WO2016199180A1 - 生物学的製剤による関節リウマチの治療効果の予測判定方法 - Google Patents

生物学的製剤による関節リウマチの治療効果の予測判定方法 Download PDF

Info

Publication number
WO2016199180A1
WO2016199180A1 PCT/JP2015/002892 JP2015002892W WO2016199180A1 WO 2016199180 A1 WO2016199180 A1 WO 2016199180A1 JP 2015002892 W JP2015002892 W JP 2015002892W WO 2016199180 A1 WO2016199180 A1 WO 2016199180A1
Authority
WO
WIPO (PCT)
Prior art keywords
patient
specific
treatment
rheumatoid arthritis
agent
Prior art date
Application number
PCT/JP2015/002892
Other languages
English (en)
French (fr)
Inventor
吉崎 和幸
宇野 賀津子
充啓 岩橋
克己 八木
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to US15/580,253 priority Critical patent/US20180224464A1/en
Priority to PCT/JP2015/002892 priority patent/WO2016199180A1/ja
Priority to JP2017522755A priority patent/JPWO2016199180A1/ja
Priority to EP15894866.1A priority patent/EP3309553A4/en
Publication of WO2016199180A1 publication Critical patent/WO2016199180A1/ja
Priority to US16/798,088 priority patent/US20210018514A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6863Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/564Immunoassay; Biospecific binding assay; Materials therefor for pre-existing immune complex or autoimmune disease, i.e. systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, rheumatoid factors or complement components C1-C9
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against Fc-receptors, e.g. CD16, CD32, CD64
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/10Musculoskeletal or connective tissue disorders
    • G01N2800/101Diffuse connective tissue disease, e.g. Sjögren, Wegener's granulomatosis
    • G01N2800/102Arthritis; Rheumatoid arthritis, i.e. inflammation of peripheral joints
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/50Determining the risk of developing a disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/56Staging of a disease; Further complications associated with the disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/60Complex ways of combining multiple protein biomarkers for diagnosis

Definitions

  • the present invention relates to a method for predicting and determining the therapeutic effect of a biological product on rheumatoid arthritis patients. More specifically, the present invention relates to a method for predicting and determining the therapeutic effect of rheumatoid arthritis by a biological preparation containing an anti-IL-6 agent and an anti-TNF- ⁇ agent. More specifically, the present invention relates to a method for predicting and determining a therapeutic effect such as improvement in symptoms, possibility of remission, etc., before administering a biologic to a patient with rheumatoid arthritis. Furthermore, the present invention relates to a diagnostic agent for predicting and determining the therapeutic effect of a biological product on rheumatoid arthritis patients.
  • the present invention provides an effective therapeutic agent by pre-determining treatment with a biologic comprising an anti-interleukin-6 (IL-6) agent and an anti-tumor necrosis factor- ⁇ (TNF- ⁇ ) agent. It relates to technology for providing patients.
  • a biologic comprising an anti-interleukin-6 (IL-6) agent and an anti-tumor necrosis factor- ⁇ (TNF- ⁇ ) agent.
  • IL-6 anti-interleukin-6
  • TNF- ⁇ anti-tumor necrosis factor- ⁇
  • Rheumatoid arthritis is a systemic inflammatory disease centered on the joint synovium, and the number of patients is said to be about 700,000 in Japan.
  • Many biologicals have been developed for the treatment of rheumatoid arthritis that target inflammatory cytokines, and recently anti-TNF- ⁇ agents or anti-IL- that inhibit the action of TNF- ⁇ or IL-6.
  • Six drugs have been clinically put into practical use.
  • Tocilizumab is a humanized IL-6 receptor antibody that sedates rheumatoid arthritis by binding to membrane-bound IL-6 receptor and soluble IL-6 receptor and suppressing IL-6 signal .
  • Silkumab is a human anti-IL-6 antibody that binds to IL-6 and sedates rheumatoid arthritis by inhibiting IL-6 signal.
  • preparations targeting IL-6 signal have many types of targets, but the mechanism of action is the same after binding to the target, so the mechanism of inhibition is the same regardless of the type of drug. Therefore, it is generally called an anti-IL-6 agent.
  • an anti-IL-6 agent For example, tocilizumab, salilumab, olokizumab, and silkmab are classified as anti-IL-6 agents.
  • etanercept is a fully human soluble TNF / LT ⁇ receptor preparation consisting of the Fc region of human IgG1 and the subunit dimer of the extracellular domain of human tumor necrosis factor type II receptor. It is a drug that sedates rheumatoid arthritis by binding and inhibiting signal transduction to the TNF receptor.
  • Adalimumab and infliximab are human and chimeric anti-TNF- ⁇ antibodies that specifically bind to overproduced TNF- ⁇ and inhibit the binding of TNF- ⁇ to the TNF- ⁇ receptor. It is a drug that sedates rheumatoid arthritis. In this way, the preparations targeting TNF- ⁇ signal have many types of targets, but the mechanism of action after binding to the target is the same, so the inhibition mechanism is the same regardless of the type of drug. Therefore, it is generally called an anti-TNF- ⁇ agent. For example, etanercept, adalimumab, infliximab, golimumab, and certolizumab are classified as anti-TNF- ⁇ agents.
  • markers for predicting the effectiveness of biologics targeting inflammatory cytokines in patients with rheumatoid arthritis have been energetically studied.
  • methods for predicting the therapeutic efficacy of rheumatoid arthritis with tocilizumab include a method using a microDNA chip, a method using a CRP value at the baseline as an index, and a soluble ICAMI concentration in blood and a CXCL13 concentration as an index.
  • Method, method using leukocyte ADAMT5 gene expression level as an index Non-patent Document 4
  • Patent Documents 1 and 2 method of comprehensive analysis of gene polymorphism
  • Patent Document 3 method of analyzing gene mutation of IL-6 receptor
  • Patent Document 4 a method for predicting the therapeutic efficacy of rheumatoid arthritis with infliximab.
  • Patent Document 5 a method for predicting the therapeutic efficacy of rheumatoid arthritis with anti-TNF- ⁇ agents such as etanercept, adalimumab, and infliximab.
  • Patent Document 5 a method for comprehensive analysis of gene polymorphism.
  • the conventional method for determining the therapeutic effect of rheumatoid arthritis has drawbacks such as requiring gene analysis and complicated operations, time and cost for analysis, poor versatility, and low accuracy rate. Furthermore, since conventional methods cannot accurately determine whether or not rheumatoid arthritis can be completely ameliorated before administration of a biological product, the therapeutic effect was anticipated before administration of the biological product. There is also a problem that an appropriate treatment policy has not been established.
  • the present invention provides a therapeutic effect that is simple, inexpensive, versatile, and highly accurate before administering biological preparations such as anti-IL-6 agents and anti-TNF- ⁇ agents to rheumatoid arthritis patients.
  • the present invention also provides a diagnostic agent for carrying out the above method, and a therapeutic agent comprising a biologic such as an anti-IL-6 agent and an anti-TNF- ⁇ agent characterized by carrying out the above method To do.
  • the inventors have determined the prognostic status of rheumatoid arthritis patients who have been administered a biologic and the cytokines, chemokines and their soluble receptors in body fluid samples such as the patient's serum prior to the administration of the biologic. Concentration and retrospective analysis to predict the potential for remission of rheumatoid arthritis, biologics such as anti-IL-6 and anti-TNF- ⁇ agents, improvement in symptoms and disease activity index And found that it can be judged.
  • sgp130, IP-10, sTNNFRI, sTNFRII, GM-CSF, IL-1 ⁇ , IL-2 as cytokines, chemokines and their soluble receptors for such determination , IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-15, Eotaxin, VEGF, MCP-1, TNF- ⁇ , IFN
  • markers such as ⁇ , FGFbasic, PDGF-bb, sIL-6R, and MIP-1 ⁇ can be utilized.
  • DAS-28 value DAS-28 value before treatment-DAS-28 after 16 weeks of treatment
  • DAS-28 value DAS-28 value before treatment-DAS-28 after 16 weeks of treatment
  • VEGF vascular endothelial growth factor
  • DAS-28 value before treatment-DAS-28 after 16 weeks of treatment Value the log value of the serum concentration of IL-7, IL-8, IL-12, IL-13, IP-10, and VEGF before administration of an anti-IL-6 agent (eg, tocilizumab etc.) in the patient.
  • DAS is not only a complaint of a patient's pain, but also a joint examination and blood test, comprehensively assessing the strength of rheumatoid arthritis symptoms and expressing it as a specific numerical value.
  • -28 is the result of examining 28 joints, and other indicators such as DAS-44 that examine 44 joints are also known.
  • DAS-44 that examine 44 joints are also known.
  • 1-2 Rheumatoid patients who have received anti-cytokine therapy in the past by linear single regression analysis (referred to as “switch patients” in this specification. In the art, they may be expressed as “non-na ⁇ ve patients”).
  • switch patients in this specification. In the art, they may be expressed as “non-na ⁇ ve patients”.
  • Is administered with an anti-IL-6 agent for example, tocilizumab etc.
  • the improvement in the DAS-28 value is the same as that before administration of the anti-IL-6 agent (for example tocilizumab) in the patient.
  • Serum concentration of sgp130 before administration Log value of serum concentration of IP-10, Log value of serum concentration of sTNFRII, and IL-6, IL-7, MCP-1 or IL-1 ⁇ It has been found that predictive judgment can be made by a combination with the serum concentration Log value.
  • an anti-IL-6 agent for example, tocilizumab etc.
  • the anti-IL-6 agent for example, tocilizumab
  • the present invention has been completed by further studies based on these findings. It is a thing. Specifically, the present invention provides the following aspects of the invention.
  • (Item 1) A method for determining in advance the remission of a specific biological product by measuring the concentration of a specific marker in a body sample of a rheumatoid arthritis patient.
  • the specific biological product is an anti-IL-6 agent, and the specific marker is selected from the group consisting of IP-10, sTNFRII, IL-6, IL-7, MCP-1 and IL-1 ⁇ .
  • Item 2 The method according to Item 1, comprising a combination of at least one of the above and sgp130.
  • the specific biological product is an anti-IL-6 agent, and the specific marker is (i) sgp130, (ii) IP-10, (iii) sTNFRII, (iv) IL-6, Item 3.
  • the specific biological product is an anti-IL-6 agent, the patient is a rheumatoid arthritis patient who has received anti-cytokine therapy in the past, and the marker is (i) sgp130, and (ii) IP Item 4.
  • the specific biological product is an anti-TNF- ⁇ agent, and the specific marker is a combination of IL-9 and TNF- ⁇ , or VEGF or MIP-1a, PDGFbb and the condition of the patient prior to treatment.
  • Item 2 The method according to Item 1, comprising a combination of indicators.
  • the method according to Item 1 or 5 wherein the specific biological product is an anti-TNF- ⁇ agent, and the specific marker includes a combination of IL-9 and TNF- ⁇ .
  • (Item 7) The method according to any one of Items 1 to 6, wherein the body sample is serum.
  • (Item 7A) The method according to any one of Items 1 to 7, wherein the patient is a rheumatoid arthritis patient who has received anti-cytokine therapy in the past.
  • (Item 7B) The method according to any one of Items 1-3 or 5-7, wherein the patient is a rheumatoid arthritis patient who has not received anti-cytokine therapy in the past.
  • (Item 8) The determination of the remission of the patient in advance is based on the probability of remission calculated by a regression equation using a value of the concentration of the specific marker or a log value thereof or an index of the state of the patient before treatment.
  • remission by the specific biological product is determined in advance, and a specific biological with a high probability of the remission
  • a method of selecting a biological product effective for the patient by selecting the formulation (Item 12) (A) A step of preliminarily determining remission of a specific biological product by measuring the concentration of a specific marker in a body sample of a rheumatoid arthritis patient, and (B) (A) A method of treating a patient with rheumatoid arthritis comprising the step of administering the specific biological product to the patient when it is determined that the specific biological product is in remission.
  • (Item 13) A step of calculating in advance the probability of remission of a patient by a plurality of specific biological agents by measuring the concentration of a specific marker in a body sample of a rheumatoid arthritis patient, (B) ( A) A method for treating a patient with rheumatoid arthritis, comprising the step of administering to the patient a specific biological product with a high probability of remission obtained by the step.
  • a reagent for detecting a specific marker which is used in a method for measuring the concentration of a specific marker in a body sample of a rheumatoid arthritis patient and determining in advance the remission of the patient by a specific biological product.
  • Diagnostic agent containing. A specific biological substance having a high probability of remission, by measuring the concentration of a specific marker in a body sample of a patient with rheumatoid arthritis and calculating in advance the probability of remission of the patient by a plurality of specific biological products
  • a diagnostic agent comprising a reagent for detecting the specific marker, which is used in a method of selecting a biological product effective for the patient by selecting the formulation.
  • (Item 15A) The diagnostic agent according to item 14 or 15, comprising the characteristics described in any one of items 2 to 7, 7A, 7B, and 8 to 10.
  • (Item 16) A therapeutic agent for treating a patient with rheumatoid arthritis containing a specific biological product, wherein the concentration of a specific marker in a body sample of the patient is measured to measure the patient's A therapeutic agent, wherein the specific biological preparation is administered when remission is determined in advance and it is determined that remission occurs.
  • (Item 16A) A set of therapeutic agents for treating a patient with rheumatoid arthritis including a plurality of specific biological products, wherein the specific biological product is measured by measuring the concentration of a specific marker in a body sample of the patient A set of therapeutic agents, characterized in that the probability of remission of the patient is pre-calculated and a specific biological product with a high probability of remission is administered to the patient.
  • the therapeutic agent according to Item 16 or the set of therapeutic agents according to Item 16A which includes the characteristics according to any one of Items 2 to 7, 7A, 7B, and 8 to 10.
  • (Claim 17) A method for determining in advance the degree of improvement of symptoms after treatment with a specific biologic to a patient by measuring the concentration of a specific marker in a body sample of a rheumatoid arthritis patient.
  • the specific biological preparation is an anti-IL-6 agent
  • the specific marker includes a combination of IL-1 ⁇ , IL-7, TNF- ⁇ and sIL-6R.
  • the specific biological product is an anti-TNF- ⁇ agent
  • the specific marker is a combination of IL-2, IL-15, sIL-6R, and sTNFRI, or a combination of IL-6 and IL-13.
  • the method according to Item 17, which comprises: (Item 20) The method according to any one of Items 17 to 19, wherein the body sample is serum. (Item 20A) The method according to any one of Items 17 to 20, wherein the patient is a rheumatic patient who has not received anti-cytokine therapy in the past. (Item 20B) The method according to any one of Items 17 to 20, wherein the patient is a rheumatic patient who has received anti-cytokine therapy in the past. (Claim 21) Prior determination of the degree of improvement of the symptoms after the treatment is performed by a regression equation using a concentration value of the specific marker or a log value thereof or an index of a state of the patient before the treatment.
  • the degree of improvement in symptoms after treatment with the specific biological product is determined in advance, and after the treatment A method of selecting a biological product effective for the patient by selecting a biological product having a high degree of improvement in symptoms.
  • the specific marker used in a method for measuring the concentration of a specific marker in a body sample of a rheumatoid arthritis patient and determining in advance the degree of improvement in symptoms after treatment with the specific biological product for the patient
  • a diagnostic agent comprising a reagent for detecting urine.
  • the degree of improvement of symptoms after treatment with a plurality of specific biological products is determined in advance by measuring the concentration of a specific marker in a body sample of a patient with rheumatoid arthritis, and the degree of improvement is high
  • a diagnostic agent comprising a reagent for detecting the specific marker, which is used in a method for selecting a biological product effective for the patient by selecting the specific biological product.
  • the diagnostic agent according to item 27 or 28, comprising the feature according to any one of items 17 to 20, 20A, 20B, or 21 to 23.
  • a therapeutic agent for treating a patient with rheumatoid arthritis comprising a specific biological preparation, wherein the concentration of a specific marker in a body sample of the rheumatoid arthritis patient is measured to determine the specific biological to the patient
  • (Item 29A) A set of therapeutic agents for treating a patient with rheumatoid arthritis including a plurality of specific biological products, wherein the specific marker is measured by measuring the concentration of a specific marker in a body sample of the patient.
  • (Item 30) A method for determining in advance a disease activity index after treatment with a specific biologic to a patient by measuring the concentration of a specific marker in a body sample of a rheumatoid arthritis patient.
  • the specific biological product is an anti-IL-6 agent, and the specific marker is at least one selected from IL-8, Eotaxin, sTNNFRI, sTNFRII, IL-6, VEGF, and GM-CSF; Item 31.
  • the method according to Item 30, comprising a combination of sgp130 and IP-10.
  • the specific biological product is an anti-IL-6 agent, and the specific marker is sgp130, IL-8, Eotaxin, IP-10, sTNFRRI, a combination of sTNFRII and IL-6, or sgp130, IL- Item 32.
  • the method according to Item 30 or 31, comprising a combination of Eotaxin, IP-10, sTNFRI, sTNFRII, IL-6 and VEGF, wherein the patient is a rheumatic patient who has not received anti-cytokine therapy in the past.
  • the specific biological product is an anti-IL-6 agent, the specific marker includes a combination of sgp130, IP-10, and GM-CSF, and the patient has received anti-cytokine therapy in the past Item 32.
  • the specific biological product is an anti-TNF- ⁇ agent, and the specific marker includes a combination of IL-9, TNF- ⁇ and VEGF, or a combination of IL-6 and IL-13.
  • Item 34A The method according to Item 34, wherein the patient is a rheumatic patient who has not received anti-cytokine therapy in the past.
  • Item 34B The method according to Item 34, wherein the patient is a rheumatic patient who has received anti-cytokine therapy in the past.
  • Item 35 The method according to any one of Items 30 to 34, 34A, or 34B, wherein the body sample is serum.
  • the determination of the disease activity index after the treatment is performed after the treatment calculated by the regression equation using the concentration value of the specific marker or the log value thereof, or the state index of the patient before the treatment.
  • Item 36 The method according to any one of Items 30 to 34, 34A, 34B, or 35, which is performed based on the disease activity index.
  • a disease activity index after treatment with a specific biological product to the patient is determined in advance, and the disease activity
  • (Item 40) (A) A step of determining in advance a disease activity index after treatment with a specific biological agent for a rheumatoid arthritis patient by measuring the concentration of a specific marker in a body sample of the rheumatoid arthritis patient; (B) A method for treating rheumatoid arthritis patients, comprising the step of administering the specific biological preparation to the patient when the disease activity index is not more than a predetermined standard in the step (A).
  • (Item 41) A step of preliminarily determining a disease activity index after treatment with a plurality of specific biological preparations for a rheumatoid arthritis patient by measuring a concentration of the specific marker in a body sample of the rheumatoid arthritis patient. And (B) a method for treating a patient with rheumatoid arthritis, comprising the step of administering to the patient a specific biological product having a low disease activity index obtained by the steps (A). (Item 41A) The method according to item 40 or 41, comprising the feature according to any one of items 30 to 34, 34A, 34B or 35.
  • the specific marker used in a method for measuring the concentration of a specific marker in a body sample of a patient with rheumatoid arthritis and predetermining a disease activity index after treatment with the specific biological product for the patient
  • a diagnostic agent comprising a reagent for detecting urine.
  • the disease activity index is determined in advance by measuring the concentration of a specific marker in a body sample of a rheumatoid arthritis patient and treating the patient with a plurality of specific biologics.
  • a diagnostic agent comprising a reagent for detecting the specific marker, which is used in a method for selecting a biological product effective for the patient by selecting a specific biological product having a low A.
  • a therapeutic agent for treating a patient with rheumatoid arthritis including a specific biological product, wherein the concentration of a specific marker in a body sample of the patient is measured to depend on the specific biological product to the patient
  • (Item 44A) A set of therapeutic agents for treating a patient with rheumatoid arthritis comprising a plurality of specific biologics, wherein the concentration of a specific marker in a body sample of the patient is measured to A set of therapeutic agents, wherein a disease activity index after treatment with a specific biological product is determined in advance, and a specific biological product having a low disease activity index is administered.
  • the therapeutic agent according to item 44 or the set of therapeutic agents according to item 44A comprising the characteristics according to any one of items 30 to 34, 34A, 34B or 35.
  • the present invention also provides the following. Term A1.
  • a method for predicting and determining the therapeutic effect of a biologic agent targeting inflammatory cytokines in patients with rheumatoid arthritis Sgp130, IP-10, sTNNFRI, sTNFRII, GM-CSF, IL-1 ⁇ , IL-2, IL-5, IL-6, IL- in serum collected from patients with rheumatoid arthritis before administration of the biologic 7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-15, Eotaxin, VEGF, MCP-1, TNF- ⁇ , IFN- ⁇ , FGFbasic, PDGF-bb, sIL-
  • a determination method comprising a step of measuring the concentration of at least one specific marker selected from the group consisting of 6R and MIP-1 ⁇ .
  • Term A2 A method for predicting the possibility of remission with tocilizumab, The determination method according to Item A1, wherein the specific marker is at least one selected from the group consisting of sgp130, IP-10, sTNFRII, IL-6, IL-7, MCP-1 and IL-1 ⁇ . Term A3. The determination method according to Item A2, wherein at least sgp130 is used as the specific marker. Term A4.
  • the patient receiving tocilizumab is a rheumatoid arthritis patient who has not received anti-cytokine therapy in the past,
  • the specific marker is a combination of (i) sgp130, (ii) IP-10, (iii) sTNFRII, and (iv) IL-6, IL-7, MCP-1 or IL-1 ⁇
  • the patient to whom tocilizumab is administered is a patient with rheumatoid arthritis who has received anti-cytokine therapy in the past,
  • Term A6 wherein the specific marker is a combination of (i) sgp130, (ii) IP-10, (iii) sTNFRII, and (iv) IL-6 or IL-1 ⁇ . .
  • the specific marker is a combination of (i) sgp130, (ii) IP-10, (iii) sTNFRII, and (iv) IL-6 or IL-1 ⁇ . .
  • Term A6 wherein the specific marker is a combination of (i) sgp130, (ii) IP-10, (ii
  • a method for predicting the possibility of remission by etanercept in rheumatic patients who have not received anti-cytokine therapy in the past The determination method according to Item A1, wherein the specific marker is at least one selected from the group consisting of IL-9, TNF- ⁇ , VEGF, PDGF-bb, and MIP-1 ⁇ .
  • the specific marker is at least one selected from the group consisting of IL-9, TNF- ⁇ , VEGF, PDGF-bb, and MIP-1 ⁇ .
  • Term A7 The determination method according to Item A6, wherein the specific marker is a combination of IL-9 and TNF- ⁇ , a combination of VEGF and PDGF-bb, or a combination of MIP-1 ⁇ and PDGF-bb.
  • a method for predicting and determining a disease activity index after treatment with tocilizumab in a rheumatic patient who has not received anti-cytokine therapy in the past The determination method according to Item A1, wherein the specific marker is at least one selected from the group consisting of sgp130, IL-8, Eotaxin, IP-10, sTNFRI, sTNFRII, IL-6, and VEGF.
  • the specific marker is at least one selected from the group consisting of sgp130, IL-8, Eotaxin, IP-10, sTNFRI, sTNFRII, IL-6, and VEGF.
  • the specific marker is sgp130, IL-8, Eotaxin, IP-10, sTNNFRI, sTNFRII, and a combination of IL-6, or sgp130, IL-8, Eotaxin, IP-10, sTNNFRI, sTNFRII, IL-6, and The determination method according to Item A8, which is a combination of VEGF. Term A10.
  • a method for predicting and determining a value of a disease activity index after treatment with tocilizumab in a patient with rheumatism who has received anti-cytokine therapy in the past is at least one selected from the group consisting of sgp130, IL-1 ⁇ , IL-2, IL-5, IL-15, GM-CSF, IFN- ⁇ , TNF- ⁇ , and IP-10.
  • the determination method according to Item A10, wherein the specific marker is a combination of sgp130, IP-10, and GM-CSF.
  • a method for predicting and determining the value of a disease activity index after treatment with etanercept in a rheumatic patient who has not received anti-cytokine therapy in the past The determination method according to Item A1, wherein the specific marker is at least one selected from the group consisting of IL-9, IL-6, IL-13, TNF- ⁇ , and VEGF.
  • the specific marker is at least one selected from the group consisting of IL-9, IL-6, IL-13, TNF- ⁇ , and VEGF.
  • Term A13 The determination method according to Item A12, wherein the specific marker is a combination of IL-9, TNF- ⁇ and VEGF, or a combination of IL-6 and IL-13.
  • the specific marker is at least one selected from the group consisting of IL-7, IL-8, IL-12, IL-13, IP-10, VEGF, IL-1 ⁇ , TNF- ⁇ , and sIL-6R.
  • the determination method according to Item A1 wherein: Term A15.
  • the determination method according to Item A14, wherein the specific marker is a combination of IL-1 ⁇ , IL-7, TNF- ⁇ , and sIL-6R.
  • Term A16 is a combination of IL-1 ⁇ , IL-7, TNF- ⁇ , and sIL-6R.
  • a method for predicting the improvement of symptoms after treatment with tocilizumab in a patient with rheumatism who has received anti-cytokine therapy in the past The specific marker is IL-1 ⁇ , IL-5, IL-6, IL-7, IL-10, IL-12, IL-13, IL-15, FGFbasic, GM-CSF, IFN- ⁇ , TNF- ⁇ .
  • Term A17 is at least one selected from the group consisting of VEGF.
  • a method for predicting and determining the improvement in symptoms after treatment with etanercept The determination according to Item A1, wherein the specific marker is at least one selected from the group consisting of IL-6, IP-10, IL-2, IL-13, IL-15, sIL-6R, and sTNNFRI. Method.
  • Term A18 The determination method according to Item A17, wherein the specific marker is a combination of IL-2, IL-15, sIL-6R, and sTNFRI, or a combination of IL-6 and IL-13.
  • a method for selecting a biological product comprising selecting a biological product having a high value. Term A20.
  • a method of selecting a biological product that is more effective for treatment in a rheumatic patient who has not received anti-cytokine therapy in the past from a biological product comprising tocilizumab and etanercept A step of predicting and determining a disease activity index after treatment with tocilizumab according to the determination method of Item A10 or A11; A step of predicting and determining a disease activity index after treatment with etanercept according to the determination method according to Item A12 or A13, and a disease activity index after treatment with tocilizumab predicted and determined in the step and a disease after treatment with etanercept
  • a method for selecting a biological product comprising a step of comparing a activity index and selecting a biological product having a low disease activity index after treatment.
  • a method of selecting a biological product that is more effective for treatment in a rheumatic patient who has not received anti-cytokine therapy in the past from a biological product comprising tocilizumab and etanercept The step of predicting and determining the improvement in symptoms after treatment with tocilizumab according to the determination method of Item A14 or A15; The step of predicting and determining the degree of improvement of symptoms after treatment with etanercept according to the determination method according to Item A17 or A18, and the degree of improvement of symptoms after treatment with tocilizumab predicted in the step and symptoms after treatment with etanercept
  • a method for selecting a biological product comprising a step of selecting a biological product having a high degree of improvement in symptoms after treatment.
  • a diagnostic agent comprising a detectable reagent.
  • a biological preparation targeting inflammatory cytokines such as IL-6 and TNF- ⁇ (herein referred to as “biological preparation” unless otherwise specified)
  • biological preparation targeting inflammatory cytokines such as IL-6 and TNF- ⁇
  • the therapeutic effect on rheumatoid arthritis patients can be accurately estimated, and whether or not rheumatoid arthritis is in a complete remission state can be determined with high accuracy.
  • the present invention it is possible to predict which biological product is most effective for rheumatoid arthritis patients before treatment, so that the optimal biological product is selected for each patient.
  • the most effective treatment policy can be established for each patient.
  • anti-IL-6 agent and anti-TNF- ⁇ agent have different effects on patients and can be predicted, and anti-IL-6 agent is effective for patients with effective anti-IL-6 agent.
  • -6 drugs can be administered, and it is now possible to administer anti-TNF- ⁇ agents to patients for whom anti-TNF- ⁇ agents are effective.
  • the anti-IL-6 agent and anti-TNF- ⁇ agent have different mechanisms of action.
  • the difference can be clearly determined before treatment. Rheumatoid treatment is achieved.
  • rheumatoid arthritis patients who are effective in the administration of biological products can be identified. Therefore, for patients, reduction of treatment costs, provision of a sense of security by predicting treatment effects, etc. This makes it possible for doctors to establish appropriate treatment strategies based on accurate predictions of the effectiveness of biological products.
