WO2016199830A1 - Resin composition, film, touch sensor panel and display device - Google Patents

Resin composition, film, touch sensor panel and display device Download PDF

Info

Publication number
WO2016199830A1
WO2016199830A1 PCT/JP2016/067146 JP2016067146W WO2016199830A1 WO 2016199830 A1 WO2016199830 A1 WO 2016199830A1 JP 2016067146 W JP2016067146 W JP 2016067146W WO 2016199830 A1 WO2016199830 A1 WO 2016199830A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
film
mass
layer
meth
Prior art date
Application number
PCT/JP2016/067146
Other languages
French (fr)
Japanese (ja)
Inventor
一喜 大松
美保 大関
山下 恭弘
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2017523682A priority Critical patent/JP6360630B2/en
Publication of WO2016199830A1 publication Critical patent/WO2016199830A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical

Definitions

  • the present invention relates to a resin composition, a film, a touch sensor panel, and a display device.
  • touch sensor panels have been used for smartphones, portable game machines, audio players, tablet terminals, and the like.
  • a film having conductivity and transparency is used as a window sheet.
  • a film containing methacrylic resin and polyvinylidene fluoride is known ( Patent Document 1).
  • the inventors of the present invention have intensively studied a film for a touch sensor panel that has a high relative dielectric constant and can maintain transparency even when used for a long time.
  • vinylidene fluoride used for a resin composition constituting the film is used.
  • the present inventors have found that the contents of the structural unit derived from vinylidene fluoride in the resin and the structural unit derived from hexafluoropropylene greatly affect the durability, and completed the present invention.
  • the present invention includes the inventions described in the following [1] to [21].
  • the resin composition according to [1], wherein the (meth) acrylic resin is the following resin (a1) or (a2); (A1) methyl methacrylate homopolymer, (A2)
  • [6] A film formed from the resin composition according to any one of [1] to [5]; [7] A film containing a (meth) acrylic resin and a vinylidene fluoride resin, wherein the vinylidene fluoride resin has a structural unit of 65 to 90% by mass derived from vinylidene fluoride with 100% by mass as a whole. And a vinylidene fluoride-hexafluoropropylene copolymer containing 10 to 35% by mass of a structural unit derived from hexafluoropropylene, and the film has a relative dielectric constant of 4.0 or more and 60 ° C.
  • thermoplastic resin layer includes a plurality of thermoplastic resin layers and is disposed on both surfaces of the film;
  • thermoplastic resin layer contains 50 parts by mass or more of (meth) acrylic resin per 100 parts by mass of the thermoplastic resin constituting the thermoplastic resin layer.
  • thermoplastic resin layer has a thickness of 10 to 200 ⁇ m; [15] The thermoplastic resin layer has a Vicat softening temperature of 100 to 150 ° C.
  • a display device comprising the film according to any one of [6] to [8]; [20] Display including the first laminate according to [9], the second laminate according to any one of [10] to [15], or the third laminate according to [17] apparatus.
  • the film formed from the resin composition of the present invention is useful as a touch sensor panel or a window sheet of a display device because it has a high relative dielectric constant and can maintain transparency even when used for a long time.
  • (meth) acrylic resin used in the present invention examples include a homopolymer of (meth) acrylic monomers such as (meth) acrylic acid ester and (meth) acrylonitrile, or two or more types of copolymers; Examples include copolymers of acrylic monomers and other monomers.
  • (meth) acryl means “acryl” or “methacryl”.
  • a methacrylic resin is a polymer obtained by polymerizing a monomer mainly composed of a methacrylic acid ester (alkyl methacrylate).
  • a methacrylic acid ester homopolymer (polyalkyl methacrylate) and a methacrylic acid ester examples thereof include a polymer and a copolymer of 50% by mass or more of a methacrylic acid ester and a monomer other than 50% by mass of a methacrylic acid ester.
  • the methacrylic acid ester is preferably 70% by mass or more and the monomer other than the methacrylic acid ester with respect to the total monomer amount of 100% by mass. Is 30% by mass or less, more preferably 90% by mass or more of methacrylic acid ester and 10% by mass or less of monomers other than methacrylic acid ester.
  • Examples of monomers other than methacrylic acid esters include acrylic acid esters and monofunctional monomers having one polymerizable carbon-carbon double bond in the molecule.
  • Monofunctional monomers include, for example, styrene monomers such as styrene, ⁇ -methylstyrene and vinyltoluene; alkenyl cyanides such as acrylonitrile and methacrylonitrile; acrylic acid; methacrylic acid; maleic anhydride; phenylmaleimide N-substituted maleimides such as cyclohexylmaleimide and methylmaleimide; From the viewpoint of heat resistance, a lactone ring structure, a glutaric anhydride structure, or a glutarimide structure is present in the molecular chain of the (meth) acrylic resin (also referred to as the main skeleton or main chain in the (meth) acrylic resin). It may be introduced.
  • styrene monomers such as styrene, ⁇ -methylstyrene and vinyltoluene
  • alkenyl cyanides such as acrylonitrile and methacrylonitrile
  • the (meth) acrylic resin is preferably the following resin (a1) or (a2).
  • the total amount of the structural unit derived from methyl methacrylate and at least one structural unit derived from the (meth) acrylic acid ester represented by the formula (1) is 100% by mass. It is preferable.
  • R 1 is a hydrogen atom
  • the alkyl group having 1 to 8 carbon atoms represented by R 2 is methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert- A butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and the like.
  • Examples of the alkyl group having 2 to 8 carbon atoms represented by R 2 when R 1 is a methyl group include an ethyl group, a propyl group, Examples include isopropyl, butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl and the like.
  • the (meth) acrylic acid ester represented by the formula (1) is preferably methyl acrylate or ethyl acrylate, and more preferably methyl acrylate.
  • the (meth) acrylic resin has a melt mass flow rate at 230 ° C. (hereinafter sometimes referred to as MFR) measured at a load of 3.8 kg in accordance with JIS K7210, usually 0.1 to 20 g / 10 minutes, preferably Is 0.2 to 5 g / 10 min, and more preferably 0.5 to 3 g / 10 min.
  • MFR melt mass flow rate measured at a load of 3.8 kg in accordance with JIS K7210
  • the (meth) acrylic resin preferably has a weight average molecular weight (hereinafter sometimes referred to as Mw) determined by GPC measurement of 70,000 to 300,000, more preferably 100,000 to 250,000. 120,000 to 250,000 is more preferable, and 150,000 to 200,000 is more preferable.
  • Mw weight average molecular weight
  • the (meth) acrylic resin preferably has a Vicat softening temperature (hereinafter sometimes referred to as VST) measured according to JIS K7206 of 90 ° C. or higher, more preferably 100 ° C. or higher. Preferably, it is 102 ° C. or higher.
  • VST Vicat softening temperature
  • the VST of the (meth) acrylic resin can be appropriately set by adjusting the type and ratio of the monomer or the molecular weight of the (meth) acrylic resin.
  • (Meth) acrylic resin can be prepared by polymerizing the monomer component by a method such as suspension polymerization or bulk polymerization.
  • MFR, Mw, VST, etc. of (meth) acrylic resin can be adjusted to a preferable range by adding a suitable chain transfer agent. What is necessary is just to determine the addition amount of a chain transfer agent suitably according to the kind of monomer, its ratio, the characteristic calculated
  • the (meth) acrylic resin preferably has a low alkali metal content. The content of the alkali metal can be adjusted by reducing the amount of the compound containing the alkali metal during the polymerization, or increasing the washing step after the polymerization to remove the compound containing the alkali metal.
  • (Meth) acrylic resin may be a commercially available product.
  • examples of preferable commercial products include “SUMIPEX (registered trademark) MM” manufactured by Sumitomo Chemical Co., Ltd.
  • the vinylidene fluoride resin used in the present invention has a structural unit of 65 to 90% by mass derived from vinylidene fluoride, based on 100% by mass of all the structural units of the vinylidene fluoride resin, A vinylidene fluoride-hexafluoropropylene copolymer containing 10 to 35% by mass of a structural unit derived from hexafluoropropylene.
  • the vinylidene fluoride resin is a group consisting of trifluoroethylene, tetrafluoroethylene, chlorotrifluoroethylene, perfluoroalkyl vinyl ether and ethylene in addition to the structural unit derived from vinylidene fluoride and the structural unit derived from hexafluoropropylene.
  • a structural unit derived from at least one monomer selected from may be included.
  • the structural unit derived from these monomers is preferably 25% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less, based on 100% by mass of all structural units of the vinylidene fluoride resin. .
  • the content of the structural unit derived from hexafluoropropylene contained in the vinylidene fluoride-hexafluoropropylene copolymer is preferably 10 to 30% by mass, more preferably 10 to 25% by mass.
  • the content of the structural unit derived from vinylidene fluoride contained in the vinylidene fluoride-hexafluoropropylene copolymer is preferably 70 to 90% by mass, more preferably 75 to 90% by mass.
  • it is preferable that the total amount of the content of the structural unit derived from vinylidene fluoride and the content of the structural unit derived from hexafluoropropylene in 100% by mass of the vinylidene fluoride resin is 100% by mass.
  • the vinylidene fluoride resin usually has a melt mass flow rate (MFR) at 230 ° C. of 0.1 to 40 g / 10 minutes measured under a load of 3.8 kg in accordance with JIS K7210.
  • the upper limit of the MFR is preferably 35 g / 10 minutes, more preferably 30 g / 10 minutes, still more preferably 25 g / 10 minutes, and even more preferably 20 g / 10 minutes.
  • the upper limit of the MFR is preferably 0.2 g / 10 minutes, and more preferably 0.5 g / 10 minutes. If the MFR of the vinylidene fluoride resin is too large, the transparency tends to decrease when the resulting film is used for a long period of time. If the MFR of the vinylidene fluoride resin is too small, the film formability tends to decrease. .
  • the vinylidene fluoride resin preferably has a weight average molecular weight (Mw) determined by GPC measurement of 100,000 to 500,000, more preferably 150,000 to 450,000, and 200,000 to 450. More preferably, it is 1,000.
  • Mw weight average molecular weight
  • the vinylidene fluoride resin is industrially produced by a suspension polymerization method or an emulsion polymerization method.
  • a suspension polymerization method water is used as a medium, the monomer is dispersed as droplets in the medium using a dispersant, and an organic peroxide dissolved in the monomer is polymerized as a polymerization initiator, whereby 100 to 100% is obtained.
  • a 300 ⁇ m granular polymer is obtained.
  • Suspension polymers are preferred because they have a simpler manufacturing process, better powder handling, and do not contain an emulsifier or salting-out agent containing an alkali metal unlike emulsion polymers.
  • the amount of alkali metal contained in the vinylidene fluoride resin is preferably 1 ppm or less.
  • a commercially available vinylidene fluoride resin may be used.
  • examples of preferable commercial products include K #, Kureha's “KF Polymer (registered trademark)” T # 2950, and Solvay's “SOLEF®” 21508.
  • the resin composition of the present invention contains 15 to 30 parts by weight of (meth) acrylic resin and 70 to 85 parts by weight of vinylidene fluoride resin per 100 parts by weight of the total amount of (meth) acrylic resin and vinylidene fluoride resin. It is a waste.
  • the resin contains 17 to 30 parts by weight of (meth) acrylic resin and 70 to 83 parts by weight of vinylidene fluoride resin per 100 parts by weight of the total amount of (meth) acrylic resin and vinylidene fluoride resin, more preferably
  • the resin contains 17 to 27 parts by mass of (meth) acrylic resin and 73 to 83 parts by mass of vinylidene fluoride resin per 100 parts by mass of the total amount of (meth) acrylic resin and vinylidene fluoride resin.
  • the total content of the (meth) acrylic resin and the vinylidene fluoride resin in 100% by mass of the resin composition is preferably 95% by mass or more, and more preferably 90% by mass or more.
  • the resin composition may contain a vinylidene fluoride resin other than the vinylidene fluoride-hexafluoropropylene copolymer, and the content thereof is preferably 10% by mass or less in 100% by mass of the resin composition.
  • vinylidene fluoride resins other than vinylidene fluoride-hexafluoropropylene copolymers are all commercially available, and Kureha's “KF Polymer (registered trademark)” T # 1300, T # 1100, T Examples include # 1000, T # 850, W # 850, W # 1000, W # 1100, and W # 1300, “SOLEF (registered trademark)” 6012, 6010, 6008, and 31508 manufactured by Solvay.
  • alkali metal contained in the resin composition examples include sodium and potassium derived from the remaining emulsifier when using the vinylidene fluoride resin obtained by the above emulsion polymerization.
  • the range is usually 50 ppm or less, preferably 30 ppm or less, more preferably 10 ppm or less, and it is further preferred that it is not substantially contained.
  • the content of alkali metal in the resin composition can be determined by, for example, inductively coupled plasma mass spectrometry (ICP / MS).
  • additives may be added to the resin composition of the present invention as long as the effects of the present invention are not impaired.
  • additives include stabilizers, antioxidants, ultraviolet absorbers, light stabilizers, colorants, foaming agents, lubricants, mold release agents, antistatic agents, flame retardants, polymerization inhibitors, flame retardant aids, Examples include coloring agents such as reinforcing agents, nucleating agents, and bluing agents.
  • Examples of the colorant include compounds having an anthraquinone skeleton, compounds having a phthalocyanine skeleton, and the like. Among these, a compound having an anthraquinone skeleton is preferable from the viewpoint of heat resistance.
  • a bluing agent When a bluing agent is used as a colorant, its content is 0.01 to 5 ppm, preferably 0.05 to 4 ppm, more preferably 0.1 to 3 ppm.
  • a known bluing agent can be appropriately used.
  • the bluing agent for example, Macrolex (registered trademark) Blue RR (manufactured by Bayer), Macrolex (registered trademark) Blue 3R (manufactured by Bayer), Sumiplast (registered trademark) Violet B (household) Chemical Chemtex) and Polysynthrene (registered trademark) Blue RLS (Clariant).
  • additives may be present in the resin composition of the present invention, and may be contained in any component of the (meth) acrylic resin or vinylidene fluoride resin. May be added during melt-kneading with vinylidene fluoride resin, may be added after melt-kneading between (meth) acrylic resin and vinylidene fluoride resin, or added when producing a film using a resin composition May be.
  • the resin composition of the present invention is usually obtained by kneading a (meth) acrylic resin and a vinylidene fluoride resin.
  • kneading can be performed, for example, by a method including a step of melt-kneading at a shear rate of 10 to 1000 / second at a temperature of 150 to 350 ° C.
  • the resin may not melt.
  • the resin may be thermally decomposed.
  • the shear rate at the time of melt kneading is less than 10 / second, the kneading may not be sufficiently performed.
  • the shear rate during melt-kneading exceeds 1000 / second, the resin may be decomposed.
  • the melt-kneading is preferably performed at a temperature of 180 to 300 ° C., more preferably 200 to 300 ° C., preferably 20 to 700 / second, and more. Preferably, it is carried out at a shear rate of 30 to 500 / sec.
  • an ordinary mixer or kneader can be used as an apparatus used for melt kneading.
  • Specific examples include a single-screw kneader, a twin-screw kneader, a multi-screw extruder, a Henschel mixer, a Banbury mixer, a kneader, and a roll mill.
  • a high shearing device or the like may be used.
  • the film of the present invention is formed from the resin composition of the present invention.
  • Such a film preferably has a thickness of 100 to 2000 ⁇ m, more preferably 200 to 1500 ⁇ m.
  • the film of the present invention can suppress whitening of the film that occurs in a high temperature and high humidity environment.
  • the haze is preferably 1.8% or less, more preferably 1.5% or less. It shows that whitening of a film
  • membrane is suppressed more so that a value is small.
  • the amount of change in haze before and after exposure for a long time in a high temperature and high humidity environment is preferably 10 points or less, more preferably 5 points or less, and even more preferably 1 point or less. And more preferably 0.5 points or less.
  • One embodiment of the laminate of the present invention comprises the above-described film and a thermoplastic resin layer (second laminate).
  • a laminate is excellent in heat resistance and surface hardness.
  • the thermoplastic resin layer only needs to be laminated on at least one surface of the film formed from the resin composition of the present invention, and does not necessarily need to be in contact with the film, and is laminated via another layer. Also good.
  • the thermoplastic resin layer is preferably laminated in contact with a film formed from the resin composition of the present invention. From the viewpoint of maintaining the shape of the film, the laminate preferably includes a thermoplastic resin layer on both sides of the film.
  • the laminate may further include a coating layer described later (third laminate).
  • the thickness of the thermoplastic resin layer is preferably 10 to 200 ⁇ m, and more preferably 50 to 150 ⁇ m.
  • the thickness and composition of each thermoplastic resin layer may be the same or different from each other, but from the viewpoint of maintaining the shape of the film, Are preferably the same.
  • the pencil hardness measured according to JIS K5600-5-4 of the thermoplastic resin layer is preferably HB or more, more preferably F or more, and further preferably H or more.
  • the Vicat softening temperature of the thermoplastic resin layer measured according to JIS K7206 is preferably 100 to 150 ° C.
  • the thermoplastic resin layer can be selected from one or more types of (meth) acrylic resins or one or more types of thermoplastic resins other than (meth) acrylic resins. From these resins, one or more types of thermoplastic resins can be used alone or in combination.
  • the thermoplastic resin layer can have a single layer configuration or a configuration in which a plurality of layers are laminated.
  • the (meth) acrylic resin of the thermoplastic resin layer a resin having the same primary structure as that of the (meth) acrylic resin contained in the resin composition of the present invention can be used.
  • Methacrylic acid resin a copolymer composed of a structural unit derived from methyl methacrylate and a structural unit derived from methacrylic acid, or a structural unit derived from styrene, a structural unit derived from maleic anhydride, and methacrylic acid
  • a terpolymer composed of a structural unit derived from methyl can be used.
  • the weight average molecular weight (Mw) of the (meth) acrylic resin is preferably 50,000 to 300,000, and more preferably 70,000 to 250,000.
  • the (meth) acrylic resin contained in the thermoplastic resin layer is the same as the (meth) acrylic resin contained in the resin composition forming the film. They may be the same or different.
  • thermoplastic resins other than (meth) acrylic resins carbonate resins, cycloolefin resins, ethylene terephthalate resins, styrene resins, methyl methacrylate-styrene resins, acrylonitrile-styrene resins, ABS resins, etc. should be used. Can do.
  • the thermoplastic resin other than the (meth) acrylic resin preferably has a Vicat softening temperature of 115 ° C. or higher, more preferably 117 ° C. or higher, more preferably 120 ° C. or higher, from the viewpoint of heat resistance. More preferably it is.
  • the carbonate resin is a polycarbonate resin.
  • the polycarbonate resin layer is formed from one or more types of polycarbonate resins or a composite resin of one or more types of polycarbonate resins and one or more types of thermoplastic resins. Can do.
  • These polycarbonate resins are melt volume rate measured at a temperature of 300 ° C. and a load 1.2 kg (hereinafter, also referred to as MVR.) Is preferably a 3 ⁇ 120cm 3/10 min. MVR is more preferably from 3 ⁇ 80cm 3/10 minutes, more preferably 4 ⁇ 40cm 3/10 minutes, deliberately preferably 10 ⁇ 40cm 3/10 minutes.
  • MVR is less than 3 cm 3/10 min, because the flowability is decreased, and tends to be difficult by molding such as melt co-extrusion, there is the appearance failure occurs. Further, the MVR exceeds 120 cm 3/10 min, mechanical properties such as strength of the polycarbonate resin layer tends to decrease. MVR can be measured under the condition of 300 ° C. under a load of 1.2 kg in accordance with JIS K 7210.
  • the polycarbonate resin is a polymer obtained by, for example, a phosgene method in which various dihydroxydiaryl compounds and phosgene are reacted, or a transesterification method in which a dihydroxydiaryl compound and a carbonic ester such as diphenyl carbonate are reacted.
  • a phosgene method in which various dihydroxydiaryl compounds and phosgene are reacted
  • a transesterification method in which a dihydroxydiaryl compound and a carbonic ester such as diphenyl carbonate are reacted.
  • Examples thereof include polycarbonate resins produced from 2,2-bis (4-hydroxyphenyl) propane (commonly called bisphenol A).
  • dihydroxydiaryl compound examples include bisphenol 4-, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2, 2-bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, 2,2-bis (4-hydroxyphenyl-3-methylphenyl) propane, 1,1-bis (4-hydroxy-3) -Tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 2,2-bis ( Bis (hydroxyaryl) alkanes such as 4-hydroxy-3,5-dichlorophenyl) propane, 1,1 Bis (hydroxyaryl) cycloalkanes such as bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 4,4
  • Trihydric or higher phenols include phloroglucin, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) -heptene, 2,4,6-dimethyl-2,4,6-tri- (4 -Hydroxyphenyl) -heptane, 1,3,5-tri- (4-hydroxyphenyl) -benzol, 1,1,1-tri- (4-hydroxyphenyl) -ethane and 2,2-bis- [4 4- (4,4'-dihydroxydiphenyl) -cyclohexyl] -propane and the like.
  • the polycarbonate resin layer is formed from a composite resin of one or more types of polycarbonate resin and one or more types of thermoplastic resin
  • the thermoplastic resin other than the polycarbonate resin is blended within a range that does not impair the transparency. can do.
  • this thermoplastic resin for example, a (meth) acrylic resin compatible with a polycarbonate resin is preferable, and a methacrylic resin having an aromatic ring or a cycloolefin in its structure is more preferable.
  • the polycarbonate resin contains such a tacryl resin, the surface hardness of the obtained polycarbonate resin layer can be made higher than when the polycarbonate resin is formed from the polycarbonate resin alone.
  • Polycarbonate resins other than the above polycarbonate resins include polycarbonates synthesized from isosorbite and aromatic diols.
  • An example is “DURABIO (registered trademark)” manufactured by Mitsubishi Chemical.
  • the polycarbonate resin includes a release agent, an ultraviolet absorber, a dye, a pigment, a polymerization inhibitor, an antioxidant, a flame retardant, a reinforcing agent and other additives, a polymer other than the polycarbonate resin, and the like. You may make it contain in the range which does not impair an effect.
  • a commercially available product may be used as the polycarbonate resin.
  • the polycarbonate resin For example, 301-4, 301-10, 301-15, 301-22, 301-30 of “Caliver (registered trademark)” manufactured by Sumika Stylon Polycarbonate Co., Ltd. 301-40, SD2221W, SD2201W, TR2201 and the like.
  • thermoplastic resin layer When two or more types of (meth) acrylic resins are used in the thermoplastic resin layer, or when the (meth) acrylic resin is used in combination with another thermoplastic resin, the thermoplastic resin layer is formed. It is preferable to contain 50 parts by mass or more of (meth) acrylic resin per 100 parts by mass of the thermoplastic resin. As the thermoplastic resin other than the (meth) acrylic resin, a thermoplastic resin compatible with the (meth) acrylic resin is preferable.
  • thermoplastic resin layer does not substantially contain a vinylidene fluoride resin.
  • the film of the present invention is transparent when visually observed, and the total light transmittance (Tt) measured according to JIS K7361-10 is preferably 88% or more, more preferably 90% or more, and 60 ° C. This range is maintained even after 120 hours of exposure in an environment with a relative humidity of 90%.
  • the film of the present invention contains a (meth) acrylic resin and a vinylidene fluoride resin, and the haze measured in accordance with JIS K7136 after being exposed to an environment of 90% relative humidity at 60 ° C. for 120 hours is usually 2% or less. , Preferably 1.9% or less, more preferably 1.8% or less.
  • the film of the present invention has a relative dielectric constant of 3 or more, preferably 4.1 or more, at 3 V and 100 kHz, measured by an automatic equilibrium bridge method in accordance with JIS K6911.
  • the laminate of the present invention has a relative dielectric constant at 3 V and 100 kHz measured by the automatic equilibrium bridge method in accordance with JIS K6911, which is usually 4 or more, preferably 4.3 or more, more preferably 4.5. That's it.
  • the value of the relative dielectric constant is a value obtained by measurement performed before the film is exposed to a high temperature and high humidity environment.
  • the film of the present invention can be produced by molding the resin composition of the present invention by, for example, a melt extrusion molding method, a hot press method, an injection molding method, or the like.
  • a laminate may be produced by laminating a film obtained by molding the resin composition of the present invention by the above molding and a separately molded thermoplastic resin layer via, for example, an adhesive or an adhesive, It is preferable to produce a laminate by laminating and integrating the resin composition of the present invention and a (meth) acrylic resin by melt coextrusion molding.
  • the laminated body manufactured by melt coextrusion molding tends to be easily subjected to secondary molding as compared with the laminated body manufactured by bonding.
  • melt coextrusion molding for example, the resin composition of the present invention and (meth) acrylic resin are separately fed into two or three uniaxial or biaxial extruders and melt-kneaded, respectively, and then fed.
  • This is a molding method in which the film of the present invention and a thermoplastic resin layer are laminated and integrated through a block die, a multi-manifold die or the like, and extruded.
  • the obtained laminate is preferably cooled and solidified by, for example, a roll unit.
  • Another embodiment of the laminate of the present invention is at least one function selected from the group consisting of the above-mentioned film and at least one surface of the film, the anti-scratch, anti-reflection, anti-glare and anti-fingerprint.
  • the coating layer only needs to be laminated on at least one surface of the film, and does not necessarily need to be in contact with the film, and may be laminated via another layer.
  • a cured film described in JP 2013-86273 A can be used as the coating layer.
  • the thickness of the coating layer is preferably 1 to 100 ⁇ m, more preferably 3 to 80 ⁇ m, and even more preferably 5 to 70 ⁇ m. If it is thinner than 1 ⁇ m, it is difficult to express the function, and if it is thicker than 100 ⁇ m, the coating layer may be cracked.
  • the surface of the coating layer may be subjected to antireflection treatment by a coating method, a sputtering method, a vacuum deposition method, or the like.
  • a separately prepared antireflection sheet may be bonded to one side or both sides of the coating layer.
  • the antireflective sheet only needs to be laminated on at least one surface of the coating layer, and is not necessarily in contact with the coating layer, and may be laminated via another layer.
  • thermoplastic resin layer is abbreviated as B layer
  • coating layer is abbreviated as C layer
  • examples of the layer structure of the film and laminate of the present invention include the following (1) to (12). It is done.
  • a laminate having a structure represented by B layer / A layer / B layer can be produced as follows. This will be described with reference to FIG. First, a (meth) acrylic resin and a vinylidene fluoride resin can be mixed as a material for forming the A layer to obtain the resin composition of the present invention. Next, the resin composition is melted by the single screw extruder 2 and the thermoplastic resin is melted by the single screw extruders 1 and 3 as the material for forming the B layer.
  • a transparent conductive sheet can be obtained by forming a transparent conductive film on at least one surface of the film or laminate of the present invention.
  • a method of forming a transparent conductive film on the surface of the film or laminate of the present invention a method of directly forming a transparent conductive film on the surface of the film of the present invention may be used, or a plastic having a transparent conductive film formed in advance.
  • a method of forming a transparent conductive film by laminating a film on the surface of the film or laminate of the present invention may also be used.
  • the film base of the plastic film on which the transparent conductive film is formed in advance may be a transparent film that can form a transparent conductive film.
  • a transparent film that can form a transparent conductive film.
  • polyethylene terephthalate, polyethylene naphthalate, polycarbonate, An acrylic resin, polyamide, a mixture or laminate thereof can be exemplified.
  • the method of laminating a film, on which a transparent conductive film has been formed in advance, on the surface of the film or laminate of the present invention may be any method as long as it is free from bubbles and provides a uniform and transparent sheet.
  • a method of laminating using an adhesive that is cured by normal temperature, heating, ultraviolet light, or visible light may be used, or a transparent adhesive tape may be used for bonding.
  • a vacuum deposition method As a method for forming a transparent conductive film, a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, a spray method, and the like are known, and these methods are appropriately used depending on a required film thickness. Can do.
  • the sputtering method for example, a normal sputtering method using an oxide target, a reactive sputtering method using a metal target, or the like is used. At this time, oxygen, nitrogen, or the like may be introduced as a reactive gas, or means such as ozone addition, plasma irradiation, or ion assist may be used in combination. If necessary, a bias such as direct current, alternating current, and high frequency may be applied to the substrate.
  • the transparent conductive metal oxide used for the transparent conductive film is indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, indium-zinc composite. An oxide etc. are mentioned. Of these, indium-tin composite oxide (ITO) is preferable from the viewpoint of environmental stability and circuit processability.
  • a transparent conductive film it is formed by applying a coating agent containing various conductive polymers that can form a transparent conductive film and irradiating and curing with ionizing radiation such as heat or ultraviolet rays.
  • a coating agent containing various conductive polymers that can form a transparent conductive film and irradiating and curing with ionizing radiation such as heat or ultraviolet rays.
  • the method of doing etc. is applicable.
  • the conductive polymer polythiophene, polyaniline, polypyrrole, and the like are known, and these conductive polymers can be used.
  • the thickness of the transparent conductive film is not particularly limited, but when a transparent conductive metal oxide is used, it is usually 50 to 2000 mm, preferably 70 to 1000 mm. If it is this range, it will be excellent in both electroconductivity and transparency.
  • the thickness of the transparent conductive sheet is not particularly limited, and an optimum thickness can be selected according to the demand for the product specifications of the display.
  • the film or laminate of the present invention and the transparent conductive sheet containing the film or laminate can be suitably used as transparent electrodes for display panel face plates, touch screens and the like.
  • the film or laminate of the present invention can be used as a touch screen window sheet.
  • membrane or laminated body of this invention can use a transparent conductive sheet as an electrode substrate of a touch screen of a resistance film system or an electrostatic capacitance system.
  • a touch sensor panel having a touch screen function can be obtained by arranging the touch screen window sheet or the touch screen on the front surface of a liquid crystal display or an organic EL display.
  • the touch screen window sheet can be used as a substitute for a glass sheet disposed on the outermost surface of a liquid crystal display or an organic EL display.
  • the touch screen window sheet can also be used for a plasma display, a field emission display (FED), a SED flat display, electronic paper, and the like.
  • FIG. 2 shows a schematic diagram of a cross section of a general capacitive touch sensor panel using the film or laminate of the present invention.
  • 11 is a window sheet
  • 14 is a transparent conductive sheet
  • 12 is an optical adhesive layer
  • 13 is a liquid crystal display device.
  • the film or laminate of the present invention can be used for the window sheet 11 and / or the transparent conductive sheet 14.
  • FIG. 3 is a schematic cross-sectional view showing an example of a liquid crystal display device to which the film or laminate of the present invention is applied.
  • the film or laminate 20 of the present invention can be laminated on the polarizing plate 21 via an optical adhesive, and this laminate can be disposed on the viewing side of the liquid crystal cell 23.
  • a polarizing plate is usually disposed on the back side of the liquid crystal cell.
  • the liquid crystal display device 25 is composed of such members.
  • FIG. 3 is an example of a liquid crystal display device and is not limited to this configuration.
  • Table 1 shows the methacrylic resins used in Examples and Comparative Examples and their physical properties.
  • the Vicat softening point (VST) in Table 1 is based on the B50 method specified in JIS K 7206: 1999 “Plastics—Thermoplastic plastics—Vicat softening temperature (VST) test method”, and a heat distortion tester [Co., Ltd.] Measurement was performed using “148-6 series” manufactured by Yasuda Seiki Seisakusho. The test piece at that time was measured by press-molding each raw material to a thickness of 3 mm.
  • melt mass flow rate was measured in accordance with the method specified in JIS K 7210: 1999 “Plastics—Test methods for melt mass flow rate (MFR) and melt volume flow rate (MVR) of thermoplastics”. This JIS stipulates that poly (methyl methacrylate) -based materials are measured at a temperature of 230 ° C. and a load of 3.80 kg (37.3 N).
  • the weight average molecular weight (Mw) of the methacrylic resin was measured by gel permeation chromatography (GPC). To create a GPC calibration curve, use a methacrylic resin made by Showa Denko KK with a narrow molecular weight distribution and known molecular weight as a standard reagent, create a calibration curve from the elution time and molecular weight, and calculate the weight of each resin composition. Average molecular weight was measured. Specifically, 40 mg of resin was dissolved in 20 ml of tetrahydrofuran (THF) solvent to prepare a measurement sample.
  • THF tetrahydrofuran
  • Table 2 shows the vinylidene fluoride-hexafluoropropylene copolymer used in the examples, the polyvinylidene fluoride used in the comparative examples, and their physical properties.
  • VDF represents the content (mass%) of the structural unit derived from vinylidene fluoride contained in the vinylidene fluoride-hexafluoropropylene copolymer or polyvinylidene fluoride.
  • HFP represents the content (% by mass) of the structural unit derived from hexafluoropropylene contained in the vinylidene fluoride-hexafluoropropylene copolymer or polyvinylidene fluoride. VDF and HFP were measured by NMR.
  • each copolymer was dissolved in N, N-dimethylformamide (DMF) -d7 so as to be 20 to 30 mg / ml, and the total number of times of observation was 19F, using an INOVA300 manufactured by Varian. Measurement was performed under the condition of a resonance frequency of 282 MHz.
  • DMF N, N-dimethylformamide
  • the weight average molecular weight (Mw) of vinylidene fluoride-hexafluoropropylene copolymer or polyvinylidene fluoride was measured by GPC.
  • Mw weight average molecular weight
  • polystyrene was used as a standard reagent
  • a calibration curve was created from the elution time and molecular weight, and the weight average molecular weight of each resin was measured.
  • 40 mg of resin was dissolved in 20 ml of N-methylpyrrolidone (NMP) solvent to prepare a measurement sample.
  • NMP N-methylpyrrolidone
  • As the measuring device two columns made by Tosoh Corporation, “TSKgel SuperHM-H” and one “SuperH2500” were arranged in series, and a detector employing an RI detector was used. .
  • Example 1 30 parts by mass of SUMIPEX (registered trademark) MM (manufactured by Sumitomo Chemical Co., Ltd.) and 70 parts by mass of PVDF copolymer A were dry blended, and using a lab plast mill (20 mm granulator) manufactured by Toyo Seiki Seisakusho. The mixture was melt-kneaded at 260 ° C. to obtain composite pellets. Using a press molding machine, a film having a thickness of 800 ⁇ m was produced from the obtained composite pellet at a set temperature of 220 ° C. When the produced film was visually observed, it was colorless and transparent.
  • SUMIPEX registered trademark
  • PVDF copolymer A 70 parts by mass of PVDF copolymer A were dry blended, and using a lab plast mill (20 mm granulator) manufactured by Toyo Seiki Seisakusho. The mixture was melt-kneaded at 260 ° C. to obtain composite pellets. Using a press molding machine, a
  • Example 2 A film having a thickness of 800 ⁇ m was produced in the same manner as in Example 1 except that the amount of the resin was changed to 20 parts by mass of SUMIPEX MM and 80 parts by mass of PVDF copolymer A. When the produced film was visually observed, it was colorless and transparent.
  • ⁇ Comparative Example 1> A film having a thickness of 800 ⁇ m was prepared in the same manner as in Example 1 except that KF polymer (registered trademark) T # 1300 (manufactured by Kureha Co., Ltd.) was used instead of PVDF copolymer A. When the produced film was visually observed, it was colorless and transparent.
  • ⁇ Comparative example 2> A film having a thickness of 800 ⁇ m was prepared in the same manner as in Example 1 except that the amount of the resin was changed to 10 parts by mass of SUMIPEX MM and 90 parts by mass of PVDF copolymer A. When the produced film was visually observed, it was colorless and transparent.
  • Example 3 A film having a thickness of 800 ⁇ m was produced in the same manner as in Example 1 except that SUMIPEX MM was changed to 35 parts by mass and PVDF copolymer A was changed to 65 parts by mass. It was white when the produced film
  • Table 3 shows the amount of alkali metal (Na + K) contained in the obtained film.
  • the alkali metal content was measured by inductively coupled plasma mass spectrometry.
  • Table 3 shows the relative dielectric constant of each film at 3 V and 100 kHz measured by the automatic equilibrium bridge method in accordance with JIS K6911.
  • Example 3 The film
  • Example 4 As a methacrylic resin and a vinylidene fluoride resin, SUMIPEX MM and SOLEF (registered trademark) 21508 shown in Tables 1 and 2 are mixed at a ratio shown in Table 4 to form an intermediate layer (A) (A) Got. SUMIPEX MH shown in Table 1 was used for forming the thermoplastic resin layers (B) and (C).
  • the laminated body was manufactured with the following method using the apparatus shown in FIG. Referring to FIG.
  • the resin composition (A) was melted in a 65 mm ⁇ single screw extruder 2 (manufactured by Toshiba Machine Co., Ltd.) and SUMPEX MH was melted in 45 mm ⁇ single screw extruders 1 and 3 (manufactured by Hitachi Zosen Corporation). I let you. Next, these are supplied to a three-type three-layer distribution type feed block 4 having a set temperature of 230 to 270 ° C. and distributed so as to have a three-layer structure, and then extruded from a multi-manifold die 5 (manufactured by Hitachi Zosen Corporation).
  • the obtained film-like molten resin 6 is sandwiched between a first cooling roll 7 (diameter 350 mm) and a second cooling roll 8 (diameter 450 mm) arranged opposite to each other, and wound around the second roll 8 while the second roll 8 is wound. And the third roll 9 (diameter 350 mm). Then, it wound around the 3rd cooling roll 9, it shape
  • the obtained laminate 10 had a total film thickness of about 800 ⁇ m and was colorless and transparent when visually observed.
  • Example 5 A laminate was obtained in the same manner as in Example 4 except that the thermoplastic resin layer was formed of Caliber (registered trademark) 301-30. Table 6 shows the content of the resin composition and the layer structure of the laminate. The laminate was colorless and transparent. Further, in the same manner as in Example 1, measurement of the relative dielectric constant of the obtained laminate and high temperature and high humidity exposure test were performed. The results are shown in Table 7.
  • a display device can be manufactured using the films obtained in Examples 1 and 2 or the laminates obtained in Examples 4 and 5 as display window sheets.
  • the film formed from the resin composition of the present invention has a high dielectric constant and can maintain transparency even when used for a long time. Therefore, it is used in smartphones, portable game machines, audio players, tablet terminals, and the like. It is useful as a window sheet for a touch sensor panel or a display device.

