WO2016199261A1 - Image reading device - Google Patents

Image reading device Download PDF

Info

Publication number
WO2016199261A1
WO2016199261A1 PCT/JP2015/066797 JP2015066797W WO2016199261A1 WO 2016199261 A1 WO2016199261 A1 WO 2016199261A1 JP 2015066797 W JP2015066797 W JP 2015066797W WO 2016199261 A1 WO2016199261 A1 WO 2016199261A1
Authority
WO
WIPO (PCT)
Prior art keywords
illumination
mirror
optical axis
unit
scanning direction
Prior art date
Application number
PCT/JP2015/066797
Other languages
French (fr)
Japanese (ja)
Inventor
翔吾 宮野
高畠 昌尚
暁 岩山
Original Assignee
株式会社Pfu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Pfu filed Critical 株式会社Pfu
Priority to JP2017523040A priority Critical patent/JP6349034B2/en
Priority to PCT/JP2015/066797 priority patent/WO2016199261A1/en
Publication of WO2016199261A1 publication Critical patent/WO2016199261A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/10Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/10Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces
    • H04N1/107Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces with manual scanning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment

Definitions

  • This disclosure relates to an image reading apparatus.
  • Some image reading devices that use an image sensor that converts received light into an electrical signal to capture an image capture the position read by the line sensor using a so-called line sensor in which the image sensors are arranged in a line. Some devices perform reading while moving on a medium in a sub-scanning direction that is a direction orthogonal to the direction in which the elements are arranged.
  • the line sensor is enlarged by rotating a mirror that reflects the optical axis when reading is performed by the line sensor.
  • There is one that moves the reading position on the medium without moving for example, see Patent Documents 1 and 2).
  • JP 2005-86443 A Japanese Patent Laid-Open No. 9-181887
  • a reading position is irradiated by a light source, and light from the light source reflected by the medium is received by the line sensor, thereby obtaining a higher quality image.
  • a power source such as a drive motor for changing the irradiation direction of the light source is required, and the irradiation direction of the light source needs to be changed in accordance with the movement of the reading position. For this reason, changing the irradiation direction of the light source in accordance with the reading position by the line sensor leads to an increase in the number of parts and the manufacturing process, which causes a rise in manufacturing cost.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to provide an image reading apparatus that can easily change the irradiation direction of light according to a reading position with a simple configuration.
  • an image reading apparatus includes a line sensor that reads a medium placed on a placement surface in a line shape in the main scanning direction of the placement surface; A rotating mirror that reflects and rotates the sensor optical axis of the line sensor to move the sensor optical axis in a sub-scanning direction perpendicular to the main scanning direction on the mounting surface with respect to the mounting surface; Illuminating at least the reading area of the line sensor and rotating in conjunction with the movement of the reading area in the sub-scanning direction; and the rotating mirror and the illuminating part in parallel with the main scanning direction.
  • the rotation axis of the rotating mirror coincides with the reflecting surface of the rotating mirror or an extension line of the reflecting surface when viewed from the main scanning direction, and illumination of the illumination unit
  • the illumination unit coincides with the rotation axis, and the illumination unit reflects the illumination optical axis of the light emitted from the illumination unit in the main scanning direction with respect to the sensor optical axis reflected by the reflection surface of the rotation mirror. Irradiate light in the matching direction.
  • the image reading apparatus has an effect that the light irradiation direction can be easily changed according to the reading position with a simple configuration.
  • FIG. 1 is a perspective view of an image reading apparatus according to an embodiment.
  • FIG. 2 is an AA arrow view of FIG.
  • FIG. 3 is a schematic diagram showing the configuration of the image reading apparatus shown in FIG.
  • FIG. 4 is a detailed view of part C of FIG.
  • FIG. 5 is a schematic diagram showing the positional relationship between the illumination unit and the rotating mirror. 6 is a DD arrow view of FIG.
  • FIG. 7 is a perspective view of the rotating mirror shown in FIG.
  • FIG. 8 is a view taken along the line EE in FIG.
  • FIG. 9 is a block diagram illustrating a main configuration of the image reading apparatus according to the embodiment.
  • FIG. 10 is a schematic diagram of a speed ratio conversion mechanism.
  • FIG. 11 is an explanatory diagram showing a state at the start of reading.
  • FIG. 11 is an explanatory diagram showing a state at the start of reading.
  • FIG. 12 is an explanatory diagram showing a state at the end of reading.
  • FIG. 13 is an explanatory diagram showing a state where the sensor optical axis and the illumination optical axis do not match.
  • FIG. 14 is an explanatory diagram for reading a thick medium with the image reading apparatus shown in FIG.
  • FIG. 15 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when the mirror rotation axis is located above the reflection position of the sensor optical axis.
  • FIG. 16 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when the mirror rotation axis is located below the reflection position of the sensor optical axis.
  • FIG. 17 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when the mirror rotation axis is located at a position other than the reflection position of the sensor optical axis.
  • FIG. 18 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when the illumination rotation axis is located on a position other than the illumination optical axis.
  • FIG. 19 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram showing a state where the mirror rotation axis is located at a position other than the reflection position of the sensor optical axis and coincides with the illumination rotation axis.
  • FIG. 20 is an explanatory diagram when the mirror rotation axis and the illumination rotation axis are located at the reflection position of the sensor optical axis on the reflection surface and the sensor optical axis and the illumination optical axis coincide with each other.
  • FIG. 21 is an explanatory diagram when the mirror rotation axis and the illumination rotation axis are positioned above the reflection position of the sensor optical axis on the reflection surface and the sensor optical axis and the illumination optical axis coincide with each other.
  • FIG. 22 is an explanatory diagram when the mirror rotation axis and the illumination rotation axis are positioned below the reflection position of the sensor optical axis on the reflection surface and the sensor optical axis and the illumination optical axis coincide with each other.
  • FIG. 23 is an explanatory diagram in the case where the mirror rotation axis and the illumination rotation axis are located on the extension line of the reflecting surface and the sensor optical axis and the illumination optical axis coincide with each other.
  • FIG. 24 is an explanatory diagram of each coordinate when the angle of the rotating mirror is 45 °.
  • FIG. 25 is an explanatory diagram of each coordinate of the illumination optical axis.
  • FIG. 26 is a modification of the image reading apparatus according to the embodiment, and is a detailed view of an illumination unit in which a mirror is used.
  • FIG. 27 is a schematic diagram of the speed ratio conversion mechanism in the case where power is transmitted to the illumination unit via the rotating mirror, which is a modification of the image reading apparatus according to the embodiment.
  • FIG. 28 is a modification of the image reading apparatus according to the embodiment, and is a schematic diagram of a speed ratio conversion mechanism in the case where power is transmitted to a rotating mirror via an illumination unit.
  • FIG. 29 is a modification of the image reading apparatus according to the embodiment, and is a schematic diagram of a speed ratio conversion mechanism when power is transmitted through different paths between the rotating mirror and the illumination unit.
  • FIG. 30 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when a plurality of reading units are provided.
  • FIG. 1 is a perspective view of an image reading apparatus according to an embodiment.
  • FIG. 2 is an AA arrow view of FIG.
  • the image reading apparatus 1 shown in FIGS. 1 and 2 is an apparatus that reads the medium P by imaging the medium P from above.
  • the image reading apparatus 1 includes a mounting table 10 on which a medium P is placed and a reading unit 20 that reads the medium P.
  • the mounting table 10 is formed in a rectangular plate shape, and a mounting surface 11 on which the medium P is mounted is provided on the upper surface side.
  • the reading unit 20 is disposed on the upper side of the mounting table 10, that is, on the upper side of the mounting surface 11, and is connected by an arm 15 that extends substantially in the vertical direction.
  • the lower end side of the arm 15 is connected to the mounting table 10 and the upper end side is connected to the reading unit 20, so that the mounting table 10 and the reading unit 20 protrude in the same direction side with respect to the arm 15 in the horizontal direction.
  • the arm 15 is connected to the mounting table 10 and the reading unit 20.
  • the mounting table 10 and the reading unit 20 are arranged to face each other in the vertical direction by connecting the arm 15 in this way.
  • the reading unit 20 disposed to face the mounting table 10 is provided with an illumination unit 60 that can emit light toward the mounting surface 11 when the reading unit 20 reads the medium P.
  • the illumination unit 60 is provided at two locations of the reading unit 20. When the reading unit 20 is viewed in the vertical direction, the two illumination units 60 are located at positions other than the portion where the arm 15 is connected in the reading unit 20 and at positions opposite to each other in the horizontal direction. Projecting in opposite directions to each other.
  • FIG. 3 is a schematic diagram showing the configuration of the image reading apparatus shown in FIG.
  • the reading unit 20 includes a first optical unit 30 that reads the medium P, a second optical unit 40 that turns back the optical axis when the first optical unit 30 performs reading, and light that is turned back by the second optical unit 40.
  • a third optical unit 50 that reflects the axis toward the mounting surface 11 of the mounting table 10.
  • the first optical unit 30, the second optical unit 40, and the third optical unit 50 are all installed in the housing 21 of the reading unit 20.
  • the first optical unit 30 includes a line sensor 31 and a condenser lens 35 and is fixed to the housing 21, and the line sensor 31 places the medium P placed on the placement surface 11.
  • the surface 11 can be read in a line shape in the main scanning direction.
  • the main scanning direction in this case refers to the direction in which the imaging elements are arranged in the line sensor 31 formed by arranging a plurality of imaging elements that capture an image. That is, the line sensor 31 can read the imaging target in a line shape by arranging a plurality of imaging elements in a linear shape. That is, the line sensor 31 having a plurality of image sensors can generate image data by converting light received by the image sensors into electronic data by photoelectric conversion.
  • the condensing lens 35 is disposed on the sensor optical axis S that is an optical axis when the line sensor 31 performs imaging, and the light that travels along the sensor optical axis S toward the line sensor 31 is transmitted to the line sensor 31. It is possible to form an image on 31 image sensors.
  • the line sensor 31 receives the imaged light, and outputs an electric signal corresponding to the received light, thereby generating line-shaped image data in the main scanning direction. Note that the number of lines of the image sensor included in the line sensor 31 may be single or plural.
  • the sensor optical axis S when the line sensor 31 performs imaging is an optical axis that spreads in a plane in the main scanning direction. Yes.
  • the second optical unit 40 can turn back the sensor optical axis S by 180 ° when the line sensor 31 of the first optical unit 30 performs reading.
  • FIG. 4 is a detailed view of part C of FIG.
  • the second optical unit 40 includes a pair of folding mirrors 42 and a carrier 41 that holds the folding mirrors 42.
  • the folding mirror 42 is located on the sensor optical axis S from the first optical unit 30, and the first optical unit side mirror 43 reflecting the sensor optical axis S and the sensor light reflected by the first optical unit side mirror 43.
  • a third optical unit side mirror 44 which is located on the axis S and reflects the sensor optical axis S toward the third optical unit 50.
  • the first optical unit side mirror 43 is installed such that the reflection surface is inclined at an angle of 45 ° with respect to the sensor optical axis S, and thus the first optical unit side mirror 43 is configured to be the first optical unit.
  • the sensor optical axis S from the unit 30 can be reflected by changing the direction of 90 °.
  • the first optical unit side mirror 43 can reflect the sensor optical axis S from the first optical unit 30 by changing the direction of 90 ° downward.
  • the third optical unit side mirror 44 is disposed below the first optical unit side mirror 43, and reflects the sensor optical axis S reflected downward by the first optical unit side mirror 43.
  • the surface is installed so as to be inclined at an angle of 45 °. Accordingly, the third optical unit side mirror 44 can reflect the sensor optical axis S reflected by the first optical unit side mirror 43 by changing the direction by 90 °.
  • the third optical unit side mirror 44 can reflect the sensor optical axis S reflected by the first optical unit side mirror 43 to the side where the first optical unit 30 is located. .
  • the second optical unit 40 having the folding mirror 42 composed of the first optical unit side mirror 43 and the third optical unit side mirror 44 can fold the sensor optical axis S from the first optical unit 30 by 180 °. It is possible.
  • the second optical unit 40 configured as described above is provided in the housing 21 so as to be movable in the optical axis direction between the first optical unit 30 and the second optical unit 40. That is, the moving direction of the second optical unit 40 is a direction facing the mounting surface 11 of the mounting table 10 when viewed from the main scanning direction, in other words, the moving direction of the second optical unit 40. Is in a direction parallel to the mounting surface 11.
  • FIG. 5 is a schematic diagram showing the positional relationship between the illumination unit and the rotating mirror. 6 is a DD arrow view of FIG.
  • FIG. 7 is a perspective view of the rotating mirror shown in FIG.
  • FIG. 8 is a view taken along the line EE in FIG.
  • the third optical unit 50 rotates the sensor optical axis S folded by the second optical unit 40, so that the sensor optical axis S is orthogonal to the main scanning direction on the mounting surface 11 with respect to the mounting surface 11. It can be moved in the sub-scanning direction.
  • the third optical unit 50 is positioned in the sub-scanning direction between the first optical unit 30 and the second optical unit 40 in the same direction.
  • the third optical unit 50 has a rotating mirror 51 that reflects the sensor optical axis S folded back by the second optical unit 40.
  • the rotating mirror 51 is disposed on the sensor optical axis S folded back by the second optical unit 40, and the reflecting surface 52 is disposed on the second optical unit 40 side and in a direction facing the lower side. Has been. Accordingly, the rotating mirror 51 can reflect the sensor optical axis S folded back by the second optical unit 40 downward.
  • the rotating mirror 51 is rotatable about a mirror rotating shaft 53 that is a rotating shaft extending in the main scanning direction, and the mirror rotating shaft 53 is provided on the reflecting surface 52 of the rotating mirror 51. It has been.
  • the mirror rotation axis 53 coincides with the reflection surface 52 of the rotation mirror 51 when viewed from the main scanning direction, and the sensor optical axis S folded back by the second optical unit 40 on the reflection surface 52 of the rotation mirror 51 is obtained. It is provided so as to be located in the vicinity of the reflecting position. That is, the mirror rotation axis 53 coincides with the position where the sensor optical axis S is reflected on the reflection surface 52 when viewed from the main scanning direction.
  • the mirror rotation shafts 53 are positioned at both ends of the rotation mirror 51 in the main scanning direction and extend in the main scanning direction, respectively.
  • the axis of the mirror rotation shaft 53 positioned at both ends of the rotation mirror 51 is rotated. It is located on the reflection surface 52 of the mirror 51.
  • the third optical unit 50 can move the reflection direction of the sensor optical axis S reflected by the rotation mirror 51 in the sub-scanning direction by rotating the rotation mirror 51 around the mirror rotation axis 53.
  • the rotating mirror 51 is installed in a direction capable of reflecting the sensor optical axis S on the side where the second optical unit 40 is positioned in the sub-scanning direction from the position below the rotating mirror 51 in the vertical direction.
  • the third optical unit 50 moves the sensor optical axis S in the sub-scanning direction within a range not including the position where the angle of the sensor optical axis S with respect to the placement surface 11 when viewed from the main scanning direction is 90 °. It can be moved.
  • An opening 25 through which the sensor optical axis S between the third optical unit 50 and the placement surface 11 passes is formed in the housing 21 of the reading unit 20.
  • the opening 25 is formed in the vicinity of the third optical unit 50 on the lower surface side of the housing 21 and faces the mounting surface 11.
  • the opening 25 rotates even when the sensor optical axis S reflected by the rotating mirror 51 is positioned in any part of the moving range when the rotating mirror 51 moves in the sub-scanning direction.
  • the sensor optical axis S between the mirror 51 and the mounting surface 11 can be passed.
  • the third optical unit 50 provided in the reading unit 20 can reflect the sensor optical axis S folded back by the second optical unit 40 toward the placement surface 11 by passing through the opening 25. it can.
  • Illumination units 60 provided at two locations of the reading unit 20 are respectively disposed near both ends of the third optical unit 50 in the main scanning direction.
  • Each of these illumination units 60 includes a light emitting unit 61 such as an LED (Light Emitting Diode), and a lens 62 that can irradiate light emitted from the light emitting unit 61 in a line shape.
  • the illumination unit 60 can irradiate the medium P with line-shaped light.
  • the illuminating unit 60 is directed to the mounting surface 11 along the sensor optical axis S that reflects light that is linear in the main scanning direction from the third optical unit 50 toward the mounting surface 11. Irradiation is possible.
  • the illuminating unit 60 aligns the illumination optical axis L of the light emitted from the illuminating unit 60 with the sensor optical axis S reflected by the reflecting surface 52 of the rotating mirror 51 when viewed in the main scanning direction. Irradiate light.
  • the illumination unit 60 can rotate around an illumination rotation axis 63 that is a rotation axis of the illumination unit 60, and the illumination rotation axis 63 is oriented to extend in the main scanning direction.
  • the illumination rotation axis 63 is disposed on the illumination optical axis L, that is, the illumination unit 60 is disposed on the illumination optical axis L when viewed from the main scanning direction.
  • the illumination optical axis L also rotates around the illumination rotation axis 63.
  • the illumination unit 60 can move the illumination optical axis L in the sub-scanning direction with respect to the placement surface 11 by rotating around the illumination rotation axis 63. It is possible to move the line-shaped light emitted from the mounting surface 11 in the sub-scanning direction of the mounting surface 11.
  • the illumination rotation axis 63 is coaxial with the mirror rotation axis 53 of the third optical unit 50. That is, the illumination rotation shaft 63 of the illumination unit 60 is located on the extension line of the mirror rotation shaft 53 of the third optical unit 50 extending in the main scanning direction, and when viewed from the main scanning direction, the illumination rotation shaft 63 and The mirror rotation axes 53 coincide. For this reason, the illumination unit 60 can rotate around the illumination rotation axis 63 that is coaxial with the mirror rotation axis 53 of the rotation mirror 51 of the third optical unit 50.
  • the illumination unit 60 can rotate at a rotational speed twice that of the rotary mirror 51. Thereby, even when the sensor optical axis S reflected by the rotary mirror 51 moves in the sub-scanning direction in accordance with the rotation of the rotary mirror 51, the illumination unit 60 rotates around the illumination rotary axis 63, thereby The axis L can be moved along the sensor optical axis S along with the sensor optical axis S in the sub-scanning direction. In other words, the illumination unit 60 can irradiate at least the reading area of the line sensor 31 and rotate in conjunction with the movement of the reading area in the sub-scanning direction.
  • FIG. 9 is a block diagram illustrating a main configuration of the image reading apparatus according to the embodiment.
  • the reading unit 20 is provided with a U-turn motor 45, a rotation motor 55, and a speed ratio conversion mechanism 80.
  • the U-turn motor 45 is a moving actuator that moves the second optical unit 40 relative to the first optical unit 30 in the optical axis direction between the first optical unit 30 and the second optical unit 40. Is provided. That is, the U-turn motor 45 moves the second optical unit 40 close to or away from the first optical unit 30 by moving the second optical unit 40 along the optical axis direction between the first optical unit 30 and the second optical unit 40. It is possible to do.
  • the rotation motor 55 is provided as a rotation actuator that rotates the rotation mirror 51 and the illumination unit 60 of the third optical unit 50 around the mirror rotation axis 53 and the illumination rotation axis 63 parallel to the main scanning direction. Further, the speed ratio conversion mechanism 80 sets the rotation speed ratio between the rotating mirror 51 rotated by the rotating force from the rotating motor 55 and the illumination unit 60 to 1: 2, and the power generated by the rotating motor 55 with the rotating mirror 51. Transmission to the illumination unit 60 is possible. That is, among the rotary mirror 51 and the illumination unit 60 that are both rotated by the power transmitted from the rotary motor 55, the illumination unit 60 rotates with a change amount that is twice the change amount of the rotation angle of the rotary mirror 51. do.
  • the image reading apparatus 1 also includes a control circuit 70.
  • the control circuit 70 is a CPU (Central Processing Unit) that functions as a controller that executes various processes, and a RAM (Random) that functions as a memory that stores various information.
  • the computer has an Access Memory (ROM) and a ROM (Read Only Memory). All or part of each function of the control circuit 70 is realized by reading and writing data in the RAM or ROM by loading an application program held in the ROM into the RAM and executing it by the CPU. .
  • the control circuit 70 controls the line sensor 31 included in the first optical unit 30 to read an image, a motor control unit 72 that controls the U-turn motor 45 and the rotation motor 55, and an illumination unit 60. And an illumination control unit 73 that controls turning on and off.
  • the control circuit 70 includes an image processing unit 74 that performs image processing of an image read by the image reading control unit 71 and a storage unit 75 that stores various types of information such as read image information.
  • the control circuit 70 includes a communication unit 76 that communicates with an external device.
  • the communication unit 76 is connected to an external device by wire or wireless, and can transmit and receive information.
  • a PC Personal Computer
  • the image reading apparatus 1 is provided with a scan switch 78 that causes the image reading apparatus 1 to perform a reading operation.
  • the scan switch 78 is disposed on the top surface of the mounting table 10, and when an input operation is performed by the user, the scan switch 78 transmits the fact to the control circuit 70, thereby reading the image reading apparatus 1. It is possible to make an action take place.
  • FIG. 10 is a schematic diagram of the speed ratio conversion mechanism.
  • the speed ratio converting mechanism 80 combines the belt 95 that transmits power and a plurality of pulleys around which the belt 95 is wound, so that the power from the rotary motor 55 is changed with the rotation speed ratio and the rotating mirror 51 and the illumination unit. 60.
  • the speed ratio conversion mechanism 80 is a relay shaft for transmitting power from the rotary motor 55 to the rotary mirror 51 and the illumination unit 60, and is a drive transmission that is a rotary shaft extending in the main scanning direction. The power from the rotary motor 55 is transmitted to the rotary mirror 51 and the illumination unit 60 via the drive transmission rotary shaft 81.
  • a second pulley 83 for driving transmission is attached to the rotation shaft 81 for driving transmission, and a first pulley 82 for driving transmission is attached to the output shaft of the rotary motor 55.
  • a belt 95 is wound around the pulley 82 and the second pulley 83 for drive transmission.
  • the speed ratio conversion mechanism 80 needs to transmit the power from the rotary motor 55 to the rotary mirror 51 and the illumination unit 60 at an appropriate speed ratio, and therefore the belt 95 used in the speed ratio conversion mechanism 80.
  • the belt 95 used in the speed ratio conversion mechanism 80 are all so-called toothed belts, and the pulleys are all toothed pulleys corresponding to the toothed belts.
  • the power transmitted from the drive transmission rotary shaft 81 to the rotary mirror 51 includes a rotary mirror first pulley 91 attached to the drive transmission rotary shaft 81, a rotary mirror second pulley 92 attached to the rotary mirror 51, and It is transmitted by the belt 95 wound around the first pulley 91 for rotating mirror and the second pulley 92 for rotating mirror.
  • the second pulley 92 for the rotating mirror is attached to one of the mirror rotating shafts 53 disposed at both ends of the rotating mirror 51 in the main scanning direction, and rotates integrally with the rotating mirror 51.
  • the power transmitted from the drive transmission rotating shaft 81 to the illumination unit 60 includes an illumination first pulley 86 attached to the drive transmission rotation shaft 81, an illumination second pulley 87 attached to the illumination unit 60, and It is transmitted by the belt 95 wound around the first pulley 86 for illumination and the second pulley 87 for illumination.
  • the first illumination pulley 86, the second illumination pulley 87, and the belt 95 are provided corresponding to each of the two illumination units 60 disposed near both ends of the rotary mirror 51 in the main scanning direction. ing. That is, two illumination first pulleys 86 are attached to the drive transmission rotating shaft 81, and the illumination second pulley 87 is attached to each of the two illumination units 60.
  • each of the two illumination first pulleys 86 and the second illumination pulleys 87 is wound around each.
  • the second illumination pulley 87 is attached to the illumination rotation shaft 63 of the illumination unit 60 and rotates integrally with the illumination unit 60.
  • the speed ratio converting mechanism 80 configured as described above is such that the ratio of the number of teeth of the second pulley for illumination 87 to the number of teeth of the first pulley for illumination 86 is the rotation mirror for the number of teeth of the first pulley 91 for the rotation mirror. This is 1/2 of the ratio of the number of teeth of the second pulley 92 for use.
  • the rotational speed ratio when power is transmitted from the rotary motor 55 to the rotary mirror 51 and the illumination unit 60 is 1: 2, and the power is transmitted to the rotary mirror 51 to the illumination unit 60. Power is transmitted at a rotational speed twice that of the rotational speed.
  • FIG. 11 is an explanatory diagram showing a state at the start of reading.
  • the control circuit 70 controls the reading unit 20 when the user performs an input operation on the scan switch 78 with the medium P placed on the placement surface 11 of the placement table 10.
  • the reading unit 20 is caused to read the medium P.
  • the control circuit 70 controls the U-turn motor 45 and the rotation motor 55 by the motor control unit 72, thereby causing the second optical unit 40 and the third optical unit 50 to move.
  • the image reading control unit 71 obtains an image read by the line sensor 31 included in the first optical unit 30 in a reading start state.
  • the control circuit 70 performs drive control of the U-turn motor 45 by the motor control unit 72, so that the second optical unit is located at the position farthest from the first optical unit 30 in the moving direction of the second optical unit 40.
  • the unit 40 is moved.