  • the present invention does not require a complicated and time-consuming gene analysis that is not versatile, and uses the concentration of a specific cytokine, chemokine, and / or soluble receptor in serum as an index.
  • the effectiveness of a biologic agent targeting inflammatory cytokines can be estimated in advance for each patient in a simple and inexpensive manner using the method.
  • the predicted DAS-28 value after 16 weeks of treatment calculated by the regression equation (4) before treatment and the DAS after 16 weeks of treatment It is a figure which shows the result of having contrasted -28 value with the actual value.
  • the predicted DAS-28 value after 16 weeks of treatment calculated by the regression equation (5) before treatment, and the DAS after 16 weeks of treatment It is a figure which shows the result of having contrasted -28 value with the actual value.
  • FIGS. 6-1 to 6-4 are graphs showing clinical baseline demographics of healthy subjects and rheumatoid arthritis patients with respect to serum concentrations of cytokines / chemokines / soluble receptors.
  • FIGS. 6-1 to 6-4 are graphs showing clinical baseline demographics of healthy subjects and rheumatoid arthritis patients with respect to serum concentrations of cytokines / chemokines / soluble receptors.
  • FIGS. 6-1 to 6-4 are graphs showing clinical baseline demographics of healthy subjects and rheumatoid arthritis patients with respect to serum concentrations of cytokines / chemokines / soluble receptors.
  • FIGS. 6-1 to 6-4 are graphs showing clinical baseline demographics of healthy subjects and rheumatoid arthritis patients with respect to serum concentrations of cytokines / chemokines / soluble receptors.
  • FIGS. 6-1 to 6-4 are graphs showing clinical baseline demographics of healthy subjects and rheumatoid arthritis patients with respect to serum concentrations of cytokines / chemokines / soluble receptors. It is a figure which shows the relationship between the DAS-28 value before a treatment, and the DAS-28 value 16 weeks after a treatment in an anti-IL-6 agent (tocilizumab) treatment patient and an anti-TNF- ⁇ agent (etanercept) treatment patient.
  • an anti-IL-6 agent tocilizumab
  • an anti-TNF- ⁇ agent etanercept
  • the ROC curve of sgp130 alone and the ROC graph calculated in consideration of logIL-6, logIP-10 and logTNFRII in addition to this are shown.
  • A shows a naive patient and B shows a switch patient.
  • the thick line shows the ROC curve for sgp130, logIL-6, logIP-10 and logTNFRII, and the thin line shows the ROC curve for sgp130 alone (also indicated by arrows in the figure).
  • the present invention relates to the effectiveness of treatment with a biologic agent targeting inflammatory cytokines in patients with rheumatoid arthritis (for example, the possibility of remission, improvement in symptoms after treatment, disease activity index, etc.).
  • a method for determining is provided.
  • the method of the invention is referred to in contrast to a biologic (as described herein below, a “specific marker”) by measuring the concentration of a specific marker in a body sample of a rheumatoid arthritis patient. In some cases, it is also referred to as “specific biological product”).
  • the method of the present invention pre-determines the degree of improvement of symptoms after treatment with a specific biologic to the patient by measuring the concentration of a specific marker in a body sample of a rheumatoid arthritis patient. Including methods to do.
  • the present invention provides a method for predetermining a disease activity index after treatment with a specific biologic to a patient by measuring the concentration of the specific marker in a body sample of a rheumatoid arthritis patient including.
  • the “body sample” refers to any sample collected from the patient's body, and includes, but is not limited to, serum, blood, urine, saliva, and the like.
  • serum is preferably used.
  • the method of the invention is practiced using serum collected from a patient with rheumatoid arthritis prior to administration of the biologic.
  • sgp130, IP-10, sTNFRRI, sTNFRII, GM-CSF are used as markers (also referred to as “specific markers” in the present invention) for determining the effectiveness of treatment of a specific biological product.
  • markers also referred to as “specific markers” in the present invention.
  • an indication of the patient's pre-treatment condition eg, pre-treatment DAS28 score, etc.
  • an indication of the state of the patient before treatment is also included.
  • markers that can be used for anti-IL-6 agents include sgp130, logIL-6, logIL-8, logEotaxin, logIP-10, logVEGF, logsTNFR-I, and logsTNFR-II. These markers can be used to predict future treatment indicators such as the 16-week DAS28-CRP score in naive patients.
  • markers that can be used for anti-IL-6 agents include sgp130, logGM-CSF, and logIP-10. These markers can be used to predict future treatment indicators such as the 16-week DAS28-CRP score in switch patients.
  • markers that can be used for anti-TNF- ⁇ agents include logIL-9, logVEGF and logTNF- ⁇ . These markers are effective in predicting the 16-week DAS28-CRP score in na ⁇ ve patients.
  • the determination is performed using the concentration of the specific marker of the present invention in the body sample. Therefore, the method of the present invention measures the concentration of the specific marker in the body sample (for example, serum). The process of carrying out is included.
  • the determination method of the present invention will be described in detail.
  • the determination method of the present invention is a method for predicting and determining the therapeutic effect of a biological preparation targeting inflammatory cytokines in rheumatoid arthritis patients.
  • the biological product targeting the inflammatory cytokine is not limited to the biological product used for the treatment of rheumatoid arthritis, and the type of the biological product to be used is not limited. Accordingly, the therapeutic effect can be predicted and determined.
  • biological preparations targeting inflammatory cytokines include anti-IL-6 agents and anti-TNF- ⁇ agents.
  • the therapeutic effect of a biological product comprising an anti-IL-6 agent and an anti-TNF- ⁇ agent is predicted.
  • the anti-IL-6 agent and the anti-TNF- ⁇ agent will be described in further detail.
  • anti-IL-6 agent refers to a drug capable of treating rheumatoid arthritis by inhibiting the IL-6 signaling pathway.
  • specific examples of the anti-IL-6 agent include humanized anti-IL-6 receptor antibody, anti-IL-6 antibody and the like.
  • specific examples of the humanized anti-IL-6 receptor antibody include tocilizumab, salilumab, and the like, and specific examples of the anti-IL-6 antibody include silumab, olokizumab, and the like.
  • anti-TNF- ⁇ agent refers to a drug capable of treating rheumatoid arthritis by inhibiting the TNF- ⁇ signaling pathway.
  • specific examples of the anti-TNF- ⁇ agent include a human soluble TNF / LT ⁇ receptor comprising an Fc region of human IgG1 and a subunit dimer of the extracellular domain of human tumor necrosis factor type II receptor, anti-TNF- Examples include ⁇ antibodies.
  • Specific examples of the human soluble TNF / LT ⁇ receptor include etanercept, and specific examples of the anti-TNF- ⁇ antibody include adalimumab, infliximab, golimumab, certolizumab and the like.
  • preferable ones applied in the determination method of the present invention include a humanized anti-IL-6 receptor antibody and a human-type soluble TNF / LT ⁇ receptor, more preferably tocilizumab and etanercept.
  • a humanized anti-IL-6 receptor antibody and a human-type soluble TNF / LT ⁇ receptor more preferably tocilizumab and etanercept.
  • the specific cytokine, chemokine and / or soluble receptor employed as the specific marker in the present invention are all molecules related to rheumatoid arthritis.
  • Rheumatoid arthritis is called a multifactorial disease. If a specific cause is found, it is considered that it can be appropriately treated by administering an effective therapeutic agent for the cause.
  • An application of this concept is a biological product. Since the cause of rheumatoid arthritis is usually cytokines, treatment with biologics is also called “anti-cytokine therapy”.
  • Biologics generally have a target that modifies the activity, and the rheumatoid arthritis symptom is suppressed by modifying the specific target (for example, suppressing binding of the binding factor to the target).
  • IL-6 and TNF- ⁇ are known as therapeutic targets for rheumatoid arthritis, and the corresponding drugs are categorized as anti-IL-6 agents and anti-TNF- ⁇ agents, respectively.
  • IL-6 activates IL-6 signaling and ultimately causes rheumatoid arthritis symptoms.
  • TNF- ⁇ activates TNF- ⁇ signaling and eventually causes rheumatoid arthritis symptoms.
  • An anti-IL-6 agent exhibits a therapeutic effect (for example, an effect of sedating rheumatoid arthritis) by suppressing IL-6 signaling, and an anti-TNF- ⁇ agent exhibits TNF- ⁇ signaling.
  • a therapeutic effect for example, an effect of sedating rheumatoid arthritis
  • other biological products having different targets have the same relationship.
  • a biological product exerts a therapeutic effect by acting on the signal transduction of a therapeutic target factor in a direction opposite to that in which the symptoms of rheumatoid arthritis occur.
  • anti-IL-6 agent eg, anti-IL-6 antibody, anti-IL-6 receptor antibody, etc.
  • knowledge about the in vivo response of a certain therapeutic agent belonging to an anti-IL-6 agent is based on other therapeutic agents belonging to the same category (for example, if a certain therapeutic agent is a humanized anti-IL-6 receptor antibody). It is understood that other types of humanized anti-IL-6 receptor antibodies or antibodies, fragments, derivatives, etc. against IL-6) may also be applied.
  • IL-6 binds to IL-6R and the complex binds to gp130, and it is known that IL-6 signals are transmitted into cells via gp130.
  • sIL-6R also binds to IL-6 and a signal is transmitted through gp130. Therefore, sIL-6R in the blood is not an inhibitory molecule but a potentiator.
  • sgp130 binds to the IL-6 / IL-6R complex and thus becomes an inhibitory molecule of IL-6.
  • sIL-6R is related to IL-6 inhibition therapy in vivo. It can also be derived from the results of the Examples that sIL-6R is less effective when the blood standard is higher in the IL-6 inhibition treatment, and more effective when sgp130 is higher.
  • sgp130 can be used as a marker for predicting treatment with anti-IL-6 agents based on the findings with tocilizumab. From the relationship between sgp130 and IL-6 signal transduction including the knowledge in the above-mentioned field, it is understood by those skilled in the art that any anti-IL-6 agent produces the same in vivo reaction. Therefore, it will be understood by those skilled in the art that the knowledge regarding sgp130 obtained with tocilizumab can be applied to other anti-IL-6 agents as well.
  • sgp130 can be used to predict patient remission and disease activity index with anti-IL-6 agents.
  • the following markers have been found to be usable for various predictions regarding anti-IL-6 agents.
  • -Prediction of potential remission IP-10, sTNFRII, IL-6, IL-7, MCP-1, and IL-1 ⁇
  • -Prediction of improvement in symptoms IL-1 ⁇ , IL-7, TNF- ⁇ and sIL-6R
  • IL-8 Eotaxin
  • markers are factors (cytokines, chemokines, and / or soluble receptors) related to the pathological condition of rheumatoid arthritis. Therefore, these markers that are found to be highly relevant to tocilizumab, which is an anti-IL-6 agent, can be said to be common information regarding the respective predictions of IL-6 inhibition therapy (tocilizumab, silkmab, etc.). Therefore, it is understood that any regression equation obtained for tocilizumab obtained in the examples of the present invention can be used as it is or after fine adjustment for other anti-IL-6 agents. For various anti-IL-6 agents, the detailed numerical values disclosed in the present invention may not be applicable to the regression equation. Even in such a case, the person skilled in the art will carry out further analysis such as retrospective analysis as necessary based on the description of this specification and the clinical data actually obtained, about the specific anti-IL-6 agent. A regression equation can be created.
  • the fact that sgp130 can be used for prediction of remission and disease activity index is a remarkable feature in view of previous knowledge.
  • the accuracy of AUC (Area Under Curve) exceeding about 0.8 when judged with a combination of sgp130 and the other markers mentioned above it was revealed in the present invention that the accuracy is about 0.9 (see Tables 12 to 13). As described above, it is shown that the present invention can make an extremely accurate prediction determination with unprecedented accuracy.
  • the anti-TNF- ⁇ agent can be explained in the same manner as the anti-IL-6 agent, and common information regarding the anti-TNF- ⁇ agent can be explained based on the knowledge obtained in the present invention. This will be described below.
  • Anti-TNF- ⁇ agents are also of the type (for example, human soluble TNF / LT ⁇ receptor consisting of Fc region of human IgG1 and subunit dimer of extracellular domain of human tumor necrosis factor type II receptor, anti-TNF- Regardless of ( ⁇ antibody), all of them exhibit a therapeutic effect with the same mechanism of action in the sense that the binding between TNF- ⁇ and TNF- ⁇ receptor is suppressed in some manner. Since it is understood that the response after TNF- ⁇ signaling is suppressed is the same regardless of the suppression mode, the in vivo response regarding the treatment process of rheumatoid arthritis also depends on the type of anti-TNF- ⁇ agent. The same is true.
  • knowledge regarding the in vivo response of a certain therapeutic agent belonging to an anti-TNF- ⁇ agent is based on other therapeutic agents belonging to the same category (for example, if a certain therapeutic agent is a human soluble TNF / LT ⁇ receptor, Of human type soluble TNF / LT ⁇ receptor or anti-TNF- ⁇ antibody, fragment, derivative, etc.).
  • markers are known to be factors (cytokines, chemokines, and / or soluble receptors) relating to the pathology of rheumatoid arthritis.
  • these markers found to be highly related to etanercept, which is TNF- ⁇ , are common information regarding the predictions of each of TNF- ⁇ inhibition therapies (etanercept, adalimumab, infliximab, golimumab, and certolizumab, etc.) is there. Therefore, any of the regression equations obtained for etanercept obtained in the examples of the present invention can be used for other anti-TNF- ⁇ agents as they are or after fine adjustment.
  • IL-9 and TNF- ⁇ are used for the prior determination of rheumatoid arthritis remission.
  • a DAS-28 value before administration can be used, but is not limited thereto.
  • the AUC shows a relatively high value of 0.745. The prediction of remission of anti-TNF- ⁇ agents with these two specific markers and two markers different from anti-IL-6 agents has not been possible with conventional therapeutic techniques.
  • the marker for predicting the therapeutic effect of the anti-IL-6 agent was completely different from the marker for predicting the therapeutic effect of the anti-TNF- ⁇ agent. This is because rheumatoid arthritis was regarded as one disease and was not expected from the current treatment framework in which uniform treatment is being performed. On the other hand, rheumatoid arthritis is a multifactorial disease, and biologics directly target its cause. In the past it was unclear whether these causes were independent or related to each other.
  • TNF- ⁇ inhibition therapy such as etanercept is usually treated in combination with methotrexate administration because patients alone often do not remit.
  • methotrexate is known to suppress the IL-6 pathway without suppressing the TNF- ⁇ pathway (Nishina N et al., Clin Rheumatol. 2013 Nov; 32 (11): 1661-6).
  • some of the markers related to anti-TNF- ⁇ agents found in the present invention are anti-IL. -It may overlap with the 6-drug marker. In such a case, it is preferable to make a predictive determination by removing a marker that overlaps with the marker of the anti-IL-6 agent.
  • markers overlapping with anti-IL-6 drug markers can be eliminated by large-volume variable analysis or logistic analysis as necessary.
  • Patient to be determined it is determined whether or not the administration of the biological product is effective in the rheumatoid arthritis patient before the biological product is administered.
  • whether or not the subject rheumatoid arthritis is receiving DMARDs such as methotrexate is not particularly limited as long as it is before administration of the biological product. Or administration history of past anti-cytokine therapy (administration of infliximab, etanercept, adalimumam, tocilizumab, etc.).
  • administration history of past anti-cytokine therapy administration of infliximab, etanercept, adalimumam, tocilizumab, etc.
  • the determination method of the present invention predicts the therapeutic effect of the biological product by selecting a desired specific marker according to the past administration history of the biological product. Can be determined.
  • sgp130 soluble gp130
  • IP-10 interferon-inducible protein 10
  • sTNFRRI soluble receptors for tumor necrosis factor type I
  • sTNFRII soluble receptor for tumor necrosis
  • GM-CSF granulocyte macrophagecolony-stimulating factor
  • I6 interleukin-6
  • IL-7 interleukin-7
  • IL-8 interleukin-8
  • IL-9 interleukin-9
  • IL- 10 interleukin-10
  • IL-12 interleukin-12
  • IL-13 interleukin-13
  • IL-15 interleukin-15
  • Eotaxin VEGF (vascular endothelial growth factor)
  • MCP-1 monocyte chemotactic protein -1
  • TNF- ⁇ tumorornecrosis factor- ⁇
  • IFN- ⁇ interferon- ⁇
  • FGF basic basic fibroblast growth factor
  • PDGF-bb Platinum-derived growth factor bb
  • one or more selected from the group consisting of sIL-6R soluble receptors for interleukin-6) and MIP-1 ⁇ (macrophage inflammatory protein-1 ⁇ ) (specific specification) Then, it is also called “determination marker”).
  • one of the above-described specific cytokines, chemokines, and soluble receptors may be used alone as a specific marker, but the therapeutic effect of a biological agent is predicted and determined with higher accuracy. From the viewpoint, it is preferable to combine two or more of these to make a specific marker. Furthermore, it is more preferable to use a set of specific markers with high determination accuracy shown in the present specification.
  • the specific marker is appropriately selected and used depending on the content of the therapeutic effect to be predicted, the type of biological product to be administered, the administration history of past biological products, and the like.
  • specific examples preferable as specific markers will be specifically shown for each content of the therapeutic effect to be predicted (improvement of symptoms after treatment, possibility of remission, disease activity index).
  • IL-7 Preferably, at least one selected from the group consisting of IL-8, IL-12, IL-13, IP-10, VEGF, IL-1 ⁇ , TNF- ⁇ , and sIL-6R is used as the specific marker. More preferably, IL-1 ⁇ , IL-7, TNF- ⁇ , and sIL-6R are used in combination as specific markers.
  • IL-1 ⁇ IL-1 ⁇
  • IL- 5 at least selected from the group consisting of IL-6, IL-7, IL-10, IL-12, IL-13, IL-15, FGFbasic, GM-CSF, IFN- ⁇ , TNF- ⁇ , and VEGF
  • IL-6 agent therapy switch patient a switch patient to whom an anti-IL-6 agent (eg, tocilizumab) is administered
  • IL-1 ⁇ IL-1 ⁇
  • IL- 5 at least selected from the group consisting of IL-6, IL-7, IL-10, IL-12, IL-13, IL-15, FGFbasic, GM-CSF, IFN- ⁇ , TNF- ⁇ , and VEGF
  • IL-6 agent therapy switch patient at least selected from the group consisting of IL-6, IL-7, IL-10, IL-12, IL-13, IL-15, FGFbasic, GM-CSF, IFN- ⁇ , TNF- ⁇ , and VEGF
  • IL-6 IL-6
  • IP- anti-TNF- ⁇ agent-treated naive patient
  • at least one selected from the group consisting of 10, IL-2, IL-13, IL-15, sIL-6R, and sTNFRI is used as the specific marker, and IL-2, IL-15, sIL- A combination of 6R and sTNFRI is more preferable as a specific marker.
  • a patient who is an anti-TNF- ⁇ agent for example, etanercept
  • an anti-TNF- ⁇ agent therapy switch patient who is a switch patient
  • anti-TNF- ⁇ agent therapy at least one selected from the group consisting of IL-6, IP-10, IL-2, IL-13, IL-15, sIL-6R, and sTNFRI may be used as a specific marker.
  • a combination of IL-2, IL-15, sIL-6R, and sTNFRI is more preferable as a specific marker.
  • the marker for naive patients treated with anti-TNF- ⁇ drug is information obtained in combination with methotrexate.
  • Methotrexate is known to have an effect on rheumatoid arthritis through inhibition of the IL-6 signaling pathway. Therefore, even if it is an “anti-TNF- ⁇ therapy naive patient” for a biologic, it can be said that the patient has already undergone some modification to the IL-6 signaling pathway.
  • the marker of “anti-TNF- ⁇ drug therapy na ⁇ ve patient” obtained in the present invention is in substantially the same state as the marker of “anti-TNF- ⁇ drug therapy switch patient”.
  • the marker of “anti-TNF- ⁇ drug therapy naive patient” obtained in the present invention can be similarly applied to predicting the effect in “anti-TNF- ⁇ drug therapy switch patient”. it can.
  • methotrexate is known to suppress the IL-6 pathway
  • the marker used in the “anti-TNF- ⁇ therapy switch patient” also overlaps with the anti-IL-6 drug marker. It can happen. In such a case, analysis can be performed by removing a marker overlapping with the marker of anti-IL-6 agent as necessary.
  • At least one selected from the group consisting of sgp130, IL-8, Eotaxin, IP-10, sTNNFRI, sTNFRII, IL-6, and VEGF is used as a specific marker
  • a combination of sgp130, IL-8, Eotaxin, IP-10, sTNFRI, sTNFRII, and IL-6, or sgp130, IL-8, Eotaxin, IP-10, sTNNFRI, sTNFRII, IL-6, and VEGF Is more preferable as a specific marker.
  • Any anti-IL-6 agent can be used as a target for prediction determination, but tocilizumab is preferable.
  • Anti-IL-6 therapy switch patients from the group consisting of sgp130, IL-1 ⁇ , IL-2, IL-5, IL-15, GM-CSF, IFN- ⁇ , TNF- ⁇ , and IP-10
  • at least one selected is used as a specific marker; a combination of sgp130, IP-10, and GM-CSF is more preferable as a specific marker.
  • any anti-IL-6 agent can be used for predictive determination, but tocilizumab is preferred.
  • IL-9 IL-9
  • IL-6 IL-13
  • TNF- ⁇ and VEGF a combination of IL-6 and IL-13
  • any anti-TNF- ⁇ agent to be subjected to prediction determination may be used, but etanercept is preferred.
  • Sgp130 IP-10, sTNFRII, IL-6, IL for patients to whom anti-IL-6 agents are administered (including both anti-IL-6 drug naive patients and anti-IL-6 drug switch patients) -7, preferably using at least one selected from the group consisting of MCP-1 and IL-1 ⁇ as a specific marker; more preferably using at least sgp130, (i) sgp130, and (ii) IP More preferred is a combination of -10, (iii) sTNFRII and (iv) IL-6, IL-7, MCP-1 or IL-1 ⁇ .
  • sgp130 in the case of naive patients treated with anti-IL-6 drugs, (i) sgp130, (ii) IP-10, (iii) sTNFRII, (iv) IL-6, IL-7
  • a combination of MCP-1 or IL-1 ⁇ is particularly preferred as a specific marker.
  • a combination of (i) sgp130, (ii) IP-10, (iii) sTNFRII, and (iv) IL-6 or IL-1 ⁇ is specified. Particularly preferred as a marker.
  • any anti-IL-6 agent can be used for predictive determination, but tocilizumab is preferred.
  • naive patients who are anti-TNF- ⁇ drug therapy it is preferable to use at least one selected from the group consisting of IL-9, TNF- ⁇ , VEGF, PDGF-bb, and MIP-1 ⁇ as a specific marker;
  • a combination of IL-9 and TNF- ⁇ , a combination of VEGF and PDGF-bb, or a combination of MIP-1 ⁇ and PDGF-bb is particularly preferred as the specific marker.
  • any anti-TNF- ⁇ agent to be subjected to prediction determination may be used, but etanercept is preferred.
  • These specific markers can be used for anti-TNF- ⁇ drug therapy switch patients as well as for anti-TNF- ⁇ drug therapy naive patients.
  • the concentrations of the cytokines, chemokines, and soluble receptors used as specific markers in the serum can be measured by a measurement system using an antigen-antibody reaction such as ELISA, and these measurement kits are also commercially available. Yes. Therefore, in the determination method of the present invention, the cytokine, chemokine and soluble receptor can be measured by a known method or a known measurement kit. Reagents used in the measurement system utilizing such antigen-antibody reaction can be provided individually or in sets as diagnostic agents for determination of each biological product.
  • the therapeutic effect by specific biological preparation such as anti-IL-6 agent and anti-TNF- ⁇ agent can be predicted.
  • the specific marker is measured in advance for a patient who has been completely remissioned by treatment with a specific biological product or a patient who has not been in remission, and the therapeutic effect (target variable) of the biological product and the specific marker are determined by regression analysis.
  • a regression equation of the measured value is obtained, and the measured value of the specific marker of the rheumatoid arthritis patient to be determined is applied to the regression equation.
  • the selection of these log values or concentration values is based on the comparison with the normal distribution of normal persons.
  • the present inventors examined whether the concentration values should be used as they are or whether the log values should be adopted. As a result of the examination, the correlation value was high.
  • the regression equation is preferably derived by multiple regression analysis. What is necessary is just to set suitably about the objective variable in the said regression type based on the content of the therapeutic effect which should be predicted.
  • the objective variable is “the value of the disease activity index after treatment for a predetermined period from the value of the disease activity index before treatment”.
  • the value may be set to “subtracted value” and analyzed by linear multiple regression analysis.
  • the objective variable is set to “value of the disease activity index after treatment for a predetermined period”, and linear multiplexing is performed. What is necessary is just to analyze by regression analysis.
  • the value of the disease activity index examples include DAS (Disease activity score) -28 value, CDAI (Clinical Disease Activity Index) value, and SDAI (SimpleDiseaseDActivity Index) value. Since the DAS-28 value, the CDAI value, and the SDAI value are correlated with each other and reflect the symptoms of rheumatoid arthritis, the determination method of the present invention uses any of these disease activity index values. May be. Moreover, the disease activity index used in the determination method of the present invention is not limited to those exemplified above, and those that can be newly proposed in the future can also be used. It has been demonstrated herein that DAS28 is used similarly whether it is DAS28-CRP or DAS28-ESR.
  • the degree of improvement may be 0 (invariant) or a negative value. In that case, it cannot be said that it is improving, and if it is unchanged, it indicates that there is no improvement. If it is negative, it indicates that it is getting worse. Of course, if it is negative, the person skilled in the art will decide not to use the biologic.
  • the value of disease activity index before treatment (DAS-28 value, CDAI value, SDAI value, etc.) and evaluation results by Boolean method as necessary May also be used as an explanatory variable.
  • the determination method of the present invention specific methods will be described by dividing the therapeutic effect of prediction determination into the degree of improvement of symptoms after treatment, the DAS-28 value after treatment, and the possibility of remission.
  • the determination method of the present invention is not construed as being limited to the following specific method.
  • the degree of improvement in symptoms after 16 weeks of treatment with specific biological preparations such as anti-IL-6 agents and anti-TNF- ⁇ agents degree of improvement in DAS-28 values; DAS-28 before treatment) Value-DAS-28 value after 16 weeks of treatment
  • the following formulas (1) and (2) can be seen, divided into the past medication history and biologic type of rheumatic patients. Has been issued.
  • treatment is performed for 16 weeks by applying an objective variable by applying either of the regression equations (1) and (2) below.
  • the degree of improvement of later symptoms can be predicted. The larger the objective variable calculated by the following regression equation is, the greater the value of the patient is predicted to be determined by the specific biological product.
  • the regression equations (1) and (2) in order to predict and determine the improvement in DAS-28 value after 16 weeks of treatment with a specific biological product such as an anti-IL-6 agent or an anti-TNF- ⁇ agent
  • a specific biological product such as an anti-IL-6 agent or an anti-TNF- ⁇ agent
  • An example of the regression equation used is shown, but, of course, the CDAI value after 16 weeks of treatment with the biologic agent by performing linear multiple regression analysis in the same manner using CDAI values or SDAI values
  • the improvement degree of SDAI value (CDAI value or improvement degree of SDAI value; CDAI value or SDAI value before treatment-CDAI value or SDAI value after 16 weeks of treatment) can also be predicted.
  • the regression equations (1) and (2) are used to predict and determine the improvement in symptoms after 16 weeks of treatment.
  • the improvement of symptoms before or after 16 weeks of treatment with each specific biological product is predicted by performing linear multiple regression analysis using the same method. Is possible.
  • Other anti-TNF- ⁇ In the case of using an agent, other anti-TNF- ⁇ agents selected using the same methods as those used in Examples etc. with reference to the types of the specific markers and parameters such as the variables and coefficients of the regression equation A regression equation for can be created.
  • the regression equations (3) to (7) are used to predict and determine DAS-28 values after 16 weeks of treatment with specific biological products such as anti-IL-6 agents and anti-TNF- ⁇ agents.
  • An example of a regression equation is shown.
  • CDAI values after 16 weeks of treatment with each specific biological product Alternatively, the SDAI value itself can be predicted.
  • the regression equations (3) to (7) the disease after treatment for 16 weeks
  • the regression formula for predicting and determining the value of the activity index is shown.
