WO2016200291A1 - Способ изготовления керамических фильтрующих элементов - Google Patents

Способ изготовления керамических фильтрующих элементов Download PDF

Info

Publication number
WO2016200291A1
WO2016200291A1 PCT/RU2016/000341 RU2016000341W WO2016200291A1 WO 2016200291 A1 WO2016200291 A1 WO 2016200291A1 RU 2016000341 W RU2016000341 W RU 2016000341W WO 2016200291 A1 WO2016200291 A1 WO 2016200291A1
Authority
WO
WIPO (PCT)
Prior art keywords
borosilicate
layers
extrusion
aqueous suspension
clay component
Prior art date
Application number
PCT/RU2016/000341
Other languages
English (en)
French (fr)
Inventor
Владимир Николаевич МЫНИН
Ирина Сергеевна МАНДАРЖИ
Original Assignee
ООО «ЭкоФиСо»
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ООО «ЭкоФиСо» filed Critical ООО «ЭкоФиСо»
Publication of WO2016200291A1 publication Critical patent/WO2016200291A1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2093Ceramic foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • C04B2111/00801Membranes; Diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • the invention relates to the manufacture of porous ceramic products intended for fine purification of liquids and gases from various substances, for example, suspensions, bacteria, large molecules and other contaminants.
  • a known method of manufacturing porous carbon materials including introducing a blowing agent into the charge, forming blanks and firing, to increase the permeability of materials, the blowing agent is pre-dispersed by dilution with highly dispersed carbon powder during joint vibration grinding-mixing, and then the resulting mixture is introduced into the charge as carbon carbon black is used as a powder, colloidal graphite with a particle size of not more than 0.5 microns is used as carbon powder m, the ratio of pore former - diluent is 1: 1 - 1: 2. (patent RU 2244678, class C01B31 / 00, published January 20, 2005).
  • a known method of manufacturing filter elements with a ceramic active layer on a porous carbon substrate A method of manufacturing a ceramic membrane, characterized by applying to the porous carbon substrate an adhesive-active layer of a suspension, including May. %: metallic silicon 30-40, activator 5-10, binders 4.5-5.5, silicon dioxide, the rest up to 100%, followed by drying and heat treatment, then applying a ceramic active layer to the adhesive-active layer, followed by drying and by sintering, sodium chloride is used as an activator during sintering, phenol-formaldehyde resin in the form of a fine powder is used as a binder (patent RU 2205061, class B01D71 / 02, published 05.27.2003).
  • a known method of manufacturing ceramic filter elements by molding a large-porous substrate by extrusion from a plastic mass containing electrocorundum, a clay component and borosilicate, sequentially applying layers of an aqueous suspension of a mixture of fine-ground substances containing alumina, a clay component and borosilicate, with a sequential application of vacuum from the opposite side side of the deposition of layers, drying and firing of the obtained workpiece (copyright certificate SU 1731762, class ⁇ 04 ⁇ 38 / 00, published on 05/07/1992) .
  • the technical solution is a method for manufacturing ceramic filter elements by molding a porous substrate by extrusion from a plastic mass containing electrocorundum, a clay component and borosilicate, sequentially applying layers of an aqueous suspension of a mixture of finely ground substances containing ⁇ -alumina, a clay component and borosilicate, with the simultaneous application of rarefaction from the side opposite to the side of the deposition of layers, drying and firing of the obtained workpiece, characterized in that the plastic mass is prepared with a clay component content of 10 - 12%, and borosilicate - not more than 4%, the extrusion is carried out horizontally or at an angle of not more than 45 °, in an aqueous suspension of a mixture of finely ground substances, aluminum oxide is used as an alumina, sequentially applied at least three layers of an aqueous suspension with a solid phase content of not more than 2%, and when applying each subsequent layer, the vacuum is increased, and the concentration of the solid phase in
  • the disadvantage of this method is that when applying layers of an aqueous suspension of a mixture of finely ground substances on a substrate, the particles of the mixture are distributed unevenly, which reduces the uniformity of the obtained layers.
  • the technical result achieved by the implementation of the present invention is to improve the quality of the filtering elements and to improve the filtration characteristics due to a narrower distribution of the pores of the substrate and to increase the uniformity of the distribution of applied particles of ⁇ -alumina (corundum) of a narrowly distributed fraction on the surface of the substrate, as well as the possibility of obtaining thin filter elements while reducing rejects and improving the quality of cleaning liquids and gases.
  • the method of manufacturing ceramic filter elements is carried out by molding large-pore substrates by extrusion from a plastic mass containing ⁇ -alumina with particle sizes from 7 to 40 ⁇ m, a clay component and borosilicate, sequentially applying layers of an aqueous suspension of a mixture of finely ground substances containing a-alumina with particle sizes from 0.5 to 1.5 ⁇ m, the clay component and borosilicate with the simultaneous application of rarefaction from the side opposite to the side of the deposition of layers, drying and sintering of the obtained workpiece, while the plastic mass is prepared with a clay component content of 10-12%, and borosilicate is not used less than 4%, the extrusion is carried out in vivo at an angle lying in the range from 0 to 45 °, ⁇ -alumina is used in the aqueous suspension of the mixture, at least 3 layers of the aqueous suspension are successively applied, followed by sintering after each stage of applying the layer, moreover, when
  • the plastic mass is subjected to horizontal extrusion, and the exit angle of the substrate from the press in the form of a tube with a length of 800 - 1200 mm, a diameter of 4 - 10 mm and a wall thickness of 0.5 - 1.5 mm does not exceed 45 ° to the device for receiving substrates in in the form of tubes, which are then dried and sintered at 1200 - 1300 ° C.
  • the substrate in an amount of at least 5 pieces is placed in a device that allows you to seal the ends of the substrate, apply a vacuum and a suspension to obtain layers, respectively, from the outer or inner surface of the substrate.
  • the substrates had a porosity of 45-50% and withstood hydraulic tests with a pressure of 10 MPa when pressure was applied to the outer surface of the tubular elements.
  • a suspension is fed into the device, for example, on the outer surface with a solid phase concentration of 1 - 5%, and a vacuum is created inside the substrate in the range of 0.02 - 0.08 MPa for 2-6 seconds, after which the tubular elements for them drying is maintained in air at a temperature of 18 - 22 ° C for 10 to 20 hours. Then, a layer of finely ground components, thus deposited on the surface of the tubular elements, is sintered at a temperature of 1200 - 1300 ° C.
  • the second and third layers are applied similarly to the first using the same operations of applying the layer and drying it, reducing the concentration of the suspension by 20-50% with each subsequent layer.
  • the proposed method allows to improve the filtering properties of the elements and filtering performance due to a narrower pore distribution of the substrate (2.5 - 3.5 ⁇ m), achieving uniform distribution of particles on the surface of the substrate and improving the uniformity of the layers.
  • Obtained by horizontal extrusion of the substrate of the filter elements have a smaller wall thickness, in particular, tubular filter elements with an outer diameter of 4-10 mm have a thickness of 0.5-1.5 mm (instead of 1.75-2 mm according to the prototype), which ultimately increases the number of products obtained from a unit mass of raw materials, while marriage reduced to a value of not more than 1%, and also the operational characteristics of the products are improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Filtering Materials (AREA)

