WO2016201949A1 - 盘式增磁直流发电机 - Google Patents

盘式增磁直流发电机 Download PDF

Info

Publication number
WO2016201949A1
WO2016201949A1 PCT/CN2016/000177 CN2016000177W WO2016201949A1 WO 2016201949 A1 WO2016201949 A1 WO 2016201949A1 CN 2016000177 W CN2016000177 W CN 2016000177W WO 2016201949 A1 WO2016201949 A1 WO 2016201949A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
disk
conductive
coil
power
Prior art date
Application number
PCT/CN2016/000177
Other languages
English (en)
French (fr)
Inventor
徐占魁
Original Assignee
徐占魁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐占魁 filed Critical 徐占魁
Priority to CA2989518A priority Critical patent/CA2989518A1/en
Priority to EP16810690.4A priority patent/EP3309946A4/en
Priority to RU2017141777A priority patent/RU2017141777A/ru
Priority to JP2017564530A priority patent/JP2018517390A/ja
Publication of WO2016201949A1 publication Critical patent/WO2016201949A1/zh
Priority to US15/830,012 priority patent/US10389189B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/04Windings on magnets for additional excitation ; Windings and magnets for additional excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/26Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating armatures and stationary magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K47/00Dynamo-electric converters
    • H02K47/02AC/DC converters or vice versa
    • H02K47/04Motor/generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Definitions