Abstract

This resin composition contains 15-30 parts by mass of a (meth)acrylic resin and 70-85 parts by mass of a vinylidene fluoride resin per 100 parts by mass of the combined amount of the (meth)acrylic resin and the vinylidene fluoride resin, wherein said vinylidene fluoride resin is a vinylidene fluoride-hexafluoropropylene copolymer that contains 65-90 mass% of a structural unit derived from vinylidene fluoride and 10-35 mass% of a structural unit derived from hexafluoropropylene, with all structural units of the vinylidene fluoride resin making up 100 mass%.

Description

樹脂組成物、膜、タッチセンサーパネル及び表示装置Resin composition, film, touch sensor panel and display device
 本発明は、樹脂組成物、膜、タッチセンサーパネル及び表示装置に関する。 The present invention relates to a resin composition, a film, a touch sensor panel, and a display device.
 近年、スマートフォン、携帯ゲーム機、オーディオプレーヤー、タブレット端末等にタッチセンサーパネルが用いられている。このようなタッチセンサーパネルの表面には、ウインドウシートとして導電性と透明性とを有する膜が用いられ、かかる膜としては、例えば、メタクリル樹脂とポリフッ化ビニリデンとを含む膜が知られている(特許文献1)。 In recent years, touch sensor panels have been used for smartphones, portable game machines, audio players, tablet terminals, and the like. On the surface of such a touch sensor panel, a film having conductivity and transparency is used as a window sheet. As such a film, for example, a film containing methacrylic resin and polyvinylidene fluoride is known ( Patent Document 1).
特開2013-244604号公報JP 2013-244604 A
 しかしながら、特許文献1に記載されたのと同等の膜を60℃で相対湿度90%の環境下に120時間暴露すると白濁することが分かった。この結果、かかる膜は耐久性が必ずしも十分ではないことが示唆された。 However, it has been found that when a film equivalent to that described in Patent Document 1 is exposed to an environment of 60 ° C. and a relative humidity of 90% for 120 hours, it becomes cloudy. As a result, it was suggested that the durability of the film is not always sufficient.
 本発明者らは、高い比誘電率を有しつつ、長時間使用しても透明性を維持できるタッチセンサーパネル用の膜について鋭意検討したところ、膜を構成する樹脂組成物に用いるフッ化ビニリデン樹脂のフッ化ビニリデンに由来する構造単位と、ヘキサフルオロプロピレンに由来する構造単位との含有量が、耐久性に大きく影響することを見出し、本発明を完成させた。 The inventors of the present invention have intensively studied a film for a touch sensor panel that has a high relative dielectric constant and can maintain transparency even when used for a long time. As a result, vinylidene fluoride used for a resin composition constituting the film is used. The present inventors have found that the contents of the structural unit derived from vinylidene fluoride in the resin and the structural unit derived from hexafluoropropylene greatly affect the durability, and completed the present invention.
 すなわち、本発明は次の〔1〕~〔21〕に記載された発明を含む。
〔1〕(メタ)アクリル樹脂及びフッ化ビニリデン樹脂を含む樹脂組成物であって、(メタ)アクリル樹脂及びフッ化ビニリデン樹脂の合計量100質量部当たり、(メタ)アクリル樹脂15~30質量部と、フッ化ビニリデン樹脂70~85質量部とを含み、前記フッ化ビニリデン樹脂が、その全構成単位を100質量%として、フッ化ビニリデンに由来する構造単位65~90質量%と、ヘキサフルオロプロピレンに由来する構造単位10~35質量%とを含むフッ化ビニリデン-ヘキサフルオロプロピレン共重合体である樹脂組成物;
〔2〕(メタ)アクリル樹脂が、次の(a1)又は(a2)の樹脂である〔1〕に記載の樹脂組成物;
(a1)メタクリル酸メチルの単独重合体、
(a2)メタクリル酸メチルに由来する構造単位50~99.9質量%と、式(1)で示される(メタ)アクリル酸エステルに由来する少なくとも1種の構造単位0.1~50質量%とを含む共重合体
Figure JPOXMLDOC01-appb-C000002
(式中、Rは水素原子又はメチル基を表し、Rが水素原子のときRは炭素数1~8のアルキル基を表し、Rがメチル基のときRは炭素数2~8のアルキル基を表す。);
〔3〕(メタ)アクリル樹脂は、その重量平均分子量(Mw)が70,000~300,000である〔1〕又は〔2〕に記載の樹脂組成物;
〔4〕樹脂組成物は、前記樹脂組成物に含まれるアルカリ金属の合計含有量が50ppm以下である〔1〕~〔3〕のいずれか一項に記載の樹脂組成物;
〔5〕フッ化ビニリデン樹脂は、そのメルトマスフローレート(MFR)が0.1~30g/10分である〔1〕~〔4〕のいずれか一項に記載の樹脂組成物;
〔6〕〔1〕~〔5〕のいずれか一項に記載の樹脂組成物から形成される膜;
〔7〕(メタ)アクリル樹脂及びフッ化ビニリデン樹脂を含む膜であって、前記フッ化ビニリデン樹脂が、その全構成単位を100質量%として、フッ化ビニリデンに由来する構造単位65~90質量%と、ヘキサフルオロプロピレンに由来する構造単位10~35質量%とを含むフッ化ビニリデン-ヘキサフルオロプロピレン共重合体であり、前記膜は、比誘電率が4.0以上であり、かつ、60℃で相対湿度90%の環境下に120時間暴露した後のヘーズが2%以下である膜;
〔8〕膜の厚さが100~2000μmである〔6〕又は〔7〕に記載の膜;
〔9〕〔6〕~〔8〕のいずれか一項に記載の膜と、コーティング層とを備える第1の積層体であって、前記コーティング層が、膜の少なくとも一方の面に配置され、少なくとも一種の機能を付与する層である第1の積層体;
〔10〕〔6〕~〔8〕のいずれか一項に記載の膜と、熱可塑性樹脂層とを備える第2の積層体;
〔11〕熱可塑性樹脂層は、複数の熱可塑性樹脂層で構成され、膜の両面に配置される〔10〕に記載の第2の積層体;
〔12〕熱可塑性樹脂層が、前記熱可塑性樹脂層を構成する熱可塑性樹脂100質量部当たり、(メタ)アクリル樹脂を50質量部以上含む〔10〕又は〔11〕に記載の第2の積層体;
〔13〕(メタ)アクリル樹脂は、その重量平均分子量(Mw)が50,000~300,000である〔12〕に記載の第2の積層体;
〔14〕熱可塑性樹脂層は、その厚さが10~200μmである〔10〕~〔13〕のいずれか一項に記載の第2の積層体;
〔15〕熱可塑性樹脂層は、ビカット軟化温度が100~150℃である〔10〕~〔14〕のいずれか一項に記載の第2の積層体;
〔16〕〔10〕~〔15〕のいずれか一項に記載の第2の積層体と、コーティング層とを備える第3の積層体であって、
 前記コーティング層が、膜の少なくとも一方の面に配置され、少なくとも一種の機能を付与する層である第3の積層体;
〔17〕〔6〕~〔8〕のいずれか一項に記載の膜を含むタッチセンサーパネル;
〔18〕〔9〕に記載の第1の積層体、〔10〕~〔15〕のいずれか一項に記載の第2の積層体又は〔17〕に記載の第3の積層体を含むタッチセンサーパネル;
〔19〕〔6〕~〔8〕のいずれか一項に記載の膜を含む表示装置;
〔20〕〔9〕に記載の第1の積層体、〔10〕~〔15〕のいずれか一項に記載の第2の積層体又は〔17〕に記載の第3の積層体を含む表示装置。
That is, the present invention includes the inventions described in the following [1] to [21].
[1] A resin composition containing a (meth) acrylic resin and a vinylidene fluoride resin, wherein 15 to 30 parts by mass of the (meth) acrylic resin per 100 parts by mass of the total amount of the (meth) acrylic resin and the vinylidene fluoride resin And 70 to 85 parts by mass of a vinylidene fluoride resin, the vinylidene fluoride resin having a total structural unit of 100% by mass and a structural unit derived from vinylidene fluoride of 65 to 90% by mass, hexafluoropropylene A resin composition which is a vinylidene fluoride-hexafluoropropylene copolymer containing 10 to 35% by mass of a structural unit derived from
[2] The resin composition according to [1], wherein the (meth) acrylic resin is the following resin (a1) or (a2);
(A1) methyl methacrylate homopolymer,
(A2) 50 to 99.9% by mass of structural units derived from methyl methacrylate and 0.1 to 50% by mass of at least one structural unit derived from a (meth) acrylic acid ester represented by formula (1) Copolymer containing
Figure JPOXMLDOC01-appb-C000002
(Wherein R 1 represents a hydrogen atom or a methyl group, when R 1 is a hydrogen atom, R 2 represents an alkyl group having 1 to 8 carbon atoms, and when R 1 is a methyl group, R 2 represents 2 to 2 carbon atoms) Represents an alkyl group of 8);
[3] The resin composition according to [1] or [2], wherein the (meth) acrylic resin has a weight average molecular weight (Mw) of 70,000 to 300,000;
[4] The resin composition according to any one of [1] to [3], wherein the total content of alkali metals contained in the resin composition is 50 ppm or less;
[5] The resin composition according to any one of [1] to [4], wherein the vinylidene fluoride resin has a melt mass flow rate (MFR) of 0.1 to 30 g / 10 min.
[6] A film formed from the resin composition according to any one of [1] to [5];
[7] A film containing a (meth) acrylic resin and a vinylidene fluoride resin, wherein the vinylidene fluoride resin has a structural unit of 65 to 90% by mass derived from vinylidene fluoride with 100% by mass as a whole. And a vinylidene fluoride-hexafluoropropylene copolymer containing 10 to 35% by mass of a structural unit derived from hexafluoropropylene, and the film has a relative dielectric constant of 4.0 or more and 60 ° C. And a film having a haze of 2% or less after being exposed to an environment of 90% relative humidity for 120 hours;
[8] The membrane according to [6] or [7], wherein the thickness of the membrane is 100 to 2000 μm;
[9] A first laminate comprising the film according to any one of [6] to [8] and a coating layer, wherein the coating layer is disposed on at least one surface of the film, A first laminate which is a layer imparting at least one function;
[10] A second laminate comprising the film according to any one of [6] to [8] and a thermoplastic resin layer;
[11] The second laminate according to [10], wherein the thermoplastic resin layer includes a plurality of thermoplastic resin layers and is disposed on both surfaces of the film;
[12] The second laminate according to [10] or [11], wherein the thermoplastic resin layer contains 50 parts by mass or more of (meth) acrylic resin per 100 parts by mass of the thermoplastic resin constituting the thermoplastic resin layer. body;
[13] The second laminate according to [12], wherein the (meth) acrylic resin has a weight average molecular weight (Mw) of 50,000 to 300,000;
[14] The second laminate according to any one of [10] to [13], wherein the thermoplastic resin layer has a thickness of 10 to 200 μm;
[15] The thermoplastic resin layer has a Vicat softening temperature of 100 to 150 ° C. The second laminate according to any one of [10] to [14];
[16] A third laminate comprising the second laminate according to any one of [10] to [15] and a coating layer,
A third laminate in which the coating layer is a layer disposed on at least one surface of the film and imparting at least one function;
[17] A touch sensor panel including the film according to any one of [6] to [8];
[18] A touch including the first stacked body according to [9], the second stacked body according to any one of [10] to [15], or the third stacked body according to [17]. Sensor panel;
[19] A display device comprising the film according to any one of [6] to [8];
[20] Display including the first laminate according to [9], the second laminate according to any one of [10] to [15], or the third laminate according to [17] apparatus.
 本発明の樹脂組成物から形成される膜は、高い比誘電率を有しつつ、長時間使用しても透明性を維持できるので、タッチセンサーパネル又は表示装置のウインドウシートとして有用である。 The film formed from the resin composition of the present invention is useful as a touch sensor panel or a window sheet of a display device because it has a high relative dielectric constant and can maintain transparency even when used for a long time.
実施例に用いた本発明の膜の製造装置の概略図である。It is the schematic of the manufacturing apparatus of the film | membrane of this invention used for the Example. 本発明の膜又は積層体を適用した静電容量式タッチセンサーパネルの一例の断面の模式図である。It is the schematic diagram of the cross section of an example of the electrostatic capacitance type touch sensor panel to which the film | membrane or laminated body of this invention is applied. 本発明の膜又は積層体を適用した液晶表示装置の一例の断面の模式図である。It is a schematic diagram of the cross section of an example of the liquid crystal display device to which the film | membrane or laminated body of this invention is applied.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
<(メタ)アクリル樹脂>
 本発明に用いられる(メタ)アクリル樹脂としては、例えば、(メタ)アクリル酸エステル、(メタ)アクリロニトリル等の(メタ)アクリル系モノマーの単独重合体又は2種以上の共重合体;(メタ)アクリル系モノマーとその他のモノマーとの共重合体等が挙げられる。なお、本明細書において、用語「(メタ)アクリル」は、「アクリル」又は「メタクリル」を意味する。
<(Meth) acrylic resin>
Examples of the (meth) acrylic resin used in the present invention include a homopolymer of (meth) acrylic monomers such as (meth) acrylic acid ester and (meth) acrylonitrile, or two or more types of copolymers; Examples include copolymers of acrylic monomers and other monomers. In the present specification, the term “(meth) acryl” means “acryl” or “methacryl”.
 優れた硬度、耐候性、透明性などを有する点から、(メタ)アクリル樹脂としてメタクリル樹脂を用いることが好ましい。メタクリル樹脂は、メタクリル酸エステル(メタクリル酸アルキル)を主体とする単量体を重合して得られる重合体であり、例えば、メタクリル酸エステルの単独重合体(ポリアルキルメタクリレート)、メタクリル酸エステルの共重合体、50質量%以上のメタクリル酸エステルと50質量%以下のメタクリル酸エステル以外の単量体との共重合体などが挙げられる。メタクリル酸エステルとメタクリル酸エステル以外の単量体との共重合体の場合、単量体総量100質量%に対して、好ましくはメタクリル酸エステルが70質量%以上、メタクリル酸エステル以外の単量体が30質量%以下であり、より好ましくはメタクリル酸エステルが90質量%以上、メタクリル酸エステル以外の単量体が10質量%以下である。 From the viewpoint of having excellent hardness, weather resistance, transparency, etc., it is preferable to use a methacrylic resin as the (meth) acrylic resin. A methacrylic resin is a polymer obtained by polymerizing a monomer mainly composed of a methacrylic acid ester (alkyl methacrylate). For example, a methacrylic acid ester homopolymer (polyalkyl methacrylate) and a methacrylic acid ester Examples thereof include a polymer and a copolymer of 50% by mass or more of a methacrylic acid ester and a monomer other than 50% by mass of a methacrylic acid ester. In the case of a copolymer of a methacrylic acid ester and a monomer other than the methacrylic acid ester, the methacrylic acid ester is preferably 70% by mass or more and the monomer other than the methacrylic acid ester with respect to the total monomer amount of 100% by mass. Is 30% by mass or less, more preferably 90% by mass or more of methacrylic acid ester and 10% by mass or less of monomers other than methacrylic acid ester.
 メタクリル酸エステル以外の単量体としては、アクリル酸エステル、分子内に重合性の炭素-炭素二重結合を1個有する単官能単量体が挙げられる。 Examples of monomers other than methacrylic acid esters include acrylic acid esters and monofunctional monomers having one polymerizable carbon-carbon double bond in the molecule.
 単官能単量体としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン等のスチレン系単量体;アクリロニトリル、メタクリロニトリル等のシアン化アルケニル;アクリル酸;メタクリル酸;無水マレイン酸;フェニルマレイミド、シクロヘキシルマレイミド、メチルマレイミド等のN-置換マレイミド;等が挙げられる。耐熱性の観点より、(メタ)アクリル樹脂の分子鎖中((メタ)アクリル樹脂中の主骨格中又は主鎖中ともいう)にラクトン環構造、グルタル酸無水物構造、若しくはグルタルイミド構造等が導入されていてもよい。 Monofunctional monomers include, for example, styrene monomers such as styrene, α-methylstyrene and vinyltoluene; alkenyl cyanides such as acrylonitrile and methacrylonitrile; acrylic acid; methacrylic acid; maleic anhydride; phenylmaleimide N-substituted maleimides such as cyclohexylmaleimide and methylmaleimide; From the viewpoint of heat resistance, a lactone ring structure, a glutaric anhydride structure, or a glutarimide structure is present in the molecular chain of the (meth) acrylic resin (also referred to as the main skeleton or main chain in the (meth) acrylic resin). It may be introduced.
 (メタ)アクリル樹脂として、より具体的には、次の(a1)又は(a2)の樹脂であることが好ましい。なお、次の(a2)において、メタクリル酸メチルに由来する構造単位と、式(1)で示される(メタ)アクリル酸エステルに由来する少なくとも1つの構造単位との合計量を100質量%とすることが好ましい。
(a1)メタクリル酸メチルの単独重合体
(a2)メタクリル酸メチルに由来する構造単位50~99.9質量%と、式(1)で示される(メタ)アクリル酸エステルに由来する少なくとも1つの構造単位0.1~50質量%とを含む共重合体
Figure JPOXMLDOC01-appb-C000003
(式中、Rは水素原子又はメチル基を表し、Rが水素原子のときRは炭素数1~8のアルキル基を表し、Rがメチル基のときRは炭素数2~8のアルキル基を表す。)。
More specifically, the (meth) acrylic resin is preferably the following resin (a1) or (a2). In the following (a2), the total amount of the structural unit derived from methyl methacrylate and at least one structural unit derived from the (meth) acrylic acid ester represented by the formula (1) is 100% by mass. It is preferable.
(A1) Methyl methacrylate homopolymer (a2) 50 to 99.9% by mass of structural units derived from methyl methacrylate and at least one structure derived from (meth) acrylic acid ester represented by formula (1) Copolymer containing 0.1 to 50% by mass of unit
Figure JPOXMLDOC01-appb-C000003
(Wherein R 1 represents a hydrogen atom or a methyl group, when R 1 is a hydrogen atom, R 2 represents an alkyl group having 1 to 8 carbon atoms, and when R 1 is a methyl group, R 2 represents 2 to 2 carbon atoms) Represents an alkyl group of 8).
 ここで、Rが水素原子のときにRで表される炭素数1~8のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等が挙げられ、Rがメチル基のときにRで表される炭素数2~8のアルキル基としては、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等が挙げられる。 Here, when R 1 is a hydrogen atom, the alkyl group having 1 to 8 carbon atoms represented by R 2 is methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert- A butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and the like. Examples of the alkyl group having 2 to 8 carbon atoms represented by R 2 when R 1 is a methyl group include an ethyl group, a propyl group, Examples include isopropyl, butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl and the like.
 式(1)で示される(メタ)アクリル酸エステルとして、好ましくは、アクリル酸メチル又はアクリル酸エチルであり、より好ましくは、アクリル酸メチルである。 The (meth) acrylic acid ester represented by the formula (1) is preferably methyl acrylate or ethyl acrylate, and more preferably methyl acrylate.
 (メタ)アクリル樹脂は、JIS K7210に従って、3.8kg荷重で測定した230℃におけるメルトマスフローレート(以下、MFRと記すことがある。)が、通常0.1~20g/10分であり、好ましくは0.2~5g/10分であり、より好ましくは0.5~3g/10分である。
 (メタ)アクリル樹脂のMFRが大きすぎると、得られる膜の強度が低下する傾向にあり、(メタ)アクリル樹脂のMFRが小さすぎると、成膜性が低下する傾向にある。
The (meth) acrylic resin has a melt mass flow rate at 230 ° C. (hereinafter sometimes referred to as MFR) measured at a load of 3.8 kg in accordance with JIS K7210, usually 0.1 to 20 g / 10 minutes, preferably Is 0.2 to 5 g / 10 min, and more preferably 0.5 to 3 g / 10 min.
