WO2016199751A1 - Urethane composition and method for producing urethane composition - Google Patents

Urethane composition and method for producing urethane composition Download PDF

Info

Publication number
WO2016199751A1
WO2016199751A1 PCT/JP2016/066863 JP2016066863W WO2016199751A1 WO 2016199751 A1 WO2016199751 A1 WO 2016199751A1 JP 2016066863 W JP2016066863 W JP 2016066863W WO 2016199751 A1 WO2016199751 A1 WO 2016199751A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
urethane composition
group
catalyst
mixing
Prior art date
Application number
PCT/JP2016/066863
Other languages
French (fr)
Japanese (ja)
Inventor
公範 荒木
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to JP2017523642A priority Critical patent/JP6965744B2/en
Priority to CN201680032984.9A priority patent/CN107636037B/en
Publication of WO2016199751A1 publication Critical patent/WO2016199751A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • the present invention relates to a urethane composition and a method for producing the urethane composition.
  • Patent Document 1 has been proposed as a method for producing a composition that can be used for a body (painted steel plate).
  • Another object of the present invention is to provide a method for producing a urethane composition.
  • the present inventor has found that the urethane composition contains an aminosilane compound, whereby a predetermined effect can be obtained, and the present invention has been achieved.
  • the present invention is based on the above knowledge and the like, and specifically, solves the above problems by the following configuration.
  • Dehydration obtained by a mixing / dehydration process in which a liquid component containing a polyol compound and a powder component containing a filler are mixed to obtain a paste-like mixture, and at least a part of residual moisture in the paste-like mixture is removed.
  • a paste-like mixture An aromatic polyisocyanate; At least one metal catalyst selected from the group consisting of bismuth-based catalysts and titanium-based catalysts; An aliphatic polyisocyanate; An aminosilane compound; A tin-based catalyst; A one-component moisture-curing urethane composition containing an amine-based catalyst.
  • the urethane composition according to 1 above wherein the aminosilane compound has an imino group, and the imino group is bonded to at least one aromatic hydrocarbon group. 3. 3. The urethane composition according to 1 or 2 above, wherein the content of the aminosilane compound is 0.2 to 5.0 parts by mass with respect to 100 parts by mass of the total content of the dehydrated paste mixture and the aromatic polyisocyanate.
  • a liquid component containing a polyol compound and a powder component containing a filler are mixed to obtain a paste-like mixture, and at least a part of residual moisture in the paste-like mixture is removed to obtain a dehydrated paste-like mixture.
  • An aromatic polyisocyanate To dehydrated paste-like mixture An aromatic polyisocyanate; At least one metal catalyst selected from the group consisting of bismuth-based catalysts and titanium-based catalysts; An aliphatic polyisocyanate; An aminosilane compound; A tin-based catalyst; The manufacturing method of a urethane composition which has a mixing process which mixes an amine catalyst and manufactures a one-component moisture hardening type urethane composition. 5.
  • the mixing process A mixing step 1 of mixing an aromatic polyisocyanate with the dehydrated paste-like mixture; After the mixing step 1, the mixing step 2 for mixing the metal catalyst, the aliphatic polyisocyanate and the aminosilane compound, and after the mixing step 2, the mixing step 3 for mixing the tin-based catalyst and the amine-based catalyst are provided.
  • the method for producing a urethane composition as described in 4 above. 6). 6.
  • the urethane composition of the present invention is excellent in adhesiveness. Moreover, according to the manufacturing method of the urethane composition of this invention, the urethane composition excellent in adhesiveness can be provided.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • content of the said component refers to the total content of 2 or more types of substances.
  • the urethane composition of the present invention (the composition of the present invention) Dehydration obtained by a mixing / dehydration process in which a liquid component containing a polyol compound and a powder component containing a filler are mixed to obtain a paste-like mixture, and at least a part of residual moisture in the paste-like mixture is removed.
  • a paste-like mixture An aromatic polyisocyanate; At least one metal catalyst selected from the group consisting of bismuth-based catalysts and titanium-based catalysts; An aliphatic polyisocyanate; An aminosilane compound; A tin-based catalyst; A one-component moisture-curing urethane composition containing an amine-based catalyst.
  • composition of this invention takes such a structure, it is thought that a desired effect is acquired. The reason is not clear, but the present inventor presumes this as follows.
  • a urea reaction in which at least one isocyanate component selected from the group consisting of an aromatic polyisocyanate, an aliphatic polyisocyanate, and these urethane prepolymers reacts with an aminosilane compound, and an aromatic Urethane reaction in which polyisocyanate and aliphatic polyisocyanate react with a polyol compound, and bonding (adhesion) between an aminosilane compound and glass may occur.
  • the slower curing of the composition is advantageous in order for the aminosilane compound to adhere to the glass.
  • the slower reaction of the aminosilane compound in the urea reaction is more advantageous.
  • the aminosilane compound can react with any of the above-described isocyanate components in the urea reaction.
  • the isocyanate component is a plurality of types, the urea reaction is considered to proceed moderately as a whole. And it is thought that hardening of the whole composition becomes late
  • an aminosilane compound can react more with a urethane prepolymer, hardening of a composition is suppressed more and it is thought that it is excellent by adhesiveness.
  • the present inventor has found that a desired effect cannot be obtained when a reaction product of an aliphatic polyisocyanate and an aminosilane compound is contained, that is, when the composition is rapidly cured.
  • the above findings are thought to support that the rapid urea reaction inhibits the aminosilane compound from adhering to the glass.
  • the dehydrated paste-like mixture contained in the composition of the present invention is obtained by mixing a liquid component containing a polyol compound and a powder component containing a filler to obtain a paste-like mixture, which contains residual moisture in the paste-like mixture. It is a dehydrated paste-like mixture obtained by a mixing / dehydration process that removes at least a part.
  • the liquid component is not particularly limited as long as it contains a polyol compound, and may contain only the polyol compound.
  • the liquid component further contains, for example, a plasticizer. There may be. From the viewpoint of the viscosity in the mixing step, the melting point of the polyol compound is preferably 80 ° C. or less, and more preferably 60 ° C. or less.
  • the polyol compound is not particularly limited in its molecular weight and skeleton as long as it is a compound having two or more hydroxy groups (OH groups).
  • examples thereof include low-molecular polyhydric alcohols, polyether polyols, polyester polyols, other polyols, and mixed polyols thereof. Of these, polyether polyol is preferred.
  • polyether polyol examples include polyoxyethylene diol (polyethylene glycol), polyoxypropylene diol (polypropylene glycol: PPG), polyoxypropylene triol, ethylene oxide / propylene oxide copolymer, polytetramethylene ether glycol (PTMEG). , Polytetraethylene glycol, sorbitol-based polyol, and the like.
  • the polyether polyol is preferably polypropylene glycol or polyoxypropylene triol from the viewpoint of excellent compatibility with the polyisocyanate.
  • the weight average molecular weight of the polyether polyol is preferably 500 to 20,000 from the viewpoint that the viscosity of the urethane prepolymer obtained by the reaction with isocyanate has an appropriate fluidity at room temperature.
  • the weight average molecular weight is a polystyrene equivalent value obtained by the GPC method (solvent: tetrahydrofuran (THF)).
  • the polyol compounds can be used alone or in combination of two or more.
  • the content of the polyol compound is preferably 20 to 80 parts by mass, and preferably 25 to 75 parts by mass with respect to 100 parts by mass of the paste-like mixture or dehydrated paste-like mixture, from the viewpoint of excellent physical properties of the cured product. Is more preferable.
  • plasticizer examples include, for example, diisononyl adipate (DINA); diisononyl phthalate (DINP); dioctyl adipate, isodecyl succinate; diethylene glycol dibenzoate, pentaerythritol ester; butyl oleate, acetylricinoleic acid Examples include methyl; tricresyl phosphate, trioctyl phosphate; propylene glycol adipate polyester, butylene glycol adipate polyester, and the like. These may be used alone or in combination of two or more. Of these, it is preferable to use diisononyl adipate (DINA) and diisononyl phthalate (DINP) for reasons of excellent cost and compatibility.
  • DINA diisononyl adipate
  • DIFP diisononyl phthalate
  • the content thereof is not particularly limited, but is 20 to 20 parts per 100 parts by mass of the total content of the polyol compound, aromatic polyisocyanate and aliphatic polyisocyanate. 80 parts by mass is preferable, and 30 to 70 parts by mass is more preferable.
  • the powder component is not particularly limited as long as it contains a filler, and may contain only the filler.
  • an anti-aging agent for example, an antioxidant, etc.
  • Contains various additives such as pigments (dyes), thixotropic agents, UV absorbers, flame retardants, surfactants (including leveling agents), dispersants, dehydrating agents, adhesion-imparting agents, and antistatic agents. It may be a thing.
  • the additive is not particularly limited. For example, a conventionally well-known thing is mentioned.
  • the filler include organic or inorganic fillers of various shapes. Specifically, for example, fumed silica, calcined silica, precipitated silica, ground silica, fused silica; diatomaceous earth; iron oxide, zinc oxide, titanium oxide, barium oxide, magnesium oxide; calcium carbonate (for example, heavy calcium carbonate , Precipitated calcium carbonate (light calcium carbonate), colloidal calcium carbonate), magnesium carbonate, zinc carbonate; wax stone clay, kaolin clay, calcined clay; carbon black; treated with these fatty acids, treated with resin acid, treated with urethane compound Processed fatty acid ester; etc., and these may be used alone or in combination of two or more.
  • carbon black and calcium carbonate are preferable because the viscosity and thixotropy of the composition can be easily adjusted.
  • the physical properties for example, hardness, elongation, etc.
  • heavy calcium carbonate it is excellent in deep part curability.
  • the carbon black is preferably pellet carbon black because the workability is improved and the dehydration of the liquid component is further promoted.
  • the content of the powder component is preferably 50 to 150 parts by mass, more preferably 70 to 130 parts by mass with respect to 100 parts by mass of the total content of the polyol compound, aromatic polyisocyanate and aliphatic polyisocyanate.
  • the mixing method in the mixing / dehydration step is not particularly limited. For example, it can mix by stirring.
  • the dehydrating method in the mixing / dehydrating step is not particularly limited. For example, it can be dehydrated by heating. The heating temperature during dehydration can be set to 110 ° C. to 170 ° C. Further, at the time of dehydration, the pasty mixture can be dried under conditions of vacuum (for example, 1.2 kPa or less, preferably 0.6 to 1.2 kPa) and 150 ° C. or less.
  • the ratio of each component contained in the dehydrated paste mixture is substantially the same as that of the paste mixture.
  • the aromatic polyisocyanate is not particularly limited as long as it is a compound having two or more isocyanate groups bonded to an aromatic hydrocarbon group in one molecule.
  • the aromatic hydrocarbon group is not particularly limited.
  • aromatic polyisocyanates examples include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), 1,4-phenylene diisocyanate, polymethylene polyphenylene polyisocyanate, xylylene diisocyanate (XDI), and tetramethylxylylene diisocyanate (TMXDI). , Tolidine diisocyanate (TODI), 1,5-naphthalene diisocyanate (NDI), and triphenylmethane triisocyanate.
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • XDI xylylene diisocyanate
  • TMXDI tetramethylxylylene diisocyanate
  • TODI Tolidine diisocyanate
  • NDI 1,5-naphthalene diisocyanate
  • triphenylmethane triisocyanate triphen
  • the content of the aromatic polyisocyanate is from 1 to 100 parts by mass with respect to a total content of 100 parts by mass of the dehydrated paste-like mixture and the aromatic polyisocyanate, from the viewpoint of excellent balance of handleability (viscosity) and physical properties after curing.
  • the amount is preferably 10 parts by mass, and more preferably 2 to 7 parts by mass.
  • the metal element catalyst contained in the composition of the present invention is at least one selected from the group consisting of a bismuth catalyst and a titanium catalyst.
  • the metal catalyst can accelerate the reaction of isocyanate groups such as urethane reaction.
  • the bismuth-based catalyst is preferably bismuth (metal bismuth) from the viewpoint that the reaction does not run away and a gel is not easily generated.
  • the titanium-based catalyst is not particularly limited as long as it is a compound containing titanium.
  • an organotitanium catalyst is mentioned.
  • the organic titanium catalyst include titanium carboxylate, alkoxide, and complex.
  • the carboxylic acid, alkoxy group and ligand constituting the organic titanium catalyst are not particularly limited.
  • Specific examples of the titanium-based catalyst include tetrapropyl titanate, tetrabutyl titanate, tetraoctyl titanate, and titanium diisopropoxy bis (ethyl acetoacetate).
  • Metal catalysts can be used alone or in combination of two or more.
  • the production of the metal catalyst is not particularly limited. For example, a conventionally well-known thing is mentioned.
  • the content of the metal catalyst is preferably 0.001 to 0.05 parts by mass, preferably 0.002 to 0.02 parts per 100 parts by mass of the total content of the dehydrated paste-like mixture and the aromatic polyisocyanate. More preferred is part by mass.
  • the aliphatic polyisocyanate contained in the composition of the present invention is not particularly limited as long as it is a compound having two or more isocyanate groups bonded to an aliphatic hydrocarbon group in one molecule.
  • the aliphatic hydrocarbon group that the aliphatic polyisocyanate has is not particularly limited. It may be linear, branched or cyclic, and is preferably linear.
  • the aliphatic hydrocarbon group may be saturated or unsaturated, and is preferably saturated.
  • the number of isocyanate groups that the aliphatic polyisocyanate has in one molecule is preferably 2 or more, more preferably 2 to 3 from the viewpoint of superior adhesion.
  • Aliphatic polyisocyanates are hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate (TMHDI), lysine diisocyanate, norbornane diisocyanate (NBDI), transcyclohexane-1,4-diisocyanate, isophorone diisocyanate (IPDI), bis (isocyanate methyl).
  • HDI hexamethylene diisocyanate
  • TMHDI trimethylhexamethylene diisocyanate
  • NBDI norbornane diisocyanate
  • IPDI isophorone diisocyanate
  • bis isocyanate methyl
  • Aliphatic polyisocyanates such as cyclohexane (H 6 XDI) and dicyclohexylmethane diisocyanate (H 12 MDI) (excluding modified products; hereinafter, the above aliphatic polyisocyanate may be referred to as aliphatic polyisocyanate b); aliphatic Examples include modified polyisocyanates.
  • Aliphatic polyisocyanates are preferred from the viewpoint of excellent adhesiveness, and in particular, from the viewpoint of a wide range of adhesiveness due to differences in environment during curing.
  • the modified product of the aliphatic polyisocyanate is a reaction product of a trifunctional or higher functional polyol and an aliphatic polyisocyanate, an allophanate of an aliphatic polyisocyanate, a fat, from the viewpoint of excellent adhesion and physical property balance of the adhesive after curing. It is preferably at least one aliphatic isocyanate-modified product a selected from the group consisting of an isocyanurate of an aliphatic polyisocyanate and a biuret of an aliphatic polyisocyanate.
  • the aliphatic polyisocyanate used in the modified aliphatic isocyanate a is not particularly limited as long as it is an aliphatic hydrocarbon compound having at least two isocyanate groups in one molecule.
  • the thing similar to aliphatic polyisocyanate b is mentioned.
  • linear aliphatic polyisocyanates are preferable, and HDI is more preferable, from the viewpoint that the adhesiveness is excellent and foaming hardly occurs due to the addition amount.
  • reaction product of a trifunctional or higher polyol and an aliphatic polyisocyanate examples include a reaction product of a trifunctional polyol such as trimethylolpropane (TMP) or glycerin and an aliphatic polyisocyanate b (for example, HDI). It is done.
  • a reaction product of TMP and HDI for example, a compound represented by the following formula (5)
  • a reaction product of glycerin and HDI for example, a compound represented by the following formula (6).
  • Examples of the allophanate body of aliphatic polyisocyanate include HDI allophanate body.
  • biuret body of the aliphatic polyisocyanate examples include an HDI biuret body.
  • a compound represented by the following formula (7) is preferably exemplified.
  • Examples of the isocyanurate form of the aliphatic polyisocyanate include an HDI isocyanurate form. Specifically, the compound represented by following formula (8) is mentioned, for example.
  • the aliphatic polyisocyanate is selected from the group consisting of an isocyanurate body of an aliphatic polyisocyanate and a biuret body of an aliphatic polyisocyanate, from the viewpoint that the composition has a small variation in viscosity, excellent adhesion, and excellent storage stability. It is preferable that it is at least one kind.
  • the aliphatic polyisocyanate is not particularly limited for its production. For example, a conventionally well-known thing is mentioned.
  • the aliphatic polyisocyanates can be used alone or in combination of two or more.
  • the total content of aromatic polyisocyanate and aliphatic polyisocyanate is, for example, the number of moles of hydroxy group (OH) of the polyol compound relative to the total number of moles of isocyanate group of aromatic polyisocyanate and isocyanate group of aliphatic polyisocyanate.
  • An amount with a ratio of 1.1 to 2.5 is preferred.