  • Pure magnetic energy DC generator It can meet the needs of industrial, agricultural, civil, and transportation electricity.
  • the disk type magnetizing DC generator is a pure magnetic energy DC generator composed of a drag motor and a DC generator and a disk brush conductive output device, and is a high energy high quality DC generator. Since the magnetic energy and power generation of the DC generator are much larger than the magnetic energy and power consumption of the drag motor, the electric power output by the DC generator is far greater than the electric power consumed by the drag motor. After the disk-type magnetizing DC generator is started, it can be operated with its own power generation without any fuel and other power sources.
  • the disc type magnetizing DC generator has three parts.
  • the stator of the direct current generator is composed of a permanent magnet disk and a structural ceramic insulating gasket, which is separated from the power generating disk by a layer, and constitutes a fixed permanent magnet magnetic source in the casing coil.
  • Case coil magnetizing coil
  • the stator of the direct current generator is composed of a permanent magnet disk and a structural ceramic insulating gasket, which is separated from the power generating disk by a layer, and constitutes a fixed permanent magnet magnetic source in the casing coil.
  • the rotor is composed of a power generating disk, [(the power generating disk, the aluminum alloy power generating disk is connected with the copper alloy conductive ring, the conductive ring is connected with the insulated bus bar, the insulated bus bar is provided with the positive electrode connecting terminal, and the aluminum alloy power generating disk is provided with the negative electrode connecting terminal)
  • the aluminum alloy power disk rotates and cuts the magnetic line to generate a current, and the current flows through the conductive ring into the insulated bus bar, and is input from the positive terminal to the negative terminal of the next power disk.
  • the structural ceramic insulated electric disk holder separated from the permanent magnetic disk by a layer, is placed on the non-magnetic hollow core conductive metal shaft (the conductive terminal in the shaft), and constitutes the power generating disk rotor in the DC generator.
  • the positive terminal of the power disk is connected to the negative terminal of the next power disk.
  • the power generation circuit is connected in series.
  • the last positive terminal of the power disk is connected to the in-axis conductive terminal.
  • the in-axis conductive terminal is connected to the disc brush conductive output device, and outputs the generator positive power source. It is connected to the input coil of the casing coil, and the positive DC power is output from the output terminal of the casing coil.
  • the bottom terminal of the bottommost power disk is connected to the bottom non-magnetic conductive metal disk holder.
  • the non-magnetic conductive metal disc holder is connected to the shaft.
  • the shaft is connected to the disk brush conductive output device, and outputs the generator negative power source.
  • Drag the motor (the motor is driven here is a split structure), and the rotor uses the same shaft as the generator disk rotor.
  • the bearing sleeve and stator are mounted on the DC generator end cap.
  • the brush brush conductive output device there is a positive output device and a negative output device. It is composed of a conductive plate (with a conductive friction plate on the conductive plate), a brush and a conductive brush holder, and a fan. Installed on the generator shaft head.
  • the positive conductive pad is connected to the in-axis conductive terminal.
  • the negative conductive pad is connected to the shaft.
  • the power disk cuts the corresponding magnetic lines of force to generate current, and the current passes through the conductive ring, and the insulated bus bar is insulated to the negative terminal of the next power generating disk.
  • the generated current is outputted by the series circuit, and is input to the input coil of the casing coil through the in-axis conductive terminal and the disk brush conductive output device, and the DC output is output from the casing coil output terminal.
  • the casing coil positive power output terminal and the disk brush conductive output device negative power output terminal Connect with powered devices. When electricity is used by the electrical equipment, a current is generated.
  • the current passes through the casing coil, and the casing coil generates a magnetomotive force.
  • the magneto-motive force of the casing coil is added to the magnetic source of the DC generator to enhance the magnetic field strength of the DC generator, and the magnetic flux is increased, and the power generation of the DC generator is increased.
  • This kind of casing coil magnetization method is called (self-increasing).
  • the magnetizing current of the casing coil can be separated from the current of the electric equipment.
  • Specialized magnetizing coil and magnetizing current This method of magnetization. Name it (he added).
  • the electricity from the DC generator can be used directly on the electrical equipment. There are two kinds of magnetization methods on one generator, and the name is called (re-increase).
  • the electric motor of the disc type magnetizing DC generator is driven by the electric motor, the electric power of the magnetizing coil is used, the electric power of the other power source is used, or the electric power generated by the self generator is used in front of the motor and in front of the magnetizing coil, and the installation control is performed.
  • the thickness of the aluminum alloy power disk is determined by the strength of the magnetic field in the two permanent magnet disks.
  • the vertical disc type magnetizing DC generator base is equipped with three inspection ports, and the bottom bearing of the small and medium-sized DC generator can be taken out for inspection. Large DC generators can be accessed and repaired.
  • the installation of the power disk is to be installed and connected at a 90° angle to the layer to ensure dynamic balance.
  • the disk-type magnetizing DC generator should be made of non-magnetic materials except for the permanent magnetic disk and the magnetic material that must be used on the motor.
  • the disk type magnetizing DC generator has small volume, high power, light weight, many models and various specifications. It can meet the electricity needs of industry, agriculture, civil, aircraft, ships, automobiles and various vehicles.
