. CHANNEL CORRECTION METHOD AND NETWORK DEVICE
CN111610379A (zh) * 2020-05-30 2020-09-01 广东省计量科学研究院(华南国家计量测试中心) 5g天线阵列信号计量方法和系统
CN111726173A (zh) * 2020-06-29 2020-09-29 中国电子科技集团公司第五十四研究所 一种用于收发双工相控阵天线的内校准系统及方法
EP3731430A4 (en) * 2017-12-29 2020-10-28 Huawei Technologies Co., Ltd. DEVICE AND METHOD FOR CORRECTING A GAP BETWEEN MULTIPLE TRANSMISSION CHANNELS
CN112068070A (zh) * 2020-07-22 2020-12-11 中国人民解放军国防科技大学 基于深度学习测向的鲁棒性设计方法
CN113132025A (zh) * 2019-12-30 2021-07-16 华为技术有限公司 终端天线阵元间相位差的测试方法、修正方法及测试设备
CN114384479A (zh) * 2021-12-21 2022-04-22 广东纳睿雷达科技股份有限公司 相控阵雷达幅相校准方法、装置及存储介质
CN115097497A (zh) * 2022-06-21 2022-09-23 成都美数科技有限公司 一种多通道接收机的幅相校正方法及系统
CN116359835A (zh) * 2023-05-15 2023-06-30 中国人民解放军火箭军工程大学 一种y型基线干涉仪测向装置及测向方法
EP4012938A4 (en) * 2019-09-03 2023-08-23 ZTE Corporation DIGITAL-ANALOG HYBRID BEAM-FORMING MULTI-CHANNEL CORRECTION METHOD AND DEVICE