  • the control circuit 70 reflects the sensor optical axis S turned back by the second optical unit 40 by the rotary mirror 51 and moves the vertical position of the rotary mirror 51 in the movement range when moving the sensor optical axis S on the mounting surface 11 in the sub-scanning direction.
  • the rotary mirror 51 is rotated at a rotation angle that directs the sensor optical axis S to a position closest to the lower side in the direction. That is, the control circuit 70 performs drive control of the rotation motor 55 by the motor control unit 72, so that the rotation mirror 51 is driven by the power generated by the rotation motor 55 and transmitted to the rotation mirror 51 through the speed ratio conversion mechanism 80. Rotate.
  • the transmission path of the power generated by the rotary motor 55 will be described.
  • the power generated by the rotary motor 55 is transmitted through the first pulley 82 for driving transmission, the belt 95, and the second pulley 83 for driving transmission included in the speed ratio conversion mechanism 80.
  • the drive transmission rotating shaft 81 is rotated by this power.
  • the power transmitted to the drive transmission rotating shaft 81 is transmitted to the rotating mirror 51 through the first pulley 91 for the rotating mirror, the belt 95, and the second pulley 92 for the rotating mirror, and the rotating mirror 51 is rotated for driving transmission.
  • the power transmitted via the shaft 81 rotates around the mirror rotation shaft 53.
  • the sensor optical axis S reflected by the reflecting surface 52 of the rotating mirror 51 moves in the sub-scanning direction on the mounting surface 11 as the reflected light rotates as the rotating mirror 51 rotates.
  • the position closest to the lower side in the vertical direction of the rotary mirror 51 in the moving direction of the sensor optical axis S that moves in the sub-scanning direction on the placement surface 11 in this way is the sensor optical axis S at the start of reading. It becomes the position. That is, the position closest to the arm 15 in the moving direction of the sensor optical axis S that is reflected by the rotating mirror 51 and moves in the sub-scanning direction on the mounting surface 11 is the position of the sensor optical axis S at the start of reading.
  • the illumination control unit 73 controls the illumination unit 60 to turn on the illumination unit 60, thereby irradiating the mounting surface 11 with linear light that spreads in the main scanning direction. Further, when drive control of the rotary motor 55 is performed by the motor control unit 72, the power generated by the rotary motor 55 is transmitted to the illumination unit 60 via the speed ratio conversion mechanism 80, whereby the illumination unit 60. Also rotates. That is, the power transmitted from the rotary motor 55 to the drive transmission rotating shaft 81 of the speed ratio conversion mechanism 80 is transmitted to the illumination unit 60 through the illumination first pulley 86, the belt 95 and the illumination second pulley 87. The illumination unit 60 rotates around the illumination rotation shaft 63 by this power transmitted via the drive transmission rotation shaft 81.
  • the speed ratio conversion mechanism 80 transmits power to the illumination unit 60 at a speed twice as high as the rotational speed when power is transmitted to the rotating mirror 51.
  • the rotating mirror 51 when the rotating mirror 51 is rotated, the incident angle of the sensor optical axis S incident on the rotating mirror 51 from the second optical unit 40 and the sensor optical axis reflected by the rotating mirror 51 and directed toward the placement surface 11. Both the emission angle of S change together. For this reason, when the rotating mirror 51 rotates, the sensor optical axis S that is reflected by the rotating mirror 51 and travels toward the placement surface 11 rotates at an angle that is twice the angle that the rotating mirror 51 rotates. .
  • the illuminating unit 60 rotates the illuminating unit 60 at a rotational speed twice that of the rotating mirror 51 and rotates the rotating unit 51 at an angle twice the rotating angle of the rotating mirror 51, so that the illuminating unit 60 changes the illuminating optical axis L to the sensor optical axis.
  • the illumination unit 60 that is rotated by the power transmitted from the speed ratio conversion mechanism 80 emits light in a direction in which the illumination optical axis L coincides with the sensor optical axis S, and the sensor optical axis S is placed on the placement surface 11. Light is irradiated to the position that intersects with.
  • the irradiation light irradiated from the illumination unit 60 is a line-shaped light that spreads in the main scanning direction
  • the irradiation light irradiated onto the mounting surface 11 with the illumination optical axis L coincident with the sensor optical axis S is Irradiation is performed on the mounting surface 11 so as to overlap the sensor optical axis S extending in a line in the main scanning direction. That is, the illuminating unit 60 irradiates light onto a region that is read in a line shape in the main scanning direction on the placement surface 11 by the line sensor 31.
  • the control circuit 70 acquires an image read by the line sensor 31 by the image reading control unit 71, thereby acquiring line-shaped image information extending in the main scanning direction on the placement surface 11. That is, the medium P on the placement surface 11 irradiated with the light from the illumination unit 60 reflects this light, and a part of the reflected light enters the rotating mirror 51 along the sensor optical axis S.
  • the rotating mirror 51 reflects this light along the sensor optical axis S toward the second optical unit 40, and the second optical unit 40 returns this light along the sensor optical axis S by the folding mirror 42. It is directed to the first optical unit 30.
  • the first optical unit 30 transmits light traveling from the second optical unit 40 along the sensor optical axis S toward the first optical unit 30 through the condenser lens 35 and then received by the line sensor 31.
  • the line sensor 31 converts the received light into an electrical signal, and transmits the converted electrical signal to the image reading control unit 71, whereby the image reading control unit 71 acquires the image information.
  • the image reading control unit 71 acquires line-shaped image information extending in the main scanning direction on the placement surface 11.
  • the control circuit 70 controls the U-turn motor 45 and the rotary motor 55 by the motor control unit 72 while acquiring the line-shaped image information by the image reading control unit 71.
  • the sensor optical axis S reflected by the rotating mirror 51 of the third optical unit 50 toward the mounting surface 11 is moved in the sub-scanning direction while the second optical unit 40 is moved in the direction approaching the first optical unit 30.
  • the rotating mirror 51 is rotated in the direction of moving away from the arm 15.
  • the illumination unit 60 rotates at a rotational speed twice that of the rotating mirror 51.
  • the illumination optical axis L of the irradiation light emitted from the illumination unit 60 moves in the sub-scanning direction away from the arm 15 on the placement surface 11 together with the sensor optical axis S moving in the sub-scanning direction, and the illumination unit 60 irradiates the line-shaped light to the position where the sensor optical axis S is located.
  • the line sensor 31 reads the medium P on the placement surface 11 while scanning the placement surface 11 in the sub-scanning direction.
  • FIG. 12 is an explanatory diagram showing a state at the end of reading.
  • the reading unit 20 moves the sensor optical axis S in the sub-scanning direction on the placement surface 11 as described above while reading with the line sensor 31, and the arm 15 is located in the movement range of the sensor optical axis S.
  • the reading operation is finished when the end of the side is moved to the opposite end. That is, when the reading is finished, the control circuit 70 controls the U-turn motor 45 and the rotary motor 55 by the motor control unit 72 to move the second optical unit 40 to the position at the start of reading, and The rotating mirror 51 and the illumination unit 60 of the three optical units 50 are rotated to the rotation position at the start of reading.
  • the second optical unit 40 is moved in the direction in which the second optical unit 40 is separated from the first optical unit 30 along the sensor optical axis S between the first optical unit 30 and the second optical unit 40.
  • the rotating mirror 51 rotates the sensor optical axis S on the placement surface 11 in the sub-scanning direction in a direction approaching the arm 15, and the illumination unit 60 similarly illuminates the placement surface 11 in the sub-scanning direction.
  • the optical axis L is rotated in the direction approaching the arm 15.
  • the image reading control unit 71 reads the image while moving the sensor optical axis S on the mounting surface 11 in the sub-scanning direction as described above, thereby converting the line-shaped image information extending in the main scanning direction into the sub-scanning direction. Are combined and read as a two-dimensional image in the main scanning direction and the sub-scanning direction.
  • the image read as described above is subjected to image processing such as cropping by the image processing unit 74 so as to be an appropriate image as the image on the medium P, and stored in the storage unit 75.
  • the image stored in the storage unit 75 is transmitted to the PC 100 via the communication unit 76 as necessary, and is stored in the PC 100 or performs arbitrary information processing.
  • the image reading apparatus 1 includes the speed ratio conversion mechanism 80 that sets the rotational speed ratio between the rotating mirror 51 that rotates by the rotational force from the rotating motor 55 and the illumination unit 60 to 1: 2.
  • the illumination unit 60 can be rotated at a rotational speed twice that of the rotary mirror 51. Thereby, it is not necessary to control each using the power source which is different for the rotary mirror 51 and the illumination unit 60, and the rotation unit 51 always adjusts the rotation rate of the rotary mirror 51 with one rotary motor 55. It can be rotated at twice the rotation speed.
  • the mirror rotation axis 53 coincides with the reflection surface 52 of the rotation mirror 51 and also coincides with the illumination rotation axis 63, so that the illumination unit 60 rotates the rotation mirror 51. Irrespective of the state, it is possible to irradiate light with the illumination optical axis L always aligned with the sensor optical axis S. As a result, the light irradiation direction can be easily changed in accordance with the reading position with a simple configuration.
  • the illumination optical axis L is caused by the component tolerance of the illumination unit 60 and the like by matching the sensor optical axis S and the illumination optical axis L. Even if the deviation occurs, the sensor optical axis S can be accommodated in the irradiation light from the illumination unit 60. As a result, by aligning the sensor optical axis S and the illumination optical axis L, it is possible to easily align the reading position and the irradiation position of the irradiation light during manufacturing.
  • FIG. 13 is an explanatory diagram showing a state where the sensor optical axis and the illumination optical axis do not match.
  • FIG. 14 is an explanatory diagram for reading a thick medium with the image reading apparatus shown in FIG. Further, the illumination optical axis L is not matched with the sensor optical axis S, but the sensor optical axis S and the illumination optical axis L are directed from the different directions toward the placement surface 11 so as to coincide on the placement surface 11. In this case, if the medium P to be read is a thin medium P, the illumination optical axis L can be positioned at the position of the sensor optical axis S on the medium P.
  • the sensor optical axis S and the illumination optical axis L are respectively placed on the medium P at positions where the sensor optical axis S and the illumination optical axis L do not overlap.
  • Cross since the illumination optical axis L intersects the medium P at a position different from the position where the sensor optical axis S intersects the medium P, the illuminating unit 60 has a position read by the line sensor 31. Irradiates irradiation light to different positions.
  • the illuminating unit 60 applies to the medium P regardless of the thickness of the medium P to be read.
  • the position where the sensor optical axes S intersect can be illuminated. As a result, a high-quality image can be obtained regardless of the thickness of the medium P.
  • the mirror rotation axis 53 coincides with the position where the sensor optical axis S is reflected on the reflection surface 52 when viewed from the main scanning direction. Therefore, by rotating the rotation mirror 51, the mirror rotation axis 53 is rotated on the placement surface 11. The amount of movement when the sensor optical axis S is moved in the sub-scanning direction can be easily adjusted. As a result, reading control can be performed more easily.
  • the illumination unit 60 has the illumination rotation axis 63 disposed on the illumination optical axis L when viewed from the main scanning direction. Therefore, the illumination unit 60 is rotated to rotate the illumination optical axis on the placement surface 11. The amount of movement when moving L in the sub-scanning direction can be easily adjusted. As a result, the illumination optical axis L can be more easily matched with the sensor optical axis S.
  • the mirror rotation shaft 53 coincides with the position where the sensor optical axis S is reflected on the reflection surface 52 of the mirror rotation shaft 53 when viewed from the main scanning direction.
  • the mirror rotation axis 53 may be located on the reflection surface 52 other than the position where the sensor optical axis S is reflected.
  • FIG. 15 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when the mirror rotation axis is located above the reflection position of the sensor optical axis.
  • FIG. 16 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when the mirror rotation axis is located below the reflection position of the sensor optical axis.
  • the rotation mirror 51 is centered on the mirror rotation shaft 53 when the image reading device 1 reads an image.
  • the sensor optical axis S can be moved on the placement surface 11 in the sub-scanning direction.
  • the mirror rotation axis 53 when the mirror rotation axis 53 is positioned on the reflection surface 52 other than the position where the sensor optical axis S is reflected, the position where the sensor optical axis S is reflected on the reflection surface 52 varies depending on the rotation angle of the rotation mirror 51. To do. For this reason, when the mirror rotation axis 53 is located at a position other than the position where the sensor optical axis S is reflected, the sensor optical axis S can be appropriately reflected regardless of the rotation angle of the rotation mirror 51. In addition, it is necessary to increase the size of the rotating mirror 51 to some extent.
  • the mirror rotation axis 53 when the mirror rotation axis 53 is located at a position that reflects the sensor optical axis S, the sensor optical axis S reflects at the same position on the reflection surface 52 regardless of the rotation angle of the rotation mirror 51. . Therefore, in this case, the rotating mirror 51 can be reduced in size, and the reading unit 20 can be reduced in size. Therefore, the mirror rotating shaft 53 is located at a position where the sensor optical axis S is reflected. preferable.
  • FIG. 17 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when the mirror rotation axis is located at a position other than the reflection position of the sensor optical axis.
  • FIG. 18 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when the illumination rotation axis is located on a position other than the illumination optical axis.
  • FIG. 19 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram showing a state where the mirror rotation axis is located at a position other than the reflection position of the sensor optical axis and coincides with the illumination rotation axis. Even when the mirror rotation axis 53 is located on the reflection surface 52 other than the position where the sensor optical axis S is reflected, the illumination rotation axis 63 of the illumination unit 60 coincides with the mirror rotation axis 53 when viewed in the main scanning direction. It is preferable to do so.
  • the illumination rotation axis 63 of the illumination unit 60 is positioned not on the illumination optical axis L, but on the illumination light so that the illumination rotation axis 63 coincides with the mirror rotation axis 53 when viewed in the main scanning direction. It is arranged at a position displaced from the axis L. Thereby, when viewed in the main scanning direction, the mirror rotation axis 53 and the illumination rotation axis 63 can be made to coincide with each other, and the sensor rotation axis 53 and the illumination optical axis L can be made to coincide with each other. Further, by rotating the rotating mirror 51 and the illumination unit 60 around the illumination rotation axis 63, the sensor optical axis S and the illumination optical axis L can be kept matched regardless of the rotation angle.
  • the rotary mirror 51 and the illumination unit 60 have the mirror rotation axis 53 coincident with the illumination rotation axis 63 when viewed from the main scanning direction, and the mirror rotation axis 53 is the reflection surface 52 or the reflection surface of the rotation mirror 51. If it coincides with the extension line of 52, the sensor optical axis S and the illumination optical axis L can be kept coincident regardless of the rotation angle even if the sensor optical axis S is located at a position other than the reflection position.
  • FIG. 20 is an explanatory diagram when the mirror rotation axis and the illumination rotation axis are located at the reflection position of the sensor optical axis on the reflection surface and the sensor optical axis and the illumination optical axis coincide with each other.
  • FIG. 20 is an explanatory diagram when the mirror rotation axis and the illumination rotation axis are located at the reflection position of the sensor optical axis on the reflection surface and the sensor optical axis and the illumination optical axis coincide with each other.
  • FIG. 21 is an explanatory diagram when the mirror rotation axis and the illumination rotation axis are positioned above the reflection position of the sensor optical axis on the reflection surface and the sensor optical axis and the illumination optical axis coincide with each other.
  • FIG. 22 is an explanatory diagram when the mirror rotation axis and the illumination rotation axis are positioned below the reflection position of the sensor optical axis on the reflection surface and the sensor optical axis and the illumination optical axis coincide with each other.
  • FIG. 23 is an explanatory diagram in the case where the mirror rotation axis and the illumination rotation axis are located on the extension line of the reflecting surface and the sensor optical axis and the illumination optical axis coincide with each other.
  • the mirror rotation axis 53 and the illumination rotation axis 63 coincide with each other and the mirror rotation axis 53 coincides with the reflection surface 52 or an extension line of the reflection surface 52, the mirror rotation axis 53 and the illumination rotation axis 63 correspond to the sensor. It is not only located at the reflection position of the optical axis S (FIG. 20), but also located above or below the reflection position of the sensor optical axis S (FIGS. 21 and 22), or on an extension line of the reflection surface 52. Even in the case (FIG. 23), the sensor optical axis S and the illumination optical axis L can be kept matched.
  • FIG. 24 is an explanatory diagram of each coordinate when the angle of the rotating mirror is 45 °.
  • the angle of the rotary mirror 51 is set to 45 ° and the sensor optical axis S and the illumination optical axis L are made to coincide with each other downward, the coordinates of the reflection position on the reflection surface 52 of the rotary mirror 51 are shown in FIG.
  • the coordinates of the mirror rotation axis 53 of the rotary mirror 51 are (a, b). At this time, the rotation angle of the rotating mirror 51 is ⁇ , and the rotation angle of the illumination unit 60 is 2 ⁇ .
  • the sensor optical axis S passes through the coordinates of the following formula (4) and reflects at an angle of 2 ⁇ .
  • d ⁇ (a ⁇ tan ⁇ + b) ⁇ tan 2 ⁇ . Accordingly, the illumination optical axis L passes through ( ⁇ (a ⁇ tan ⁇ + b) ⁇ tan 2 ⁇ , 0) and is irradiated at an angle of 2 ⁇ .
  • the sensor optical axis S and the illumination optical axis L pass through the coordinates of the following equation (13) and overlap toward the mounting surface 11 at an angle of 2 ⁇ .
  • the mirror rotation axis 53 and the illumination rotation axis 63 coincide with each other in the main scanning direction, and the mirror rotation axis 53 coincides with the reflection surface 52 or the extension line of the reflection surface 52, the rotation mirror 51. Regardless of the rotation angle between the illumination unit 60 and the illumination unit 60, the sensor optical axis S and the illumination optical axis L can be matched.
  • the illumination unit 60 irradiates the placement surface 11 with light from the light emitting unit 61 in a line shape with the lens 62. You may make it irradiate toward the mounting surface 11 by changing the direction of the light from the light emission part 61.
  • FIG. 26 is a modification of the image reading apparatus according to the embodiment, and is a detailed view of an illumination unit in which a mirror is used.
  • the illumination unit 60 includes a reflection mirror 102 in addition to the light source unit 101, and the light source unit 101 and the reflection mirror 102 are formed integrally by being held by a holding member 103, These may be integrated so as to rotate around the illumination rotation shaft 63.
  • the illumination unit 60 may be configured to irradiate the placement surface 11 by changing the direction of the light from the light emitting unit 61, and rotates at twice the rotational speed of the rotary mirror 51.
  • the configuration is not limited.
  • the speed ratio conversion mechanism 80 transmits the power generated by the rotary motor 55 from the drive transmission rotary shaft 81 to the rotary mirror 51 and the illumination unit 60.
  • the power generated by the rotary motor 55 may be transmitted to the other through one of them.
  • FIG. 27 is a schematic diagram of the speed ratio conversion mechanism in the case where power is transmitted to the illumination unit via the rotating mirror, which is a modification of the image reading apparatus according to the embodiment.
  • the rotating mirror 51 is provided with rotating mirror direct coupling gears 110 that rotate integrally with the rotating mirror 51 at both ends in the main scanning direction.
  • the rotating mirror direct-coupled gear 110 May be configured to transmit the power between the rotating mirror direct-coupled gear 110 and the illumination direct-coupled gear 115 by providing an illumination direct-coupled gear 115 that rotates integrally with the illumination unit 60.
  • the power generated by the rotary motor 55 is transmitted from the drive transmission rotary shaft 81 to the rotary mirror 51 by the rotary pulley first pulley 91, the belt 95, and the rotary mirror second pulley 92.
  • the rotating mirror 51 is rotated by the transmitted power.
  • the transmission of power between the rotary mirror direct-coupled gear 110 and the illumination direct-coupled gear 115 is performed by rotating together with the first transmission gear 111 meshing with the rotary mirror direct-coupled gear 110 and the first transmission gear 111 and lighting. And the second transmission gear 112 meshed with the direct connection gear 115.
  • These gears are paths that transmit power from the rotary mirror direct-coupled gear 110 to the illumination direct-coupled gear 115 via the first transmission gear 111 and the second transmission gear 112, and have a speed ratio that doubles the speed ratio. That is, the rotation speed ratio when power is transmitted to the rotating mirror 51 and the illumination unit 60 is 1: 2.
  • FIG. 28 is a modification of the image reading apparatus according to the embodiment, and is a schematic diagram of a speed ratio conversion mechanism when power is transmitted to a rotating mirror via an illumination unit.
  • the speed ratio conversion mechanism 80 may be configured such that the power transmitted to the illumination unit 60 is transmitted to the rotating mirror 51, as shown in FIG.
  • the rotating mirror direct-coupled gear 110, the first transmission gear 111, the second transmission gear 112, and the illumination direct-coupled gear 115 are one of the illumination units 60 disposed on both sides of the rotating mirror 51 in the main scanning direction. It is provided between the illumination unit 60 and the rotating mirror 51.
  • the speed ratio conversion mechanism 80 configured as described above is configured so that the rotation motor 55 is connected to the illumination unit 60 by the first pulley 86 for illumination, the belt 95 and the second pulley 87 for illumination from the drive transmission rotating shaft 81. Is transmitted, and the illumination unit 60 is rotated by the transmitted power.
  • the power transmitted to the illumination unit 60 on the side where the illumination direct coupling gear 115 is provided is the illumination direct coupling gear 115, the second transmission gear 112, and the first transmission. It is transmitted to the rotating mirror 51 by the gear 111 and the rotating mirror direct connection gear 110, and the rotating mirror 51 is rotated by the transmitted power.
  • These gears are paths that transmit power from the illumination direct coupling gear 115 to the rotary mirror direct coupling gear 110 via the second transmission gear 112 and the first transmission gear 111, and the speed ratio is halved.
  • the rotational speed ratio when power is transmitted to the rotating mirror 51 and the illumination unit 60 is 1: 2.
  • the speed ratio conversion mechanism 80 transmits the power generated by the rotary motor 55 from the drive transmission rotary shaft 81 to the rotary mirror 51 and the illumination unit 60.
  • the power generated by the rotary motor 55 may be transmitted to the rotary mirror 51 and the illumination unit 60 through different paths.
  • FIG. 29 is a modification of the image reading apparatus according to the embodiment, and is a schematic diagram of a speed ratio conversion mechanism when power is transmitted through different paths between the rotating mirror and the illumination unit. For example, as shown in FIG.
  • the speed ratio conversion mechanism 80 is provided with two worm gears of a first worm gear 121 and a second worm gear 122 on the motor output shaft 120, and the rotating mirror 51, the illumination unit 60, and the like from the two worm gears.
  • power may be transmitted through separate paths.
  • a first worm wheel 126 is engaged with the first worm gear 121, and the first worm wheel 126 is connected to the first pulley 91 for rotating mirror so as to be rotatable integrally with the first worm wheel 126.
  • a second pulley 92 for rotating mirror is attached to the rotating mirror 51, and a belt 95 is wound around the first pulley 91 for rotating mirror and the second pulley 92 for rotating mirror.
  • the power extracted by the first worm gear 121 and the first worm wheel 126 is transmitted.
  • a second worm wheel 127 meshes with the second worm gear 122, and the second worm wheel 127 is connected to the first pulley 82 for drive transmission so as to be rotatable integrally with the second worm wheel 127. .
  • the power thus extracted by the second worm gear 122 and the second worm wheel 127 is applied to the drive transmission rotating shaft 81 via the drive transmission first pulley 82, the belt 95, and the drive transmission second pulley 83.
  • the drive transmission rotating shaft 81 is rotated by this transmitted power.
  • Two first pulleys 86 for illumination are attached to the drive transmission rotating shaft 81 in correspondence with the two illumination units 60.
  • the illuminating unit 60 is transmitted with power from the drive transmission rotating shaft 81.
  • the power extracted by the second worm gear 122 and the second worm wheel 127 is transmitted to the illumination unit 60.
  • the gear ratio is different. That is, the reduction ratio between the first worm gear 121 and the first worm wheel 126 is twice the reduction ratio between the second worm gear 122 and the second worm wheel 127.
  • the gear ratio is 1: 1.
  • the rotation speed ratio when power is transmitted to the rotating mirror 51 and the illumination unit 60 is 1: 2.
  • the illumination units 60 are provided at two locations of the reading unit 20, but the illumination units 60 may be provided at two or more locations of the reading unit 20.
  • a plurality of illumination units 60 provided in the reading unit 20 may be provided on both sides in the main scanning direction with the rotating mirror 51 of the third optical unit 50 interposed therebetween.
  • the illumination unit 60 has the illumination rotation axis 63 coincident with the mirror rotation axis 53 and the illumination optical axis L coincides with the sensor optical axis S reflected by the reflection surface 52 of the rotation mirror 51.
  • the number is not limited as long as it is configured to irradiate light in the direction in which the light is emitted.
  • FIG. 30 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when a plurality of reading units are provided.
  • two reading units 20 may be provided in one image reading apparatus 1.
  • the two reading units 20 are arranged by being connected to one arm 15. In this way, by providing a plurality of reading units 20, a large medium P can be read by one reading unit 20, and when the medium P is a book, different pages can be read by each reading unit 20. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Studio Devices (AREA)

