WO2016199979A1 - 가변 두께를 갖는 주름형 완충부재 및 이의 성형방법 - Google Patents

가변 두께를 갖는 주름형 완충부재 및 이의 성형방법 Download PDF

Info

Publication number
WO2016199979A1
WO2016199979A1 PCT/KR2015/009496 KR2015009496W WO2016199979A1 WO 2016199979 A1 WO2016199979 A1 WO 2016199979A1 KR 2015009496 W KR2015009496 W KR 2015009496W WO 2016199979 A1 WO2016199979 A1 WO 2016199979A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
plate
thickness
corrugated
pleated
Prior art date
Application number
PCT/KR2015/009496
Other languages
English (en)
French (fr)
Inventor
박일경
임주섭
김성준
김태욱
Original Assignee
한국항공우주연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150120978A external-priority patent/KR20160144872A/ko
Application filed by 한국항공우주연구원 filed Critical 한국항공우주연구원
Publication of WO2016199979A1 publication Critical patent/WO2016199979A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like

Definitions

  • the present invention relates to a pleated cushioning member and a method for forming the same to be applied to automobiles or aircrafts for absorbing collision accident collision energy.
  • the present invention relates to a pleated cushioning member having a variable thickness and a molding method thereof that can double the buffering effect without thickening the overall thickness through an efficient design that partially thickens only a section vulnerable to buckling.
  • a shock absorbing member for example, a bumper
  • a shock absorbing member for example, a bumper
  • the application of composite materials having excellent mechanical properties per weight is increasing.
  • the collision energy absorption using the laminate of the composite material uses the compression pulverization phenomenon of the laminate, and the breakage of fibers and substrates and the separation of layers in the laminate occur simultaneously to absorb energy.
  • the most widely used method of complex collision energy absorption structure is tube type and laminated plate type of corrugated cross section.
  • the tube type is a collision energy absorption-only member mainly applied to the front of the car, etc.
  • the corrugated laminated plate type can be applied in various forms such as half circle, sinusoidal, trapezoidal shape, etc. It is used as a load member to support structural load during normal aircraft movement, and plays a role of absorbing collision energy in crash accidents such as emergency landing.
  • the corrugated cross-sectional shape and thickness of the corrugated laminate type should be designed so that the weight can be minimized at the same time without bucking before the crushing of the composite laminate occurs. Larger cross-section secondary moment improves buckling stability. To this end, wrinkles should be applied as much as possible, and as the size increases, thickness is proportionally increased in consideration of local buckling.
  • the thickness of the cushioning member is thickened to ensure buckling stability, the weight and the compression crushing load are increased, thereby increasing the impact load transmitted to the occupant.
  • the crushing load may be intentionally reduced in order to satisfy the criterion of the occupant transmission impact load, which causes a problem that the energy absorption performance is degraded per weight.
  • An object of the present invention is configured by laminating a corrugated plate made of a composite material, but by thickening the section in which the curvature of buckling stiffness changes is thicker than the thickness of other sections, the buffer effect can be doubled without increasing the overall thickness. It is to provide a pleated cushioning member having a variable thickness.
  • Another object of the present invention to provide a molding method of the pleated cushioning member having a variable thickness.
  • One aspect of the present invention includes a corrugated plate having a corrugated surface formed in a direction perpendicular to the collision energy acting direction acting on the collision energy acting surface, wherein the corrugated plate has a thicker buckling section than the other section.
  • a pleated cushioning member having a variable thickness is provided.
  • the corrugated plate may further include a core plate having a thicker buckling section than the other section; A first side plate laminated on one side of the corrugated surface of the core plate in a shape; And a second side plate laminated in conformity with the other corrugated surface of the core plate.
  • the buckling weak section of the corrugated plate may be a curvature inflection point of the corrugated line.
  • the core plate has the thickest section of the weak buckling section, the thinnest section of the section located farthest from the buckling section, the thickness between the thickest section and the thinnest section, the thick It may be configured to gradually become thinner from the section to the thin section.
  • the thickness control of the core plate may be determined by the number of laminated core plates laminated further on the base core plate having a basic thickness.
  • the base core plate and the laminated core plate may be made of a fiber reinforced composite material.
  • the laminated core plate when the laminated core plate is laminated, the laminated core plate may be laminated so that the fiber direction and the collision energy action direction coincide.
  • first and second side plates may be made of a fiber reinforced composite material.
  • first and second side plates may be formed of a quasi-isotropy composite laminate pattern.
  • the wrinkle shape of the corrugated plate may be a semi-circular or sinusoidal waveform.
  • the wrinkle shape of the corrugated plate may be formed in a minimum of 1.5 cycles.
  • the upper and lower molds having the same thickness as the maximum thickness among the thicknesses of the pleating plate constituting the pleat flat cushioning member are manufactured, and
  • the present invention described above improves the existing wrinkle-type cushioning member which has made the wrinkle radius large and the thickness uniformly thick, while partially reducing the wrinkle radius while partially improving only the weak part of the buckling. It can be usefully applied to small aircraft having a light weight and limited weight.