  • the disc-type magnetizing DC generator is easy to use and maintain, the generator is fully sealed and maintenance-free, and the bearings and brushes are on the outside of the generator, and only need to be replaced regularly.
  • DC power is high-energy electricity.
  • DC electrical equipment is small in size, fast in response, low in noise, long in life and good in running performance.
  • direct current is greater than the use of alternating current.
  • the use of a disk-type magnetizing DC generator is as easy as using a mobile DC power supply, and is installed near it.
  • Figure 1 (Horizontal) disc type magnetizing DC generator: 1 DC generator. 2 Drag the motor. 3 disk brush conductive output device. 4-axis conductive terminal. 5 permanent magnet disks. 6 power grid. 7 structural ceramic insulated electric disk holder. 8 non-magnetic conductive disc holder. 9 with insulated magnetically polarized coil housing. Both ends of the coil are led out by the terminals. 10 generator shaft (no magnetic hollow core conductive metal shaft, there are conductive terminals in the shaft). 11 fans. There are three fans, a positive fan, a negative fan, and a motor fan. The positive fan is fixed to the shaft head. The negative fan and the motor fan are fixed to a conductive disk connected to the shaft. 12 rows of fans. 13 housing coil input terminal. 14 housing coil output terminal.
  • Fig. 2 is a schematic structural view of the disk type magnetizing DC generator shown in Fig. 1.
  • 1 DC generator. 2 Drag the motor. 3.
  • Figure 3 Schematic diagram and partial section of the power generation disk. 1 aluminum alloy power disk. 2 copper alloy conductive ring. 3 structural ceramic insulated busbars. It is a positive and negative connection terminal.
  • Figure 4 Top cross-sectional view of the disk brush conductive output device. 1 high strength insulation bracket. 2 negative brush fan. 3 Negative power supply output connection terminal. 4 negative vents. 5 positive vents. 6 brush vacancies. 7 positive brush fan. 8 positive power supply output connection terminal. 9 positive power supply output brush. 10 positive conductive brush holder. 11 negative conductive brush holder. 12 negative power supply output brush.
  • Figure 5 (Vertical and vertical) disc type magnetizing DC generator. 1 disk brush conductive output device. 2 brushes. 3 fans. There are three fans, a positive fan, a negative fan, and a motor fan. The positive fan is fixed to the shaft head. The negative fan and the motor fan are fixed to a conductive disk connected to the shaft. 4 Drag the motor. 5 air inlets. 6 housing coil connection terminal. 7 DC generator. 8 bearing sets. 9 inspection port. 10 vertical stand.
  • Figure 6 (vertical) disc type magnetizing DC generator. 1 disk brush conductive output device. 2 brushes. 3 fans; there are three fans, positive fan, negative fan, motor fan. The positive fan is fixed to the shaft head. The negative fan and the motor fan are fixed to a conductive disk connected to the shaft. 4 Drag the motor. 5 air inlets. 6 housing coil connection terminal. 7 DC generator. 8 bearing sets. 9 inspection port. 10 vertical stand.
  • the (horizontal) disc type magnetizing DC generator there are three parts, 1, DC generator; stator; is composed of a permanent magnet disk 5 and a structural ceramic insulating gasket 17, separated from the power generating disk 6 by a layer, and a fixed permanent magnet source is formed in the casing coil 9.
  • DC generator generator
  • stator is composed of a permanent magnet disk 5 and a structural ceramic insulating gasket 17, separated from the power generating disk 6 by a layer, and a fixed permanent magnet source is formed in the casing coil 9.
  • Case coil magnetizing coil
  • Rotor is a power generating disk, (generator disk; is made of aluminum alloy power disk, connected with copper alloy conductive ring, conductive ring is connected with structural ceramic insulated bus bar, insulated bus bar is provided with positive connection terminal, aluminum alloy power disk is provided with negative electrode connection
  • the terminal composition) and the structural ceramic insulated electric disk holder 7 are spaced apart from the permanent magnetic disk by a layer, and are placed on the non-magnetic hollow core conductive metal shaft 10 Upper (with conductive terminals 4 in the shaft), the generator disk rotor is formed in the generator.
  • the positive terminal of the power disk is connected to the negative terminal of the next power disk.
  • the power generation circuit is connected in series.
  • the last positive terminal of the power disk is connected to the in-axis conductive terminal.
  • the in-axis conductive terminal is connected to the positive conductive pad 21 of the disk brush conductive output device 3, and the positive electrode power supply of the generator is output via the conductive friction plate and the brush 20. It is connected to the casing coil input terminal 13, and the positive coil DC power is output from the casing coil output terminal 14.
  • the bottommost power disk negative terminal is connected to the bottom non-magnetic metal disk holder 8.
  • the non-magnetic metal disc holder is connected to the shaft.
  • the shaft is connected to the negative electrode conductive plate 22 of the disk brush conductive output device 3, and outputs a negative power source of the generator through the conductive friction plate and the brush. 2.
  • the brush brush conductive output device there is a positive output device and a negative output device. It is composed of a conductive plate (with a conductive friction plate on the conductive plate), a brush 20 and a conductive brush holder, and a fan. Installed on the generator shaft head. The positive conductive pad is connected to the in-axis conductive terminal. The negative conductive pad is connected to the shaft.
  • the brush is mounted on the conductive brush holder, and the conductive brush holder is fixed on the casing by an insulating bracket.
  • the conductive brush holder is provided with a connection terminal.
  • the power disk cuts the corresponding magnetic lines of force to generate a current, and the current flows through the conductive ring, and the insulated bus bar positive connection terminal is connected to the next negative terminal of the power generating disk.
  • the generated current is outputted by the series circuit, and is input to the input coil of the casing coil through the in-axis conductive terminal and the disk brush conductive output device, and the DC output is output from the casing coil output terminal.