When the MFR of the (meth) acrylic resin is too large, the strength of the resulting film tends to be lowered, and when the MFR of the (meth) acrylic resin is too small, the film formability tends to be lowered.
 (メタ)アクリル樹脂は、GPC測定によって求められる重量平均分子量(以下、Mwと記すことがある。)が70,000~300,000であることが好ましく、100,000~250,000がより好ましく、120,000~250,000であることがさらに好ましく、150,000~200,000であることがことさら好ましい。(メタ)アクリル樹脂のMwが大きいほど、得られた膜の60℃で相対湿度90%の環境下に暴露したあとの透明性が高い傾向にあるが、Mwが大きすぎると成膜性が低下する傾向にある。 The (meth) acrylic resin preferably has a weight average molecular weight (hereinafter sometimes referred to as Mw) determined by GPC measurement of 70,000 to 300,000, more preferably 100,000 to 250,000. 120,000 to 250,000 is more preferable, and 150,000 to 200,000 is more preferable. The greater the Mw of the (meth) acrylic resin, the higher the transparency of the resulting film after exposure to an environment with a relative humidity of 90% at 60 ° C. However, if the Mw is too large, the film formability decreases. Tend to.
 (メタ)アクリル樹脂は、耐熱性の観点から、JIS K7206に従って測定したビカット軟化温度(以下、VSTと記すことがある。)が90℃以上であることが好ましく、100℃以上であることがより好ましく、102℃以上であることがさらに好ましい。
(メタ)アクリル樹脂のVSTは、単量体の種類やその割合又は(メタ)アクリル樹脂の分子量を調整することにより、適宜設定することができる。
From the viewpoint of heat resistance, the (meth) acrylic resin preferably has a Vicat softening temperature (hereinafter sometimes referred to as VST) measured according to JIS K7206 of 90 ° C. or higher, more preferably 100 ° C. or higher. Preferably, it is 102 ° C. or higher.
The VST of the (meth) acrylic resin can be appropriately set by adjusting the type and ratio of the monomer or the molecular weight of the (meth) acrylic resin.
 (メタ)アクリル樹脂は、上記単量体成分を、懸濁重合、バルク重合等の方法により重合させることにより、調製することができる。その際、適当な連鎖移動剤を添加することにより、(メタ)アクリル樹脂のMFRやMwやVST等を好ましい範囲に調整することができる。連鎖移動剤の添加量は、単量体の種類やその割合、求める特性等に応じて、適宜決定すればよい。(メタ)アクリル樹脂は、アルカリ金属の含有量が少ないものが好ましい。アルカリ金属の含有量は、重合の際にアルカリ金属を含む化合物の使用量を減らすか、重合後の洗浄工程を増やしてアルカリ金属を含む化合物を除去することにより調整できる。 (Meth) acrylic resin can be prepared by polymerizing the monomer component by a method such as suspension polymerization or bulk polymerization. In that case, MFR, Mw, VST, etc. of (meth) acrylic resin can be adjusted to a preferable range by adding a suitable chain transfer agent. What is necessary is just to determine the addition amount of a chain transfer agent suitably according to the kind of monomer, its ratio, the characteristic calculated | required, etc. The (meth) acrylic resin preferably has a low alkali metal content. The content of the alkali metal can be adjusted by reducing the amount of the compound containing the alkali metal during the polymerization, or increasing the washing step after the polymerization to remove the compound containing the alkali metal.
 (メタ)アクリル樹脂は、市販品を使用してもよい。好ましい市販品の例としては、住友化学(株)製の“SUMIPEX(登録商標) MM”などが挙げられる。 (Meth) acrylic resin may be a commercially available product. Examples of preferable commercial products include “SUMIPEX (registered trademark) MM” manufactured by Sumitomo Chemical Co., Ltd.
<フッ化ビニリデン樹脂>
 本発明に用いられるフッ化ビニリデン樹脂は、得られる膜の透明性の観点から、フッ化ビニリデン樹脂の全構成単位を100質量%として、フッ化ビニリデンに由来する構造単位65~90質量%と、ヘキサフルオロプロピレンに由来する構造単位10~35質量%とを含むフッ化ビニリデン-ヘキサフルオロプロピレン共重合体である。フッ化ビニリデン樹脂は、フッ化ビニリデンに由来する構造単位と、ヘキサフルオロプロピレンに由来する構造単位に加えて、トリフルオロエチレン、テトラフルオロエチレン、クロロトリフルオロエチレン、パーフルオロアルキルビニルエーテル及びエチレンからなる群から選択される少なくとも1種の単量体に由来する構造単位を含んでいても良い。これらの単量体に由来する構造単位は、フッ化ビニリデン樹脂の全構成単位を100質量%として、好ましくは25質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下である。
<Vinylidene fluoride resin>
From the viewpoint of the transparency of the resulting film, the vinylidene fluoride resin used in the present invention has a structural unit of 65 to 90% by mass derived from vinylidene fluoride, based on 100% by mass of all the structural units of the vinylidene fluoride resin, A vinylidene fluoride-hexafluoropropylene copolymer containing 10 to 35% by mass of a structural unit derived from hexafluoropropylene. The vinylidene fluoride resin is a group consisting of trifluoroethylene, tetrafluoroethylene, chlorotrifluoroethylene, perfluoroalkyl vinyl ether and ethylene in addition to the structural unit derived from vinylidene fluoride and the structural unit derived from hexafluoropropylene. A structural unit derived from at least one monomer selected from may be included. The structural unit derived from these monomers is preferably 25% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less, based on 100% by mass of all structural units of the vinylidene fluoride resin. .
 フッ化ビニリデン-ヘキサフルオロプロピレン共重合体に含まれるヘキサフルオロプロピレンに由来する構造単位の含有量として、好ましくは10~30質量%であり、より好ましくは10~25質量%である。フッ化ビニリデン-ヘキサフルオロプロピレン共重合体に含まれるフッ化ビニリデンに由来する構造単位の含有量として、好ましくは70~90質量%であり、より好ましくは75~90質量%である。なお、フッ化ビニリデン樹脂100質量%における、フッ化ビニリデンに由来する構造単位の含有量と、ヘキサフルオロプロピレンに由来する構造単位の含有量の合計量を100質量%とすることが好ましい。 The content of the structural unit derived from hexafluoropropylene contained in the vinylidene fluoride-hexafluoropropylene copolymer is preferably 10 to 30% by mass, more preferably 10 to 25% by mass. The content of the structural unit derived from vinylidene fluoride contained in the vinylidene fluoride-hexafluoropropylene copolymer is preferably 70 to 90% by mass, more preferably 75 to 90% by mass. In addition, it is preferable that the total amount of the content of the structural unit derived from vinylidene fluoride and the content of the structural unit derived from hexafluoropropylene in 100% by mass of the vinylidene fluoride resin is 100% by mass.
 フッ化ビニリデン樹脂は、JIS K7210に従って、3.8kg荷重で測定した230℃におけるメルトマスフローレート(MFR)が、通常、0.1~40g/10分である。上記MFRの上限は、好ましくは35g/10分であり、より好ましくは30g/10分であり、さらに好ましくは25g/10分であり、殊更好ましくは20g/10分である。上記MFRの上限は、好ましくは0.2g/10分であり、より好ましくは0.5g/10分である。フッ化ビニリデン樹脂のMFRが大きすぎると、得られる膜を長期間使用したときに透明性が低下する傾向にあり、フッ化ビニリデン樹脂のMFRが小さすぎると、成膜性が低下する傾向にある。 The vinylidene fluoride resin usually has a melt mass flow rate (MFR) at 230 ° C. of 0.1 to 40 g / 10 minutes measured under a load of 3.8 kg in accordance with JIS K7210. The upper limit of the MFR is preferably 35 g / 10 minutes, more preferably 30 g / 10 minutes, still more preferably 25 g / 10 minutes, and even more preferably 20 g / 10 minutes. The upper limit of the MFR is preferably 0.2 g / 10 minutes, and more preferably 0.5 g / 10 minutes. If the MFR of the vinylidene fluoride resin is too large, the transparency tends to decrease when the resulting film is used for a long period of time. If the MFR of the vinylidene fluoride resin is too small, the film formability tends to decrease. .
 フッ化ビニリデン樹脂は、GPC測定によって求められる重量平均分子量(Mw)が100,000~500,000であることが好ましく、150,000~450,000であることがより好ましく、200,000~450,000であることがさらに好ましい。
 フッ化ビニリデン樹脂のMwが大きいほど、得られた膜の60℃で相対湿度90%の環境下に暴露したあとの透明性が高い傾向にあるが、Mwが大きすぎると成膜性が低下する傾向にある。
The vinylidene fluoride resin preferably has a weight average molecular weight (Mw) determined by GPC measurement of 100,000 to 500,000, more preferably 150,000 to 450,000, and 200,000 to 450. More preferably, it is 1,000.
The greater the Mw of the vinylidene fluoride resin, the higher the transparency of the resulting film after exposure to an environment with a relative humidity of 90% at 60 ° C. However, if the Mw is too large, the film-forming property decreases. There is a tendency.
 フッ化ビニリデン樹脂は、工業的には、懸獨重合法又は乳化重合法により製造される。懸濁重合法では、水を媒体とし、単量体を分散剤で媒体中に液滴として分散させ、単量体中に溶解した有機過酸化物を重合開始剤として重合させることにより、100~300μmの粒状の重合体が得られる。懸濁重合物は乳化重合物と比較して、製造工程が簡単で、粉体の取扱性に優れ、また乳化重合物のようにアルカリ金属を含む乳化剤や塩析剤を含まないため、好ましい。フッ化ビニリデン樹脂に含まれるアルカリ金属の量は、1ppm以下であることが好ましい。これにより、本発明の成形体を含む表示部材は、高温及び高湿度の環境下で使用されても、従来生じていた白濁が抑制される。 The vinylidene fluoride resin is industrially produced by a suspension polymerization method or an emulsion polymerization method. In the suspension polymerization method, water is used as a medium, the monomer is dispersed as droplets in the medium using a dispersant, and an organic peroxide dissolved in the monomer is polymerized as a polymerization initiator, whereby 100 to 100% is obtained. A 300 μm granular polymer is obtained. Suspension polymers are preferred because they have a simpler manufacturing process, better powder handling, and do not contain an emulsifier or salting-out agent containing an alkali metal unlike emulsion polymers. The amount of alkali metal contained in the vinylidene fluoride resin is preferably 1 ppm or less. Thereby, even if the display member containing the molded article of the present invention is used in an environment of high temperature and high humidity, white turbidity that has conventionally occurred is suppressed.
 フッ化ビニリデン樹脂は、市販品を使用してもよい。好ましい市販品の例としては、(株)クレハの“KFポリマー(登録商標)”のT#2950、Solvay社製の“SOLEF(登録商標)”の21508が挙げられる。 A commercially available vinylidene fluoride resin may be used. Examples of preferable commercial products include K #, Kureha's “KF Polymer (registered trademark)” T # 2950, and Solvay's “SOLEF®” 21508.
<樹脂組成物>
 本発明の樹脂組成物は、(メタ)アクリル樹脂とフッ化ビニリデン樹脂の合計量100質量部当たり、(メタ)アクリル樹脂15~30質量部と、フッ化ビニリデン樹脂70~85質量部とを含むものである。好ましくは、(メタ)アクリル樹脂とフッ化ビニリデン樹脂の合計量100質量部当たり、(メタ)アクリル樹脂17~30質量部と、フッ化ビニリデン樹脂70~83質量部とを含み、より好ましくは、(メタ)アクリル樹脂とフッ化ビニリデン樹脂の合計量100質量部当たり、(メタ)アクリル樹脂17~27質量部と、フッ化ビニリデン樹脂73~83質量部とを含むものである。樹脂組成物100質量%中の(メタ)アクリル樹脂とフッ化ビニリデン樹脂の合計含有量は、95質量%以上が好ましく、90質量%以上がより好ましい。
<Resin composition>
The resin composition of the present invention contains 15 to 30 parts by weight of (meth) acrylic resin and 70 to 85 parts by weight of vinylidene fluoride resin per 100 parts by weight of the total amount of (meth) acrylic resin and vinylidene fluoride resin. It is a waste. Preferably, it contains 17 to 30 parts by weight of (meth) acrylic resin and 70 to 83 parts by weight of vinylidene fluoride resin per 100 parts by weight of the total amount of (meth) acrylic resin and vinylidene fluoride resin, more preferably The resin contains 17 to 27 parts by mass of (meth) acrylic resin and 73 to 83 parts by mass of vinylidene fluoride resin per 100 parts by mass of the total amount of (meth) acrylic resin and vinylidene fluoride resin. The total content of the (meth) acrylic resin and the vinylidene fluoride resin in 100% by mass of the resin composition is preferably 95% by mass or more, and more preferably 90% by mass or more.
 樹脂組成物は、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体以外のフッ化ビニリデン樹脂を含んでいてもよく、その含有量は、樹脂組成物100質量%において10質量%以下であることが好ましい。フッ化ビニリデン-ヘキサフルオロプロピレン共重合体以外のフッ化ビニリデン樹脂の例としては、いずれも市販品名で、(株)クレハの“KFポリマー(登録商標)”のT#1300、T#1100、T#1000、T#850、W#850、W#1000、W#1100及びW#1300、Solvay社製の“SOLEF(登録商標)”の6012、6010、6008、31508などが挙げられる。 The resin composition may contain a vinylidene fluoride resin other than the vinylidene fluoride-hexafluoropropylene copolymer, and the content thereof is preferably 10% by mass or less in 100% by mass of the resin composition. Examples of vinylidene fluoride resins other than vinylidene fluoride-hexafluoropropylene copolymers are all commercially available, and Kureha's “KF Polymer (registered trademark)” T # 1300, T # 1100, T Examples include # 1000, T # 850, W # 850, W # 1000, W # 1100, and W # 1300, “SOLEF (registered trademark)” 6012, 6010, 6008, and 31508 manufactured by Solvay.
 樹脂組成物中に含まれるアルカリ金属は、例えば、フッ化ビニリデン樹脂として上記の乳化重合で得られたものを用いる際に残留する乳化剤に由来するナトリウムやカリウムが挙げられる。樹脂組成物中のアルカリ金属の合計含有量が少ないほど、得られる膜を長期間使用したときに透明性が低下しなくなる傾向があり好ましい。その範囲は、通常50ppm以下、好ましくは30ppm以下、より好ましくは10ppm以下であり、実質的に含まれないことがさらに好ましい。樹脂組成物中のアルカリ金属の含有量は、例えば、誘導結合プラズマ質量分析法(ICP/MS)により求めることができる。 Examples of the alkali metal contained in the resin composition include sodium and potassium derived from the remaining emulsifier when using the vinylidene fluoride resin obtained by the above emulsion polymerization. The smaller the total content of alkali metals in the resin composition, the more preferable it is that the transparency does not decrease when the resulting film is used for a long period of time. The range is usually 50 ppm or less, preferably 30 ppm or less, more preferably 10 ppm or less, and it is further preferred that it is not substantially contained. The content of alkali metal in the resin composition can be determined by, for example, inductively coupled plasma mass spectrometry (ICP / MS).
 さらに、本発明の樹脂組成物には、本発明の効果を阻害しない範囲で、一般的に用いられる各種の添加剤を添加してもよい。添加剤としては、例えば、安定剤、酸化防止剤、紫外線吸収剤、光安定剤、着色剤、発泡剤、滑剤、離型剤、帯電防止剤、難燃剤、重合抑制剤、難燃助剤、補強剤、核剤、ブルーイング剤等の着色剤などが挙げられる。 Furthermore, various commonly used additives may be added to the resin composition of the present invention as long as the effects of the present invention are not impaired. Examples of additives include stabilizers, antioxidants, ultraviolet absorbers, light stabilizers, colorants, foaming agents, lubricants, mold release agents, antistatic agents, flame retardants, polymerization inhibitors, flame retardant aids, Examples include coloring agents such as reinforcing agents, nucleating agents, and bluing agents.
 着色剤としては、アントラキノン骨格を有する化合物、フタロシアニン骨格を有する化合物などを挙げることができる。これらの中でも、アントラキノン骨格を有する化合物が、耐熱性の観点から好ましい。 Examples of the colorant include compounds having an anthraquinone skeleton, compounds having a phthalocyanine skeleton, and the like. Among these, a compound having an anthraquinone skeleton is preferable from the viewpoint of heat resistance.
 着色剤としてブルーイング剤を用いる場合、その含有量は、0.01~5ppmであり、好ましくは0.05~4ppm、より好ましくは0.1~3ppmである。ブルーイング剤は、公知のものを適宜使用することができる。ブルーイング剤としては、例えば、それぞれ商品名で、マクロレックス(登録商標)ブルーRR(バイエル社製)、マクロレックス(登録商標)ブルー3R(バイエル社製)、Sumiplast(登録商標) Violet B(住化ケムテックス社製)及びポリシンスレン(登録商標)ブルーRLS(クラリアント社製)が挙げられる。 When a bluing agent is used as a colorant, its content is 0.01 to 5 ppm, preferably 0.05 to 4 ppm, more preferably 0.1 to 3 ppm. A known bluing agent can be appropriately used. As the bluing agent, for example, Macrolex (registered trademark) Blue RR (manufactured by Bayer), Macrolex (registered trademark) Blue 3R (manufactured by Bayer), Sumiplast (registered trademark) Violet B (household) Chemical Chemtex) and Polysynthrene (registered trademark) Blue RLS (Clariant).
 これらの添加剤は、本発明の樹脂組成物中に存在すればよく、(メタ)アクリル樹脂又はフッ化ビニリデン樹脂のいずれの成分に含まれていてもよく、後述する(メタ)アクリル樹脂とフッ化ビニリデン樹脂との溶融混練の際に添加してもよく、(メタ)アクリル樹脂とフッ化ビニリデン樹脂との溶融混練後に添加してもよく、樹脂組成物を用いて膜を作製する際に添加してもよい。 These additives may be present in the resin composition of the present invention, and may be contained in any component of the (meth) acrylic resin or vinylidene fluoride resin. May be added during melt-kneading with vinylidene fluoride resin, may be added after melt-kneading between (meth) acrylic resin and vinylidene fluoride resin, or added when producing a film using a resin composition May be.
 本発明の樹脂組成物は、(メタ)アクリル樹脂とフッ化ビニリデン樹脂とを、通常、混練することにより得られる。かかる混練は、例えば、150~350℃の温度にて、10~1000/秒の剪断速度で溶融混練する工程を含む方法により実施できる。 The resin composition of the present invention is usually obtained by kneading a (meth) acrylic resin and a vinylidene fluoride resin. Such kneading can be performed, for example, by a method including a step of melt-kneading at a shear rate of 10 to 1000 / second at a temperature of 150 to 350 ° C.
 溶融混練を行う際の温度が150℃未満の場合、樹脂が溶融しないおそれがある。一方、溶融混練を行う際の温度が350℃を超える場合、樹脂が熱分解するおそれがある。さらに、溶融混練を行う際の剪断速度が10/秒未満の場合、十分に混練されないおそれがある。一方、溶融混練を行う際の剪断速度が1000/秒を超える場合、樹脂が分解するおそれがある。 If the temperature during melt kneading is less than 150 ° C., the resin may not melt. On the other hand, when the temperature at the time of melt kneading exceeds 350 ° C., the resin may be thermally decomposed. Furthermore, when the shear rate at the time of melt kneading is less than 10 / second, the kneading may not be sufficiently performed. On the other hand, if the shear rate during melt-kneading exceeds 1000 / second, the resin may be decomposed.