  • FIG. 1 is a perspective view of a pleated cushioning member having a variable thickness according to the present invention
  • FIG. 2 is a cross-sectional view taken along line II of FIG. 1.
  • Figure 3 is an exemplary view showing a minimum cycle shape of the pleated cushioning member having a variable thickness in accordance with the present invention
  • Figure 4a to 4d is a laminated configuration for each portion of the corrugated plate according to the present invention
  • 5A is a configuration diagram in which fiber reinforced composite materials are laminated in one direction
  • 5B is a configuration diagram in which the fiber-reinforced composite material is quasi-isotropic laminated
  • 5C is a configuration diagram in which fiber reinforced composite materials are orthogonally laminated
  • Figure 6a is a block diagram of a mold for forming a corrugated plate according to the present invention
  • 6b is a state diagram before molding
  • 6C is a state diagram after molding
  • FIG. 1 is a perspective view of a pleated cushioning member having a variable thickness according to the present invention
  • Figure 2 is a cross-sectional view taken along the line I-I of FIG.
  • a pleated cushioning member (hereinafter, abbreviated as a 'buffer member') 100 having a variable thickness according to the present invention is a pair of collision energy acting surface 110, the collision energy is applied And a corrugated plate 120 disposed between the collision energy acting surface 110 and having wrinkles formed in a direction perpendicular to the collision energy acting direction P.
  • a 'buffer member' a pleated cushioning member having a variable thickness according to the present invention
  • the corrugated plate 120 has a core plate 121 formed thicker than the thickness of the other section of the buckling weak section (E), and the first side plate to be laminated on one side of the corrugated surface of the core plate 121 And a second side plate 123 which is stacked to conform to the other corrugated surface of the core plate 121.
  • the corrugated cross-sectional shape of the corrugated plate 120 may be semicircular or sinusoidal, as shown in FIGS. 2 and 3.
  • the cycle of the corrugated cross-sectional shape is determined according to the width b of the corrugated plate 120, but is preferably designed to have a minimum 1.5 cycle period. Experimental results showed that the best anti-buckling characteristics were obtained when the cross-sectional shape was 1.5 cycles.
  • the core plate 121 and the first and second side plates 123 constituting the corrugated plate 120 is made of a fiber reinforced composite material (fibrous composite). Fiber-reinforced composites have the advantages of being hard, lightweight, and sometimes stronger than steel, which can be useful for making light vehicles.
  • the corrugated plate 120 thickens the section where the curvature of the local buckling stiffness is the weakest change, that is, the section where the center of curvature of the semicircle changes compared to other sections, thereby preventing efficient buckling You have a structure.
  • variable (adjustment) of the thickness of the corrugated plate 120 may be implemented by varying the thickness of the core plate 121.
  • the section D which is the thickest part as shown in FIG. 4A, may be configured by further stacking the core plate 121, for example, by further stacking three stacked core plates 121b on the base core plate 121a, and FIG. 4B.
  • the C section two laminated core plates 121b may be additionally stacked on the base core plate 121a, and as shown in FIG. 4C, one section core is laminated on the base core plate 121a.
  • the plate 121b may be further laminated, and as shown in FIG. 4D, the section A may be formed of only the base core plate 121a.
  • the buckling weak section E of the core plate 121 is thickest, the section farthest from the buckling weak section is thinnest, and the section between the thickest section and the thinnest section goes from the thick section to the thin section. It is gradually made thinner.
  • the laminated core plate 121a is laminated in a fiber direction so as to coincide with the collision energy action direction P, and the collision energy of the core plate 121 is laminated.
  • the corresponding strength with respect to the direction of action (P) was enhanced.
  • first and second side plates 122 and 123 preferably apply a quasi-isotropy composite laminate pattern to minimize the change in the absorption performance of the collision energy according to the collision speed.
  • the fiber-reinforced composite material has all fibers arranged in a certain direction, and such laminated composite materials can be designed such that the fibers are arranged in different directions.
  • 5A to 5C are designed so that the fibers are stacked in a 0 ° 90 ° ⁇ 45 ° direction by stacking thin unidirectional composite sheets.
  • Laminates, called laminas are stacked on a regular basis to create laminated composites. If the fiber is only in the 0 ° direction (one direction lamination) as in FIG. 5A and in the 90 ° direction (orthogonal lamination) as in FIG. 5C, the strength of the composite material in these directions is high, but such composite material is low in shear strength. In order to improve the shear deformation resistance, it should be stacked in the direction of ⁇ 45 ° as shown in FIG. 5B. This is called a quasi-isotropic laminated pattern.
  • Figure 6a is a block diagram of a mold for molding a corrugated plate according to the present invention
  • Figure 6b is a state diagram before molding
  • Figure 6c is a state diagram after molding.
  • the mold 200 for molding the buffer member according to the present invention is composed of the upper mold 210 and the lower mold 220, the design shape of the mold as shown in Figure 6b the corrugated plate 120 It is designed to have the same interval as the maximum cross-sectional thickness of