  • the casing coil positive power output terminal and the disk brush conductive output device negative power output terminal are connected to the power device. When electricity is used by the electrical equipment, a current is generated.
  • the current passes through the casing coil, and the casing coil generates a magnetomotive force.
  • the magneto-motive force of the casing coil is added to the magnetic source of the DC generator to enhance the magnetic field strength of the DC generator, and the magnetic flux is increased, and the power generation of the DC generator is increased.
  • This kind of casing coil magnetization method is called (self-increasing).
  • Magnetoelectric potential number of turns of the coil multiplied by current (A). Determine the number of turns in the coil. Can meet the needs of the use of electrical equipment design.
  • Figure 1 of the specification is 1 to 10,
  • the permanent magnet magnetic source of the generator has an outer diameter of 1050 mm, an inner diameter of 280 mm, and an average area of 0,768 square meters.
  • the DC generator has no reverse electromagnetic force, and the 5, 5 kW or 7, 5 kW motor is used as the drag motor. It can meet the needs of dragging the DC generator.
  • the magnetic energy area of the drag motor is 0,05 square meters.
  • the magnetic energy area of the generator is more than 300 times the magnetic energy area of the drag motor.
  • (2) The magnetomotive force generated by the load is injected into the permanent magnet source again, which increases the generator energy.
  • the power generating disk in the rotor of the power generating disk has a diameter of 1050 mm and a thickness of 15 mm to 20 mm.
  • 20 power generating panels can meet the maximum magnetic energy generation needs of DC generators.
  • the DC generator and the traction motor run coaxially.
  • the power generation of the DC generator is more than 300 times that of the drag motor.
  • the electric power output by the DC generator is much larger than the electric power consumed by the drag motor.
  • (1) The magnetic energy area of the generator is 16 square meters. More than 300 times the magnetic energy area of the drag motor, about 1500 kW. This is the initial power generation area of the generator.
  • Magnetoelectric potential number of turns of the coil multiplied by current (A).
  • the magnetizing coil is 20 ⁇
  • the load current is 4.5 (A) per kW.
  • Magnetoelectric potential load power multiplied by 4.5 (A) by 20 ⁇ . It can be seen that the magnetization
  • the power generated by the coil is greater than the energy consumed by the load.
  • the number of turns of the magnetizing coil can change the output power of the generator.
  • the enormous energy in the generator is reflected in the power generation area and the energy generated by the magnetizing coil.
  • Figure 1 generator maximum output power can exceed 1500 kW. (This generator does not violate the law of conservation of energy)
  • the 5,5 kW or 7,5 kW motor can be used as the drag motor to meet the needs of the generator operation of Figure 1.
  • Fig. 2 is a schematic structural view of the disk type magnetizing DC generator shown in Fig. 1. It is composed of a DC generator 1, a drag motor 2, and a disk brush conductive output device 3.
  • the DC generator has a permanent magnet disk 5, a power generating disk 6, and a magnetizing coil 9.
  • the power disk is composed of an aluminum alloy power generating disk 1 connected to a copper alloy conductive ring 2, a conductive ring connected to the insulated bus bar 3, a positive electrode connecting terminal on the insulating bus bar, and a negative electrode connecting terminal on the aluminum alloy power generating disk.
  • aluminum has the best power generation performance and copper has the best conductivity.
  • the disk brush conductive output device 3 has a positive electrode output device, and a negative electrode output device, which is composed of a conductive disk 21, 22 (a conductive friction plate is provided on the conductive disk), a brush 20, and a conductive
  • the brush holder is composed of a connecting terminal and a fan.
  • the positive electrode conductive pad 21 is connected to the in-axis conductive terminal
  • the negative electrode conductive pad 22 is connected to the shaft
  • the brush is mounted on the conductive brush holder
  • the conductive brush holder is fixed by the insulating bracket.
  • On the casing there are connecting terminals on the conductive brush holder, three fans, a positive electrode fan mounted on the shaft head, and a negative electrode fan and a motor fan mounted on the negative electrode conductive plate.
  • the generator rotates to generate electricity, the current is outputted to the direct current through the conductive disk, the brush, the conductive brush holder and the connection terminal.
  • Figure 4 is a partial cross-sectional view of the disk brush conductive output device.
  • the (vertical and horizontal) disc type magnetizing DC generator is changed on the basis of the horizontal disc type magnetizing DC generator of Fig. 1, and constitutes a (single and horizontal) disc type increase.
  • Magnetic DC generator Different from the horizontal DC generator of Fig. 1, the vertical base 10 of the DC generator 7 is mounted on the negative side.
  • the drag motor 4 is mounted on the positive side of the DC generator. (The drag motor is a split structure)
  • the rotor is mounted on the DC generator shaft, and the stator is fixed on the generator end cover.
  • the disc brush conductive output device 1 is mounted on the extended portion of the drag motor housing.
  • the DC generator shaft is correspondingly lengthened
  • the positive conductive pad is connected to the inner conductive terminal
  • the negative conductive disk is connected to the shaft.
  • the bottom end cap is thickened so that the bottom end cap is loaded to meet the requirements of use.
  • the DC generator vertical frame has three service ports 9. The other is the same as the Figure 1 (horizontal) disc type magnetizing DC generator.
  • the (vertical) disk type magnetizing DC generator is based on the disk type magnetizing DC generator of Fig. 5 (vertical and horizontal type), and the horizontal frame is removed. Form a (vertical) disc type magnetizing DC generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc Machiner (AREA)
  • Motor Or Generator Frames (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