  • the mass ratio of aliphatic polyisocyanate to aromatic polyisocyanate is 0.2 to 0.6 from the viewpoint of superior adhesion (particularly adhesion to glass). Is more preferable, and 0.3 to 0.4 is more preferable.
  • the aminosilane compound used in the composition of the present invention is a compound having at least one selected from the group consisting of an amino group (—NH 2 ) and an imino group (—NH—) and a hydrolyzable silyl group.
  • the amino group, imino group and hydrolyzable silyl group can be bonded via an organic group.
  • the group bonded to the imino group is preferably an aromatic hydrocarbon group.
  • the aromatic hydrocarbon group is not particularly limited as long as it is a hydrocarbon group having at least an aromatic ring. Examples of the aromatic ring include a benzene ring and a naphthalene ring.
  • the aromatic ring may have a substituent. Examples of the substituent include an alkyl group.
  • hydrolyzable silyl group examples include those in which at least one hydrolyzable group is bonded to one silicon atom. When one or two hydrolyzable groups are bonded to one silicon atom, other groups that can be bonded to the silicon atom are not particularly limited. For example, a hydrocarbon group is mentioned. The hydrocarbon group is not particularly limited, but an alkyl group is preferable. Examples of the hydrolyzable silyl group include an alkoxysilyl group.
  • Specific examples include a methoxysilyl group (monomethoxysilyl group, dimethoxysilyl group, trimethoxysilyl group) and ethoxysilyl group (monoethoxysilyl group, diethoxysilyl group, triethoxysilyl group).
  • the organic group is not particularly limited.
  • the hydrocarbon group which may have a hetero atom like an oxygen atom, a nitrogen atom, and a sulfur atom is mentioned.
  • the hydrocarbon group include an aliphatic hydrocarbon group (which may be linear, branched or cyclic, may have an unsaturated bond), an aromatic hydrocarbon group, or these. The combination of is mentioned. At least one of the carbon atom or hydrogen atom of the hydrocarbon group may be replaced with a substituent.
  • an aliphatic hydrocarbon group is preferable.
  • the aminosilane compound is preferably a compound having an alkoxysilyl group and an imino group in one molecule from the viewpoint of excellent adhesion, excellent storage stability of the adhesive, and droop resistance. More preferably, it is a compound having a silyl group and an imino group to which an aromatic hydrocarbon group is bonded. An alkoxysilyl group, an imino group to which an aromatic hydrocarbon group is bonded in one molecule, an alkoxysilyl group, More preferably, the compound is bonded to the imino group via an aliphatic hydrocarbon group.
  • R 1 n NH 2 —n —R 2 —Si—R 3 3
  • R 1 represents an aromatic hydrocarbon group
  • n is 0 or 1
  • R 2 represents a divalent aliphatic hydrocarbon group
  • at least one of three R 3 is It is an alkoxy group
  • three R 3 s may be the same or different.
  • the remaining R 3 is preferably an alkyl group.
  • Examples of the aromatic hydrocarbon group include a phenyl group.
  • Examples of the divalent aliphatic hydrocarbon group include a methylene group, an ethylene group, and a propylene group.
  • Examples of the alkoxy group include a methoxy group and an ethoxy group.
  • Examples of the alkyl group include a methyl group and an ethyl group.
  • aminosilane compound examples include N-phenyl-3-aminopropyltrimethoxysilane and N-phenyl-3-aminopropyltriethoxysilane.
  • the aminosilane compound is not particularly limited for its production. For example, a conventionally well-known thing is mentioned.
  • the aminosilane compounds can be used alone or in combination of two or more.
  • the amount of the aminosilane compound is superior in terms of adhesiveness, excellent storage stability when uncured, small variations in the viscosity of the composition, and appropriate length of tack-free time.
  • the content is preferably 0.2 to 5.0 parts by mass, more preferably 0.5 to 3.0 parts by mass with respect to 100 parts by mass of the total content with the polyisocyanate.
  • the tin-based catalyst contained in the composition of the present invention is not particularly limited as long as it is a compound having tin.
  • an organotin catalyst can be used.
  • the organic group that the organotin catalyst has is not particularly limited.
  • organotin catalysts include tin carboxylates, alkoxides, and complexes.
  • the carboxylic acid, alkoxy group and ligand constituting the organotin catalyst are not particularly limited.
  • organotin catalysts include dioctyltin dilaurate, dibutyltin dilaurate, dibutyltin maleate, stannous octate, dibutyltin diacetylacetonate, dioctyltin maleate; 1,3-diacetoxy-1,1,3,3- Examples thereof include a reaction product obtained by reacting tetrabutyl-distanoxane and ethyl silicate so that the molar ratio is 1: 0.8 to 1: 1.2.
  • Tin-based catalysts can be used alone or in combination of two or more.
  • the production of the tin-based catalyst is not particularly limited. For example, a conventionally well-known thing is mentioned.
  • the content of the tin-based catalyst is 0.001 to 0.05 parts by mass with respect to 100 parts by mass of the total content of the dehydrated paste-like mixture and the aromatic polyisocyanate from the viewpoint of excellent curability and adhesion development.
  • the amount is preferably 0.002 to 0.02 parts by mass.
  • the amine catalyst contained in the composition of the present invention is a compound having a nitrogen atom and promoting the reaction of an isocyanate group.
  • Amine-based catalysts are tertiary amino groups (one nitrogen atom is single-bonded to three carbon atoms, or one nitrogen atom is single-bonded to one carbon atom and double-bonded to another carbon atom.
  • Examples of the amine-based catalyst (tertiary amine) having a tertiary amino group include trimethylamine, triethylamine, tripropylamine, tributylamine, triamylamine, trihexylamine, trioctylamine, trilaurylamine, dimethylethylamine.
  • the amine-based catalyst preferably contains a dimorpholinodiethyl ether structure in that it is excellent due to the effects of the present invention and is excellent in moisture curability, storage stability, and sag resistance.
  • the dimorpholinodiethyl ether structure is a structure having dimorpholinodiethyl ether as a basic skeleton.
  • the hydrogen atom of the morpholine ring may be substituted with a substituent.
  • the substituent is not particularly limited.
  • an alkyl group is mentioned. Examples of the alkyl group include a methyl group and an ethyl group.
  • Examples of the amine-based catalyst having a dimorpholinodiethyl ether structure include a compound represented by the following formula (9).
  • R 1 and R 2 are each independently an alkyl group, and m and n are each independently 0, 1 or 2.
  • Specific examples of the amine catalyst containing a dimorpholino diethyl ether structure include dimorpholino diethyl ether, di (methylmorpholino) diethyl ether, and di (dimethylmorpholino) diethyl ether.
  • Amine-based catalysts can be used alone or in combination of two or more.
  • the content of the amine catalyst is 0.05 to 1 with respect to 100 parts by mass of the total content of the dehydrated paste-like mixture and the aromatic polyisocyanate from the viewpoint of excellent curability and storage stability of the uncured product.
  • the amount is preferably 0.0 parts by mass, more preferably 0.07 to 0.5 parts by mass.
  • the composition of the present invention includes a silane coupling agent other than an aminosilane compound; a catalyst other than a predetermined metal catalyst, a tin-based catalyst, and an amine-based catalyst; Anti-sagging agent, anti-aging agent, antioxidant, pigment (dye), thixotropic agent, UV absorber, flame retardant, surfactant (including leveling agent), dispersant, dehydrating agent, antistatic agent, etc. Additives can be included. The amount of the additive can be appropriately determined.
  • the composition of the present invention is a one-component type.
  • the composition of the present invention can be moisture cured. For example, it can be cured under conditions of ⁇ 20 to + 50 ° C. by atmospheric humidity.
  • the composition of the present invention is excellent in adhesiveness even at an environmental temperature as low as ⁇ 20 ° C. to + 5 ° C.
  • the adherend to which the composition of the present invention can be applied is not particularly limited.
  • metal including a coated plate
  • plastic including a coated plate
  • rubber can be used.
  • the composition of the present invention can be directly applied to the glass without using a primer for the glass.
  • the method for applying the composition of the present invention to an adherend is not particularly limited.
  • composition of the present invention can be produced, for example, by the method for producing the urethane composition of the present invention described later.
  • the manufacturing method of the urethane composition of this invention is demonstrated below.
  • the production method of the urethane composition of the present invention production method of the present invention
  • a liquid component containing a polyol compound and a powder component containing a filler are mixed to obtain a paste-like mixture, and at least a part of residual moisture in the paste-like mixture is removed to obtain a dehydrated paste-like mixture.
  • Dehydration process To dehydrated paste-like mixture An aromatic polyisocyanate; At least one metal catalyst selected from the group consisting of bismuth-based catalysts and titanium-based catalysts; An aliphatic polyisocyanate; An aminosilane compound; A tin-based catalyst; It is a manufacturing method of a urethane composition which has a mixing process which mixes an amine catalyst and manufactures a one-pack moisture hardening type urethane composition.
  • At least one metal catalyst selected from the group consisting of dehydrated paste-like mixture, aromatic polyisocyanate, bismuth catalyst and titanium catalyst used in the production method of the present invention, aliphatic polyisocyanate, aminosilane compound, tin system
  • the catalyst and the amine catalyst are the same as in the composition of the present invention.
  • the mixing / dehydrating step of the production method of the present invention is the same as the mixing / dehydrating step in the composition of the present invention.
  • the method for mixing the above components is not particularly limited.
  • it can mix by stirring.
  • the temperature in the mixing step is not particularly limited.
  • the temperature can be 45 to 65 ° C.
  • it is preferable that the components are not exposed to moisture (for example, moisture in the atmosphere).
  • At least aromatic polyisocyanate is first mixed with the dehydrated paste-like mixture from the viewpoint of viscosity stability of the final product (urethane composition) (small variation between lots) and excellent adhesion development. It is preferable to do this.
  • the mixing step is from the viewpoint of excellent viscosity stability (small variation between lots) of the final product (urethane composition), excellent adhesion development,
  • the mixing step 2 of mixing the metal catalyst, the aliphatic polyisocyanate, and the aminosilane compound with the mixture obtained in the mixing step 1 After the mixing step 2, the mixture obtained in the mixing step 2 preferably has a mixing step 3 in which a tin-based catalyst and an amine-based catalyst are mixed.
  • the adhesiveness is excellent at low temperatures (specifically, after curing for 7 days at 5 ° C. and 50% RH, a manual peeling test with a cutter knife was performed, and as a result, an adhesive was obtained. In the case where the layer breaks up and breaks down, it is assumed that the adhesive developability at low temperature is excellent.)
  • the aminosilane compound is mixed. Is preferred.
  • the order of mixing the metal catalyst, the aliphatic polyisocyanate, and the aminosilane compound with the mixture obtained in the mixing step 1 is, for example, (1) Metal catalyst, aliphatic polyisocyanate, aminosilane compound (2) Aliphatic polyisocyanate, metal catalyst, aminosilane compound (3) Aliphatic polyisocyanate, aminosilane compound, metal catalyst.
  • composition (Dehydration and mixing process) Add polyol compounds 1 and 2 and plasticizer as liquid components to Ladige mixer (Matsubo), then add carbon black and calcium carbonate as powder components, stir at 110 ° C. for 2 hours and paste A mixture was prepared.
  • the compounding quantity (unit: mass part) of each component is as showing in the following Table 1.
  • the inside of the Ladige mixer containing the paste mixture was reduced to 30-60 ° C. and 1.2 kPa or less and dried for 30 minutes to obtain a dehydrated paste mixture.
  • Polyol compound 1 bifunctional polypropylene glycol (EXCENOL 2020, manufactured by Asahi Glass Co., Ltd.)
  • Polyol compound 2 trifunctional polypropylene glycol (EXCENOL 5030, manufactured by Asahi Glass Co., Ltd.)
  • Calcium carbonate Heavy calcium carbonate (Super S, manufactured by Maruo Calcium)
  • Aromatic polyisocyanate2 2.
  • Metal catalyst Aliphatic polyisocyanate4.
  • SOD viscosity (initial viscosity) of the composition produced as described above was measured using a pressure viscometer (ASTM D 1092) in accordance with JASO M338-89.
  • SOD viscosity variation (%) [(maximum value ⁇ minimum value) / average value] ⁇ 100
  • the composition produced as described above was sealed in a container, measured for SOD viscosity (Pa ⁇ s) after storage at 40 ° C for 7 days, and increased from SOD viscosity (initial viscosity) before storage. The rate was calculated. The SOD viscosity was measured using a pressure viscometer (ASTM D 1092) according to JASO M338-89. When the thickening rate is 30% or less, it can be evaluated that the storage stability is excellent.
  • Each composition produced as described above was extruded on a glass plate with a right triangle bead having a base of 6 mm and a height of 10 mm, and then the hypotenuse of the composition extruded into the shape of the right triangle.
  • the glass plate was set up vertically (90 ° angle) so that the side of the composition having a height of 10 mm was horizontal, the glass plate was fixed, and the glass plate was held vertically, , And left at 65% relative humidity for 30 minutes.
  • the distance h (mm) at which the apex of the right triangle of each composition hangs down was measured within 30 minutes after the glass plate was made vertical, and the sag resistance was evaluated with this value.
  • ⁇ TFT (tack free time) A polyethylene film is placed between the surface of the cured product and the finger under the conditions of 23 ° C. and 50% RH, and the surface of the cured product is pressed with the finger through the polyethylene film. Thus, the stickiness of the surface of the cured product was confirmed. The time (minutes) from the start of the test until the cured product did not adhere to the polyethylene film was measured.
  • the sample for initial adhesion evaluation obtained as described above was placed under a condition of 110 ° C for 2 weeks to prepare a sample for heat-resistant adhesiveness evaluation.
  • a hand peeling test with a cutter knife was performed in the same manner as in the evaluation of initial adhesiveness using the above heat-resistant adhesive evaluation sample.
  • the evaluation criteria are the same as the evaluation of the initial adhesion development.
  • composition produced as described above was stored in a sealed state at 50 ° C. for 2 weeks to obtain a composition after storage.
  • a sample was prepared and evaluated in the same manner as the initial adhesion development property except that the composition after storage obtained as described above was used.
  • the evaluation criteria are the same as the evaluation of the initial adhesion development.
  • the sample for initial-curing evaluation obtained as described above was placed under a condition of 50 ° C for 2 weeks to prepare a sample for accelerating-curing adhesiveness evaluation.
  • a manual peeling test using a cutter knife was carried out in the same manner as in the evaluation of initial adhesion development using the sample for evaluating accelerated curing adhesion.
  • the evaluation criteria are the same as the evaluation of the initial adhesion development.
  • Dehydrated paste mixture Dehydrated paste mixture produced as described above
  • Bi catalyst Inorganic bismuth (Neostan U-600, manufactured by Nitto Kasei)
  • Ti catalyst Titanium acetoacetate ethyl chelate (Orgatechs TC-750, manufactured by Matsumoto Fine Chemical Co., Ltd.)
  • HDI-biuret hexamethylene diisocyanate (HDI) biuret represented by the above formula (7)
  • HDI-isocyanurate body HDI isocyanurate body represented by the above formula (8)
  • HDI-TMP modified product HDI-TMP adduct represented by the above formula (5) (synthetic product). The synthesis was performed by dropping TMP with stirring in an equivalent ratio at which NCO / OH was 2.0 in a flask to which HDI had been added in advance, and then reacting at 80 ° C. for 24 hours.
  • -TDI modified product isocyanurate of tolylene diisocyanate (TDI), Death Module 1351, manufactured by Bayer
  • KBM573 N-phenyl-3-aminopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM903 3-aminopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM803 3-mercaptopropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd. Made by company
  • (Comparison) Reaction product 1 a compound produced by mixing 2 parts by mass of the HDI-biuret and 1 part by mass of the KBM573 and reacting the resulting mixture at 50 ° C. for 10 hours. The obtained compound was used as reaction product 1 as it was.
  • (Comparison) Reaction product 2 Compound prepared by mixing 2 parts by mass of the above HDI-isocyanurate and 1 part by mass of KBM573 and reacting the resulting mixture at 50 ° C. for 10 hours. . The obtained compound was directly used as reaction product 2.
  • Ti catalyst Same as the above Ti catalyst
  • DMDMEE dimorpholino diethyl ether (manufactured by Sun Apro)
  • -TEDA Triethylenediamine (DABCO, manufactured by Air Products)
  • Example 1 containing a bismuth-based catalyst has a lower viscosity of the composition and a viscosity variation than Example 16 containing a titanium-based catalyst. Small, excellent storage stability and short TFT.
  • Example 19 produced under standard production conditions was tack-free than Example 20 produced with simultaneous addition 1 while maintaining excellent adhesion. I was able to shorten my time. Moreover, when Example 19 and Example 21 were compared, Example 19 was excellent in droop resistance than Example 21 produced by simultaneous addition 2.
  • Comparative Example 1 in which no aliphatic polyisocyanate was used had low adhesiveness.
  • the comparative example 2 which uses a mercaptosilane instead without using an aminosilane compound had low adhesiveness.
  • Comparative Examples 3 and 4 in which no tin-based catalyst was used, the adhesiveness was low.
  • Comparative Examples 5 and 6 in which the reaction product of the aliphatic polyisocyanate and the aminosilane compound was used instead of the aliphatic polyisocyanate and the aminosilane compound, the adhesiveness was low.
  • Comparative Example 7 in which no aliphatic polyisocyanate was used, the adhesiveness was low.
  • the comparative example 8 which does not use an aminosilane compound had low adhesiveness.