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Dampers (AREA)

Abstract

가변두께를 갖는 주름형 완충부재가 개시되어 있다. 개시된 가변두께를 갖는 주름형 완충부재는 충돌에너지 작용면에 작용하는 충돌에너지 작용방향의 직각방향으로 주름면이 형성된 주름판을 포함하되, 상기 주름판은 좌굴 취약구간의 두께가 여타구간의 두께에 비해 두껍게 구성된 것을 특징으로 한다.

Description

가변 두께를 갖는 주름형 완충부재 및 이의 성형방법
본 발명은 자동차나 항공기 등에 적용되어 충돌 사고 충돌에너지를 흡수하기 위한 주름형 완충부재 및 이의 성형방법에 관한 것이다.
더 상세하게는 좌굴에 취약한 구간만을 부분적으로 두껍게 하는 효율적 설계를 통해 두께를 전체적으로 두껍게 하지 않으면서도 완충효과를 배가시킬 수 있는 가변 두께를 갖는 주름형 완충부재 및 이의 성형방법에 관한 것이다.
일반적으로, 항공기나 자동차의 충돌사고 시, 탑승자의 생존율을 향상시키기 위해 충돌에너지를 흡수하기 위한 완충부재(예컨대, 범퍼)가 적용되고 있다. 특히, 최근 친환경 고효율 교통시스템에 대한 요구로 중량당 기계적 특성이 우수한 복합재료의 적용이 증가 되는 추세에 있다.
복합재료의 적층판을 이용한 충돌에너지 흡수는 적층판의 압축분쇄 현상을 이용한 것으로, 적층판 내의 섬유와 기질의 파손 그리고 층간 분리 파손 등이 동시에 발생하여 에너지를 흡수하게 된다.
복합 충돌에너지 흡수구조로 가장 널리 적용되고 있는 방식으로는 튜브타입과 주름 단면의 적층판 타입이 있다. 상기 튜브타입은 충돌에너지 흡수 전용부재로 자동차 전면부 등에 주로 적용되고, 주름진 적층판 타입은 반원형(half circle), 정현파형(sine), 사다리꼴형 등 다양한 형태로 적용이 가능하며, 항공기 동체 하부 구조에 적용되어 항공기 정상 운동시 구조 하중을 지지하는 하중부재로 활용되고, 비상착륙 등의 충돌사고시 충돌에너지를 흡수하는 역할을 담당한다.
상기한 주름진 적층판 타입의 주름진 단면 형상 및 두께는 복합재 적층판의 압축분쇄(crushing)가 발생하기 전 좌굴(bucking)이 발생하지 않으면서 동시에 중량이 최소화될 수 있도록 설계되어야 하나, 실제로는 주름진 적층판 타입의 단면 2차 모멘트가 클수록 좌굴 안정성이 향상되며 이를 위해 최대한 주름을 크게 적용해야 하고, 크기가 커질수록 국부적으로 좌굴이 방지됨을 감안하여 두께도 비례적으로 증가 되게 설계되고 있다.
이와 같이, 좌굴 안정성 보장을 위해 완충부재의 두께가 두꺼워지면 중량 및 압축분쇄 하중이 증가하게 되어 탑승자에게 전달되는 충격하중이 증가 되는 요인이 되고 있다.
이를 해소하기 위해, 탑승자 전달 충격하중의 기준 만족을 위해 의도적으로 압축분쇄 하중을 감소시키기도 하는데, 이는 중량당, 에너지 흡수 성능이 저하되는 문제점이 따른다.
또한, 완충부재를 적용할 수 있는 항공기 및 자동차의 중량이 제한되어 있어서 종래의 두껍고 무거운 완충부재를 소형 항공기에 적용하기에는 무리가 있었다.