盘式增磁直流发电机是由拖动电动机(2)和直流发电机(1)、盘刷导电输出装置(3)构成的纯磁能直流发电机。直流发电机定子由永磁磁盘(5)和增磁线圈(9)机壳组成。转子由发电盘(6)和轴(10)及轴内导电端子组成。拖动电动机和直流发电机同用一根轴,当电动机通电旋转,发电盘转子切割磁力线发电,当用电设备用电时,就产生电流,电流通过增磁线圈,增磁线圈产生磁电势,增强了直流发电机磁源磁场强度,磁通量增大,增大了直流发电机输出功率。因直流发电机磁能和发电能都要远远大于拖动电动机磁能和耗电能。直流发电机输出的电功率要远远大于拖动电动机消耗的电功率。

Description

盘式增磁直流发电机 技术领域
纯磁能直流发电机。能够满足工业、农业、民用、交通用电需要。
背景技术
现在主要是核能发电、水力发电、火力发电、依靠能源发电。燃烧能源、污染环境、使用不方便。没有纯磁能直流发电机。
发明内容
盘式增磁直流发电机是由拖动电动机和直流发电机、盘刷导电输出装置构成的纯磁能直流发电机,是高能量高质量直流发电机。因直流发电机磁能和发电能都要远远大于拖动电动机磁能和耗电能,直流发电机输出的电功率远远大于拖动电动机消耗的电功率。盘式增磁直流发电机启动运转后,可使用自身发电电源运行,不用任何燃料和其它动力源。
原理:盘式增磁直流发电机有三部分构成。1、直流发电机定子;是由永磁磁盘和结构陶瓷绝缘垫圈,与发电盘一层层间隔,在机壳线圈里构成固定永磁磁源。[机壳线圈(增磁线圈),由铝带或铜带(线)绕成与机壳相配套的线圈,用绝缘结构陶瓷铸入到机壳内]。转子;是由发电盘,【(发电盘、是铝合金发电盘与铜合金导电环连接,导电环与绝缘母线链接,绝缘母线设有正极连接端子,铝合金发电盘设有负极连接端子组成)铝合金发电盘旋转切割磁力线产生电流,电流流经导电环进入绝缘母线,由正极端子输入到下一个发电盘负极连接端子。】和结构陶瓷绝缘电盘座,与永磁磁盘一层层间隔,套在无磁性空芯导电金属轴上(轴内有导电端子),在直流发电机里构成发电盘转子。发电盘正极端子与下1个发电盘负极端子连接。组成发电盘串联发电回路。最后1个发电盘正极端子与轴内导电端子连接。轴内导电端子与盘刷导电输出装置连接,输出发电机正极电源。连接到机壳线圈输入端子上,由机壳线圈输出端子输出正极直流电。最底部发电盘负极端子与底部无磁性导电金属电盘座连接。无磁性导电金属电盘座与轴连接。轴与盘刷导电输出装置连接,输出发电机负极电源。2、拖动电动机(在此处拖动电动机是分体结构),转子与发电盘转子同用一根轴。轴承套和定子安装在直流发电机端盖上。3、盘刷导电输出装置;内有正极输出装置和负极输出装置。是由导电盘(导电盘上设有导电磨擦片),电刷和导电刷盘座,风扇组成。安装在发电机轴头上。正极导电盘与轴内导电端子连接。负极导电盘与轴连接。当拖动电动机通电旋转时,发电盘切割相应的磁力线产生电流,电流经导电环,绝缘母线到下一个发电盘负极端子。发电电流由串联回路输出,经轴内导电端子,与盘刷导电输出装置,输入到机壳线圈输入端子,由机壳线圈输出端子输出直流电。机壳线圈正极电源输出端子和盘刷导电输出装置负极电源输出端子, 与用电设备连接。当用电设备用电时,就产生电流。电流通过机壳线圈,机壳线圈就产生磁电势。机壳线圈磁电势加入到直流发电机磁源,增强直流发电机磁源磁场强度,磁通量增大,直流发电机发电功率就增加。这种机壳线圈增磁方式取名叫(自增)。在实际使用中机壳线圈增磁电流与用电设备电流还可以分开。专设增磁线圈和增磁电流。这种增磁方式。取名叫(他增)。直流发电机发出来的电可以直接用在用电设备上。在1个发电机上有以上两种增磁方式,取名叫(复增)。盘式增磁直流发电机上拖动电动机用电,增磁线圈用电,用其他电源上的电,还是用自身发电机发出来的电,都要在电动机前面,和增磁线圈前面,安装控制设备,以调节发电机转数,V=Blu[V],和调节增磁线圈匝数或电流,磁电势=线圈匝数乘以电流(A)。双向调节,可以满足各种用电设备需求。
(1)盘式增磁直流发电机永磁磁盘越薄磁场的强度越强越好。要根据永磁磁盘磁场强度和工作需要而定。铝合金发电盘厚度要根据两永磁磁盘中的磁场的强度而定。
(2)立式盘式增磁直流发电机机座设有三个检修口,中小型直流发电机底部轴承能够取出检修。大型直流发电机人能进出检修。
(3)发电盘安装,要层与层旋转90°角安装连接,是为了保证动平衡。
(4)轴承套增设螺丝孔,用顶丝将轴承套顶出后,更换轴承。
(5)需要注意的是,盘式增磁直流发电机,除永磁磁盘,拖动电动机上所必须使用的磁性材料外,都应使用无磁性材料制作。
有益效果
盘式增磁直流发电机体积小、功率大、重量轻、机型多、规格众数。可以满足工业、农业、民用、飞行器、轮船、汽车及各种交通工具用电需要。
盘式增磁直流发电机使用维护方便、发电机是全密封结构免维护,轴承和电刷在发电机外侧、只需定期更换。
直流电是高能电万能电。直流电气设备体积小、响应快、噪音低、寿命长、运行性能好。目前使用直流电已经大于使用交流电。使用盘式增磁直流发电机就像使用可移动直流电源一样方便,就近安装使用。
使用盘式增磁直流发电机、使用直流电,经济收获丰厚,环境干净美好,盘式增磁直流发电机无与伦比的优异性能为发展增添活力。
附图说明
图1:(卧式)盘式增磁直流发电机:1直流发电机。2拖动电动机。3盘刷导电输出装置。4轴内导电端子。5永磁磁盘。6发电盘。7结构陶瓷绝缘电盘座。8无磁性导电电盘座。 9带有绝缘增磁线圈机壳。线圈两头由接线端子引出。10发电机轴(无磁性空芯导电金属轴,轴内有导电端子)。11风扇。共有三个风扇、正极风扇,负极风扇,电机风扇。正极风扇固定在轴头上。负极风扇和电机风扇固定在与轴连接的导电盘上。12排风扇。13机壳线圈输入端子。14机壳线圈输出端子。15进风口。16密封垫圈。17结构陶瓷绝缘垫圈。18轴承套。(内有深沟轴承和推力轴承,轴承套固定在发电机端盖上,在固定螺丝中间设有螺丝孔,更换轴承时,在螺丝孔上安装顶丝,将轴承套顶出后更换轴承)。19无磁性金属端盖。20电刷。21正极导电盘。22负极导电盘。
图2;盘式增磁直流发电机图1摘要结构图。1直流发电机。2拖动电动机。3、盘刷导电输出装置。5永磁磁盘。6发电盘。9增磁线圈。
图3:发电盘原理图与局部剖面图。1铝合金发电盘。2铜合金导电环。3结构陶瓷绝缘母线。
Figure PCTCN2016000177-appb-000001
为正负极连接端子。
图4:盘刷导电输出装置俯视局部剖面图。1高强度绝缘支架。2负电刷风扇。3负极电源输出连接端子。4负极通风口。5正极通风口。6电刷空位。7正电刷风扇。8正极电源输出连接端子。9正极电源输出电刷。10正极导电刷盘座。11负极导电刷盘座。12负极电源输出电刷。