Abstract

The purpose of the present invention is to provide a urethane composition having excellent adhesiveness, and a method for producing the urethane composition. The present invention pertains to a single-liquid moisture-curable urethane composition that contains: a dehydrated paste mixture obtained from a mixing/dehydrating step for mixing a liquid component containing a polyol compound and a powder component containing a filler to obtain a paste mixture, and removing at least one portion of residual moisture in the paste mixture; an aromatic polyisocyanate; at least one metal catalyst selected from the group consisting of bismuth-based catalysts and titanium-based catalysts; an aliphatic polyisocyanate; an aminosilane compound; a tin-based catalyst; and an amine-based catalyst. The present invention also pertains to a method for producing the urethane composition.

Description

ウレタン組成物及びウレタン組成物の製造方法Urethane composition and method for producing urethane composition
 本発明はウレタン組成物及びウレタン組成物の製造方法に関する。 The present invention relates to a urethane composition and a method for producing the urethane composition.
 従来、自動車のウィンドウガラスは、ゴムガスケットを介してボデーに取り付けられていた。しかし、ゴムガスケットは衝突時にガラスを保持する能力が低いため、ゴムガスケットに代えて接着剤を用いることが提案されている。ボデー(塗装鋼板)に使用されうる組成物の製造方法として、例えば、特許文献1が提案されている。 Conventionally, automobile window glass has been attached to the body via a rubber gasket. However, since the rubber gasket has a low ability to hold glass in the event of a collision, it has been proposed to use an adhesive instead of the rubber gasket. For example, Patent Document 1 has been proposed as a method for producing a composition that can be used for a body (painted steel plate).
国際公開第2014/097907号International Publication No. 2014/097907
 本発明者が特許文献1を参考にして組成物を製造したところ、このような組成物は、ガラスに対する接着性が低い場合があることが明らかとなった。
 そこで、本発明は接着性に優れるウレタン組成物を提供することを目的とする。
 また、本発明は、ウレタン組成物の製造方法を提供することも目的とする。
When this inventor manufactured the composition with reference to patent document 1, it became clear that such a composition may have low adhesiveness with respect to glass.
Then, this invention aims at providing the urethane composition which is excellent in adhesiveness.
Another object of the present invention is to provide a method for producing a urethane composition.
 本発明者は、上記課題を解決すべく鋭意研究した結果、ウレタン組成物がアミノシラン化合物を含有することによって所定の効果が得られることを見出し、本発明に至った。
 本発明は上記知見等に基づくものであり、具体的には以下の構成により上記課題を解決するものである。
As a result of intensive studies to solve the above problems, the present inventor has found that the urethane composition contains an aminosilane compound, whereby a predetermined effect can be obtained, and the present invention has been achieved.
The present invention is based on the above knowledge and the like, and specifically, solves the above problems by the following configuration.
 1. ポリオール化合物を含有する液体成分と充填剤を含有する粉体成分とを混合してペースト状混合物を得、ペースト状混合物中の残存水分の少なくとも一部を除去する、混合・脱水工程によって得られる脱水ペースト状混合物と、
 芳香族ポリイソシアネートと、
 ビスマス系触媒及びチタン系触媒からなる群から選ばれる少なくとも1種の金属触媒と、
 脂肪族ポリイソシアネートと、
 アミノシラン化合物と、
 スズ系触媒と、
 アミン系触媒とを含有する、一液湿気硬化型のウレタン組成物。
 2. アミノシラン化合物がイミノ基を有し、イミノ基が少なくとも1個の芳香族炭化水素基に結合する、上記1に記載のウレタン組成物。
 3. アミノシラン化合物の含有量が、脱水ペースト状混合物と芳香族ポリイソシアネートとの合計含有量100質量部に対して、0.2~5.0質量部である上記1又は2に記載のウレタン組成物。
1. Dehydration obtained by a mixing / dehydration process in which a liquid component containing a polyol compound and a powder component containing a filler are mixed to obtain a paste-like mixture, and at least a part of residual moisture in the paste-like mixture is removed. A paste-like mixture;
An aromatic polyisocyanate;
At least one metal catalyst selected from the group consisting of bismuth-based catalysts and titanium-based catalysts;
An aliphatic polyisocyanate;
An aminosilane compound;
A tin-based catalyst;
A one-component moisture-curing urethane composition containing an amine-based catalyst.
2. 2. The urethane composition according to 1 above, wherein the aminosilane compound has an imino group, and the imino group is bonded to at least one aromatic hydrocarbon group.
3. 3. The urethane composition according to 1 or 2 above, wherein the content of the aminosilane compound is 0.2 to 5.0 parts by mass with respect to 100 parts by mass of the total content of the dehydrated paste mixture and the aromatic polyisocyanate.
 4. ポリオール化合物を含有する液体成分と充填剤を含有する粉体成分とを混合してペースト状混合物を得、ペースト状混合物中の残存水分の少なくとも一部を除去して脱水ペースト状混合物を得る、混合・脱水工程と、
 脱水ペースト状混合物に、
 芳香族ポリイソシアネートと、
 ビスマス系触媒及びチタン系触媒からなる群から選ばれる少なくとも1種の金属触媒と、
 脂肪族ポリイソシアネートと、
 アミノシラン化合物と、
 スズ系触媒と、
 アミン系触媒とを混合して、一液湿気硬化型のウレタン組成物を製造する混合工程とを有する、ウレタン組成物の製造方法。
 5. 混合工程は、
 脱水ペースト状混合物に、芳香族ポリイソシアネートを混合する混合工程1と、
 混合工程1の後、金属触媒と、脂肪族ポリイソシアネートと、アミノシラン化合物とを混合する混合工程2と
 混合工程2の後、スズ系触媒と、アミン系触媒とを混合する混合工程3とを有する、上記4に記載のウレタン組成物の製造方法。
 6. 混合工程2において、脂肪族ポリイソシアネートを混合した後、アミノシラン化合物を混合する、上記5に記載のウレタン組成物の製造方法。
4). A liquid component containing a polyol compound and a powder component containing a filler are mixed to obtain a paste-like mixture, and at least a part of residual moisture in the paste-like mixture is removed to obtain a dehydrated paste-like mixture.・ Dehydration process,
To dehydrated paste-like mixture
An aromatic polyisocyanate;
At least one metal catalyst selected from the group consisting of bismuth-based catalysts and titanium-based catalysts;
An aliphatic polyisocyanate;
An aminosilane compound;
A tin-based catalyst;
The manufacturing method of a urethane composition which has a mixing process which mixes an amine catalyst and manufactures a one-component moisture hardening type urethane composition.
5. The mixing process
A mixing step 1 of mixing an aromatic polyisocyanate with the dehydrated paste-like mixture;
After the mixing step 1, the mixing step 2 for mixing the metal catalyst, the aliphatic polyisocyanate and the aminosilane compound, and after the mixing step 2, the mixing step 3 for mixing the tin-based catalyst and the amine-based catalyst are provided. The method for producing a urethane composition as described in 4 above.
6). 6. The method for producing a urethane composition according to 5 above, wherein, in the mixing step 2, the aliphatic polyisocyanate is mixed and then the aminosilane compound is mixed.
 本発明のウレタン組成物は接着性に優れる。
 また、本発明のウレタン組成物の製造方法によれば、接着性に優れるウレタン組成物を提供することができる。
The urethane composition of the present invention is excellent in adhesiveness.
Moreover, according to the manufacturing method of the urethane composition of this invention, the urethane composition excellent in adhesiveness can be provided.
 本発明について以下詳細に説明する。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、成分が2種以上の物質を含む場合、上記成分の含有量とは、2種以上の物質の合計の含有量を指す。
The present invention will be described in detail below.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
Moreover, in this specification, when a component contains 2 or more types of substances, content of the said component refers to the total content of 2 or more types of substances.
 本発明のウレタン組成物(本発明の組成物)は、
 ポリオール化合物を含有する液体成分と充填剤を含有する粉体成分とを混合してペースト状混合物を得、ペースト状混合物中の残存水分の少なくとも一部を除去する、混合・脱水工程によって得られる脱水ペースト状混合物と、
 芳香族ポリイソシアネートと、
 ビスマス系触媒及びチタン系触媒からなる群から選ばれる少なくとも1種の金属触媒と、
 脂肪族ポリイソシアネートと、
 アミノシラン化合物と、
 スズ系触媒と、
 アミン系触媒とを含有する、一液湿気硬化型のウレタン組成物である。
The urethane composition of the present invention (the composition of the present invention)
Dehydration obtained by a mixing / dehydration process in which a liquid component containing a polyol compound and a powder component containing a filler are mixed to obtain a paste-like mixture, and at least a part of residual moisture in the paste-like mixture is removed. A paste-like mixture;
An aromatic polyisocyanate;
At least one metal catalyst selected from the group consisting of bismuth-based catalysts and titanium-based catalysts;
An aliphatic polyisocyanate;
An aminosilane compound;
A tin-based catalyst;
A one-component moisture-curing urethane composition containing an amine-based catalyst.
 本発明の組成物はこのような構成をとるため、所望の効果が得られるものと考えられる。その理由は明らかではないが、本発明者はこれを以下のように推測する。
 本発明の組成物を硬化させると、芳香族ポリイソシアネート、脂肪族ポリイソシアネート及びこれらのウレタンプレポリマーからなる群から選ばれる少なくとも1種のイソシアネート成分とアミノシラン化合物とが反応するウレア反応と、芳香族ポリイソシアネート及び脂肪族ポリイソシアネートとポリオール化合物とが反応するウレタン反応と、アミノシラン化合物とガラスとの結合(接着)等が起こりうる。
 ウレタン組成物がアミノシラン化合物を含有する場合、アミノシラン化合物がガラスと接着するためには、組成物の硬化が遅いほうが有利となると考えられる。なかでも、上記ウレア反応におけるアミノシラン化合物の反応が遅いほうが有利であると推測される。
Since the composition of this invention takes such a structure, it is thought that a desired effect is acquired. The reason is not clear, but the present inventor presumes this as follows.
When the composition of the present invention is cured, a urea reaction in which at least one isocyanate component selected from the group consisting of an aromatic polyisocyanate, an aliphatic polyisocyanate, and these urethane prepolymers reacts with an aminosilane compound, and an aromatic Urethane reaction in which polyisocyanate and aliphatic polyisocyanate react with a polyol compound, and bonding (adhesion) between an aminosilane compound and glass may occur.
In the case where the urethane composition contains an aminosilane compound, it is considered that the slower curing of the composition is advantageous in order for the aminosilane compound to adhere to the glass. Among these, it is presumed that the slower reaction of the aminosilane compound in the urea reaction is more advantageous.
 本発明において、上述のとおり、アミノシラン化合物はウレア反応において上記のイソシアネート成分のいずれかと反応し得るが、イソシアネート成分は複数種であるため、ウレア反応は全体的に穏やか進むと考えられる。そしてこのようにウレア反応が穏やかであることによって、組成物全体の硬化が遅くなると考えられる。なかでも、アミノシラン化合物がウレタンプレポリマーとより多く反応できる場合、組成物の硬化がより抑制され、接着性により優れると考えられる。
 これに対して、本発明者は、脂肪族ポリイソシアネートとアミノシラン化合物との反応物を含有する、つまり組成物の硬化が速い場合、所望の効果が得られないことを知見した。上記知見は、急速なウレア反応はアミノシラン化合物がガラスと接着することを阻害することを裏付けると考えられる。
In the present invention, as described above, the aminosilane compound can react with any of the above-described isocyanate components in the urea reaction. However, since the isocyanate component is a plurality of types, the urea reaction is considered to proceed moderately as a whole. And it is thought that hardening of the whole composition becomes late | slow because a urea reaction is gentle in this way. Especially, when an aminosilane compound can react more with a urethane prepolymer, hardening of a composition is suppressed more and it is thought that it is excellent by adhesiveness.
On the other hand, the present inventor has found that a desired effect cannot be obtained when a reaction product of an aliphatic polyisocyanate and an aminosilane compound is contained, that is, when the composition is rapidly cured. The above findings are thought to support that the rapid urea reaction inhibits the aminosilane compound from adhering to the glass.
[ウレタン組成物]
 以下、本発明の組成物に含有される各成分について詳述する。
<脱水ペースト状混合物>
 本発明の組成物に含有される脱水ペースト状混合物は、ポリオール化合物を含有する液体成分と充填剤を含有する粉体成分とを混合してペースト状混合物を得、ペースト状混合物中の残存水分の少なくとも一部を除去する、混合・脱水工程によって得られる脱水ペースト状混合物である。
(液体成分)
 上記液体成分は、ポリオール化合物を含有する成分であれば特に限定されず、該ポリオール化合物のみ含有するものであってもよく、該ポリオール化合物以外に、更に、例えば、可塑剤等を含有するものであってもよい。
 混合工程における粘度の観点から、ポリオール化合物の融点は80℃以下であるのが好ましく、60℃以下であるのがより好ましい。
[Urethane composition]
Hereinafter, each component contained in the composition of this invention is explained in full detail.
<Dehydrated paste mixture>
The dehydrated paste-like mixture contained in the composition of the present invention is obtained by mixing a liquid component containing a polyol compound and a powder component containing a filler to obtain a paste-like mixture, which contains residual moisture in the paste-like mixture. It is a dehydrated paste-like mixture obtained by a mixing / dehydration process that removes at least a part.
(Liquid component)
The liquid component is not particularly limited as long as it contains a polyol compound, and may contain only the polyol compound. In addition to the polyol compound, the liquid component further contains, for example, a plasticizer. There may be.
From the viewpoint of the viscosity in the mixing step, the melting point of the polyol compound is preferably 80 ° C. or less, and more preferably 60 ° C. or less.
 上記ポリオール化合物は、ヒドロキシ基(OH基)を2個以上有する化合物であれば、その分子量および骨格などは特に限定されない。例えば、低分子多価アルコール類、ポリエーテルポリオール、ポリエステルポリオール、その他のポリオール、およびこれらの混合ポリオール等が挙げられる。なかでもポリエーテルポリオールが好ましい。 The polyol compound is not particularly limited in its molecular weight and skeleton as long as it is a compound having two or more hydroxy groups (OH groups). Examples thereof include low-molecular polyhydric alcohols, polyether polyols, polyester polyols, other polyols, and mixed polyols thereof. Of these, polyether polyol is preferred.
 ポリエーテルポリオールとしては、例えば、ポリオキシエチレンジオール(ポリエチレングリコール)、ポリオキシプロピレンジオール(ポリプロピレングリコール:PPG)、ポリオキシプロピレントリオール、エチレンオキサイド/プロピレンオキサイド共重合体、ポリテトラメチレンエーテルグリコール(PTMEG)、ポリテトラエチレングリコール、ソルビトール系ポリオール等が挙げられる。 Examples of the polyether polyol include polyoxyethylene diol (polyethylene glycol), polyoxypropylene diol (polypropylene glycol: PPG), polyoxypropylene triol, ethylene oxide / propylene oxide copolymer, polytetramethylene ether glycol (PTMEG). , Polytetraethylene glycol, sorbitol-based polyol, and the like.
 ポリエーテルポリオールは、ポリイソアネートとの相溶性に優れるという観点から、ポリプロピレングリコール、ポリオキシプロピレントリオールが好ましい。
 ポリエーテルポリオールの重量平均分子量は、イソシアネートとの反応によって得られるウレタンプレポリマーの粘度が常温において適度な流動性を有するという観点から、500~20,000であるのが好ましい。本発明において上記重量平均分子量は、GPC法(溶媒:テトラヒドロフラン(THF))により得られたポリスチレン換算値である。
 ポリオール化合物はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
The polyether polyol is preferably polypropylene glycol or polyoxypropylene triol from the viewpoint of excellent compatibility with the polyisocyanate.
The weight average molecular weight of the polyether polyol is preferably 500 to 20,000 from the viewpoint that the viscosity of the urethane prepolymer obtained by the reaction with isocyanate has an appropriate fluidity at room temperature. In the present invention, the weight average molecular weight is a polystyrene equivalent value obtained by the GPC method (solvent: tetrahydrofuran (THF)).