Abstract

Изобретение относится к области изготовления изделий из пористой керамики, предназначенной для тонкой очистки жидкостей и газов от различных веществ, например взвесей, бактерий, крупных молекул и других загрязнений. Изобретение направлено на достижение технического результата, заключающегося в повышении качества фильтрующих элементов и улучшении характеристик фильтрации за счет более узкого распределения пор подложки и увеличения равномерности распределения наносимых частиц. Указанный технический результат достигается за счет того, что способ изготовления керамических фильтрующих элементов осуществляют путем формования крупнопористой подложки экструзией из пластичной массы, содержащей а-оксид алюминия с размерами частиц от 7 до 40 мкм, глинистый компонент и боросиликат, последовательного нанесения слоев водной суспензии смеси тонкомолотых веществ, содержащей α-оксид алюминия с размерами частиц от 0,5 до 1,5 мкм, глинистый компонент и боросиликат с одновременным приложением разрежения со стороны, противоположной стороне нанесения слоев, сушки и спекания полученной заготовки, при этом пластичную массу готовят с содержанием глинистого компонента 10 - 12%, а боросиликата - не более 4%, экструзию осуществляют в естественных условиях под углом.

Description

СПОСОБ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКИХ ФИЛЬТРУЮЩИХ ЭЛЕМЕНТОВ
Область техники
Изобретение относится к области изготовления изделий из пористой керамики, предназначенной для тонкой очистки жидкостей и газов от различных веществ, например взвесей, бактерий, крупных молекул и других загрязнений.
Предшествующий уровень техники
Известен способ изготовления пористых углеродных материалов, включающий введение в шихту порообразователя, формование заготовок и обжиг, для повышения проницаемости материалов, порообразователь предварительно диспергируют путем разбавления высокодисперсным углеродистым порошком в процессе совместного вибрационного размола-смешения, а затем полученную смесь вводят в шихту, в качестве углеродистого порошка используют технический углерод, в качестве углеродистого порошка используют коллоидный графит с размером частиц не более 0,5 мкм, отношение порообразователь - разбавитель составляет 1:1 - 1:2. (патент RU 2244678, кл.С01В31/00, опубликован 20.01.2005).
Известен способ изготовления фильтрующих элементов с керамическим активным слоем на пористой углеродной подложке. Способ изготовления керамической мембраны, характеризующийся нанесением на пористую углеродную подложку адгезионно- активного слоя суспензии, включающей, мае. %: кремний металлический 30 - 40, активатор 5 - 10, связующие 4,5 - 5,5, двуокись кремния, остальное до 100%, с последующей сушкой и термообработкой, затем нанесением на адгезионно-активный слой керамически активного слоя с последующей сушкой и спеканием, в качестве активатора при спекании используют хлорид натрия, в качестве связующего используют фенолформальдегидную смолу в виде порошка тонкого помола (патент RU 2205061, кл. B01D71/02, опубликован 27.05.2003).
Известен способ изготовления керамических фильтрующих элементов путем формования крупнопористой подложки экструзией из пластичной массы, содержащей электрокорунд, глинистый компонент и боросиликат, последовательного нанесения слоев из водной суспензии смеси тонкомолотых веществ, содержащей оксид алюминия, глинистый компонент и боросиликат, с последовательным приложением разряжения со стороны, противоположной стороне нанесения слоев, сушки и обжига полученной заготовки (авторское свидетельство SU 1731762, кл.С04В38/00, опубликовано 07.05.1992). Известные способы не позволяют получать крупнопористые подложки с узким распределением пор и тонкостенные фильтрующие элементы, например, трубчатые, с толщиной стенок менее 1 мм. При нанесении слоев водной суспензии смеси тонкомолотых веществ на подложку частицы смеси распределяются неравномерно, что снижает однородность получаемых слоев (промежуточного и фильтрующего). Это приводит к браку части изделий и низкой степени очистки от загрязнений.