  • the value of the disease activity index before or after 16 weeks of treatment with each specific biological product is used in the same manner. Predictive judgment can be made by performing linear multiple regression analysis.
  • the possibility of remission (whether remission or non-remission) after 16 weeks of treatment with a specific biological product such as an anti-IL-6 agent or an anti-TNF- ⁇ agent is predicted.
  • the following formulas (8) to (16) are found by dividing the rheumatic patient's past medication history and types of biological products. The probability of remission after treatment for 16 weeks according to any of the following regression equations (8) to (16), depending on the past medication history of the rheumatoid arthritis patient to be determined and the type of biological product (p ) Can be used to predict whether or not remission will occur after 16 weeks of treatment.
  • the probability of remission estimated from the following regression equations (8) to (16) refers to the probability that the DAS-28 value will be 2.3 or less, and is calculated by the regression equations (8) to (16).
  • the DAS-28 value is 2.3
  • the boundary between remission and non-remission is that inhibition of IL-6 tends to decrease the CRP value regardless of inflammation, and the DAS-28 value decreases. Therefore, it is set to a value lower than the DAS-28 value (2.6), which is the boundary between general remission and non-remission, in order to improve the accuracy of judgment of remission and prediction.
  • regression equations (6) to (16) when the DAS-28 value after treatment for 16 weeks is 2.3 or less, the remission is over 2.3, and when the DAS-28 value is over 2.3, the remission is not treated.
  • An example of a regression equation for predicting the possibility of remission is shown.
  • the above regression equations (6) to (16) indicate the possibility of remission after 16 weeks of treatment.
  • Regression formulas for predicting and judging are shown.
  • the possibility of remission before or after 16 weeks of treatment with biological products is also judged by conducting logistic multiple regression analysis using the same method. Is possible.
  • the determination method of the present invention can be used to select the optimal biologic to be administered before the start of treatment because the therapeutic efficacy can be predicted prior to administration of the biologic.
  • the method for selecting a biological product of the present invention is to determine in advance remission by a specific biological product according to the method of the present invention, and to select a specific biological product with a high probability of the remission.
  • the method for selecting a biological product of the present invention determines in advance the degree of improvement of symptoms after treatment with a specific biological product according to the method of the present invention, and the degree of improvement of symptoms after the treatment.
  • a method of selecting a biologic that is effective for the patient by selecting a high biologic comprises determining in advance a disease activity index after treatment with a specific biological product in a patient according to the method of the present invention, and said disease activity index. Including selecting a biologic that is effective for the patient by selecting a biologic that is below a predetermined criterion.
  • the degree of improvement in symptoms after treatment of na ⁇ ve patients is predicted by the above-described method in the case of administration of an anti-IL-6 agent (eg, tocilizumab) and in the case of administration of an anti-TNF- ⁇ agent (eg, etanercept).
  • an anti-IL-6 agent eg, tocilizumab
  • an anti-TNF- ⁇ agent eg, etanercept
  • the degree of improvement in symptoms after treatment with anti-IL-6 agent eg, tocilizumab
  • anti-IL-6 agent eg, tocilizumab
  • the regression equation (2) Compared with the degree of improvement in symptoms after treatment with etanercept anti-TNF- ⁇ agent (eg, etanercept) therapy predicted using an equation adjusted based on this regression equation, the one with the larger degree of improvement It can be selected as the optimal biologic.
  • the degree of improvement of symptoms after treatment it is also possible to determine whether or not to administer the specific biological product when the degree of improvement in symptoms after treatment that is actually calculated is greater than or equal to a predetermined criterion.
  • the degree of improvement in symptoms after treatment calculated using regression equations (1), (2), etc. is expressed as DAS-28 value before treatment-DAS-28 value after 16 weeks of treatment.
  • the value is 0 (that is, does not deteriorate), or 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more, 0.5 or more, 1.0 or more, 1.5 or more. It can also be determined that the specific biological product is administered when it exceeds 2.0, 2.5, 3.0, etc.
  • the specific value of such a standard is a specific numerical value described in the present specification, a numerical value therebetween (for example, 0.6 or higher) or a value exceeding this (for example, 3.5 or higher). Etc. can be arbitrarily set. On the other hand, if the degree of improvement is negative, it can be determined that the drug should not be administered.
  • each of the case of administration of an anti-IL-6 agent eg, tocilizumab
  • the case of administration of an anti-TNF- ⁇ agent eg, etanercept
  • a disease activity index is individually adopted for a biological product such as an anti-IL-6 agent or an anti-TNF- ⁇ agent in advance or based on experience. Whether or not the specific biological product is administered can be determined when the actually calculated disease activity index is equal to or lower than a predetermined standard. Specifically, when the disease activity index predicted by regression equations (3) to (7) is expressed as a DAS-28 value after 16 weeks of treatment, the value is 2.3 or less (remission) If it is 2.6 or less (non-remission but low activity), 4.1 or less (non-remission but moderate activity), etc., it may be determined to administer the specific biological product it can. The specific values of such criteria can be fine-tuned based on experience and the like in addition to the specific numerical values described in this specification. A value higher than 3 or lower than 2.3 can be used.
  • each of the case of administration of an anti-IL-6 agent (for example, tocilizumab) and the case of administration of an anti-TNF- ⁇ agent (for example, etanercept) is predicted by the above method, By selecting the biological product with the highest potential for remission, it is possible to administer the optimal biological product to the patient.
  • an anti-IL-6 agent for example, tocilizumab
  • an anti-TNF- ⁇ agent for example, etanercept
  • anti-IL-6 agent eg, tocilizumab
  • anti-TNF- ⁇ agent eg, etanercept
  • the probability of remission is administered when the actually calculated probability of remission is equal to or higher than a predetermined standard.
  • the probability of remission predicted by regression equations (8) to (16) is 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 85% or more, It can be determined that the particular biologic is administered when it is 90% or more or 95% or more.
  • the specific values of such criteria can be fine-tuned based on experience, etc., in addition to the specific numerical values described in this specification, and the specific values described in this specification. Even if it is other than, it is employable.
  • the diagnostic agent of the present invention is a diagnostic agent for determining the effectiveness of treatment with a biologic agent targeting inflammatory cytokines in patients with rheumatoid arthritis, comprising sgp130, IP-10, sTNFRI, sTNFRII, GM-CSF, IL-1 ⁇ , IL-2, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL- 15, a reagent capable of detecting at least one specific marker selected from the group consisting of Eotaxin, VEGF, MCP-1, TNF- ⁇ , IFN- ⁇ , FGFbasic, PDGF-bb, sIL-6R, and MIP-1 ⁇ It is characterized by including.
  • a biologic agent targeting inflammatory cytokines in patients with rheumatoid arthritis comprising sgp130, IP-10, sTNFRI, sTNFRII, GM-CSF, IL-1 ⁇ ,
  • the diagnostic agent of the present invention is a diagnostic agent used in a method for measuring the concentration of a specific marker in a body sample of a patient with rheumatoid arthritis to determine the remission of the patient in advance by a specific biological product.
  • the diagnostic agent includes a reagent for detecting the specific marker.
  • the diagnostic agent of the present invention measures the concentration of a specific marker in a body sample of a rheumatoid arthritis patient to pre-calculate the probability of the patient's remission by a plurality of specific biological products
  • the diagnostic agent of the present invention measures the concentration of a specific marker in a body sample of a rheumatoid arthritis patient to determine in advance the degree of improvement in symptoms after treatment with a specific biological product for the patient A diagnostic agent used in the method, wherein the diagnostic agent includes a reagent for detecting the specific marker.
  • the diagnostic agent of the present invention measures the concentration of a specific marker in a body sample of a patient with rheumatoid arthritis to preliminarily improve symptoms after treatment with multiple specific biological products.
  • a diagnostic agent used in a method for selecting a biological product effective for the patient by selecting a specific biological product having a high degree of improvement detects the specific marker Including reagents for After determining the improvement degree of the symptom after the treatment in advance, it can be used to determine that the biological product is administered by setting a predetermined level for the improvement degree in advance.
  • the degree of improvement of each of the specific biologics is calculated and compared to select which specific biologic should be administered.
  • a specific method of each specific marker used in these embodiments a method specifically described elsewhere in this specification including the section “1. Determination method” can be used.
  • the diagnostic agent of the present invention measures the concentration of a specific marker in a body sample of a rheumatoid arthritis patient to predetermine a disease activity index after treatment with a specific biological product to the patient It is a diagnostic agent containing the reagent for detecting this specific marker used for a method.
  • the diagnostic agent of the present invention measures the concentration of a specific marker in a body sample of a rheumatoid arthritis patient to give a disease activity index after treatment with a plurality of specific biologics to the patient.
  • a reagent for detecting the specific marker which is used in a method for selecting a biological product effective for the patient by selecting a specific biological product that is determined in advance and having a low disease activity index; It is a diagnostic agent. After determining the disease activity index in advance, it can be used to determine that the biological product is to be administered by setting a predetermined level for the disease activity index in advance. When using for multiple specific biological products, it is possible to select which specific biological product should be administered by calculating the disease activity index of multiple specific biological products and comparing them. . As a specific method of each specific marker used in these embodiments, a method specifically described elsewhere in this specification including the section “1. Determination method” can be used.
  • the reagent for the specific marker required can be selected and used. When there are a plurality of such reagents, they may be provided separately, may be provided together as a set, or may be provided as a kit together with other necessary reagents (for example, a color former).
  • the specific marker can be measured by a measurement system using an antigen-antibody reaction such as ELISA.
  • an antigen-antibody reaction such as ELISA.
  • an antibody capable of specifically binding to the specific marker specifically, an antibody capable of specifically binding to the specific marker, and its Fragment.
  • antibodies that can specifically bind to the specific marker may be provided on an appropriate support as an antibody array.
  • the diagnostic agent of the present invention may contain reagents (secondary antibodies, chromogenic substances, etc.) necessary for detecting the specific marker by antigen-antibody reaction.
  • the present invention further provides a therapeutic agent (also referred to as a personalized medicine or a companion therapeutic agent) that has been selected or determined to be appropriate by applying to the detection method, diagnostic method, and selection method.
  • a therapeutic agent also referred to as a personalized medicine or a companion therapeutic agent
  • the therapeutic agent of the present invention is a therapeutic agent for treating a patient with rheumatoid arthritis including a specific biological product, and the concentration of a specific marker in a body sample (eg, serum) of the patient is measured.
  • the effectiveness of the specific biological product is determined by measurement, and the specific biological product selected based on the determined matter or judged to be appropriate is administered.
  • the present invention provides a set of therapeutic agents for treating rheumatoid arthritis patients comprising a plurality of specific biological products.
  • the concentration of a specific marker in the patient's body sample is measured to calculate in advance the probability of remission of the patient by the specific biological product, and the specific biology with a high probability of remission
  • a typical formulation is administered to the patient.
  • Such therapeutic agents include at least one biologic selected from the group consisting of anti-IL-6 agents and anti-TNF- ⁇ agents.
  • measure the concentration of a specific marker in a patient's body sample eg, serum
  • a package insert or the like explaining that the drug is administered when it is selected or determined to be appropriate based on the matters may be attached.
  • Anti-IL-6 agents that can be used as the therapeutic agent or therapeutic agent set of the present invention include, but are not limited to, tocilizumab, salilumab, olokizumab, and silkmab.
  • Examples of the anti-TNF- ⁇ agent that can be used as the therapeutic agent or therapeutic agent knot of the present invention include, but are not limited to, etanercept, adalimumab, infliximab, golimumab, and certolizumab.
  • the set of therapeutic agents measures the concentration of a specific marker in a patient's body sample to determine in advance the probability of the patient's remission by the specific biological product.
  • a specific biological product that is calculated and has a high probability of remission is administered to the patient.
  • the therapeutic agents may be provided separately, although each biologic may be provided together. Accordingly, when a therapeutic agent is provided as a set, each therapeutic agent (eg, anti-IL-6 agent, anti-TNF-agent, etc.) is provided alone, and a package insert is provided for the therapeutic agent.
  • This package insert is based on, for example, other biologics and determination of efficacy based on the methods of the present invention (eg, likelihood of remission, improvement in symptoms after treatment, disease activity index itself) Including a statement explaining that it is determined whether to be administered as compared to
  • the attached document may be a paper medium, an electronic medium, or provided on the Internet or the like.
  • the method for treating rheumatoid arthritis patients comprises (A) measuring the concentration of a specific marker in a body sample of a rheumatoid arthritis patient, such as anti-IL-6 agent, anti-TNF- ⁇ agent, etc. Determining in advance the remission of the patient by the specific biological product, and if it is determined that the patient is in remission by the specific biological product in steps (B) and (A), the specific biological product is Administering to said patient. Judgment of remission is made when the probability of remission is above a certain criterion in the regression equation for predicting remission. Such a determination can be made using a technique specifically described elsewhere in this specification including the sections “ 1. Determination method ” and “ 2. Diagnostic agent ”.
  • the method for treating rheumatoid arthritis patients comprises (A) measuring a plurality of specific agents including an anti-IL-6 agent, an anti-TNF- ⁇ agent, etc. by measuring the concentration of a specific marker in a body sample of a rheumatoid arthritis patient.
  • the selection of a specific biological product is calculated by calculating the probability of remission in a regression equation that predicts remission for a plurality of specific biological products, and selecting the corresponding biological product with the higher probability of remission. Do by selecting. For example, a specific marker for prediction of remission of anti-IL-6 agent and a specific marker for prediction of remission of anti-TNF- ⁇ agent are selected, and the concentration of the specific marker in the serum of the subject patient is measured. Then, using the concentration or log value, the probability of remission of the anti-IL-6 agent and the probability of remission of the anti-TNF- ⁇ agent are calculated from the regression equation.
  • a pre-treatment index of the patient such as a DAS-28 value before administration can be used in combination.
  • the probability of remission of the anti-IL-6 agent is compared with the probability of remission of the anti-TNF- ⁇ agent, and it can be determined that a biologic that gives a high probability should be administered.
  • any kind of biological preparation may be used as the anti-IL-6 agent and the anti-TNF- ⁇ agent as long as they belong to the category.
  • certain markers of the invention are applicable as long as the biologic category (eg, anti-IL-6 agent, anti-TNF- ⁇ agent, etc.) is the same. Because it is done.
  • specific selection and determination methods are performed using the methods specifically described elsewhere in this specification including the above-mentioned sections “ 1. Determination method ” and “ 2. Diagnostic agent ”. be able to.
  • the method for treating a patient with rheumatoid arthritis comprises (A) measuring the concentration of a specific marker in a body sample of a patient with rheumatoid arthritis, thereby providing the patient with an anti-IL-6 agent, anti-TNF- a step of preliminarily determining the degree of improvement in symptoms after treatment with a specific biological preparation such as an ⁇ agent, and when the degree of improvement determined in steps (B) and (A) is greater than or equal to a predetermined reference Administering a biologic to the patient.
  • the decision to administer a biological product is made when the value obtained by calculating the degree of improvement of the symptoms after treatment described herein is above a predetermined criterion. Such a determination can be made using a technique specifically described elsewhere in this specification including the sections “ 1. Determination method ” and “ 2. Diagnostic agent ”.
  • the method for treating a patient with rheumatoid arthritis comprises (A) measuring the concentration of a specific marker in a body sample of a patient with rheumatoid arthritis, thereby providing an anti-IL-6 agent, anti-TNF- ⁇ to the patient.
  • the selection of the specific biological product is performed by calculating the improvement degree of the symptom after the treatment in a regression formula for predicting the improvement degree of the symptom after the treatment for a plurality of specific biological products. This is done by selecting the biological product corresponding to the one with the higher degree of improvement. For example, a specific marker for prediction of improvement in symptoms after treatment with an anti-IL-6 agent and a specific marker for prediction of improvement in symptoms after treatment with an anti-TNF- ⁇ agent are selected and the specific marker Measure the concentration of the subject's serum in the subject, etc., and use the concentration or log value to determine the degree of improvement of the symptoms after treatment with the anti-IL-6 agent and the symptoms after treatment with the anti-TNF- ⁇ agent from the regression equation The degree of improvement is calculated.
  • a pre-treatment index of the patient such as a DAS-28 value before administration can be used in combination. Then, compare the improvement in symptoms after treatment with anti-IL-6 and the improvement in symptoms after treatment with anti-TNF- ⁇ , and administer a biologic that gives a high improvement in symptoms after treatment Can be judged.
  • any kind of biological preparation may be used as the anti-IL-6 agent and the anti-TNF- ⁇ agent as long as they belong to the category.
  • certain markers of the invention are applicable as long as the biologic category (eg, anti-IL-6 agent, anti-TNF- ⁇ agent, etc.) is the same. Because it is done.
  • specific selection and determination methods are performed using the methods specifically described elsewhere in this specification including the above-mentioned sections “ 1. Determination method ” and “ 2. Diagnostic agent ”. be able to.
  • the method for treating rheumatoid arthritis patients of the present invention comprises (A) measuring the concentration of a specific marker in a body sample of a rheumatoid arthritis patient to determine whether the anti-IL-6 agent, A step of pre-determining a disease activity index after treatment with a specific biological product such as a TNF- ⁇ agent, and (B) when the disease activity index is not more than a predetermined standard in steps (A), Administering a specific biological product to the patient.
  • the determination that a biological product should be administered is made when the value obtained by calculating the disease activity index described herein is below a predetermined criterion. Such a determination can be made using a technique specifically described elsewhere in this specification including the sections “ 1. Determination method ” and “ 2. Diagnostic agent ”.
  • the method for treating rheumatoid arthritis patients of the present invention comprises (A) measuring the concentration of a specific marker in a body sample of a rheumatoid arthritis patient, thereby providing an anti-IL-6 agent, anti-TNF to the rheumatoid arthritis patient.
  • the selection of a specific biological product is performed by calculating the degree of improvement in symptoms after treatment in a regression equation that predicts the disease activity index after treatment for a plurality of specific biological products, and calculating the calculated disease after treatment. This is done by selecting the biological product with the lower activity index. For example, a specific marker for prediction of a disease activity index after treatment with an anti-IL-6 agent and a specific marker for prediction of a disease activity index after treatment with an anti-TNF- ⁇ agent are selected, and the specific marker Measure the concentration of the subject's serum in the subject's serum, etc., and use the concentration or log value etc. from the regression equation to determine the disease activity index after treatment with anti-IL-6 agent and the disease after treatment with anti-TNF- ⁇ agent Calculate the activity index.
  • a pre-treatment index of the patient such as a DAS-28 value before administration can be used in combination. Then, compare the disease activity index after treatment with anti-IL-6 agent with the disease activity index after treatment with anti-TNF- ⁇ agent, and administer a biological product that gives a low disease activity index after treatment It can be judged.
  • any kind of biological preparation may be used as the anti-IL-6 agent and the anti-TNF- ⁇ agent as long as they belong to the category.
  • certain markers of the invention are applicable as long as the biologic category (eg, anti-IL-6 agent, anti-TNF- ⁇ agent, etc.) is the same. Because it is done.
  • rheumatic patients who have not received anti-cytokine therapy infliximab, etanercept, adalimumam, tocilizumab, etc.
  • naive patients rheumatic patients who have received anti-cytokine therapy in the past
  • switch patients rheumatic patients who have received anti-cytokine therapy in the past
  • 155 rheumatoid arthritis patients for whom methotrexate therapy was ineffective were registered at the medical corporation Yamanakai Higashi Higashi Hiroshima Memorial Hospital.
  • 98 were treated with tocilizumab, an anti-IL-6 agent, and the remaining 57 were treated with etanercept, an anti-TNF- ⁇ agent.
  • 58 are naive patients who have not previously received anti-cytokine therapy and 40 are switch patients who have previously received anti-cytokine therapy 1-3 times.
  • Table 1 shows clinical baseline population statistics and clinical findings.
  • FIG. 5 shows trial profiles of patients treated with tocilizumab, an anti-IL-6 agent, and patients treated with etanercept, a TNF- ⁇ agent.
  • FIGS. 6-1 to 6-4 show cytokine / chemokines / The serum concentration of the soluble receptor is shown.
  • Nine naive patients (8 patients with side effects and other diseases and 1 patient for whom data were not available for the entire 16 weeks) were deleted from the tocilizumab-treated patients, so the total numbers were not consistent. . In addition, the total number is not consistent because one switch patient (patient for whom data for the entire 16 weeks could not be obtained) was deleted among patients treated with tocilizumab.
  • DAS-28 value, CRP, number of swollen joints, number of tender joints, Stage, and Class were almost the same among the groups (Table 1).
  • the duration of affliction was shorter for etanercept-treated patients than for tocilizumab-treated patients (Table 1).
  • Serum was obtained from healthy subjects (56; 20 men, 36 women) who had no history of hepatitis C and cancer in order to create a baseline concentration of cytokines. Healthy subjects received a health check from the Pasteur Research Institute or the medical corporation Yamana Higashihiroshima Memorial Hospital, and informed consent was obtained from the healthy subjects. This baseline concentration was used to determine the cytokine / chemokine / soluble receptor distribution pattern.
  • FIG. 5 shows the clinical results of naive patients and switch patients who received 8 mg / kg tocilizumab or 50 mg / kg etanercept once every 4 weeks. After 16 weeks of treatment (after 4 doses), the therapeutic effect was determined based on DAS-28-CRP levels and whether remission or non-remission. Furthermore, non-remission was classified as low, medium or high based on the patient's DAS-28-CRP value.
  • DAS-28-ESR values are widely used to determine symptoms in patients with rheumatoid arthritis, but DAS-28-CRP and DAS-28-ESR values are almost interchangeable and lead to the same results (AnnRheum Dis.2007, March 407-409 Comparison of Disease ActivityScore (DAS) 28-erythrocyte Sedimentation rate and DAS-C-reactive proteinthreshold votes. Inoue E, Yamanaka H, et al.).
  • FIG. 7 also shows details of the clinical results for each patient shown in FIG. 5, namely naive patients who received anti-IL-6 (tocilizumab) therapy, switch patients who received anti-IL-6 (tocilizumab) therapy, and anti-
  • the results of determining DAS-28-CRP values before treatment and 16 weeks after treatment for naive patients who received TNF- ⁇ (etanercept) therapy are shown.
  • the DAS-28-CRP value may be simply referred to as a DAS-28 value.
  • the Bio-Plex Human Cytokine 27-Plex Panel contains 27 cytokines (IL-1 ⁇ , IL-1RA, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL- 9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, basic FGF, eotaxin, G-CSF, GM-CSF, IFN- ⁇ , IP-10, ⁇ CP-1, MIP-1 ⁇ , MIP-1 ⁇ , PDGF-bb, RANTES, TNF- ⁇ , and VEGF) can be analyzed.
  • 27 cytokines IL-1 ⁇ , IL-1RA, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL- 9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, basic FGF, eotaxin, G-CSF, GM-CSF, IFN- ⁇ , IP-10, ⁇ CP
  • sIL-6R sgp130
  • sTNF-RI sTNF-RII
  • sTNF-RII sTNF-RII
  • concentrations of these cytokines, chemokines and soluble receptors were simultaneously measured for 56 healthy subjects, and their distribution pattern was determined. Data collection and analysis was performed using Bio-PlexManager software version 5.0.
  • cytokine / chemokine values were analyzed. Cytokines other than sgp130, chemokines and soluble receptors were analyzed using the log value of the concentration (pg / ml) value, and sgp130 used the concentration ( ⁇ g / ml) value as it was.
  • linear single regression analysis and linear multiple regression analysis were performed to subtract the cytokine / chemokine / soluble receptor concentration or laboratory test value and the DAS-28 value at 16 weeks from the DAS-28 value of the 0-week patient. The relationship between values was examined. Next, the DAS-28 value after 16 weeks was estimated from the regression calculation value in which the clinical laboratory value was introduced. Furthermore, logistic single regression analysis and logistic multiple regression analysis were performed to analyze the relationship between serum cytokine levels and remission or non-remission. A p value of the obtained parameter of ⁇ 0.05 indicates that there is a significant difference. All statistical analyzes were performed using JMP 9.0 software.
  • Tables 1 and 2 show patient clinical baseline demographics, clinical findings, characteristics of cytokines / chemokines / soluble receptors, and FIGS. 6-1 to 6-4 show cytokines / chemokines / soluble before treatment.
  • the clinical baseline demographics of healthy subjects and rheumatoid arthritis patients are shown for serum concentrations of receptors.
  • Stage is the classification of Steinbrocker (1949) (I to IV; Steinbrocker O et al: Therapeutic criteria in rheumatoid arthritis.
  • naive patients received etanercept therapy, an anti-TNF- ⁇ therapy for 16 weeks, of which 18 were in remission and the remaining 31 were non-remission (FIG. 5).
  • naive patients were used in the analysis for etanercept therapy. It is understood that na ⁇ ve patient data can be applied by analogy to switch patients.
  • Figure 4 shows the pre-treatment DAS-28 value (PreDAS-28 score) and the pre-treatment DAS-28 value minus the DAS-28 value after 16 weeks (PreDAS) in naive patients receiving tocilizumab therapy. -28score-16W DAS-28 score). FIG. 4 shows that most naive patients showed improved DAS-28 values after tocilizumab therapy.
  • Figures 6-1 to 6-4 show pre-treatment cytokines / chemokines for healthy subjects and three groups (naive patients receiving tocilizumab therapy, switch patients receiving tocilizumab therapy, naive patients receiving etanercept therapy). A comparison of baseline demographics of soluble receptors is shown. As can be seen from FIGS. 6-1 to 6-4, the serum concentration in patients with rheumatoid arthritis was significantly higher than that in healthy subjects except for sgp130, sIL-6R, and sTNFRI. In addition, na ⁇ ve patients who received etanercept therapy had lower serum levels of cytokines / chemokines than naive patients who received tocilizumab therapy. The results also show that naive patients who received anti-IL-6 therapy (tocilizumab) therapy had higher CRP values before treatment than naive patients who received anti-TNF- ⁇ (etanercept) therapy. became.
  • log IL-7, log IL-8, log IL-12, log IL-13, log IP-10 and log VEGF showing p ⁇ 0.05 are anti-IL-6 therapy (tocilizumab)
  • anti-IL-6 therapy tocilizumab therapy
  • log IL-1 ⁇ , log IL-5, log IL-6, log IL-7, log IL-10, log IL-12, log IL -13, log IL-15, log FGF, log GM-CSF, log IFN- ⁇ , log TNF- ⁇ , and log VEGF were significantly in agreement with the improvement in DAS-28 values.
  • naive patients who received anti-TNF- ⁇ therapy etanercept therapy
  • log IL-6 and log IP-10 were significantly consistent with the improvement in DAS-28 values.
  • log IL-1 ⁇ , log IL-2, log IL-5, log IL-15, log GM-CSF, log IFN- ⁇ , log TNF - ⁇ and sgp130 were in significant agreement with DAS-28 values after 16 weeks of treatment.
  • log IL-9 significantly matched the DAS-28 value after 16 weeks of treatment.
  • FIG. 1 shows the result of comparing the predicted value of the DAS-28 value after 16 weeks of treatment calculated by the regression equation (4) with the actual value of the DAS-28 value after 16 weeks of treatment. From this result, it was confirmed that the DAS-28 value after 16 weeks of treatment estimated from the results of the linear multiple regression analysis shown in Table 7 is in good agreement with the actual value of the DAS-28 value after 16 weeks of treatment. It was done.
  • FIG. 2 shows the result of comparing the predicted value of the DAS-28 value after 16 weeks of treatment calculated by the regression equation (5) with the actual value of the DAS-28 value after 16 weeks of treatment. From this result, it was confirmed that the DAS-28 value after 16 weeks of treatment estimated from the results of the linear multiple regression analysis shown in Table 8 is in good agreement with the actual value of the DAS-28 value after 16 weeks of treatment. It was done.
  • FIG. 3 shows the result of comparing the predicted value of the DAS-28 value after 16 weeks of treatment calculated by the regression equation (7) with the actual value of the DAS-28 value after 16 weeks of treatment. From this result, it was confirmed from the results of the linear multiple regression analysis shown in Table 10 that the DAS-28 value after 16 weeks of treatment can be estimated to some extent.
  • FIG. 8 shows the actual value of DAS-28 after 16 weeks of treatment with anti-TNF- ⁇ therapy (etanercept therapy) and 16 weeks after treatment presumed to have received anti-IL-6 therapy (tocilizumab therapy). The predicted value of DAS-28 value is shown.