The polyol compounds can be used alone or in combination of two or more.
 ポリオール化合物の含有量は、硬化物の物性に優れるという観点から、ペースト状混合物又は脱水ペースト状混合物100質量部に対して、20~80質量部であるのが好ましく、25~75質量部であるのがより好ましい。 The content of the polyol compound is preferably 20 to 80 parts by mass, and preferably 25 to 75 parts by mass with respect to 100 parts by mass of the paste-like mixture or dehydrated paste-like mixture, from the viewpoint of excellent physical properties of the cured product. Is more preferable.
 上記可塑剤としては、具体的には、例えば、アジピン酸ジイソノニル(DINA);フタル酸ジイソノニル(DINP);アジピン酸ジオクチル、コハク酸イソデシル;ジエチレングリコールジベンゾエート、ペンタエリスリトールエステル;オレイン酸ブチル、アセチルリシノール酸メチル;リン酸トリクレジル、リン酸トリオクチル;アジピン酸プロピレングリコールポリエステル、アジピン酸ブチレングリコールポリエステル等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 これらのうち、アジピン酸ジイソノニル(DINA)、フタル酸ジイソノニル(DINP)を用いるのが、コストや相溶性に優れる理由から好ましい。
Specific examples of the plasticizer include, for example, diisononyl adipate (DINA); diisononyl phthalate (DINP); dioctyl adipate, isodecyl succinate; diethylene glycol dibenzoate, pentaerythritol ester; butyl oleate, acetylricinoleic acid Examples include methyl; tricresyl phosphate, trioctyl phosphate; propylene glycol adipate polyester, butylene glycol adipate polyester, and the like. These may be used alone or in combination of two or more.
Of these, it is preferable to use diisononyl adipate (DINA) and diisononyl phthalate (DINP) for reasons of excellent cost and compatibility.
 なお、上記液体成分が上記可塑剤を含有する場合、その含有量は、特に限定されないが、上記ポリオール化合物、芳香族ポリイソシアネート及び脂肪族ポリイソシアネートの合計含有量100質量部に対して、20~80質量部が好ましく、30~70質量部がより好ましい。 In the case where the liquid component contains the plasticizer, the content thereof is not particularly limited, but is 20 to 20 parts per 100 parts by mass of the total content of the polyol compound, aromatic polyisocyanate and aliphatic polyisocyanate. 80 parts by mass is preferable, and 30 to 70 parts by mass is more preferable.
 <粉体成分>
 上記粉体成分は、充填剤を含有する成分であれば特に限定されず、該充填剤のみ含有するものであってもよく、該充填剤以外に、更に、例えば、老化防止剤、酸化防止剤、顔料(染料)、揺変性付与剤、紫外線吸収剤、難燃剤、界面活性剤(レベリング剤を含む)、分散剤、脱水剤、接着付与剤、帯電防止剤などの各種添加剤等を含有するものであってもよい。上記添加剤は特に制限されない。例えば、従来公知のものが挙げられる。
<Powder component>
The powder component is not particularly limited as long as it contains a filler, and may contain only the filler. In addition to the filler, for example, an anti-aging agent, an antioxidant, etc. Contains various additives such as pigments (dyes), thixotropic agents, UV absorbers, flame retardants, surfactants (including leveling agents), dispersants, dehydrating agents, adhesion-imparting agents, and antistatic agents. It may be a thing. The additive is not particularly limited. For example, a conventionally well-known thing is mentioned.
 上記充填剤としては、各種形状の有機または無機の充填剤が挙げられる。具体的には、例えば、ヒュームドシリカ、焼成シリカ、沈降シリカ、粉砕シリカ、溶融シリカ;ケイソウ土;酸化鉄、酸化亜鉛、酸化チタン、酸化バリウム、酸化マグネシウム;炭酸カルシウム(例えば、重質炭酸カルシウム、沈降性炭酸カルシウム(軽質炭酸カルシウム)、コロイダル炭酸カルシウム)、炭酸マグネシウム、炭酸亜鉛;ろう石クレー、カオリンクレー、焼成クレー;カーボンブラック;これらの脂肪酸処理物、樹脂酸処理物、ウレタン化合物処理物、脂肪酸エステル処理物;等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。 ¡Examples of the filler include organic or inorganic fillers of various shapes. Specifically, for example, fumed silica, calcined silica, precipitated silica, ground silica, fused silica; diatomaceous earth; iron oxide, zinc oxide, titanium oxide, barium oxide, magnesium oxide; calcium carbonate (for example, heavy calcium carbonate , Precipitated calcium carbonate (light calcium carbonate), colloidal calcium carbonate), magnesium carbonate, zinc carbonate; wax stone clay, kaolin clay, calcined clay; carbon black; treated with these fatty acids, treated with resin acid, treated with urethane compound Processed fatty acid ester; etc., and these may be used alone or in combination of two or more.
 これらのうち、カーボンブラック、炭酸カルシウム(例えば、重質炭酸カルシウム)であるのが、組成物の粘度やチクソ性を調製しやすくなる理由から好ましい。カーボンブラックを用いた場合には物性(例えば、硬度、伸び等)に優れる。重質炭酸カルシウムを用いた場合には深部硬化性に優れる。
 カーボンブラックは、ペレットカーボンブラックであるのが、作業性が良好となり、上記液体成分の脱水がより促進する理由から好ましい。
Among these, carbon black and calcium carbonate (for example, heavy calcium carbonate) are preferable because the viscosity and thixotropy of the composition can be easily adjusted. When carbon black is used, the physical properties (for example, hardness, elongation, etc.) are excellent. When heavy calcium carbonate is used, it is excellent in deep part curability.
The carbon black is preferably pellet carbon black because the workability is improved and the dehydration of the liquid component is further promoted.
 上記粉体成分の含有量は、上記ポリオール化合物、芳香族ポリイソシアネート及び脂肪族ポリイソシアネートの合計含有量100質量部に対して、50~150質量部が好ましく、70~130質量部がより好ましい。 The content of the powder component is preferably 50 to 150 parts by mass, more preferably 70 to 130 parts by mass with respect to 100 parts by mass of the total content of the polyol compound, aromatic polyisocyanate and aliphatic polyisocyanate.
 混合・脱水工程における混合方法は特に制限されない。例えば、撹拌することによって混合することができる。
 混合・脱水工程における脱水方法は特に制限されない。例えば、加熱することによって脱水することができる。脱水の際の加熱温度は110℃~170℃とすることができる。
 また脱水の際、真空(例えば1.2kPa以下とすることができ、好ましくは0.6~1.2kPaである。)、150℃以下の条件下でペースト状混合物を乾燥させることができる。
 なお、本発明において、脱水ペースト状混合物に含有される各成分の割合は、ペースト状混合物とほぼ同じであるものとする。
The mixing method in the mixing / dehydration step is not particularly limited. For example, it can mix by stirring.
The dehydrating method in the mixing / dehydrating step is not particularly limited. For example, it can be dehydrated by heating. The heating temperature during dehydration can be set to 110 ° C. to 170 ° C.
Further, at the time of dehydration, the pasty mixture can be dried under conditions of vacuum (for example, 1.2 kPa or less, preferably 0.6 to 1.2 kPa) and 150 ° C. or less.
In the present invention, the ratio of each component contained in the dehydrated paste mixture is substantially the same as that of the paste mixture.
<芳香族ポリイソシアネート>
 芳香族ポリイソシアネートは、芳香族炭化水素基に結合するイソシアネート基を1分子中に2個以上有する化合物であれば特に限定されない。
 芳香族炭化水素基は特に制限されない。
<Aromatic polyisocyanate>
The aromatic polyisocyanate is not particularly limited as long as it is a compound having two or more isocyanate groups bonded to an aromatic hydrocarbon group in one molecule.
The aromatic hydrocarbon group is not particularly limited.
 芳香族ポリイソシアネートとしては、例えば、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、1,4-フェニレンジイソシアネート、ポリメチレンポリフェニレンポリイソシアネート、キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、トリジンジイソシアネート(TODI)、1,5-ナフタレンジイソシアネート(NDI)、トリフェニルメタントリイソシアネートが挙げられる。 Examples of aromatic polyisocyanates include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), 1,4-phenylene diisocyanate, polymethylene polyphenylene polyisocyanate, xylylene diisocyanate (XDI), and tetramethylxylylene diisocyanate (TMXDI). , Tolidine diisocyanate (TODI), 1,5-naphthalene diisocyanate (NDI), and triphenylmethane triisocyanate.
 なかでも、硬化特性及びダンベル物性に優れるという観点から、MDI及びTDIからなる群から選ばれる少なくとも1種であるのが好ましい。 Especially, it is preferable that it is at least 1 sort (s) chosen from the group which consists of MDI and TDI from a viewpoint that it is excellent in a hardening characteristic and a dumbbell physical property.
 芳香族ポリイソシアネートの含有量は、取り扱い性(粘度)、硬化後の物性のバランスに優れるという観点から、脱水ペースト状混合物及び芳香族ポリイソシアネートとの合計含有量100質量部に対して、1~10質量部であるのが好ましく、2~7質量部であるのがより好ましい。 The content of the aromatic polyisocyanate is from 1 to 100 parts by mass with respect to a total content of 100 parts by mass of the dehydrated paste-like mixture and the aromatic polyisocyanate, from the viewpoint of excellent balance of handleability (viscosity) and physical properties after curing. The amount is preferably 10 parts by mass, and more preferably 2 to 7 parts by mass.
<金属触媒>
 本発明の組成物に含有される金属素触媒は、ビスマス系触媒及びチタン系触媒からなる群から選ばれる少なくとも1種である。
 金属触媒はウレタン反応等のようなイソシアネート基の反応を促進することができる。
<Metal catalyst>
The metal element catalyst contained in the composition of the present invention is at least one selected from the group consisting of a bismuth catalyst and a titanium catalyst.
The metal catalyst can accelerate the reaction of isocyanate groups such as urethane reaction.
(ビスマス系触媒)
 ビスマス系触媒は、反応が暴走せず、ゲル物等が生じにくいという観点から、ビスマス(金属ビスマス)が好ましい。
(Bismuth catalyst)
The bismuth-based catalyst is preferably bismuth (metal bismuth) from the viewpoint that the reaction does not run away and a gel is not easily generated.
(チタン系触媒)
 チタン系触媒は、チタンを有する化合物であれば特に制限されない。例えば、有機チタン系触媒が挙げられる。有機チタン系触媒としては、チタンのカルボン酸塩、アルコキシド、錯体が挙げられる。有機チタン系触媒を構成する、カルボン酸、アルコキシ基及び配位子は特に制限されない。
 チタン系触媒としては、具体的には例えば、例えば、テトラプロピルチタネート、テトラブチルチタネート、テトラオクチルチタネート、チタンジイソプロポキシビス(エチルアセトアセテート)が挙げられる。
(Titanium catalyst)
The titanium-based catalyst is not particularly limited as long as it is a compound containing titanium. For example, an organotitanium catalyst is mentioned. Examples of the organic titanium catalyst include titanium carboxylate, alkoxide, and complex. The carboxylic acid, alkoxy group and ligand constituting the organic titanium catalyst are not particularly limited.
Specific examples of the titanium-based catalyst include tetrapropyl titanate, tetrabutyl titanate, tetraoctyl titanate, and titanium diisopropoxy bis (ethyl acetoacetate).
 金属触媒はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。金属触媒の製造は特に制限されない。例えば、従来公知のものが挙げられる。 Metal catalysts can be used alone or in combination of two or more. The production of the metal catalyst is not particularly limited. For example, a conventionally well-known thing is mentioned.
 金属触媒の含有量は、脱水ペースト状混合物及び芳香族ポリイソシアネートとの合計含有量100質量部に対して、0.001~0.05質量部であるのが好ましく、0.002~0.02質量部であるのがより好ましい。 The content of the metal catalyst is preferably 0.001 to 0.05 parts by mass, preferably 0.002 to 0.02 parts per 100 parts by mass of the total content of the dehydrated paste-like mixture and the aromatic polyisocyanate. More preferred is part by mass.
<脂肪族ポリイソシアネート>
 本発明の組成物に含有される脂肪族ポリイソシアネートは、脂肪族炭化水素基に結合するイソシアネート基を1分子中に2個以上有する化合物であれば特に制限されない。
 脂肪族ポリイソシアネートが有する脂肪族炭化水素基は、特に制限されない。直鎖状、分岐状、環状のいずれであってもよく、直鎖状であるのが好ましい。脂肪族炭化水素基は、飽和、不飽和のいずれであってもよく、飽和であるのが好ましい。
 脂肪族ポリイソシアネートが1分子中に有するイソシアネート基は、接着性により優れるという観点から、2個以上であるのが好ましく、2~3個であるのがより好ましい。
<Aliphatic polyisocyanate>
The aliphatic polyisocyanate contained in the composition of the present invention is not particularly limited as long as it is a compound having two or more isocyanate groups bonded to an aliphatic hydrocarbon group in one molecule.
The aliphatic hydrocarbon group that the aliphatic polyisocyanate has is not particularly limited. It may be linear, branched or cyclic, and is preferably linear. The aliphatic hydrocarbon group may be saturated or unsaturated, and is preferably saturated.
The number of isocyanate groups that the aliphatic polyisocyanate has in one molecule is preferably 2 or more, more preferably 2 to 3 from the viewpoint of superior adhesion.
 脂肪族ポリイソシアネートは、ヘキサメチレンジイソシアネート(HDI)、トリメチルヘキサメチレンジイソシアネート(TMHDI)、リジンジイソシアネート、ノルボルナンジイソシアネート(NBDI)、トランスシクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート(IPDI)、ビス(イソシアネートメチル)シクロヘキサン(H6XDI)、ジシクロヘキシルメタンジイソシアネート(H12MDI)のような、脂肪族ポリイソシアネート(変性体を除く。以下上記脂肪族ポリイソシアネートを脂肪族ポリイソシアネートbということがある。);脂肪族ポリイソシアネートの変性体が挙げられる。
 脂肪族ポリイソシアネートは、接着性により優れ、特に硬化時の環境の違いによる接着性の幅が大きいという観点から、脂肪族ポリイソシアネートの変性体が好ましい。
Aliphatic polyisocyanates are hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate (TMHDI), lysine diisocyanate, norbornane diisocyanate (NBDI), transcyclohexane-1,4-diisocyanate, isophorone diisocyanate (IPDI), bis (isocyanate methyl). Aliphatic polyisocyanates such as cyclohexane (H 6 XDI) and dicyclohexylmethane diisocyanate (H 12 MDI) (excluding modified products; hereinafter, the above aliphatic polyisocyanate may be referred to as aliphatic polyisocyanate b); aliphatic Examples include modified polyisocyanates.
Aliphatic polyisocyanates are preferred from the viewpoint of excellent adhesiveness, and in particular, from the viewpoint of a wide range of adhesiveness due to differences in environment during curing.
 脂肪族ポリイソシアネートの変性体は、接着性と硬化後の接着剤の物性バランスに優れるという観点から、3官能以上のポリオールと脂肪族ポリイソシアネートとの反応物、脂肪族ポリイソシアネートのアロファネート体、脂肪族ポリイソシアネートのイソシアヌレート体及び脂肪族ポリイソシアネートのビウレット体からなる群から選ばれる少なくとも1種の脂肪族イソシアネート変性体aであるのが好ましい。 The modified product of the aliphatic polyisocyanate is a reaction product of a trifunctional or higher functional polyol and an aliphatic polyisocyanate, an allophanate of an aliphatic polyisocyanate, a fat, from the viewpoint of excellent adhesion and physical property balance of the adhesive after curing. It is preferably at least one aliphatic isocyanate-modified product a selected from the group consisting of an isocyanurate of an aliphatic polyisocyanate and a biuret of an aliphatic polyisocyanate.
 脂肪族イソシアネート変性体aに使用される脂肪族ポリイソシアネートは、1分子中に少なくとも2個のイソシアネート基を有する脂肪族炭化水素化合物であれば特に制限されない。例えば、脂肪族ポリイソシアネートbと同様のものが挙げられる。なかでも、接着性により優れ、添加量による発泡が起きにくいという観点から、直鎖状の脂肪族ポリイソシアネートであるのが好ましく、HDIがより好ましい。 The aliphatic polyisocyanate used in the modified aliphatic isocyanate a is not particularly limited as long as it is an aliphatic hydrocarbon compound having at least two isocyanate groups in one molecule. For example, the thing similar to aliphatic polyisocyanate b is mentioned. Among these, linear aliphatic polyisocyanates are preferable, and HDI is more preferable, from the viewpoint that the adhesiveness is excellent and foaming hardly occurs due to the addition amount.
 3官能以上のポリオールと脂肪族ポリイソシアネートとの反応物としては、例えば、トリメチロールプロパン(TMP)、グリセリンのような3官能ポリオールと脂肪族ポリイソシアネートb(例えば、HDI)との反応物が挙げられる。具体的には例えば、TMPとHDIとの反応物(例えば下記式(5)で表される化合物)、グリセリンとHDIとの反応物(例えば下記式(6)で表される化合物)が挙げられる。 Examples of the reaction product of a trifunctional or higher polyol and an aliphatic polyisocyanate include a reaction product of a trifunctional polyol such as trimethylolpropane (TMP) or glycerin and an aliphatic polyisocyanate b (for example, HDI). It is done. Specific examples include a reaction product of TMP and HDI (for example, a compound represented by the following formula (5)) and a reaction product of glycerin and HDI (for example, a compound represented by the following formula (6)). .