图5:(立卧两用式)盘式增磁直流发电机。1盘刷导电输出装置。2电刷。3风扇。共有三个风扇、正极风扇,负极风扇,电机风扇。正极风扇固定在轴头上。负极风扇和电机风扇固定在与轴连接的导电盘上。4拖动电动机。5进风口。6机壳线圈连接端子。7直流发电机。8轴承套。9检修口。10立式机座。
图6:(立式)盘式增磁直流发电机。1盘刷导电输出装置。2电刷。3风扇;共有三个风扇、正极风扇,负极风扇,电机风扇。正极风扇固定在轴头上。负极风扇和电机风扇固定在与轴连接的导电盘上。4拖动电动机。5进风口。6机壳线圈连接端子。7直流发电机。8轴承套。9检修口。10立式机座。
具体实施方式
实施例1
如图1所示,(卧式)盘式增磁直流发电机。有三部分构成,1、直流发电机;定子;是由永磁磁盘5和结构陶瓷绝缘垫圈17,与发电盘6一层层间隔,在机壳线圈9里构成固定永磁磁源。[机壳线圈(增磁线圈),由铝带或铜带(线)绕成与机壳相配套的线圈,用绝缘结构陶瓷铸入到机壳内]。转子;是由发电盘,(发电盘;是由铝合金发电盘,与铜合金导电环连接,导电环与结构陶瓷绝缘母线连接,绝缘母线设有正极连接端子,铝合金发电盘设有负极连接端子组成)和结构陶瓷绝缘电盘座7,与永磁磁盘一层层间隔,套在无磁性空芯导电金属轴10 上(轴内有导电端子4),在发电机里构成发电盘转子。发电盘正极端子与下1个发电盘负极端子连接。组成发电盘串联发电回路。最后1个发电盘正极端子与轴内导电端子连接。轴内导电端子与盘刷导电输出装置3中正极导电盘21连接,经导电摩擦片、电刷20,输出发电机正极电源。连接到机壳线圈输入端子13上,由机壳线圈输出端子14输出正极直流电。最底部发电盘负极端子与底部非磁性金属电盘座8连接。非磁性金属电盘座与轴连接。轴与盘刷导电输出装置3中负极导电盘22连接,经导电摩擦片、电刷,输出发电机负极电源。2、拖动电动机2(在此处拖动电动机是分体结构),转子与发电盘转子同用一根轴,轴承套和定子固定在直流发电机端盖上。3、盘刷导电输出装置;内有正极输出装置和负极输出装置。是由导电盘(导电盘上设有导电磨擦片),电刷20及导电刷盘座,风扇构成。安装在发电机轴头上。正极导电盘与轴内导电端子连接。负极导电盘与轴连接。电刷安装在导电刷盘座上,导电刷盘座由绝缘支架固定在机壳上。导电刷盘座上设有接线端子。当拖动电动机通电旋转时,发电盘切割相应的磁力线产生电流,电流流经导电环,绝缘母线正极连接端子到下一个发电盘负极端子。发电电流由串联回路输出,经轴内导电端子,与盘刷导电输出装置,输入到机壳线圈输入端子,由机壳线圈输出端子输出直流电。机壳线圈正极电源输出端子和盘刷导电输出装置负极电源输出端子,与用电设备连接。当用电设备用电时,就产生电流。电流通过机壳线圈,机壳线圈就产生磁电势。机壳线圈磁电势加入到直流发电机磁源,增强直流发电机磁源磁场强度,磁通量增大,直流发电机发电功率就增加。这种机壳线圈增磁方式取名叫(自增)。在盘式增磁直流发电机前面,安装控制设备,以调节发电机转数,V=Blu[V]。达到调节盘式增磁直流发电机输出功率。磁电势=线圈匝数乘以电流(A)。确定好线圈匝数。可以满足用电设备设计使用需要。
例如;说明书附图图1;是1比10,(1)发电机永磁磁源中磁盘外径是1050毫米,内径是280毫米,平均面积是0、768平方米。一共有21块永磁磁盘,磁能面积是16平方米。直流发电机没有反向电磁力,选用5、5千瓦或7、5千瓦电机做拖动电动机。就可以满足拖动直流发电机运转需要。拖动电动机磁能面积是0、05平方米。发电机磁能面积大于拖动电动机磁能面积300多倍。(2)负载产生的磁电势又注入到永磁磁源内,又增大了发电机能量。(3)发电盘转子中的发电盘直径是1050毫米,厚是15毫米-20毫米。20个发电盘能满足直流发电机最大磁能发电需要。直流发电机与拖动电动机同轴运行,直流发电机发电能要大于拖动电动机耗电能300多倍,直流发电机输出的电功率要远远大于拖动电动机消耗的电功率。解读:(1)发电机磁能面积是16平方米。大于拖动电动机磁能面积300多倍,约1500千瓦。这是发电机初始发电面积。(2)磁电势=线圈匝数乘以电流(A)。如果设增磁线圈为20匝,负载电流每千瓦为4.5(A)。磁电势=负载功率乘4.5(A)乘20匝。从中可以看出增磁 线圈所产生的发电能量大于负载耗电能量。增磁线圈匝数多少可以改变发电机输出功率大小。(3)V=Blu[V],在控制器的控制下盘式增磁直流发电机稳定在设定值内工作,改变设定值就可以改变输出功率。发电机内的巨大能量、在发电面积上和增磁线圈产生发电能量上体现出来。图1发电机最大输出功率可超过1500千瓦。(此发电机没有违反能量守恒定律)(4)因图1发电机没有反向电磁力,选用5,5千瓦或7,5千瓦电动机做拖动电动机就能满足图1发电机运转需要。
(1)图2是盘式增磁直流发电机图1摘要结构图。是由直流发电机1、拖动电动机2、盘刷导电输出装置3构成。直流发电机内有永磁磁盘5、发电盘6、增磁线圈9。
(2)图1中,发电盘原理图与局部剖面图图3。发电盘组成,是由铝合金发电盘1,与铜合金导电环2连接,导电环与绝缘母线3连接,绝缘母线上设有正极连接端子,铝合金发电盘上设有负极连接端子组成。在此处、铝发电性能最好,铜导电性能最好。当铝合金发电盘旋转切割磁力线产生电流,电流流经导电环输入到绝缘母线,由正极连接端子输入到下一个发电盘负极连接端子。
(3)图1中,盘刷导电输出装置3,内有正电极输出装置,和负电极输出装置,是由导电盘21、22(导电盘上设有导电摩擦片)、电刷20及导电刷盘座与连接端子、风扇构成,正电极导电盘21与轴内导电端子连接,负电极导电盘22与轴连接,电刷安装在导电刷盘座上,导电刷盘座由绝缘支架固定在机壳上,导电刷盘座上设有接线端子,风扇有3个、正电极风扇安装在轴头上,负电极风扇和电机风扇安装在负电极导电盘上。当发电机旋转发电时,电流经导电盘、电刷、导电刷盘座及连接端子输出直流电。图4盘刷导电输出装置俯视局部剖面图。
实施例2
如图5所示,(立卧两用式)盘式增磁直流发电机,是在图1卧式盘式增磁直流发电机基础上加以变化,构成(立卧两用式)盘式增磁直流发电机。与图1卧式直流发电机不同的地方有,直流发电机7负极侧安装立式机座10。拖动电动机4安装在直流发电机正极侧。(拖动电动机是分体结构)转子安装在直流发电机转轴上,定子固定在发电机端盖上。盘刷导电输出装置1安装在拖动电动机机壳加长部位上。(直流发电机轴相应加长),正极导电盘与轴内导电端子连接,负极导电盘与轴连接。底部端盖增厚,使底部端盖承重满足使用要求。直流发电机立式机座设有3个检修口9。其它与图1(卧式)盘式增磁直流发电机相同。
实施例3
如图6所示,(立式)盘式增磁直流发电机,是在图5(立卧两用式)盘式增磁直流发电机基础上,去掉卧式机座后。构成(立式)盘式增磁直流发电机。