Abstract

In order to easily change a light irradiation direction according to a reading position by a simple configuration, an image reading device is provided with: a line sensor 31 which linearly reads a medium P mounted on a mounting surface 11 in a main scanning direction of the mounting surface 11; a rotating mirror 51 which reflects and rotates a sensor optical axis S of the line sensor 31 to thereby move the sensor optical axis S in a sub-scanning direction of the mounting surface 11 with respect to the mounting surface 11; an illumination part 60 which irradiates at least a reading region of the line sensor 31 with light, and rotates in conjunction with the movement of the reading region; a rotating motor 55 which rotates the rotating mirror 51 and the illumination part 60; and a speed ratio conversion mechanism 80 which sets the rotation speed ratio between the rotating mirror 51 and the illumination part 60 to 1:2. A mirror rotating shaft 53 of the rotating mirror 51 coincides with a reflection surface 52 of the rotating mirror 51 and an illumination rotation axis L of the illumination part 60 when viewed from the main scanning direction, and the illumination part 60 applies light in a direction in which an illumination optical axis L coincides with the sensor optical axis S reflected by the reflection surface 52.

Description

画像読取装置Image reading device
 本開示は、画像読取装置に関する。 This disclosure relates to an image reading apparatus.
 受光した光を電気信号に変換する撮像素子を用いて撮像を行う画像読取装置の中には、撮像素子がライン状に並んだ、いわゆるラインセンサを使用し、ラインセンサでの読み取り位置を、撮像素子が並ぶ方向と直交する方向である副走査方向に媒体上で移動させながら読み取りを行うものがある。また、このように読み取り位置を副走査方向に移動させながら読み取りを行う画像読取装置の中には、ラインセンサで読み取りを行う際における光軸を反射するミラーを回転させることにより、ラインセンサを大きく移動させることなく、読み取り位置を媒体上で移動させるものがある(例えば、特許文献1、2参照)。 Some image reading devices that use an image sensor that converts received light into an electrical signal to capture an image capture the position read by the line sensor using a so-called line sensor in which the image sensors are arranged in a line. Some devices perform reading while moving on a medium in a sub-scanning direction that is a direction orthogonal to the direction in which the elements are arranged. In addition, among image reading apparatuses that perform reading while moving the reading position in the sub-scanning direction in this way, the line sensor is enlarged by rotating a mirror that reflects the optical axis when reading is performed by the line sensor. There is one that moves the reading position on the medium without moving (for example, see Patent Documents 1 and 2).
特開2005-86443号公報JP 2005-86443 A 特開平9-181887号公報Japanese Patent Laid-Open No. 9-181887
 ここで、ラインセンサを用いて媒体の読み取りを行う際には、光源によって読み取り位置を照射し、媒体で反射した光源からの光をラインセンサで受光することより、より高画質の画像を得ることができるが、読み取り位置を副走査方向に移動させる場合、光源の照射方向も、読み取り位置の移動に合わせて副走査方向に変える必要がある。この場合、光源の照射方向を変える駆動モータ等の動力源が必要になり、また、光源の照射方向は、読み取り位置の移動に合わせて変える必要がある。このため、ラインセンサでの読み取り位置に合わせて光源の照射方向を変えるのは、部品点数の増加につながり、製造工程も増加するため、製造コストが高騰する要因になる。 Here, when reading a medium using a line sensor, a reading position is irradiated by a light source, and light from the light source reflected by the medium is received by the line sensor, thereby obtaining a higher quality image. However, when the reading position is moved in the sub-scanning direction, it is necessary to change the irradiation direction of the light source in the sub-scanning direction in accordance with the movement of the reading position. In this case, a power source such as a drive motor for changing the irradiation direction of the light source is required, and the irradiation direction of the light source needs to be changed in accordance with the movement of the reading position. For this reason, changing the irradiation direction of the light source in accordance with the reading position by the line sensor leads to an increase in the number of parts and the manufacturing process, which causes a rise in manufacturing cost.
 本開示は、上記に鑑みてなされたものであって、簡素な構成で読み取り位置に合わせて容易に光の照射方向を変えることのできる画像読取装置を提供することを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to provide an image reading apparatus that can easily change the irradiation direction of light according to a reading position with a simple configuration.
 上述した課題を解決し、目的を達成するために、本開示に係る画像読取装置は、載置面に載置された媒体を前記載置面の主走査方向においてライン状に読み取るラインセンサと、前記ラインセンサのセンサ光軸を反射すると共に回転することで、前記載置面に対して、前記センサ光軸を前記載置面における前記主走査方向と直交する副走査方向に移動させる回転ミラーと、少なくとも前記ラインセンサの読み取り領域に光を照射し、前記読み取り領域の前記副走査方向への移動に連動して回転する照明部と、前記回転ミラー及び前記照明部を前記主走査方向と平行な回転軸周りに回転させる回転アクチュエータと、前記回転アクチュエータからの回転力により回転する前記回転ミラーと前記照明部との回転速度比を1:2とする速度比変換機構と、を備え、前記回転ミラーのミラー回転軸は、前記主走査方向から見た場合に、前記回転ミラーの反射面、或いは前記反射面の延長線上と一致し、且つ、前記照明部の照明回転軸と一致し、前記照明部は、前記照明部から照射する光の照明光軸を、前記主走査方向に見た場合における前記回転ミラーの前記反射面で反射した前記センサ光軸に対して一致させる方向に光を照射する。 In order to solve the above-described problems and achieve the object, an image reading apparatus according to the present disclosure includes a line sensor that reads a medium placed on a placement surface in a line shape in the main scanning direction of the placement surface; A rotating mirror that reflects and rotates the sensor optical axis of the line sensor to move the sensor optical axis in a sub-scanning direction perpendicular to the main scanning direction on the mounting surface with respect to the mounting surface; Illuminating at least the reading area of the line sensor and rotating in conjunction with the movement of the reading area in the sub-scanning direction; and the rotating mirror and the illuminating part in parallel with the main scanning direction. Speed ratio conversion with a rotation speed ratio of 1: 2 between a rotary actuator that rotates about a rotation axis, the rotating mirror that rotates by a rotational force from the rotary actuator, and the illumination unit And the rotation axis of the rotating mirror coincides with the reflecting surface of the rotating mirror or an extension line of the reflecting surface when viewed from the main scanning direction, and illumination of the illumination unit The illumination unit coincides with the rotation axis, and the illumination unit reflects the illumination optical axis of the light emitted from the illumination unit in the main scanning direction with respect to the sensor optical axis reflected by the reflection surface of the rotation mirror. Irradiate light in the matching direction.
 本開示に係る画像読取装置は、簡素な構成で読み取り位置に合わせて容易に光の照射方向を変えることができる、という効果を奏する。 The image reading apparatus according to the present disclosure has an effect that the light irradiation direction can be easily changed according to the reading position with a simple configuration.
図1は、実施形態に係る画像読取装置の斜視図である。FIG. 1 is a perspective view of an image reading apparatus according to an embodiment. 図2は、図1のA-A矢視図である。FIG. 2 is an AA arrow view of FIG. 図3は、図1に示す画像読取装置の構成を示す模式図である。FIG. 3 is a schematic diagram showing the configuration of the image reading apparatus shown in FIG. 図4は、図3のC部詳細図である。FIG. 4 is a detailed view of part C of FIG. 図5は、照明部と回転ミラーの位置関係を示す模式図である。FIG. 5 is a schematic diagram showing the positional relationship between the illumination unit and the rotating mirror. 図6は、図5のD-D矢視図である。6 is a DD arrow view of FIG. 図7は、図6に示す回転ミラーの斜視図である。FIG. 7 is a perspective view of the rotating mirror shown in FIG. 図8は、図6のE-E矢視図である。FIG. 8 is a view taken along the line EE in FIG. 図9は、実施形態に係る画像読取装置の要部構成を示すブロック図である。FIG. 9 is a block diagram illustrating a main configuration of the image reading apparatus according to the embodiment. 図10は、速度比変換機構の模式図である。FIG. 10 is a schematic diagram of a speed ratio conversion mechanism. 図11は、読み取り開始時の状態を示す説明図である。FIG. 11 is an explanatory diagram showing a state at the start of reading. 図12は、読み取り終了時の状態を示す説明図である。FIG. 12 is an explanatory diagram showing a state at the end of reading. 図13は、センサ光軸と照明光軸が一致していない状態を示す説明図である。FIG. 13 is an explanatory diagram showing a state where the sensor optical axis and the illumination optical axis do not match. 図14は、図13に示す画像読取装置で厚さが厚い媒体を読み取る場合の説明図である。FIG. 14 is an explanatory diagram for reading a thick medium with the image reading apparatus shown in FIG. 図15は、実施形態に係る画像読取装置の変形例であり、ミラー回転軸がセンサ光軸の反射位置の上方に位置する場合の説明図である。FIG. 15 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when the mirror rotation axis is located above the reflection position of the sensor optical axis. 図16は、実施形態に係る画像読取装置の変形例であり、ミラー回転軸がセンサ光軸の反射位置の下方に位置する場合の説明図である。FIG. 16 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when the mirror rotation axis is located below the reflection position of the sensor optical axis. 図17は、実施形態に係る画像読取装置の変形例であり、ミラー回転軸がセンサ光軸の反射位置以外に位置する場合の説明図である。FIG. 17 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when the mirror rotation axis is located at a position other than the reflection position of the sensor optical axis. 図18は、実施形態に係る画像読取装置の変形例であり、照明回転軸が照明光軸上以外に位置する場合の説明図である。FIG. 18 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when the illumination rotation axis is located on a position other than the illumination optical axis. 図19は、実施形態に係る画像読取装置の変形例であり、ミラー回転軸がセンサ光軸の反射位置以外に位置し、照明回転軸と一致する状態を示す説明図である。FIG. 19 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram showing a state where the mirror rotation axis is located at a position other than the reflection position of the sensor optical axis and coincides with the illumination rotation axis. 図20は、ミラー回転軸と照明回転軸が反射面上におけるセンサ光軸の反射位置に位置してセンサ光軸と照明光軸とが一致する場合の説明図である。FIG. 20 is an explanatory diagram when the mirror rotation axis and the illumination rotation axis are located at the reflection position of the sensor optical axis on the reflection surface and the sensor optical axis and the illumination optical axis coincide with each other. 図21は、ミラー回転軸と照明回転軸が反射面上におけるセンサ光軸の反射位置の上方に位置してセンサ光軸と照明光軸とが一致する場合の説明図である。FIG. 21 is an explanatory diagram when the mirror rotation axis and the illumination rotation axis are positioned above the reflection position of the sensor optical axis on the reflection surface and the sensor optical axis and the illumination optical axis coincide with each other. 図22は、ミラー回転軸と照明回転軸が反射面上におけるセンサ光軸の反射位置の下方に位置してセンサ光軸と照明光軸とが一致する場合の説明図である。FIG. 22 is an explanatory diagram when the mirror rotation axis and the illumination rotation axis are positioned below the reflection position of the sensor optical axis on the reflection surface and the sensor optical axis and the illumination optical axis coincide with each other. 図23は、ミラー回転軸と照明回転軸が反射面の延長線上に位置してセンサ光軸と照明光軸とが一致する場合の説明図である。FIG. 23 is an explanatory diagram in the case where the mirror rotation axis and the illumination rotation axis are located on the extension line of the reflecting surface and the sensor optical axis and the illumination optical axis coincide with each other. 図24は、回転ミラーの角度を45°にした場合における各座標の説明図である。FIG. 24 is an explanatory diagram of each coordinate when the angle of the rotating mirror is 45 °. 図25は、照明光軸の各座標の説明図である。FIG. 25 is an explanatory diagram of each coordinate of the illumination optical axis. 図26は、実施形態に係る画像読取装置の変形例であり、ミラーが用いられる照明部の詳細図である。FIG. 26 is a modification of the image reading apparatus according to the embodiment, and is a detailed view of an illumination unit in which a mirror is used. 図27は、実施形態に係る画像読取装置の変形例であり、回転ミラーを介して照明部に動力が伝達される場合における速度比変換機構の模式図である。FIG. 27 is a schematic diagram of the speed ratio conversion mechanism in the case where power is transmitted to the illumination unit via the rotating mirror, which is a modification of the image reading apparatus according to the embodiment. 図28は、実施形態に係る画像読取装置の変形例であり、照明部を介して回転ミラーに動力が伝達される場合における速度比変換機構の模式図である。FIG. 28 is a modification of the image reading apparatus according to the embodiment, and is a schematic diagram of a speed ratio conversion mechanism in the case where power is transmitted to a rotating mirror via an illumination unit. 図29は、実施形態に係る画像読取装置の変形例であり、回転ミラーと照明部とで異なる経路で動力が伝達される場合における速度比変換機構の模式図である。FIG. 29 is a modification of the image reading apparatus according to the embodiment, and is a schematic diagram of a speed ratio conversion mechanism when power is transmitted through different paths between the rotating mirror and the illumination unit. 図30は、実施形態に係る画像読取装置の変形例であり、読取ユニットが複数設けられる場合の説明図である。FIG. 30 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when a plurality of reading units are provided.
 以下に、本開示に係る画像読取装置の実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能、且つ、容易なもの、或いは実質的に同一のものが含まれる。 Hereinafter, embodiments of an image reading apparatus according to the present disclosure will be described in detail based on the drawings. In addition, this invention is not limited by this embodiment. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.
 〔実施形態〕
 図1は、実施形態に係る画像読取装置の斜視図である。図2は、図1のA-A矢視図である。図1、図2に示す画像読取装置1は、媒体Pを上方から撮像することにより媒体Pを読み取る装置になっている。この画像読取装置1は、媒体Pを載置する載置台10と、媒体Pを読み取る読取ユニット20と、を有している。載置台10は、矩形の板状の形状で形成されており、上面側に、媒体Pを載置する載置面11が設けられている。読取ユニット20は、載置台10の上方側、即ち、載置面11の上方側に配設されており、略上下方向に延在するアーム15によって連結されている。アーム15は、下端側が載置台10に連結され、上端側が読取ユニット20に連結されており、水平方向において載置台10と読取ユニット20とがアーム15に対して同じ方向側に突出するように、アーム15は載置台10と読取ユニット20とに連結されている。載置台10と読取ユニット20とは、このようにアーム15が連結されることにより、上下方向において対向して配設されている。
Embodiment
FIG. 1 is a perspective view of an image reading apparatus according to an embodiment. FIG. 2 is an AA arrow view of FIG. The image reading apparatus 1 shown in FIGS. 1 and 2 is an apparatus that reads the medium P by imaging the medium P from above. The image reading apparatus 1 includes a mounting table 10 on which a medium P is placed and a reading unit 20 that reads the medium P. The mounting table 10 is formed in a rectangular plate shape, and a mounting surface 11 on which the medium P is mounted is provided on the upper surface side. The reading unit 20 is disposed on the upper side of the mounting table 10, that is, on the upper side of the mounting surface 11, and is connected by an arm 15 that extends substantially in the vertical direction. The lower end side of the arm 15 is connected to the mounting table 10 and the upper end side is connected to the reading unit 20, so that the mounting table 10 and the reading unit 20 protrude in the same direction side with respect to the arm 15 in the horizontal direction. The arm 15 is connected to the mounting table 10 and the reading unit 20. The mounting table 10 and the reading unit 20 are arranged to face each other in the vertical direction by connecting the arm 15 in this way.
 載置台10に対して対向して配設される読取ユニット20には、読取ユニット20での媒体Pの読み取り時に、光を載置面11に向けて照射することのできる照明部60が設けられており、照明部60は、読取ユニット20の2箇所に設けられている。2箇所の照明部60は、読取ユニット20を上下方向に見た場合に、読取ユニット20においてアーム15が連結されている部分以外の位置で、且つ、水平方向において互いに反対側となる位置に、互いに反対方向に突出して設けられている。 The reading unit 20 disposed to face the mounting table 10 is provided with an illumination unit 60 that can emit light toward the mounting surface 11 when the reading unit 20 reads the medium P. The illumination unit 60 is provided at two locations of the reading unit 20. When the reading unit 20 is viewed in the vertical direction, the two illumination units 60 are located at positions other than the portion where the arm 15 is connected in the reading unit 20 and at positions opposite to each other in the horizontal direction. Projecting in opposite directions to each other.
 図3は、図1に示す画像読取装置の構成を示す模式図である。読取ユニット20は、媒体Pを読み取る第1光学ユニット30と、第1光学ユニット30で読み取りを行う際における光軸を180°折り返す第2光学ユニット40と、第2光学ユニット40で折り返された光軸を反射して載置台10の載置面11に向かわせる第3光学ユニット50と、を有している。これらの第1光学ユニット30と第2光学ユニット40と第3光学ユニット50とは、読取ユニット20が有する筐体21に全て内設されている。 FIG. 3 is a schematic diagram showing the configuration of the image reading apparatus shown in FIG. The reading unit 20 includes a first optical unit 30 that reads the medium P, a second optical unit 40 that turns back the optical axis when the first optical unit 30 performs reading, and light that is turned back by the second optical unit 40. A third optical unit 50 that reflects the axis toward the mounting surface 11 of the mounting table 10. The first optical unit 30, the second optical unit 40, and the third optical unit 50 are all installed in the housing 21 of the reading unit 20.
 このうち、第1光学ユニット30は、ラインセンサ31と集光レンズ35とを備えて筐体21に固定されており、ラインセンサ31は、載置面11に載置された媒体Pを載置面11の主走査方向においてライン状に読み取ることが可能になっている。なお、この場合における主走査方向は、画像を撮像する撮像素子が複数配列されることにより形成されるラインセンサ31において、撮像素子が配列されている方向をいう。即ち、ラインセンサ31は、複数の撮像素子が直線状に配列されていることにより、撮像対象をライン状に読み取ることが可能になっている。つまり、複数の撮像素子を有するラインセンサ31は、撮像素子で受光した光を光電変換によって電子データに変換することにより、画像データを生成することが可能になっている。 Among these, the first optical unit 30 includes a line sensor 31 and a condenser lens 35 and is fixed to the housing 21, and the line sensor 31 places the medium P placed on the placement surface 11. The surface 11 can be read in a line shape in the main scanning direction. Note that the main scanning direction in this case refers to the direction in which the imaging elements are arranged in the line sensor 31 formed by arranging a plurality of imaging elements that capture an image. That is, the line sensor 31 can read the imaging target in a line shape by arranging a plurality of imaging elements in a linear shape. That is, the line sensor 31 having a plurality of image sensors can generate image data by converting light received by the image sensors into electronic data by photoelectric conversion.
 また、集光レンズ35は、ラインセンサ31で撮像を行う際における光軸であるセンサ光軸S上に配設されており、センサ光軸Sに沿ってラインセンサ31に向かう光を、ラインセンサ31の撮像素子に結像させることが可能になっている。ラインセンサ31は、この結像した光を受光し、受光した光に対応する電気信号を出力することにより、主走査方向に向かうライン状の画像データを生成する。なお、ラインセンサ31が有する撮像素子のライン数は、単数であっても複数であってもよい。また、ラインセンサ31は、複数が主走査方向に並ぶ撮像素子によって撮像を行うため、ラインセンサ31で撮像を行う際におけるセンサ光軸Sは、主走査方向に平面状に広がる光軸になっている。 The condensing lens 35 is disposed on the sensor optical axis S that is an optical axis when the line sensor 31 performs imaging, and the light that travels along the sensor optical axis S toward the line sensor 31 is transmitted to the line sensor 31. It is possible to form an image on 31 image sensors. The line sensor 31 receives the imaged light, and outputs an electric signal corresponding to the received light, thereby generating line-shaped image data in the main scanning direction. Note that the number of lines of the image sensor included in the line sensor 31 may be single or plural. In addition, since the line sensor 31 performs imaging using an imaging device in which a plurality are arranged in the main scanning direction, the sensor optical axis S when the line sensor 31 performs imaging is an optical axis that spreads in a plane in the main scanning direction. Yes.
 第2光学ユニット40は、このように第1光学ユニット30のラインセンサ31で読み取りを行う場合におけるセンサ光軸Sを180°折り返すことが可能になっている。図4は、図3のC部詳細図である。詳しくは、第2光学ユニット40は、2つで1組の折り返しミラー42と、この折り返しミラー42を保持するキャリア41と、を有している。折り返しミラー42は、第1光学ユニット30からのセンサ光軸S上に位置し、このセンサ光軸Sを反射する第1光学ユニット側ミラー43と、第1光学ユニット側ミラー43で反射したセンサ光軸S上に位置し、このセンサ光軸Sを第3光学ユニット50に向けて反射する第3光学ユニット側ミラー44と、を有している。 The second optical unit 40 can turn back the sensor optical axis S by 180 ° when the line sensor 31 of the first optical unit 30 performs reading. FIG. 4 is a detailed view of part C of FIG. Specifically, the second optical unit 40 includes a pair of folding mirrors 42 and a carrier 41 that holds the folding mirrors 42. The folding mirror 42 is located on the sensor optical axis S from the first optical unit 30, and the first optical unit side mirror 43 reflecting the sensor optical axis S and the sensor light reflected by the first optical unit side mirror 43. And a third optical unit side mirror 44 which is located on the axis S and reflects the sensor optical axis S toward the third optical unit 50.