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 脂肪族ポリイソシアネートのアロファネート体としては、例えば、HDIのアロファネート体が挙げられる。 Examples of the allophanate body of aliphatic polyisocyanate include HDI allophanate body.
 脂肪族ポリイソシアネートのビウレット体としては例えば、HDIのビウレット体が挙げられる。具体的には例えば、下記式(7)で表される化合物が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000003
Examples of the biuret body of the aliphatic polyisocyanate include an HDI biuret body. Specifically, for example, a compound represented by the following formula (7) is preferably exemplified.
Figure JPOXMLDOC01-appb-C000003
 脂肪族ポリイソシアネートのイソシアヌレート体としては、例えば、HDIのイソシアヌレート体が挙げられる。具体的には例えば、下記式(8)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004
Examples of the isocyanurate form of the aliphatic polyisocyanate include an HDI isocyanurate form. Specifically, the compound represented by following formula (8) is mentioned, for example.
Figure JPOXMLDOC01-appb-C000004
 脂肪族ポリイソシアネートは、組成物の粘度のばらつきが小さく、接着性により優れ、貯蔵安定性に優れるという観点から、脂肪族ポリイソシアネートのイソシアヌレート体及び脂肪族ポリイソシアネートのビウレット体からなる群から選ばれる少なくとも1種であるのが好ましい。 The aliphatic polyisocyanate is selected from the group consisting of an isocyanurate body of an aliphatic polyisocyanate and a biuret body of an aliphatic polyisocyanate, from the viewpoint that the composition has a small variation in viscosity, excellent adhesion, and excellent storage stability. It is preferable that it is at least one kind.
 脂肪族ポリイソシアネートはその製造について特に制限されない。例えば従来公知のものが挙げられる。脂肪族ポリイソシアネートはそれぞれ単独でまたは2種以上を組み合わせて使用することができる。 The aliphatic polyisocyanate is not particularly limited for its production. For example, a conventionally well-known thing is mentioned. The aliphatic polyisocyanates can be used alone or in combination of two or more.
 芳香族ポリイソシアネート及び脂肪族ポリイソシアネートの合計含有量は、例えば、芳香族ポリイソシアネートのイソシアネート基と脂肪族ポリイソシアネートのイソシアネート基との合計モル数に対する、上記ポリオール化合物のヒドロキシ基(OH)のモル比が、1.1~2.5となる量が好ましい。 The total content of aromatic polyisocyanate and aliphatic polyisocyanate is, for example, the number of moles of hydroxy group (OH) of the polyol compound relative to the total number of moles of isocyanate group of aromatic polyisocyanate and isocyanate group of aliphatic polyisocyanate. An amount with a ratio of 1.1 to 2.5 is preferred.
 芳香族ポリイソシアネートに対する脂肪族ポリイソシアネートの質量比(脂肪族ポリイソシアネート/芳香族ポリイソシアネート)は、接着性(特にガラスに対する接着性)により優れるという観点から、0.2~0.6であるのが好ましく、0.3~0.4であるのがより好ましい。 The mass ratio of aliphatic polyisocyanate to aromatic polyisocyanate (aliphatic polyisocyanate / aromatic polyisocyanate) is 0.2 to 0.6 from the viewpoint of superior adhesion (particularly adhesion to glass). Is more preferable, and 0.3 to 0.4 is more preferable.
<アミノシラン化合物>
 本発明の組成物に使用されるアミノシラン化合物は、アミノ基(-NH2)及びイミノ基(-NH-)からなる群から選ばれる少なくとも1種と加水分解性シリル基とを有する化合物であれば特に制限されない。アミノ基、イミノ基と加水分解性シリル基とは有機基を介して結合することができる。
 アミノシラン化合物がイミノ基を有する場合、イミノ基に結合する基は芳香族炭化水素基であるのが好ましい態様の1つとして挙げられる。
 芳香族炭化水素基は、芳香環を少なくとも有する炭化水素基であれば特に制限されない。芳香環としては、例えば、ベンゼン環、ナフタレン環が挙げられる。
 芳香環は、置換基を有してもよい。置換基としては例えば、アルキル基が挙げられる。
<Aminosilane compound>
The aminosilane compound used in the composition of the present invention is a compound having at least one selected from the group consisting of an amino group (—NH 2 ) and an imino group (—NH—) and a hydrolyzable silyl group. There is no particular limitation. The amino group, imino group and hydrolyzable silyl group can be bonded via an organic group.
In the case where the aminosilane compound has an imino group, the group bonded to the imino group is preferably an aromatic hydrocarbon group.
The aromatic hydrocarbon group is not particularly limited as long as it is a hydrocarbon group having at least an aromatic ring. Examples of the aromatic ring include a benzene ring and a naphthalene ring.
The aromatic ring may have a substituent. Examples of the substituent include an alkyl group.
 加水分解性シリル基は、1つのケイ素原子に少なくとも1つの加水分解性基が結合したものが挙げられる。1つのケイ素原子に1つ又は2つの加水分解性基が結合する場合、同ケイ素原子に結合することができる他の基は特に制限されない。例えば、炭化水素基が挙げられる。炭化水素基は特に制限されないが、アルキル基が好ましい。
 加水分解性シリル基としては例えば、アルコキシシリル基が挙げられる。具体的には例えば、メトキシシリル基(モノメトキシシリル基、ジメトキシシリル基、トリメトキシシリル基)、エトキシシリル基(モノエトキシシリル基、ジエトキシシリル基、トリエトキシシリル基)が挙げられる。
Examples of the hydrolyzable silyl group include those in which at least one hydrolyzable group is bonded to one silicon atom. When one or two hydrolyzable groups are bonded to one silicon atom, other groups that can be bonded to the silicon atom are not particularly limited. For example, a hydrocarbon group is mentioned. The hydrocarbon group is not particularly limited, but an alkyl group is preferable.
Examples of the hydrolyzable silyl group include an alkoxysilyl group. Specific examples include a methoxysilyl group (monomethoxysilyl group, dimethoxysilyl group, trimethoxysilyl group) and ethoxysilyl group (monoethoxysilyl group, diethoxysilyl group, triethoxysilyl group).
 有機基は特に制限されない。例えば、酸素原子、窒素原子、硫黄原子のようなヘテロ原子を有してもよい炭化水素基が挙げられる。炭化水素基としては、例えば、脂肪族炭化水素基(直鎖状、分岐状、環状のいずれであってもよい。不飽和結合を有してもよい。)、芳香族炭化水素基、又はこれらの組み合わせが挙げられる。炭化水素基が有する炭素原子又は水素原子の少なくとも1個が、置換基と置き換わってもよい。有機基は、なかでも、脂肪族炭化水素基が好ましい態様の1つとして挙げられる。 The organic group is not particularly limited. For example, the hydrocarbon group which may have a hetero atom like an oxygen atom, a nitrogen atom, and a sulfur atom is mentioned. Examples of the hydrocarbon group include an aliphatic hydrocarbon group (which may be linear, branched or cyclic, may have an unsaturated bond), an aromatic hydrocarbon group, or these. The combination of is mentioned. At least one of the carbon atom or hydrogen atom of the hydrocarbon group may be replaced with a substituent. Among the organic groups, an aliphatic hydrocarbon group is preferable.
 アミノシラン化合物は、接着性により優れ、接着剤の貯蔵安定性、耐垂下性に優れるという観点から、1分子中にアルコキシシリル基とイミノ基とを有する化合物であるのが好ましく、1分子中にアルコキシシリル基と、芳香族炭化水素基が結合したイミノ基とを有する化合物であるのがより好ましく、1分子中にアルコキシシリル基と、芳香族炭化水素基が結合したイミノ基と、アルコキシシリル基とイミノ基とが脂肪族炭化水素基を介して結合する化合物であるのがさらに好ましい。 The aminosilane compound is preferably a compound having an alkoxysilyl group and an imino group in one molecule from the viewpoint of excellent adhesion, excellent storage stability of the adhesive, and droop resistance. More preferably, it is a compound having a silyl group and an imino group to which an aromatic hydrocarbon group is bonded. An alkoxysilyl group, an imino group to which an aromatic hydrocarbon group is bonded in one molecule, an alkoxysilyl group, More preferably, the compound is bonded to the imino group via an aliphatic hydrocarbon group.
 アミノシラン化合物としては、例えば、下記式(1)で表される化合物が挙げられる。
1 n-NH2-n-R2-Si-R3 3   (1)
 式(1)中、R1は芳香族炭化水素基を表し、nは0又は1であり、R2は2価の脂肪族炭化水素基を表し、3個のR3のうち少なくとも1個はアルコキシ基であり、3個のR3は同一でも異なってもよい。3個のR3のうち1個又は2個がアルコキシ基である場合残りのR3はアルキル基であることが好ましい。
As an aminosilane compound, the compound represented by following formula (1) is mentioned, for example.
R 1 n —NH 2 —n —R 2 —Si—R 3 3 (1)
In formula (1), R 1 represents an aromatic hydrocarbon group, n is 0 or 1, R 2 represents a divalent aliphatic hydrocarbon group, and at least one of three R 3 is It is an alkoxy group, and three R 3 s may be the same or different. When one or two of the three R 3 are alkoxy groups, the remaining R 3 is preferably an alkyl group.
 芳香族炭化水素基としては例えば、フェニル基が挙げられる。
 2価の脂肪族炭化水素基としては例えば、メチレン基、エチレン基、プロピレン基が挙げられる。
 アルコキシ基としては例えば、メトキシ基、エトキシ基が挙げられる。
 アルキル基としては例えば、メチル基、エチル基が挙げられる。
Examples of the aromatic hydrocarbon group include a phenyl group.
Examples of the divalent aliphatic hydrocarbon group include a methylene group, an ethylene group, and a propylene group.
Examples of the alkoxy group include a methoxy group and an ethoxy group.
Examples of the alkyl group include a methyl group and an ethyl group.
 具体的なアミノシラン化合物としては、例えば、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシランが挙げられる。 Specific examples of the aminosilane compound include N-phenyl-3-aminopropyltrimethoxysilane and N-phenyl-3-aminopropyltriethoxysilane.
 アミノシラン化合物はその製造について特に制限されない。例えば、従来公知のものが挙げられる。アミノシラン化合物はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。 The aminosilane compound is not particularly limited for its production. For example, a conventionally well-known thing is mentioned. The aminosilane compounds can be used alone or in combination of two or more.
 アミノシラン化合物の量は、接着性により優れ、未硬化時の貯蔵安定性に優れ、組成物の粘度のばらつきが小さく、タックフリータイムが適切な長さとなるという観点から、脱水ペースト状混合物と芳香族ポリイソシアネートとの合計含有量100質量部に対して、0.2~5.0質量部であるのが好ましく、0.5~3.0質量部であるのがより好ましい。 The amount of the aminosilane compound is superior in terms of adhesiveness, excellent storage stability when uncured, small variations in the viscosity of the composition, and appropriate length of tack-free time. The content is preferably 0.2 to 5.0 parts by mass, more preferably 0.5 to 3.0 parts by mass with respect to 100 parts by mass of the total content with the polyisocyanate.
<スズ系触媒>
 本発明の組成物に含有されるスズ系触媒は、スズを有する化合物であれば特に制限されない。例えば、有機スズ系触媒が挙げられる。有機スズ触媒が有する有機基は特に制限されない。有機スズ系触媒としては、スズのカルボン酸塩、アルコキシド、錯体が挙げられる。有機スズ系触媒を構成するカルボン酸、アルコキシ基及び配位子は特に制限されない。
<Tin-based catalyst>
The tin-based catalyst contained in the composition of the present invention is not particularly limited as long as it is a compound having tin. For example, an organotin catalyst can be used. The organic group that the organotin catalyst has is not particularly limited. Examples of organotin catalysts include tin carboxylates, alkoxides, and complexes. The carboxylic acid, alkoxy group and ligand constituting the organotin catalyst are not particularly limited.
 有機スズ系触媒としては、例えば、ジオクチル錫ジラウレート、ジブチル錫ジラウレート、ジブチル錫マレエート、第一錫オクテート、ジブチル錫ジアセチルアセトネート、ジオクチル錫マレエート;1,3-ジアセトキシ-1,1,3,3-テトラブチル-ジスタノキサンとエチルシリケートとをモル比が1:0.8~1:1.2となるように反応させた反応物等が挙げられる。 Examples of organotin catalysts include dioctyltin dilaurate, dibutyltin dilaurate, dibutyltin maleate, stannous octate, dibutyltin diacetylacetonate, dioctyltin maleate; 1,3-diacetoxy-1,1,3,3- Examples thereof include a reaction product obtained by reacting tetrabutyl-distanoxane and ethyl silicate so that the molar ratio is 1: 0.8 to 1: 1.2.
 スズ系触媒はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。スズ系触媒の製造は特に制限されない。例えば、従来公知のものが挙げられる。 Tin-based catalysts can be used alone or in combination of two or more. The production of the tin-based catalyst is not particularly limited. For example, a conventionally well-known thing is mentioned.
 スズ系触媒の含有量は、硬化性、接着発現性に優れるという観点から、脱水ペースト状混合物及び芳香族ポリイソシアネートとの合計含有量100質量部に対して、0.001~0.05質量部であるのが好ましく、0.002~0.02質量部であるのがより好ましい。 The content of the tin-based catalyst is 0.001 to 0.05 parts by mass with respect to 100 parts by mass of the total content of the dehydrated paste-like mixture and the aromatic polyisocyanate from the viewpoint of excellent curability and adhesion development. The amount is preferably 0.002 to 0.02 parts by mass.
 <アミン系触媒>
 本発明の組成物に含有されるアミン系触媒は、窒素原子を有し、イソシアネート基の反応を促進する化合物である。
<Amine-based catalyst>
The amine catalyst contained in the composition of the present invention is a compound having a nitrogen atom and promoting the reaction of an isocyanate group.
 アミン系触媒は、第3級アミノ基(1個の窒素原子が3個の炭素原子と単結合する、又は、1つの窒素原子が1つの炭素原子と単結合し別の炭素原子と二重結合する)を有するのが好ましい。
 第3級アミノ基を有するアミン系触媒(第3級アミン)としては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリアミルアミン、トリヘキシルアミン、トリオクチルアミン、トリラウリルアミン、ジメチルエチルアミン、ジメチルプロピルアミン、ジメチルブチルアミン、ジメチルアミルアミン、ジメチルヘキシルアミン、ジメチルシクロヘキシルアミン、ジメチルオクチルアミン、ジメチルラウリルアミン、トリアリルアミン、テトラメチルエチレンジアミン、トリエチレンジアミン、N-メチルモルフォリン、4,4′-(オキシジ-2,1-エタンジイル)ビス-モルフォリン、N,N-ジメチルベンジルアミン、ピリジン、ピコリン、ジメチルアミノメチルフェノール、トリスジメチルアミノメチルフェノール、1,8-ジアザビシクロ〔5.4.0〕ウンデセン-1、1,4-ジアザビシクロ〔2.2.2〕オクタン、トリエタノールアミン、N,N′-ジメチルピペラジン、テトラメチルブタンジアミン、ビス(2,2-モルフォリノエチル)エーテル、ビス(ジメチルアミノエチル)エーテル等が挙げられる。
Amine-based catalysts are tertiary amino groups (one nitrogen atom is single-bonded to three carbon atoms, or one nitrogen atom is single-bonded to one carbon atom and double-bonded to another carbon atom. Preferably).
Examples of the amine-based catalyst (tertiary amine) having a tertiary amino group include trimethylamine, triethylamine, tripropylamine, tributylamine, triamylamine, trihexylamine, trioctylamine, trilaurylamine, dimethylethylamine. , Dimethylpropylamine, dimethylbutylamine, dimethylamylamine, dimethylhexylamine, dimethylcyclohexylamine, dimethyloctylamine, dimethyllaurylamine, triallylamine, tetramethylethylenediamine, triethylenediamine, N-methylmorpholine, 4,4 '-( Oxydi-2,1-ethanediyl) bis-morpholine, N, N-dimethylbenzylamine, pyridine, picoline, dimethylaminomethylphenol, trisdimethy Aminomethylphenol, 1,8-diazabicyclo [5.4.0] undecene-1,1,4-diazabicyclo [2.2.2] octane, triethanolamine, N, N'-dimethylpiperazine, tetramethylbutanediamine Bis (2,2-morpholinoethyl) ether, bis (dimethylaminoethyl) ether and the like.
 アミン系触媒は、本発明の効果により優れ、湿気硬化性、貯蔵安定性、耐垂下性に優れるという点で、ジモルフォリノジエチルエーテル構造を含むのが好ましい。
 ジモルフォリノジエチルエーテル構造は、ジモルフォリノジエチルエーテルを基本骨格とする構造である。
 ジモルフォリノジエチルエーテル構造において、モルフォリン環が有する水素原子が置換基で置換されていてもよい。置換基は特に制限されない。例えば、アルキル基が挙げられる。アルキル基としては、例えば、メチル基、エチル基が挙げられる。
The amine-based catalyst preferably contains a dimorpholinodiethyl ether structure in that it is excellent due to the effects of the present invention and is excellent in moisture curability, storage stability, and sag resistance.
The dimorpholinodiethyl ether structure is a structure having dimorpholinodiethyl ether as a basic skeleton.
In the dimorpholinodiethyl ether structure, the hydrogen atom of the morpholine ring may be substituted with a substituent. The substituent is not particularly limited. For example, an alkyl group is mentioned. Examples of the alkyl group include a methyl group and an ethyl group.
 ジモルフォリノジエチルエーテル構造を含むアミン系触媒としては、例えば、下記式(9)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005