 各成分がより均一に混合された樹脂組成物を得るために、溶融混練は、好ましくは180~300℃、より好ましくは200~300℃の温度で行われ、好ましくは20~700/秒、より好ましくは30~500/秒の剪断速度で行われる。 In order to obtain a resin composition in which each component is more uniformly mixed, the melt-kneading is preferably performed at a temperature of 180 to 300 ° C., more preferably 200 to 300 ° C., preferably 20 to 700 / second, and more. Preferably, it is carried out at a shear rate of 30 to 500 / sec.
 溶融混練に用いる機器としては、通常の混合機や混練機を用いることができる。具体的には、一軸混練機、二軸混練機、多軸押出機、ヘンシェルミキサー、バンバリーミキサー、ニーダー、ロールミル等が挙げられる。また、剪断速度を上記範囲内で大きくする場合には、高剪断加工装置等を使用してもよい。 As an apparatus used for melt kneading, an ordinary mixer or kneader can be used. Specific examples include a single-screw kneader, a twin-screw kneader, a multi-screw extruder, a Henschel mixer, a Banbury mixer, a kneader, and a roll mill. Further, when the shear rate is increased within the above range, a high shearing device or the like may be used.
<膜>
 本発明の膜は、上記本発明の樹脂組成物から形成される。かかる膜は、厚さが100~2000μmであることが好ましく、200~1500μmであることがより好ましい。
<Membrane>
The film of the present invention is formed from the resin composition of the present invention. Such a film preferably has a thickness of 100 to 2000 μm, more preferably 200 to 1500 μm.
 本発明の膜は、60℃で相対湿度90%の環境のように、高温高湿熱環境下に長時間、例えば120時間暴露しても、暴露後におけるJIS K7136に従って測定したヘーズ(Haze)が、2%以下となる。すなわち、本発明の膜は、高温高湿熱環境下で生じる膜の白化を抑制することができる。上記のヘーズは、好ましくは1.8%以下、より好ましくは1.5%以下である。値が小さいほど、膜の白化がより抑制されていることを示す。また、本発明の膜は、高温高湿熱環境下に長時間暴露した前後におけるヘーズ値の変化量が、好ましくは10ポイント以下であり、より好ましくは5ポイント以下であり、さらに好ましくは1ポイント以下であり、ことさら好ましくは0.5ポイント以下である。 Even if the film of the present invention is exposed to a high temperature and high humidity environment such as an environment of 90% relative humidity at 60 ° C. for a long time, for example, 120 hours, the haze measured according to JIS K7136 after the exposure is 2% or less. That is, the film of the present invention can suppress whitening of the film that occurs in a high temperature and high humidity environment. The haze is preferably 1.8% or less, more preferably 1.5% or less. It shows that whitening of a film | membrane is suppressed more so that a value is small. In the film of the present invention, the amount of change in haze before and after exposure for a long time in a high temperature and high humidity environment is preferably 10 points or less, more preferably 5 points or less, and even more preferably 1 point or less. And more preferably 0.5 points or less.
<積層体>
 本発明の積層体の1つの実施形態は、上述の膜と熱可塑性樹脂層とを備える(第2の積層体)。かかる積層体は、耐熱性及び表面硬度に優れる。熱可塑性樹脂層は、本発明の樹脂組成物から形成される膜の少なくとも一方の面に積層されていればよく、膜と必ずしも接触している必要はなく、他の層を介して積層されてもよい。熱可塑性樹脂層は、本発明の樹脂組成物から形成される膜と接して熱可塑性樹脂層が積層されるのが好ましい。膜の形状維持の観点から、積層体は、膜の両面に熱可塑性樹脂層を含むことが好ましい。積層体は、後述するコーティング層をさらに備えていてもよい(第3の積層体)。
<Laminated body>
One embodiment of the laminate of the present invention comprises the above-described film and a thermoplastic resin layer (second laminate). Such a laminate is excellent in heat resistance and surface hardness. The thermoplastic resin layer only needs to be laminated on at least one surface of the film formed from the resin composition of the present invention, and does not necessarily need to be in contact with the film, and is laminated via another layer. Also good. The thermoplastic resin layer is preferably laminated in contact with a film formed from the resin composition of the present invention. From the viewpoint of maintaining the shape of the film, the laminate preferably includes a thermoplastic resin layer on both sides of the film. The laminate may further include a coating layer described later (third laminate).
 熱可塑性樹脂層の厚さは、10~200μmであることが好ましく、50~150μmであることがより好ましい。積層体が膜の両面に熱可塑性樹脂層を含む場合、各熱可塑性樹脂層の厚さや組成は、互いに同一であっても異なっていてもよいが、膜の形状維持の観点から、互いに実質的に同一であることが好ましい。 The thickness of the thermoplastic resin layer is preferably 10 to 200 μm, and more preferably 50 to 150 μm. When the laminate includes thermoplastic resin layers on both sides of the film, the thickness and composition of each thermoplastic resin layer may be the same or different from each other, but from the viewpoint of maintaining the shape of the film, Are preferably the same.
 熱可塑性樹脂層のJIS K5600-5-4に従って測定した鉛筆硬度は、HB以上であることが好ましく、F以上であることがより好ましく、H以上であることがさらに好ましい。JIS K7206に従って測定した熱可塑性樹脂層のビカット軟化温度は、100~150℃であることが好ましい。 The pencil hardness measured according to JIS K5600-5-4 of the thermoplastic resin layer is preferably HB or more, more preferably F or more, and further preferably H or more. The Vicat softening temperature of the thermoplastic resin layer measured according to JIS K7206 is preferably 100 to 150 ° C.
 熱可塑性樹脂層には、1種類以上の(メタ)アクリル樹脂又は1種類以上の(メタ)アクリル樹脂以外の熱可塑性樹脂から選択することができる。これらの樹脂から、一種類又は複数種類の熱可塑性樹脂を、単独で、又は混合して使用することができる。熱可塑性樹脂層は、単層構成又は複数の層が積層された構成とすることができる。 The thermoplastic resin layer can be selected from one or more types of (meth) acrylic resins or one or more types of thermoplastic resins other than (meth) acrylic resins. From these resins, one or more types of thermoplastic resins can be used alone or in combination. The thermoplastic resin layer can have a single layer configuration or a configuration in which a plurality of layers are laminated.
 熱可塑性樹脂層の(メタ)アクリル樹脂として、上記本発明の樹脂組成物に含まれる(メタ)アクリル樹脂と同じ一次構造の樹脂を用いることができる。例えば、メタクリル酸メチルの単独重合体、メタクリル酸メチルに由来する構造単位50~99.9質量%とアクリル酸メチルに由来する構造単位0.1~50質量%からなる共重合体、ラクトン環構造が導入されたメタクリル酸メチル樹脂、メタクリル酸メチルに由来する構造単位とメタクリル酸に由来する構造単位からなる共重合体、又はスチレンに由来する構造単位、無水マレイン酸に由来する構造単位及びメタクリル酸メチルに由来する構造単位からなる三元共重合体などを用いることができる。(メタ)アクリル樹脂の重量平均分子量(Mw)は、50,000~300,000であることが好ましく、70,000~250,000であることがより好ましい。熱可塑性樹脂層と樹脂組成物から形成される膜とを含む積層体において、熱可塑性樹脂層に含まれる(メタ)アクリル樹脂は、膜を形成する樹脂組成物に含まれる(メタ)アクリル樹脂と同じであっても異なっていてもよい。 As the (meth) acrylic resin of the thermoplastic resin layer, a resin having the same primary structure as that of the (meth) acrylic resin contained in the resin composition of the present invention can be used. For example, a homopolymer of methyl methacrylate, a copolymer comprising 50 to 99.9% by mass of structural units derived from methyl methacrylate and 0.1 to 50% by mass of structural units derived from methyl acrylate, a lactone ring structure Methacrylic acid resin, a copolymer composed of a structural unit derived from methyl methacrylate and a structural unit derived from methacrylic acid, or a structural unit derived from styrene, a structural unit derived from maleic anhydride, and methacrylic acid A terpolymer composed of a structural unit derived from methyl can be used. The weight average molecular weight (Mw) of the (meth) acrylic resin is preferably 50,000 to 300,000, and more preferably 70,000 to 250,000. In the laminate including the thermoplastic resin layer and the film formed from the resin composition, the (meth) acrylic resin contained in the thermoplastic resin layer is the same as the (meth) acrylic resin contained in the resin composition forming the film. They may be the same or different.
 (メタ)アクリル樹脂以外の熱可塑性樹脂として、カーボネート系樹脂、シクロオレフィン系樹脂、エチレンテレフタレート系樹脂、スチレン系樹脂、メタクリル酸メチル-スチレン系樹脂、アクリロニトリル-スチレン系樹脂、ABS樹脂などを用いることができる。(メタ)アクリル樹脂以外の熱可塑性樹脂は、耐熱性の観点から、JIS K7206に従って測定したビカット軟化温度が115℃以上であることが好ましく、117℃以上であることがより好ましく、120℃以上であることがさらに好ましい。 As thermoplastic resins other than (meth) acrylic resins, carbonate resins, cycloolefin resins, ethylene terephthalate resins, styrene resins, methyl methacrylate-styrene resins, acrylonitrile-styrene resins, ABS resins, etc. should be used. Can do. The thermoplastic resin other than the (meth) acrylic resin preferably has a Vicat softening temperature of 115 ° C. or higher, more preferably 117 ° C. or higher, more preferably 120 ° C. or higher, from the viewpoint of heat resistance. More preferably it is.
 カーボネート系樹脂の例としては、ポリカーボネート樹脂が挙げられる。熱可塑性樹脂層がポリカーボネート樹脂層である場合、ポリカーボネート樹脂層は、1種類以上のポリカーボネート樹脂又は1種類以上のポリカーボネート樹脂と1種類以上のポリカーボネート樹脂以外の熱可塑性樹脂との複合樹脂から形成することができる。これらのポリカーボネート樹脂は、温度300℃及び荷重1.2kgの条件で測定されるメルトボリュームレート(以下、MVRとも言う。 )が3~120cm3/10分であるのが好ましい。MVRは、より好ましくは、3~80cm3/10分であり、さらに好ましくは4~40cm3/10分、ことさら好ましくは10~40cm3/10分である。MVRが3cm3/10分未満の場合は、流動性が低下するため、溶融共押出成形などの成形加工しにくくなる傾向や、外観不良が生じることがある。また、MVRが120cm3/10分を超えると、ポリカーボネート樹脂層の強度等の機械特性 が低下する傾向にある。MVRは、JIS K 7210に準拠し、1.2kgの荷重下、300℃の条件にて測定することができる。 An example of the carbonate resin is a polycarbonate resin. When the thermoplastic resin layer is a polycarbonate resin layer, the polycarbonate resin layer is formed from one or more types of polycarbonate resins or a composite resin of one or more types of polycarbonate resins and one or more types of thermoplastic resins. Can do. These polycarbonate resins are melt volume rate measured at a temperature of 300 ° C. and a load 1.2 kg (hereinafter, also referred to as MVR.) Is preferably a 3 ~ 120cm 3/10 min. MVR is more preferably from 3 ~ 80cm 3/10 minutes, more preferably 4 ~ 40cm 3/10 minutes, deliberately preferably 10 ~ 40cm 3/10 minutes. If MVR is less than 3 cm 3/10 min, because the flowability is decreased, and tends to be difficult by molding such as melt co-extrusion, there is the appearance failure occurs. Further, the MVR exceeds 120 cm 3/10 min, mechanical properties such as strength of the polycarbonate resin layer tends to decrease. MVR can be measured under the condition of 300 ° C. under a load of 1.2 kg in accordance with JIS K 7210.
 ポリカーボネート樹脂は、例えば、種々のジヒドロキシジアリール化合物とホスゲンとを反応させるホスゲン法、又はジヒドロキシジアリール化合物とジフェニルカーボネート等の炭酸エステルとを反応させるエステル交換法によって得られる重合体であり、代表的なものとしては、2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA)から製造されたポリカーボネート樹脂が挙げられる。  The polycarbonate resin is a polymer obtained by, for example, a phosgene method in which various dihydroxydiaryl compounds and phosgene are reacted, or a transesterification method in which a dihydroxydiaryl compound and a carbonic ester such as diphenyl carbonate are reacted. Examples thereof include polycarbonate resins produced from 2,2-bis (4-hydroxyphenyl) propane (commonly called bisphenol A).
 上記ジヒドロキシジアリール化合物としては、ビスフェノールAの他に、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、2,2-ビス(4-ヒドロキシフェニル-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-第三ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパンのようなビス(ヒドロキシアリール)アルカン類、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサンのようなビス(ヒドロキシアリール)シクロアルカン類、4,4′-ジヒドロキシジフェニルエーテル、4,4′-ジヒドロキシ-3,3′-ジメチルジフェニルエーテルのようなジヒドロキシジアリールエーテル類、4,4′-ジヒドロキシジフェニルスルフィドのようなジヒドロキシジアリールスルフィド類、4,4′-ジヒドロキシジフェニルスルホキシド、4,4′-ジヒドロキシ-3,3′-ジメチルジフェニルスルホキシドのようなジヒドロキシジアリールスルホキシド類、4,4′-ジヒドロキシジフェニルスルホン、4,4′-ジヒドロキシ-3,3′-ジメチルジフェニルスルホンのようなジヒドロキシジアリールスルホン類が挙げられる。 Examples of the dihydroxydiaryl compound include bisphenol 4-, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2, 2-bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, 2,2-bis (4-hydroxyphenyl-3-methylphenyl) propane, 1,1-bis (4-hydroxy-3) -Tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 2,2-bis ( Bis (hydroxyaryl) alkanes such as 4-hydroxy-3,5-dichlorophenyl) propane, 1,1 Bis (hydroxyaryl) cycloalkanes such as bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3 Dihydroxy diaryl ethers such as 3,3'-dimethyldiphenyl ether, dihydroxy diaryl sulfides such as 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3 ' Dihydroxy diaryl sulfoxides such as dimethyldiphenyl sulfoxide, dihydroxy diaryl sulfoxides such as 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfone Rusuruhon acids and the like.
 これらは単独又は2種類以上混合して使用されるが、これらの他に、ピペラジン、ジピペリジルハイドロキノン、レゾルシン、4,4′-ジヒドロキシジフェニル等を混合して使用してもよい。  These may be used alone or in combination of two or more, but in addition to these, piperazine, dipiperidyl hydroquinone, resorcin, 4,4'-dihydroxydiphenyl and the like may be used in combination.
 さらに、上記のジヒドロキシアリール化合物と以下に示すような3価以上のフェノール化合物を混合使用してもよい。3価以上のフェノールとしてはフロログルシン、4,6-ジメチル-2,4,6-トリ-(4-ヒドロキシフェニル)-ヘプテン、2,4,6-ジメチル-2,4,6-トリ-(4-ヒドロキシフェニル)-ヘプタン、1,3,5-トリ-(4-ヒドロキシフェニル)-ベンゾール、1,1,1-トリ-(4-ヒドロキシフェニル)-エタン及び2,2-ビス-〔4,4-(4,4′-ジヒドロキシジフェニル)-シクロヘキシル〕-プロパンなどが挙げられる。 Furthermore, a mixture of the above dihydroxyaryl compound and a trivalent or higher valent phenol compound as shown below may be used. Trihydric or higher phenols include phloroglucin, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) -heptene, 2,4,6-dimethyl-2,4,6-tri- (4 -Hydroxyphenyl) -heptane, 1,3,5-tri- (4-hydroxyphenyl) -benzol, 1,1,1-tri- (4-hydroxyphenyl) -ethane and 2,2-bis- [4 4- (4,4'-dihydroxydiphenyl) -cyclohexyl] -propane and the like.
 ポリカーボネート樹脂層が、1種類以上のポリカーボネート樹脂と1種類以上のポリカーボネート樹脂以外の熱可塑性樹脂との複合樹脂から形成される場合、ポリカーボネート樹脂以外の熱可塑性樹脂は、透明性を損なわない範囲で配合することができる。この熱可塑性樹脂としては、例えば、ポリカーボネート樹脂と相溶する(メタ)アクリル樹脂が好ましく、芳香環又はシクロオレフィンを構造中に有するメタクリル樹脂がより好ましい。ポリカーボネート樹脂がこのようなタクリル樹脂を含むと、得られるポリカーボネート樹脂層の表面硬度を、ポリカーボネート樹脂単独から形成されるときよりも高くすることができる。 When the polycarbonate resin layer is formed from a composite resin of one or more types of polycarbonate resin and one or more types of thermoplastic resin, the thermoplastic resin other than the polycarbonate resin is blended within a range that does not impair the transparency. can do. As this thermoplastic resin, for example, a (meth) acrylic resin compatible with a polycarbonate resin is preferable, and a methacrylic resin having an aromatic ring or a cycloolefin in its structure is more preferable. When the polycarbonate resin contains such a tacryl resin, the surface hardness of the obtained polycarbonate resin layer can be made higher than when the polycarbonate resin is formed from the polycarbonate resin alone.
 上記ポリカーボネート樹脂以外のポリカーボネート樹脂として、イソソルバイトと芳香族ジオールから合成されるポリカーボネートが挙げられる。例えば、三菱化学製「DURABIO(商標登録)」が挙げられる。 Polycarbonate resins other than the above polycarbonate resins include polycarbonates synthesized from isosorbite and aromatic diols. An example is “DURABIO (registered trademark)” manufactured by Mitsubishi Chemical.
 ポリカーボネート樹脂には、離型剤、紫外線吸収剤、染料、顔料、重合抑制剤、酸化防止剤、難燃化剤、補強剤等の添加剤、前記ポリカーボネート樹脂以外の重合体などを、本発明の効果を損なわない範囲で含有させてもよい。 The polycarbonate resin includes a release agent, an ultraviolet absorber, a dye, a pigment, a polymerization inhibitor, an antioxidant, a flame retardant, a reinforcing agent and other additives, a polymer other than the polycarbonate resin, and the like. You may make it contain in the range which does not impair an effect.
 ポリカーボネート樹脂は、市販品を使用してもよく、例えば、住化スタイロンポリカーボネート(株)製“カリバー(登録商標)”の301-4、301-10、301-15、301-22、301-30、301-40、SD2221W、SD2201W、TR2201などが挙げられる。  A commercially available product may be used as the polycarbonate resin. For example, 301-4, 301-10, 301-15, 301-22, 301-30 of “Caliver (registered trademark)” manufactured by Sumika Stylon Polycarbonate Co., Ltd. 301-40, SD2221W, SD2201W, TR2201 and the like.
 熱可塑性樹脂層に、(メタ)アクリル樹脂を二種類以上混合して使用する場合、又は(メタ)アクリル樹脂を他の熱可塑性樹脂と混合して使用する場合は、熱可塑性樹脂層を構成する熱可塑性樹脂100質量部当たり(メタ)アクリル樹脂を50質量部以上含むことが好ましい。(メタ)アクリル樹脂以外の熱可塑性樹脂としては(メタ)アクリル樹脂と相溶する熱可塑性樹脂が好ましい。メタクリル酸メチルの単独重合体、又はメタクリル酸メチルに由来する構造単位50~99.9質量%とアクリル酸メチルに由来する構造単位0.1~50質量%からなる共重合体と相溶する熱可塑性樹脂として、電気化学工業製のレジスファイ(登録商標)R-100、R-200、アルケマ社製のAltuglas(登録商標)HT-121などが挙げられる。
 熱可塑性樹脂層は実質的にフッ化ビニリデン樹脂を含まないことが好ましい。
When two or more types of (meth) acrylic resins are used in the thermoplastic resin layer, or when the (meth) acrylic resin is used in combination with another thermoplastic resin, the thermoplastic resin layer is formed. It is preferable to contain 50 parts by mass or more of (meth) acrylic resin per 100 parts by mass of the thermoplastic resin. As the thermoplastic resin other than the (meth) acrylic resin, a thermoplastic resin compatible with the (meth) acrylic resin is preferable. Heat that is compatible with a homopolymer of methyl methacrylate or a copolymer comprising 50 to 99.9% by mass of structural units derived from methyl methacrylate and 0.1 to 50% by mass of structural units derived from methyl acrylate Examples of the plastic resin include Resisti (registered trademark) R-100 and R-200 manufactured by Electrochemical Industry, Altuglas (registered trademark) HT-121 manufactured by Arkema Corporation, and the like.
It is preferable that the thermoplastic resin layer does not substantially contain a vinylidene fluoride resin.