  • FIG. 8a Patients who are predicted to have little difference between anti-TNF- ⁇ therapy (etanercept therapy) and anti-IL-6 therapy (tocilizumab therapy) (b in FIG. 8), and anti-TNF- ⁇ therapy (etanercept therapy). It was classified into the patient (c of FIG. 8) who is expected to receive a higher therapeutic effect. For the patient shown in FIG.
  • the anti-IL-6 therapy (tocilizumab therapy) is estimated to be more effective than the anti-TNF- ⁇ therapy (etanercept therapy) actually received. It was also revealed that it is possible to select more effective therapeutic agents by estimating the DAS-28 value by anti-IL-6 therapy and anti-TNF- ⁇ therapy before treatment.
  • Cytokine / chemokine / soluble receptor concentrations were analyzed by logistic single regression analysis for complete and non-remission patient groups. Cytokine / chemokine / soluble receptor was also determined by logistic single regression analysis of naive and switch patients who received anti-IL-6 therapy (tocilizumab therapy) and naive patients who received anti-TNF- ⁇ therapy (etanercept therapy). Table 10 shows the results of analyzing the body concentration data. Logistic single regression analysis revealed that swollenjoint count and tender joint count and DAS-28 values were significantly different between complete and non-remission groups .
  • FIG. 9 shows the results of analyzing the relationship between the serum sgp130 concentration and the DAS-28 value before treatment for patients in remission and non-remission. As is apparent from FIG. 9, the sgp130 concentration was high in many patients in remission.
  • Multivariable model as a predictive biomarker of remission and non-remission based on stepwise forward logistic multiple regression analysis based on serum concentrations of cytokines / chemokines / soluble receptors in patients prior to anti-IL-6 agent (tocilizumab) administration was examined.
  • FIG. 11 shows a graph comparing ROC curves obtained by combining sgp130 alone, sgp130, and logIL-6, logIP-10, and logTNFRII. As shown in FIG.
  • FIG. 10 shows plots of DAS28-CRP and DAS28-ESR scores before and after treatment of na ⁇ ve patients and switch patients who received tocilizumab therapy.
  • the values of sgp130, logIL-6, logIL-8, logEotaxin, logIP-10 are predictive markers (biomarkers)
  • sgp130, logGM-CSF and logIP- A value of 10 indicated a predictive marker (biomarker).
  • the present invention can be used in fields such as the health industry (medical, pharmaceutical, etc.).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Medical Informatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Data Mining & Analysis (AREA)
  • Organic Chemistry (AREA)
  • Rheumatology (AREA)
  • Databases & Information Systems (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Rehabilitation Therapy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Diabetes (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Biophysics (AREA)

Abstract

本発明は、関節リウマチ患者に抗IL-6剤および抗TNF-α剤等の生物学的製剤を投与する前に、簡便、廉価、且つ正確に、治療効果(特に、完全寛解状態になるか否か)、または症状の改善度を判定する方法を提供する。方法に使用される特定マーカーとしては、sgp130、IP-10、sTNFRI、sTNFRII、GM-CSF、IL-1β、IL-2、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-12、IL-13、IL-15、Eotaxin、VEGF、MCP-1、TNF-α、IFN-γ、FGFbasic、PDGF-bb、sIL-6R、およびMIP-1α等を利用することができる。このような特定マーカーを用いて生物学的製剤を投与する前に、関節リウマチ患者に対する治療効果(症状の改善度や寛解の可能性)を、判定できるため従来達成できなかった精度で関節リウマチの治療を行うことができる。

Description

生物学的製剤による関節リウマチの治療効果の予測判定方法
 本発明は、関節リウマチ患者への生物学的製剤による治療効果を予測判定する方法に関する。より具体的には、本発明は、抗IL-6剤および抗TNF-α剤を含む生物学的製剤による関節リウマチの治療効果を予測判定する方法に関する。より詳細には、本発明は、関節リウマチ患者に生物学的製剤を投与する前に、症状の改善度、寛解の可能性等の治療効果を予測判定する方法に関する。さらに、本発明は、関節リウマチ患者への生物学的製剤による治療効果を予測判定するための診断剤に関する。より特定すると、本発明は、抗インターロイキン-6(IL-6)剤および抗腫瘍壊死因子-α(TNF-α)剤を含む生物学的製剤による治療を事前に判定し有効な治療薬を患者に提供するための技術に関する。
 関節リウマチは、関節滑膜を病変の中心とする全身性の炎症性疾患であり、その患者数は日本で約70万人といわれている。関節リウマチの治療には、炎症性サイトカインを標的にする多くの生物学的製剤が開発されており、近年では、TNF-αまたはIL-6の作用を阻害する抗TNF-α剤または抗IL-6剤が臨床的に実用化されている。
 これまでに、トシリズマブ、シルクマブ、エタネルセプト、アダリムマブ、インフリキシマブ等の、炎症性サイトカインを標的にした生物学的製剤が関節リウマチの治療に使用されている。トシリズマブは、ヒト化IL-6受容体抗体であり、膜結合型IL-6受容体および可溶性IL-6受容体に結合しIL-6シグナルを抑制する作用によって関節リウマチを鎮静化させる薬剤である。シルクマブは、ヒト抗IL-6抗体であり、IL-6に結合し、IL-6シグナルを抑制する作用によって関節リウマチを鎮静化させる薬剤である。このようにIL-6シグナルを標的とする製剤は、その標的が多種類存在するが一旦標的に結合した後の作用機序は同様であることから、その薬剤の種類にかかわらず阻害機構が同様であり、そのため、一般に抗IL-6剤と総称されている。例えば、トシリズマブ、サリルマブ、オロキズマブ、およびシルクマブ等は抗IL-6剤に分類される。他方、エタネルセプトは、ヒトIgG1のFc領域とヒト腫瘍壊死因子II型受容体の細胞外ドメインのサブユニット2量体とからなる完全ヒト型可溶性TNF/LTαレセプター製剤であり、TNFα/βの両方に結合し、TNF受容体へのシグナル伝達を阻害することにより、関節リウマチを鎮静化させる薬剤である。アダリムマブおよびインフリキシマブは、ヒト型およびキメラ型抗TNF-α抗体であり、過剰に産生されたTNF-αに特異的に結合し、TNF-αのTNF-α受容体への結合を阻害することによって、関節リウマチを鎮静化させる薬剤である。このようにTNF-αシグナルを標的とする製剤は、その標的が多種類存在するが一旦標的に結合した後の作用機序は同様であることから、その薬剤の種類にかかわらず阻害機構が同様であり、そのため、一般に抗TNF-α剤と総称されている。例えば、エタネルセプト、アダリムマブ、インフリキシマブ、ゴリムマブ、およびセルトリズマブ等は、抗TNF-α剤に分類される。
 このような生物学的製剤は、関節リウマチの治療において一定の有効性が確認されており、その種類も増加しつつあり、普及が進んでいる。他方、薬価が高い、治療効果判定に時間がかかる等の欠点があることに加えて、無効例も一定の割合で存在しており、さらに感染症、間質性肺炎等の副作用発現も認められることがある。そのため、生物学的製剤を使用可能な症例は限定されている。それゆえ、炎症性サイトカインを標的にした生物学的製剤の有効性を関節リウマチ患者毎に事前に推測できれば、関節リウマチ患者に福音をもたらし、医療経済にも寄与することになる。すなわち、厚生労働省等の社会保障費を担当する政府当局にとっては社会保障費を削減するための合理的な良好なツールとなるものであり、患者にとっても悪化してからその医薬品が効果がなかったことを知るようなことが回避され質の高い治療を受けることができる。また、製薬メーカーにとっても、生物学的製剤の確度が高まることによって生物学的製剤をこれまで選択しなかった患者に適用してもらえる可能性が格段に高まることとなる。
 従来から、炎症性サイトカインを標的にした生物学的製剤の関節リウマチ患者に対する有効性を予測するマーカーについて精力的に検討されている。例えば、トシリズマブによる関節リウマチの治療有効性を予測する方法としては、マイクロDNAチップを使用する方法、ベースライン時のCRP値を指標とする方法、血中の可溶性ICAMI濃度およびCXCL13濃度を指標とする方法、白血球のADAMT5遺伝子発現量を指標とする方法(非特許文献4)、遺伝子多型を網羅的に解析する方法(特許文献1および2)、IL-6受容体の遺伝子変異を解析する方法(特許文献3)等が報告されている。また、インフリキシマブによる関節リウマチの治療有効性を予測する方法としては、IL10RB遺伝子、IRF5遺伝子およびIRF5遺伝子の多型を解析する方法(特許文献4)が報告されている。さらに、エタネルセプト、アダリムマブ、インフリキシマブ等の抗TNF-α剤による関節リウマチの治療有効性を予測する方法として、遺伝子多型を網羅的に解析する方法(特許文献5)も報告されている。
 しかしながら、従来の関節リウマチの治療効果の判定方法では、遺伝子解析等を要し操作が煩雑である、解析に時間や費用がかかる、汎用性が乏しい、正診率が低い等の欠点がある。さらに、従来の手法では、生物学的製剤の投与前に、関節リウマチを完全寛解できるか否かを正確に判定することができないため、生物学的製剤の投与前に、その治療効果を見越した適切な治療方針を確立できていないという問題点もある。
 このような従来技術を背景として、簡便且つ廉価で、汎用性に富み、さらに高い正確性をもって、関節リウマチ患者に対する生物学的製剤投与の治療効果を予測する技術を確立することが切望されている。
国際公開第2011/128096号 特開2011-182780号公報 国際公開第2012/41332号 特開2009-225713号公報 特開2010-088432号公報
 本発明は、抗IL-6剤および抗TNF-α剤のような生物学的製剤を関節リウマチ患者に投与する前に、簡便且つ廉価で、汎用性に富み、さらに高い正確性をもって、治療効果(症状の改善度や寛解の可能性)を予測判定する方法を提供する。本発明はまた、上記方法を実施するための診断剤、ならびに上記方法を実施することを特徴とする抗IL-6剤および抗TNF-α剤のような生物学的製剤を含む治療剤を提供する。
 本発明者らは、生物学的製剤を投与した関節リウマチ患者の予後の状態と、生物学的製剤の投与前の当該患者の血清等の体液サンプル中のサイトカイン、ケモカインおよびそれらの可溶性受容体の濃度とを分析し、後ろ向き解析を行って、抗IL-6剤および抗TNF-α剤のような生物学的製剤による関節リウマチの寛解の可能性、症状の改善度および疾患活動性指標を予測し判定することができることを見出した。本発明者らは、この解析の結果、そのような判定のためのサイトカイン、ケモカインおよびそれらの可溶性受容体として、sgp130、IP-10、sTNFRI、sTNFRII、GM-CSF、IL-1β、IL-2、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-12、IL-13、IL-15、Eotaxin、VEGF、MCP-1、TNF-α、IFN-γ、FGFbasic、PDGF-bb、sIL-6R、およびMIP-1αのようなマーカーを利用することができることを見出した。本発明者らは、これらの特定のマーカーの身体サンプル中(例えば、血清中の)濃度を利用することによって、IL-6、TNF-α等の炎症性サイトカインを標的にした生物学的製剤を投与する前に、関節リウマチ患者に対する治療効果(例えば、寛解の可能性、症状の改善度および疾患活動性指標)を簡便且つ廉価で如何なる施設でも可能でしかも高い正確性をもって、事前に判定(予測判定)することができることを見出した。
 より詳細に述べると、本発明者らは、以下に示す知見を得た。
(1)治療後の改善度(DAS-28値の改善度)の解析
(1-1) 線形単回帰分析によって、過去に抗サイトカイン療法(インフリキシマブ、エタネルセプト、アダリムマム、トシリズマブ等の生物学的製剤の投与)を受けていないリウマチ患者(本明細書において「ナイーブ患者」と表記する。)に対して抗IL-6剤(例えば、トシリズマブ等)を投与して治療した場合に、DAS-28値の改善度(治療前のDAS-28値-治療16週後のDAS-28値)が、当該患者における抗IL-6剤(例えば、トシリズマブ等)投与前のIL-7、IL-8、IL-12、IL-13、IP-10、およびVEGFの血清中濃度のlog値と有意な相関があることを見出した。ここで、DASとは、患者の痛みの訴えだけでなく、関節の検査や血液検査を組み合わせて、関節リウマチの症状の強さを総合的に評価し具体的な数値として表すものであり、DAS-28は28関節を調べた結果をいい、このほか44関節を調べるDAS-44等の指標も知られている。
(1-2) 線形単回帰分析によって、過去に抗サイトカイン療法を受けたリウマチ患者(本明細書において「スイッチ患者」と表記する。当該分野では「非ナイーブ患者」と表示されることもある。)に対して抗IL-6剤(例えば、トシリズマブ等)を投与して治療した場合に、DAS-28値の改善度が、当該患者における抗IL-6剤(例えば、トシリズマブ等)投与前のIL-1β、IL-5、IL-6、IL-7、IL-10、IL-12、IL-13、IL-15、FGFbasic、GM-CSF、IFN-γ、TNF-α、およびVEGFの血清中濃度のlog値と有意な相関があることを見出した。
(1-3) 線形単回帰分析によって、ナイーブ患者に対して抗TNF-α剤(例えば、例えば、エタネルセプト等)を投与して治療した場合に、DAS-28値の改善度が、当該患者における抗TNF-α剤(例えば、エタネルセプト等)投与前のIL-6およびIP-10の血清中濃度のlog値と有意な相関があることを見出した。
(1-4) 線形多重回帰分析によって、ナイーブ患者に対して抗IL-6剤(例えば、トシリズマブ等)を投与して治療した場合に、DAS-28値の改善度が、当該患者における抗IL-6剤(例えば、トシリズマブ等)投与前のIL-1β、IL-7、TNF-α、およびsIL-6Rの血清中濃度のLog値の組み合わせと有意な相関性があることを見出した。
(1-5) 線形多重回帰分析によって、ナイーブ患者に対して抗TNF-α剤(例えば、エタネルセプト等)を投与して治療した場合に、DAS-28値の改善度が、当該患者における抗TNF-α剤(例えば、エタネルセプト等)投与前のIL-2、IL-15、sIL-6R、およびsTNFRIの血清中濃度のLog値の組み合わせと有意な相関性があることを見出した。
(2)疾患活動性指標(治療16週後のDAS-28値)の解析
(2-1) 線形単回帰分析によって、ナイーブ患者に対して抗IL-6剤(例えば、トシリズマブ等)を投与して治療した場合に、治療16週後のDAS-28値が、当該患者における抗IL-6剤(例えば、トシリズマブ等)投与前のsgp130の血清中濃度と有意な相関性があることを見出した。
(2-2) 線形単回帰分析によって、スイッチ患者に対して抗IL-6剤(例えば、トシリズマブ等)を投与して治療した場合に、治療16週後のDAS-28値が、当該患者における抗IL-6剤(例えば、トシリズマブ等)投与前のsgp130の血清中濃度、並びにIL-1β、IL-2、IL-5、IL-15、GM-CSF、IFN-γ、およびTNF-αの血清中濃度のLog値と有意な相関性があることを見出した。
(2-3) 線形単回帰分析によって、ナイーブ患者に対して抗TNF-α剤(例えば、エタネルセプト等)を投与して治療した場合に、治療16週後のDAS-28値が、当該患者における抗TNF-α剤(例えば、エタネルセプト等)投与前のIL-9の血清中濃度のLog値と有意な相関性があることを見出した。
(2-4) 線形多重回帰分析によって、ナイーブ患者に対して抗IL-6剤(例えば、トシリズマブ等)を投与して治療した場合に、治療16週後のDAS-28値が、当該患者における抗IL-6剤(例えば、トシリズマブ等)投与前のsgp130の血清中濃度、並びにIL-8、Eotaxin、IP-10、sTNFRI、sTNFRII、IL-6、およびVEGFの血清中濃度のLog値の組み合わせと有意な相関性があることを見出した。
(2-5) 線形多重回帰分析によって、ナイーブ患者に対して抗IL-6剤(例えば、トシリズマブ等)を投与して治療した場合に、治療16週後のDAS-28値が、当該患者における抗IL-6剤(例えば、トシリズマブ等)投与前のsgp130の血清中濃度、並びにIL-8、Eotaxin、IP-10、sTNFRI、sTNFRII、およびIL-6の血清中濃度のLog値の組み合わせと有意な相関性があることを見出した。
(2-6) 線形多重回帰分析によって、スイッチ患者に対して抗IL-6剤(例えば、トシリズマブ等)を投与して治療した場合に、治療16週後のDAS-28値が、当該患者における抗IL-6剤(例えば、トシリズマブ等)投与前のsgp130の血清中濃度、並びにIP-10およびGM-CSFの血清中濃度のLog値の組み合わせと有意な相関性があることを見出した。
(2-7) 線形多重回帰分析によって、ナイーブ患者に対して抗TNF-α剤(例えば、エタネルセプト等)を投与して治療した場合に、治療16週後のDAS-28値が、抗TNF-α剤(例えば、エタネルセプト等)投与前のDAS-28値、並びにIL-6およびIL-13の血清中濃度のLog値の組み合わせと有意な相関性があることを見出した。
(2-8) 線形多重回帰分析によって、ナイーブ患者に対して抗TNF-α剤(例えば、エタネルセプト等)を投与して治療した場合に、治療16週後のDAS-28値が、抗TNF-α剤(例えば、エタネルセプト等)投与前のIL-9、TNF-αおよびVEGFの血清中濃度のLog値の組み合わせと有意な相関性があることを見出した。
(3)寛解の可能性の解析
(3-1) ロジスチック多重回帰分析によって、ナイーブ患者に対して抗IL-6剤(例えば、トシリズマブ等)を投与して治療した場合の寛解の可能性を、抗IL-6剤(例えば、トシリズマブ等)投与前のsgp130の血清中濃度と、IP-10の血清中濃度のLog値と、sTNFRIIの血清中濃度のLog値と、IL-6、IL-7、MCP-1またはIL-1βの血清中濃度のLog値との組み合わせによって予測判定できることを見出した。
(3-2) ロジスチック多重回帰分析によって、スイッチ患者に対して抗IL-6剤(例えば、トシリズマブ等)を投与して治療した場合の寛解の可能性を、抗IL-6剤(例えば、トシリズマブ等)投与前のsgp130の血清中濃度と、IP-10の血清中濃度のLog値と、sTNFRIIの血清中濃度のLog値と、IL-6またはIL-1βの血清中濃度のLog値との組み合わせによって予測判定できることを見出した。
(3-3) ロジスチック多重回帰分析によって、ナイーブ患者に対して抗TNF-α剤(例えば、エタネルセプト等)を投与して治療した場合の寛解の可能性を、抗TNF-α剤(例えば、エタネルセプト等)投与前のDAS-28値と、VEGFおよびPDGF-bbの血清中濃度のLog値の組み合わせによって予測判定できることを見出した。
(3-4) ロジスチック多重回帰分析によって、ナイーブ患者に対して抗TNF-α剤(例えば、エタネルセプト等)を投与して治療した場合の寛解の可能性を、抗TNF-α剤(例えば、エタネルセプト等)投与前のDAS-28値と、MIP-1αおよびPDGF-bbの血清中濃度のLog値の組み合わせによっても予測判定できることを見出した。
(3-5) 線形多重回帰分析によって、ナイーブ患者に対して抗TNF-α剤(例えば、エタネルセプト等)を投与して治療した場合の寛解の可能性を、抗TNF-α剤(例えば、エタネルセプト等)投与前のIL-9およびTNF-αの血清中濃度のLog値の組み合わせによっても予測判定できることを見出した。
 本発明は、これらの知見に基づいてさらに検討を重ねることによって完成された。したものである。詳細には、本発明は下記に掲げる態様の発明を提供する。
(項1)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで特定生物学的製剤による該患者の寛解を事前に判定する方法。
(項2)前記特定生物学的製剤は抗IL-6剤であり、前記特定マーカーはIP-10、sTNFRII、IL-6、IL-7、MCP-1およびIL-1βからなる群より選択される少なくとも1つとsgp130との組み合わせを含む、項1に記載の方法。
(項3)前記特定生物学的製剤は抗IL-6剤であり、前記特定マーカーは(i)sgp130と、(ii)IP-10と、(iii)sTNFRIIと、(iv)IL-6、IL-7、MCP-1またはIL-1βとの組み合わせを含む、項1または2に記載の方法。
(項4)前記特定生物学的製剤は抗IL-6剤であり、前記患者は過去に抗サイトカイン療法を受けている関節リウマチ患者であり、前記マーカーは(i)sgp130と、(ii)IP-10と、(iii)sTNFRIIと、(iv)IL-6またはIL-1βとの組み合わせである、項1~3のいずれか1項に記載の方法。
(項5)前記特定生物学的製剤は抗TNF-α剤であり、前記特定マーカーはIL-9およびTNF-αの組み合わせ、またはVEGFもしくはMIP-1a、PDGFbbおよび前記患者の治療前の状態の指標の組み合わせを含む、項1に記載の方法。
(項6)前記特定生物学的製剤は抗TNF-α剤であり、前記特定マーカーはIL-9およびTNF-αの組み合わせを含む、項1または5に記載の方法。
(項7)前記身体サンプルは血清である、項1~6のいずれか1項に記載の方法。
(項7A)前記患者は過去に抗サイトカイン療法を受けている関節リウマチ患者である、項1~7のいずれか1項に記載の方法。
(項7B)前記患者は過去に抗サイトカイン療法を受けていない関節リウマチ患者である、項1~3または5~7のいずれか1項に記載の方法。
(項8)前記患者の寛解の事前の判定は、前記特定マーカーの濃度の値もしくはそのlog値または前記患者の治療前の状態の指標を用いた回帰式で算出された寛解の確率に基づいて行われる、項1~項7、項7Aまたは項7Bのいずれか1項に記載の方法。
(項9)前記回帰式での算出は、前記sgp130では濃度値を、および他の前記特定マーカーでは濃度のlog値を用いてなされる、項8に記載の方法。
(項10)前記回帰式は回帰式(8)~(16)のいずれかから選択される、項9に記載の方法。なお、回帰式(8)~(16)の詳細は本明細書に記載される「1.判定方法」に記載されている。
(項11)項1~7、7A、7B、8~10のいずれか1項に記載の方法に従って前記特定生物学的製剤による寛解を事前に判定し、該寛解の確率が高い特定生物学的製剤を選択することにより前記患者に有効な生物学的製剤を選択する方法。
(項12)(A)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで特定生物学的製剤による該患者の寛解を事前に判定する工程と、(B)(A)工程により該特定生物学的製剤により該患者が寛解すると判定された場合、該特定生物学的製剤を該患者に投与する工程とを包含する関節リウマチ患者の治療方法。
(項13)(A)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで複数の特定生物学的製剤による該患者の寛解の確率を事前に算出する工程と、(B)(A)工程により得られた寛解の確率が高い特定生物学的製剤を該患者に投与する工程とを包含する関節リウマチ患者の治療方法。
(項13A)項2~7、7A、7B、8~10のいずれか1項に記載の特徴を含む、項12または13に記載の方法。
(項14)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して特定生物学的製剤による該患者の寛解を事前に判定する方法に用いられる、該特定マーカーを検出するための試薬を含む診断剤。
(項15)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して複数の特定生物学的製剤による該患者の寛解の確率を事前に算出し、該寛解の確率が高い特定生物学的製剤を選択することにより該患者に有効な生物学的製剤を選択する方法に用いられる、該特定マーカーを検出するための試薬を含む診断剤。
(項15A)項2~7、7A、7B、8~10のいずれか1項に記載の特徴を含む、項14または15に記載の診断剤。
(項16)特定生物学的製剤を含む関節リウマチ患者を治療するための治療剤であって、該患者の身体サンプル中の特定マーカーの濃度を測定して該特定生物学的製剤による該患者の寛解が事前に判定され、寛解すると判断された場合に該特定生物学的製剤が投与されることを特徴とする、治療剤。
(項16A)複数の特定生物学的製剤を含む関節リウマチ患者を治療するための治療剤のセットであって、該患者の身体サンプル中の特定マーカーの濃度を測定して該特定生物学的製剤による該患者の寛解の確率が事前に算出され、該寛解の確率が高い特定生物学的製剤が該患者に投与されることを特徴とする、治療剤のセット。
(項16B)項2~7、7A、7B、8~10のいずれか1項に記載の特徴を含む、項16に記載の治療剤または項16Aに記載の治療剤のセット。
(項17)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで該患者への特定生物学的製剤による治療後の症状の改善度を事前に判定する方法。
(項18)前記特定生物学的製剤は抗IL-6剤であり、前記特定マーカーはIL-1β、IL-7、TNF-αおよびsIL-6Rの組み合わせを含む、項17に記載の方法。
(項19)前記特定生物学的製剤は抗TNF-α剤であり、前記特定マーカーはIL-2、IL-15、sIL-6R、およびsTNFRIの組み合わせ、またはIL-6およびIL-13の組み合わせを含む、項17に記載の方法。
(項20)前記身体サンプルは血清である、項17~19のいずれか1項に記載の方法。
(項20A)前記患者は過去に抗サイトカイン療法を受けていないリウマチ患者である、項17~20のいずれか1項に記載の方法。
(項20B)前記患者は過去に抗サイトカイン療法を受けているリウマチ患者である、項17~20のいずれか1項に記載の方法。
(項21)前記治療後の症状の改善度の事前の判定は、前記特定マーカーの濃度の値もしくはそのlog値または前記患者の治療前の状態の指標を用いた回帰式で算出された寛解の確率に基づいて行われる、項17~20、20Aまたは20Bのいずれか1項に記載の方法。
(項22)前記回帰式での算出は、前記sgp130では濃度値を、および他の前記特定マーカーでは濃度のlog値を用いてなされる、項21に記載の方法。
(項23)前記回帰式は、回帰式(1)~(2)のいずれかから選択される、項22に記載の方法。なお、回帰式(1)~(2)の詳細は本明細書に記載される「1.判定方法」に記載されている。
(項24)項17~20、20A、20B、または21~23のいずれか1項に記載の方法に従って前記特定生物学的製剤による治療後の症状の改善度事前に判定し、該治療後の症状の改善度が高い生物学的製剤を選択することにより前記患者に有効な生物学的製剤を選択する方法。