본 발명의 목적은, 복합재료로 된 주름판을 적층하여 구성하되, 좌굴강성이 취약한 곡률이 변화하는 구간을 기타 구간의 두께에 비해 두껍게 함으로써 전체적으로 두께를 두껍게 하지 않으면서도 완충효과를 배가시킬 수 있는 가변두께를 갖는 주름형 완충부재를 제공함에 있다.
또한, 본 발명의 다른 목적은 가변두께를 갖는 주름형 완충부재의 성형방법을 제공함에 있다.
본 발명의 일 양태는, 충돌에너지 작용면에 작용하는 충돌에너지 작용방향의 직각방향으로 주름면이 형성된 주름판을 포함하되, 상기 주름판은 좌굴 취약구간의 두께가 여타구간의 두께에 비해 두껍게 구성된 가변두께를 갖는 주름형 완충부재가 제공된다.
또한, 상기 주름판은, 좌굴 취약구간의 두께가 여타구간의 두께에 비해 두껍게 구성된 코어판; 상기 코어판의 일측 주름면에 형합되게 적층되는 제1 사이드 판; 및 상기 코어판의 타측 주름면에 형합되게 적층되는 제2 사이드 판;을 포함할 수 있다.
또한, 상기 주름판의 좌굴 취약구간은, 주름선의 곡률 변곡점일 수 있다.
또한, 상기 코어판은 좌굴 취약구간의 두께가 가장 두껍고, 상기 좌굴 취약구간으로부터 가장 멀리 위치하는 구간의 두께가 가장 얇게 구성되되, 두께가 가장 두꺼운 구간과 가장 얇은 구간의 사이구간의 두께는, 두꺼운 구간으로부터 얇은 구간으로 갈수록 점차적으로 얇아지게 구성될 수 있다.
또한, 상기 코어판의 두께 조절은 기본 두께를 갖는 베이스 코어판에 추가 적층되는 적층 코어판의 적층 개수에 의해 결정될 수 있다.
또한, 상기 베이스 코어판 및 적층 코어판은 섬유강화복합재료로 될 수 있다.
또한, 상기 적층 코어판의 적층 시, 적층 코어판의 섬유방향과 충돌에너지 작용방향이 일치되도록 적층될 수 있다.
또한, 상기 제1, 2 사이드 판은 섬유강화복합재료로 될 수 있다.
또한, 상기 제1, 2 사이드 판은 준등방성(Quasi-isotropy) 복합재 적층패턴으로 될 수 있다.
또한, 상기 주름판의 주름모양은 반원형 또는 정현파형으로 될 수 있다.
또한, 상기 주름판의 주름모양은 최소 1.5 사이클 주기로 형성될 수 있다.
본 발명의 다른 양태는 상기한 가변두께를 갖는 주름형 완충부재를 성형함에 있어서, 상기 주름평 완충부재를 구성하는 주름판의 두께 중 최대 두께와 동일한 간격을 갖는 상,하부 몰드를 제작하고, 상기 상,하부 몰드 사이에 두께 가변이 완료된 주름판을 삽입한 후, 상,하부 몰드 일측의 사이간격이 주름판 두께 중 최소 두께와 동일한 간격이 될 때까지 압축하여 성형하는 가변두께를 갖는 주름형 완충부재의 성형방법이 제공된다.
이상의 본 발명은, 주름반경을 크게 하고 두께를 일률적으로 두껍게 하였던 기존의 주름형 완충부재를, 상대적으로 주름반경을 작게 하면서도 좌굴 취약부분만 부분적으로 두껍게 개선함으로써 기존과 대등한 좌굴 안정성을 보이면서도 경제적이고, 경량이어서 중량이 제한적인 소형 항공기 등에 유용하게 적용할 수 있다.
도 1은 본 발명에 따른 가변 두께를 갖는 주름형 완충부재의 사시도
도 2는 도 1의 Ⅰ-Ⅰ선 단면도
도 3은 본 발명에 따른 가변두께를 갖는 주름형 완충부재의 최소 사이클 형상을 나타낸 일 예시도