 本発明の膜は、目視で観察した場合に透明であり、JIS K7361-10に従って測定される全光線透過率(Tt)が、好ましくは88%以上、より好ましくは90%以上であり、60℃で相対湿度90%の環境下に120時間暴露した後にも、この範囲を維持する。 The film of the present invention is transparent when visually observed, and the total light transmittance (Tt) measured according to JIS K7361-10 is preferably 88% or more, more preferably 90% or more, and 60 ° C. This range is maintained even after 120 hours of exposure in an environment with a relative humidity of 90%.
 本発明の膜は、(メタ)アクリル樹脂及びフッ化ビニリデン樹脂を含み、60℃で相対湿度90%の環境下に120時間暴露した後にJIS K7136に従って測定したヘーズ(Haze)が、通常2%以下、好ましくは1.9%以下、より好ましくは1.8%以下である。 The film of the present invention contains a (meth) acrylic resin and a vinylidene fluoride resin, and the haze measured in accordance with JIS K7136 after being exposed to an environment of 90% relative humidity at 60 ° C. for 120 hours is usually 2% or less. , Preferably 1.9% or less, more preferably 1.8% or less.
 さらに、本発明の膜は、JIS K6911に従い、自動平衡ブリッジ法で測定した3V、100kHzにおける比誘電率が、通常4以上、好ましくは4.1以上である。なお、本発明の積層体は、JIS K6911に従い、自動平衡ブリッジ法で測定した3V、100kHzにおける比誘電率が、通常4以上であり、好ましくは4.3以上であり、より好ましくは4.5以上である。上記比誘電率の値は、膜を高温及び高湿環境下に暴露する前に行う測定で得られる値である。 Furthermore, the film of the present invention has a relative dielectric constant of 3 or more, preferably 4.1 or more, at 3 V and 100 kHz, measured by an automatic equilibrium bridge method in accordance with JIS K6911. The laminate of the present invention has a relative dielectric constant at 3 V and 100 kHz measured by the automatic equilibrium bridge method in accordance with JIS K6911, which is usually 4 or more, preferably 4.3 or more, more preferably 4.5. That's it. The value of the relative dielectric constant is a value obtained by measurement performed before the film is exposed to a high temperature and high humidity environment.
 本発明の膜は、上記本発明の樹脂組成物を、例えば、溶融押出成形法、熱プレス法、射出成形法等により成形することにより製造できる。 The film of the present invention can be produced by molding the resin composition of the present invention by, for example, a melt extrusion molding method, a hot press method, an injection molding method, or the like.
 上記の成形により本発明の樹脂組成物を成形した膜と、別途成形した熱可塑性樹脂層とを、例えば粘着剤や接着剤を介して貼合することにより積層体を製造してもよいが、本発明の樹脂組成物と(メタ)アクリル樹脂とを溶融共押出成形により積層一体化させることにより積層体を製造することが好ましい。このように溶融共押出成形により製造された積層体は、貼合により製造された積層体と比較して、通常、二次成形しやすい傾向にある。 A laminate may be produced by laminating a film obtained by molding the resin composition of the present invention by the above molding and a separately molded thermoplastic resin layer via, for example, an adhesive or an adhesive, It is preferable to produce a laminate by laminating and integrating the resin composition of the present invention and a (meth) acrylic resin by melt coextrusion molding. Thus, the laminated body manufactured by melt coextrusion molding tends to be easily subjected to secondary molding as compared with the laminated body manufactured by bonding.
 溶融共押出成形は、例えば、本発明の樹脂組成物と(メタ)アクリル樹脂とを、2基又は3基の一軸又は二軸の押出機に、別々に投入して各々溶融混練した後、フィードブロックダイやマルチマニホールドダイ等を介して、本発明の膜と熱可塑性樹脂層とを積層一体化し、押出す成形法である。得られた積層体は、例えば、ロールユニット等により冷却、固化されるのが好ましい。 In melt coextrusion molding, for example, the resin composition of the present invention and (meth) acrylic resin are separately fed into two or three uniaxial or biaxial extruders and melt-kneaded, respectively, and then fed. This is a molding method in which the film of the present invention and a thermoplastic resin layer are laminated and integrated through a block die, a multi-manifold die or the like, and extruded. The obtained laminate is preferably cooled and solidified by, for example, a roll unit.
 本発明の積層体の別の実施形態は、上述の膜と、膜の少なくとも一方の表面に配置される、傷つき防止、反射防止、防眩及び指紋防止からなる群から選択される少なくとも一種の機能を付与するコーティング層とを備える(第1の積層体)。コーティング層は、膜の少なくとも一方の面に積層されていればよく、膜と必ずしも接触している必要はなく、他の層を介して積層されてもよい。コーティング層としては、例えば、特開2013-86273号公報に記載されている硬化被膜を用いることができる。 Another embodiment of the laminate of the present invention is at least one function selected from the group consisting of the above-mentioned film and at least one surface of the film, the anti-scratch, anti-reflection, anti-glare and anti-fingerprint. (A first laminate). The coating layer only needs to be laminated on at least one surface of the film, and does not necessarily need to be in contact with the film, and may be laminated via another layer. As the coating layer, for example, a cured film described in JP 2013-86273 A can be used.
 コーティング層の厚さは、1~100μmが好ましく、3~80μmがより好ましく、5~70μmがさらに好ましい。1μmよりも薄いと、機能の発現が困難であり、100μmよりも厚いと、コーティング層の割れが懸念される。 The thickness of the coating layer is preferably 1 to 100 μm, more preferably 3 to 80 μm, and even more preferably 5 to 70 μm. If it is thinner than 1 μm, it is difficult to express the function, and if it is thicker than 100 μm, the coating layer may be cracked.
 必要に応じて、コーティング層の表面に、コート法、スパッタ法、真空蒸着法等により反射防止処理が施されてもよい。また、反射防止効果を付与の目的として、コーティング層の片面又は両面に、別途作製した反射防止性のシートが貼合されてもよい。反射防止性のシートは、コーティング層の少なくとも一方の面に積層されていればよく、コーティング層と必ずしも接触している必要はなく、他の層を介して積層されてもよい。 If necessary, the surface of the coating layer may be subjected to antireflection treatment by a coating method, a sputtering method, a vacuum deposition method, or the like. In addition, for the purpose of imparting an antireflection effect, a separately prepared antireflection sheet may be bonded to one side or both sides of the coating layer. The antireflective sheet only needs to be laminated on at least one surface of the coating layer, and is not necessarily in contact with the coating layer, and may be laminated via another layer.
 本発明の膜をA層、熱可塑性樹脂層をB層、コーティング層をC層と略記したとき、本発明の膜及び積層体の層構成例としては、下記(1)~(12)が挙げられる。
(1) A層
(2) A層/B層
(3) B層/A層/B層
(4) B層/A層/B層/A層/B層
(5) A層/C層
(6) C層/A層/C層
(7) A層/B層/C層
(8) C層/A層/B層/C層
(9) B層/A層/B層/C層
(10)C層/B層/A層/B層/C層
(11)B層/A層/B層/A層/B層/C層
(12)C層/B層/A層/B層/A層/B層/C層
When the film of the present invention is abbreviated as layer A, the thermoplastic resin layer is abbreviated as B layer, and the coating layer is abbreviated as C layer, examples of the layer structure of the film and laminate of the present invention include the following (1) to (12). It is done.
(1) A layer (2) A layer / B layer (3) B layer / A layer / B layer (4) B layer / A layer / B layer / A layer / B layer (5) A layer / C layer ( 6) C layer / A layer / C layer (7) A layer / B layer / C layer (8) C layer / A layer / B layer / C layer (9) B layer / A layer / B layer / C layer ( 10) C layer / B layer / A layer / B layer / C layer (11) B layer / A layer / B layer / A layer / B layer / C layer (12) C layer / B layer / A layer / B layer / A layer / B layer / C layer
 本発明の膜をA層、熱可塑性樹脂層をB層としたとき、B層/A層/B層で表される構成の積層体を次のようにして製造できる。図1を用いて説明する。
 まず、A層の形成材料として、(メタ)アクリル樹脂とフッ化ビニリデン樹脂とを混合し、本発明の樹脂組成物を得ることができる。次いで、前記樹脂組成物を一軸押出機2で、B層の形成材料として熱可塑性樹脂を一軸押出機1及び3で、それぞれ溶融させる。次いで、これらをフィードブロック4を介してB層/A層/B層で表される構成となるように積層し、マルチマニホールド型ダイス5から押し出して、フィルム状の溶融樹脂6を得ることができる。フィルム状の溶融樹脂6を、対向配置した第1冷却ロール7と第2冷却ロール8との間に挟み込み、次いで第2冷却ロール8に密着させながら第2冷却ロール8と第3冷却ロール9との間に挟み込んだ後、第3冷却ロール9に密着させて、成形冷却することで、3層構成の積層体10を得ることができる。
When the film of the present invention is an A layer and the thermoplastic resin layer is a B layer, a laminate having a structure represented by B layer / A layer / B layer can be produced as follows. This will be described with reference to FIG.
First, a (meth) acrylic resin and a vinylidene fluoride resin can be mixed as a material for forming the A layer to obtain the resin composition of the present invention. Next, the resin composition is melted by the single screw extruder 2 and the thermoplastic resin is melted by the single screw extruders 1 and 3 as the material for forming the B layer. Subsequently, these are laminated so as to be represented by B layer / A layer / B layer through the feed block 4 and extruded from the multi-manifold die 5 to obtain a film-like molten resin 6. . The film-shaped molten resin 6 is sandwiched between the first cooling roll 7 and the second cooling roll 8 that are arranged to face each other, and then in close contact with the second cooling roll 8, the second cooling roll 8 and the third cooling roll 9 After being sandwiched between them, the laminate 10 having a three-layer structure can be obtained by closely contacting the third cooling roll 9 and molding cooling.
<透明導電シート>
 上記本発明の膜又は積層体の少なくとも片面に透明導電膜を形成して、透明導電シートを得ることができる。
<Transparent conductive sheet>
A transparent conductive sheet can be obtained by forming a transparent conductive film on at least one surface of the film or laminate of the present invention.
 本発明の膜又は積層体の表面に透明導電膜を形成させる方法としては、本発明の膜の表面に直接透明導電膜を形成させる方法でもよく、又は、予め透明導電膜が形成されたプラスチックスフィルムを本発明の膜又は積層体の表面に積層することにより透明導電膜を形成させる方法でもよい。 As a method of forming a transparent conductive film on the surface of the film or laminate of the present invention, a method of directly forming a transparent conductive film on the surface of the film of the present invention may be used, or a plastic having a transparent conductive film formed in advance. A method of forming a transparent conductive film by laminating a film on the surface of the film or laminate of the present invention may also be used.
 予め透明導電膜が形成されたプラスチックフィルムのフィルム基材としては、透明なフィルムであって透明導電膜を形成することができる基材であればよく、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、アクリル樹脂、ポリアミド、これらの混合物又は積層物等を挙げることができる。また、透明導電膜を形成させる前に、表面硬さの改良、ニュートンリングの防止、帯電防止性の付与などを目的として、上記フィルムにコーティングを施しておくことは有効である。 The film base of the plastic film on which the transparent conductive film is formed in advance may be a transparent film that can form a transparent conductive film. For example, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, An acrylic resin, polyamide, a mixture or laminate thereof can be exemplified. Also, before forming the transparent conductive film, it is effective to coat the film for the purpose of improving the surface hardness, preventing Newton's ring, and imparting antistatic properties.
 予め透明導電膜が形成されたフィルムを本発明の膜又は積層体の表面に積層する方法は、気泡等がなく、均一で、透明なシートが得られる方法であればいかなる方法でもよい。常温、加熱、紫外線又は可視光線により硬化する接着剤を使用して積層する方法を用いてもよいし、透明な粘着テープにより貼り合わせてもよい。 The method of laminating a film, on which a transparent conductive film has been formed in advance, on the surface of the film or laminate of the present invention may be any method as long as it is free from bubbles and provides a uniform and transparent sheet. A method of laminating using an adhesive that is cured by normal temperature, heating, ultraviolet light, or visible light may be used, or a transparent adhesive tape may be used for bonding.
 透明導電膜の成膜方法としては、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法等が知られており、必要とする膜厚に応じて、これらの方法を適宜用いることができる。 As a method for forming a transparent conductive film, a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, a spray method, and the like are known, and these methods are appropriately used depending on a required film thickness. Can do.
 スパッタリング法の場合、例えば、酸化物ターゲットを用いた通常のスパッタリング法、金属ターゲットを用いた反応性スパッタリング法等が用いられる。この時、反応性ガスとして、酸素、窒素等を導入したり、オゾン添加、プラズマ照射、イオンアシスト等の手段を併用したりしてもよい。また、必要により、基板に直流、交流、高周波等のバイアスを印加してもよい。透明導電膜に使用する透明導電性の金属酸化物としては、酸化インジウム、酸化スズ、酸化亜鉛、インジウム-スズ複合酸化物、スズ-アンチモン複合酸化物、亜鉛-アルミニウム複合酸化物、インジウム-亜鉛複合酸化物等が挙げられる。これらのうち、環境安定性や回路加工性の観点から、インジウム-スズ複合酸化物(ITO)が好適である。 In the case of the sputtering method, for example, a normal sputtering method using an oxide target, a reactive sputtering method using a metal target, or the like is used. At this time, oxygen, nitrogen, or the like may be introduced as a reactive gas, or means such as ozone addition, plasma irradiation, or ion assist may be used in combination. If necessary, a bias such as direct current, alternating current, and high frequency may be applied to the substrate. The transparent conductive metal oxide used for the transparent conductive film is indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, indium-zinc composite. An oxide etc. are mentioned. Of these, indium-tin composite oxide (ITO) is preferable from the viewpoint of environmental stability and circuit processability.
 また、透明導電膜を形成する方法として、透明導電膜を形成することができる各種の導電性高分子を含むコーティング剤を塗布し、熱又は紫外線等の電離放射線を照射して硬化させることにより形成する方法等も適用できる。導電性高分子としては、ポリチオフェン、ポリアニリン、ポリピロール等が知られており、これらの導電性高分子を用いることができる。 Moreover, as a method of forming a transparent conductive film, it is formed by applying a coating agent containing various conductive polymers that can form a transparent conductive film and irradiating and curing with ionizing radiation such as heat or ultraviolet rays. The method of doing etc. is applicable. As the conductive polymer, polythiophene, polyaniline, polypyrrole, and the like are known, and these conductive polymers can be used.
 透明導電膜の厚さとしては、特に限定されるものではないが、透明導電性の金属酸化物を使用する場合、通常50~2000Å、好ましくは70~1000Åである。この範囲であれば導電性及び透明性の両方に優れる。 The thickness of the transparent conductive film is not particularly limited, but when a transparent conductive metal oxide is used, it is usually 50 to 2000 mm, preferably 70 to 1000 mm. If it is this range, it will be excellent in both electroconductivity and transparency.
 透明導電シートの厚さは特に限定されるものではなく、ディスプレイの製品仕様の求めに応じた最適の厚さを選択することができる。 The thickness of the transparent conductive sheet is not particularly limited, and an optimum thickness can be selected according to the demand for the product specifications of the display.
<タッチセンサーパネル>
 本発明の膜又は積層体及び該膜又は該積層体を含む透明導電シートは、ディスプレイパネル面板、タッチスクリーン等の透明電極として好適に用いることができる。具体的には、本発明の膜又は積層体をタッチスクリーン用ウインドウシートとして使用することができる。また、本発明の膜又は積層体は、透明導電シートを抵抗膜方式や静電容量方式のタッチスクリーンの電極基板として使用することができる。このタッチスクリーン用ウインドウシート又はタッチスクリーンを液晶ディスプレイや有機ELディスプレイなどの前面に配置することでタッチスクリーン機能を有するタッチセンサーパネルが得られる。
<Touch sensor panel>
The film or laminate of the present invention and the transparent conductive sheet containing the film or laminate can be suitably used as transparent electrodes for display panel face plates, touch screens and the like. Specifically, the film or laminate of the present invention can be used as a touch screen window sheet. Moreover, the film | membrane or laminated body of this invention can use a transparent conductive sheet as an electrode substrate of a touch screen of a resistance film system or an electrostatic capacitance system. A touch sensor panel having a touch screen function can be obtained by arranging the touch screen window sheet or the touch screen on the front surface of a liquid crystal display or an organic EL display.
 本発明の膜又は積層体をタッチスクリーン用ウインドウシートとして使用する場合、タッチスクリーン用ウインドウシートは、液晶ディスプレイ又は有機ELディスプレイの最表面に配置されるガラスシートの代替品として使用することができる。なお、タッチスクリーン用ウインドウシートは、プラズマディスプレイ、フィールドエミッションディスプレイ(FED)、SED方式平面型ディスプレイ、電子ペーパーなどにも使用することができる。 When the film or laminate of the present invention is used as a touch screen window sheet, the touch screen window sheet can be used as a substitute for a glass sheet disposed on the outermost surface of a liquid crystal display or an organic EL display. The touch screen window sheet can also be used for a plasma display, a field emission display (FED), a SED flat display, electronic paper, and the like.
 図2に、本発明の膜又は積層体を用いた一般的な静電容量式タッチセンサーパネルの断面の模式図を示す。図中、11はウインドウシートを、14は透明導電シートを、12は光学粘着層を、13は液晶表示装置をそれぞれ示す。本発明の膜又は積層体は、ウインドウシート11及び/又は透明導電シート14に使用することができる。駆動時にはユーザーがウインドウシート上の任意の位置に指を接触させると、透明導電シートを介して、端子位置から接触位置までの距離が検出され、接触位置が検知される仕組みとなる。これにより、パネル上の接触部分の座標を認識し、適切なインターフェース機能が図られるようになっている。 FIG. 2 shows a schematic diagram of a cross section of a general capacitive touch sensor panel using the film or laminate of the present invention. In the figure, 11 is a window sheet, 14 is a transparent conductive sheet, 12 is an optical adhesive layer, and 13 is a liquid crystal display device. The film or laminate of the present invention can be used for the window sheet 11 and / or the transparent conductive sheet 14. When the user makes a finger contact with an arbitrary position on the window sheet during driving, the distance from the terminal position to the contact position is detected via the transparent conductive sheet, and the contact position is detected. As a result, the coordinates of the contact portion on the panel are recognized, and an appropriate interface function is achieved.