 このうち、第1光学ユニット側ミラー43は、センサ光軸Sに対して反射面が45°の角度で傾斜するように設置されており、これにより第1光学ユニット側ミラー43は、第1光学ユニット30からのセンサ光軸Sを、90°向きを変えて反射することができる。詳しくは、第1光学ユニット側ミラー43は、第1光学ユニット30からのセンサ光軸Sを、下方に90°向きを変えて反射することができる。 Among these, the first optical unit side mirror 43 is installed such that the reflection surface is inclined at an angle of 45 ° with respect to the sensor optical axis S, and thus the first optical unit side mirror 43 is configured to be the first optical unit. The sensor optical axis S from the unit 30 can be reflected by changing the direction of 90 °. Specifically, the first optical unit side mirror 43 can reflect the sensor optical axis S from the first optical unit 30 by changing the direction of 90 ° downward.
 また、第3光学ユニット側ミラー44は、第1光学ユニット側ミラー43の下方に配設されており、第1光学ユニット側ミラー43で下方に向けて反射したセンサ光軸Sに対して、反射面が45°の角度で傾斜するように設置されている。これにより第3光学ユニット側ミラー44は、第1光学ユニット側ミラー43で反射したセンサ光軸Sを、90°向きを変えて反射することができる。 The third optical unit side mirror 44 is disposed below the first optical unit side mirror 43, and reflects the sensor optical axis S reflected downward by the first optical unit side mirror 43. The surface is installed so as to be inclined at an angle of 45 °. Accordingly, the third optical unit side mirror 44 can reflect the sensor optical axis S reflected by the first optical unit side mirror 43 by changing the direction by 90 °.
 その際に、第3光学ユニット側ミラー44は、第1光学ユニット側ミラー43で反射したセンサ光軸Sを、第1光学ユニット30が位置している側に反射することが可能になっている。このため、第1光学ユニット側ミラー43と第3光学ユニット側ミラー44とからなる折り返しミラー42を有する第2光学ユニット40は、第1光学ユニット30からのセンサ光軸Sを180°折り返すことが可能になっている。また、これらのように構成される第2光学ユニット40は、第1光学ユニット30と第2光学ユニット40との間の光軸方向に移動可能に、筐体21に内設されている。即ち、第2光学ユニット40の移動方向は、主走査方向から見た場合に載置台10の載置面11に対して対向する方向になっており、換言すると、第2光学ユニット40の移動方向は、載置面11に対して平行な方向になっている。 At that time, the third optical unit side mirror 44 can reflect the sensor optical axis S reflected by the first optical unit side mirror 43 to the side where the first optical unit 30 is located. . For this reason, the second optical unit 40 having the folding mirror 42 composed of the first optical unit side mirror 43 and the third optical unit side mirror 44 can fold the sensor optical axis S from the first optical unit 30 by 180 °. It is possible. The second optical unit 40 configured as described above is provided in the housing 21 so as to be movable in the optical axis direction between the first optical unit 30 and the second optical unit 40. That is, the moving direction of the second optical unit 40 is a direction facing the mounting surface 11 of the mounting table 10 when viewed from the main scanning direction, in other words, the moving direction of the second optical unit 40. Is in a direction parallel to the mounting surface 11.
 図5は、照明部と回転ミラーの位置関係を示す模式図である。図6は、図5のD-D矢視図である。図7は、図6に示す回転ミラーの斜視図である。図8は、図6のE-E矢視図である。第3光学ユニット50は、第2光学ユニット40により折り返されたセンサ光軸Sを回転することで、載置面11に対して、センサ光軸Sを載置面11における主走査方向と直交する副走査方向に移動させることが可能になっている。この第3光学ユニット50は、副走査方向における配設位置が、同方向における第1光学ユニット30の配設位置と第2光学ユニット40の配設位置との間に位置している。詳しくは、第3光学ユニット50は、第2光学ユニット40により折り返されたセンサ光軸Sを反射する回転ミラー51を有している。この回転ミラー51は、第2光学ユニット40により折り返されたセンサ光軸S上に配設されており、反射面52が第2光学ユニット40側で、且つ、下方側に面する向きで配設されている。これにより、回転ミラー51は、第2光学ユニット40により折り返されたセンサ光軸Sを、下方側に反射することが可能になっている。 FIG. 5 is a schematic diagram showing the positional relationship between the illumination unit and the rotating mirror. 6 is a DD arrow view of FIG. FIG. 7 is a perspective view of the rotating mirror shown in FIG. FIG. 8 is a view taken along the line EE in FIG. The third optical unit 50 rotates the sensor optical axis S folded by the second optical unit 40, so that the sensor optical axis S is orthogonal to the main scanning direction on the mounting surface 11 with respect to the mounting surface 11. It can be moved in the sub-scanning direction. The third optical unit 50 is positioned in the sub-scanning direction between the first optical unit 30 and the second optical unit 40 in the same direction. Specifically, the third optical unit 50 has a rotating mirror 51 that reflects the sensor optical axis S folded back by the second optical unit 40. The rotating mirror 51 is disposed on the sensor optical axis S folded back by the second optical unit 40, and the reflecting surface 52 is disposed on the second optical unit 40 side and in a direction facing the lower side. Has been. Accordingly, the rotating mirror 51 can reflect the sensor optical axis S folded back by the second optical unit 40 downward.
 また、回転ミラー51は、主走査方向に延びる回転軸であるミラー回転軸53を中心として回転可能になっており、ミラー回転軸53は、回転ミラー51の反射面52上に位置するように設けられている。このミラー回転軸53は、主走査方向から見た場合に、回転ミラー51の反射面52と一致し、回転ミラー51の反射面52における、第2光学ユニット40により折り返されたセンサ光軸Sを反射する位置付近に位置するように設けられている。即ち、ミラー回転軸53は、主走査方向から見た場合に、反射面52上におけるセンサ光軸Sを反射する位置と一致する。詳しくは、ミラー回転軸53は、主走査方向における回転ミラー51の両端に位置してそれぞれ主走査方向に延びており、この回転ミラー51の両端に位置するミラー回転軸53の軸心が、回転ミラー51の反射面52上に位置している。第3光学ユニット50は、ミラー回転軸53を中心として回転ミラー51が回転することにより、回転ミラー51で反射するセンサ光軸Sの反射方向を、副走査方向に移動させることができる。 The rotating mirror 51 is rotatable about a mirror rotating shaft 53 that is a rotating shaft extending in the main scanning direction, and the mirror rotating shaft 53 is provided on the reflecting surface 52 of the rotating mirror 51. It has been. The mirror rotation axis 53 coincides with the reflection surface 52 of the rotation mirror 51 when viewed from the main scanning direction, and the sensor optical axis S folded back by the second optical unit 40 on the reflection surface 52 of the rotation mirror 51 is obtained. It is provided so as to be located in the vicinity of the reflecting position. That is, the mirror rotation axis 53 coincides with the position where the sensor optical axis S is reflected on the reflection surface 52 when viewed from the main scanning direction. Specifically, the mirror rotation shafts 53 are positioned at both ends of the rotation mirror 51 in the main scanning direction and extend in the main scanning direction, respectively. The axis of the mirror rotation shaft 53 positioned at both ends of the rotation mirror 51 is rotated. It is located on the reflection surface 52 of the mirror 51. The third optical unit 50 can move the reflection direction of the sensor optical axis S reflected by the rotation mirror 51 in the sub-scanning direction by rotating the rotation mirror 51 around the mirror rotation axis 53.
 また、回転ミラー51は、当該回転ミラー51の鉛直方向下方の位置よりも、副走査方向において第2光学ユニット40が位置する側にセンサ光軸Sを反射することができる向きで設置されている。これにより、第3光学ユニット50は、主走査方向から見た場合における載置面11に対するセンサ光軸Sの角度が90°になる位置を含まない範囲で、センサ光軸Sを副走査方向に移動させることが可能になっている。 Further, the rotating mirror 51 is installed in a direction capable of reflecting the sensor optical axis S on the side where the second optical unit 40 is positioned in the sub-scanning direction from the position below the rotating mirror 51 in the vertical direction. . Accordingly, the third optical unit 50 moves the sensor optical axis S in the sub-scanning direction within a range not including the position where the angle of the sensor optical axis S with respect to the placement surface 11 when viewed from the main scanning direction is 90 °. It can be moved.
 読取ユニット20が有する筐体21には、第3光学ユニット50と載置面11との間のセンサ光軸Sが通る開口部25が形成されている。この開口部25は、筐体21の下面側における第3光学ユニット50の近傍に形成され、載置面11に対して対向している。これにより、開口部25は、回転ミラー51で反射するセンサ光軸Sが、回転ミラー51が回転することにより副走査方向に移動する際における移動範囲内のいずれの部分に位置する場合でも、回転ミラー51と載置面11との間のセンサ光軸Sを通過させることができる。読取ユニット20に内設される第3光学ユニット50は、第2光学ユニット40により折り返されたセンサ光軸Sを、開口部25を通過させることにより、載置面11に向けて反射することができる。 An opening 25 through which the sensor optical axis S between the third optical unit 50 and the placement surface 11 passes is formed in the housing 21 of the reading unit 20. The opening 25 is formed in the vicinity of the third optical unit 50 on the lower surface side of the housing 21 and faces the mounting surface 11. As a result, the opening 25 rotates even when the sensor optical axis S reflected by the rotating mirror 51 is positioned in any part of the moving range when the rotating mirror 51 moves in the sub-scanning direction. The sensor optical axis S between the mirror 51 and the mounting surface 11 can be passed. The third optical unit 50 provided in the reading unit 20 can reflect the sensor optical axis S folded back by the second optical unit 40 toward the placement surface 11 by passing through the opening 25. it can.
 読取ユニット20の2箇所に設けられている照明部60は、主走査方向における第3光学ユニット50の両端付近にそれぞれ配設されている。これらの照明部60は、共にLED(Light Emitting Diode)等の発光部61と、発光部61から照射された光をライン状に照射することができるレンズ62と、を備えている。これにより、照明部60は、媒体Pに対してライン状の光を照射することが可能になっている。詳しくは、照明部60は、主走査方向にライン状になる光を、第3光学ユニット50から載置面11に向けて反射するセンサ光軸Sに沿わせて、載置面11に対して照射することが可能になっている。つまり、照明部60は、照明部60から照射する光の照明光軸Lを、主走査方向に見た場合における回転ミラー51の反射面52で反射したセンサ光軸Sに対して一致させる方向に光を照射する。 Illumination units 60 provided at two locations of the reading unit 20 are respectively disposed near both ends of the third optical unit 50 in the main scanning direction. Each of these illumination units 60 includes a light emitting unit 61 such as an LED (Light Emitting Diode), and a lens 62 that can irradiate light emitted from the light emitting unit 61 in a line shape. Thereby, the illumination unit 60 can irradiate the medium P with line-shaped light. Specifically, the illuminating unit 60 is directed to the mounting surface 11 along the sensor optical axis S that reflects light that is linear in the main scanning direction from the third optical unit 50 toward the mounting surface 11. Irradiation is possible. That is, the illuminating unit 60 aligns the illumination optical axis L of the light emitted from the illuminating unit 60 with the sensor optical axis S reflected by the reflecting surface 52 of the rotating mirror 51 when viewed in the main scanning direction. Irradiate light.
 また、照明部60は、当該照明部60の回転軸である照明回転軸63を中心として回転することが可能になっており、照明回転軸63は主走査方向に延びる向きになっている。この照明回転軸63は、照明光軸L上に配置されており、即ち、照明部60は、主走査方向から見た場合に、照明回転軸63が照明光軸L上に配置されている。これにより、照明回転軸63を中心として照明部60が回転した際には、照明光軸Lも照明回転軸63を中心として回転する。このため、照明部60は、照明回転軸63を中心として回転することで、載置面11に対して照明光軸Lを副走査方向に移動することが可能になっており、当該照明部60から照射するライン状の光を、載置面11の副走査方向に移動することが可能になっている。 Further, the illumination unit 60 can rotate around an illumination rotation axis 63 that is a rotation axis of the illumination unit 60, and the illumination rotation axis 63 is oriented to extend in the main scanning direction. The illumination rotation axis 63 is disposed on the illumination optical axis L, that is, the illumination unit 60 is disposed on the illumination optical axis L when viewed from the main scanning direction. Thereby, when the illumination unit 60 rotates around the illumination rotation axis 63, the illumination optical axis L also rotates around the illumination rotation axis 63. For this reason, the illumination unit 60 can move the illumination optical axis L in the sub-scanning direction with respect to the placement surface 11 by rotating around the illumination rotation axis 63. It is possible to move the line-shaped light emitted from the mounting surface 11 in the sub-scanning direction of the mounting surface 11.
 また、このように回転可能に設けられる照明部60は、照明回転軸63が第3光学ユニット50のミラー回転軸53と同軸になっている。即ち、照明部60の照明回転軸63は、主走査方向に延びる第3光学ユニット50のミラー回転軸53の延長線上に位置しており、主走査方向から見た場合に、照明回転軸63とミラー回転軸53は一致する。このため、照明部60は、第3光学ユニット50が有する回転ミラー51のミラー回転軸53と同軸になっている照明回転軸63を中心として回転することができる。 Further, in the illumination unit 60 that is rotatably provided in this way, the illumination rotation axis 63 is coaxial with the mirror rotation axis 53 of the third optical unit 50. That is, the illumination rotation shaft 63 of the illumination unit 60 is located on the extension line of the mirror rotation shaft 53 of the third optical unit 50 extending in the main scanning direction, and when viewed from the main scanning direction, the illumination rotation shaft 63 and The mirror rotation axes 53 coincide. For this reason, the illumination unit 60 can rotate around the illumination rotation axis 63 that is coaxial with the mirror rotation axis 53 of the rotation mirror 51 of the third optical unit 50.
 その際に、照明部60は、回転ミラー51の回転速度に対して2倍の回転速度で回転することが可能になっている。これにより、照明部60は、回転ミラー51で反射したセンサ光軸Sが回転ミラー51の回転に合わせて副走査方向に移動する場合でも、照明回転軸63を中心として回転することにより、照明光軸Lをセンサ光軸Sに沿わせてセンサ光軸Sと共に副走査方向に移動させることができる。換言すると、照明部60は、少なくともラインセンサ31の読み取り領域に光を照射し、読み取り領域の副走査方向への移動に連動して回転することが可能になっている。 At that time, the illumination unit 60 can rotate at a rotational speed twice that of the rotary mirror 51. Thereby, even when the sensor optical axis S reflected by the rotary mirror 51 moves in the sub-scanning direction in accordance with the rotation of the rotary mirror 51, the illumination unit 60 rotates around the illumination rotary axis 63, thereby The axis L can be moved along the sensor optical axis S along with the sensor optical axis S in the sub-scanning direction. In other words, the illumination unit 60 can irradiate at least the reading area of the line sensor 31 and rotate in conjunction with the movement of the reading area in the sub-scanning direction.
 図9は、実施形態に係る画像読取装置の要部構成を示すブロック図である。読取ユニット20は、第1光学ユニット30と第2光学ユニット40と第3光学ユニット50と照明部60の他に、Uターンモータ45と回転モータ55と速度比変換機構80とが設けられている。このうち、Uターンモータ45は、第2光学ユニット40を第1光学ユニット30に対して、第1光学ユニット30と、第2光学ユニット40との間の光軸方向に相対移動させる移動アクチュエータとして設けられている。即ち、Uターンモータ45は、第2光学ユニット40を、第1光学ユニット30と第2光学ユニット40との間の光軸方向に沿って移動させることにより、第1光学ユニット30に近付けたり遠ざけたりすることが可能になっている。 FIG. 9 is a block diagram illustrating a main configuration of the image reading apparatus according to the embodiment. In addition to the first optical unit 30, the second optical unit 40, the third optical unit 50, and the illumination unit 60, the reading unit 20 is provided with a U-turn motor 45, a rotation motor 55, and a speed ratio conversion mechanism 80. . Among these, the U-turn motor 45 is a moving actuator that moves the second optical unit 40 relative to the first optical unit 30 in the optical axis direction between the first optical unit 30 and the second optical unit 40. Is provided. That is, the U-turn motor 45 moves the second optical unit 40 close to or away from the first optical unit 30 by moving the second optical unit 40 along the optical axis direction between the first optical unit 30 and the second optical unit 40. It is possible to do.
 回転モータ55は、第3光学ユニット50の回転ミラー51及び照明部60を主走査方向と平行なミラー回転軸53及び照明回転軸63周りに回転させる回転アクチュエータとして設けられている。また、速度比変換機構80は、回転モータ55からの回転力により回転する回転ミラー51と照明部60との回転速度比を1:2にして、回転モータ55で発生した動力を回転ミラー51と照明部60とに伝達可能になっている。つまり、共に回転モータ55から伝達される動力によって回転する回転ミラー51と照明部60とのうち、照明部60は、回転ミラー51の回転角度の変化量に対して、2倍の変化量で回転をする。 The rotation motor 55 is provided as a rotation actuator that rotates the rotation mirror 51 and the illumination unit 60 of the third optical unit 50 around the mirror rotation axis 53 and the illumination rotation axis 63 parallel to the main scanning direction. Further, the speed ratio conversion mechanism 80 sets the rotation speed ratio between the rotating mirror 51 rotated by the rotating force from the rotating motor 55 and the illumination unit 60 to 1: 2, and the power generated by the rotating motor 55 with the rotating mirror 51. Transmission to the illumination unit 60 is possible. That is, among the rotary mirror 51 and the illumination unit 60 that are both rotated by the power transmitted from the rotary motor 55, the illumination unit 60 rotates with a change amount that is twice the change amount of the rotation angle of the rotary mirror 51. do.
 また、画像読取装置1は、制御回路70を備えており、制御回路70は、各種処理を実行するコントローラとして機能するCPU(Central Processing Unit)と、各種情報を記憶するメモリとして機能するRAM(Random Access Memory)及びROM(Read Only Memory)などを有するコンピュータになっている。この制御回路70の各機能の全部または一部は、ROMに保持されるアプリケーションプログラムをRAMにロードしてCPUで実行することによって、RAMやROMにおけるデータの読み出し及び書き込みを行うことで実現される。 The image reading apparatus 1 also includes a control circuit 70. The control circuit 70 is a CPU (Central Processing Unit) that functions as a controller that executes various processes, and a RAM (Random) that functions as a memory that stores various information. The computer has an Access Memory (ROM) and a ROM (Read Only Memory). All or part of each function of the control circuit 70 is realized by reading and writing data in the RAM or ROM by loading an application program held in the ROM into the RAM and executing it by the CPU. .
 制御回路70は、第1光学ユニット30が有するラインセンサ31を制御することにより画像を読み取る画像読取制御部71と、Uターンモータ45及び回転モータ55を制御するモータ制御部72と、照明部60の点灯や消灯の制御を行う照明制御部73と、を有している。また、制御回路70は、画像読取制御部71で読み取った画像の画像処理を行う画像処理部74と、読み取った画像情報等の各種情報を記憶する記憶部75と、を有している。さらに、制御回路70は、外部装置と通信を行う通信部76を有している。この通信部76は、有線や無線によって外部装置と接続し、情報の送受信を行うことが可能になっている。外部装置としては、例えば、PC(Personal Computer)100が用いられ、通信部76は、PC100との間で通信を行うことができる。 The control circuit 70 controls the line sensor 31 included in the first optical unit 30 to read an image, a motor control unit 72 that controls the U-turn motor 45 and the rotation motor 55, and an illumination unit 60. And an illumination control unit 73 that controls turning on and off. The control circuit 70 includes an image processing unit 74 that performs image processing of an image read by the image reading control unit 71 and a storage unit 75 that stores various types of information such as read image information. Furthermore, the control circuit 70 includes a communication unit 76 that communicates with an external device. The communication unit 76 is connected to an external device by wire or wireless, and can transmit and receive information. As the external device, for example, a PC (Personal Computer) 100 is used, and the communication unit 76 can communicate with the PC 100.
 また、画像読取装置1は、画像読取装置1に対して読み取り動作を行わせるスキャンスイッチ78が設けられている。スキャンスイッチ78は、例えば、載置台10の上面に配設されており、ユーザによって入力操作が行われた際に、その旨を制御回路70に伝達することにより、画像読取装置1に対して読み取り動作を行わせることが可能になっている。 Further, the image reading apparatus 1 is provided with a scan switch 78 that causes the image reading apparatus 1 to perform a reading operation. For example, the scan switch 78 is disposed on the top surface of the mounting table 10, and when an input operation is performed by the user, the scan switch 78 transmits the fact to the control circuit 70, thereby reading the image reading apparatus 1. It is possible to make an action take place.
 図10は、速度比変換機構の模式図である。速度比変換機構80は、動力を伝達するベルト95と、ベルト95が巻き掛けられる複数のプーリを組み合わせることにより、回転モータ55からの動力を、回転速度比を異ならせて回転ミラー51と照明部60とに伝達する。具体的には、速度比変換機構80は、回転モータ55からの動力を回転ミラー51と照明部60とに伝達する際の中継軸であり、且つ、主走査方向に延びる回転軸である駆動伝達用回転軸81を有しており、回転モータ55からの動力は、この駆動伝達用回転軸81を介して回転ミラー51と照明部60とに伝達される。この駆動伝達用回転軸81には、駆動伝達用第2プーリ83が取り付けられており、回転モータ55の出力軸には、駆動伝達用第1プーリ82が取り付けられており、駆動伝達用第1プーリ82と駆動伝達用第2プーリ83とには、ベルト95が巻き掛けられている。 FIG. 10 is a schematic diagram of the speed ratio conversion mechanism. The speed ratio converting mechanism 80 combines the belt 95 that transmits power and a plurality of pulleys around which the belt 95 is wound, so that the power from the rotary motor 55 is changed with the rotation speed ratio and the rotating mirror 51 and the illumination unit. 60. Specifically, the speed ratio conversion mechanism 80 is a relay shaft for transmitting power from the rotary motor 55 to the rotary mirror 51 and the illumination unit 60, and is a drive transmission that is a rotary shaft extending in the main scanning direction. The power from the rotary motor 55 is transmitted to the rotary mirror 51 and the illumination unit 60 via the drive transmission rotary shaft 81. A second pulley 83 for driving transmission is attached to the rotation shaft 81 for driving transmission, and a first pulley 82 for driving transmission is attached to the output shaft of the rotary motor 55. A belt 95 is wound around the pulley 82 and the second pulley 83 for drive transmission.