도 4a 내지 4d는 본 발명에 따른 주름판의 각 부위별 적층 구성도
도 5a는 섬유강화 복합재료가 일방향 적층된 구성도
도 5b는 섬유강화 복합재료가 준등방성 적층된 구성도
도 5c는 섬유강화 복합재료가 직교 적층된 구성도
도 6a는 본 발명에 따른 주름판을 성형하기 위한 몰드의 구성도
도 6b는 몰딩 전 상태도
도 6c는 몰딩 후 상태도
여기서 사용되는 전문 용어는 단지 특정 실시 예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는 "의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
이하, 본 발명의 실시예를 설명한다.
첨부된 도 1은 본 발명에 따른 가변 두께를 갖는 주름형 완충부재의 사시도이고, 도 2는 도 1의 Ⅰ-Ⅰ선 단면도이다.
도 1 및 2를 참고하면, 본 발명에 따른 가변 두께를 갖는 주름형 완충부재(이하, '완충부재'라 약칭함)(100)는 충돌에너지가 작용되는 한 쌍의 충돌에너지 작용면(110) 및 상기 충돌에너지 작용면(110) 사이에 배치되며, 충돌에너지 작용방향(P)과 직각방향으로 주름이 형성된 주름판(120)으로 구성된다.
상기 주름판(120)은 좌굴 취약구간(E)의 두께가 여타 구간의 두께에 비해 두껍게 구성된 코어판(121)과, 상기 코어판(121)의 일측 주름면에 형합되게 적층되는 제1 사이드 판(122)과, 상기 코어판(121)의 타측 주름면에 형합되게 적층되는 제2 사이드 판(123)으로 구성된다.
상기 주름판(120)의 주름 단면 형상은 도 2 및 도 3에서와 같이, 반원형 또는 정현파형으로 될 수 있다.
또한, 이러한 주름 단면 형상의 사이클은 주름판(120)의 폭(b)에 따라 결정되지만, 최소 1.5 사이클 주기를 갖도록 설계되는 것이 바람직하다. 실험결과, 주름 단면 형상이 1.5 사이클 일 때 가장 양호한 좌굴 방지 특성이 나타났다.
또한, 상기 주름판(120)을 이루고 있는 코어판(121) 및 제1, 2 사이드 판(123)의 재질은 섬유강화복합재료(fibrous composite)로 된다. 섬유강화복합재료는 단단하고 가볍고, 때로는 강철보다 강하다는 장점이 있어서 가벼운 운송수단을 만드는데 유용하게 활용될 수 있다.
그리고, 주름판(120)은 도 2 및 3에서와 같이, 국부적 좌굴강성이 가장 취약한 곡률이 변화하는 구간, 다시 말하면, 반원의 곡률 중심이 변화하는 구간을 다른 구간에 비해 두껍게 함으로써, 효율적인 좌굴 방지구조를 갖게 된다.
여기서, 주름판(120) 두께의 가변(조절)은 상기 코어판(121)의 두께 가변에 의해 구현할 수 있다.
즉, 도 4a에서와 같이 두께가 가장 두꺼운 부분인 D구간은 코어판(121)을 예컨대 베이스 코어판(121a)에 3개의 적층 코어판(121b)을 추가로 적층하여 구성할 수 있고, 도 4b에서와 같이 C구간은 베이스 코어판(121a)에 2개의 적층 코어판(121b)을 추가로 적층하여 구성할 수 있으며, 도 4c에서와 같이 B구간은 베이스 코어판(121a)에 1개의 적층 코어판(121b)을 추가로 적층하여 구성할 수 있고, 도 4d에서와 같이 A구간은 베이스 코어판(121a) 만으로 구성할 수 있다.