 図3に、本発明の膜又は積層体を適用した液晶表示装置の一例を断面模式図で示す。本発明の膜又は積層体20は、光学粘接着剤を介して、偏光板21に積層することができ、この積層体は、液晶セル23の視認側に配置することができる。液晶セルの背面側には、通常、偏光板が配置される。液晶表示装置25は、このような部材から構成される。なお、図3は、液晶表示装置の一例であり、この構成に限られるものではない。 FIG. 3 is a schematic cross-sectional view showing an example of a liquid crystal display device to which the film or laminate of the present invention is applied. The film or laminate 20 of the present invention can be laminated on the polarizing plate 21 via an optical adhesive, and this laminate can be disposed on the viewing side of the liquid crystal cell 23. A polarizing plate is usually disposed on the back side of the liquid crystal cell. The liquid crystal display device 25 is composed of such members. FIG. 3 is an example of a liquid crystal display device and is not limited to this configuration.
 以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
 実施例及び比較例に用いたメタクリル樹脂と、その物性を表1に示す。なお、表1におけるビカット軟化点(VST)は、JIS K 7206:1999「プラスチック-熱可塑性プラスチック-ビカット軟化温度(VST)試験方法」に規定のB50法に準拠し、ヒートディストーションテスター〔(株)安田精機製作所製の“148-6連型”〕を使用して測定した。その際の試験片は、各原料を3mm厚にプレス成形して測定を行った。
 メルトマスフローレート(MFR)は、JIS K 7210:1999「プラスチック-熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法」に規定される方法に準拠して測定した。ポリ(メタクリル酸メチル)系の材料については、温度230℃、荷重3.80kg(37.3N)で測定することが、このJISに規定されている。
Table 1 shows the methacrylic resins used in Examples and Comparative Examples and their physical properties. The Vicat softening point (VST) in Table 1 is based on the B50 method specified in JIS K 7206: 1999 “Plastics—Thermoplastic plastics—Vicat softening temperature (VST) test method”, and a heat distortion tester [Co., Ltd.] Measurement was performed using “148-6 series” manufactured by Yasuda Seiki Seisakusho. The test piece at that time was measured by press-molding each raw material to a thickness of 3 mm.
The melt mass flow rate (MFR) was measured in accordance with the method specified in JIS K 7210: 1999 “Plastics—Test methods for melt mass flow rate (MFR) and melt volume flow rate (MVR) of thermoplastics”. This JIS stipulates that poly (methyl methacrylate) -based materials are measured at a temperature of 230 ° C. and a load of 3.80 kg (37.3 N).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 メタクリル樹脂の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定した。GPCの検量線の作成には、分子量分布が狭く分子量が既知の昭和電工(株)製のメタクリル樹脂を標準試薬として使用し、溶出時間と分子量から検量線を作成し、各樹脂組成物の重量平均分子量を測定した。具体的には、樹脂40mgをテトラヒドロフラン(THF)溶媒20mlに溶解させ、測定試料を作製した。測定装置には、東ソー(株)製のカラムである「TSKgel SuperHM-H」2本と、「SuperH2500」1本とを直列に並べて設置し、検出器にRI検出器を採用したものを用いた。測定された分子量分布曲線は、横軸の分子量を対数とした上で、下記の(式1)の正規分布関数を用いてフィッティングを行った。
Figure JPOXMLDOC01-appb-M000005
The weight average molecular weight (Mw) of the methacrylic resin was measured by gel permeation chromatography (GPC). To create a GPC calibration curve, use a methacrylic resin made by Showa Denko KK with a narrow molecular weight distribution and known molecular weight as a standard reagent, create a calibration curve from the elution time and molecular weight, and calculate the weight of each resin composition. Average molecular weight was measured. Specifically, 40 mg of resin was dissolved in 20 ml of tetrahydrofuran (THF) solvent to prepare a measurement sample. As the measuring device, two columns “TSKgel SuperHM-H” made by Tosoh Corporation and one “SuperH2500” were installed in series, and a detector employing an RI detector was used. . The measured molecular weight distribution curve was fitted using the normal distribution function of (Equation 1) below, with the molecular weight on the horizontal axis as a logarithm.
Figure JPOXMLDOC01-appb-M000005
 実施例に用いたフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、及び比較例に用いたポリフッ化ビニリデンと、その物性を表2に示す。なお、表2中「VDF」は、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体又はポリフッ化ビニリデンに含まれる、フッ化ビニリデンに由来する構造単位の含有割合(質量%)を表し、表2中「HFP」は、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体又はポリフッ化ビニリデンに含まれる、ヘキサフルオロプロピレンに由来する構造単位の含有割合(質量%)を表す。VDF及びHFPは、NMRで測定した。具体的には、N,N-ジメチルホルムアミド(DMF)-d7に20~30mg/mlとなるように各共重合体を溶解し、Varian社製INOVA300を用い、積算回数64回、観測核19F、共鳴周波数282MHzの条件で測定を行った。 Table 2 shows the vinylidene fluoride-hexafluoropropylene copolymer used in the examples, the polyvinylidene fluoride used in the comparative examples, and their physical properties. In Table 2, “VDF” represents the content (mass%) of the structural unit derived from vinylidene fluoride contained in the vinylidene fluoride-hexafluoropropylene copolymer or polyvinylidene fluoride. “HFP” represents the content (% by mass) of the structural unit derived from hexafluoropropylene contained in the vinylidene fluoride-hexafluoropropylene copolymer or polyvinylidene fluoride. VDF and HFP were measured by NMR. Specifically, each copolymer was dissolved in N, N-dimethylformamide (DMF) -d7 so as to be 20 to 30 mg / ml, and the total number of times of observation was 19F, using an INOVA300 manufactured by Varian. Measurement was performed under the condition of a resonance frequency of 282 MHz.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 フッ化ビニリデン-ヘキサフルオロプロピレン共重合体又はポリフッ化ビニリデンの重量平均分子量(Mw)は、GPCで測定した。GPCの検量線の作成には、ポリスチレンを標準試薬として使用し、溶出時間と分子量から検量線を作成し、各樹脂の重量平均分子量を測定した。具体的には、樹脂40mgをN-メチルピロリドン(NMP)溶媒20mlに溶解させ、測定試料を作製した。測定装置には、東ソー(株)製のカラムである「TSKgel SuperHM-H」2本と、「SuperH2500」1本とを直列に並べて設置し、検出器にRI検出器を採用したものを用いた。 The weight average molecular weight (Mw) of vinylidene fluoride-hexafluoropropylene copolymer or polyvinylidene fluoride was measured by GPC. To prepare a GPC calibration curve, polystyrene was used as a standard reagent, a calibration curve was created from the elution time and molecular weight, and the weight average molecular weight of each resin was measured. Specifically, 40 mg of resin was dissolved in 20 ml of N-methylpyrrolidone (NMP) solvent to prepare a measurement sample. As the measuring device, two columns made by Tosoh Corporation, “TSKgel SuperHM-H” and one “SuperH2500” were arranged in series, and a detector employing an RI detector was used. .
<実施例1>
 SUMIPEX(登録商標)MM(住友化学社製)を30質量部と、PVDF共重合体Aを70質量部とを、ドライブレンドし、東洋精機製作所製ラボプラストミル(20mm造粒機)を用いて、260℃下で溶融混練して、複合ペレットを得た。プレス成形機を用いて、設定温度220℃下で、得られた複合ペレットから、厚さ800μmの膜を作製した。作製した膜を目視で観察したところ、無色透明であった。
<実施例2>
 樹脂の配合量について、SUMIPEX MMを20質量部に、PVDF共重合体Aを80質量部にそれぞれ変更した以外は、実施例1と同様にして、厚さ800μmの膜を作製した。作製した膜を目視で観察したところ、無色透明であった。
<Example 1>
30 parts by mass of SUMIPEX (registered trademark) MM (manufactured by Sumitomo Chemical Co., Ltd.) and 70 parts by mass of PVDF copolymer A were dry blended, and using a lab plast mill (20 mm granulator) manufactured by Toyo Seiki Seisakusho. The mixture was melt-kneaded at 260 ° C. to obtain composite pellets. Using a press molding machine, a film having a thickness of 800 μm was produced from the obtained composite pellet at a set temperature of 220 ° C. When the produced film was visually observed, it was colorless and transparent.
<Example 2>
A film having a thickness of 800 μm was produced in the same manner as in Example 1 except that the amount of the resin was changed to 20 parts by mass of SUMIPEX MM and 80 parts by mass of PVDF copolymer A. When the produced film was visually observed, it was colorless and transparent.
<比較例1>
 PVDF共重合体Aの代わりに、KFポリマー(登録商標)T#1300((株)クレハ製)を用いた以外は、実施例1と同様にして、厚さ800μmの膜を作製した。作製した膜を目視で観察したところ、無色透明であった。
<比較例2>
 樹脂の配合量について、SUMIPEX MMを10質量部に、PVDF共重合体Aを90質量部にそれぞれ変更した以外は、実施例1と同様にして、厚さ800μmの膜を作製した。作製した膜を目視で観察したところ、無色透明であった。
<比較例3>
 SUMIPEX MMを35質量部に、PVDF共重合体Aを65質量部に、それぞれ変更した以外は、実施例1と同様にして、厚さ800μmの膜を作製した。作製した膜を目視で観察したところ、白色であった。
<Comparative Example 1>
A film having a thickness of 800 μm was prepared in the same manner as in Example 1 except that KF polymer (registered trademark) T # 1300 (manufactured by Kureha Co., Ltd.) was used instead of PVDF copolymer A. When the produced film was visually observed, it was colorless and transparent.
<Comparative example 2>
A film having a thickness of 800 μm was prepared in the same manner as in Example 1 except that the amount of the resin was changed to 10 parts by mass of SUMIPEX MM and 90 parts by mass of PVDF copolymer A. When the produced film was visually observed, it was colorless and transparent.
<Comparative Example 3>
A film having a thickness of 800 μm was produced in the same manner as in Example 1 except that SUMIPEX MM was changed to 35 parts by mass and PVDF copolymer A was changed to 65 parts by mass. It was white when the produced film | membrane was observed visually.
 得られた膜に含まれるアルカリ金属(Na+K)の量を表3に示す。アルカリ金属の含有量は、誘導結合プラズマ質量分析法により測定した。 Table 3 shows the amount of alkali metal (Na + K) contained in the obtained film. The alkali metal content was measured by inductively coupled plasma mass spectrometry.
 JIS K6911に従い、自動平衡ブリッジ法で測定した3V、100kHzにおけるそれぞれの膜の比誘電率を表3に示す。 Table 3 shows the relative dielectric constant of each film at 3 V and 100 kHz measured by the automatic equilibrium bridge method in accordance with JIS K6911.
<高温及び高湿暴露試験>
 実施例1及び2と、比較例1~3で得られた膜を60℃で絶対湿度90%の恒温恒湿オーブンに120時間放置することにより高温及び高湿暴露試験を行った。高温及び高湿暴露試験前後の膜について、JIS K7136:2000に従って測定したヘーズ及びJIS K7361-1:1997に従って測定した全光線透過率(Tt)を、それぞれ表3に示す。ヘーズ及び全光線透過率は、JIS K 7361-1:1997「プラスチック-透明材料の全光線透過率の試験方法-第1部:シングルビーム法」に準拠したヘーズ透過率計〔(株)村上色彩技術研究所製の“HR-100”〕で測定した。
<High temperature and high humidity exposure test>
The films obtained in Examples 1 and 2 and Comparative Examples 1 to 3 were left in a constant temperature and humidity oven at 60 ° C. and 90% absolute humidity for 120 hours to perform a high temperature and high humidity exposure test. Table 3 shows the haze measured according to JIS K7136: 2000 and the total light transmittance (Tt) measured according to JIS K7361-1: 1997 for the films before and after the high temperature and high humidity exposure test. Haze and total light transmittance are measured according to JIS K 7361-1: 1997 "Plastics-Test method for total light transmittance of transparent materials-Part 1: Single beam method" [Murakami Color Co., Ltd.] Measurement was performed with “HR-100” manufactured by Technical Research Institute.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<実施例3>
 実施例1及び2で得られた膜は、ディスプレイ用ウインドウシート及び/又は透明導電シートの基材として、図2の断面図に示す構成のタッチセンサーパネルに使用することができる。
<Example 3>
The film | membrane obtained in Example 1 and 2 can be used for the touch sensor panel of the structure shown in sectional drawing of FIG. 2 as a base material of the window sheet for a display, and / or a transparent conductive sheet.
<実施例4>
 メタクリル樹脂及びフッ化ビニリデン樹脂として、表1及び2に示すSUMIPEX MM及びSOLEF(商標登録)21508を、それぞれ表4に示す割合で混合し、中間層(A)を形成する樹脂組成物(A)を得た。熱可塑性樹脂層(B)及び(C)の形成には、表1に示すSUMIPEX MHを使用した。図1に示す装置を使用し、以下の方法で積層体を製造した。図1を参照し、樹脂組成物(A)を65mmφ一軸押出機2〔東芝機械(株)製〕で、SUMIPEX MHを45mmφ一軸押出機1及び3〔日立造船(株)製〕で、それぞれ溶融させた。次いで、これらを設定温度230~270℃の3種3層分配型フィードブロック4に供給し3層構成となるように分配した後、マルチマニホールド型ダイス5〔日立造船’(株)製〕から押し出してB層/A層/C層で表される構成となるように積層し、フィルム状の溶融樹脂6を得た。得られたフィルム状の溶融樹脂6を、対向配置した第1冷却ロール7(直径350mm)と第2冷却ロール8(直径450mm)との間に挟み込み、第2ロール8に巻きながら第2ロール8と第3ロール9(直径350mm)との間に挟み込んだ。その後、第3冷却ロール9に巻き、成形冷却し、各層が表5に示す膜厚の平均値を有する3層構成の積層体10を得た。得られた積層体10は、約800μmの総膜厚を有し、目視で観察したところ無色透明であった。
<Example 4>
As a methacrylic resin and a vinylidene fluoride resin, SUMIPEX MM and SOLEF (registered trademark) 21508 shown in Tables 1 and 2 are mixed at a ratio shown in Table 4 to form an intermediate layer (A) (A) Got. SUMIPEX MH shown in Table 1 was used for forming the thermoplastic resin layers (B) and (C). The laminated body was manufactured with the following method using the apparatus shown in FIG. Referring to FIG. 1, the resin composition (A) was melted in a 65 mmφ single screw extruder 2 (manufactured by Toshiba Machine Co., Ltd.) and SUMPEX MH was melted in 45 mmφ single screw extruders 1 and 3 (manufactured by Hitachi Zosen Corporation). I let you. Next, these are supplied to a three-type three-layer distribution type feed block 4 having a set temperature of 230 to 270 ° C. and distributed so as to have a three-layer structure, and then extruded from a multi-manifold die 5 (manufactured by Hitachi Zosen Corporation). And laminated so as to have a structure represented by B layer / A layer / C layer, and a film-like molten resin 6 was obtained. The obtained film-like molten resin 6 is sandwiched between a first cooling roll 7 (diameter 350 mm) and a second cooling roll 8 (diameter 450 mm) arranged opposite to each other, and wound around the second roll 8 while the second roll 8 is wound. And the third roll 9 (diameter 350 mm). Then, it wound around the 3rd cooling roll 9, it shape | molded and cooled, and the laminated body 10 of the 3 layer structure which has the average value of the film thickness which each layer shows in Table 5 was obtained. The obtained laminate 10 had a total film thickness of about 800 μm and was colorless and transparent when visually observed.
 実施例1と同様にして、得られた積層体の比誘電率の測定、及び高温及び高湿暴露試験を行った。結果を表5に示した。 In the same manner as in Example 1, measurement of the relative dielectric constant of the obtained laminate and high temperature and high humidity exposure test were performed. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<実施例5>
 熱可塑性樹脂層をカリバー(登録商標)301-30から形成した以外は、実施例4と同様にして積層体を得た。表6には、樹脂組成物の含有量及び積層体の層構成を示した。積層体は、無色透明だった。また、実施例1と同様にして、得られた積層体の比誘電率の測定、及び高温及び高湿暴露試験を行った。結果を表7に示した。
<Example 5>
A laminate was obtained in the same manner as in Example 4 except that the thermoplastic resin layer was formed of Caliber (registered trademark) 301-30. Table 6 shows the content of the resin composition and the layer structure of the laminate. The laminate was colorless and transparent. Further, in the same manner as in Example 1, measurement of the relative dielectric constant of the obtained laminate and high temperature and high humidity exposure test were performed. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
<実施例6>
 実施例1及び2で得られた膜、又は実施例4及び5で得られた積層体をディスプレイ用ウインドウシートとして使用し、表示装置を作製することができる。
<Example 6>
A display device can be manufactured using the films obtained in Examples 1 and 2 or the laminates obtained in Examples 4 and 5 as display window sheets.
 本発明の樹脂組成物から形成される膜は、高い比誘電率を有しつつ、長時間使用しても透明性を維持できるので、スマートフォン、携帯ゲーム機、オーディオプレーヤー、タブレット端末等に用いられるタッチセンサーパネル又は表示装置のウインドウシートとして有用である。 The film formed from the resin composition of the present invention has a high dielectric constant and can maintain transparency even when used for a long time. Therefore, it is used in smartphones, portable game machines, audio players, tablet terminals, and the like. It is useful as a window sheet for a touch sensor panel or a display device.
1 一軸押出機((メタ)アクリル樹脂の溶融物を押し出す)
2 一軸押出機(本発明の樹脂組成物の溶融物を押し出す)
3 一軸押出機((メタ)アクリル樹脂の溶融物を押し出す)
4 フィードブロック
5 マルチマニホールド型ダイス
6 フィルム状の溶融樹脂
7 第1冷却ロール
8 第2冷却ロール
9 第3冷却ロール
10 積層体
11 ウインドウシート
12 光学粘着層
13 液晶表示装置
14 透明導電シート
20 膜又は積層体
21 偏光板
22 光学粘着層
23 液晶セル
25 液晶表示装置
1 Single screw extruder (extrudes a melt of (meth) acrylic resin)
2 Single screw extruder (extrudes the melt of the resin composition of the present invention)
3 Single screw extruder (extrudes a melt of (meth) acrylic resin)
4 Feed block 5 Multi-manifold die 6 Film-like molten resin 7 First cooling roll 8 Second cooling roll 9 Third cooling roll 10 Laminated body 11 Window sheet 12 Optical adhesive layer 13 Liquid crystal display device 14 Transparent conductive sheet 20 Film or Laminated body 21 Polarizing plate 22 Optical adhesive layer 23 Liquid crystal cell 25 Liquid crystal display device