 なお、速度比変換機構80は、回転モータ55からの動力を、回転ミラー51と照明部60とに対して適切な変速比で伝達する必要があるため、速度比変換機構80で用いられるベルト95は全て、いわゆる歯付ベルトになっており、プーリは、全てこの歯付ベルトに対応する歯付プーリになっている。 The speed ratio conversion mechanism 80 needs to transmit the power from the rotary motor 55 to the rotary mirror 51 and the illumination unit 60 at an appropriate speed ratio, and therefore the belt 95 used in the speed ratio conversion mechanism 80. Are all so-called toothed belts, and the pulleys are all toothed pulleys corresponding to the toothed belts.
 駆動伝達用回転軸81から回転ミラー51に伝達される動力は、駆動伝達用回転軸81に取り付けられる回転ミラー用第1プーリ91と、回転ミラー51に取り付けられる回転ミラー用第2プーリ92と、回転ミラー用第1プーリ91と回転ミラー用第2プーリ92とに巻き掛けられるベルト95と、によって伝達される。回転ミラー用第2プーリ92は、主走査方向における回転ミラー51の両端に配設されるミラー回転軸53のうちの一方に取り付けられており、回転ミラー51と一体となって回転する。 The power transmitted from the drive transmission rotary shaft 81 to the rotary mirror 51 includes a rotary mirror first pulley 91 attached to the drive transmission rotary shaft 81, a rotary mirror second pulley 92 attached to the rotary mirror 51, and It is transmitted by the belt 95 wound around the first pulley 91 for rotating mirror and the second pulley 92 for rotating mirror. The second pulley 92 for the rotating mirror is attached to one of the mirror rotating shafts 53 disposed at both ends of the rotating mirror 51 in the main scanning direction, and rotates integrally with the rotating mirror 51.
 また、駆動伝達用回転軸81から照明部60に伝達される動力は、駆動伝達用回転軸81に取り付けられる照明用第1プーリ86と、照明部60に取り付けられる照明用第2プーリ87と、照明用第1プーリ86と照明用第2プーリ87とに巻き掛けられるベルト95と、によって伝達される。これらの照明用第1プーリ86と照明用第2プーリ87とベルト95とは、主走査方向における回転ミラー51の両端付近に配設されている2つの照明部60のそれぞれに対応して設けられている。即ち、照明用第1プーリ86は、駆動伝達用回転軸81に2つが取り付けられており、照明用第2プーリ87は、2つの照明部60のそれぞれに取り付けられており、ベルト95は、これらのように2つずつ設けられる照明用第1プーリ86と照明用第2プーリ87とのそれぞれに巻き掛けられている。また、照明用第2プーリ87は、照明部60が有する照明回転軸63に取り付けられており、照明部60と一体となって回転する。 Further, the power transmitted from the drive transmission rotating shaft 81 to the illumination unit 60 includes an illumination first pulley 86 attached to the drive transmission rotation shaft 81, an illumination second pulley 87 attached to the illumination unit 60, and It is transmitted by the belt 95 wound around the first pulley 86 for illumination and the second pulley 87 for illumination. The first illumination pulley 86, the second illumination pulley 87, and the belt 95 are provided corresponding to each of the two illumination units 60 disposed near both ends of the rotary mirror 51 in the main scanning direction. ing. That is, two illumination first pulleys 86 are attached to the drive transmission rotating shaft 81, and the illumination second pulley 87 is attached to each of the two illumination units 60. As described above, each of the two illumination first pulleys 86 and the second illumination pulleys 87 is wound around each. The second illumination pulley 87 is attached to the illumination rotation shaft 63 of the illumination unit 60 and rotates integrally with the illumination unit 60.
 これらのように構成される速度比変換機構80は、照明用第1プーリ86の歯数に対する照明用第2プーリ87の歯数の割合が、回転ミラー用第1プーリ91の歯数に対する回転ミラー用第2プーリ92の歯数の割合の1/2になっている。これにより、回転モータ55から回転ミラー51と照明部60とに動力が伝達される際の回転速度比は1:2になっており、照明部60には、回転ミラー51に動力が伝達される回転速度の2倍の回転速度で動力が伝達される。 The speed ratio converting mechanism 80 configured as described above is such that the ratio of the number of teeth of the second pulley for illumination 87 to the number of teeth of the first pulley for illumination 86 is the rotation mirror for the number of teeth of the first pulley 91 for the rotation mirror. This is 1/2 of the ratio of the number of teeth of the second pulley 92 for use. Thus, the rotational speed ratio when power is transmitted from the rotary motor 55 to the rotary mirror 51 and the illumination unit 60 is 1: 2, and the power is transmitted to the rotary mirror 51 to the illumination unit 60. Power is transmitted at a rotational speed twice that of the rotational speed.
 本実施形態に係る画像読取装置1は、以上のような構成からなり、以下、その作用について説明する。図11は、読み取り開始時の状態を示す説明図である。画像読取装置1は、載置台10の載置面11に媒体Pを載置した状態で、ユーザがスキャンスイッチ78に対して入力操作を行うことにより、制御回路70は、読取ユニット20を制御して読取ユニット20に対して媒体Pの読み取り動作を行わせる。読取ユニット20に読み取り動作を行わせる際には、制御回路70は、モータ制御部72によってUターンモータ45と回転モータ55とを制御することにより、第2光学ユニット40と第3光学ユニット50を、読み取り開始の状態にし、第1光学ユニット30が有するラインセンサ31で読み取った画像を画像読取制御部71で取得する。 The image reading apparatus 1 according to the present embodiment is configured as described above, and the operation thereof will be described below. FIG. 11 is an explanatory diagram showing a state at the start of reading. In the image reading apparatus 1, the control circuit 70 controls the reading unit 20 when the user performs an input operation on the scan switch 78 with the medium P placed on the placement surface 11 of the placement table 10. Thus, the reading unit 20 is caused to read the medium P. When the reading unit 20 performs a reading operation, the control circuit 70 controls the U-turn motor 45 and the rotation motor 55 by the motor control unit 72, thereby causing the second optical unit 40 and the third optical unit 50 to move. Then, the image reading control unit 71 obtains an image read by the line sensor 31 included in the first optical unit 30 in a reading start state.
 具体的には、制御回路70は、モータ制御部72によってUターンモータ45の駆動制御を行うことにより、第2光学ユニット40の移動方向において、第1光学ユニット30から最も離れる位置に第2光学ユニット40を移動させる。また、制御回路70は、第2光学ユニット40で折り返したセンサ光軸Sを回転ミラー51で反射して載置面11上で副走査方向に移動させる際の移動範囲における、回転ミラー51の鉛直方向下方に最も近い位置にセンサ光軸Sを向かわせる回転角度に、回転ミラー51を回転させる。即ち、制御回路70は、モータ制御部72によって回転モータ55の駆動制御を行うことにより、回転モータ55で発生して速度比変換機構80を介して回転ミラー51に伝達される動力によって回転ミラー51を回転させる。 Specifically, the control circuit 70 performs drive control of the U-turn motor 45 by the motor control unit 72, so that the second optical unit is located at the position farthest from the first optical unit 30 in the moving direction of the second optical unit 40. The unit 40 is moved. In addition, the control circuit 70 reflects the sensor optical axis S turned back by the second optical unit 40 by the rotary mirror 51 and moves the vertical position of the rotary mirror 51 in the movement range when moving the sensor optical axis S on the mounting surface 11 in the sub-scanning direction. The rotary mirror 51 is rotated at a rotation angle that directs the sensor optical axis S to a position closest to the lower side in the direction. That is, the control circuit 70 performs drive control of the rotation motor 55 by the motor control unit 72, so that the rotation mirror 51 is driven by the power generated by the rotation motor 55 and transmitted to the rotation mirror 51 through the speed ratio conversion mechanism 80. Rotate.
 回転モータ55で発生した動力の伝達経路について説明すると、回転モータ55で発生した動力は、速度比変換機構80が有する駆動伝達用第1プーリ82とベルト95と駆動伝達用第2プーリ83を伝わって駆動伝達用回転軸81に伝達され、駆動伝達用回転軸81はこの動力によって回転する。駆動伝達用回転軸81に伝達された動力は、回転ミラー用第1プーリ91とベルト95と回転ミラー用第2プーリ92を伝わって回転ミラー51に伝達され、回転ミラー51は、駆動伝達用回転軸81を介して伝達されたこの動力によって、ミラー回転軸53を中心として回転する。 The transmission path of the power generated by the rotary motor 55 will be described. The power generated by the rotary motor 55 is transmitted through the first pulley 82 for driving transmission, the belt 95, and the second pulley 83 for driving transmission included in the speed ratio conversion mechanism 80. The drive transmission rotating shaft 81 is rotated by this power. The power transmitted to the drive transmission rotating shaft 81 is transmitted to the rotating mirror 51 through the first pulley 91 for the rotating mirror, the belt 95, and the second pulley 92 for the rotating mirror, and the rotating mirror 51 is rotated for driving transmission. The power transmitted via the shaft 81 rotates around the mirror rotation shaft 53.
 回転ミラー51の反射面52で反射するセンサ光軸Sは、この回転ミラー51の回転に伴って反射光が回転することにより、載置面11上で副走査方向に移動する。画像読取装置1は、このように載置面11上で副走査方向に移動するセンサ光軸Sの移動方向における回転ミラー51の鉛直方向下方に最も近い位置が、読み取り開始時におけるセンサ光軸Sの位置になる。即ち、回転ミラー51で反射して載置面11上で副走査方向に移動するセンサ光軸Sの移動方向においてアーム15に最も近い位置が、読み取り開始時におけるセンサ光軸Sの位置になる。 The sensor optical axis S reflected by the reflecting surface 52 of the rotating mirror 51 moves in the sub-scanning direction on the mounting surface 11 as the reflected light rotates as the rotating mirror 51 rotates. In the image reading device 1, the position closest to the lower side in the vertical direction of the rotary mirror 51 in the moving direction of the sensor optical axis S that moves in the sub-scanning direction on the placement surface 11 in this way is the sensor optical axis S at the start of reading. It becomes the position. That is, the position closest to the arm 15 in the moving direction of the sensor optical axis S that is reflected by the rotating mirror 51 and moves in the sub-scanning direction on the mounting surface 11 is the position of the sensor optical axis S at the start of reading.
 また、この場合、照明制御部73で照明部60を制御し、照明部60を点灯させることにより、主走査方向に広がるライン状の光を載置面11に向けて照射する。また、モータ制御部72によって回転モータ55の駆動制御を行った場合には、回転モータ55で発生した動力が速度比変換機構80を介して照明部60にも伝達されることにより、照明部60も回転する。即ち、回転モータ55から速度比変換機構80の駆動伝達用回転軸81に伝達された動力は、照明用第1プーリ86とベルト95と照明用第2プーリ87を伝わって照明部60に伝達され、照明部60は、駆動伝達用回転軸81を介して伝達されたこの動力によって、照明回転軸63を中心として回転する。 In this case, the illumination control unit 73 controls the illumination unit 60 to turn on the illumination unit 60, thereby irradiating the mounting surface 11 with linear light that spreads in the main scanning direction. Further, when drive control of the rotary motor 55 is performed by the motor control unit 72, the power generated by the rotary motor 55 is transmitted to the illumination unit 60 via the speed ratio conversion mechanism 80, whereby the illumination unit 60. Also rotates. That is, the power transmitted from the rotary motor 55 to the drive transmission rotating shaft 81 of the speed ratio conversion mechanism 80 is transmitted to the illumination unit 60 through the illumination first pulley 86, the belt 95 and the illumination second pulley 87. The illumination unit 60 rotates around the illumination rotation shaft 63 by this power transmitted via the drive transmission rotation shaft 81.
 その際に、速度比変換機構80は、照明部60に対しては回転ミラー51に対して動力を伝達する際における回転速度の2倍の速度で動力を伝達する。一方、回転ミラー51を回転させた場合には、第2光学ユニット40から回転ミラー51へ入射するセンサ光軸Sの入射角度と、回転ミラー51で反射して載置面11に向かうセンサ光軸Sの出射角度との双方が共に変化する。このため、回転ミラー51が回転をした場合には、回転ミラー51で反射して載置面11に向かうセンサ光軸Sは、回転ミラー51が回転をした角度の2倍の角度で回転をする。従って、照明部60を、回転ミラー51の2倍の回転速度で回転させ、回転ミラー51の回転角度の2倍の角度で回転させることにより、照明部60は、照明光軸Lをセンサ光軸Sに一致させた状態で回転する。これにより、速度比変換機構80から伝達される動力により回転をする照明部60は、照明光軸Lをセンサ光軸Sに一致させる方向に光を照射し、センサ光軸Sが載置面11に交差する位置に、光を照射する。 At that time, the speed ratio conversion mechanism 80 transmits power to the illumination unit 60 at a speed twice as high as the rotational speed when power is transmitted to the rotating mirror 51. On the other hand, when the rotating mirror 51 is rotated, the incident angle of the sensor optical axis S incident on the rotating mirror 51 from the second optical unit 40 and the sensor optical axis reflected by the rotating mirror 51 and directed toward the placement surface 11. Both the emission angle of S change together. For this reason, when the rotating mirror 51 rotates, the sensor optical axis S that is reflected by the rotating mirror 51 and travels toward the placement surface 11 rotates at an angle that is twice the angle that the rotating mirror 51 rotates. . Therefore, the illuminating unit 60 rotates the illuminating unit 60 at a rotational speed twice that of the rotating mirror 51 and rotates the rotating unit 51 at an angle twice the rotating angle of the rotating mirror 51, so that the illuminating unit 60 changes the illuminating optical axis L to the sensor optical axis. Rotate with S matched. As a result, the illumination unit 60 that is rotated by the power transmitted from the speed ratio conversion mechanism 80 emits light in a direction in which the illumination optical axis L coincides with the sensor optical axis S, and the sensor optical axis S is placed on the placement surface 11. Light is irradiated to the position that intersects with.
 照明部60から照射される照射光は、主走査方向に広がるライン状の光になっているため、照明光軸Lがセンサ光軸Sに一致して載置面11に照射される照射光は、載置面11上において主走査方向にライン状に広がるセンサ光軸Sに重なる状態で照射される。即ち、照明部60は、ラインセンサ31によって載置面11上において主走査方向にライン状に読み取る領域に光を照射する。 Since the irradiation light irradiated from the illumination unit 60 is a line-shaped light that spreads in the main scanning direction, the irradiation light irradiated onto the mounting surface 11 with the illumination optical axis L coincident with the sensor optical axis S is Irradiation is performed on the mounting surface 11 so as to overlap the sensor optical axis S extending in a line in the main scanning direction. That is, the illuminating unit 60 irradiates light onto a region that is read in a line shape in the main scanning direction on the placement surface 11 by the line sensor 31.
 制御回路70は、この状態で、ラインセンサ31で読み取った画像を画像読取制御部71によって取得することにより、載置面11上で主走査方向に延びるライン状の画像情報を取得する。つまり、照明部60からの光が照射された載置面11の媒体Pは、この光を反射し、反射光の一部は、センサ光軸Sに沿って回転ミラー51に入射する。回転ミラー51は、この光をセンサ光軸Sに沿って第2光学ユニット40に向けて反射し、第2光学ユニット40は、この光を、折り返しミラー42によりセンサ光軸Sに沿って折り返して第1光学ユニット30に向かわせる。第1光学ユニット30は、第2光学ユニット40からセンサ光軸Sに沿って当該第1光学ユニット30に向かう光を、集光レンズ35を透過させた後、ラインセンサ31で受光する。ラインセンサ31は、受光した光を電気信号に変換し、変換した電気信号を画像読取制御部71に伝達することにより、画像読取制御部71で画像情報として取得する。これにより、画像読取制御部71は、載置面11上で主走査方向に延びるライン状の画像情報を取得する。 In this state, the control circuit 70 acquires an image read by the line sensor 31 by the image reading control unit 71, thereby acquiring line-shaped image information extending in the main scanning direction on the placement surface 11. That is, the medium P on the placement surface 11 irradiated with the light from the illumination unit 60 reflects this light, and a part of the reflected light enters the rotating mirror 51 along the sensor optical axis S. The rotating mirror 51 reflects this light along the sensor optical axis S toward the second optical unit 40, and the second optical unit 40 returns this light along the sensor optical axis S by the folding mirror 42. It is directed to the first optical unit 30. The first optical unit 30 transmits light traveling from the second optical unit 40 along the sensor optical axis S toward the first optical unit 30 through the condenser lens 35 and then received by the line sensor 31. The line sensor 31 converts the received light into an electrical signal, and transmits the converted electrical signal to the image reading control unit 71, whereby the image reading control unit 71 acquires the image information. As a result, the image reading control unit 71 acquires line-shaped image information extending in the main scanning direction on the placement surface 11.
 制御回路70は、画像読取制御部71によってライン状の画像情報を取得しながら、モータ制御部72によってUターンモータ45と回転モータ55とを制御する。これにより、第2光学ユニット40を第1光学ユニット30に近付かせる方向に移動させながら、第3光学ユニット50の回転ミラー51で載置面11に向かって反射するセンサ光軸Sが副走査方向においてアーム15から離れる方向に移動する方向に、回転ミラー51を回転させる。 The control circuit 70 controls the U-turn motor 45 and the rotary motor 55 by the motor control unit 72 while acquiring the line-shaped image information by the image reading control unit 71. As a result, the sensor optical axis S reflected by the rotating mirror 51 of the third optical unit 50 toward the mounting surface 11 is moved in the sub-scanning direction while the second optical unit 40 is moved in the direction approaching the first optical unit 30. , The rotating mirror 51 is rotated in the direction of moving away from the arm 15.
 また、回転モータ55で発生する動力によって回転ミラー51が回転する場合には、照明部60は、回転ミラー51の回転速度の2倍の回転速度で回転をする。これにより、照明部60から照射される照射光の照明光軸Lは、副走査方向に移動するセンサ光軸Sと共に、載置面11上においてアーム15から離れる副走査方向に移動し、照明部60は、センサ光軸Sが位置する位置に対してライン状の光を照射する。ラインセンサ31は、これにより、載置面11上を副走査方向に走査しながら、載置面11上の媒体Pを読み取る。 Further, when the rotating mirror 51 is rotated by the power generated by the rotating motor 55, the illumination unit 60 rotates at a rotational speed twice that of the rotating mirror 51. Thereby, the illumination optical axis L of the irradiation light emitted from the illumination unit 60 moves in the sub-scanning direction away from the arm 15 on the placement surface 11 together with the sensor optical axis S moving in the sub-scanning direction, and the illumination unit 60 irradiates the line-shaped light to the position where the sensor optical axis S is located. Thereby, the line sensor 31 reads the medium P on the placement surface 11 while scanning the placement surface 11 in the sub-scanning direction.
 図12は、読み取り終了時の状態を示す説明図である。読取ユニット20は、ラインセンサ31で読み取りを行いながら、これらのように載置面11上においてセンサ光軸Sを副走査方向に移動させ、センサ光軸Sの移動範囲における、アーム15が位置する側の反対側の端部まで移動させたら、読み取り動作を終了する。つまり、制御回路70は、読み取りが終わったら、モータ制御部72でUターンモータ45と回転モータ55とを制御することにより、第2光学ユニット40を、読み取り開始時の位置まで移動させると共に、第3光学ユニット50の回転ミラー51と照明部60とを、読み取り開始時の回転位置まで回転させる。 FIG. 12 is an explanatory diagram showing a state at the end of reading. The reading unit 20 moves the sensor optical axis S in the sub-scanning direction on the placement surface 11 as described above while reading with the line sensor 31, and the arm 15 is located in the movement range of the sensor optical axis S. The reading operation is finished when the end of the side is moved to the opposite end. That is, when the reading is finished, the control circuit 70 controls the U-turn motor 45 and the rotary motor 55 by the motor control unit 72 to move the second optical unit 40 to the position at the start of reading, and The rotating mirror 51 and the illumination unit 60 of the three optical units 50 are rotated to the rotation position at the start of reading.
 即ち、第2光学ユニット40は、第1光学ユニット30と第2光学ユニット40との間のセンサ光軸Sに沿って第1光学ユニット30から第2光学ユニット40が離れる方向に移動させる。また、回転ミラー51は、副走査方向における載置面11上のセンサ光軸Sを、アーム15に近付ける方向に回転させ、同様に照明部60は、副走査方向における載置面11上の照明光軸Lを、アーム15に近付ける方向に回転させる。 That is, the second optical unit 40 is moved in the direction in which the second optical unit 40 is separated from the first optical unit 30 along the sensor optical axis S between the first optical unit 30 and the second optical unit 40. The rotating mirror 51 rotates the sensor optical axis S on the placement surface 11 in the sub-scanning direction in a direction approaching the arm 15, and the illumination unit 60 similarly illuminates the placement surface 11 in the sub-scanning direction. The optical axis L is rotated in the direction approaching the arm 15.
 画像読取制御部71は、これらのようにセンサ光軸Sを、載置面11上において副走査方向に移動させながら画像を読み取ることにより、主走査方向に延びるライン状の画像情報を副走査方向に繋ぎ合わせて合成し、主走査方向と副走査方向との二次元の画像として読み取る。これらのように読み取った画像は、画像処理部74でクロッピング等の画像処理を行うことにより、媒体Pの画像として適切な画像になるように処理を行い、記憶部75で記憶する。記憶部75で記憶した画像は、必要に応じて通信部76を介してPC100に伝達され、PC100で記憶したり、任意の情報処理を行ったりする。 The image reading control unit 71 reads the image while moving the sensor optical axis S on the mounting surface 11 in the sub-scanning direction as described above, thereby converting the line-shaped image information extending in the main scanning direction into the sub-scanning direction. Are combined and read as a two-dimensional image in the main scanning direction and the sub-scanning direction. The image read as described above is subjected to image processing such as cropping by the image processing unit 74 so as to be an appropriate image as the image on the medium P, and stored in the storage unit 75. The image stored in the storage unit 75 is transmitted to the PC 100 via the communication unit 76 as necessary, and is stored in the PC 100 or performs arbitrary information processing.