정리하면, 코어판(121)의 좌굴 취약구간(E)은 가장 두껍게 하고, 좌굴 취약구간으로부터 가장 먼 구간은 가장 얇게 하며, 가장 두꺼운 구간과 가장 얇은 구간의 사이구간은 두꺼운 구간으로부터 얇은 구간으로 갈수록 점차적으로 얇아지게 구성된다.
여기서, 상기 적층 코어판(121a)을 적층함에 있어, 적층 코어판(121a) 섬유방향(fiber direction)을 상기한 충돌에너지 작용방향(P)과 일치되도록 적층하여, 코어판(121)의 충돌에너지 작용방향(P)에 대한 대응 강도가 강화되도록 하였다.
한편, 상기 제1, 2 사이드 판(122,123)은 충돌속도에 따른 충돌에너지의 흡수성능의 변화가 최소화될 수 있도록 준등방성(Quasi-isotropy) 복합재 적층패턴을 적용하는 것이 바람직하다.
부연하면, 섬유강화 복합재료는 모든 섬유가 일정한 방향으로 배열되어 있는데, 이러한 적층 복합재료는 섬유가 서로 다른 방향으로 배열되도록 설계할 수 있다. 도 5a 내지 5c는 얇은 일방향 복합재료 박판을 쌓아서 섬유가 0° 90°±45°방향으로 배열되도록 설계한 것이다. 라미나라 불리는 얇은 판을 일정한 규칙으로 쌓아올리면서 적층 복합재료를 만든다. 만일 섬유가 도 5a에서와 같이 0°방향(일방향 적층)과 도 5c에서와 같이 90°방향(직교적층) 만이라면 이들 방향으로 복합재료의 강도는 높겠지만 그러한 복합재료는 전단강도가 낮다. 전단변형 저항을 좋게 하려면 도 5b에서와 같이 ±45°방향으로도 쌓아야 한다. 이를 준등방성 적층패턴이라 한다.
도 6a는 본 발명에 따른 주름판을 성형하기 위한 몰드의 구성도이고, 도 6b는 몰딩 전 상태도이며, 도 6c는 몰딩 후 상태도이다.
도 6a에 따르면, 본 발명에 따른 완충부재를 성형하기 위한 몰드(200)는 상부 몰드(210) 및 하부 몰드(220)로 구성되며, 몰드의 설계 형상은 도 6b에서와 같이 상기 주름판(120)의 최대 단면두께와 동일한 간격을 갖도록 설계된다.
그리고, 주름판(120)의 성형시에는 도 6c에서와 같이, 상부 몰드(210)를 하부 몰드(220) 간격 사이에 두께 가변이 완료된 주름판(120)을 삽입한 후, 상,하부 몰드(210,220)의 왼쪽 또는 오른쪽의 수평부위의 간격이 주름판(120)의 최소 단면두께와 동일한 간격이 될 때까지 가압하면, 수평부위는 최소두께가 되는 반면, 곡률이 변화되는 구간은 최대 두께가 되도록 성형할 수 있게 된다.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상을 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 범주에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의해 명확해질 것이다.
[부호의 설명]
110 : 충돌에너지 작용면 120 : 주름판
121 : 코어판 122 : 제1 사이드 판
123 : 제2 사이드 판 200 : 몰드
210 : 상부 몰드 220 : 하부 몰드