 上記式(9)中、R1、R2はそれぞれ独立にアルキル基であり、m、nはそれぞれ独立に0、1又は2である。
 ジモルフォリノジエチルエーテル構造を含むアミン系触媒としては、具体的には例えば、ジモルフォリノジエチルエーテル、ジ(メチルモルフォリノ)ジエチルエーテル、ジ(ジメチルモルフォリノ)ジエチルエーテルが挙げられる。
 アミン系触媒はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
Examples of the amine-based catalyst having a dimorpholinodiethyl ether structure include a compound represented by the following formula (9).
Figure JPOXMLDOC01-appb-C000005

In the above formula (9), R 1 and R 2 are each independently an alkyl group, and m and n are each independently 0, 1 or 2.
Specific examples of the amine catalyst containing a dimorpholino diethyl ether structure include dimorpholino diethyl ether, di (methylmorpholino) diethyl ether, and di (dimethylmorpholino) diethyl ether.
Amine-based catalysts can be used alone or in combination of two or more.
 アミン系触媒の含有量は、硬化性、未硬化物の貯蔵安定性に優れるという観点から、脱水ペースト状混合物及び芳香族ポリイソシアネートとの合計含有量100質量部に対して、0.05~1.0質量部であるのが好ましく、0.07~0.5質量部であるのがより好ましい。 The content of the amine catalyst is 0.05 to 1 with respect to 100 parts by mass of the total content of the dehydrated paste-like mixture and the aromatic polyisocyanate from the viewpoint of excellent curability and storage stability of the uncured product. The amount is preferably 0.0 parts by mass, more preferably 0.07 to 0.5 parts by mass.
(その他の成分)
 本発明の組成物は、必要に応じて本発明の目的を損なわない範囲で、アミノシラン化合物以外のシランカップリング剤;所定の金属触媒、スズ系触媒及びアミン系触媒以外の触媒;接着付着剤、垂れ止め剤、老化防止剤、酸化防止剤、顔料(染料)、揺変性付与剤、紫外線吸収剤、難燃剤、界面活性剤(レベリング剤を含む)、分散剤、脱水剤、帯電防止剤などの添加剤を含有することができる。添加剤の量は適宜決めることができる。
(Other ingredients)
The composition of the present invention includes a silane coupling agent other than an aminosilane compound; a catalyst other than a predetermined metal catalyst, a tin-based catalyst, and an amine-based catalyst; Anti-sagging agent, anti-aging agent, antioxidant, pigment (dye), thixotropic agent, UV absorber, flame retardant, surfactant (including leveling agent), dispersant, dehydrating agent, antistatic agent, etc. Additives can be included. The amount of the additive can be appropriately determined.
 本発明の組成物は、1液型である。
 本発明の組成物は、湿気硬化することができる。例えば、大気中の湿気によって-20~+50℃の条件下で硬化することができる。
 本発明の組成物は、環境温度が-20℃~+5℃のような低温であっても、接着性に優れる。
The composition of the present invention is a one-component type.
The composition of the present invention can be moisture cured. For example, it can be cured under conditions of −20 to + 50 ° C. by atmospheric humidity.
The composition of the present invention is excellent in adhesiveness even at an environmental temperature as low as −20 ° C. to + 5 ° C.
 本発明の組成物を適用することができる被着体は特に制限されない。例えば、金属(塗板を含む。)、プラスチック、ゴム、ガラスが挙げられる。
 本発明の組成物をガラスに使用する場合、ガラスにプライマーを使用せずに本発明の組成物をガラスに直接塗布することができる。
 本発明の組成物を被着体に塗布する方法は特に制限されない。
The adherend to which the composition of the present invention can be applied is not particularly limited. For example, metal (including a coated plate), plastic, rubber, and glass can be used.
When the composition of the present invention is used for glass, the composition of the present invention can be directly applied to the glass without using a primer for the glass.
The method for applying the composition of the present invention to an adherend is not particularly limited.
 本発明の組成物は、例えば、後述する本発明のウレタン組成物の製造方法によって製造することができる。 The composition of the present invention can be produced, for example, by the method for producing the urethane composition of the present invention described later.
[ウレタン組成物の製造方法]
 本発明のウレタン組成物の製造方法について以下に説明する。
 本発明のウレタン組成物の製造方法(本発明の製造方法)は、
 ポリオール化合物を含有する液体成分と充填剤を含有する粉体成分とを混合してペースト状混合物を得、ペースト状混合物中の残存水分の少なくとも一部を除去して脱水ペースト状混合物を得る、混合・脱水工程と、
 脱水ペースト状混合物に、
 芳香族ポリイソシアネートと、
 ビスマス系触媒及びチタン系触媒からなる群から選ばれる少なくとも1種の金属触媒と、
 脂肪族ポリイソシアネートと、
 アミノシラン化合物と、
 スズ系触媒と、
 アミン系触媒とを混合して、一液湿気硬化型のウレタン組成物を製造する混合工程とを有する、ウレタン組成物の製造方法である。
[Production method of urethane composition]
The manufacturing method of the urethane composition of this invention is demonstrated below.
The production method of the urethane composition of the present invention (production method of the present invention)
A liquid component containing a polyol compound and a powder component containing a filler are mixed to obtain a paste-like mixture, and at least a part of residual moisture in the paste-like mixture is removed to obtain a dehydrated paste-like mixture.・ Dehydration process,
To dehydrated paste-like mixture
An aromatic polyisocyanate;
At least one metal catalyst selected from the group consisting of bismuth-based catalysts and titanium-based catalysts;
An aliphatic polyisocyanate;
An aminosilane compound;
A tin-based catalyst;
It is a manufacturing method of a urethane composition which has a mixing process which mixes an amine catalyst and manufactures a one-pack moisture hardening type urethane composition.
 本発明の製造方法に使用される、脱水ペースト状混合物、芳香族ポリイソシアネート、ビスマス系触媒及びチタン系触媒からなる群から選ばれる少なくとも1種の金属触媒、脂肪族ポリイソシアネート、アミノシラン化合物、スズ系触媒、並びに、アミン系触媒は本発明の組成物と同様である。 At least one metal catalyst selected from the group consisting of dehydrated paste-like mixture, aromatic polyisocyanate, bismuth catalyst and titanium catalyst used in the production method of the present invention, aliphatic polyisocyanate, aminosilane compound, tin system The catalyst and the amine catalyst are the same as in the composition of the present invention.
(混合・脱水工程)
 本発明の製造方法が有する混合・脱水工程は、本発明の組成物における混合・脱水工程と同様である。
(Mixing / dehydration process)
The mixing / dehydrating step of the production method of the present invention is the same as the mixing / dehydrating step in the composition of the present invention.
(混合工程)
 本発明の製造方法が有する混合工程において、上記成分を混合する方法は特に制限されない。例えば、撹拌することによって混合することができる。
 混合工程における温度は特に制限されない。例えば、45~65℃とすることができる。
 混合工程において、成分は湿気(例えば大気中の湿気)に触れないようにするのが好ましい。
(Mixing process)
In the mixing step of the production method of the present invention, the method for mixing the above components is not particularly limited. For example, it can mix by stirring.
The temperature in the mixing step is not particularly limited. For example, the temperature can be 45 to 65 ° C.
In the mixing step, it is preferable that the components are not exposed to moisture (for example, moisture in the atmosphere).
 混合工程において、最終物(ウレタン組成物)の粘度安定性(ロット間のバラツキが小さい。)、接着発現性に優れるという観点から、脱水ペースト状混合物に、最初に、少なくとも芳香族ポリイソシアネートを混合するのが好ましい。
 また、混合工程において、最終物(ウレタン組成物)の粘度安定性(ロット間のバラツキが小さい。)、接着発現性に優れるという観点から、最後に、少なくともアミン系触媒を混合するのが好ましい。
In the mixing process, at least aromatic polyisocyanate is first mixed with the dehydrated paste-like mixture from the viewpoint of viscosity stability of the final product (urethane composition) (small variation between lots) and excellent adhesion development. It is preferable to do this.
In the mixing step, it is preferable to finally mix at least an amine catalyst from the viewpoint of excellent viscosity stability (small variation between lots) of the final product (urethane composition) and excellent adhesion development.
 本発明の製造方法において、混合工程は、最終物(ウレタン組成物)の粘度安定性(ロット間のバラツキが小さい。)、接着発現性に優れるという観点から、
 脱水ペースト状混合物に、芳香族ポリイソシアネートを混合する混合工程1と、
 混合工程1の後、混合工程1で得られた混合物に、金属触媒と、脂肪族ポリイソシアネートと、アミノシラン化合物とを混合する混合工程2と、
 混合工程2の後、混合工程2で得られた混合物に、スズ系触媒と、アミン系触媒とを混合する混合工程3とを有するのが好ましい。
In the production method of the present invention, the mixing step is from the viewpoint of excellent viscosity stability (small variation between lots) of the final product (urethane composition), excellent adhesion development,
A mixing step 1 of mixing an aromatic polyisocyanate with the dehydrated paste-like mixture;
After the mixing step 1, the mixing step 2 of mixing the metal catalyst, the aliphatic polyisocyanate, and the aminosilane compound with the mixture obtained in the mixing step 1,
After the mixing step 2, the mixture obtained in the mixing step 2 preferably has a mixing step 3 in which a tin-based catalyst and an amine-based catalyst are mixed.
 また、混合工程2において、低温時の接着発現性に優れる(具体的には、5℃、50%RHにおいて7日間硬化させたあと、カッターナイフによる手剥離試験を実施し、その結果、接着剤層が凝集破壊した場合を、低温時の接着発現性に優れるものとする。)という観点から、混合工程1で得られた混合物に、脂肪族ポリイソシアネートを混合した後、アミノシラン化合物を混合するのが好ましい。 Further, in the mixing step 2, the adhesiveness is excellent at low temperatures (specifically, after curing for 7 days at 5 ° C. and 50% RH, a manual peeling test with a cutter knife was performed, and as a result, an adhesive was obtained. In the case where the layer breaks up and breaks down, it is assumed that the adhesive developability at low temperature is excellent.) After mixing the aliphatic polyisocyanate with the mixture obtained in the mixing step 1, the aminosilane compound is mixed. Is preferred.
 混合工程2において混合工程1で得られた混合物に、金属触媒、脂肪族ポリイソシアネート、アミノシラン化合物を混合する順序としては、例えば、
(1)金属触媒、脂肪族ポリイソシアネート、アミノシラン化合物
(2)脂肪族ポリイソシアネート、金属触媒、アミノシラン化合物
(3)脂肪族ポリイソシアネート、アミノシラン化合物、金属触媒が挙げられる。
In the mixing step 2, the order of mixing the metal catalyst, the aliphatic polyisocyanate, and the aminosilane compound with the mixture obtained in the mixing step 1 is, for example,
(1) Metal catalyst, aliphatic polyisocyanate, aminosilane compound (2) Aliphatic polyisocyanate, metal catalyst, aminosilane compound (3) Aliphatic polyisocyanate, aminosilane compound, metal catalyst.
 以下に実施例を示して本発明を具体的に説明する。ただし本発明はこれらに限定されない。
<組成物の製造>
(脱水・混合工程)
 レーディゲミキサー(マツボー社製)に、ポリオール化合物1および2ならびに可塑剤を液体成分として添加し、その後、カーボンブラックおよび炭酸カルシウムを粉体成分として添加し、110℃、2時間かくはんしてペースト状混合物を調製した。なお、各成分の配合量(単位:質量部)は、下記第1表に示すとおりである。
 次に、ペースト状混合物が入ったレーディゲミキサー内を30~60℃、1.2kPa以下にして、30分間乾燥し、脱水ペースト状混合物を得た。
The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these.
<Production of composition>
(Dehydration and mixing process)
Add polyol compounds 1 and 2 and plasticizer as liquid components to Ladige mixer (Matsubo), then add carbon black and calcium carbonate as powder components, stir at 110 ° C. for 2 hours and paste A mixture was prepared. In addition, the compounding quantity (unit: mass part) of each component is as showing in the following Table 1.
Next, the inside of the Ladige mixer containing the paste mixture was reduced to 30-60 ° C. and 1.2 kPa or less and dried for 30 minutes to obtain a dehydrated paste mixture.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記第1表に示す各成分は、以下のとおりである。
 ・ポリオール化合物1:2官能ポリプロピレングリコール(EXCENOL 2020、旭硝子社製)
 ・ポリオール化合物2:3官能ポリプロピレングリコール(EXCENOL 5030、旭硝子社製)
 ・可塑剤:フタル酸ジイソノニル(ジェイ・プラス社製)
 ・カーボンブラック:カーボンブラック1(ニテロン ♯200、新日化カーボン社製)とカーボンブラック2(ニテロン ♯300、新日化カーボン社製)との混合物(質量比=75/25)
 ・炭酸カルシウム:重質炭酸カルシウム(スーパーS、丸尾カルシウム社製)
The components shown in Table 1 are as follows.
Polyol compound 1: bifunctional polypropylene glycol (EXCENOL 2020, manufactured by Asahi Glass Co., Ltd.)
Polyol compound 2: trifunctional polypropylene glycol (EXCENOL 5030, manufactured by Asahi Glass Co., Ltd.)
・ Plasticizer: Diisononyl phthalate (J-Plus)
Carbon black: A mixture of carbon black 1 (Niteron # 200, manufactured by Nisshin Carbon) and carbon black 2 (Niteron # 300, manufactured by Nisshin Carbon) (mass ratio = 75/25)
・ Calcium carbonate: Heavy calcium carbonate (Super S, manufactured by Maruo Calcium)
(混合工程)
 第2表に示す各成分を同表に示す量(質量部)で用い、これらを45~65℃の条件下で混合し、ウレタン組成物を製造した。
 第2表に示す生産条件の詳細は以下のとおりである。
(Mixing process)
Each component shown in Table 2 was used in the amount (parts by mass) shown in the same table, and these were mixed under conditions of 45 to 65 ° C. to produce a urethane composition.
Details of the production conditions shown in Table 2 are as follows.
・標準生産条件
 脱水ペースト状混合物に、以下の順番で各成分を混合した。
1.芳香族ポリイソシアネート
2.金属触媒
3.脂肪族ポリイソシアネート
4.アミノシラン化合物
5.スズ系触媒及びアミン系触媒
Standard production conditions Each component was mixed in the dehydrated paste-like mixture in the following order.
1. Aromatic polyisocyanate2. 2. Metal catalyst Aliphatic polyisocyanate4. 4. Aminosilane compound Tin catalyst and amine catalyst
・同時添加1
 脱水ペースト状混合物に、以下の順番で各成分を混合した。
1.芳香族ポリイソシアネート及び脂肪族ポリイソシアネート
2.金属触媒
3.アミノシラン化合物
4.スズ系触媒及びアミン系触媒
・ Simultaneous addition 1
Each component was mixed with the dehydrated paste mixture in the following order.
1. Aromatic and aliphatic polyisocyanates2. 2. Metal catalyst 3. Aminosilane compound Tin catalyst and amine catalyst
・同時添加2
 脱水ペースト状混合物に、以下の順番で各成分を混合した。
1.芳香族ポリイソシアネート、脂肪族ポリイソシアネート及びスズ系触媒
2.金属触媒
3.アミノシラン化合物
4.アミン系触媒
・ Simultaneous addition 2
Each component was mixed with the dehydrated paste mixture in the following order.
1. 1. aromatic polyisocyanate, aliphatic polyisocyanate and tin-based catalyst 2. Metal catalyst 3. Aminosilane compound Amine catalyst
・事前合成
 脂肪族ポリイソシアネートとアミノシラン化合物とを使用せず、代わりに脂肪族ポリイソシアネートとアミノシラン化合物との反応生成物を使用した場合、脱水ペースト状混合物に、以下の順番で各成分を混合した。
1.芳香族ポリイソシアネート
2.金属触媒
3.脂肪族ポリイソシアネートとアミノシラン化合物との反応生成物
4.スズ系触媒及びアミン系触媒
・ Pre-synthesis When the reaction product of aliphatic polyisocyanate and aminosilane compound was used instead of aliphatic polyisocyanate and aminosilane compound, each component was mixed into the dehydrated paste-like mixture in the following order .