 以上の実施形態に係る画像読取装置1は、回転モータ55からの回転力により回転する回転ミラー51と照明部60との回転速度比を1:2とする速度比変換機構80を備えているため、照明部60を回転ミラー51の回転速度の2倍の回転速度で回転させることができる。これにより、回転ミラー51用と照明部60用とで異なる動力源を用いてそれぞれに対して制御を行う必要がなく、1つの回転モータ55で、常に照明部60を回転ミラー51の回転速度の2倍の回転速度で回転させることができる。また、主走査方向に見た場合に、ミラー回転軸53は回転ミラー51の反射面52と一致し、且つ、照明回転軸63とも一致しているため、照明部60は、回転ミラー51の回転状態に関わらず、照明光軸Lを常にセンサ光軸Sに一致させて光を照射することができる。この結果、簡素な構成で読み取り位置に合わせて容易に光の照射方向を変えることができる。 The image reading apparatus 1 according to the above embodiment includes the speed ratio conversion mechanism 80 that sets the rotational speed ratio between the rotating mirror 51 that rotates by the rotational force from the rotating motor 55 and the illumination unit 60 to 1: 2. The illumination unit 60 can be rotated at a rotational speed twice that of the rotary mirror 51. Thereby, it is not necessary to control each using the power source which is different for the rotary mirror 51 and the illumination unit 60, and the rotation unit 51 always adjusts the rotation rate of the rotary mirror 51 with one rotary motor 55. It can be rotated at twice the rotation speed. Further, when viewed in the main scanning direction, the mirror rotation axis 53 coincides with the reflection surface 52 of the rotation mirror 51 and also coincides with the illumination rotation axis 63, so that the illumination unit 60 rotates the rotation mirror 51. Irrespective of the state, it is possible to irradiate light with the illumination optical axis L always aligned with the sensor optical axis S. As a result, the light irradiation direction can be easily changed in accordance with the reading position with a simple configuration.
 また、照明部60からの照射光には、副走査方向にある程度幅があるため、センサ光軸Sと照明光軸Lとを一致させることにより、照明部60等の部品公差によって照明光軸Lにずれが生じた場合であっても、照明部60からの照射光内にセンサ光軸Sを収めることができる。この結果、センサ光軸Sと照明光軸Lとを一致させることにより、製造時に読み取り位置と照射光の照射位置の位置合わせを容易に行うことができる。 In addition, since the irradiation light from the illumination unit 60 has a certain width in the sub-scanning direction, the illumination optical axis L is caused by the component tolerance of the illumination unit 60 and the like by matching the sensor optical axis S and the illumination optical axis L. Even if the deviation occurs, the sensor optical axis S can be accommodated in the irradiation light from the illumination unit 60. As a result, by aligning the sensor optical axis S and the illumination optical axis L, it is possible to easily align the reading position and the irradiation position of the irradiation light during manufacturing.
 図13は、センサ光軸と照明光軸が一致していない状態を示す説明図である。図14は、図13に示す画像読取装置で厚さが厚い媒体を読み取る場合の説明図である。また、照明光軸Lをセンサ光軸Sには一致させずに、センサ光軸Sと照明光軸Lとを異なる方向から載置面11に向かわせて載置面11上で一致するようにした場合、読み取りを行う媒体Pが、厚さが薄い媒体Pであれば、媒体P上におけるセンサ光軸Sの位置に、照明光軸Lを位置させることができる。しかし、読み取りを行う媒体Pが、厚さが厚い媒体Pの場合、センサ光軸Sと照明光軸Lとが重なっていない位置で、センサ光軸Sと照明光軸Lとがそれぞれ媒体Pに交差してしまう。この場合、照明光軸Lは、センサ光軸Sが媒体Pに交差している位置とは異なる位置で媒体Pに交差することになるため、照明部60は、ラインセンサ31での読み取り位置とは異なる位置に対して、照射光を照射してしまうことになる。これに対し、本実施形態に係る画像読取装置1では、照明光軸Lを常にセンサ光軸Sに一致させるため、照明部60は、読み取る媒体Pの厚さに関わらず、媒体Pに対してセンサ光軸Sが交差する位置を照射することができる。この結果、媒体Pの厚さに関わらず、高画質の画像を得ることができる。 FIG. 13 is an explanatory diagram showing a state where the sensor optical axis and the illumination optical axis do not match. FIG. 14 is an explanatory diagram for reading a thick medium with the image reading apparatus shown in FIG. Further, the illumination optical axis L is not matched with the sensor optical axis S, but the sensor optical axis S and the illumination optical axis L are directed from the different directions toward the placement surface 11 so as to coincide on the placement surface 11. In this case, if the medium P to be read is a thin medium P, the illumination optical axis L can be positioned at the position of the sensor optical axis S on the medium P. However, when the medium P to be read is a thick medium P, the sensor optical axis S and the illumination optical axis L are respectively placed on the medium P at positions where the sensor optical axis S and the illumination optical axis L do not overlap. Cross. In this case, since the illumination optical axis L intersects the medium P at a position different from the position where the sensor optical axis S intersects the medium P, the illuminating unit 60 has a position read by the line sensor 31. Irradiates irradiation light to different positions. On the other hand, in the image reading apparatus 1 according to the present embodiment, since the illumination optical axis L is always coincident with the sensor optical axis S, the illuminating unit 60 applies to the medium P regardless of the thickness of the medium P to be read. The position where the sensor optical axes S intersect can be illuminated. As a result, a high-quality image can be obtained regardless of the thickness of the medium P.
 また、ミラー回転軸53は、主走査方向から見た場合に、反射面52上におけるセンサ光軸Sを反射する位置と一致するため、回転ミラー51を回転させることにより、載置面11上でセンサ光軸Sを副走査方向に移動させる際における移動量を、容易に調節することができる。この結果、より容易に読み取り制御を行うことができる。 Further, the mirror rotation axis 53 coincides with the position where the sensor optical axis S is reflected on the reflection surface 52 when viewed from the main scanning direction. Therefore, by rotating the rotation mirror 51, the mirror rotation axis 53 is rotated on the placement surface 11. The amount of movement when the sensor optical axis S is moved in the sub-scanning direction can be easily adjusted. As a result, reading control can be performed more easily.
 また、照明部60は、主走査方向から見た場合に、照明回転軸63が照明光軸L上に配置されるため、照明部60を回転させることにより、載置面11上で照明光軸Lを副走査方向に移動させる際における移動量を、容易に調節することができる。この結果、照明光軸Lを、より容易にセンサ光軸Sに一致させることができる。 In addition, the illumination unit 60 has the illumination rotation axis 63 disposed on the illumination optical axis L when viewed from the main scanning direction. Therefore, the illumination unit 60 is rotated to rotate the illumination optical axis on the placement surface 11. The amount of movement when moving L in the sub-scanning direction can be easily adjusted. As a result, the illumination optical axis L can be more easily matched with the sensor optical axis S.
 〔変形例〕
 なお、上述した実施形態に係る画像読取装置1では、ミラー回転軸53は、主走査方向から見た場合に、ミラー回転軸53の反射面52上におけるセンサ光軸Sを反射する位置と一致するように設けられているが、ミラー回転軸53は、反射面52上においてセンサ光軸Sを反射する位置以外に位置していてもよい。図15は、実施形態に係る画像読取装置の変形例であり、ミラー回転軸がセンサ光軸の反射位置の上方に位置する場合の説明図である。図16は、実施形態に係る画像読取装置の変形例であり、ミラー回転軸がセンサ光軸の反射位置の下方に位置する場合の説明図である。回転ミラー51は、反射面52上においてセンサ光軸Sを反射する位置以外にミラー回転軸53が位置していても、画像読取装置1での画像の読み取り時は、ミラー回転軸53を中心として回転ミラー51が回転をすることにより、センサ光軸Sを載置面11上で副走査方向に移動させることができる。
[Modification]
In the image reading apparatus 1 according to the above-described embodiment, the mirror rotation shaft 53 coincides with the position where the sensor optical axis S is reflected on the reflection surface 52 of the mirror rotation shaft 53 when viewed from the main scanning direction. However, the mirror rotation axis 53 may be located on the reflection surface 52 other than the position where the sensor optical axis S is reflected. FIG. 15 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when the mirror rotation axis is located above the reflection position of the sensor optical axis. FIG. 16 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when the mirror rotation axis is located below the reflection position of the sensor optical axis. Even when the mirror rotation shaft 53 is located on the reflection surface 52 other than the position where the sensor optical axis S is reflected, the rotation mirror 51 is centered on the mirror rotation shaft 53 when the image reading device 1 reads an image. By rotating the rotary mirror 51, the sensor optical axis S can be moved on the placement surface 11 in the sub-scanning direction.
 ただし、ミラー回転軸53が、反射面52上においてセンサ光軸Sを反射する位置以外に位置する場合、回転ミラー51の回転角度によって、反射面52上におけるセンサ光軸Sを反射する位置が変化する。このため、ミラー回転軸53が、センサ光軸Sを反射する位置以外に位置する場合は、回転ミラー51がいずれの回転角度である場合でも、センサ光軸Sを適切に反射することができるように、回転ミラー51の大きさをある程度大きくする必要がある。これに対し、ミラー回転軸53が、センサ光軸Sを反射する位置に位置する場合には、回転ミラー51の回転角度に関わらず、センサ光軸Sは反射面52の同じ位置で反射をする。このため、この場合は、回転ミラー51を小型化することができ、読取ユニット20の小型化を図ることができるため、ミラー回転軸53は、センサ光軸Sを反射する位置に位置するのが好ましい。 However, when the mirror rotation axis 53 is positioned on the reflection surface 52 other than the position where the sensor optical axis S is reflected, the position where the sensor optical axis S is reflected on the reflection surface 52 varies depending on the rotation angle of the rotation mirror 51. To do. For this reason, when the mirror rotation axis 53 is located at a position other than the position where the sensor optical axis S is reflected, the sensor optical axis S can be appropriately reflected regardless of the rotation angle of the rotation mirror 51. In addition, it is necessary to increase the size of the rotating mirror 51 to some extent. On the other hand, when the mirror rotation axis 53 is located at a position that reflects the sensor optical axis S, the sensor optical axis S reflects at the same position on the reflection surface 52 regardless of the rotation angle of the rotation mirror 51. . Therefore, in this case, the rotating mirror 51 can be reduced in size, and the reading unit 20 can be reduced in size. Therefore, the mirror rotating shaft 53 is located at a position where the sensor optical axis S is reflected. preferable.
 また、ミラー回転軸53が、反射面52上においてセンサ光軸Sを反射する位置以外に位置する場合でも、主走査方向に見た場合に、照明部60の照明回転軸63をミラー回転軸53と一致させるのが好ましい。図17は、実施形態に係る画像読取装置の変形例であり、ミラー回転軸がセンサ光軸の反射位置以外に位置する場合の説明図である。図18は、実施形態に係る画像読取装置の変形例であり、照明回転軸が照明光軸上以外に位置する場合の説明図である。図19は、実施形態に係る画像読取装置の変形例であり、ミラー回転軸がセンサ光軸の反射位置以外に位置し、照明回転軸と一致する状態を示す説明図である。ミラー回転軸53が、反射面52上においてセンサ光軸Sを反射する位置以外に位置する場合でも、主走査方向に見た場合に、照明部60の照明回転軸63をミラー回転軸53と一致させるのが好ましい。この場合、照明部60の照明回転軸63は、主走査方向に見た場合にミラー回転軸53と一致する位置にするために、照明回転軸63は、照明光軸L上ではなく、照明光軸Lからずれた位置に配置するようにする。これにより、主走査方向に見た場合に、ミラー回転軸53と照明回転軸63とを一致させることができ、センサ光軸Sと照明光軸Lとを一致させた状態で、ミラー回転軸53及び照明回転軸63を中心として回転ミラー51と照明部60とを回転させることにより、回転角度に関わらず、センサ光軸Sと照明光軸Lとを一致させ続けることができる。 Even when the mirror rotation axis 53 is positioned on the reflection surface 52 other than the position where the sensor optical axis S is reflected, the illumination rotation axis 63 of the illumination unit 60 is seen from the mirror rotation axis 53 when viewed in the main scanning direction. Is preferably matched. FIG. 17 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when the mirror rotation axis is located at a position other than the reflection position of the sensor optical axis. FIG. 18 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when the illumination rotation axis is located on a position other than the illumination optical axis. FIG. 19 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram showing a state where the mirror rotation axis is located at a position other than the reflection position of the sensor optical axis and coincides with the illumination rotation axis. Even when the mirror rotation axis 53 is located on the reflection surface 52 other than the position where the sensor optical axis S is reflected, the illumination rotation axis 63 of the illumination unit 60 coincides with the mirror rotation axis 53 when viewed in the main scanning direction. It is preferable to do so. In this case, the illumination rotation axis 63 of the illumination unit 60 is positioned not on the illumination optical axis L, but on the illumination light so that the illumination rotation axis 63 coincides with the mirror rotation axis 53 when viewed in the main scanning direction. It is arranged at a position displaced from the axis L. Thereby, when viewed in the main scanning direction, the mirror rotation axis 53 and the illumination rotation axis 63 can be made to coincide with each other, and the sensor rotation axis 53 and the illumination optical axis L can be made to coincide with each other. Further, by rotating the rotating mirror 51 and the illumination unit 60 around the illumination rotation axis 63, the sensor optical axis S and the illumination optical axis L can be kept matched regardless of the rotation angle.
 なお、回転ミラー51と照明部60は、主走査方向から見た場合にミラー回転軸53が照明回転軸63と一致し、且つ、ミラー回転軸53が回転ミラー51の反射面52、或いは反射面52の延長線上と一致していれば、センサ光軸Sを反射する位置以外に位置していても、回転角度に関わらずセンサ光軸Sと照明光軸Lとを一致させ続けることができる。図20は、ミラー回転軸と照明回転軸が反射面上におけるセンサ光軸の反射位置に位置してセンサ光軸と照明光軸とが一致する場合の説明図である。図21は、ミラー回転軸と照明回転軸が反射面上におけるセンサ光軸の反射位置の上方に位置してセンサ光軸と照明光軸とが一致する場合の説明図である。図22は、ミラー回転軸と照明回転軸が反射面上におけるセンサ光軸の反射位置の下方に位置してセンサ光軸と照明光軸とが一致する場合の説明図である。図23は、ミラー回転軸と照明回転軸が反射面の延長線上に位置してセンサ光軸と照明光軸とが一致する場合の説明図である。つまり、ミラー回転軸53と照明回転軸63とが一致し、ミラー回転軸53が反射面52や反射面52の延長線上と一致していれば、ミラー回転軸53と照明回転軸63とがセンサ光軸Sの反射位置に位置する場合(図20)のみでなく、センサ光軸Sの反射位置の上方や下方に位置したり(図21、図22)、反射面52の延長線上に位置したりする場合(図23)でも、センサ光軸Sと照明光軸Lとを一致させ続けることができる。 The rotary mirror 51 and the illumination unit 60 have the mirror rotation axis 53 coincident with the illumination rotation axis 63 when viewed from the main scanning direction, and the mirror rotation axis 53 is the reflection surface 52 or the reflection surface of the rotation mirror 51. If it coincides with the extension line of 52, the sensor optical axis S and the illumination optical axis L can be kept coincident regardless of the rotation angle even if the sensor optical axis S is located at a position other than the reflection position. FIG. 20 is an explanatory diagram when the mirror rotation axis and the illumination rotation axis are located at the reflection position of the sensor optical axis on the reflection surface and the sensor optical axis and the illumination optical axis coincide with each other. FIG. 21 is an explanatory diagram when the mirror rotation axis and the illumination rotation axis are positioned above the reflection position of the sensor optical axis on the reflection surface and the sensor optical axis and the illumination optical axis coincide with each other. FIG. 22 is an explanatory diagram when the mirror rotation axis and the illumination rotation axis are positioned below the reflection position of the sensor optical axis on the reflection surface and the sensor optical axis and the illumination optical axis coincide with each other. FIG. 23 is an explanatory diagram in the case where the mirror rotation axis and the illumination rotation axis are located on the extension line of the reflecting surface and the sensor optical axis and the illumination optical axis coincide with each other. That is, if the mirror rotation axis 53 and the illumination rotation axis 63 coincide with each other and the mirror rotation axis 53 coincides with the reflection surface 52 or an extension line of the reflection surface 52, the mirror rotation axis 53 and the illumination rotation axis 63 correspond to the sensor. It is not only located at the reflection position of the optical axis S (FIG. 20), but also located above or below the reflection position of the sensor optical axis S (FIGS. 21 and 22), or on an extension line of the reflection surface 52. Even in the case (FIG. 23), the sensor optical axis S and the illumination optical axis L can be kept matched.
 次に、このようにミラー回転軸53と照明回転軸63とが一致し、反射面52、或いは反射面52の延長線上にミラー回転軸53と照明回転軸63とが配置される場合において、回転角度に関わらずセンサ光軸Sと照明光軸Lとが一致することについて説明する。図24は、回転ミラーの角度を45°にした場合における各座標の説明図である。回転ミラー51の角度を45°にして、センサ光軸Sと照明光軸Lとを真下方向に向かわせて一致させた場合において、回転ミラー51の反射面52での反射位置の座標を、図24に示すように(0,0)とする。また、回転ミラー51のミラー回転軸53の座標を(a,b)とする。このときの回転ミラー51の回転角度をθとし、照明部60の回転角度を2θとする。 Next, when the mirror rotation axis 53 and the illumination rotation axis 63 coincide with each other and the mirror rotation axis 53 and the illumination rotation axis 63 are arranged on the reflection surface 52 or an extension line of the reflection surface 52 as described above, the rotation is performed. The fact that the sensor optical axis S and the illumination optical axis L coincide with each other regardless of the angle will be described. FIG. 24 is an explanatory diagram of each coordinate when the angle of the rotating mirror is 45 °. When the angle of the rotary mirror 51 is set to 45 ° and the sensor optical axis S and the illumination optical axis L are made to coincide with each other downward, the coordinates of the reflection position on the reflection surface 52 of the rotary mirror 51 are shown in FIG. It is assumed that (0, 0) as shown in FIG. Further, the coordinates of the mirror rotation axis 53 of the rotary mirror 51 are (a, b). At this time, the rotation angle of the rotating mirror 51 is θ, and the rotation angle of the illumination unit 60 is 2θ.
 さらに、ミラー回転軸53を中心として回転ミラー51を回転させた際に、反射面52でセンサ光軸Sを反射する際における反射位置を(c,0)とすると、cは下記の式(1)で表すことができる。
 c=a+b(tan(45°-θ))・・・(1)
Further, when the rotating position of the rotating mirror 51 around the mirror rotating shaft 53 is rotated and the reflecting position when the reflecting surface 52 reflects the sensor optical axis S is (c, 0), c is expressed by the following equation (1). ).
c = a + b (tan (45 ° −θ)) (1)
 また、加法定理である下記の式(2)と、tan45°=1より、上記の式(1)は下記の式(3)になる。 Also, from the following equation (2), which is an additive theorem, and tan 45 ° = 1, the above equation (1) becomes the following equation (3).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 これにより、センサ光軸Sは、下記の式(4)の座標を通り、2θの角度で反射する。 Thereby, the sensor optical axis S passes through the coordinates of the following formula (4) and reflects at an angle of 2θ.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 次に、照明光軸Lについて説明する。図25は、照明光軸の各座標の説明図である。照明光軸Lのy=0との交点座標を(d,0)とすると、(a,b)を中心に2θだけ回転した場合における照明光軸Lの方程式をy=e・x+fとすると、傾きeは、下記の式(5)で表すことができる。 Next, the illumination optical axis L will be described. FIG. 25 is an explanatory diagram of each coordinate of the illumination optical axis. Assuming that the intersection coordinates of the illumination optical axis L with y = 0 are (d, 0), the equation of the illumination optical axis L when y = e · x + f when rotated by 2θ around (a, b) is The inclination e can be expressed by the following formula (5).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、図25において、(a,b)、回転前の照明光軸Lへの垂線(l)、回転後の照明光軸Lを通る座標(0,f)の3点を結んだ直角三角形を形成することができる。同様に、(a,b)、回転後の照明光軸Lへの垂線(l)、(0,f)の3点を結んだ直角三角形を形成することができる。直角三角形の合同条件は、斜辺と他の一辺がそれぞれ等しいことであるが、図25に示す2つの直角三角形はこの条件を満たすため、この2つの直角三角形は合同である。このため、(a,b)から(0,f)への角度はθになる。よって、図25における直角三角形の斜辺にあたる破線部Vの方程式は、y=-tanθ・x+fで表すことができ、この直線は(a,b)を通るためb=-a・tanθ+fとなり、f=a・tanθ+bと表すことができる。よって、fを照明光軸Lの方程式に代入することにより、下記の式(6)で表すことができる。 Here, in FIG. 25, (a, b), a perpendicular to the illumination optical axis L before rotation (l 1 ), and a right angle connecting three points (0, f) passing through the illumination optical axis L after rotation. Triangles can be formed. Similarly, a right-angled triangle connecting three points (a, b), a perpendicular line (l 1 ) to the illumination optical axis L after rotation, and (0, f) can be formed. The congruence condition of the right triangle is that the hypotenuse and the other one side are equal, but the two right triangles shown in FIG. 25 satisfy this condition, so the two right triangles are congruent. Therefore, the angle from (a, b) to (0, f) is θ. Therefore, the equation of the broken line portion V corresponding to the hypotenuse of the right triangle in FIG. 25 can be expressed as y = −tan θ · x + f, and since this straight line passes through (a, b), b = −a · tan θ + f, and f = a · tan θ + b. Therefore, by substituting f into the illumination optical axis L equation, it can be expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 照明光軸Lの方程式である上記の式(6)は、(d,0)を通るため、下記の式(7)で表すことができる。 Since the above equation (6), which is an equation of the illumination optical axis L, passes through (d, 0), it can be expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 よって、d=-(a・tanθ+b)×tan2θとなる。従って、照明光軸Lは、(-(a・tanθ+b)×tan2θ,0)を通り、2θの角度で照射される。 Therefore, d = − (a · tan θ + b) × tan 2θ. Accordingly, the illumination optical axis L passes through (− (a · tan θ + b) × tan 2θ, 0) and is irradiated at an angle of 2θ.