Claims (12)

  1. 충돌에너지 작용면에 작용하는 충돌에너지 작용방향의 직각방향으로 주름면이 형성된 주름판을 포함하되,
    상기 주름판은 좌굴 취약구간의 두께가 여타구간의 두께에 비해 두껍게 구성된 가변두께를 갖는 주름형 완충부재.
  2. 청구항 1에 있어서,
    상기 주름판은,
    좌굴 취약구간의 두께가 여타구간의 두께에 비해 두껍게 구성된 코어판;
    상기 코어판의 일측 주름면에 형합되게 적층되는 제1 사이드 판; 및
    상기 코어판의 타측 주름면에 형합되게 적층되는 제2 사이드 판;을 포함하는 가변두께를 갖는 주름형 완충부재.
  3. 청구항 2에 있어서,
    상기 주름판의 좌굴 취약구간은, 주름선의 곡률 변곡점인, 가변두께를 갖는 주름형 완충부재.
  4. 청구항 2에 있어서,
    상기 코어판은 좌굴 취약구간의 두께가 가장 두껍고, 상기 좌굴 취약구간으로부터 가장 멀리 위치하는 구간의 두께가 가장 얇게 구성되되,
    두께가 가장 두꺼운 구간과 가장 얇은 구간의 사이구간의 두께는, 두꺼운 구간으로부터 얇은 구간으로 갈수록 점차적으로 얇아지게 구성된, 가변두께를 갖는 주름형 완충부재.
  5. 청구항 4에 있어서,
    상기 코어판의 두께 조절은 기본 두께를 갖는 베이스 코어판에 추가 적층되는 적층 코어판의 적층 개수에 의해 결정되는, 가변두께를 갖는 주름형 완충부재.
  6. 청구항 5에 있어서,
    상기 베이스 코어판 및 적층 코어판은 섬유강화복합재료로 된, 가변두께를 갖는 주름형 완충부재.
  7. 청구항 6에 있어서,
    상기 적층 코어판의 적층 시, 적층 코어판의 섬유방향과 충돌에너지 작용방향이 일치되도록 적층하는, 가변두께를 갖는 주름형 완충부재.
  8. 청구항 2에 있어서,
    상기 제1, 2 사이드 판은 섬유강화복합재료로 된, 가변두께를 갖는 주름형 완충부재.
  9. 청구항 8에 있어서,
    상기 제1, 2 사이드 판은 준등방성(Quasi-isotropy) 복합재 적층패턴인, 가변두께를 갖는 주름형 완충부재.
  10. 청구항 1에 있어서,
    상기 주름판의 주름모양은 반원형 또는 정현파형인, 가변두께를 갖는 주름형 완충부재.
  11. 청구항 10에 있어서,
    상기 주름판의 주름모양은 최소 1.5 사이클 주기로 형성된, 가변두께를 갖는 주름형 완충부재.
  12. 청구항 1에 기재된 가변두께를 갖는 주름형 완충부재를 성형함에 있어서,
    상기 주름평 완충부재를 구성하는 주름판의 두께 중 최대 두께와 동일한 간격을 갖는 상,하부 몰드를 제작하고, 상기 상,하부 몰드 사이에 두께 가변이 완료된 주름판을 삽입한 후, 상,하부 몰드 일측의 사이간격이 주름판 두께 중 최소 두께와 동일한 간격이 될 때까지 압축하여 성형하는 가변두께를 갖는 주름형 완충부재의 성형방법.
PCT/KR2015/009496 2015-06-09 2015-09-09 가변 두께를 갖는 주름형 완충부재 및 이의 성형방법 WO2016199979A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150081352 2015-06-09
KR10-2015-0081352 2015-06-09
KR10-2015-0120978 2015-08-27
KR1020150120978A KR20160144872A (ko) 2015-06-09 2015-08-27 가변 두께를 갖는 주름형 완충부재 및 이의 성형방법