(項25)(A)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで該患者への特定生物学的製剤による治療後の症状の改善度を事前に判定する工程と、(B)(A)工程により判定された該改善度が所定の基準以上である場合、該特定生物学的製剤を該患者に投与する工程とを包含する関節リウマチ患者の治療方法。
(項26)(A)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで該患者への複数の特定生物学的製剤による治療後の症状の改善度を事前に判定する工程と、(B)(A)工程により得られた該改善度が高い特定生物学的製剤を該患者に投与する工程とを包含する関節リウマチ患者の治療方法。
(項26A)項17~20、20A、20B、または21~23のいずれか1項に記載の特徴を含む、項25または26に記載の方法。
(項27)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して該患者への特定生物学的製剤による治療後の症状の改善度を事前に判定する方法に用いられる、該特定マーカーを検出するための試薬を含む診断剤。
(項28)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して該患者への複数の特定生物学的製剤による治療後の症状の改善度を事前に判定し、該改善度が高い特定生物学的製剤を選択することにより該患者に有効な生物学的製剤を選択する方法に用いられる、該特定マーカーを検出するための試薬を含む診断剤。
(項28A)項17~20、20A、20B、または21~23のいずれか1項に記載の特徴を含む、項27または28に記載の診断剤。
(項29)特定生物学的製剤を含む関節リウマチ患者を治療するための治療剤であって、該関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して該患者への特定生物学的製剤による治療後の症状の改善度が事前に判定され、該改善度が所定の基準以上である場合に該特定生物学的製剤が投与されることを特徴とする、治療剤。
(項29A)複数の特定生物学的製剤を含む関節リウマチ患者を治療するための治療剤のセットであって、該患者の身体サンプル中の特定マーカーの濃度を測定して該患者への該特定生物学的製剤による治療後の症状の改善度を事前に算出し、該改善度が高い特定生物学的製剤が該患者に投与されることを特徴とする、治療剤のセット。
(項29B)項17~20、20A、20B、または21~23のいずれか1項に記載の特徴を含む、項29に記載の治療剤または項28Aに記載の治療剤のセット。
(項30)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで該患者への特定生物学的製剤による治療後の疾患活動性指標を事前に判定する方法。
(項31)前記特定生物学的製剤は抗IL-6剤であり、前記特定マーカーはIL-8、Eotaxin、sTNFRI、sTNFRII、IL-6、VEGFおよびGM-CSFから選択される少なくとも1つと、sgp130と、IP-10との組み合わせを含む、項30に記載の方法。
(項32)前記特定生物学的製剤は抗IL-6剤であり、前記特定マーカーはsgp130、IL-8、Eotaxin、IP-10、sTNFRI、sTNFRIIおよびIL-6の組み合わせ、またはsgp130、IL-8、Eotaxin、IP-10、sTNFRI、sTNFRII、IL-6およびVEGFの組み合わせを含み、前記患者は過去に抗サイトカイン療法を受けていないリウマチ患者である、項30または31に記載の方法。
(項33)前記特定生物学的製剤は抗IL-6剤であり、前記特定マーカーはsgp130、IP-10、およびGM-CSFの組み合わせを含み、前記患者は過去に抗サイトカイン療法を受けているリウマチ患者である、項30または31に記載の方法。
(項34)前記特定生物学的製剤は抗TNF-α剤であり、前記特定マーカーはIL-9、TNF-αおよびVEGFの組み合わせ、またはIL-6およびIL-13の組み合わせを含む、項30に記載の方法。
(項34A)前記患者は過去に抗サイトカイン療法を受けていないリウマチ患者である、項34に記載の方法。
(項34B)前記患者は過去に抗サイトカイン療法を受けているリウマチ患者である、項34に記載の方法。
(項35)前記身体サンプルは血清である、項30~34、34Aまたは34Bのいずれか1項に記載の方法。
(項36)前記治療後の疾患活動性指標の事前の判定は、前記特定マーカーの濃度の値もしくはそのlog値または前記患者の治療前の状態の指標を用いた回帰式で算出された治療後の疾患活動性指標に基づいて行われる、項30~34、34A、34Bまたは35のいずれか1項に記載の方法。
(項37)前記回帰式での算出は、前記sgp130では濃度値を、および他の前記特定マーカーでは濃度のlog値を用いてなされる、項36に記載の方法。
(項38)前記回帰式は、回帰式(3)~(7)のいずれかから選択される、項37に記載の方法。なお、回帰式(3)~(7)の詳細は本明細書に記載される「1.判定方法」に記載されている。
(項39)項30~34、34A、34Bまたは35のいずれか1項に記載の方法に従って前記患者への特定生物学的製剤による治療後の疾患活動性指標を事前に判定し、該疾患活動性指標が所定の基準より低い生物学的製剤を選択することにより前記患者に有効な生物学的製剤を選択する方法。
(項40)(A)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで関節リウマチ患者への特定生物学的製剤による治療後の疾患活動性指標を事前に判定する工程と、(B)(A)工程により該疾患活動性指標が所定の基準以下である場合、該特定生物学的製剤を該患者に投与する工程とを包含する関節リウマチ患者の治療方法。
(項41)(A)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで関節リウマチ患者への複数の特定生物学的製剤による治療後の疾患活動性指標を事前に判定する工程と、(B)(A)工程により得られた該疾患活動性指標が低い特定生物学的製剤を該患者に投与する工程とを包含する関節リウマチ患者の治療方法。
(項41A)項30~34、34A、34Bまたは35のいずれか1項に記載の特徴を含む、項40または41に記載の方法。
(項42)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して該患者への特定生物学的製剤による治療後の疾患活動性指標を事前に判定する方法に用いられる、該特定マーカーを検出するための試薬を含む診断剤。
(項43)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して該患者への複数の特定生物学的製剤による治療後の疾患活動性指標を事前に判定し、該疾患活動性指標が低い特定生物学的製剤を選択することにより該患者に有効な生物学的製剤を選択する方法に用いられる、該特定マーカーを検出するための試薬を含む診断剤。
(項43A)項30~34、34A、34Bまたは35のいずれか1項に記載の特徴を含む、項42または43に記載の診断剤。
(項44)特定生物学的製剤を含む関節リウマチ患者を治療するための治療剤であって、該患者の身体サンプル中の特定マーカーの濃度を測定して該患者への特定生物学的製剤による治療後の疾患活動性指標が事前に判定され、該疾患活動性指標が所定の基準以下である場合に該特定生物学的製剤が投与されることを特徴とする、治療剤。
(項44A)複数の特定生物学的製剤を含む関節リウマチ患者を治療するための治療剤のセットであって、該患者の身体サンプル中の特定マーカーの濃度を測定して該患者への複数の特定生物学的製剤による治療後の疾患活動性指標を事前に判定し、該疾患活動性指標が低い特定生物学的製剤が投与されることを特徴とする、治療剤のセット。
(項44B)項30~34、34A、34Bまたは35のいずれか1項に記載の特徴を含む、項44に記載の治療剤または項44Aに記載の治療剤のセット。
 別の局面では、本発明は以下をも提供する。
項A1. 関節リウマチ患者への炎症性サイトカインを標的にした生物学的製剤による治療効果を予測判定する方法であって、
 生物学的製剤の投与前の関節リウマチ患者から採取された血清における、sgp130、IP-10、sTNFRI、sTNFRII、GM-CSF、IL-1β、IL-2、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-12、IL-13、IL-15、Eotaxin、VEGF、MCP-1、TNF-α、IFN-γ、FGFbasic、PDGF-bb、sIL-6R、およびMIP-1αよりなる群から選択される少なくとも1種の特定マーカーの濃度を測定する工程を含むことを特徴とする、判定方法。
項A2. トシリズマブによる寛解の可能性を予測判定する方法であって、
 前記特定マーカーが、sgp130、IP-10、sTNFRII、IL-6、IL-7、MCP-1およびIL-1βよりなる群から選択される少なくとも1種である、項A1に記載の判定方法。
項A3. 前記特定マーカーとして少なくともsgp130を使用する、項A2に記載の判定方法。
項A4. トシリズマブが投与される患者が、過去に抗サイトカイン療法を受けていない関節リウマチ患者であって、
 前記特定マーカーが、(i)sgp130と、(ii)IP-10と、(iii)sTNFRIIと、(iv)IL-6、IL-7、MCP-1またはIL-1βとの組み合わせである、項A2またはA3に記載の判定方法。
項A5. トシリズマブが投与される患者が、過去に抗サイトカイン療法を受けている関節リウマチ患者であって、
 前記特定マーカーが、(i)sgp130と、(ii)IP-10と、(iii)sTNFRIIと、(iv)IL-6またはIL-1βとの組み合わせである、項A2またはA3に記載の判定方法。
項A6. 過去に抗サイトカイン療法を受けていないリウマチ患者において、エタネルセプトによる寛解の可能性を予測判定する方法であって、
 前記特定マーカーが、IL-9、TNF-α、VEGF、PDGF-bb、およびMIP-1αよりなる群から選択される少なくとも1種である、項A1に記載の判定方法。
項A7. 前記特定マーカーが、IL-9およびTNF-αの組み合わせ、VEGFおよびPDGF-bbの組み合わせ、或いはMIP-1αおよびPDGF-bbの組み合わせである、項A6に記載の判定方法。
項A8. 過去に抗サイトカイン療法を受けていないリウマチ患者において、トシリズマブによる治療後の疾患活動性指標を予測判定する方法であって、
 前記特定マーカーが、sgp130、IL-8、Eotaxin、IP-10、sTNFRI、sTNFRII、IL-6、およびVEGFよりなる群から選択される少なくとも1種である、項A1に記載の判定方法。
項A9. 前記特定マーカーが、sgp130、IL-8、Eotaxin、IP-10、sTNFRI、sTNFRII、およびIL-6の組み合わせ、或いはsgp130、IL-8、Eotaxin、IP-10、sTNFRI、sTNFRII、IL-6、およびVEGFの組み合わせである、項A8に記載の判定方法。
項A10. 過去に抗サイトカイン療法を受けているリウマチ患者において、トシリズマブによる治療後の疾患活動性指標の値を予測判定する方法であって、
 前記特定マーカーが、sgp130、IL-1β、IL-2、IL-5、IL-15、GM-CSF、IFN-γ、TNF-α、およびIP-10よりなる群から選択される少なくとも1種である、項A1に記載の判定方法。
項A11. 前記特定マーカーが、sgp130、IP-10、およびGM-CSFの組み合わせである、項A10に記載の判定方法。
項A12. 過去に抗サイトカイン療法を受けていないリウマチ患者において、エタネルセプトによる治療後の疾患活動性指標の値を予測判定する方法であって、
 前記特定マーカーが、IL-9、IL-6、IL-13、TNF-αおよびVEGFよりなる群から選択される少なくとも1種である、項A1に記載の判定方法。
項A13. 前記特定マーカーが、IL-9、TNF-αおよびVEGFの組み合わせ、或いはIL-6およびIL-13の組み合わせである、項A12に記載の判定方法。
項A14. 過去に抗サイトカイン療法を受けていないリウマチ患者において、トシリズマブによる治療後の症状の改善度を予測判定する方法であって、
 前記特定マーカーが、IL-7、IL-8、IL-12、IL-13、IP-10、VEGF、IL-1β、TNF-α、およびsIL-6Rよりなる群から選択される少なくとも1種である、項A1に記載の判定方法。
項A15. 前記特定マーカーが、IL-1β、IL-7、TNF-α、およびsIL-6Rの組み合わせである、項A14に記載の判定方法。
項A16. 過去に抗サイトカイン療法を受けているリウマチ患者において、トシリズマブによる治療後の症状の改善度を予測判定する方法であって、
 前記特定マーカーが、IL-1β、IL-5、IL-6、IL-7、IL-10、IL-12、IL-13、IL-15、FGFbasic、GM-CSF、IFN-γ、TNF-α、およびVEGFよりなる群から選択される少なくとも1種である、項A1に記載の判定方法。
項A17. 過去に抗サイトカイン療法を受けていないリウマチ患者において、エタネルセプトによる治療後の症状の改善度を予測判定する方法であって、
 前記特定マーカーが、IL-6、IP-10、IL-2、IL-13、IL-15、sIL-6R、およびsTNFRIよりなる群から選択される少なくとも1種である、項A1に記載の判定方法。
項A18. 前記特定マーカーが、IL-2、IL-15、sIL-6R、およびsTNFRIの組み合わせ、或いはIL-6およびIL-13の組み合わせである、項A17に記載の判定方法。
項A19. トシリズマブおよびエタネルセプトよりなる生物学的製剤の中から、過去に抗サイトカイン療法を受けていないリウマチ患者において治療により有効な生物学的製剤を選択する方法であって、
 項A4に記載の判定方法に従って、トシリズマブによる寛解の可能性を予測判定する工程、
 項A6に記載の判定方法に従って、エタネルセプトによる寛解の可能性を予測判定する工程、および
 前記工程で予測判定されたトシリズマブによる寛解の可能性とエタネルセプトによる寛解の可能性を対比し、寛解の可能性が高い生物学的製剤を選択する工程
を含む、生物学的製剤の選択方法。
項A20. トシリズマブおよびエタネルセプトよりなる生物学的製剤の中から、過去に抗サイトカイン療法を受けていないリウマチ患者において治療により有効な生物学的製剤を選択する方法であって、
 項A10またはA11に記載の判定方法に従って、トシリズマブによる治療後の疾患活動性指標を予測判定する工程、
 項A12またはA13に記載の判定方法に従って、エタネルセプトによる治療後の疾患活動性指標を予測判定する工程、および
 前記工程で予測判定されたトシリズマブによる治療後の疾患活動性指標とエタネルセプトによる治療後の疾患活動性指標を対比し、治療後の疾患活動性指標が低い生物学的製剤を選択する工程
を含む、生物学的製剤の選択方法。
項A21. トシリズマブおよびエタネルセプトよりなる生物学的製剤の中から、過去に抗サイトカイン療法を受けていないリウマチ患者において治療により有効な生物学的製剤を選択する方法であって、
 項A14またはA15に記載の判定方法に従って、トシリズマブによる治療後の症状の改善度を予測判定する工程、
 項A17またはA18に記載の判定方法に従って、エタネルセプトによる治療後の症状の改善度を予測判定する工程、および
 前記工程で予測判定されたトシリズマブによる治療後の症状の改善度とエタネルセプトによる治療後の症状の改善度を対比し、治療後の症状の改善度が高い生物学的製剤を選択する工程
を含む、生物学的製剤の選択方法。
項A22. 関節リウマチ患者への炎症性サイトカインを標的にした生物学的製剤による治療効果を予測判定するための診断剤であって、
 sgp130、IP-10、sTNFRI、sTNFRII、GM-CSF、IL-1β、IL-2、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-12、IL-13、IL-15、Eotaxin、VEGF、MCP-1、TNF-α、IFN-γ、FGFbasic、PDGF-bb、sIL-6R、およびMIP-1αよりなる群から選択される少なくとも1種のマーカーを検出可能な試薬を含む、診断剤。
 本発明において、上各項に記載される1または複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供され得ることが意図される。当業者は、本発明のさらなる実施形態および利点を、必要に応じて以下の詳細な説明を参酌することで理解することができる。
 本発明によれば、IL-6、TNF-α等の炎症性サイトカインを標的にした生物学的製剤(本明細書において、特に断らない限り「生物学的製剤」という)を投与する前に、関節リウマチ患者に対する治療効果を正確に推測することができ、当該生物学的製剤によって関節リウマチが完全寛解状態になるか否かを高い精度で判定することができる。さらに、本発明によれば、当該生物学的製剤の投与前に、関節リウマチ患者に対する症状の改善度を正確に判定することもでき、当該生物学的製剤による治療効果を見越した適切な治療方針を立てることが可能になる。また、本発明によれば、治療前の関節リウマチ患者にとって、どの生物学的製剤の投与が最も効果的であるかを予測することもできるので、患者毎に最適な生物学的製剤を選択して、患者毎に最も有効な治療方針を立てることも可能になる。本発明では、抗IL-6剤と抗TNF-α剤とでは患者に対する効果が異なることが明確に理解することができ、予測することができ、抗IL-6剤が有効な患者に抗IL-6剤を投与することができ、抗TNF-α剤が有効な患者に抗TNF-α剤を投与することができるようになった。抗IL-6剤と抗TNF-α剤とでは作用機構が異なっているところ、本発明ではその相違を明確に治療前に判定することができるため、従来では不可能であった質の高い関節リウマチ治療が達成される。
 このように、本発明を利用することにより、生物学的製剤の投与が有効な関節リウマチ患者を識別することができるので、患者にとっては治療費の抑制、治療効果の予測による安心感の付与等のメリットがあり、医師にとっても生物学的製剤の有効性の正確な予測に基づく適切な治療方針の確立が可能になる。
 さらに、本発明では、汎用性に乏しく複雑で時間を要する遺伝子解析等を必要とせず、血清中の特定のサイトカイン、ケモカイン、および/または可溶性受容体の濃度を指標として使用するので、既存の測定法を用いて簡便且つ廉価に、炎症性サイトカインを標的にした生物学的製剤の有効性を患者毎に事前に推測することができる。
抗IL-6剤(トシリズマブ)療法を受けたナイーブ患者を対象として、治療前に回帰式(4)によって算出された治療16週後のDAS-28値の予測値と、治療16週後のDAS-28値の実際値との対比を行った結果を示す図である。 抗IL-6剤(トシリズマブ)療法を受けたスイッチ患者を対象として、治療前に回帰式(5)によって算出された治療16週後のDAS-28値の予測値と、治療16週後のDAS-28値の実際値との対比を行った結果を示す図である。 抗TNF-α剤(エタネルセプト)療法を受けたナイーブ患者を対象として、治療前に回帰式(7)によって算出された治療16週後のDAS-28値の予測値と、治療16週後のDAS-28値の実際値との対比を行った結果を示す図である。 抗IL-6剤(トシリズマブ)療法を受けたナイーブ患者における、治療前のDAS-28値(PreDAS-28 score)と、治療前のDAS-28値から16週後のDAS-28値を差し引いた値(PreDAS-28score-16W DAS-28 score)の関係を示す図である。 抗IL-6剤(トシリズマブ)治療患者および抗TNF-α剤(エタネルセプト)治療患者のトライアルプロファイルを示す図である。 図6-1~6-4は、サイトカイン/ケモカイン/可溶性受容体の血清中濃度について、健常者と関節リウマチ患者のクリニカルベースラインの個体群統計を示す図である。 図6-1~6-4は、サイトカイン/ケモカイン/可溶性受容体の血清中濃度について、健常者と関節リウマチ患者のクリニカルベースラインの個体群統計を示す図である。 図6-1~6-4は、サイトカイン/ケモカイン/可溶性受容体の血清中濃度について、健常者と関節リウマチ患者のクリニカルベースラインの個体群統計を示す図である。 図6-1~6-4は、サイトカイン/ケモカイン/可溶性受容体の血清中濃度について、健常者と関節リウマチ患者のクリニカルベースラインの個体群統計を示す図である。 抗IL-6剤(トシリズマブ)治療患者および抗TNF-α剤(エタネルセプト)治療患者における、治療前のDAS-28値と治療16週後のDAS-28値の関係を示す図である。 抗TNF-α剤(エタネルセプト)療法を受けたナイーブ患者における、エタネルセプト療法の治療16週後のDAS-28の実際値と、抗IL-6剤(トシリズマブ)療法を受けたと仮定して推測される治療16週後のDAS-28値の予測値との関係を示す図である。 寛解と非寛解の患者について、血清中のsgp130濃度と治療前のDAS-28値の関係を分析した結果を示す図である。 同じ試料に対するDAS28-CRPの値とDAS28-ESRの値とを比較した相関図である。 sgp130単独でのROCカーブおよびこれに加えlogIL-6、logIP-10およびlogTNFRIIをも考慮して算出したROCグラフを示す。Aはナイーブ患者、Bはスイッチ患者を示す。太線はsgp130、logIL-6、logIP-10およびlogTNFRIIについてのROC曲線を示し、薄線はsgp130のみでのROC曲線を示す(図中にも矢印で示す)。
 以下、本発明を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)で言及される用語は、特に言及しない限りその複数形の概念をも含むことが理解されるべきである。本明細書において使用される用語はまた、特に言及しない限り当該分野で通常用いられる意味で用いられることが理解されるべきである。従って、通常用いられる意味と異なって定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。本明細書の説明と当該分野の説明との相違がある場合、本明細書(定義を含めて)が優先する。
1.判定方法
 本発明は、関節リウマチ患者への炎症性サイトカインを標的にした生物学的製剤による治療の有効性(例えば、寛解の可能性、治療後の症状の改善度、疾患活動性指標等)を判定する方法を提供する。
 1つの実施形態では、本発明の方法は、関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで生物学的製剤(本明細書では以下に述べる「特定マーカー」との対比で言及する場合「特定生物学的製剤」ともいう。)による該患者の寛解を事前に判定する方法を含む。別の実施形態では、本発明の方法は、関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで該患者への特定生物学的製剤による治療後の症状の改善度を事前に判定する方法を含む。他の実施形態では、本発明は、関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで該患者への特定生物学的製剤による治療後の疾患活動性指標を事前に判定する方法を含む。
 本明細書において「身体サンプル」とは、患者の身体から採取される任意のサンプルをいい、例えば、血清、血液、尿、唾液等を含むがこれらに限定されない。本発明では、好ましくは血清が使用される。従って、本発明の好ましい実施形態では、生物学的製剤の投与前の関節リウマチ患者から採取された血清を用いて、本発明の方法が実施される。
 本発明において、特定生物学的製剤の治療の有効性を判定するために使用されるマーカー(本発明では「特定マーカー」ともいう)としては、sgp130、IP-10、sTNFRI、sTNFRII、GM-CSF、IL-1β、IL-2、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-12、IL-13、IL-15、Eotaxin、VEGF、MCP-1、TNF-α、IFN-γ、FGFbasic、PDGF-bb、sIL-6R、およびMIP-1αよりなる群から選択される1種または2種以上を挙げることができる。必要な場合、「特定マーカー」として患者の治療前の状態の指標(例えば、治療前のDAS28スコア等)を使用してもよい。したがって、本発明では「特定マーカー」といった場合患者の治療前の状態の指標も包含される。
 好ましい実施形態では、抗IL-6剤に使用し得る特定マーカーは、sgp130、logIL-6、logIL-8、logEotaxin、logIP-10、logVEGF、logsTNFR-I、およびlogsTNFR-IIを含む。これらのマーカーを用いると、ナイーブ患者で16週のDAS28-CRPスコア等の将来の治療に関する指標を予測することができる。
 別の好ましい実施形態では、抗IL-6剤に使用し得る特定マーカーは、sgp130、logGM-CSF、およびlogIP-10を含む。これらのマーカーを用いると、スイッチ患者で16週のDAS28-CRPスコア等の将来の治療に関する指標を予測することができる。
 好ましい実施形態では、抗TNF-α剤に使用し得る特定マーカーは、logIL-9、logVEGFおよびlogTNF-αを含む。これらのマーカーは、ナイーブ患者で16週のDAS28-CRPスコアの予測において有効である。
 本発明の判定方法では、本発明の特定マーカーの身体サンプル中の濃度を用いて判定が行われることから、本発明の方法は、特定マーカーの身体サンプル中(例えば、血清中)の濃度を測定する工程を包含する。以下、本発明の判定方法について詳述する。
判定対象となる生物学的製剤
 本発明の判定方法は、関節リウマチ患者に対して、炎症性サイトカインを標的にした生物学的製剤の治療効果を予測判定する方法である。
 本発明の判定方法では、炎症性サイトカインを標的にした生物学的製剤としては、関節リウマチの治療に使用される生物学的製剤であることに制限されず、使用する生物学的製剤の種類に応じて、その治療効果を予測判定することができる。炎症性サイトカインを標的にした生物学的製剤としては、例えば、抗IL-6剤、抗TNF-α剤等が挙げられる。
 好ましい実施形態では、抗IL-6剤および抗TNF-α剤を含む生物学的製剤の治療効果を予測判定する。以下、抗IL-6剤および抗TNF-α剤をさらに詳述する。
 本明細書で使用される「抗IL-6剤」とは、IL-6シグナル伝達経路を抑制することによって、関節リウマチを治療することができる医薬をいう。抗IL-6剤としては、具体的には、ヒト化抗IL-6受容体抗体、抗IL-6抗体等が挙げられる。ヒト化抗IL-6受容体抗体の具体例としては、トシリズマブ、サリルマブ等が挙げられ、抗IL-6抗体の具体例としては、シルクマブ、オロキズマブ等が挙げられる。
 本明細書で使用される「抗TNF-α剤」とは、TNF-αシグナル伝達経路を抑制することによって、関節リウマチを治療することができる医薬をいう。抗TNF-α剤としては、具体的にはヒトIgG1のFc領域とヒト腫瘍壊死因子II型受容体の細胞外ドメインのサブユニット2量体とからなるヒト型可溶性TNF/LTαレセプター、抗TNF-α抗体等が挙げられる。ヒト型可溶性TNF/LTαレセプターの具体例としてはエタネルセプトが挙げられ、抗TNF-α抗体の具体例としては、アダリムマブ、インフリキシマブ、ゴリムマブ、セルトリズマブ等が挙げられる。
 これらの生物学的製剤の中でも、本発明の判定方法において適用される好ましいものとして、ヒト化抗IL-6受容体抗体、およびヒト型可溶性TNF/LTαレセプター、さらに好ましくはトシリズマブおよびエタネルセプトが挙げられるがこれらに限定されない。
 本発明で特定マーカーとして採用された特定のサイトカイン、ケモカイン、および/または可溶性受容体は、いずれも関節リウマチに関連がある分子である。関節リウマチは多因子疾患と呼ばれているが、特定の原因が判明すればその原因に対して有効な治療剤を投与することによって適切に治療することができると考えられている。この考え方を応用したものが生物学的製剤である。関節リウマチの原因は通常サイトカインであることから、生物学的製剤を用いた治療は「抗サイトカイン療法」とも呼ばれている。
 生物学的製剤は一般に、活性を改変する標的が特定されており、その特定の標的を改変する(例えば、結合因子の標的への結合を抑制する)ことで関節リウマチの症状が抑制される。関節リウマチの治療標的として、IL-6およびTNF-α等が知られており、対応する薬剤はそれぞれ抗IL-6剤および抗TNF-α剤等としてカテゴリー化されている。IL-6シグナル伝達経路では、IL-6によってIL-6シグナル伝達が活性化され、最終的には関節リウマチの症状が生じる。TNF-αシグナル伝達経路では、TNF-αによってTNF-αシグナル伝達が活性化され最終的には関節リウマチの症状が生じる。抗IL-6剤は、IL-6シグナル伝達を抑制することで治療効果(例えば、関節リウマチを鎮静化させる効果)を発揮するものであり、抗TNF-α剤は、TNF-αシグナル伝達を抑制することで治療効果(例えば、関節リウマチを鎮静化させる効果)を発揮するものであり、標的が異なる他の生物学的製剤でも同様の関係がある。このように、生物学的製剤は、治療標的となる因子のシグナル伝達を関節リウマチの症状が生じるのとは反対の方向へと作用することで治療効果を発揮するものである。
 抗IL-6剤は、その種類(例えば、抗IL-6抗体、抗IL-6受容体抗体等)に拘わらず、いずれもIL-6とIL-6受容体との結合を何らかの様式で抑制するという意味で同様の作用機構で治療効果を発揮するものである。IL-6シグナル伝達が抑制された後の反応は、その抑制形式に拘らず同様であると理解されるため、関節リウマチの治療過程に関する生体内の反応についても、抗IL-6剤の種類に拘らず同様であるといえる。従って、抗IL-6剤に属するある治療剤についての生体内の反応に関する知見は、同一のカテゴリーに属する他の治療剤(例えば、ある治療剤がヒト化抗IL-6受容体抗体であれば、他の種類のヒト化抗IL-6受容体抗体またはIL-6に対する抗体、断片、誘導体等)にも適用され得ることが理解される。
 例えば、IL-6のシグナル伝達で、IL-6はIL-6Rに結合しさらにその複合体はgp130に結合して、gp130を介して細胞内にIL-6のシグナルが伝達されることが知られている(Rose-John S (2012) Int. J. Biol. Sci 8:1237-1247)。sIL-6RもIL-6と結合しgp130を介してシグナルが伝達される。このため血中のsIL-6Rは阻害分子ではなく増強因子となる。他方sgp130はIL-6/IL-6Rの複合体を結合するためIL-6の阻害分子となる。本発明の結果から、本発明者らはsIL-6R,sgp130いずれもin vivoにおけるIL-6阻害療法に関連することを明らかにした。IL-6阻害治療においてsIL-6Rは血中基準が高いと有効性が低く、sgp130は高いと有効性が高くなることが実施例の結果からも導き出すことができる。