Claims (20)

  1.  (メタ)アクリル樹脂及びフッ化ビニリデン樹脂を含む樹脂組成物であって、
     (メタ)アクリル樹脂及びフッ化ビニリデン樹脂の合計量100質量部当たり、(メタ)アクリル樹脂15~30質量部と、フッ化ビニリデン樹脂70~85質量部とを含み、
     前記フッ化ビニリデン樹脂が、その全構成単位を100質量%として、フッ化ビニリデンに由来する構造単位65~90質量%と、ヘキサフルオロプロピレンに由来する構造単位10~35質量%とを含むフッ化ビニリデン-ヘキサフルオロプロピレン共重合体である樹脂組成物。
    A resin composition comprising a (meth) acrylic resin and a vinylidene fluoride resin,
    Including 100 to 30 parts by weight of (meth) acrylic resin and 70 to 85 parts by weight of vinylidene fluoride resin per 100 parts by weight of the total amount of (meth) acrylic resin and vinylidene fluoride resin,
    The vinylidene fluoride resin contains 100-mass% of all the structural units, and contains 65-90 mass% of structural units derived from vinylidene fluoride and 10-35 mass% of structural units derived from hexafluoropropylene. A resin composition which is a vinylidene-hexafluoropropylene copolymer.
  2.  (メタ)アクリル樹脂が、次の(a1)又は(a2)の樹脂である請求項1に記載の樹脂組成物。
    (a1)メタクリル酸メチルの単独重合体、
    (a2)メタクリル酸メチルに由来する構造単位50~99.9質量%と、式(1)で示される(メタ)アクリル酸エステルに由来する少なくとも1種の構造単位0.1~50質量%とを含む共重合体
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子又はメチル基を表し、Rが水素原子のときRは炭素数1~8のアルキル基を表し、Rがメチル基のときRは炭素数2~8のアルキル基を表す。)。
    The resin composition according to claim 1, wherein the (meth) acrylic resin is the following resin (a1) or (a2).
    (A1) methyl methacrylate homopolymer,
    (A2) 50 to 99.9% by mass of structural units derived from methyl methacrylate and 0.1 to 50% by mass of at least one structural unit derived from a (meth) acrylic acid ester represented by formula (1) Copolymer containing
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 represents a hydrogen atom or a methyl group, when R 1 is a hydrogen atom, R 2 represents an alkyl group having 1 to 8 carbon atoms, and when R 1 is a methyl group, R 2 represents 2 to 2 carbon atoms) Represents an alkyl group of 8).
  3.  (メタ)アクリル樹脂は、その重量平均分子量(Mw)が70,000~300,000である請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the (meth) acrylic resin has a weight average molecular weight (Mw) of 70,000 to 300,000.
  4.  樹脂組成物は、前記樹脂組成物に含まれるアルカリ金属の合計含有量が50ppm以下である請求項1~3のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the resin composition has a total content of alkali metals contained in the resin composition of 50 ppm or less.
  5.  フッ化ビニリデン樹脂は、そのメルトマスフローレート(MFR)が0.1~30g/10分である請求項1~4のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the vinylidene fluoride resin has a melt mass flow rate (MFR) of 0.1 to 30 g / 10 min.
  6.  請求項1~5のいずれか一項に記載の樹脂組成物から形成される膜。 A film formed from the resin composition according to any one of claims 1 to 5.
  7.  (メタ)アクリル樹脂及びフッ化ビニリデン樹脂を含む膜であって、
     前記フッ化ビニリデン樹脂が、その全構成単位を100質量%として、フッ化ビニリデンに由来する構造単位65~90質量%と、ヘキサフルオロプロピレンに由来する構造単位10~35質量%とを含むフッ化ビニリデン-ヘキサフルオロプロピレン共重合体であり、
     前記膜は、比誘電率が4.0以上であり、かつ、60℃で相対湿度90%の環境下に120時間暴露した後のヘーズが2%以下である膜。
    A film containing a (meth) acrylic resin and a vinylidene fluoride resin,
    The vinylidene fluoride resin contains 100-mass% of all the structural units, and contains 65-90 mass% of structural units derived from vinylidene fluoride and 10-35 mass% of structural units derived from hexafluoropropylene. A vinylidene-hexafluoropropylene copolymer,
    The film has a relative dielectric constant of 4.0 or more and a haze of 2% or less after exposure for 120 hours in an environment of 90% relative humidity at 60 ° C.
  8.  膜の厚さが100~2000μmである請求項6又は7に記載の膜。 The film according to claim 6 or 7, wherein the film has a thickness of 100 to 2000 µm.
  9.  請求項6~8のいずれか一項に記載の膜と、コーティング層とを備える第1の積層体であって、
     前記コーティング層が、膜の少なくとも一方の面に配置され、少なくとも一種の機能を付与する層である第1の積層体。
    A first laminate comprising the film according to any one of claims 6 to 8 and a coating layer,
    The first laminate is a layer in which the coating layer is disposed on at least one surface of the film and imparts at least one function.
  10.  請求項6~8のいずれか一項に記載の膜と、熱可塑性樹脂層とを備える第2の積層体。 A second laminate comprising the film according to any one of claims 6 to 8 and a thermoplastic resin layer.
  11.  熱可塑性樹脂層は、複数の熱可塑性樹脂層で構成され、膜の両面に配置される請求項10に記載の第2の積層体。 The second laminate according to claim 10, wherein the thermoplastic resin layer is composed of a plurality of thermoplastic resin layers and is disposed on both surfaces of the film.
  12.  熱可塑性樹脂層が、前記熱可塑性樹脂層を構成する熱可塑性樹脂100質量部当たり、(メタ)アクリル樹脂を50質量部以上含む請求項10又は11に記載の第2の積層体。 The second laminate according to claim 10 or 11, wherein the thermoplastic resin layer contains 50 parts by mass or more of (meth) acrylic resin per 100 parts by mass of the thermoplastic resin constituting the thermoplastic resin layer.
  13.  (メタ)アクリル樹脂は、その重量平均分子量(Mw)が50,000~300,000である請求項12に記載の第2の積層体。 The second laminate according to claim 12, wherein the (meth) acrylic resin has a weight average molecular weight (Mw) of 50,000 to 300,000.
  14.  熱可塑性樹脂層は、その厚さが10~200μmである請求項10~13のいずれか一項に記載の第2の積層体。 The second laminate according to any one of claims 10 to 13, wherein the thermoplastic resin layer has a thickness of 10 to 200 µm.
  15.  熱可塑性樹脂層は、ビカット軟化温度が100~150℃である請求項10~14のいずれか一項に記載の第2の積層体。 The second laminate according to any one of claims 10 to 14, wherein the thermoplastic resin layer has a Vicat softening temperature of 100 to 150 ° C.
  16.  請求項10~15のいずれか一項に記載の第2の積層体と、コーティング層とを備える第3の積層体であって、
     前記コーティング層が、膜の少なくとも一方の面に配置され、少なくとも一種の機能を付与する層である第3の積層体。
    A third laminate comprising the second laminate according to any one of claims 10 to 15 and a coating layer,
    A third laminate in which the coating layer is a layer that is disposed on at least one surface of the film and imparts at least one function.
  17.  請求項6~8のいずれか一項に記載の膜を含むタッチセンサーパネル。 A touch sensor panel including the film according to any one of claims 6 to 8.
  18.  請求項9に記載の第1の積層体、請求項10~15のいずれか一項に記載の第2の積層体又は請求項17に記載の第3の積層体を含むタッチセンサーパネル。 A touch sensor panel comprising the first laminate according to claim 9, the second laminate according to any one of claims 10 to 15, or the third laminate according to claim 17.
  19.  請求項6~8のいずれか一項に記載の膜を含む表示装置。 A display device comprising the film according to any one of claims 6 to 8.
  20.  請求項9に記載の第1の積層体、請求項10~15のいずれか一項に記載の第2の積層体又は請求項17に記載の第3の積層体を含む表示装置。 A display device comprising the first laminate according to claim 9, the second laminate according to any one of claims 10 to 15, or the third laminate according to claim 17.
PCT/JP2016/067146 2015-06-12 2016-06-08 Resin composition, film, touch sensor panel and display device WO2016199830A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017523682A JP6360630B2 (en) 2015-06-12 2016-06-08 Resin composition, film, touch sensor panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-118972 2015-06-12
JP2015118972 2015-06-12