 ここで、c=dとなる条件の算出を行う。このため、c=dを示す下記の式(8)の整理を行う。 Here, the condition for c = d is calculated. For this reason, the following formula (8) showing c = d is arranged.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 上記の式(8)を整理すると、下記の式(9)になる。 If the above equation (8) is arranged, the following equation (9) is obtained.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 上記の式(9)を、下記の式(10)を用いてさらに整理すると、下記の式(11)になり、さらに下記の式(12)で表すことができる。 Further rearranging the above equation (9) using the following equation (10), the following equation (11) is obtained, which can be further represented by the following equation (12).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 a(1-tan(θ))+b(1-tan(θ))=-2a・tan(θ)-2b・tan(θ)・・・(11)
 a(tan(θ)+1)=-b(tan(θ)+1)・・・(12)
a (1-tan 2 (θ)) + b (1-tan (θ)) 2 = −2a · tan 2 (θ) −2b · tan (θ) (11)
a (tan 2 (θ) +1) = − b (tan 2 (θ) +1) (12)
 よって、ミラー回転軸53の座標(a,b)においてa=-bの関係が成り立つとき、つまり、回転ミラー51が45°の場合における反射面52上にミラー回転軸53があったとき、センサ光軸Sと照明光軸Lは、共に下記の式(13)の座標を通り、2θの角度で載置面11に向かって重なり合う。これらで明らかなように、主走査方向においてミラー回転軸53と照明回転軸63とが一致し、ミラー回転軸53が反射面52や反射面52の延長線上と一致していれば、回転ミラー51と照明部60との回転角度に関わらず、センサ光軸Sと照明光軸Lとを一致させることができる。 Therefore, when the relationship of a = −b is established in the coordinates (a, b) of the mirror rotation axis 53, that is, when the mirror rotation axis 53 is on the reflection surface 52 when the rotation mirror 51 is 45 °, the sensor Both the optical axis S and the illumination optical axis L pass through the coordinates of the following equation (13) and overlap toward the mounting surface 11 at an angle of 2θ. As is clear from these, if the mirror rotation axis 53 and the illumination rotation axis 63 coincide with each other in the main scanning direction, and the mirror rotation axis 53 coincides with the reflection surface 52 or the extension line of the reflection surface 52, the rotation mirror 51. Regardless of the rotation angle between the illumination unit 60 and the illumination unit 60, the sensor optical axis S and the illumination optical axis L can be matched.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 また、上述した実施形態に係る画像読取装置1では、照明部60は発光部61からの光をレンズ62でライン状にして載置面11に対して照射しているが、照明部60は、発光部61からの光の向きを変えて載置面11に向けて照射するようにしてもよい。図26は、実施形態に係る画像読取装置の変形例であり、ミラーが用いられる照明部の詳細図である。照明部60は、例えば、図26に示すように、光源部101の他に反射ミラー102を有し、光源部101と反射ミラー102とは共に保持部材103で保持することにより一体に形成し、これらが一体となって、照明回転軸63を中心として回転するように構成されていてもよい。この場合、光源部101から照射された光は、反射ミラー102で反射することによって向きが変えられ、向きが変えられた後の照明光軸Lが、センサ光軸Sと一致する向きになる。このように、照明部60は、発光部61からの光の向きを変えて載置面11に向けて照射するように構成されていてもよく、回転ミラー51の2倍の回転速度で回転をすると共に、発光部61からの光が、最終的にセンサ光軸Sと一致する向きで照射されるようになっていれば、その構成は問わない。 In the image reading apparatus 1 according to the above-described embodiment, the illumination unit 60 irradiates the placement surface 11 with light from the light emitting unit 61 in a line shape with the lens 62. You may make it irradiate toward the mounting surface 11 by changing the direction of the light from the light emission part 61. FIG. 26 is a modification of the image reading apparatus according to the embodiment, and is a detailed view of an illumination unit in which a mirror is used. For example, as illustrated in FIG. 26, the illumination unit 60 includes a reflection mirror 102 in addition to the light source unit 101, and the light source unit 101 and the reflection mirror 102 are formed integrally by being held by a holding member 103, These may be integrated so as to rotate around the illumination rotation shaft 63. In this case, the direction of the light emitted from the light source unit 101 is changed by being reflected by the reflection mirror 102, and the illumination optical axis L after the direction is changed becomes the direction that coincides with the sensor optical axis S. As described above, the illumination unit 60 may be configured to irradiate the placement surface 11 by changing the direction of the light from the light emitting unit 61, and rotates at twice the rotational speed of the rotary mirror 51. In addition, as long as the light from the light emitting unit 61 is finally irradiated in a direction that coincides with the sensor optical axis S, the configuration is not limited.
 また、上述した実施形態に係る画像読取装置1では、速度比変換機構80は、回転モータ55で発生した動力を、駆動伝達用回転軸81から回転ミラー51と照明部60に伝達しているが、回転モータ55で発生した動力は、いずれか一方を介して他方に伝達するようにしてもよい。図27は、実施形態に係る画像読取装置の変形例であり、回転ミラーを介して照明部に動力が伝達される場合における速度比変換機構の模式図である。速度比変換機構80は、例えば、図27に示すように、回転ミラー51には、主走査方向の両端に回転ミラー51と一体となって回転する回転ミラー直結ギア110を設け、照明部60には照明部60と一体となって回転する照明直結ギア115を設け、回転ミラー直結ギア110と照明直結ギア115との間で、動力を伝達するように構成されていてもよい。この場合、回転ミラー51に対しては、駆動伝達用回転軸81から回転ミラー用第1プーリ91とベルト95と回転ミラー用第2プーリ92とによって、回転モータ55で発生した動力が伝達され、回転ミラー51は、この伝達された動力によって回転をする。 In the image reading apparatus 1 according to the above-described embodiment, the speed ratio conversion mechanism 80 transmits the power generated by the rotary motor 55 from the drive transmission rotary shaft 81 to the rotary mirror 51 and the illumination unit 60. The power generated by the rotary motor 55 may be transmitted to the other through one of them. FIG. 27 is a schematic diagram of the speed ratio conversion mechanism in the case where power is transmitted to the illumination unit via the rotating mirror, which is a modification of the image reading apparatus according to the embodiment. In the speed ratio conversion mechanism 80, for example, as shown in FIG. 27, the rotating mirror 51 is provided with rotating mirror direct coupling gears 110 that rotate integrally with the rotating mirror 51 at both ends in the main scanning direction. May be configured to transmit the power between the rotating mirror direct-coupled gear 110 and the illumination direct-coupled gear 115 by providing an illumination direct-coupled gear 115 that rotates integrally with the illumination unit 60. In this case, the power generated by the rotary motor 55 is transmitted from the drive transmission rotary shaft 81 to the rotary mirror 51 by the rotary pulley first pulley 91, the belt 95, and the rotary mirror second pulley 92. The rotating mirror 51 is rotated by the transmitted power.
 また、回転ミラー直結ギア110と照明直結ギア115との間の動力の伝達は、回転ミラー直結ギア110に噛み合う第1伝達ギア111と、第1伝達ギア111と一体となって回転をすると共に照明直結ギア115に噛み合う第2伝達ギア112と、によって行われる。これらのギア類は、回転ミラー直結ギア110から、第1伝達ギア111及び第2伝達ギア112を経由して照明直結ギア115に動力を伝達する経路で、速度比が2倍になる変速比になっており、即ち、回転ミラー51と照明部60とに動力が伝達される際の回転速度比が1:2になっている。これにより、照明部60には、回転ミラー51に動力が伝達される回転速度の2倍の回転速度で動力が伝達され、照明部60から照射される照射光の照明光軸Lは、回転ミラー51と照明部60との回転角度に関わらず、回転ミラー51で反射したセンサ光軸Sに対して一致する。 Further, the transmission of power between the rotary mirror direct-coupled gear 110 and the illumination direct-coupled gear 115 is performed by rotating together with the first transmission gear 111 meshing with the rotary mirror direct-coupled gear 110 and the first transmission gear 111 and lighting. And the second transmission gear 112 meshed with the direct connection gear 115. These gears are paths that transmit power from the rotary mirror direct-coupled gear 110 to the illumination direct-coupled gear 115 via the first transmission gear 111 and the second transmission gear 112, and have a speed ratio that doubles the speed ratio. That is, the rotation speed ratio when power is transmitted to the rotating mirror 51 and the illumination unit 60 is 1: 2. As a result, power is transmitted to the illumination unit 60 at a rotational speed that is twice the rotational speed at which power is transmitted to the rotary mirror 51, and the illumination optical axis L of the irradiation light emitted from the illumination unit 60 is the rotational mirror. Regardless of the rotation angle between 51 and the illumination unit 60, it coincides with the sensor optical axis S reflected by the rotating mirror 51.
 図28は、実施形態に係る画像読取装置の変形例であり、照明部を介して回転ミラーに動力が伝達される場合における速度比変換機構の模式図である。または、速度比変換機構80は、図28に示すように、照明部60に伝達された動力が、回転ミラー51に伝達されるように構成されていてもよい。この構成では、回転ミラー直結ギア110、第1伝達ギア111、第2伝達ギア112、照明直結ギア115は、主走査方向における回転ミラー51の両側に配設される照明部60のうち、一方の照明部60と回転ミラー51との間に設けられている。このように構成される速度比変換機構80は、照明部60に対しては、駆動伝達用回転軸81から照明用第1プーリ86とベルト95と照明用第2プーリ87とによって、回転モータ55で発生した動力が伝達され、照明部60は、この伝達された動力によって回転をする。 FIG. 28 is a modification of the image reading apparatus according to the embodiment, and is a schematic diagram of a speed ratio conversion mechanism when power is transmitted to a rotating mirror via an illumination unit. Alternatively, the speed ratio conversion mechanism 80 may be configured such that the power transmitted to the illumination unit 60 is transmitted to the rotating mirror 51, as shown in FIG. In this configuration, the rotating mirror direct-coupled gear 110, the first transmission gear 111, the second transmission gear 112, and the illumination direct-coupled gear 115 are one of the illumination units 60 disposed on both sides of the rotating mirror 51 in the main scanning direction. It is provided between the illumination unit 60 and the rotating mirror 51. The speed ratio conversion mechanism 80 configured as described above is configured so that the rotation motor 55 is connected to the illumination unit 60 by the first pulley 86 for illumination, the belt 95 and the second pulley 87 for illumination from the drive transmission rotating shaft 81. Is transmitted, and the illumination unit 60 is rotated by the transmitted power.
 2つの照明部60に伝達された動力のうち、照明直結ギア115が設けられている側の照明部60に伝達された動力は、照明直結ギア115と、第2伝達ギア112と、第1伝達ギア111と、回転ミラー直結ギア110とによって回転ミラー51に伝達され、回転ミラー51は、伝達された動力によって回転する。これらのギア類は、照明直結ギア115から、第2伝達ギア112及び第1伝達ギア111を経由して回転ミラー直結ギア110に動力を伝達する経路で、速度比が1/2倍になる変速比になっており、即ち、回転ミラー51と照明部60とに動力が伝達される際の回転速度比が1:2になっている。これにより、回転ミラー51には、照明部60に動力が伝達される回転速度の1/2倍の回転速度で動力が伝達され、回転ミラー51と照明部60との回転角度に関わらず、載置面11に向かうセンサ光軸Sと照明光軸Lとは一致する。 Of the power transmitted to the two illumination units 60, the power transmitted to the illumination unit 60 on the side where the illumination direct coupling gear 115 is provided is the illumination direct coupling gear 115, the second transmission gear 112, and the first transmission. It is transmitted to the rotating mirror 51 by the gear 111 and the rotating mirror direct connection gear 110, and the rotating mirror 51 is rotated by the transmitted power. These gears are paths that transmit power from the illumination direct coupling gear 115 to the rotary mirror direct coupling gear 110 via the second transmission gear 112 and the first transmission gear 111, and the speed ratio is halved. In other words, the rotational speed ratio when power is transmitted to the rotating mirror 51 and the illumination unit 60 is 1: 2. As a result, power is transmitted to the rotating mirror 51 at a rotational speed that is 1/2 the rotational speed at which power is transmitted to the illumination unit 60, and the rotational mirror 51 and the illumination unit 60 are mounted regardless of the rotational angle. The sensor optical axis S toward the placement surface 11 and the illumination optical axis L coincide.
 また、上述した実施形態に係る画像読取装置1では、速度比変換機構80は、回転モータ55で発生した動力を、駆動伝達用回転軸81から回転ミラー51と照明部60とに伝達しているが、回転モータ55で発生した動力は、回転ミラー51と照明部60とに対して異なる経路で伝達してもよい。図29は、実施形態に係る画像読取装置の変形例であり、回転ミラーと照明部とで異なる経路で動力が伝達される場合における速度比変換機構の模式図である。速度比変換機構80は、例えば、図29に示すように、モータ出力軸120に第1ウォームギア121と第2ウォームギア122との2つのウォームギアを設け、2つのウォームギアから回転ミラー51と照明部60とに対して別々の経路で動力を伝達するようにしてもよい。 In the image reading apparatus 1 according to the above-described embodiment, the speed ratio conversion mechanism 80 transmits the power generated by the rotary motor 55 from the drive transmission rotary shaft 81 to the rotary mirror 51 and the illumination unit 60. However, the power generated by the rotary motor 55 may be transmitted to the rotary mirror 51 and the illumination unit 60 through different paths. FIG. 29 is a modification of the image reading apparatus according to the embodiment, and is a schematic diagram of a speed ratio conversion mechanism when power is transmitted through different paths between the rotating mirror and the illumination unit. For example, as shown in FIG. 29, the speed ratio conversion mechanism 80 is provided with two worm gears of a first worm gear 121 and a second worm gear 122 on the motor output shaft 120, and the rotating mirror 51, the illumination unit 60, and the like from the two worm gears. However, power may be transmitted through separate paths.
 この場合、第1ウォームギア121には第1ウォームホイール126が噛み合っており、第1ウォームホイール126は、第1ウォームホイール126と一体となって回転可能に回転ミラー用第1プーリ91が連結されている。回転ミラー51には回転ミラー用第2プーリ92が取り付けられており、回転ミラー用第1プーリ91と回転ミラー用第2プーリ92との間にベルト95が巻き掛けられることにより、回転ミラー51に対しては、第1ウォームギア121と第1ウォームホイール126とによって取り出された動力が伝達される。 In this case, a first worm wheel 126 is engaged with the first worm gear 121, and the first worm wheel 126 is connected to the first pulley 91 for rotating mirror so as to be rotatable integrally with the first worm wheel 126. Yes. A second pulley 92 for rotating mirror is attached to the rotating mirror 51, and a belt 95 is wound around the first pulley 91 for rotating mirror and the second pulley 92 for rotating mirror. On the other hand, the power extracted by the first worm gear 121 and the first worm wheel 126 is transmitted.
 また、第2ウォームギア122には第2ウォームホイール127が噛み合っており、第2ウォームホイール127は、第2ウォームホイール127と一体となって回転可能に駆動伝達用第1プーリ82が連結されている。駆動伝達用回転軸81には、このように第2ウォームギア122と第2ウォームホイール127とによって取り出された動力が、駆動伝達用第1プーリ82とベルト95と駆動伝達用第2プーリ83を介して伝達され、駆動伝達用回転軸81は、伝達されたこの動力によって回転する。駆動伝達用回転軸81には、2つの照明部60に対応して2つの照明用第1プーリ86が取り付けられており、この照明用第1プーリ86と、各照明部60に取り付けられる照明用第2プーリ87との間にベルト95が巻き掛けられることにより、照明部60は駆動伝達用回転軸81から動力が伝達される。これにより、照明部60に対しては、第2ウォームギア122と第2ウォームホイール127とによって取り出された動力が伝達される。 A second worm wheel 127 meshes with the second worm gear 122, and the second worm wheel 127 is connected to the first pulley 82 for drive transmission so as to be rotatable integrally with the second worm wheel 127. . The power thus extracted by the second worm gear 122 and the second worm wheel 127 is applied to the drive transmission rotating shaft 81 via the drive transmission first pulley 82, the belt 95, and the drive transmission second pulley 83. The drive transmission rotating shaft 81 is rotated by this transmitted power. Two first pulleys 86 for illumination are attached to the drive transmission rotating shaft 81 in correspondence with the two illumination units 60. The first pulley 86 for illumination and the illumination pulleys attached to the respective illumination units 60. When the belt 95 is wound around the second pulley 87, the illuminating unit 60 is transmitted with power from the drive transmission rotating shaft 81. As a result, the power extracted by the second worm gear 122 and the second worm wheel 127 is transmitted to the illumination unit 60.
 これらのように、回転ミラー51に向けて動力を伝達する第1ウォームギア121及び第1ウォームホイール126と、照明部60に向けて動力を伝達する第2ウォームギア122及び第2ウォームホイール127とでは、変速比が異なっている。即ち、第1ウォームギア121と第1ウォームホイール126との間の減速比は、第2ウォームギア122と第2ウォームホイール127との間の減速比の2倍になっている。一方、回転ミラー用第1プーリ91と回転ミラー用第2プーリ92との間、及び照明用第1プーリ86と照明用第2プーリ87との間では変速は行っておらず、各プーリ間の変速比は1:1になっている。これらにより、回転ミラー51と照明部60とに動力が伝達される際の回転速度比は、1:2になっている。従って、照明部60には、回転ミラー51に動力が伝達される回転速度の2倍の回転速度で動力が伝達され、照明部60から照射される照射光の照明光軸Lは、回転ミラー51と照明部60との回転角度に関わらず、回転ミラー51で反射したセンサ光軸Sに対して一致する。 As described above, the first worm gear 121 and the first worm wheel 126 that transmit power toward the rotating mirror 51, and the second worm gear 122 and the second worm wheel 127 that transmit power toward the illumination unit 60, The gear ratio is different. That is, the reduction ratio between the first worm gear 121 and the first worm wheel 126 is twice the reduction ratio between the second worm gear 122 and the second worm wheel 127. On the other hand, there is no speed change between the first pulley 91 for rotating mirror and the second pulley 92 for rotating mirror, and between the first pulley 86 for lighting and the second pulley 87 for lighting. The gear ratio is 1: 1. Thus, the rotation speed ratio when power is transmitted to the rotating mirror 51 and the illumination unit 60 is 1: 2. Accordingly, power is transmitted to the illumination unit 60 at a rotational speed that is twice the rotational speed at which power is transmitted to the rotary mirror 51, and the illumination optical axis L of the irradiation light emitted from the illumination unit 60 is determined by the rotary mirror 51. And the sensor optical axis S reflected by the rotary mirror 51, regardless of the rotation angle of the illumination unit 60.
 また、上述した実施形態に係る画像読取装置1では、照明部60は読取ユニット20の2箇所に設けられているが、照明部60は読取ユニット20の2箇所以上に設けられていてもよい。読取ユニット20に設けられる照明部60は、例えば、第3光学ユニット50の回転ミラー51を挟んで主走査方向の両側に、それぞれ複数が配設されてもよい。照明部60は、主走査方向から見た場合に、照明回転軸63がミラー回転軸53と一致し、回転ミラー51の反射面52で反射したセンサ光軸Sに対して照明光軸Lを一致させる方向に光を照射するように構成されていれば、その数は問わない。 Further, in the image reading apparatus 1 according to the above-described embodiment, the illumination units 60 are provided at two locations of the reading unit 20, but the illumination units 60 may be provided at two or more locations of the reading unit 20. For example, a plurality of illumination units 60 provided in the reading unit 20 may be provided on both sides in the main scanning direction with the rotating mirror 51 of the third optical unit 50 interposed therebetween. When viewed from the main scanning direction, the illumination unit 60 has the illumination rotation axis 63 coincident with the mirror rotation axis 53 and the illumination optical axis L coincides with the sensor optical axis S reflected by the reflection surface 52 of the rotation mirror 51. The number is not limited as long as it is configured to irradiate light in the direction in which the light is emitted.
 また、上述した実施形態に係る画像読取装置1では、読取ユニット20は1つが設けられているが、読取ユニット20は複数設けられていてもよい。図30は、実施形態に係る画像読取装置の変形例であり、読取ユニットが複数設けられる場合の説明図である。読取ユニット20は、例えば、図30に示すように、1つの画像読取装置1に2つが設けられていてもよい。この場合、2つの読取ユニット20は、1つのアーム15に連結されることによって配設される。このように、読取ユニット20を複数設けることにより、1つの読取ユニット20によって大きな媒体Pを読み取ったり、また、媒体Pが本である場合に、それぞれの読取ユニット20によって異なる頁を読み取ったりすることができる。 In the image reading apparatus 1 according to the above-described embodiment, one reading unit 20 is provided, but a plurality of reading units 20 may be provided. FIG. 30 is a modified example of the image reading apparatus according to the embodiment, and is an explanatory diagram when a plurality of reading units are provided. For example, as shown in FIG. 30, two reading units 20 may be provided in one image reading apparatus 1. In this case, the two reading units 20 are arranged by being connected to one arm 15. In this way, by providing a plurality of reading units 20, a large medium P can be read by one reading unit 20, and when the medium P is a book, different pages can be read by each reading unit 20. Can do.
 1 画像読取装置
 10 載置台
 11 載置面
 15 アーム
 20 読取ユニット
 30 第1光学ユニット
 31 ラインセンサ
 35 集光レンズ
 40 第2光学ユニット
 42 折り返しミラー
 45 Uターンモータ
 50 第3光学ユニット
 51 回転ミラー
 52 反射面
 53 ミラー回転軸
 55 回転モータ(回転アクチュエータ)
 60 照明部
 63 照明回転軸
 70 制御回路
 71 画像読取制御部
 72 モータ制御部
 73 照明制御部
 74 画像処理部
 80 速度比変換機構
 81 駆動伝達用回転軸
DESCRIPTION OF SYMBOLS 1 Image reader 10 Mounting stand 11 Mounting surface 15 Arm 20 Reading unit 30 1st optical unit 31 Line sensor 35 Condensing lens 40 2nd optical unit 42 Folding mirror 45 U-turn motor 50 3rd optical unit 51 Rotating mirror 52 Reflection Surface 53 Mirror rotation shaft 55 Rotation motor (rotary actuator)
DESCRIPTION OF SYMBOLS 60 Illumination part 63 Illumination rotating shaft 70 Control circuit 71 Image reading control part 72 Motor control part 73 Illumination control part 74 Image processing part 80 Speed ratio conversion mechanism 81 Rotating shaft for drive transmission