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104954083B (zh) * 2015-06-16 2018-05-29 上海华为技术有限公司 一种天线阵列校准的方法、装置及系统
US9948407B2 (en) * 2016-05-27 2018-04-17 Huawei Technologies Co., Ltd. Method and apparatus for beamforming calibration in point to multipoint communication systems
WO2018023214A1 (zh) * 2016-07-30 2018-02-08 华为技术有限公司 一种天线阵列的校准方法及装置
CN107483126B (zh) * 2017-06-30 2021-01-05 华为技术有限公司 一种天线校准、校准值验证方法及校准装置
WO2019127171A1 (zh) * 2017-12-28 2019-07-04 华为技术有限公司 一种用于校正多个阵列间传输通道偏差的装置及方法
EP3734850B1 (en) 2017-12-28 2022-08-17 Huawei Technologies Co., Ltd. Device and method for correcting deviation between multiple transmission channels
WO2019127491A1 (zh) * 2017-12-29 2019-07-04 华为技术有限公司 一种用于校正多个阵列间传输通道偏差的装置及方法
US10505275B2 (en) * 2018-05-09 2019-12-10 Keysight Technologies, Inc. System and method for near field test of active antenna system (ASS)transceiver
CN111669230B (zh) * 2019-03-08 2022-07-15 广州海格通信集团股份有限公司 相控阵天线误差校正电路、系统、方法和存储介质
CN111103583B (zh) * 2019-07-04 2023-03-21 徐立 一种具有实时校准的三维射频成像系统和方法
CN110429994B (zh) * 2019-07-29 2021-09-14 上海磐启微电子有限公司 基于偶数根天线的均匀圆阵幅相误差自校正装置及方法
CN111490835B (zh) * 2020-03-05 2022-08-26 西安宇飞电子技术有限公司 一种窄带信号自校准方法、装置及设备
CN111999782B (zh) * 2020-07-30 2023-02-03 北京遥测技术研究所 一种旋转扫描成像系统的自动校准方法
CN114252707B (zh) * 2020-09-23 2024-03-15 上海华为技术有限公司 一种阵列天线校准装置、方法及系统
CN112804016B (zh) * 2020-12-30 2023-05-05 中国航天科工集团八五一一研究所 一种模数混合收发共用体制宽带相控阵天线自校准方法
CN112994808B (zh) * 2021-05-20 2021-07-27 成都天锐星通科技有限公司 一种射频信号内校准系统及相控阵天线
CN113824514B (zh) * 2021-06-23 2023-04-07 蓝色创源(北京)科技有限公司 信源定向方法、系统、装置、终端设备及可读存储介质
CN113765600B (zh) * 2021-09-18 2022-10-14 上海交通大学 一种分布式阵列天线的收发参数自矫正方法
CN117639904B (zh) * 2024-01-24 2024-05-31 河北晶禾电子技术股份有限公司 用于卫星导航自适应抗干扰天线的功率均衡器及方法
CN117913531B (zh) * 2024-03-20 2024-05-17 成都华兴大地科技有限公司 一种Ku和Ka频段同极化共口径一维扫描相控阵天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101686075A (zh) * 2008-09-25 2010-03-31 中兴通讯股份有限公司 一种基站射频拉远单元通道降质及通道复诊、升质的方法
US20100093282A1 (en) * 2008-10-15 2010-04-15 Nokia Siemens Networks Oy MULTI-TRANSCEIVER ARCHITECTURE FOR ADVANCED Tx ANTENNA MONITORING AND CALIBRATION IN MIMO AND SMART ANTENNA COMMUNICATION SYSTEMS
CN103399305A (zh) * 2013-06-28 2013-11-20 四川九洲空管科技有限责任公司 数字阵二次雷达射频通道和天线阵子的幅相校准方法
CN104954083A (zh) * 2015-06-16 2015-09-30 上海华为技术有限公司 一种天线阵列校准的方法、装置及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762218B1 (ko) * 2006-05-01 2007-10-01 삼성탈레스 주식회사 배열 안테나 시스템에 있어서의 송신기 교정장치 및 수신기교정장치
US9441939B2 (en) * 2010-08-25 2016-09-13 Clairvoyant Technology Llc System for object detection using radio frequency reflection
US20130016003A1 (en) * 2011-07-11 2013-01-17 Sony Corporation Beam forming device and method using frequency-dependent calibration
CN102495396A (zh) * 2011-11-15 2012-06-13 北京无线电计量测试研究所 人体安检系统多通道幅度和相位一致性校准方法
CN202634428U (zh) * 2012-04-20 2012-12-26 京信通信系统(中国)有限公司 多通道校正系统以及多通道基站系统
CN102890271B (zh) * 2012-10-25 2013-11-27 北京理工大学 一种外辐射源雷达阵列天线幅相一致性校正方法
CN103391123B (zh) * 2013-07-25 2016-06-08 中国科学院上海微系统与信息技术研究所 星载多波束接收天线校正系统及其校正方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101686075A (zh) * 2008-09-25 2010-03-31 中兴通讯股份有限公司 一种基站射频拉远单元通道降质及通道复诊、升质的方法
US20100093282A1 (en) * 2008-10-15 2010-04-15 Nokia Siemens Networks Oy MULTI-TRANSCEIVER ARCHITECTURE FOR ADVANCED Tx ANTENNA MONITORING AND CALIBRATION IN MIMO AND SMART ANTENNA COMMUNICATION SYSTEMS
CN103399305A (zh) * 2013-06-28 2013-11-20 四川九洲空管科技有限责任公司 数字阵二次雷达射频通道和天线阵子的幅相校准方法
CN104954083A (zh) * 2015-06-16 2015-09-30 上海华为技术有限公司 一种天线阵列校准的方法、装置及系统