Наиболее близким к заявленному изобретению техническим решением является способ изготовления керамических фильтрующих элементов путем формования крупнопористой подложки экструзией из пластичной массы, содержащей электрокорунд, глинистый компонент и боросиликат, последовательного нанесения слоев водной суспензии смеси тонкомолотых веществ, содержащей α-оксид алюминия, глинистый компонент и боросиликат, с одновременным приложением разрежения со стороны, противоположной стороне нанесения слоев, сушки и обжига полученной заготовки, отличающийся тем, что пластичную массу готовят с содержанием глинистого компонента 10 - 12%, а боросиликата - не более 4%, экструзию осуществляют горизонтально или под углом не более 45°, в водной суспензии смеси тонкомолотых веществ в качестве оксида алюминия используют электрокорунд, последовательно наносят не менее трех слоев водной суспензии с содержанием в ней твердой фазы не более 2%, причем при нанесении каждого последующего слоя разрежение увеличивают, а концентрацию твердой фазы в суспензии уменьшают (заявка RU 2009110756, кл.С04В38/00, опубликована 27.09.2010).
Недостаток данного способа заключается в том, что при нанесении слоев водной суспензии смеси тонкомолотых веществ на подложку частицы смеси распределяются неравномерно, что снижает однородность получаемых слоев.
Раскрытие изобретения
Техническим результатом, достигаемым при реализации настоящего изобретения, является повышение качества фильтрующих элементов и улучшение характеристик фильтрации за счет более узкого распределения пор подложки и увеличения равномерности распределения наносимых частиц из α-оксида алюминия (корунда) узкораспределенной фракции на поверхности подложки, а также возможность получения тонких фильтрующих элементов с одновременным снижением брака и повышения качества очистки жидкостей и газов.
Технический результат достигается за счет того, что способ изготовления керамических фильтрующих элементов осуществляют путем формования крупнопористой подложки экструзией из пластичной массы, содержащей α-оксид алюминия с размерами частиц от 7 до 40 мкм, глинистый компонент и боросиликат, последовательного нанесения слоев водной суспензии смеси тонкомолотых веществ, содержащей а-оксид алюминия с размерами частиц от 0,5 до 1,5 мкм, глинистый компонент и боросиликат с одновременным приложением разрежения со стороны, противоположной стороне нанесения слоев, сушки и спекания полученной заготовки, при этом пластичную массу готовят с содержанием глинистого компонента 10 - 12%, а боросиликата - не более 4%, экструзию осуществляют в естественных условиях под углом, лежащим в пределах от 0 до 45°, в водной суспензии смеси используют α-оксид алюминия, последовательно наносят не менее 3-х слоев водной суспензии с последующим спеканием после каждой стадии нанесения слоя, причем при нанесении каждого последующего слоя концентрацию твердой фазы суспензии сокращают на 20 - 50%.
Лучший вариант осуществления изобретения
Пример 1.
В массу из порошка электрокорунда вводят 10 - 12% глинистого компонента и не более 4% боросиликата и перемешивают в течение 30 - 60 минут. После вызревания и гомогенизации пластическую массу подвергают горизонтальной экструзии, причем угол выхода подложки из пресса в виде трубки длиной 800 - 1200 мм, диаметром 4 - 10мм и толщиной стенки 0,5 - 1,5 мм не превышает 45° к устройству для приемки подложек в виде трубок, которые после этого сушат и при 1200 - 1300°С спекают.
Подложку (трубчатые элементы) в количестве не менее 5 штук помещают в устройство, которое позволяет герметизировать торцы подложки, подавать разряжение и суспензию для получения слоев, соответственно с наружной или внутренней поверхности подложки. Подложки имели пористость 45 - 50% и выдерживали гидравлические испытания давлением 10 МПа при подаче давления на наружную поверхность трубчатых элементов.