Publications (1)

Publication Number Publication Date
WO2016199979A1 true WO2016199979A1 (ko) 2016-12-15

Family

ID=57503625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009496 WO2016199979A1 (ko) 2015-06-09 2015-09-09 가변 두께를 갖는 주름형 완충부재 및 이의 성형방법

Country Status (1)

Country Link
WO (1) WO2016199979A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284033A (ja) * 2001-03-27 2002-10-03 Nippon Steel Corp 自動車用強度部材
JP2006322550A (ja) * 2005-05-19 2006-11-30 Toyota Motor Corp エネルギー吸収体
US20100143661A1 (en) * 2008-11-18 2010-06-10 Warrick Russell C Energy Absorption Material
JP2010138953A (ja) * 2008-12-10 2010-06-24 Honda Motor Co Ltd エネルギー吸収部材及びその製造方法
US20140339036A1 (en) * 2011-11-28 2014-11-20 Teijin Limited Shock Absorption Member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284033A (ja) * 2001-03-27 2002-10-03 Nippon Steel Corp 自動車用強度部材
JP2006322550A (ja) * 2005-05-19 2006-11-30 Toyota Motor Corp エネルギー吸収体
US20100143661A1 (en) * 2008-11-18 2010-06-10 Warrick Russell C Energy Absorption Material
JP2010138953A (ja) * 2008-12-10 2010-06-24 Honda Motor Co Ltd エネルギー吸収部材及びその製造方法
US20140339036A1 (en) * 2011-11-28 2014-11-20 Teijin Limited Shock Absorption Member

Similar Documents

Publication Publication Date Title
RU2593733C1 (ru) Интерьерная панель летательного аппарата с акустическими материалами
WO2013095046A1 (ko) 중공단면을 갖는 섬유복합보강재가 내장되어 있는 범퍼백빔 및 이를 갖는 범퍼
CN109322957A (zh) 一种轴向波纹蜂窝夹心板抗冲击吸能装置
US11186300B2 (en) Collision energy absorption structure and rail vehicle having same
WO2018194287A1 (ko) 차량용 백빔 및 이를 포함하는 차량
WO2016199979A1 (ko) 가변 두께를 갖는 주름형 완충부재 및 이의 성형방법
KR101081770B1 (ko) 허니컴 샌드위치 패널
JP2011240925A (ja) 漸進的な剛性を有する複合構造部材
CN105365887A (zh) 一种三腔体多层焊接前纵梁
CN103057690A (zh) 一种飞机翼面前缘结构
CN217804733U (zh) 一种六边形高性能复合材料防爬器
CN111361722A (zh) 一种直升机集成装甲地板
KR20160144872A (ko) 가변 두께를 갖는 주름형 완충부재 및 이의 성형방법
CN107097742B (zh) 汽车防撞吸能结构及其制作工艺
WO2015056899A1 (ko) 자동차 범퍼용 하이브리드 프리프레그 및 이로 제조된 자동차 범퍼
CN205311702U (zh) 一种中央贯穿凹陷加强的前纵梁
CN205836934U (zh) 一种汽车前纵梁
CN204773848U (zh) 连续纤维增强热塑性板材
CN107009855A (zh) 一种车门防撞梁及车辆
CN210062303U (zh) 一种芳纶蜂窝夹心结构烟囱罩
CN203666571U (zh) 一种汽车车门防撞装置
CN208931285U (zh) 汽车防撞梁
US20130026289A1 (en) Energy absorption structure
CN108482282B (zh) 一种新型结构复合材料汽车前防撞梁
CN205311706U (zh) 一种多边形单帽前纵梁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895047

Country of ref document: EP

Kind code of ref document: A1