Claims (9)

  1. 盘式增磁直流发电机其特征在于是由拖动电动机和直流发电机、盘刷导电输出装置构成的纯磁能直流发电机,1)直流发电机;定子;是由永磁磁盘和结构陶瓷绝缘垫圈,与发电盘一层层间隔,在机壳线圈里构成固定永磁磁源,机壳线圈就是增磁线圈,由铝带或铜带或线绕成与机壳相配套的线圈,用绝缘结构陶瓷铸入到机壳内,转子;是由发电盘和结构陶瓷绝缘电盘座,与永磁磁盘一层层间隔,套在无磁性空芯导电金属轴上,轴内有导电端子,在发电机里构成发电盘转子,发电盘组成是由铝合金发电盘,与铜合金导电环连接,导电环与结构陶瓷绝缘母线连接,绝缘母线设有正极连接端子,铝合金发电盘设有负极连接端子,发电盘正极端子与下一个发电盘负极端子连接,组成发电盘串联发电回路,最后1个发电盘正极端子与轴内导电端子连接,轴内导电端子与盘刷导电输出装置连接,输出发电机正极电源,最底部发电盘负极端子与底部无磁性导电金属电盘座连接,无磁性导电金属电盘座与轴连接,轴与盘刷导电输出装置连接,输出直流发电机负极电源,2)拖动电动机在此是分体的结构,转子与发电盘转子同用一根轴,轴承套和定子安装在直流发电机端盖上,3)盘刷导电输出装置;内有正极输出装置和负极输出装置,是由导电盘,导电盘上设有导电磨擦片,电刷和导电刷盘座,风扇组成,安装在直流发电机轴头上,正极与轴内导电端子连接,负极与轴连接,当拖动电动机通电旋转时,发电盘切割相应的磁力线产生电流,电流流经导电环,绝缘母线及正极端子,到下一个发电盘负极端子,发电电流由串联回路输出,经轴内导电端子,与盘刷导电输出装置,输入到机壳线圈输入端子,由机壳线圈输出端子输出直流电,机壳线圈正极电源输出端子和盘刷导电输出装置负极电源输出端子,与用电设备连接,当用电设备用电时,就产生电流,电流通过机壳线圈,机壳线圈就产生磁电势,机壳线圈磁电势加入到直流发电机磁源,增强直流发电机磁源磁场强度,磁通量增大,直流发电机发电功率就增加,这种机壳线圈增磁方式叫、自增,在实际使用中机壳线圈增磁电流与用电设备电流还可以分开,专设增磁线圈和增磁电流,这种增磁方式叫、他增,直流发电机发出来的电可以直接用在用电设备上,在一个直流发电机上有以上两种增磁方式叫、复增,盘式增磁直流发电机上拖动电动机用电,增磁线圈用电,用其他电源上的电,还是用自身发电机发出来的电,都要在电动机前面,和增磁线圈前面,安装控制设备,以调节发电机转数,V=Blu[V],和调节增磁线圈匝数或电流,磁电势=线圈匝数乘以电流(A),双向调节,可以满足各种用电设备需求,4、用发电盘和永磁磁盘发电,机壳线圈增磁,发电机轴和轴内导电端子输出直流电,是盘式增磁直流发电机技术中的关键,盘式增磁直流发电机机型有、立式、卧式、立卧两用式。
  2. 根据权利要求1所述的盘式增磁直流发电机,其特征在于发电盘组成,是由铝合金发电盘,与铜合金导电环连接,导电环与结构陶瓷绝缘母线连接,绝缘母线设有正极连接端子,铝合金发电盘设有负极连接端子。
  3. 根据权利要求1所述的盘式增磁直流发电机,其特征在于永磁磁盘内有圆孔,外圆边中心处凸起。与绝缘垫圈配套使用。
  4. 根据权利要求1所述的盘式增磁直流发电机,其特征在于无磁性空心导电金属轴,轴内有导电端子,轴外侧有4个凸起条形键。
  5. 根据权利要求1所述的盘式增磁直流发电机,其特征在于机壳线圈、在机壳内铸有绝缘线圈。
  6. 根据权利要求1所述的盘式增磁直流发电机,其特征在于轴承套内有深沟轴承和推力轴承,座底有螺丝孔和顶丝孔与直流发电机端盖配套使用,直流发电机端盖外设有轴承套座。
  7. 根据权利要求1所述的盘式增磁直流发电机,其特征在于盘刷导电输出装置内有正电极输出装置,和负电极输出装置,是由导电盘,导电盘上设有导电磨擦片、电刷和导电刷盘座、风扇组成,正极导电盘与轴内导电端子连接,负极导电盘与轴连接,电刷安装在导电刷盘座上,导电刷盘座由绝缘支架固定,导电刷盘座上设有接线端子,风扇有3个、正极风扇固定在轴头上,负极风扇和电机风扇安装在负极导电盘上。
  8. 根据权利要求1所述的盘式增磁直流发电机,其特征在于无磁性导电金属电盘座固定在轴上,并与发电盘导电连接。
  9. 根据权利要求1所述的盘式增磁直流发电机,其特征在于绝缘电盘座固定在轴上并与发电盘绝缘连接。
PCT/CN2016/000177 2015-06-15 2016-03-31 盘式增磁直流发电机 WO2016201949A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2989518A CA2989518A1 (en) 2015-06-15 2016-03-31 Disc type magnetism increasing dc generator
EP16810690.4A EP3309946A4 (en) 2015-06-15 2016-03-31 PLATE-TYPE DC GENERATOR WITH MAGNETISMUSER INCREASE
RU2017141777A RU2017141777A (ru) 2015-06-15 2016-03-31 Дисковый магнитный генератор постоянного тока
JP2017564530A JP2018517390A (ja) 2015-06-15 2016-03-31 円盤式増磁直流発電機
US15/830,012 US10389189B2 (en) 2015-06-15 2017-12-04 Disc-type magnetism-increasing DC generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510324790.3A CN104967282A (zh) 2015-06-15 2015-06-15 盘式增磁直流发电机
CN201510324790.3 2015-06-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/830,012 Continuation US10389189B2 (en) 2015-06-15 2017-12-04 Disc-type magnetism-increasing DC generator