1. Aromatic polyisocyanate2. 2. Metal catalyst 3. Reaction product of aliphatic polyisocyanate and aminosilane compound Tin catalyst and amine catalyst
<評価>
 上記のとおり製造された組成物を用いて以下の評価を行った。結果を第2表に示す。
<Evaluation>
The following evaluation was performed using the composition manufactured as described above. The results are shown in Table 2.
 ・SOD粘度
 上記のとおり製造した組成物のSOD粘度(初期粘度)を、JASO M338-89に準拠して、圧力粘度計(ASTM D 1092)を用いて測定した。
SOD viscosity The SOD viscosity (initial viscosity) of the composition produced as described above was measured using a pressure viscometer (ASTM D 1092) in accordance with JASO M338-89.
 ・SOD粘度のばらつき(%)
 各実施例について組成物を5ロット配合し、各実施例の5ロットのSOD粘度(初期粘度)を、JASO M338-89に準拠して、圧力粘度計(ASTM D 1092)を用いて測定した。
 各実施例の5ロットのSOD粘度の最小値、最大値、平均値を以下の式に当てはめて、各実施例のSOD粘度のばらつきを算出した。
SOD粘度のばらつき(%)=[(最大値-最小値)/平均値]×100
・ SOD viscosity variation (%)
For each example, 5 lots of the composition were blended, and the SOD viscosity (initial viscosity) of 5 lots of each example was measured using a pressure viscometer (ASTM D 1092) according to JASO M338-89.
The SOD viscosity variation of each example was calculated by applying the minimum value, maximum value, and average value of SOD viscosity of 5 lots of each example to the following formula.
SOD viscosity variation (%) = [(maximum value−minimum value) / average value] × 100
 ・貯蔵安定性
 上記のとおり製造した組成物を容器に密封し、40℃で7日間貯蔵した後のSOD粘度(Pa・s)を測定し、貯蔵前のSOD粘度(初期粘度)からの増粘率を算出した。
 SOD粘度は、JASO M338-89に準拠して、圧力粘度計(ASTM D 1092)を用いて測定した。
 増粘率が30%以下である場合、貯蔵安定性に優れると評価できる。
-Storage stability The composition produced as described above was sealed in a container, measured for SOD viscosity (Pa · s) after storage at 40 ° C for 7 days, and increased from SOD viscosity (initial viscosity) before storage. The rate was calculated.
The SOD viscosity was measured using a pressure viscometer (ASTM D 1092) according to JASO M338-89.
When the thickening rate is 30% or less, it can be evaluated that the storage stability is excellent.
 ・耐垂下性
 上記のとおり製造した各組成物を、ガラス板の上に、底辺6mm、高さ10mmの直角三角形ビードで帯状に押し出し、その後、上記直角三角形の形状に押し出された組成物の斜辺が下向きになり、上記組成物の高さ10mmの辺が水平になるようにガラス板を垂直(90°の角度)に立て、ガラス板を固定し、ガラス板を垂直に保持したまま、20℃、65%相対湿度の条件下で30分放置した。
 ガラス板を垂直にした後から30分の間に、各組成物の直角三角形の頂点が、下へ垂れ下がった距離h(mm)を測定し、この値で耐垂下性を評価した。
Sagging resistance Each composition produced as described above was extruded on a glass plate with a right triangle bead having a base of 6 mm and a height of 10 mm, and then the hypotenuse of the composition extruded into the shape of the right triangle. The glass plate was set up vertically (90 ° angle) so that the side of the composition having a height of 10 mm was horizontal, the glass plate was fixed, and the glass plate was held vertically, , And left at 65% relative humidity for 30 minutes.
The distance h (mm) at which the apex of the right triangle of each composition hangs down was measured within 30 minutes after the glass plate was made vertical, and the sag resistance was evaluated with this value.
 ・TFT(タックフリータイム)
 上記のとおり製造した組成物を、23℃、50%RHの条件下において、硬化物の表面と指との間にポリエチレンフィルムを配置し、ポリエチレンフィルムを介して指で硬化物の表面を押さえることによって硬化物の表面のべたつきを確認した。
 試験開始からポリエチレンフィルムに硬化物が付着しなくなるまでの時間(分)を測定した。
・ TFT (tack free time)
A polyethylene film is placed between the surface of the cured product and the finger under the conditions of 23 ° C. and 50% RH, and the surface of the cured product is pressed with the finger through the polyethylene film. Thus, the stickiness of the surface of the cured product was confirmed.
The time (minutes) from the start of the test until the cured product did not adhere to the polyethylene film was measured.
 ・初期接着発現性
(初期接着評価用サンプルの作製)
 被着材としてガラス(縦25mm×横100mm×厚み8mm。プライマーなし)を1枚準備した。上記各組成物を室温下で上記ガラスに塗布した。接着剤を厚さ5mmになるまで圧着し23℃、50%RHの条件下に48時間おいて、初期接着評価用サンプルを作製した。
・ Initial adhesion development (production of samples for initial adhesion evaluation)
One glass (length 25 mm × width 100 mm × thickness 8 mm, no primer) was prepared as an adherend. Each said composition was apply | coated to the said glass at room temperature. The adhesive was pressure-bonded to a thickness of 5 mm, and a sample for initial adhesion evaluation was produced at 23 ° C. and 50% RH for 48 hours.
(手剥離試験)
 上記のとおり得られた初期接着評価用サンプルを用いてカッターナイフによる手剥離試験を実施した。
 手剥離試験の結果、接着剤層の全体が凝集破壊した場合を「CF」と表示した。この場合初期接着性の発現に非常に優れる。
 また界面剥離が確認された場合、初期接着性の発現に劣ると評価して、これを「AF」と表示した。
(Hand peeling test)
Using the sample for initial adhesion evaluation obtained as described above, a manual peeling test with a cutter knife was performed.
As a result of the manual peeling test, the case where the entire adhesive layer was agglomerated and broken was indicated as “CF”. In this case, the initial adhesiveness is very excellent.
Moreover, when interface peeling was confirmed, it evaluated that it was inferior to expression of initial adhesiveness, and this was displayed as "AF."
 ・耐熱接着性
 上記のとおり得られた初期接着評価用サンプルを、110℃の条件下に2週間置いて、耐熱接着性評価用サンプルを作製した。
 上記耐熱接着性評価用サンプルを用いて初期接着発現性の評価と同様にカッターナイフによる手剥離試験を実施した。評価基準も初期接着発現性の評価と同様である。
-Heat-resistant adhesiveness The sample for initial adhesion evaluation obtained as described above was placed under a condition of 110 ° C for 2 weeks to prepare a sample for heat-resistant adhesiveness evaluation.
A hand peeling test with a cutter knife was performed in the same manner as in the evaluation of initial adhesiveness using the above heat-resistant adhesive evaluation sample. The evaluation criteria are the same as the evaluation of the initial adhesion development.
 ・貯安後接着発現性
 上記のとおり製造された組成物を密閉状態で50℃の条件下に2週間貯蔵して、貯蔵後の組成物を得た。
 上記のとおり得られた貯蔵後の組成物を用いる他は、初期接着発現性と同様にしてサンプルの作製し、評価した。評価基準も初期接着発現性の評価と同様である。
-Adhesiveness after storage The composition produced as described above was stored in a sealed state at 50 ° C. for 2 weeks to obtain a composition after storage.
A sample was prepared and evaluated in the same manner as the initial adhesion development property except that the composition after storage obtained as described above was used. The evaluation criteria are the same as the evaluation of the initial adhesion development.
 ・促進硬化接着性
 上記のとおり得られた初期接着評価用サンプルを、50℃の条件下に2週間置いて、促進硬化接着性評価用サンプルを作製した。
 上記促進硬化接着性評価用サンプルを用いて初期接着発現性の評価と同様にカッターナイフによる手剥離試験を実施した。評価基準も初期接着発現性の評価と同様である。
-Accelerated-curing adhesiveness The sample for initial-curing evaluation obtained as described above was placed under a condition of 50 ° C for 2 weeks to prepare a sample for accelerating-curing adhesiveness evaluation.
A manual peeling test using a cutter knife was carried out in the same manner as in the evaluation of initial adhesion development using the sample for evaluating accelerated curing adhesion. The evaluation criteria are the same as the evaluation of the initial adhesion development.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 第2表に示した各成分の詳細は以下のとおりである。
 ・脱水ペースト状混合物:上記のとおり製造した脱水ペースト状混合物
The details of each component shown in Table 2 are as follows.
Dehydrated paste mixture: Dehydrated paste mixture produced as described above
(芳香族ポリイソシアネート)
 ・MDI:ジフェニルメタンジイソシアネート(コスモネートPH、三井化学社製)
 ・TDI:トリレンジイソシアネート(コスモネートT-80、三井化学社製)
(Aromatic polyisocyanate)
MDI: Diphenylmethane diisocyanate (Cosmonate PH, manufactured by Mitsui Chemicals)
・ TDI: Tolylene diisocyanate (Cosmonate T-80, manufactured by Mitsui Chemicals)
(金属触媒)
 ・Bi触媒:無機ビスマス(ネオスタンU-600、日東化成社製)
 ・Ti触媒:チタンアセト酢酸エチルキレート(オルガチックスTC-750、マツモトファインケミカル社製)
(Metal catalyst)
Bi catalyst: Inorganic bismuth (Neostan U-600, manufactured by Nitto Kasei)
Ti catalyst: Titanium acetoacetate ethyl chelate (Orgatechs TC-750, manufactured by Matsumoto Fine Chemical Co., Ltd.)
(脂肪族ポリイソシアネート)
 ・HDI-ビウレット体:上記式(7)で表される、ヘキサメチレンジイソシアネート(HDI)のビウレット体(D165N、三井化学社製)
 ・HDI-イソシアヌレート体:上記式(8)で表される、HDIのイソシアヌレート体、三井化学社製タケネートD170N
 ・HDI-TMP変性体:上記式(5)で表されるHDI-TMP付加体(合成品)。なお、合成は、HDIを予め添加したフラスコ内に、NCO/OHが2.0となる当量比でTMPを撹拌しながら滴下し、その後、80℃で24時間反応させることにより行った。
 ・TDI変性体:トリレンジイソシアネート(TDI)のイソシアヌレート体、デスモジュール1351、バイエル社製
(Aliphatic polyisocyanate)
HDI-biuret: hexamethylene diisocyanate (HDI) biuret represented by the above formula (7) (D165N, manufactured by Mitsui Chemicals)
HDI-isocyanurate body: HDI isocyanurate body represented by the above formula (8), Takenate D170N manufactured by Mitsui Chemicals, Inc.
HDI-TMP modified product: HDI-TMP adduct represented by the above formula (5) (synthetic product). The synthesis was performed by dropping TMP with stirring in an equivalent ratio at which NCO / OH was 2.0 in a flask to which HDI had been added in advance, and then reacting at 80 ° C. for 24 hours.
-TDI modified product: isocyanurate of tolylene diisocyanate (TDI), Death Module 1351, manufactured by Bayer
(アミノシラン化合物)
 ・KBM573:N-フェニル-3-アミノプロピルトリメトキシシラン、信越化学工業社製
 ・KBM903:3-アミノプロピルトリメトキシシラン、信越化学工業社製
 ・KBM803:3-メルカプトプロピルトリメトキシシラン、信越化学工業社製
(Aminosilane compound)
· KBM573: N-phenyl-3-aminopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd. · KBM903: 3-aminopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd. · KBM803: 3-mercaptopropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd. Made by company
・(比較)反応生成物1:上記HDI-ビウレット体2質量部と、上記KBM573:1質量部とを混合し、得られた混合物を50℃の条件下で10時間反応させて製造した化合物。得られた化合物をそのまま反応生成物1として使用した。
・(比較)反応生成物2:上記HDI-イソシアヌレート体2質量部と、上記KBM573:1質量部とを混合し、得られた混合物を50℃の条件下で10時間反応させて製造した化合物。得られた化合物をそのまま反応生成物2として使用した。
(Comparison) Reaction product 1: a compound produced by mixing 2 parts by mass of the HDI-biuret and 1 part by mass of the KBM573 and reacting the resulting mixture at 50 ° C. for 10 hours. The obtained compound was used as reaction product 1 as it was.
(Comparison) Reaction product 2: Compound prepared by mixing 2 parts by mass of the above HDI-isocyanurate and 1 part by mass of KBM573 and reacting the resulting mixture at 50 ° C. for 10 hours. . The obtained compound was directly used as reaction product 2.
(スズ系触媒)
 ・Sn触媒:ジオクチル錫ジラウレート(ネオスタンU-810、日東化成社製)
 ・Bi触媒:上記Bi触媒と同様
 ・Ti触媒:上記Ti触媒と同様
(Tin-based catalyst)
Sn catalyst: Dioctyltin dilaurate (Neostan U-810, manufactured by Nitto Kasei Co., Ltd.)
・ Bi catalyst: Same as the above Bi catalyst ・ Ti catalyst: Same as the above Ti catalyst
(アミン系触媒)
 ・DMDEE:ジモルフォリノジエチルエーテル(サンアプロ社製)
 ・TEDA:トリエチレンジアミン(DABCO、エアプロダクツ社製)
(Amine catalyst)
DMDMEE: dimorpholino diethyl ether (manufactured by Sun Apro)
-TEDA: Triethylenediamine (DABCO, manufactured by Air Products)
 第2表に示すように、本発明のウレタン組成物は、所望の効果が得られることが確認された。また、本発明のウレタン組成物の製造方法によれば、所望の効果が得られることが確認された。 As shown in Table 2, it was confirmed that the urethane composition of the present invention can achieve a desired effect. Moreover, according to the manufacturing method of the urethane composition of this invention, it was confirmed that a desired effect is acquired.
 金属触媒の違いについて実施例1と実施例16とを比較すると、ビスマス系触媒を含有する実施例1はチタン系触媒を含有する実施例16よりも、組成物の粘度が低く、粘度のばらつきが小さく、貯蔵安定性に優れ、TFTが短かった。 Comparing Example 1 and Example 16 with respect to the difference in the metal catalyst, Example 1 containing a bismuth-based catalyst has a lower viscosity of the composition and a viscosity variation than Example 16 containing a titanium-based catalyst. Small, excellent storage stability and short TFT.
 生産条件の違いについて実施例19と実施例20とを比較すると、標準生産条件で生産した実施例19は、優れた接着性を維持しつつ、同時添加1で生産した実施例20よりもタックフリータイムを短くすることができた。
 また、実施例19と実施例21とを比較すると、実施例19は、同時添加2で生産した実施例21よりも、耐垂下性に優れた。
Comparing Example 19 and Example 20 with respect to the difference in production conditions, Example 19 produced under standard production conditions was tack-free than Example 20 produced with simultaneous addition 1 while maintaining excellent adhesion. I was able to shorten my time.
Moreover, when Example 19 and Example 21 were compared, Example 19 was excellent in droop resistance than Example 21 produced by simultaneous addition 2.
 これに対して、脂肪族ポリイソシアネートを使用しない比較例1は、接着性が低かった。
 アミノシラン化合物を使用せず代わりにメルカプトシランを使用する比較例2は、接着性が低かった。
 スズ系触媒を使用しない比較例3、4は、接着性が低かった。
 脂肪族ポリイソシアネート及びアミノシラン化合物を使用せず代わりに脂肪族ポリイソシアネートとアミノシラン化合物との反応生成物を使用する比較例5、6は、接着性が低かった。
 脂肪族ポリイソシアネートを使用しない比較例7は、接着性が低かった。
 アミノシラン化合物を使用しない比較例8は、接着性が低かった。
In contrast, Comparative Example 1 in which no aliphatic polyisocyanate was used had low adhesiveness.
The comparative example 2 which uses a mercaptosilane instead without using an aminosilane compound had low adhesiveness.
In Comparative Examples 3 and 4 in which no tin-based catalyst was used, the adhesiveness was low.
In Comparative Examples 5 and 6, in which the reaction product of the aliphatic polyisocyanate and the aminosilane compound was used instead of the aliphatic polyisocyanate and the aminosilane compound, the adhesiveness was low.
In Comparative Example 7 in which no aliphatic polyisocyanate was used, the adhesiveness was low.
The comparative example 8 which does not use an aminosilane compound had low adhesiveness.