После закрепления подложки в устройство подают суспензию, например, на наружную поверхность с концентрацией твердой фазы 1 - 5%, а внутри подложки создают вакуум в пределах 0,02 - 0,08 МПа в течение 2-6 секунд, после чего трубчатые элементы для их сушки выдерживают на воздухе при температуре 18 - 22°С в течение 10 - 20 часов. Затем слой тонкомолотых компонентов, нанесенный таким образом на поверхность трубчатых элементов, спекают при температуре 1200 - 1300°С. Второй и третий слой наносят аналогично первому с использованием тех же операций нанесения слоя и его сушки, уменьшая концентрацию суспензии на 20 - 50% с каждым последующим слоем.
Таблица 1
Характеристики фильтрующих элементов
Figure imgf000006_0001
Предложенный способ позволяет улучшить фильтрующие свойства элементов и эксплуатационные характеристики фильтрации за счет более узкого распределения пор подложки (2,5 - 3,5 мкм), достижения равномерности распределения частиц на поверхности подложки и улучшения однородности слоев. Получаемые горизонтальной экструзией подложки фильтрующих элементов имеют меньшую толщину стенки, в частности, трубчатые фильтрующие элементы с наружным диаметром 4 - 10 мм имеют толщину 0,5 - 1,5 мм (вместо 1,75 - 2 мм по прототипу), что в конечном итоге увеличивает количество изделий, получаемых из единицы массы сырья, при этом брак снижается до величины не более 1%, а также улучшаются эксплуатационные характеристики изделий.
Это достигается тем, что в способе изготовления керамических элементов путем формования крупнопористой подложки экструзией из пластичной массы, содержащей а- оксид алюминия с размерами частиц от 7 до 40 мкм, глинистый компонент и боросиликат, последовательного нанесения слоев водной суспензии смеси тонкомолотых веществ, содержащей α-оксид алюминия с размерами частиц от 0,5 до 1,5 мкм, глинистый компонент и боросиликат, с одновременным приложением разрежения со стороны, противоположной стороне нанесения слоев, сушки и обжига полученной заготовки, пластичную массу готовят с содержанием глинистого компонента 10-12%, а боросиликата - не более 4%, экструзию осуществляют без вакуумирования, горизонтально или под углом не более 45°, в водной суспензии смеси тонкомолотых веществ используют а-оксид алюминия, последовательно наносят не менее трех слоев водной суспензии с содержанием в ней твердой фазы не более 2%, причем при нанесении каждого последующего слоя концентрацию твердой фазы суспензии сокращают на 20 - 50%.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
Способ изготовления керамических фильтрующих элементов путем формования крупнопористой подложки экструзией из пластичной массы, содержащей а-оксид алюминия с размерами частиц от 7 до 40 мкм, глинистый компонент и боросиликат, последовательного нанесения слоев водной суспензии смеси тонкомолотых веществ, содержащей α-оксид алюминия с размерами частиц от 0,5 до 1,5 мкм, глинистый компонент и боросиликат с одновременным приложением разрежения со стороны, противоположной стороне нанесения слоев, сушки и спекания полученной заготовки, при этом пластичную массу готовят с содержанием глинистого компонента 10 - 12%, а боросиликата - не более 4%, экструзию осуществляют в естественных условиях под углом, лежащим в пределах от 0 до 45°, в водной суспензии смеси используют а-оксид алюминия, последовательно наносят не менее 3-х слоев водной суспензии с последующим спеканием после каждой стадии нанесения слоя, причем при нанесении каждого последующего слоя концентрацию твердой фазы суспензии сокращают на 20 - 50%.
PCT/RU2016/000341 2015-06-08 2016-06-07 Способ изготовления керамических фильтрующих элементов WO2016200291A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2015121782A RU2015121782A (ru) 2015-06-08 2015-06-08 Способ изготовления керамических фильтрующих элементов
RU2015121782 2015-06-08