 本発明では、トシリズマブでの知見からsgp130が抗IL-6剤の治療予測のためのマーカーとして使用し得ることが判明している。上述した当該分野における知見を含むsgp130とIL-6シグナル伝達との関係から、当業者にはどの抗IL-6剤でも同様の生体内の反応が生じるものと理解される。従って、今般トシリズマブで得られたsgp130に関する知見は、他の抗IL-6剤においても同様に適用し得ると当業者に理解される。
 本発明では、sgp130は、抗IL-6剤による患者の寛解および疾患活動性指標の予測に用いることができることが判明している。このほか抗IL-6剤に関する各種予測に関して、sgp130以外にも以下のマーカーが利用可能であることが判明している。
・寛解の可能性の予測:IP-10、sTNFRII、IL-6、IL-7、MCP-1、およびIL-1β
・症状の改善度の予測:IL-1β、IL-7、TNF-αおよびsIL-6R
・疾患活動性指標の予測:IL-8、Eotaxin、sTNFRI、sTNFRII、IL-6、VEGF、GM-CSFおよびIP-10
 これらのマーカーは、関節リウマチの病態に関する因子(サイトカイン、ケモカイン、および/または可溶性受容体)である。従って、抗IL-6剤であるトシリズマブで関連性が高いと見出されたこれらのマーカーは、IL-6阻害療法(トシリズマブ、シルクマブ等)のそれぞれの予測に関して共通の情報であるといえる。よって、本発明の実施例で得られたトシリズマブについて得られた回帰式はいずれも、他の抗IL-6剤についても、そのままあるいは微調整を施した上で使用し得ることが理解される。各種抗IL-6剤については、回帰式について本発明で開示した詳細な数値が適用できない場合もありうる。そのような場合でも、当業者は、本明細書の記載および実際に得られた臨床データをもとに、必要に応じて後ろ向き解析等のさらなる分析を行いその特定の抗IL-6剤についての回帰式を作成することができる。
 本発明では、sgp130を寛解および疾患活動性指標の予測に用いることができること自体従前の知見にかんがみると顕著な特徴であるといえる。この点に加え、寛解に至るか否かの予測についてより詳細に検討すると、sgp130とそれ以外の上述のマーカーとの組み合わせで判定をすると、AUC(Area Under Curve)が約0.8を超える精度、場合によっては約0.9の精度を示すことが本発明において明らかになった(表12~13参照)。このように、本発明によって従来にない精度で極めて正確に予測判定することができることが示されている。
 抗TNF-α剤についても抗IL-6剤と同様の説明を行うことができ、本発明で得た知見をもとに抗TNF-α剤に関する共通の情報を説明することができる。以下説明する。
 抗TNF-α剤もまた、その種類(例えば、ヒトIgG1のFc領域とヒト腫瘍壊死因子II型受容体の細胞外ドメインのサブユニット2量体からなるヒト型可溶性TNF/LTαレセプター、抗TNF-α抗体)に拘わらず、いずれもTNF-αとTNF-α受容体との結合が何らかの様式で抑制されるという意味で同様の作用機構で治療効果を発揮するものである。TNF-αシグナル伝達が抑制された後の反応は、その抑制形式に拘らず同様であると理解されるため、関節リウマチの治療過程に関する生体内の反応も、抗TNF-α剤の種類に拘らず同様である。従って、抗TNF-α剤に属するある治療剤についての生体内の反応に関する知見は、同一のカテゴリーに属する他の治療剤(例えば、ある治療剤がヒト型可溶性TNF/LTαレセプターであれば、他の種類のヒト型可溶性TNF/LTαレセプターまたは抗TNF-α抗体、断片、誘導体等)にも適用され得ることが理解される。
 本発明では、抗TNF-α剤について、各種予測に関して、以下のマーカーが利用可能であることが判明している。
・寛解の可能性の予測:IL-9、TNF-α、VEGF、MIP-1a、PDGFbb
・症状の改善度の予測:IL-2、IL-15、sIL-6R、sTNFRI、IL-6、IL-13
・疾患活動性指標の予測:IL-9、TNF-α、VEGF、IL-6、IL-13
 これらのマーカーは、関節リウマチの病態に関する因子(サイトカイン、ケモカイン、および/または可溶性受容体)であることが知られている。従って、TNF-αであるエタネルセプトで関連性が高いと見出されたこれらのマーカーは、TNF-α阻害療法(エタネルセプト、アダリムマブ、インフリキシマブ、ゴリムマブ、およびセルトリズマブ等)のそれぞれの予測に関して共通の情報である。よって、本発明の実施例で得られたエタネルセプトについて得られた回帰式はいずれも、他の抗TNF-α剤についても、そのままあるいは微調整を施した上で使用できる。各種抗TNF-α剤については、回帰式について本発明で開示した詳細な数値が適用できない場合もありうる。そのような場合でも、当業者は、本明細書の記載および実際に得られた臨床データをもとに、必要に応じて後ろ向き解析等のさらなる分析を行いその特定の抗TNF-α剤についての回帰式を作成することができる。
 本発明では、VEGFもしくはMIP-1a、PDGFbbおよび関節リウマチ患者の治療前の状態の指標のほか、IL-9およびTNF-αの組み合わせが関節リウマチの寛解の事前の判定に使用することが判明している。ここで、患者の治療前の状態の指標としては、投与前のDAS-28値等を使用することができるがこれに限定されない。このようなIL-9およびTNF-αの組み合わせでも、AUCが0.745と比較的高い値を示している。このような特定の2つのマーカー、しかも、抗IL-6剤とは異なる2つのマーカーでの抗TNF-α剤の寛解の予測は従来の治療技術ではできなかったことである。
 本発明ではまた、抗IL-6剤の治療効果を予測するためのマーカーと、抗TNF-α剤の治療効果を予測するためのマーカーとが全く異なるものであったことが見出された。この点は、関節リウマチが1つの疾患としてとらえられ、均一的な治療がなされている現状の治療の枠組みからは予想されていなかったことである。他方で、関節リウマチは多因性の疾患であり、生物学的製剤はその原因を直接標的にするものである。従来はこれらの原因が相互に独立しているのか関連しているのか不明であった。しかしながら、本発明の知見により、抗IL-6剤と抗TNF-α剤の治療効果を予測するためのマーカーが異なっていることが見出されたことから、関節リウマチの原因として、IL-6シグナル伝達とTNF-αシグナル伝達とは独立している蓋然性の高いことが判明した。このような知見は従来知られていなかった知見であり、本発明は、発明者の知る限り、患者毎に適切な生物学的製剤が存在することを初めて報告するものである。本発明の知見により、関節リウマチにおいてパーソナライズドメディスン(患者毎にその患者に適切な治療剤を選択して治療する方法)による治療が可能であることが示された。
 なお、エタネルセプト等のTNF-α阻害療法では、単独では患者が寛解しないことが多いことから、通常メトトレキサート投与と併用して治療がなされる。そして、メトトレキサートは、TNF-α経路は抑制せずIL-6経路を抑制することが知られている(Nishina N et al., Clin Rheumatol. 2013 Nov;32(11):1661-6)。そのことと、本発明ではメトトレキサートと併用して治療がなされた患者を対象に調査がなされていることとから、本発明で見出された抗TNF-α剤に関するマーカーの一部は、抗IL-6剤のマーカーと重複していることがあり得る。このような場合、抗IL-6剤のマーカーと重複するマーカーを除いて予測判定することが好ましい。このような抗IL-6剤のマーカーと重複するマーカーは、必要に応じて多量変数解析やロジスチック解析で排斥することができる。
判定対象となる患者
 本発明の判定方法では、前記生物学的製剤を投与する前の関節リウマチ患者において、前記生物学的製剤の投与が有効であるか否かを判定する。
 また、本発明の判定方法において、対象となる関節リウマチ患者については、前記生物学的製剤の投与前である限り、特に制限されることなく、メトトレキサート等のDMARDsの投与薬を受けているか否かの別や、過去の抗サイトカイン療法(インフリキシマブ、エタネルセプト、アダリムマム、トシリズマブ等の投与)の投与履歴も問わない。より詳細な判定結果が必要である場合は、本発明の判定方法では、過去の生物学的製剤の投与履歴に応じて所望の特定マーカーを選択することにより、生物学的製剤による治療効果を予測判定することができる。
特定マーカー
 本発明の判定方法では、前記関節リウマチ患者の血清におけるsgp130(soluble gp130)、IP-10(interferon-inducibleprotein 10)、sTNFRI(soluble receptors for tumor necrosis factor type I)、sTNFRII(solublereceptors for tumor necrosis factor type II)、GM-CSF(granulocyte macrophagecolony-stimulating factor)、I6(interleukin-6)、IL-7(interleukin-7)、IL-8interleukin-8)、IL-9(interleukin-9)、IL-10(interleukin-10)、IL-12(interleukin-12)、IL-13(interleukin-13)、IL-15(interleukin-15)、Eotaxin、VEGF(vascularendothelial growth factor)、MCP-1(monocyte chemotactic protein-1)、TNF-α(tumornecrosis factor-α)、IFN-γ(interferon-γ)、FGFbasic(basic fibroblast growth factor)、PDGF-bb(platelet-derivedgrowth factor bb)、sIL-6R(soluble receptors for interleukin-6)、およびMIP-1α(macrophageinflammatory protein-1α)よりなる群から選択される1種または2種以上を特定マーカー(本明細書では、「判定マーカー」ともいう。)として使用する。
 本発明の判定方法において、前述する特定のサイトカイン、ケモカイン、および可溶性受容体の中の1種を単独で特定マーカーとしてもよいが、より高い精度で生物学的製剤による治療効果を予測判定するという観点から、これらの中の2種以上を組み合わせて特定マーカーとすることが好ましい。さらに、本明細書で示された判定精度の高いセットの特定マーカーを使用することがより好ましい。
 前記特定マーカーは、予測判定する治療効果の内容、投与する生物学的製剤の種類、過去の生物学的製剤の投与履歴等に応じて、適宜選択して使用される。以下、予測判定する治療効果(治療後の症状の改善度、寛解の可能性、疾患活動性指標)の内容毎に、特定マーカーとして好ましい例を具体的に示す。
<生物学的製剤の治療後の症状の改善度(疾患活動性指標の値の改善度;治療前の疾患活動性指標の値-治療後の疾患活動性指標の値)を予測判定する場合>
 ナイーブ患者であって抗IL-6剤(例えば、トシリズマブ)が投与される患者(本明細書において、「抗IL-6剤療法ナイーブ患者」と表記することもある)であれば、IL-7、IL-8、IL-12、IL-13、IP-10、VEGF、IL-1β、TNF-α、およびsIL-6Rよりなる群から選択される少なくとも1種を特定マーカーとして使用することが好ましく、IL-1β、IL-7、TNF-α、およびsIL-6Rを組み合わせて特定マーカーとして使用することがさらに好ましい。
 スイッチ患者であって抗IL-6剤(例えば、トシリズマブ)が投与される患者(以下、「抗IL-6剤療法スイッチ患者」と表記することもある)であれば、IL-1β、IL-5、IL-6、IL-7、IL-10、IL-12、IL-13、IL-15、FGFbasic、GM-CSF、IFN-γ、TNF-α、およびVEGFよりなる群から選択される少なくとも1種を特定マーカーとして使用することが好ましい。
 ナイーブ患者であって抗TNF-α剤(例えば、エタネルセプト)が投与される患者(以下、「抗TNF-α剤療法ナイーブ患者」と表記することもある)であれば、IL-6、IP-10、IL-2、IL-13、IL-15、sIL-6R、およびsTNFRIよりなる群から選択される少なくとも1種を特定マーカーとして使用することが好ましく、IL-2、IL-15、sIL-6R、およびsTNFRIの組み合わせが特定マーカーとしてさらに好ましい。
スイッチ患者であって抗TNF-α剤(例えば、エタネルセプト)が投与される患者(以下、「抗TNF-α剤療法スイッチ患者」と表記することもある)についても、「抗TNF-α剤療法ナイーブ患者」と同様、IL-6、IP-10、IL-2、IL-13、IL-15、sIL-6R、およびsTNFRIよりなる群から選択される少なくとも1種を特定マーカーとして使用することが好ましく、IL-2、IL-15、sIL-6R、およびsTNFRIの組み合わせが特定マーカーとしてさらに好ましい。近年、抗TNF-α剤単独では関節リウマチ患者は寛解にまで達することができず、抗TNF-α剤を用いる場合は、メトトレキサートとの併用が事実上必須とされている。本発明においても、抗TNF-α剤療法ナイーブ患者についてのマーカーは、メトトレキサートとの併用で得られた情報である。メトトレキサートはIL-6シグナル伝達経路の抑制を通じて関節リウマチに対する効果があることが知られている。従って、生物学的製剤について「抗TNF-α剤療法ナイーブ患者」であっても、すでにIL-6シグナル伝達経路に対してある程度の改変がなされた状態の患者であるといえる。従って、本発明で得られた「抗TNF-α剤療法ナイーブ患者」のマーカーは、「抗TNF-α剤療法スイッチ患者」のマーカーと事実上同様の状態にあるといえるものである。このような状況を考慮すると、本発明で得られた「抗TNF-α剤療法ナイーブ患者」のマーカーは、「抗TNF-α剤療法スイッチ患者」においても、効果予測において同様に適用することができる。また、メトトレキサートは、IL-6経路を抑制することが知られていることから、「抗TNF-α剤療法スイッチ患者」において利用するマーカーについても、抗IL-6剤のマーカーと重複していることがあり得る。このような場合、必要に応じて抗IL-6剤のマーカーと重複するマーカーを除いて解析をすることができる。
<生物学的製剤の治療後の疾患活動性指標の値自体を予測判定する場合>
 抗IL-6剤療法ナイーブ患者であれば、sgp130、IL-8、Eotaxin、IP-10、sTNFRI、sTNFRII、IL-6、およびVEGFよりなる群から選択される少なくとも1種を特定マーカーとして使用することが好ましく;sgp130、IL-8、Eotaxin、IP-10、sTNFRI、sTNFRII、およびIL-6の組み合わせ、或いはsgp130、IL-8、Eotaxin、IP-10、sTNFRI、sTNFRII、IL-6、およびVEGFの組み合わせが特定マーカーとしてさらに好ましい。予測判定の対象となる抗IL-6剤はどのようなものでもよいが、トシリズマブが好ましい。
 抗IL-6剤療法スイッチ患者であれば、sgp130、IL-1β、IL-2、IL-5、IL-15、GM-CSF、IFN-γ、TNF-α、およびIP-10よりなる群から選択される少なくとも1種を特定マーカーとして使用することが好ましく;sgp130、IP-10、およびGM-CSFの組み合わせが特定マーカーとしてさらに好ましい。これらの特定マーカーについて、予測判定の対象となる抗IL-6剤はどのようなものでもよいが、トシリズマブが好ましい。
 抗TNF-α剤療法ナイーブ患者であれば、IL-9、IL-6、IL-13、TNF-αおよびVEGFよりなる群から選択される少なくとも1種を特定マーカーとして使用することが好ましく、IL-9、TNF-αおよびVEGFの組み合わせ、或いはIL-6およびIL-13の組み合わせが特定マーカーとしてさらに好ましい。これらの特定マーカーについて、予測判定の対象となる抗TNF-α剤はどのようなものでもよいが、エタネルセプトが好ましい。
<生物学的製剤の治療による寛解の可能性(寛解に至るか否か)を予測判定する場合>
 抗IL-6剤が投与される患者(抗IL-6剤療法ナイーブ患者および抗IL-6剤療法スイッチ患者の双方を含む)であれば、sgp130、IP-10、sTNFRII、IL-6、IL-7、MCP-1およびIL-1βよりなる群から選択される少なくとも1種を特定マーカーとして使用することが好ましく;少なくともsgp130を使用することがより好ましく、(i)sgp130と、(ii)IP-10と、(iii)sTNFRIIと、(iv)IL-6、IL-7、MCP-1またはIL-1βの組み合わせがさらに好ましい。より具体的には、抗IL-6剤療法ナイーブ患者の場合であれば、(i)sgp130と、(ii)IP-10と、(iii)sTNFRIIと、(iv)IL-6、IL-7、MCP-1またはIL-1βの組み合わせが特定マーカーとして特に好ましい。また、抗IL-6剤療法スイッチ患者の場合であれば、(i)sgp130と、(ii)IP-10と、(iii)sTNFRIIと、(iv)IL-6またはIL-1βの組み合わせが特定マーカーとして特に好ましい。これらの特定マーカーについて、予測判定の対象となる抗IL-6剤はどのようなものでもよいが、トシリズマブが好ましい。
 抗TNF-α剤療法ナイーブ患者であれば、IL-9、TNF-α、VEGF、PDGF-bb、およびMIP-1αよりなる群から選択される少なくとも1種を特定マーカーとして使用することが好ましく;IL-9およびTNF-αの組み合わせ、VEGFおよびPDGF-bbの組み合わせ、或いはMIP-1αおよびPDGF-bbの組み合わせが特定マーカーとして特に好ましい。これらの特定マーカーについて、予測判定の対象となる抗TNF-α剤はどのようなものでもよいが、エタネルセプトが好ましい。これらの特定マーカーは、抗TNF-α剤療法スイッチ患者に対しても抗TNF-α剤療法ナイーブ患者に用いるのと同様に用いることができる。
 特定マーカーとして使用される前記サイトカイン、ケモカインおよび可溶性受容体の血清中の各濃度は、ELISAのような抗原抗体反応を利用した測定系によって測定できることは公知であり、これらの測定キットも市販されている。従って、本発明の判定方法において、前記サイトカイン、ケモカインおよび可溶性受容体は、公知の方法、公知の測定キットにより測定することができる。このような抗原抗体反応を利用した測定系に使用する試薬は、各生物学的製剤の判定用の診断剤として個別にまたはセットで提供することができる。
生物学的製剤による治療効果の予測判定
 前記特定マーカーの測定値に基づいて、抗IL-6剤、抗TNF-α剤等の特定生物学的製剤による治療効果を予測判定することができる。例えば、特定生物学的製剤による治療で完全寛解した患者、非寛解であった患者について、予め前記特定マーカーの測定を行い、回帰分析によって生物学的製剤の治療効果(目的変数)と前記特定マーカーの測定値(説明変数)の回帰式を求めておき、当該回帰式に、判定対象となる関節リウマチ患者の特定マーカーの測定値を当てはめる方法が挙げられる。なお、回帰式を求めるに当たって、前記特定マーカーの内、sgp130以外については、血清中濃度(pg/ml)のlog値を使用することが好ましく、sgp130については血清中濃度(μg/ml)の値を使用することが好ましい。これらのlog値または濃度値の選択は、正常人の正規分布との比較を検討した結果、本発明者らがそのまま濃度値を用いるのがよいのかlog値を採用すべきなのかを検討して選択したものであり、その検討結果通り相関値が高いものとなった。また、回帰式は、多重回帰分析によって導出することが好ましい。前記回帰式において目的変数については、予測判定すべき治療効果の内容に基づいて適宜設定すればよい。
 例えば、特定生物学的製剤の治療後の症状の改善度を予測判定する場合であれば、目的変数を「治療前の疾患活動性指標の値から所定期間治療後の疾患活動性指標の値を差し引いた値」に設定し、線形多重回帰分析により解析すればよい。また、例えば、特定生物学的製剤の治療後の疾患活動性指標の値を予測判定する場合であれば、目的変数を「所定期間治療後の疾患活動性指標の値」に設定し、線形多重回帰分析により解析すればよい。ここで、疾患活動性指標の値としては、具体的には、DAS(Diseaseactivity score)-28値、CDAI(Clinical Disease Activity Index)値、およびSDAI(SimpleDisease Activity Index)値等が挙げられる。DAS-28値、CDAI値、およびSDAI値は、相互に相関しており、関節リウマチの症状を反映しているため、本発明の判定方法ではこれらの疾患活動性指標の値のいずれを使用してもよい。また、本発明の判定方法に使用される疾患活動性指標は、前記で例示したものに限定されず、将来新たに提唱され得るものを使用することもできる。DAS28についてはDAS28-CRPであってもDAS28-ESRであっても同様に用いることが本明細書において実証されている。なお、改善度は、0(不変)またはマイナスの値をとることもある。その場合は、改善しているとはいえず、不変であれば、改善がないことを示し。マイナスであれば、悪化していることを示す。もちろん、マイナスであれば、当業者はその生物学的製剤を使用しないと判断することになる。
 また、生物学的製剤の治療による寛解の可能性(寛解したか、しなかったかの結果)を予測判定する場合であれば、ロジスチック多重回帰分析により解析すればよい。
 なお、前記特定マーカーの測定値を説明変数として利用した回帰分析では、必要に応じて治療前の疾患活動性指標の値(DAS-28値、CDAI値、SDAI値等)やBoolean法による評価結果も説明変数として利用してもよい。
 以下、本発明の判定方法について、予測判定する治療効果を、治療後の症状の改善度と、治療後のDAS-28値と、寛解の可能性とに分けて、具体的手法を説明する。但し、本発明の判定方法は、下記具体的な手法に限定されて解釈されるものではない。
<治療後の症状の改善度の予測判定>
 目的変数を「治療前の疾患活動性指標の値から所定期間治療後の疾患活動性指標の値を差し引いた値」、説明変数を「前記特定マーカーの測定値」に設定して線形多重回帰分析を行うことにより、生物学的製剤による治療後の症状の改善度を予測判定することが可能になる。
 後述する実施例では、抗IL-6剤、抗TNF-α剤等の特定生物学的製剤による16週間の治療後の症状の改善度(DAS-28値の改善度;治療前のDAS-28値-治療16週後のDAS-28値)を予測判定する回帰式として、リウマチ患者の過去の投薬履歴および生物学的製剤の種類に分けて、以下の式(1)および(2)が見出されている。判定対象となる関節リウマチ患者の過去の投薬履歴と生物学的製剤の種類に応じて、下記回帰式(1)および(2)のいずれかに当てはめて目的変数を求めることによって、16週間の治療後の症状の改善度を予測判定できる。下記回帰式で算出される目的変数が大きい値になる程、当該患者は特定生物学的製剤によって症状の改善度が大きいと予測判定される。
[トシリズマブ療法ナイーブ患者の16週間の治療後の症状の改善度(DAS-28値の改善度;治療前のDAS-28値-治療16週後のDAS-28値)を予測判定する場合]
特定マーカー:IL-1β、IL-7、TNF-α、およびsIL-6R
回帰式(1)
目的関数(治療前のDAS-28値-治療16週後のDAS-28値)=5.505+(-3.618×A)+(3.255×B)+(1.475×C)+(-1.841×D)
A:血清中IL-1βの濃度(pg/ml)のlog値
B:血清中IL-7の濃度(pg/ml)のlog値
C:血清中TNF-αの濃度(pg/ml)のlog値
D:血清中sIL-6Rの濃度(pg/ml)のlog値
 他の抗IL-6剤を用いる場合、上記特定マーカーの種類および上記回帰式の各変数、係数等のパラメータを参考に、実施例等で行った手法と同様の手法を用いて、選択した他の抗IL-6剤についての回帰式を作成することができる。
[エタネルセプト療法ナイーブ患者の16週間の治療後の症状の改善度(DAS-28値の改善度;治療前のDAS-28値-治療16週後のDAS-28値)を予測判定する場合]
特定マーカー:IL-2、IL-15、sIL-6R、およびsTNFRI
回帰式(2)
目的関数(治療前のDAS-28値-治療16週後のDAS-28値)=7.325+(-1.567×E)+(1.632×F)+(-2.540×D)+(1.973×G)
E:血清中IL-2の濃度(pg/ml)のlog値
F:血清中IL-15の濃度(pg/ml)のlog値
D:血清中sIL-6Rの濃度(pg/ml)のlog値
G:血清中sTNFRII濃度(pg/ml)のlog値
 他の抗TNF-α剤を用いる場合、上記特定マーカーの種類および上記回帰式の各変数、係数等のパラメータを参考に、実施例等で行った手法と同様の手法を用いて、選択した他の抗TNF-α剤についての回帰式を作成することができる。
 前記回帰式(1)および(2)では、抗IL-6剤、抗TNF-α剤等の特定生物学的製剤による16週間の治療後のDAS-28値の改善度を予測判定するために使用される回帰式の例を示しているが、勿論、CDAI値またはSDAI値を用いて同様の手法にて線形多重回帰分析を行うことにより、生物学的製剤による16週間の治療後のCDAI値またはSDAI値の改善度(CDAI値またはSDAI値の改善度;治療前のCDAI値またはSDAI値-治療16週後のCDAI値またはSDAI値)を予測判定することもできる。また、生物学的製剤による治療16週後であれば、治療効果が安定して現れるため、前記回帰式(1)および(2)では16週間の治療後の症状の改善度を予測判定するための回帰式を示しているが、勿論、各々の特定生物学的製剤による治療16週以前または以降の症状の改善度についても、同様の手法にて線形多重回帰分析を行うことによって予測判定することが可能である。
 また、後述する実施例では、抗IL-6剤、抗TNF-α剤等の特定生物学的製剤による16週間の治療後の症状のDAS-28値を予測判定する回帰式として、リウマチ患者の過去の投薬履歴および生物学的製剤の種類に分けて、以下の式(3)~(7)が見出されている。判定対象となる関節リウマチ患者の過去の投薬履歴と生物学的製剤の種類に応じて、下記回帰式(3)~(7)のいずれかに当てはめて目的変数を求めることによって、16週間の治療後のDAS-28値を予測判定できる。下記回帰式で算出される目的変数が2.3以下になる場合、当該患者は特定生物学的製剤によって寛解に至ると予測判定される。
[トシリズマブ療法ナイーブ患者の16週間の治療後のDAS-28値を予測判定する場合]
特定マーカー:sgp130、IL-8、Eotaxin、IP-10、sTNFRI、sTNFRII、IL-6、およびVEGF
回帰式(3)
目的関数(16週間の治療後のDAS-28値)=6.909+(-5.341×H)+(3.940×I)(-1.039×J)+(-1.002×K)+(-2.580×L)+(1.407×G)+(0.744×M)+(-0.850×N)
H:血清中sgp130の濃度(μg/ml)
I:血清中IL-8の濃度(pg/ml)のlog値
J:血清中Eotaxinの濃度(pg/ml)のlog値
K:血清中IP-10の濃度(pg/ml)のlog値
L:血清中sTNFRIIの濃度(pg/ml)のlog値
G:血清中sTNFRII濃度(pg/ml)のlog値
M:血清中IL-6の濃度(pg/ml)のlog値
N:血清中VEGFの濃度(pg/ml)のlog値
 他の抗IL-6剤を用いる場合、上記特定マーカーの種類および上記回帰式の各変数、係数等のパラメータを参考に、実施例等で行った手法と同様の手法を用いて、選択した他の抗IL-6剤についての回帰式を作成することができる。
[トシリズマブ療法ナイーブ患者の16週間の治療後のDAS-28値を予測判定する場合]
特定マーカー:sgp130、IL-8、Eotaxin、IP-10、sTNFRI、sTNFRII、およびIL-6
回帰式(4)
目的関数(16週間の治療後のDAS-28値)=4.731+(-5.433×H)+(2.551×I)(-0.937×J)+(-1.116×K)+(-2.010×L)+(1.630×G)+(0.577×M)
H:血清中sgp130の濃度(μg/ml)
I:血清中IL-8の濃度(pg/ml)のlog値
J:血清中Eotaxinの濃度(pg/ml)のlog値
K:血清中IP-10の濃度(pg/ml)のlog値
L:血清中sTNFRIIの濃度(pg/ml)のlog値
G:血清中sTNFRII濃度(pg/ml)のlog値
M:血清中IL-6の濃度(pg/ml)のlog値
 他の抗IL-6剤を用いる場合、上記特定マーカーの種類および上記回帰式の各変数、係数等のパラメータを参考に、実施例等で行った手法と同様の手法を用いて、選択した他の抗IL-6剤についての回帰式を作成することができる。
[トシリズマブ療法スイッチ患者の16週間の治療後のDAS-28値を予測判定する場合]
特定マーカー:sgp130、IP-10およびGM-CSF
回帰式(5)
目的関数(16週間の治療後のDAS-28値)=2.837+(-6.037×H)+(0.714×K)+(-0.622×O)
H:血清中sgp130の濃度(μg/ml)
K:血清中IP-10の濃度(pg/ml)のlog値
O:血清中GM-CSFの濃度(pg/ml)のlog値
 他の抗IL-6剤を用いる場合、上記特定マーカーの種類および上記回帰式の各変数、係数等のパラメータを参考に、実施例等で行った手法と同様の手法を用いて、選択した他の抗IL-6剤についての回帰式を作成することができる。
[エタネルセプト療法ナイーブ患者の16週間の治療後のDAS-28値を予測判定する場合]
特定マーカー:IL-6およびIL-13、説明変数としてエタネルセプト投与前のDAS-28値も使用
回帰式(6)
目的関数(16週間の治療後のDAS-28値)=0.081+(0.522×a)+(-0.969×M)+(1.409×P)
a:エタネルセプト投与前のDAS-28値
M:血清中IL-6の濃度(pg/ml)のlog値
P:血清中IL-13の濃度(pg/ml)のlog値
 他の抗TNF-α剤を用いる場合、上記特定マーカーの種類および上記回帰式の各変数、係数等のパラメータを参考に、実施例等で行った手法と同様の手法を用いて、選択した他の抗TNF-α剤についての回帰式を作成することができる。
[エタネルセプト療法ナイーブ患者の16週間の治療後のDAS-28値を予測判定する場合]
特定マーカー:IL-9、TNF-αおよびVEGF
回帰式(7)