Claims (6)

  1.  ポリオール化合物を含有する液体成分と充填剤を含有する粉体成分とを混合してペースト状混合物を得、前記ペースト状混合物中の残存水分の少なくとも一部を除去する、混合・脱水工程によって得られる脱水ペースト状混合物と、
     芳香族ポリイソシアネートと、
     ビスマス系触媒及びチタン系触媒からなる群から選ばれる少なくとも1種の金属触媒と、
     脂肪族ポリイソシアネートと、
     アミノシラン化合物と、
     スズ系触媒と、
     アミン系触媒とを含有する、一液湿気硬化型のウレタン組成物。
    Obtained by a mixing / dehydration process in which a liquid component containing a polyol compound and a powder component containing a filler are mixed to obtain a paste-like mixture, and at least a part of residual moisture in the paste-like mixture is removed. A dehydrated pasty mixture,
    An aromatic polyisocyanate;
    At least one metal catalyst selected from the group consisting of bismuth-based catalysts and titanium-based catalysts;
    An aliphatic polyisocyanate;
    An aminosilane compound;
    A tin-based catalyst;
    A one-component moisture-curing urethane composition containing an amine-based catalyst.
  2.  前記アミノシラン化合物がイミノ基を有し、前記イミノ基が少なくとも1個の芳香族炭化水素基に結合する、請求項1に記載のウレタン組成物。 The urethane composition according to claim 1, wherein the aminosilane compound has an imino group, and the imino group is bonded to at least one aromatic hydrocarbon group.
  3.  前記アミノシラン化合物の含有量が、前記脱水ペースト状混合物と前記芳香族ポリイソシアネートとの合計含有量100質量部に対して、0.2~5.0質量部である請求項1又は2に記載のウレタン組成物。 The content of the aminosilane compound is 0.2 to 5.0 parts by mass with respect to 100 parts by mass of the total content of the dehydrated paste-like mixture and the aromatic polyisocyanate. Urethane composition.
  4.  ポリオール化合物を含有する液体成分と充填剤を含有する粉体成分とを混合してペースト状混合物を得、前記ペースト状混合物中の残存水分の少なくとも一部を除去して脱水ペースト状混合物を得る、混合・脱水工程と、
     前記脱水ペースト状混合物に、
     芳香族ポリイソシアネートと、
     ビスマス系触媒及びチタン系触媒からなる群から選ばれる少なくとも1種の金属触媒と、
     脂肪族ポリイソシアネートと、
     アミノシラン化合物と、
     スズ系触媒と、
     アミン系触媒とを混合して、一液湿気硬化型のウレタン組成物を製造する混合工程とを有する、ウレタン組成物の製造方法。
    A liquid component containing a polyol compound and a powder component containing a filler are mixed to obtain a paste-like mixture, and at least a part of residual moisture in the paste-like mixture is removed to obtain a dehydrated paste-like mixture. Mixing and dehydration process,
    In the dehydrated paste-like mixture,
    An aromatic polyisocyanate;
    At least one metal catalyst selected from the group consisting of bismuth-based catalysts and titanium-based catalysts;
    An aliphatic polyisocyanate;
    An aminosilane compound;
    A tin-based catalyst;
    The manufacturing method of a urethane composition which has a mixing process which mixes an amine catalyst and manufactures a one-component moisture hardening type urethane composition.
  5.  前記混合工程は、
     前記脱水ペースト状混合物に、前記芳香族ポリイソシアネートを混合する混合工程1と、
     前記混合工程1の後、前記金属触媒と、前記脂肪族ポリイソシアネートと、前記アミノシラン化合物とを混合する混合工程2と
     前記混合工程2の後、前記スズ系触媒と、前記アミン系触媒とを混合する混合工程3とを有する、請求項4に記載のウレタン組成物の製造方法。
    The mixing step includes
    Mixing step 1 of mixing the aromatic polyisocyanate into the dehydrated paste-like mixture;
    After the mixing step 1, the metal catalyst, the aliphatic polyisocyanate, and the aminosilane compound are mixed, and after the mixing step 2, the tin-based catalyst and the amine-based catalyst are mixed. The manufacturing method of the urethane composition of Claim 4 which has the mixing process 3 to do.
  6.  前記混合工程2において、前記脂肪族ポリイソシアネートを混合した後、前記アミノシラン化合物を混合する、請求項5に記載のウレタン組成物の製造方法。 The method for producing a urethane composition according to claim 5, wherein, in the mixing step 2, the aminosilane compound is mixed after mixing the aliphatic polyisocyanate.
PCT/JP2016/066863 2015-06-10 2016-06-07 Urethane composition and method for producing urethane composition WO2016199751A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017523642A JP6965744B2 (en) 2015-06-10 2016-06-07 Urethane composition and method for producing urethane composition
CN201680032984.9A CN107636037B (en) 2015-06-10 2016-06-07 Polyurethane composition and method for producing polyurethane composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015117655 2015-06-10
JP2015-117655 2015-06-10

Publications (1)

Publication Number Publication Date
WO2016199751A1 true WO2016199751A1 (en) 2016-12-15

Family

ID=57504770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066863 WO2016199751A1 (en) 2015-06-10 2016-06-07 Urethane composition and method for producing urethane composition

Country Status (3)

Country Link
JP (1) JP6965744B2 (en)
CN (1) CN107636037B (en)
WO (1) WO2016199751A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021509415A (en) * 2017-12-27 2021-03-25 ダウ グローバル テクノロジーズ エルエルシー Two-component solvent-free adhesive composition for adhesion to polymer barrier substrates
EP3919581A4 (en) * 2019-01-30 2022-08-24 Sika Hamatite Co., Ltd. Urethane-based adhesive agent composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213781A (en) * 2005-02-02 2006-08-17 Auto Kagaku Kogyo Kk Curable composition
WO2014097907A1 (en) * 2012-12-20 2014-06-26 横浜ゴム株式会社 Method for producing one-component moisture-curing polyurethane composition
WO2014097905A1 (en) * 2012-12-20 2014-06-26 横浜ゴム株式会社 Method for producing one-component moisture-curing polyurethane composition
JP2014231549A (en) * 2013-05-28 2014-12-11 横浜ゴム株式会社 Adhesive composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756465B1 (en) * 2001-10-19 2004-06-29 Henkel Loctite Corporation Moisture curable compounds and compositions
US6989429B2 (en) * 2003-10-02 2006-01-24 Tremco Incorporated Prepolymer compositions and sealants made therefrom
WO2007024792A1 (en) * 2005-08-25 2007-03-01 Henkel Corporation Rtv silicone compositions using carbamate functional alpha silane crosslinkers
CN102140243B (en) * 2010-11-26 2012-07-25 山东东大一诺威聚氨酯有限公司 Plastic sizing agent for silane-modified single component wet cured polyurethane playing court and preparation method thereof
CN102492389A (en) * 2011-12-15 2012-06-13 广州市白云化工实业有限公司 Moisture-cured silicone modified polyurethane and hot melt adhesive composition and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213781A (en) * 2005-02-02 2006-08-17 Auto Kagaku Kogyo Kk Curable composition
WO2014097907A1 (en) * 2012-12-20 2014-06-26 横浜ゴム株式会社 Method for producing one-component moisture-curing polyurethane composition
WO2014097905A1 (en) * 2012-12-20 2014-06-26 横浜ゴム株式会社 Method for producing one-component moisture-curing polyurethane composition
JP2014231549A (en) * 2013-05-28 2014-12-11 横浜ゴム株式会社 Adhesive composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021509415A (en) * 2017-12-27 2021-03-25 ダウ グローバル テクノロジーズ エルエルシー Two-component solvent-free adhesive composition for adhesion to polymer barrier substrates
JP7223002B2 (en) 2017-12-27 2023-02-15 ダウ グローバル テクノロジーズ エルエルシー Two-component solventless adhesive composition for bonding to polymeric barrier substrates
EP3919581A4 (en) * 2019-01-30 2022-08-24 Sika Hamatite Co., Ltd. Urethane-based adhesive agent composition
US11479700B2 (en) 2019-01-30 2022-10-25 Sika Hamatite Co., Ltd. Urethane adhesive composition

Also Published As

Publication number Publication date
CN107636037B (en) 2020-12-29
JPWO2016199751A1 (en) 2018-04-05
CN107636037A (en) 2018-01-26
JP6965744B2 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
US10385245B2 (en) One-component moisture-curable urethane composition and method for producing same
JP2021513582A (en) Polyurethane adhesive composition
CA2992693C (en) Adhesive composition and production method thereof
JP6404365B2 (en) Hydrophobic polyols for sealant applications
US10584269B2 (en) Adhesive composition and production method therefor
CN107849422B (en) Adhesive composition and method for producing adhesive composition
JP6965744B2 (en) Urethane composition and method for producing urethane composition
CN107406746B (en) Adhesive composition
CN107849423B (en) Adhesive composition and method for producing adhesive composition
JP2021528524A (en) Primerless polyurethane adhesive composition
JP5997101B2 (en) Adhesive composition
JP7466272B2 (en) One-component moisture-curing polyurethane composition
JP7199238B2 (en) One-part moisture-curing polyurethane composition
JP2023007625A (en) Urethane-based adhesive composition
JP2020111700A (en) Curable resin composition
WO2018101087A1 (en) One-part moisture-curable polyurethane composition
BRPI0717056B1 (en) Process for preparing a curable silylated polyurethane resin and its curable compositions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523642

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807458

Country of ref document: EP

Kind code of ref document: A1