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10972197B2 (en) 2017-06-12 2021-04-06 Huawei Technologies Co., Ltd. Channel calibration method and network device
EP3614583A4 (en) * 2017-06-12 2020-05-13 Huawei Technologies Co., Ltd. CHANNEL CORRECTION METHOD AND NETWORK DEVICE
US11456807B2 (en) 2017-12-29 2022-09-27 Huawei Technologies Co., Ltd. Apparatus and method for correcting deviation between plurality of transmission channels
EP3731430A4 (en) * 2017-12-29 2020-10-28 Huawei Technologies Co., Ltd. DEVICE AND METHOD FOR CORRECTING A GAP BETWEEN MULTIPLE TRANSMISSION CHANNELS
US10938489B2 (en) 2017-12-29 2021-03-02 Huawei Technologies Co., Ltd. Apparatus and method for correcting deviation between plurality of transmission channels
EP3982554A1 (en) * 2017-12-29 2022-04-13 Huawei Technologies Co., Ltd. Apparatus and method for correcting deviation between plurality of transmission channels
EP4012938A4 (en) * 2019-09-03 2023-08-23 ZTE Corporation DIGITAL-ANALOG HYBRID BEAM-FORMING MULTI-CHANNEL CORRECTION METHOD AND DEVICE
CN110988786B (zh) * 2019-11-20 2023-09-22 成都大公博创信息技术有限公司 一种阵列测向校准方法
CN110988786A (zh) * 2019-11-20 2020-04-10 成都大公博创信息技术有限公司 一种阵列测向校准方法
CN113132025B (zh) * 2019-12-30 2022-06-14 华为技术有限公司 终端天线阵元间相位差的测试方法、修正方法及测试设备
CN113132025A (zh) * 2019-12-30 2021-07-16 华为技术有限公司 终端天线阵元间相位差的测试方法、修正方法及测试设备
CN111610379A (zh) * 2020-05-30 2020-09-01 广东省计量科学研究院(华南国家计量测试中心) 5g天线阵列信号计量方法和系统
CN111610379B (zh) * 2020-05-30 2021-09-14 广东省计量科学研究院(华南国家计量测试中心) 5g天线阵列信号计量方法和系统
CN111726173A (zh) * 2020-06-29 2020-09-29 中国电子科技集团公司第五十四研究所 一种用于收发双工相控阵天线的内校准系统及方法
CN112068070B (zh) * 2020-07-22 2022-08-09 中国人民解放军国防科技大学 基于深度学习测向的鲁棒性设计方法
CN112068070A (zh) * 2020-07-22 2020-12-11 中国人民解放军国防科技大学 基于深度学习测向的鲁棒性设计方法
CN114384479A (zh) * 2021-12-21 2022-04-22 广东纳睿雷达科技股份有限公司 相控阵雷达幅相校准方法、装置及存储介质
CN115097497A (zh) * 2022-06-21 2022-09-23 成都美数科技有限公司 一种多通道接收机的幅相校正方法及系统
CN115097497B (zh) * 2022-06-21 2023-04-18 成都美数科技有限公司 一种多通道接收机的幅相校正方法及系统
CN116359835A (zh) * 2023-05-15 2023-06-30 中国人民解放军火箭军工程大学 一种y型基线干涉仪测向装置及测向方法
CN116359835B (zh) * 2023-05-15 2023-08-15 中国人民解放军火箭军工程大学 一种y型基线干涉仪测向装置及测向方法

Also Published As

Publication number Publication date
CN104954083A (zh) 2015-09-30
CN104954083B (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
WO2016202258A1 (zh) 一种天线阵列校准的方法、装置及系统
US8754811B1 (en) Digital beamforming phased array
US8049662B2 (en) Systems and methods for antenna calibration
US6356233B1 (en) Structure for an array antenna, and calibration method therefor
WO2018023214A1 (zh) 一种天线阵列的校准方法及装置
US20230109403A1 (en) Self-calibrating phased-array transceiver
EP3142188B1 (en) Array antenna calibration method, device and system
CN111123220B (zh) 一种毫米波雷达的多通道幅相校准方法及系统
US9653820B1 (en) Active manifold system and method for an array antenna
CN110492917B (zh) 一种全数字波束成形阵列及实现收发通道幅度、相位自动校准方法
CN107290725B (zh) 高隔离圆极化平衡雷达射频前端结构
EP2839309B1 (en) An antenna arrangement for doa estimation
CN104777467A (zh) 基于频率扫描天线的目标检测方法
EP0132378B1 (en) Multiple beam scanning radar system
KR101616377B1 (ko) 방향탐지 정확도가 향상된 e.s.m. 위상 인터페로미터 방향탐지 시스템
US7928894B1 (en) Phased array radar with mutually orthogonal coding of transmitted and received V and H components
US10616009B1 (en) Shared monitor receiver for linearization in multi-channel systems
US20150188240A1 (en) Transmitting and receiving array antenna apparatus with ultra high isolation
Hoffman et al. Digital calibration system enabling real-time on-orbit beamforming
CN101883062B (zh) 一种单脉冲单通道宽带接收方法
Wallace An application of advanced SiGe to millimeter-wave phased arrays
Jenn et al. Adaptive phase synchronization in distributed digital arrays
US11867735B2 (en) Method and apparatus for digital VSWR measurement in advanced antenna systems (AAS)
US20200099131A1 (en) Non-reciprocal transceiver array architecture with a single non-reciprocal element
Gaydos et al. Calibration and Synchronization of Software-Defined-Radio Arrays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16810999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16810999

Country of ref document: EP

Kind code of ref document: A1