目的関数(16週間の治療後のDAS-28値)=0.703+(0.646×S)+(-0.551×C)+(0.858×N)
S:血清中IL-9の濃度(pg/ml)のlog値
C:血清中TNF-αの濃度(pg/ml)のlog値
N:血清中VEGFの濃度(pg/ml)のlog値
 他の抗TNF-α剤を用いる場合、上記特定マーカーの種類および上記回帰式の各変数、係数等のパラメータを参考に、実施例等で行った手法と同様の手法を用いて、選択した他の抗TNF-α剤についての回帰式を作成することができる。
 前記回帰式(7)では、エタネルセプト投与前のDAS-28値を説明変数として使用しないため、医師による主観を排除して、16週間の治療後のDAS-28値を予測できるので、前記回帰式(6)よりも好ましいといえる。
 前記回帰式(3)~(7)では、抗IL-6剤、抗TNF-α剤等の特定生物学的製剤による16週間の治療後のDAS-28値を予測判定するために使用される回帰式の例を示しているが、勿論、CDAI値またはSDAI値を用いて同様の手法にて線形多重回帰分析を行うことにより、各々の特定生物学的製剤による16週間の治療後のCDAI値またはSDAI値自体を予測判定することもできる。また、前述するように、各々の特定生物学的製剤による治療16週後であれば、治療効果が安定して現れるため、前記回帰式(3)~(7)では16週間の治療後の疾患活動性指標の値を予測判定するための回帰式を示しているが、勿論、各々の特定生物学的製剤による治療16週以前または以降の疾患活動性指標の値についても、同様の手法にて線形多重回帰分析を行うことによって予測判定することが可能である。
 さらに、後述する実施例では、抗IL-6剤、抗TNF-α剤等の特定生物学的製剤による16週間の治療後の寛解の可能性(寛解または非寛解のいずれであるか)を予測判定する回帰式として、リウマチ患者の過去の投薬履歴および生物学的製剤の種類に分けて、以下の式(8)~(16)が見出されている。判定対象となる関節リウマチ患者の過去の投薬履歴と生物学的製剤の種類に応じて、下記回帰式(8)~(16)のいずれかに当てはめて16週間の治療後の寛解の確率(p)を求めることによって、16週間の治療後に寛解に至るか否かを予測判定できる。下記回帰式(8)~(16)から推測される寛解の確率とは、DAS-28値が2.3以下の状態になる確率を指し、回帰式(8)~(16)で算出されるpの値が1に近い程、16週間の治療後に寛解になる可能性が高く、例えば、便宜上、当該pの値が0.5以上であれば寛解、0.5未満であれば非寛解と予測判定できる。ここで、DAS-28値が2.3の場合を寛解と非寛解の境界としているのは、IL-6を阻害することによって炎症とは無関係にCRP値が低下しやすくDAS-28値が低下することがあるので、寛解と予測判定する精度を高めるためであり、一般的な寛解と非寛解の境界とされているDAS-28値(2.6)よりも低い値に設定している。
[トシリズマブ療法ナイーブ患者の寛解の可能性を予測判定する場合]
特定マーカー:sgp130、IP-10、sTNFRII、およびIL-6
回帰式(8)
p/(1-p)=exp{(-5.095)+(-36.648×H)+(-4.004×K)+(5.632×G)+(1.658×M)}
p:16週間の治療後の寛解の確率
H:血清中sgp130の濃度(μg/ml)
K:血清中IP-10の濃度(pg/ml)のlog値
G:血清中sTNFRII濃度(pg/ml)のlog値
M:血清中IL-6の濃度(pg/ml)のlog値
 他の抗IL-6剤を用いる場合、上記特定マーカーの種類および上記回帰式の各変数、係数等のパラメータを参考に、実施例等で行った手法と同様の手法を用いて、選択した他の抗IL-6剤についての回帰式を作成することができる。
[トシリズマブ療法ナイーブ患者の寛解の可能性を予測判定する場合]
特定マーカー:sgp130、IP-10、sTNFRII、およびIL-7
回帰式(9)
p/(1-p)=exp{(-3.467)+(-42.849×H)+(-4.430×K)+(5.736×G)+(2.705×B)}
p:16週間の治療後の寛解の確率
H:血清中sgp130の濃度(μg/ml)
K:血清中IP-10の濃度(pg/ml)のlog値
G:血清中sTNFRII濃度(pg/ml)のlog値
B:血清中IL-7の濃度(pg/ml)のlog値
 他の抗IL-6剤を用いる場合、上記特定マーカーの種類および上記回帰式の各変数、係数等のパラメータを参考に、実施例等で行った手法と同様の手法を用いて、選択した他の抗IL-6剤についての回帰式を作成することができる。
[トシリズマブ療法ナイーブ患者の寛解の可能性を予測判定する場合]
特定マーカー:sgp130、IP-10、sTNFRII、およびMCP-1
回帰式(10)
p/(1-p)=exp{(-2.834)+(-38.721×H)+(-4.664×K)+(5.369×G)+(2.502×B)}
p:16週間の治療後の寛解の確率
H:血清中sgp130の濃度(μg/ml)
K:血清中IP-10の濃度(pg/ml)のlog値
G:血清中sTNFRII濃度(pg/ml)のlog値
P:血清中MCP-1の濃度(pg/ml)のlog値
 他の抗IL-6剤を用いる場合、上記特定マーカーの種類および上記回帰式の各変数、係数等のパラメータを参考に、実施例等で行った手法と同様の手法を用いて、選択した他の抗IL-6剤についての回帰式を作成することができる。
[トシリズマブ療法ナイーブ患者の寛解の可能性を予測判定する場合]
特定マーカー:sgp130、IP-10、sTNFRII、およびIL-1β
回帰式(11)
p/(1-p)=exp{(-1.269)+(-39.538×H)+(-3.807×K)+(5.086×G)+(1.647×A)}
p:16週間の治療後の寛解の確率
H:血清中sgp130の濃度(μg/ml)
K:血清中IP-10の濃度(pg/ml)のlog値
G:血清中sTNFRII濃度(pg/ml)のlog値
A:血清中IL-1βの濃度(pg/ml)のlog値
 他の抗IL-6剤を用いる場合、上記特定マーカーの種類および上記回帰式の各変数、係数等のパラメータを参考に、実施例等で行った手法と同様の手法を用いて、選択した他の抗IL-6剤についての回帰式を作成することができる。
[トシリズマブ療法スイッチ患者の寛解の可能性を予測判定する場合]
特定マーカー:sgp130、IP-10、sTNFRII、およびIL-6
回帰式(12)
p/(1-p)=exp{(-10.935)+(-29.051×H)+(4.466×K)+(2.067×G)+(-2.757×M)}
p:16週間の治療後の寛解の確率
H:血清中sgp130の濃度(μg/ml)
K:血清中IP-10の濃度(pg/ml)のlog値
G:血清中sTNFRII濃度(pg/ml)のlog値
M:血清中IL-6の濃度(pg/ml)のlog値
 他の抗IL-6剤を用いる場合、上記特定マーカーの種類および上記回帰式の各変数、係数等のパラメータを参考に、実施例等で行った手法と同様の手法を用いて、選択した他の抗IL-6剤についての回帰式を作成することができる。
[トシリズマブ療法スイッチ患者の寛解の可能性を予測判定する場合]
特定マーカー:sgp130、IP-10、sTNFRII、およびIL-1β
回帰式(13)
p/(1-p)=exp{(-9.671)+(-27.150×H)+(3.205×K)+(1.914×G)+(-2.540×A)}
p:16週間の治療後の寛解の確率
H:血清中sgp130の濃度(μg/ml)
K:血清中IP-10の濃度(pg/ml)のlog値
G:血清中sTNFRII濃度(pg/ml)のlog値
A:血清中IL-1βの濃度(pg/ml)のlog値
 他の抗IL-6剤を用いる場合、上記特定マーカーの種類および上記回帰式の各変数、係数等のパラメータを参考に、実施例等で行った手法と同様の手法を用いて、選択した他の抗IL-6剤についての回帰式を作成することができる。
[エタネルセプト療法ナイーブ患者の寛解の可能性を予測判定する場合]
特定マーカー:VEGFおよびPDGF-bb、説明変数としてエタネルセプト投与前のDAS-28値も使用
回帰式(14)
p/(1-p)=exp{(-19.058)+(1.390×a)+(-2.763×E)+(4.962×Q)
p:16週間の治療後の寛解の確率
a:エタネルセプト投与前のDAS-28値
E:血清中VEGFの濃度(pg/ml)のlog値
Q:血清中PDGF-bbの濃度(pg/ml)のlog値
 他の抗TNF-α剤を用いる場合、上記特定マーカーの種類および上記回帰式の各変数、係数等のパラメータを参考に、実施例等で行った手法と同様の手法を用いて、選択した他の抗TNF-α剤についての回帰式を作成することができる。
[エタネルセプト療法ナイーブ患者の寛解の可能性を予測判定する場合]
特定マーカー:MIP-1αおよびPDGF-bb、説明変数としてエタネルセプト投与前のDAS-28値も使用
回帰式(15)
p/(1-p)=exp{(-18.491)+(1.107×a)+(-1.808×R)+(3.930×Q)}
p:16週間の治療後の寛解の確率
a:エタネルセプト投与前のDAS-28値
R:血清中MIP-1αの濃度(pg/ml)のlog値
Q:血清中PDGF-bbの濃度(pg/ml)のlog値
 他の抗TNF-α剤を用いる場合、上記特定マーカーの種類および上記回帰式の各変数、係数等のパラメータを参考に、実施例等で行った手法と同様の手法を用いて、選択した他の抗TNF-α剤についての回帰式を作成することができる。
[エタネルセプト療法ナイーブ患者の寛解の可能性を予測判定する場合]
特定マーカー:IL-9およびTNF-α
回帰式(16)
p/(1-p)=exp{(-1.004)+(1.711×S)+(-1.031×C)}
p:16週間の治療後の寛解の確率
S:血清中IL-9の濃度(pg/ml)のlog値
C:血清中TNF-αの濃度(pg/ml)のlog値
 他の抗TNF-α剤を用いる場合、上記特定マーカーの種類および上記回帰式の各変数、係数等のパラメータを参考に、実施例等で行った手法と同様の手法を用いて、選択した他の抗TNF-α剤についての回帰式を作成することができる。
 前記回帰式(16)では、エタネルセプト投与前のDAS-28値を説明変数として使用しないため、医師による主観を排除して、寛解の可能性を予測できるので、前記回帰式(14)および(15)よりも好ましいといえる。
 前記回帰式(6)~(16)では、16週間の治療後のDAS-28値が2.3以下になる場合を寛解、2.3超である場合を非寛解として、16週間の治療後の寛解の可能性を予測判定する回帰式の例を示しているが、勿論、CDAI値またはSDAI値を用いて同様の手法にてロジスチック多重回帰分析を行うことにより、抗IL-6剤、抗TNF-α剤等の特定生物学的製剤による16週間の治療後の寛解の可能性を予測判定することもできる。また、前述するように、生物学的製剤による治療16週後であれば、治療効果が安定して現れるため、前記回帰式(6)~(16)では16週間の治療後の寛解の可能性を予測判定するための回帰式を示しているが、勿論、生物学的製剤による治療16週以前または以降の寛解の可能性についても、同様の手法にてロジスチック多重回帰分析を行うことによって予測判定することが可能である。
投与すべき生物学的製剤の選定
 本発明の判定方法は、生物学的製剤の投与前にその治療有効性を予測できるので、治療開始前に投与すべき最適な生物学的製剤の選択に利用することもできる。
 従って、1つの実施形態では、本発明の生物学的製剤の選択方法は、本発明の方法に従って特定生物学的製剤による寛解を事前に判定し、該寛解の確率が高い特定生物学的製剤を選択することにより前記患者に有効な生物学的製剤を選択する方法を含む。別の実施形態では、本発明の生物学的製剤の選択方法は、本発明の方法に従って特定生物学的製剤による治療後の症状の改善度を事前に判定し、該治療後の症状の改善度が高い生物学的製剤を選択することにより前記患者に有効な生物学的製剤を選択する方法を含む。別の実施形態では、本発明の生物学的製剤の選択方法は、本発明の方法に従って患者への特定生物学的製剤による治療後の疾患活動性指標を事前に判定し、該疾患活動性指標が所定の基準より低い生物学的製剤を選択することにより前記患者に有効な生物学的製剤を選択する方法を包含する。
 例えば、ナイーブ患者の治療後の症状の改善度について、抗IL-6剤(例えば、トシリズマブ)の投与の場合と抗TNF-α剤(例えば、エタネルセプト)の投与の場合のそれぞれを前記方法で予測し、改善度が高い方の生物学的製剤を選択することにより、当該患者に最適な生物学的製剤を投与することが可能になる。具体的には、前記回帰式(1)またはこの回帰式に基づいて調整した式を用いて予測した抗IL-6剤(例えば、トシリズマブ)療法による治療後の症状の改善度と、前記回帰式(2)またはこの回帰式に基づいて調整した式を用いて予測したエタネルセプト抗TNF-α剤(例えば、エタネルセプト)療法による治療後の症状の改善度とを対比し、当該改善度が大きい方を最適な生物学的製剤として選択することができる。
 あるいは、個々の生物学的製剤に着目した場合、治療後の症状の改善度について、予めあるいは経験に基づいて抗IL-6剤、抗TNF-α剤等の生物学的製剤について個々採用するかどうかの基準を定めておき、実際に算出された治療後の症状の改善度が所定の基準以上の場合にその特定生物学的製剤を投与すると判定することもできる。具体的には回帰式(1)、(2)等を用いて算出された治療後の症状の改善度が、治療前のDAS-28値-治療16週後のDAS-28値で表される場合、その値が0(すなわち悪化しない)場合、あるいは、0.1以上、0.2以上、0.3以上、0.4以上、0.5以上、1.0以上、1.5以上、2.0以上、2.5以上、3.0以上等上回る場合にその特定生物学的製剤を投与すると判定することもできる。このような基準の具体的な値は、本明細書に記載される具体的な数値のほか、その間の数値(例えば、0.6以上等)あるいはこれを超える値(例えば、3.5以上)等を任意に設定することができる。他方、改善度がマイナスの場合は、その医薬は投与すべきではないと判定することもできる。
 また、例えば、ナイーブ患者の16週間の治療後のDAS-28値について、抗IL-6剤(例えば、トシリズマブ)の投与の場合と抗TNF-α剤(例えば、エタネルセプト)の投与の場合のそれぞれを前記方法で予測し、16週間の治療後のDAS-28値が低い方の生物学的製剤を選択することにより、当該患者に最適な生物学的製剤を投与することが可能になる。具体的には、前記回帰式(3)~(5)またはこの回帰式に基づいて調整した式のいずれかを用いて予測したト抗IL-6剤(例えば、トシリズマブ)療法による16週間の治療後のDAS-28値と、前記回帰式(6)または(7)またはこの回帰式に基づいて調整した式を用いて予測した抗TNF-α剤(例えば、エタネルセプト)療法による16週間の治療後のDAS-28値とを対比し、当該DAS-28値が小さい方を最適な生物学的製剤として選択することができる。
 別の実施形態では、個々の生物学的製剤に着目した場合、疾患活動性指標について、予めあるいは経験に基づいて抗IL-6剤、抗TNF-α剤等の生物学的製剤について個々採用するかどうかの基準を定めておき、実際に算出された疾患活動性指標が所定の基準以下の場合にその特定生物学的製剤を投与すると判定することができる。具体的には回帰式(3)~(7)等で予測した疾患活動性指標が治療16週後のDAS-28値で表される場合、その値が、2.3以下(寛解)である場合、2.6以下(非寛解であるが低活動状態)、4.1以下(非寛解であるが中活動状態)である場合等にその特定の生物学的製剤を投与すると判定することができる。このような基準の具体的な値は、本明細書に記載される具体的な数値のほか、経験等に基づいて微調整することが可能であり、寛解の基準として、必要に応じて2.3より高い値であっても2.3より低い値であっても使用し得る。
 また、例えば、ナイーブ患者の寛解の可能性について、抗IL-6剤(例えば、トシリズマブ)投与の場合と抗TNF-α剤(例えば、エタネルセプト)の投与の場合のそれぞれを前記方法で予測し、寛解の可能性が高い方の生物学的製剤を選択することにより、当該患者に最適な生物学的製剤を投与することが可能になる。具体的には、前記回帰式(8)~(11)またはこの回帰式に基づいて調整した式のいずれかを用いて予測した抗IL-6剤(例えば、トシリズマブ)療法による寛解の可能性と、前記回帰式(14)~(16)またはこの回帰式に基づいて調整した式のいずれかを用いて予測した抗TNF-α剤(例えば、エタネルセプト)療法による寛解の可能性とを対比し、当該寛解の可能性が高い方を最適な生物学的製剤として選択することができる。
 あるいは、個々の生物学的製剤に着目した場合、寛解の確率について、予めあるいは経験に基づいて抗IL-6剤、抗TNF-α剤等の生物学的製剤について個々採用するかどうかの基準を定めておき、実際に算出された寛解の確率が所定の基準以上の場合にその特定生物学的製剤を投与すると判定することもできる。具体的には回帰式(8)~(16)等で予測した寛解の確率が、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、85%以上、90%以上または95%以上の場合にその特定の生物学的製剤を投与すると判定することができる。このような基準の具体的な値は、本明細書に記載される具体的な数値のほか、経験等に基づいて微調整することが可能であり、本明細書に記載される具体的な値以外であっても採用することができる。
2.診断剤
 本発明は、さらに前記検出方法を実施するための診断剤を提供する。具体的には、本発明の診断剤は、関節リウマチ患者への炎症性サイトカインを標的にした生物学的製剤による治療の有効性を判定するための診断剤であって、sgp130、IP-10、sTNFRI、sTNFRII、GM-CSF、IL-1β、IL-2、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-12、IL-13、IL-15、Eotaxin、VEGF、MCP-1、TNF-α、IFN-γ、FGFbasic、PDGF-bb、sIL-6R、およびMIP-1αよりなる群から選択される少なくとも1種の特定マーカーを検出可能な試薬を含むことを特徴とする。
 1つの実施形態では、本発明の診断剤は、関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して特定生物学的製剤による該患者の寛解を事前に判定する方法に用いられる診断剤であって、この診断剤は該特定マーカーを検出するための試薬を含む。別の実施形態では、本発明の診断剤は、関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して複数の特定生物学的製剤による該患者の寛解の確率を事前に算出し、該寛解の確率が高い特定生物学的製剤を選択することにより該患者に有効な生物学的製剤を選択する方法に用いられる診断剤であって、この診断剤は該特定マーカーを検出するための試薬を含む。寛解を事前に判定した後は、寛解の確率について所定のレベルを事前に設定することによって、その生物学的製剤を投与するとの判定に用いることができる。複数の特定生物学的製剤に用いる場合は、複数の特定生物学的製剤の寛解の確率をそれぞれ算出し、比較することでいずれの特定生物学的製剤を投与すべきかを選択することができる。これらの実施形態に使用される各特定マーカーの具体的手法については、「1.判定方法」の項を含む本明細書の他の箇所で具体的に説明される手法を用いることができる。
 さらなる実施形態では、本発明の診断剤は、関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して該患者への特定生物学的製剤による治療後の症状の改善度を事前に判定する方法に用いられる診断剤であって、この診断剤は該特定マーカーを検出するための試薬を含む。別の実施形態では、本発明の診断剤は、関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して該患者への複数の特定生物学的製剤による治療後の症状の改善度を事前に判定し、該改善度が高い特定生物学的製剤を選択することにより該患者に有効な生物学的製剤を選択する方法に用いられる診断剤であって、この診断剤は該特定マーカーを検出するための試薬を含む。治療後の症状の改善度を事前に判定した後は、その改善度について所定のレベルを事前に設定することによって、その生物学的製剤を投与するとの判定に用いることができる。複数の特定生物学的製剤に用いる場合は、複数の特定生物学的製剤の改善度をそれぞれ算出し、比較することでいずれの特定生物学的製剤を投与すべきかを選択することができる。これらの実施形態に使用される各特定マーカーの具体的手法については、「1.判定方法」の項を含む本明細書の他の箇所で具体的に説明される手法を用いることができる。
 さらなる実施形態では、本発明の診断剤は、関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して該患者への特定生物学的製剤による治療後の疾患活動性指標を事前に判定する方法に用いられる、該特定マーカーを検出するための試薬を含む診断剤である。さらに別の実施形態では、本発明の診断剤は、関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して該患者への複数の特定生物学的製剤による治療後の疾患活動性指標を事前に判定し、該疾患活動性指標が低い特定生物学的製剤を選択することにより該患者に有効な生物学的製剤を選択する方法に用いられる、該特定マーカーを検出するための試薬を含む診断剤である。疾患活動性指標を事前に判定した後は、その疾患活動性指標について所定のレベルを事前に設定することによって、その生物学的製剤を投与するとの判定に用いることができる。複数の特定生物学的製剤に用いる場合は、複数の特定生物学的製剤の疾患活動性指標をそれぞれ算出し、比較することでいずれの特定生物学的製剤を投与すべきかを選択することができる。これらの実施形態に使用される各特定マーカーの具体的手法については、「1.判定方法」の項を含む本明細書の他の箇所で具体的に説明される手法を用いることができる。
 具体的な実施形態では、生物学的製剤の種類、有効性を判断する項目(寛解、治療後の症状の改善度、疾患活動性指標自体)に応じて本明細書に記載される情報に基づいて必要な特定マーカーに対する試薬を選択して使用することができる。そのような試薬が複数ある場合は、別々に提供されていてもよく、まとめてセットとして提供されてもよく、必要な他の試薬(例えば、発色剤)とともにキットとして提供されもよい。
 前記特定マーカーは、ELISA等の抗原抗体反応を利用した測定系によって測定でき、前記特定マーカーを検出可能な試薬としては、具体的には、前記特定マーカーに特異的に結合可能な抗体、およびそのフラグメントが挙げられる。また、前記特定マーカーに特異的に結合可能な抗体は、適切な支持体の上に結合させて抗体アレイとして提供してもよい。
 さらに、本発明の診断剤は、抗原抗体反応により前記特定マーカーを検出するために必要となる試薬(二次抗体、発色物質等)が含まれていてもよい。
3.治療剤
 本発明は、さらに前記検出方法、診断方法および選択方法に施すことによって選択されあるいは適切であると判断した治療剤(パーソナライズドメディスンあるいはコンパニオン治療剤とも呼ばれる)を提供する。より詳細には、本発明の治療剤は、特定生物学的製剤を含む関節リウマチ患者を治療するための治療剤であって、該患者の身体サンプル(例えば、血清)中の特定マーカーの濃度を測定して該特定生物学的製剤による有効性を判定し、判定した事項に基づいて選択しあるいは適切であると判断した特定生物学的製剤が投与されることを特徴とする。あるいは、本発明は、複数の特定生物学的製剤を含む関節リウマチ患者を治療するための治療剤のセットを提供する。この治療剤のセットでは、該患者の身体サンプル中の特定マーカーの濃度を測定して該特定生物学的製剤による該患者の寛解の確率が事前に算出され、該寛解の確率が高い特定生物学的製剤が該患者に投与されることを特徴とする。このような治療剤は、抗IL-6剤および抗TNF-α剤からなる群より選択される少なくとも1つの生物学的製剤を含む。特定生物学的製剤が投与されるべきかを決定するために、患者の身体サンプル(例えば、血清)中の特定マーカーの濃度を測定して該特定生物学的製剤による有効性を判定し、判定した事項に基づいて選択しあるいは適切であると判断した場合に投与されることを説明した添付文書等が添付されていてもよい。添付文書は紙媒体で提供されていてもよいが、電子媒体で提供されてもよく、インターネット等で提供されてもよい。本発明の治療剤または治療剤ノセットとして使用され得る抗IL-6剤としては、トシリズマブ、サリルマブ、オロキズマブ、およびシルクマブ等を挙げることができるがこれらに限定されない。本発明の治療剤または治療剤ノセットとして使用され得る抗TNF-α剤としては、エタネルセプト、アダリムマブ、インフリキシマブ、ゴリムマブ、およびセルトリズマブ等を挙げることができるがこれらに限定されない。
 本発明が治療剤のセットとして提供される場合、この治療剤のセットは、患者の身体サンプル中の特定マーカーの濃度を測定して該特定生物学的製剤による該患者の寛解の確率が事前に算出され、該寛解の確率が高い特定生物学的製剤が該患者に投与されることを特徴とする。セットとして提供される場合は、治療剤は、各生物学的製剤が一緒に提供されてもよいが、別々に提供されてもよい。従って、治療剤がセットとして提供される場合として、各治療剤(例えば、抗IL-6剤、抗TNF-剤等)が単独で提供され、その治療剤に添付文書が提供される。この添付文書は、例えば、他の生物学的製剤と、本発明の方法に基づく有効性の判定(例えば、寛解の可能性、治療後の症状の改善度、疾患活動性指標自体)に基づきその他の生物学的製剤と比較して投与されるべきかどうかが判定されることを説明する記載を含む。添付文書は紙媒体でもよく、電子媒体であってもインターネット等で提供されてもよい。
 1つの実施形態では、本発明の関節リウマチ患者の治療方法は、(A)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで抗IL-6剤、抗TNF-α剤等の特定生物学的製剤による該患者の寛解を事前に判定する工程と、(B)(A)工程により該特定生物学的製剤により該患者が寛解すると判定された場合、該特定生物学的製剤を該患者に投与する工程とを包含する。寛解するとの判断は、寛解を予測する回帰式において寛解の確率が一定の基準以上である場合に行われる。そのような判断は、「1.判定方法」「2.診断剤」の項を含む本明細書の他の箇所で具体的に述べられている手法を用いて行うことができる。
 あるいは、本発明の関節リウマチ患者の治療方法は、(A)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで抗IL-6剤、抗TNF-α剤等を含む複数の特定生物学的製剤による該患者の寛解の確率を事前に算出する工程と、(B)(A)工程により得られた寛解の確率が高い特定生物学的製剤を該患者に投与する工程とを包含する。ここで特定生物学的製剤の選択は、複数の特定生物学的製剤について寛解を予測する回帰式において寛解の確率を算出し、算出された寛解の確率が高い方に該当する生物学的製剤を選択することによって行う。例えば、抗IL-6剤の寛解の予測のための特定マーカーおよび抗TNF-α剤の寛解の予測のための特定マーカーを選択し、その特定マーカーについて対象となる患者の血清等における濃度を測定し、その濃度またはlog値等を用いて回帰式から抗IL-6剤の寛解の確率および抗TNF-α剤の寛解の確率を算出する。ここでこれらの値に加え投与前のDAS-28値等の患者の治療前の状態の指標を併用することもできる。そして抗IL-6剤の寛解の確率と抗TNF-α剤の寛解の確率とを比較し、高い確率を与える生物学的製剤を投与すべきと判断することができる。ここで、抗IL-6剤および抗TNF-α剤としてはそのカテゴリーに属する限りどの種類の生物学的製剤を用いてもよいことが理解される。本明細書において別の箇所において述べたように、本発明の特定マーカーは生物学的製剤のカテゴリー(例えば、抗IL-6剤、抗TNF-α剤等)が同じである限り適用できると理解されるからである。このほか具体的な選択、判断の手法については、上記「1.判定方法」「2.診断剤」の項を含む本明細書の他の箇所で具体的に述べられている手法を用いて行うことができる。
 他の実施形態では、本発明の関節リウマチ患者の治療方法は、(A)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで該患者への抗IL-6剤、抗TNF-α剤等の特定生物学的製剤による治療後の症状の改善度を事前に判定する工程と、(B)(A)工程により判定された該改善度が所定の基準以上である場合、該特定生物学的製剤を該患者に投与する工程とを包含する。ある生物学的製剤を投与すべきとの判断は、本明細書で説明される治療後の症状の改善度について計算して得られた値が所定の基準以上である場合に行われる。そのような判断は、「1.判定方法」「2.診断剤」の項を含む本明細書の他の箇所で具体的に述べられている手法を用いて行うことができる。
 さらなる実施形態では、本発明の関節リウマチ患者の治療方法は、(A)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで該患者への抗IL-6剤、抗TNF-α剤等を含む複数の特定生物学的製剤による治療後の症状の改善度を事前に判定する工程と、(B)(A)工程により得られた該改善度が高い特定生物学的製剤を該患者に投与する工程とを包含する。ここで特定生物学的製剤の選択は、複数の特定生物学的製剤について治療後の症状の改善度を予測する回帰式において治療後の症状の改善度を算出し、算出された治療後の症状の改善度が高い方に該当する生物学的製剤を選択することによって行う。例えば、抗IL-6剤の治療後の症状の改善度の予測のための特定マーカーおよび抗TNF-α剤の治療後の症状の改善度の予測のための特定マーカーを選択し、その特定マーカーについて対象となる患者の血清等における濃度を測定し、その濃度またはlog値等を用いて回帰式から抗IL-6剤の治療後の症状の改善度および抗TNF-α剤の治療後の症状の改善度を算出する。ここでこれらの値に加え投与前のDAS-28値等の患者の治療前の状態の指標を併用することもできる。そして抗IL-6剤の治療後の症状の改善度と抗TNF-α剤の治療後の症状の改善度とを比較し、高い治療後の症状の改善度を与える生物学的製剤を投与すべきと判断することができる。ここで、抗IL-6剤および抗TNF-α剤としてはそのカテゴリーに属する限りどの種類の生物学的製剤を用いてもよいことが理解される。本明細書において別の箇所において述べたように、本発明の特定マーカーは生物学的製剤のカテゴリー(例えば、抗IL-6剤、抗TNF-α剤等)が同じである限り適用できると理解されるからである。このほか具体的な選択、判断の手法については、上記「1.判定方法」「2.診断剤」の項を含む本明細書の他の箇所で具体的に述べられている手法を用いて行うことができる。