Publications (1)

Publication Number Publication Date
WO2016200291A1 true WO2016200291A1 (ru) 2016-12-15

Family

ID=56889187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2016/000341 WO2016200291A1 (ru) 2015-06-08 2016-06-07 Способ изготовления керамических фильтрующих элементов

Country Status (2)

Country Link
RU (1) RU2015121782A (ru)
WO (1) WO2016200291A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111729357A (zh) * 2020-07-13 2020-10-02 黄河勘测规划设计研究院有限公司 搅拌式悬浮过滤系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1731762A1 (ru) 1989-06-01 1992-05-07 Государственный научно-исследовательский институт строительной керамики Способ изготовлени керамических фильтрующих элементов
RU2205061C1 (ru) 2002-04-11 2003-05-27 Терпугов Григорий Валентинович Способ изготовления фильтрующих элементов с керамическим активным слоем на пористой углеродной подложке
RU2244678C2 (ru) 2003-02-13 2005-01-20 Терпугов Григорий Валентинович Способ изготовления углеродных пористых материалов
US6978901B1 (en) * 1998-12-14 2005-12-27 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Ceramic multilayer filters and method for producing the same
RU2009110756A (ru) 2009-03-25 2010-09-27 Григорий Валентинович Терпугов (RU) Способ изготовления керамических фильтрующих элементов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1731762A1 (ru) 1989-06-01 1992-05-07 Государственный научно-исследовательский институт строительной керамики Способ изготовлени керамических фильтрующих элементов
US6978901B1 (en) * 1998-12-14 2005-12-27 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Ceramic multilayer filters and method for producing the same
RU2205061C1 (ru) 2002-04-11 2003-05-27 Терпугов Григорий Валентинович Способ изготовления фильтрующих элементов с керамическим активным слоем на пористой углеродной подложке
RU2244678C2 (ru) 2003-02-13 2005-01-20 Терпугов Григорий Валентинович Способ изготовления углеродных пористых материалов
RU2009110756A (ru) 2009-03-25 2010-09-27 Григорий Валентинович Терпугов (RU) Способ изготовления керамических фильтрующих элементов