Claims (3)

  1.  載置面に載置された媒体を前記載置面の主走査方向においてライン状に読み取るラインセンサと、
     前記ラインセンサのセンサ光軸を反射すると共に回転することで、前記載置面に対して、前記センサ光軸を前記載置面における前記主走査方向と直交する副走査方向に移動させる回転ミラーと、
     少なくとも前記ラインセンサの読み取り領域に光を照射し、前記読み取り領域の前記副走査方向への移動に連動して回転する照明部と、
     前記回転ミラー及び前記照明部を前記主走査方向と平行な回転軸周りに回転させる回転アクチュエータと、
     前記回転アクチュエータからの回転力により回転する前記回転ミラーと前記照明部との回転速度比を1:2とする速度比変換機構と、
     を備え、
     前記回転ミラーのミラー回転軸は、前記主走査方向から見た場合に、前記回転ミラーの反射面、或いは前記反射面の延長線上と一致し、且つ、前記照明部の照明回転軸と一致し、
     前記照明部は、前記照明部から照射する光の照明光軸を、前記主走査方向に見た場合における前記回転ミラーの前記反射面で反射した前記センサ光軸に対して一致させる方向に光を照射することを特徴とする画像読取装置。
    A line sensor that reads the medium placed on the placement surface in a line in the main scanning direction of the placement surface;
    A rotating mirror that reflects and rotates the sensor optical axis of the line sensor to move the sensor optical axis in a sub-scanning direction perpendicular to the main scanning direction on the mounting surface with respect to the mounting surface; ,
    Illuminating at least the reading area of the line sensor and rotating in conjunction with movement of the reading area in the sub-scanning direction; and
    A rotary actuator that rotates the rotary mirror and the illumination unit around a rotation axis parallel to the main scanning direction;
    A speed ratio converting mechanism that sets a rotational speed ratio of the rotating mirror that rotates by the rotational force from the rotary actuator and the illumination unit to 1: 2.
    With
    The mirror rotation axis of the rotating mirror coincides with the reflecting surface of the rotating mirror or an extension line of the reflecting surface when viewed from the main scanning direction, and coincides with the illumination rotating axis of the illumination unit,
    The illumination unit emits light in a direction that matches an illumination optical axis of light emitted from the illumination unit with respect to the sensor optical axis reflected by the reflecting surface of the rotating mirror when viewed in the main scanning direction. Irradiating an image reading apparatus.
  2.  前記ミラー回転軸は、前記主走査方向から見た場合に、前記反射面上における前記センサ光軸を反射する位置と一致する請求項1に記載の画像読取装置。 2. The image reading apparatus according to claim 1, wherein the mirror rotation axis coincides with a position where the sensor optical axis is reflected on the reflection surface when viewed from the main scanning direction.
  3.  前記照明部は、前記主走査方向から見た場合に、前記照明回転軸が前記照明光軸上に配置される請求項2に記載の画像読取装置。 3. The image reading apparatus according to claim 2, wherein the illumination unit has the illumination rotation axis disposed on the illumination optical axis when viewed from the main scanning direction.
PCT/JP2015/066797 2015-06-10 2015-06-10 Image reading device WO2016199261A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017523040A JP6349034B2 (en) 2015-06-10 2015-06-10 Image reading device
PCT/JP2015/066797 WO2016199261A1 (en) 2015-06-10 2015-06-10 Image reading device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066797 WO2016199261A1 (en) 2015-06-10 2015-06-10 Image reading device

Publications (1)

Publication Number Publication Date
WO2016199261A1 true WO2016199261A1 (en) 2016-12-15

Family

ID=57503312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066797 WO2016199261A1 (en) 2015-06-10 2015-06-10 Image reading device

Country Status (2)

Country Link
JP (1) JP6349034B2 (en)
WO (1) WO2016199261A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181887A (en) * 1995-12-22 1997-07-11 Nec Corp Image reader
JPH10117276A (en) * 1996-10-11 1998-05-06 Nec Yonezawa Ltd Image reader
JP2011244206A (en) * 2010-05-18 2011-12-01 Pfu Ltd Image reading unit and overhead type image reading apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006166378A (en) * 2004-12-10 2006-06-22 Ricoh Co Ltd Image reading apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181887A (en) * 1995-12-22 1997-07-11 Nec Corp Image reader
JPH10117276A (en) * 1996-10-11 1998-05-06 Nec Yonezawa Ltd Image reader
JP2011244206A (en) * 2010-05-18 2011-12-01 Pfu Ltd Image reading unit and overhead type image reading apparatus

Also Published As

Publication number Publication date
JPWO2016199261A1 (en) 2017-10-19
JP6349034B2 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
KR101266893B1 (en) X-ray photographing device
JP4676455B2 (en) Three-dimensional shape measuring device using shadow moire
JP5528910B2 (en) Overhead image reader
JP2008523502A (en) Swipe imager scan engine
US8941889B2 (en) Overhead image reading apparatus
JP6723859B2 (en) Image reader
JP6349034B2 (en) Image reading device
JP4259549B2 (en) Image reading apparatus and multifunction machine
JP2021184559A (en) Reading device, output device, and image forming apparatus
JP2005115833A (en) Optical information reader
JP2008309503A (en) Optical drive mechanism and inspection device
JP2006140391A (en) Component recognition device and component mounting apparatus
WO2016199259A1 (en) Image reading device
US9444958B2 (en) Image reading device and image forming apparatus including the same
KR20210029781A (en) How to operate focus and zoom objectives and focus and zoom objectives
JPH1155462A (en) Image input device
CN112033963B (en) Inspection apparatus
JPS62291259A (en) Reader
JP4532088B2 (en) Image input device
WO2018198340A1 (en) Focus adjustment unit and image reading device
JP2009213694A (en) Sewing machine
WO2020129437A1 (en) Image reading device
JP2008058718A (en) Scanner device and image forming apparatus using the same
JP6293970B2 (en) Image reading device
TWI336865B (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894946

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523040

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894946

Country of ref document: EP

Kind code of ref document: A1