Publications (1)

Publication Number Publication Date
WO2016199830A1 true WO2016199830A1 (en) 2016-12-15

Family

ID=57503495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067146 WO2016199830A1 (en) 2015-06-12 2016-06-08 Resin composition, film, touch sensor panel and display device

Country Status (3)

Country Link
JP (1) JP6360630B2 (en)
TW (1) TW201708368A (en)
WO (1) WO2016199830A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017213771A (en) * 2016-05-31 2017-12-07 住友化学株式会社 Resin laminate with transparent adhesive and display device including the same
WO2020157237A1 (en) * 2019-02-01 2020-08-06 Solvay Specialty Polymers Italy S.P.A. Method for manufacturing an article from a composition comprising a blend of one or more vdf polymers and one or more acrylic or methacrylic ester polymers.
EP3718770A4 (en) * 2017-11-28 2021-01-06 Denka Company Limited Vinylidene fluoride-based resin multi-layered film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136219A (en) * 1992-10-23 1994-05-17 Shin Etsu Chem Co Ltd Vinylidene fluoride-based resin film and composition for forming thereof
WO2011142453A1 (en) * 2010-05-14 2011-11-17 三菱レイヨン株式会社 Film, method for producing same, laminated film or sheet, and laminate
JP2011246670A (en) * 2010-05-31 2011-12-08 Mitsubishi Rayon Co Ltd Vinylidene fluoride-based film
JP2013244604A (en) * 2012-05-23 2013-12-09 Meihan Shinku Kogyo Kk Transparent sheet for touch screen, transparent conductive sheet and touch screen
JP2015044967A (en) * 2013-07-30 2015-03-12 ダイキン工業株式会社 Vinylidene fluoride resin composition
WO2016088667A1 (en) * 2014-12-01 2016-06-09 住友化学株式会社 Resin composition, film and display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136219A (en) * 1992-10-23 1994-05-17 Shin Etsu Chem Co Ltd Vinylidene fluoride-based resin film and composition for forming thereof
WO2011142453A1 (en) * 2010-05-14 2011-11-17 三菱レイヨン株式会社 Film, method for producing same, laminated film or sheet, and laminate
JP2011246670A (en) * 2010-05-31 2011-12-08 Mitsubishi Rayon Co Ltd Vinylidene fluoride-based film
JP2013244604A (en) * 2012-05-23 2013-12-09 Meihan Shinku Kogyo Kk Transparent sheet for touch screen, transparent conductive sheet and touch screen
JP2015044967A (en) * 2013-07-30 2015-03-12 ダイキン工業株式会社 Vinylidene fluoride resin composition
WO2016088667A1 (en) * 2014-12-01 2016-06-09 住友化学株式会社 Resin composition, film and display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017213771A (en) * 2016-05-31 2017-12-07 住友化学株式会社 Resin laminate with transparent adhesive and display device including the same
WO2017208884A1 (en) * 2016-05-31 2017-12-07 住友化学株式会社 Resin laminate with transparent adhesive, and display device including same
EP3718770A4 (en) * 2017-11-28 2021-01-06 Denka Company Limited Vinylidene fluoride-based resin multi-layered film
US11173693B2 (en) 2017-11-28 2021-11-16 Denka Company Limited Vinylidene fluoride-based resin multi-layered film
WO2020157237A1 (en) * 2019-02-01 2020-08-06 Solvay Specialty Polymers Italy S.P.A. Method for manufacturing an article from a composition comprising a blend of one or more vdf polymers and one or more acrylic or methacrylic ester polymers.

Also Published As

Publication number Publication date
TW201708368A (en) 2017-03-01
JP6360630B2 (en) 2018-07-18
JPWO2016199830A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6337974B2 (en) Resin composition, film and display device
JP6395899B2 (en) Manufacturing method of resin laminate
JP6395898B2 (en) Resin laminate with protective film
JP6360630B2 (en) Resin composition, film, touch sensor panel and display device
JP6375061B2 (en) Compact
JP6591492B2 (en) Manufacturing method of resin laminate
JP6461065B2 (en) Resin laminate and method for producing the same
JP6374610B2 (en) Resin composition, film, touch sensor panel and display device
JP6407918B2 (en) Resin laminate, display device and polarizing plate
JP6503410B2 (en) Resin laminate, display device and polarizing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807536

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523682

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807536

Country of ref document: EP

Kind code of ref document: A1