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BENITO J M ET AL: "Preparation and characterization of tubular ceramic membranes for treatment of oil emulsions", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, ELSEVIER SCIENCE PUBLISHERS, BARKING, ESSEX, GB, vol. 25, no. 11, July 2005 (2005-07-01), pages 1895 - 1903, XP027618614, ISSN: 0955-2219, [retrieved on 20050701] *
T. P. SALIKHOV ET AL: "Asymmetric Oxide-Ceramic Membranes Based on Aluminosilicates", GLASS AND CERAMICS., vol. 71, no. 7-8, November 2014 (2014-11-01), US, pages 281 - 285, XP055316704, ISSN: 0361-7610, DOI: 10.1007/s10717-014-9669-z *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111729357A (zh) * 2020-07-13 2020-10-02 黄河勘测规划设计研究院有限公司 搅拌式悬浮过滤系统

Also Published As

Publication number Publication date
RU2015121782A (ru) 2016-12-27

Similar Documents

Publication Publication Date Title
JP5302957B2 (ja) 特定の気孔形成剤を用いて多孔質支持体に無機多孔質被膜を形成する方法
US20190202747A1 (en) Inorganic membrane filter and methods thereof
Lindqvist et al. Preparation of alumina membranes by tape casting and dip coating
JP2010528835A5 (ru)
WO2015083628A1 (ja) セラミックフィルタ
CN108298947B (zh) 一种凹凸棒石陶瓷膜支撑体、制备方法以及含硼烧结助剂的用途
JP5747127B2 (ja) アルミナ多孔質体およびその製造方法
US10987637B2 (en) DDR-type zeolite seed crystal and method for manufacturing DDR-type zeolite membrane
WO2015018420A1 (en) A method of producing a ceramic filter membrane, a method of improving a ceramic filter membrane and the ceramic filter membrane obtained by the method
CN106102879B (zh) 整体型分离膜结构体及整体型分离膜结构体的制造方法
Vida-Simiti et al. Characterization of gradual porous ceramic structures obtained by powder sedimentation
US20110293917A1 (en) Porous inorganic membranes and method of manufacture
WO2016200291A1 (ru) Способ изготовления керамических фильтрующих элементов
EP1070534A1 (en) Method for manufacturing filter having ceramic porous film as separating film
CN109070017B (zh) 陶瓷膜过滤器及其制造方法
KR102230182B1 (ko) 테이프 캐스팅 방식을 적용한 평판형 세라믹 분리막 제조방법
RU2239614C1 (ru) Способ изготовления керамических фильтрующих элементов
Ha et al. Effects of preparation conditions on the membrane properties of alumina-coated silicon carbide supports
JP6767995B2 (ja) 分離膜の補修方法及び分離膜構造体の製造方法
CN101175705A (zh) 制造耐磨的反应结合的陶瓷滤膜的方法
JP7191861B2 (ja) 一体式メンブレンろ過構造体
US11628404B2 (en) Monolithic membrane filtration structure
MENG et al. EFFECTS OF DIFFERENT PREPARATION METHODS FOR α-Al 2 O 3 ZEOLITE MEMBRANE SUPPORT ON ITS MORPHOLOGY AND PERFORMANCE.
US11229886B2 (en) ERI-structure zeolite membrane and membrane structure
RU2654042C1 (ru) Способ изготовления керамической мембраны

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16763111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16763111

Country of ref document: EP

Kind code of ref document: A1