Publications (1)

Publication Number Publication Date
WO2016201949A1 true WO2016201949A1 (zh) 2016-12-22

Family

ID=54221272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000177 WO2016201949A1 (zh) 2015-06-15 2016-03-31 盘式增磁直流发电机

Country Status (7)

Country Link
US (1) US10389189B2 (zh)
EP (1) EP3309946A4 (zh)
JP (1) JP2018517390A (zh)
CN (1) CN104967282A (zh)
CA (1) CA2989518A1 (zh)
RU (1) RU2017141777A (zh)
WO (1) WO2016201949A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104967282A (zh) * 2015-06-15 2015-10-07 徐占魁 盘式增磁直流发电机
CN112599953A (zh) * 2020-12-09 2021-04-02 安徽恒诺机电科技有限公司 一种用于天线架设的汇流环

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023726A (ja) * 1996-07-04 1998-01-23 Matsushita Electric Ind Co Ltd スピンドルモータ
CN101295913A (zh) * 2007-04-23 2008-10-29 徐占魁 盘式增磁直流发电机
CN203313024U (zh) * 2012-09-14 2013-11-27 济南吉美乐电源技术有限公司 增磁升压内滤波电励磁双凸极直流发电机
CN104967282A (zh) * 2015-06-15 2015-10-07 徐占魁 盘式增磁直流发电机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3581820D1 (de) * 1984-03-17 1991-04-04 Isuzu Motors Ltd Generatorvorrichtung.
US5917248A (en) * 1995-01-31 1999-06-29 Denso Corporation System and method for driving electric vehicle
CN101719713A (zh) * 2009-07-06 2010-06-02 袁革平 一种使电能增大的方法
US20110074231A1 (en) * 2009-09-25 2011-03-31 Soderberg Rod F Hybrid and electic vehicles magetic field and electro magnetic field interactice systems
US8723382B2 (en) * 2011-04-19 2014-05-13 Matthew A. Lebenbom Electromagnetic motor-generator unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023726A (ja) * 1996-07-04 1998-01-23 Matsushita Electric Ind Co Ltd スピンドルモータ
CN101295913A (zh) * 2007-04-23 2008-10-29 徐占魁 盘式增磁直流发电机
CN203313024U (zh) * 2012-09-14 2013-11-27 济南吉美乐电源技术有限公司 增磁升压内滤波电励磁双凸极直流发电机
CN104967282A (zh) * 2015-06-15 2015-10-07 徐占魁 盘式增磁直流发电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3309946A4 *

Also Published As

Publication number Publication date
US20180123408A1 (en) 2018-05-03
US10389189B2 (en) 2019-08-20
EP3309946A4 (en) 2019-01-16
RU2017141777A3 (zh) 2019-05-31
EP3309946A1 (en) 2018-04-18
RU2017141777A (ru) 2019-05-31
CA2989518A1 (en) 2016-12-22
JP2018517390A (ja) 2018-06-28
CN104967282A (zh) 2015-10-07

Similar Documents

Publication Publication Date Title
CN102315739B (zh) 一种混合励磁发电机
WO2016201949A1 (zh) 盘式增磁直流发电机
CN102355102A (zh) 电动汽车增程器用盘式双转子发电机
BG109856A (bg) Безчетков алтернатор с ротор с клюнообразни полюси
CN203722458U (zh) 消防车用隐形磁极永磁发电装置
CN106899160A (zh) 超环保的发电机
CN202586544U (zh) 组合磁极式混合励磁发电机
Yu et al. Comparative analysis of AC copper loss with round copper wire and flat copper wire of high-speed stator-PM flux-switching machine
KR20120057531A (ko) 비자성 회전자 이너 아우터 고정자 발전기의 구조
US8159079B2 (en) Environmental energy-saving power generator
JP2011223848A (ja) 連結式磁力発電機
CN202034875U (zh) 一种复合励磁方式的永磁有刷交流同步发电机
Liu et al. Design of a stator-separated axial flux-switching hybrid excitation synchronous machine
CN101295913A (zh) 盘式增磁直流发电机
CN202759304U (zh) 一种不带电压调节器的无刷发电机
CN103532271A (zh) 高效电动发电机
CN211239663U (zh) 一种霍尔高效动力机发电机装置
CN203554099U (zh) 新型发电机转子结构
CN204741387U (zh) 一种双向励磁复合发电机
CN207490724U (zh) 一种励磁发电机
KR20170030219A (ko) 발전장치
CN203482075U (zh) 一种往复式液态金属磁流体发电机用组合式两极永磁磁体
Patil et al. Ceiling Fan into Power Generator
CN204928473U (zh) 设有补速机构的风力发电机组
CN102810920A (zh) 一种不带电压调节器的无刷发电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16810690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017141777

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2017564530

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2989518

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016810690

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017026380

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017026380

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171207