 さらに別の実施形態では、本発明の関節リウマチ患者の治療方法は、(A)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで関節リウマチ患者への抗IL-6剤、抗TNF-α剤等の特定生物学的製剤による治療後の疾患活動性指標を事前に判定する工程と、(B)(A)工程により該疾患活動性指標が所定の基準以下である場合、該特定生物学的製剤を該患者に投与する工程とを包含する。ある生物学的製剤を投与すべきとの判断は、本明細書で説明される疾患活動性指標について計算して得られた値が所定の基準以下である場合に行われる。そのような判断は、「1.判定方法」「2.診断剤」の項を含む本明細書の他の箇所で具体的に述べられている手法を用いて行うことができる。
 なおさらなる実施形態では、本発明の関節リウマチ患者の治療方法は、(A)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで関節リウマチ患者への抗IL-6剤、抗TNF-α剤等を含む複数の特定生物学的製剤による治療後の疾患活動性指標を事前に判定する工程と、(B)(A)工程により得られた該疾患活動性指標が低い特定生物学的製剤を該患者に投与する工程とを包含する。ここで特定生物学的製剤の選択は、複数の特定生物学的製剤について治療後の疾患活動性指標を予測する回帰式において治療後の症状の改善度を算出し、算出された治療後の疾患活動性指標が低い方に該当する生物学的製剤を選択することによって行う。例えば、抗IL-6剤の治療後の疾患活動性指標の予測のための特定マーカーおよび抗TNF-α剤の治療後の疾患活動性指標の予測のための特定マーカーを選択し、その特定マーカーについて対象となる患者の血清等における濃度を測定し、その濃度またはlog値等を用いて回帰式から抗IL-6剤の治療後の疾患活動性指標および抗TNF-α剤の治療後の疾患活動性指標を算出する。ここでこれらの値に加え投与前のDAS-28値等の患者の治療前の状態の指標を併用することもできる。そして抗IL-6剤の治療後の疾患活動性指標と抗TNF-α剤の治療後の疾患活動性指標とを比較し、治療後に低い疾患活動性指標を与える生物学的製剤を投与すべきと判断することができる。ここで、抗IL-6剤および抗TNF-α剤としてはそのカテゴリーに属する限りどの種類の生物学的製剤を用いてもよいことが理解される。本明細書において別の箇所において述べたように、本発明の特定マーカーは生物学的製剤のカテゴリー(例えば、抗IL-6剤、抗TNF-α剤等)が同じである限り適用できると理解されるからである。このほか具体的な選択、判断の手法については、上記「1.判定方法」「2.診断剤」の項を含む本明細書の他の箇所で具体的に述べられている手法を用いて行うことができる。
 本発明を種々の実施形態を用いて説明してきた。本明細書において本発明の説明のために引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用される。
 以下に、理解の容易のために実施例を挙げて、本発明を具体的に説明する。しかしながら、提供される実施例は、例示の目的のみに提供され、本発明を限定する目的で提供したのではない。従って、本発明の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されるものではなく、特許請求の範囲によってのみ限定される。
1.患者および実験方法
(患者)
 以下、過去に抗サイトカイン療法(インフリキシマブ、エタネルセプト、アダリムマム、トシリズマブ等の投与)を受けていないリウマチ患者をナイーブ患者と表記し、過去に抗サイトカイン療法を受けているリウマチ患者をスイッチ患者と表記する。
 2008年3月から2013年6月までに医療法人ヤマナ会東東広島記念病院にて、メソトレキセート療法が無効であった155名の関節リウマチ患者を登録した。155名のうち、98名は抗IL-6剤であるトシリズマブの治療を受け、残り57名は抗TNF-α剤であるエタネルセプトの治療を受けた。トシリズマブの治療を受けた98名のうち、58名が以前に抗サイトカイン療法を受けていないナイーブ患者で、40名が以前に抗サイトカイン療法を1~3回受けたスイッチ患者である。エタネルセプト治療を受けた57名のうち、49名は以前に抗サイトカイン療法を受けていないナイーブ患者で、残り8名は以前に抗サイトカイン療法を受けたスイッチ患者である。これらの全ての患者からは、血液サンプルの供給を受ける前に、書面にてインフォームドコンセントを得た。また、本研究前に医療法人ヤマナ会東東広島記念病院の倫理委員会の許可を得た上で、本試験はその許可の下に行った。
 表1に、クリニカルベースラインの個体群統計、臨床所見を示す。また、図5に、抗IL-6剤であるトシリズマブ治療患者およびTNF-α剤であるエタネルセプト治療患者のトライアルプロファイルを示し、図6-1~図6-4に、治療前のサイトカイン/ケモカイン/可溶性受容体の血清中濃度を示す。トシリズマブ治療患者中で、9名のナイーブ患者(副作用や他の疾患が生じた患者8名と、16週間全体のデータが取得できなかった患者1名)については削除したため合計数は整合していない。また、トシリズマブ治療患者中で、副作用が生じた1名のスイッチ患者(16週間全体のデータが取得できなかった患者)も削除したため合計数は整合していない。DAS-28値、CRP、腫脹関節数、圧痛関節数、Stage、Classは、群間で差は殆どなかった(表1)。また、羅患期間は、エタネルセプト治療患者がトシリズマブ治療患者に比べて短かった(表1)。
 サイトカインのベースライン濃度を作成するために、C型肝炎とガンの罹患歴がない健常者(56名;男性20名、女性36名)から血清を取得した。健常者は、財団法人パストゥール研究所または医療法人ヤマナ会東広島記念病院による健康チェックを受け、健常者からは書面にてインフォームドコンセントを得た。このベースライン濃度は、サイトカイン/ケモカイン/可溶性受容体の分布パターンを求めるために使用した。
(実験手法)
 治療を行う前に、関節リウマチ患者の血清におけるサイトカイン、ケモカインおよび可溶性受容体の濃度を測定した。
 図5に、8mg/kgのトシリズマブまたは50mg/kgのエタネルセプトを4週間に1回投与したナイーブ患者およびスイッチ患者の臨床結果を示す。治療16週間後(4回の投与後)に、DAS-28-CRP値と、寛解か非寛解であるかに基づいて治療効果を判定した。さらに、非寛解については、患者のDAS-28-CRP値に基づいて、低、中、高に分類した。DAS-28-ESR値は、関節リウマチ患者の症状を判定するために広く使用されているが、DAS-28-CRP値とDAS-28-ESR値は、殆ど互換性があり、同じ結果を導くことが報告されている(AnnRheum Dis.2007, March 407-409 Comparison of Disease ActivityScore(DAS)28-erythrocyte Sedimentation rate and DAS-C-reactive proteinthreshold votes. Inoue E, Yamanaka H, et al.)。
 本試験では、DAS-28-CRP値を関節リウマチ患者の症状の判定に使用した。寛解はDAS-28-CRP値が<2.3、非寛解はDAS-28-CRP値が≧2.3として分類した。非寛解した患者は、さらに、Inoue等によって開発されたDAS-28-CRP分類システムを使用してその症状の重症度に応じて、低(DAS-28-CRP値=2.3~2.6)、中(DAS-28-CRP値=2.7~4.1)、高(DAS-28-CRP値>4.1)に分類した。症状の判定を一定にするために、医療法人ヤマナ会東広島記念病院の同じ医師が全ての患者の最終の症状の判定を行った。また、図7に、図5に示す各患者の臨床結果の詳細、即ち、抗IL-6(トシリズマブ)療法を受けたナイーブ患者、抗IL-6(トシリズマブ)療法を受けたスイッチ患者、および抗TNF-α(エタネルセプト)療法を受けたナイーブ患者について、治療前と治療16週後のDAS-28-CRP値を判定した結果を示す。以下、DAS-28-CRP値を単にDAS-28値と表記することもある。
(サイトカイン/ケモカイン/可溶性受容体の分析)
 全てのサイトカイン測定は、マルチプレックスサイトカインアレイシステム(Bio-Plex 200、Bio-Rad Laboratories社製)を使用し、その製品プロトコールに従って実施した。全ての患者と健常者の血清は、1600g、10分間の遠心によって回収した。全ての血清サンプルは、分析まで-80℃で保存した。Bio-PlexHuman Cytokine 27-Plex Panelには、27種のサイトカイン(IL-1β, IL-1RA, IL-2, IL-4, IL-5,IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, basic FGF,eotaxin, G-CSF, GM-CSF, IFN-γ, IP-10, ΜCP-1, MIP-1α, MIP-1β, PDGF-bb, RANTES,TNF-α, VEGF)が分析できるようになっている。また、これら以外に、sIL-6R, sgp130, sTNF-RIおよびsTNF-RIIについても分析した(MilliplexRMAP, Human Soluble Cytokine Receptor anel: Millipore Co. MA)。本試験では、56名の健常者についてこれらのサイトカイン、ケモカインおよび可溶性受容体の濃度を同時に測定し、それらの分布パターンを求めた。データの収集および分析は、Bio-PlexManager software version 5.0を用いて行った。
(統計分析)
 健常者におけるサイトカイン/ケモカイン値の分布を分析した。なお、sgp130以外のサイトカイン、ケモカインおよび可溶性受容体は濃度(pg/ml)の値のlog値を使用して分析し、sgp130は濃度(μg/ml)の値をそのまま使用した。
 先ず、線形単回帰分析および線形多重回帰分析を行い、サイトカイン/ケモカイン/可溶性受容体濃度または臨床検査値と、0週目の患者のDAS-28値から16週後のDAS-28値を引いた値との間の関連性について調べた。次に、臨床検査値を導入した回帰計算値から16週後のDAS-28値を推測した。さらに、ロジスチック単回帰分析およびロジスチック多重回帰分析を行い、血清中サイトカイン濃度と寛解または非寛解との関係について解析した。得られるパラメータのp値が<0.05であることは、有意差があることを示している。統計分析は、全てJMP9.0ソフトウェアを用いて行った。
2.結果
(臨床評価)
 表1および2に、患者のクリニカルベースラインの個体群統計、臨床所見、サイトカイン/ケモカイン/可溶性受容体の特徴を示し、図6-1~図6-4に、治療前のサイトカイン/ケモカイン/可溶性受容体の血清中濃度について、健常者と関節リウマチ患者のクリニカルベースラインの個体群統計を示す。表1中、StageはSteinbrocker(1949)の分類(I~IV;SteinbrockerO et al:Therapeutic criteria in rheumatoid arthritis. JAMA 140:659,1949)、ClassはHochberg(1992)の(I~IV;HochbergMC et al, The American College of Rheumatology 1991 revised criteria for theClassification of global functional status in rheumatoid arthritis. Arthritisand Rheumatism, 35:498-502, 1992)に基づいて、関節リウマチの機能分類基準判定した結果である。これらの結果は、3つのリウマチ患者群の間で臨床的な有意差がなく、殆どのリウマチ患者において、サイトカイン/ケモカイン/可溶性受容体の血清中濃度が、健常者に比べて有意に高いことを示している。
Figure JPOXMLDOC01-appb-T000001
 49名のナイーブ患者が16週のトシリズマブ療法を受け、その56%の患者(27名)が寛解であり、残りの21名は非寛解であった(図5)。さらに、39名のスイッチ患者が16週のトシリズマブ療法を受け、その内、9名が寛解であり、残りの30名は非寛解であった。
 また、49名のナイーブ患者が16週の抗TNF-α療法であるエタネルセプト療法を受け、その内、18名が寛解であり、残りの31名は非寛解であった(図5)。本試験では、スイッチ患者の数が非常に少なかったので、エタネルセプト療法に関しては、ナイーブ患者のみを分析に使用した。なお、ナイーブ患者のデータはスイッチ患者にも類推して適用し得るものと理解される。
 図4に、トシリズマブ療法を受けたナイーブ患者における、治療前のDAS-28値(PreDAS-28 score)と、治療前のDAS-28値から16週後のDAS-28値を差し引いた値(PreDAS-28score-16W DAS-28 score)の関係を示す。図4から、殆どのナイーブ患者において、トシリズマブ療法後にDAS-28値の改善が認められた。
(治療前のリウマチ患者におけるサイトカイン/ケモカイン/可溶性受容体の血清濃度を用いた、治療16週間後のDAS-28値に基づくバイオマーカーの検索)
 今回の結果から、ナイーブ患者の約55%と、スイッチ患者の約23%が、トシリズマブ療法後に寛解になると期待される。ナイーブ患者の約45%と、スイッチ患者の約77%は、最終の症状が同一ではないが、ある程度の症状の改善が認められる。また、ナイーブ患者の約36.7%は、エタネルセプト療法後に寛解になると期待される。そして、残りの約60%は、エタネルセプト療法後にある程度の症状の改善が認められる。
 従来、Pers Y.M.ら(Rheumatology (2013) doi: 10.1093/rheumatology/ket301 Firstpublished online: September 19, 2013)は、日常診察からトシリズマブ治療で12~24週後のDAS-28値を評価したところ、40%の患者で寛解となり、主な予測マーカーは若年者、高CRP値、そして心血管障害のない患者であることを報告している。また、KoikeT(J. Rheumatology 2013年11月)らは、トシリズマブ治療28週後にDAS28-ESRで47.6%の寛解を報告した。一方、エタネルセプトについては、MarkensonJA.ら(J.Rheumatology 2011、7月、p.1273-81)がRADIUS試験の中で、Curitis JR.ら(Ann RheumDis.2012.71.206-212)がTEMPO試験の中で、52週後にDAS-28値≦3.2の低疾患活動と寛解が得られた患者は53%でメソトレキセートを加えると63%となったと報告している。また、KoikeT.ら(J.Rheumatology 2013年10月、p.1658-1668)は、24週後のDAS-28値で評価すると、エタネルセプトとメソトレキセートを加えた治療が、単独またはメソトレキセート以外の抗リウマチ薬(DMARD)を加えた治療より有効であったことを示している。さらに、CannonGW.ら(Clin Exp Rheumatol. 2013年11月)は、TEMPOおよびRADIUS試験から3年間の観察で35%が寛解になったと報告している。さらに、CannonGW.らは低疾患活動の方が寛解になりやすいことを示している。但し、これらの報告では、生物学的製剤による治療効果を予測判定するためのマーカーは解明されていない。
 そこで、サイトカイン/ケモカインの血清中濃度を使用して、治療16週間後のDAS-28値に基づく関節リウマチの改善度の推測が可能になるかを検証した。
 図6-1~図6-4に、健常者と3つの群(トシリズマブ療法を受けたナイーブ患者、トシリズマブ療法を受けたスイッチ患者、エタネルセプト療法を受けたナイーブ患者)について、治療前のサイトカイン/ケモカイン/可溶性受容体のベースラインの個体群統計の比較を示す。図6-1~図6-4から分かるように、sgp130、sIL-6R、およびsTNFRI以外では、関節リウマチ患者における血清中の濃度が健常者に比べて有意に高かった。また、エタネルセプト療法を受けたナイーブ患者では、トシリズマブ療法を受けたナイーブ患者に比べて、サイトカイン/ケモカインの血清中濃度が低かった。また、この結果から、抗IL-6療法(トシリズマブ)療法を受けたナイーブ患者は、抗TNF-α(エタネルセプト)療法を受けたナイーブ患者に比べて、治療前のCRP値が高いことも明らかとなった。
 DAS-28値の改善度に関与しているサイトカイン/ケモカインを解明するために、線形単回帰分析を行った。DAS-28値の改善度(治療前のDAS-28値-治療16週後のDAS-28値)を目的変数として使用し、サイトカイン/ケモカイン/可溶性受容体の血清中濃度については、そのまままたはlog値に換算して独立変数として使用した。結果を表2に示す。表2に示すように、p<0.05を示すlog IL-7,log IL-8,log IL-12,log IL-13,log IP-10およびlog VEGFは、抗IL-6療法(トシリズマブ療法)を受けたナイーブ患者におけるDAS-28値の改善度と有意に一致していた。また、抗IL-6療法(トシリズマブ療法)を受けたスイッチ患者では、log IL-1β,log IL-5,log IL-6,log IL-7,log IL-10,log IL-12,log IL-13,log IL-15,log FGF,log GM-CSF,log IFN-γ,log TNF-αおよびlog VEGFがDAS-28値の改善度と有意に一致していた。一方、抗TNF-α療法(エタネルセプト療法)を受けたナイーブ患者では、log IL-6およびlog IP-10がDAS-28値の改善度と有意に一致していた。
Figure JPOXMLDOC01-appb-T000002
 DAS-28値の改善度とサイトカイン/ケモカイン/可溶性受容体濃度との相関を求めるために、線形多重回帰分析を行った。その結果、段階的な多重回帰分析によって、抗IL-6療法(トシリズマブ療法)を受けたナイーブ患者において、log IL-1β,logIL-7,logTNF-αおよびlog sIL-6Rの組み合わせが、DAS-28値の改善度と有意な相関性があることが見出された(表3)。
 一方、抗TNF-α療法(エタネルセプト療法)を受けたナイーブ患者では、log IL-2,log IL-15,log IL-6R,およびlog TNFRIの組み合わせが、DAS-28値の改善度と有意な相関性があることが見出された(表4)。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 治療16週後における最終評価のDAS-28値(16wDAS28)に関与しているサイトカイン/ケモカイン/可溶性受容体を解明するために、線形単回帰分析を行った。治療16週後のDAS-28値を目的変数として使用し、サイトカイン/ケモカイン/可溶性受容体の血中濃度については、そのまままたはlog値に換算して独立変数として使用した。表5に示すように、p<0.05を示すsgp130では、抗IL-6療法(トシリズマブ療法)を受けたナイーブ患者における治療16週後のDAS-28値と有意に一致していた。また、抗IL-6療法(トシリズマブ療法)を受けたスイッチ患者では、log IL-1β,log IL-2,log IL-5,log IL-15,log GM-CSF,log IFN-γ,log TNF-αおよびsgp130が治療16週後のDAS-28値と有意に一致していた。一方、抗TNF-α療法(エタネルセプト療法)を受けたナイーブ患者では、log IL-9が治療16週後のDAS-28値と有意に一致していた。
Figure JPOXMLDOC01-appb-T000005
 治療16週後のDAS-28値とサイトカイン/ケモカイン/可溶性受容体濃度との相関を求めるために、線形多重回帰分析を行った。その結果、表6に示すように、段階的な多重回帰分析によって、抗IL-6療法(トシリズマブ療法)を受けたナイーブ患者において、sgp130,log IL-8,log Eotaxin,log IP-10,log TNFRI,log TNFRII,log IL-6,およびlog IL-VEGFの組み合わせが、治療16週後のDAS-28値と有意な相関性があることが見出された。また、log IL-VEGFを使用しなくても、極めて有意な相関性があることが見出された(表7)。
 また、抗IL-6療法(トシリズマブ療法)を受けたスイッチ患者においては、sgp130,log IP-10,およびlog GM-CSFの組み合わせが、治療16週後のDAS-28値と有意な相関性があることが見出された(表8)。
 一方、抗TNF-α療法(エタネルセプト療法)を受けたナイーブ患者については、治療前のDAS-28値、log IL-6、およびlog IL-13の組み合わせでも、DAS-28値の改善度と相関が認められた(表9)。また、抗TNF―α療法(エタネルセプト療法)を受けたナイーブ患者において、治療前のDAS-28値を使用しなくても、log IL-9,log TNF-α,およびlog VEGFの組み合わせが、治療16週後のDAS-28値と有意な相関性があることも見出された(表10)。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 また、表7に示す線形多重回帰分析に基づいて求められた前記回帰式(4)を使用して、抗IL-6療法(トシリズマブ療法)を受けたナイーブ患者における治療16週後のDAS-28値の予測値を求めた。図1に、回帰式(4)によって算出された治療16週後のDAS-28値の予測値と、治療16週後のDAS-28値の実際値との対比を行った結果を示す。この結果から、表7に示す線形多重回帰分析の結果から推測される治療16週後のDAS-28値は、治療16週後のDAS-28値の実際値とよく一致していることが確認された。
 また、表8に示す線形多重回帰分析に基づいて求められた前記回帰式(5)を使用して、抗IL-6療法(トシリズマブ療法)を受けたスイッチ患者における治療16週後のDAS-28値の予測値を求めた。図2に、回帰式(5)によって算出された治療16週後のDAS-28値の予測値と、治療16週後のDAS-28値の実際値との対比を行った結果を示す。この結果から、表8に示す線形多重回帰分析の結果から推測される治療16週後のDAS-28値は、治療16週後のDAS-28値の実際値とよく一致していることが確認された。
 表10に示す線形多重回帰分析に基づいて求められた前記回帰式(7)を使用して、抗TNF-α療法(エタネルセプト療法)を受けたナイーブ患者における治療16週後のDAS-28値の予測値を求めた。図3に、回帰式(7)によって算出された治療16週後のDAS-28値の予測値と、治療16週後のDAS-28値の実際値との対比を行った結果を示す。この結果から、表10に示す線形多重回帰分析の結果から、治療16週後のDAS-28値をある程度推測し得ることが確認された。
 また、抗TNF-α療法(エタネルセプト療法)を受けたナイーブ患者において、仮に抗TNF-α療法(エタネルセプト療法)を受けずに抗IL-6療法(トシリズマブ療法)を受けたと仮定して、治療16週後のDAS-28の予測値を前記回帰式(4)を使用して求めた。図8に、抗TNF-α療法(エタネルセプト療法)の治療16週後のDAS-28の実際値と、抗IL-6療法(トシリズマブ療法)を受けたと仮定して推測される治療16週後のDAS-28値の予測値を示す。この結果から、抗TNF-α療法(エタネルセプト療法)を受けたナイーブ患者については、抗IL-6療法(トシリズマブ療法)を受けた方がより高い治療効果が予測される患者(図8のa)、抗TNF-α療法(エタネルセプト療法)と抗IL-6療法(トシリズマブ療法)に差が殆ど認められないと予測される患者(図8のb)、および抗TNF-α療法(エタネルセプト療法)を受けた方がより高い治療効果が認められると予測される患者(図8のc)に分類された。図8のaに示す患者については、実際に受けた抗TNF-α療法(エタネルセプト療法)よりも、抗IL-6療法(トシリズマブ療法)の方が有効であると推測されることから、本発明によって、治療前に抗IL-6療法および抗TNF-α療法によるDAS-28値を推測しておくことにより、より有効な治療薬の選定が可能になることも明らかとなった。
(治療前のリウマチ患者におけるサイトカイン/ケモカイン/可溶性受容体の血清濃度を用いた、寛解の可能性を予測判定するためのバイオマーカーの検索)
 関節リウマチの治療において、患者の症状に一部でも改善が認められることは望ましいが、完全寛解に至ることが最も望ましい。そこで、さらに、最終のDAS-28値を推測する諸因子に加えて、患者が完全寛解に至るか否かを予測するサイトカイン/ケモカイン/可溶性受容体の探索を行った。
 完全寛解と非寛解の患者群について、ロジスチック単回帰分析によって、サイトカイン/ケモカイン/可溶性受容体濃度のデータを分析した。また、抗IL-6療法(トシリズマブ療法)を受けたナイーブ患者およびスイッチ患者、並びに、抗TNF-α療法(エタネルセプト療法)を受けたナイーブ患者について、ロジスチック単回帰分析によって、サイトカイン/ケモカイン/可溶性受容体濃度のデータを分析した結果を表10に示す。ロジスチック単回帰分析によって、腫脹関節数(swollenjoint count)および圧痛関節数(tender joint count)と、DAS-28値は、完全寛解と非寛解の群間で有意に異なっていることが明らかとなった。さらに、sgp130は、抗IL-6療法(トシリズマブ療法)を受けたナイーブ患者およびスイッチ患者において、完全寛解と非寛解の群間で有意に異なっていた(表11)。一方、抗TNF-α療法(エタネルセプト療法)を受けたナイーブ患者では、寛解と非寛解の群間でsgp130の有意な差異は認められなかった(表11)。また、寛解と非寛解の患者について、血清中のsgp130濃度と治療前のDAS-28値の関係を分析した結果を図9に示す。図9から明らかなように、寛解に至った多くの患者では、sgp130の濃度が高かった。
Figure JPOXMLDOC01-appb-T000011
 段階的なフォワードロジスチック多重回帰分析によって、抗IL-6剤(トシリズマブ)投与前の患者におけるサイトカイン/ケモカイン/可溶性受容体の血清濃度に基づいて、寛解と非寛解の予測バイオマーカーとしての多変数モデルの検討を行った。段階的なフォワードロジスチック多重回帰分析とROCカーブに基づいて見出された寛解と非寛解の予測バイオマーカーの好ましい組み合わせを表12および13に示す。この分析結果から、抗IL-6療法(トシリズマブ療法)を受けたナイーブ患者では、sgp130,log IP-10,log sTNFRIIおよびlog IL-6が、寛解に至るか否かを高精度に判断する上での予測バイオマーカーとなり得ることが明らかとなった(p=0.0004)(表11a)。また、log IL-7(p=0.0003),log IL-1β(p=0.0005)またはlog MCP-1(p=0.0004)も、sgp130、log IP-10,およびlog sTNFRIIとの組み合わせについても、抗IL-6療法(トシリズマブ療法)を受けたナイーブ患者において、寛解に至るか否かを高精度に判断する上での予測バイオマーカーとなり得ることが明らかとなった(表12b~d)。sgp130単独と、sgp130と、logIL-6、logIP-10およびlogTNFRIIとを組み合わせたROCカーブを比較したグラフを図11に示す。図11に示すように、sgp130単独よりもはるかに、sgp130と、logIL-6、logIP-10およびlogTNFRIIとを組み合わせたROCカーブで予測精度が高まることが示され、実に、AUCレベルで0.85または0.89という高い値を示した。
 また、抗IL-6療法(トシリズマブ療法)を受けたスイッチ患者では、sgp130,log IP-10,log sTNFRIIおよびlog IL-6の組み合わせが、寛解に至るか否かを高精度に判断する上での予測バイオマーカーとなり得ることが明らかとなった(p=0.002)(表13a)。さらに、sgp130,log IP-10,log sTNFRIIおよびlog IL-1βの組み合わせでも、寛解に至るか否かを高精度に判断する上での予測バイオマーカーとなり得ることが明らかとなった(p=0.003)(表13b)。
 一方、抗TNF-α療法(エタネルセプト療法)を受けたナイーブ患者については、抗IL-6療法であるトシリズマブ療法で得られたロジスチック多重回帰分析とROCカーブに基づいて見出された寛解の可能性を予測判定するバイオマーカー群ではp=0.257となり、このバイオマーカー群によって寛解に至るか否かを予測できないことが示された(表14)。一方、別のロジスチック多重回帰分析により、表15に示されるように、治療前のDAS-28値(0wDAS-28),log VEGF,およびlog PDGF-bbの組み合わせによっても、ある程度は寛解の可能性を予測判定できることも示された。さらに、表16に示されるように、抗TNF-α療法(エタネルセプト療法)を受けたナイーブ患者については、治療前のDAS-28値(0wDAS-28)を使用しなくても、log IL-9およびlog TNF-αの組み合わせによっても、ある程度は寛解の可能性を予測判定できることも明らかとなった。即ち、関節リウマチ患者は、その病態が多様化しており、寛解の可能性を予測判定するバイオマーカーは、IL-6阻害が有効な患者とTNF-α阻害が有効な患者では異なっていることが示唆された。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Area Under Curve:0.745
(DAS28-CRPとDAS28-ESRとの比較)
 DAS-28-CRP値とDAS-28-ESR値は、殆ど互換性があり、同じ結果を導くことが報告されている(AnnRheum Dis.2007, March 407-409 Comparison of Disease Activity Score(DAS)28-erythrocyteSedimentation rate and DAS-C-reactive protein threshold votes. Inoue E,Yamanaka H, et al.)と上述したが、これを実証するために、16週後のDA28-ESRスコアを、サイトカイン/ケモカイン/可溶性受容体レベルについて多変量線形回帰分析を行った。その結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000017

 また、トシリズマブ療法を受けたナイーブ患者およびスイッチ患者の治療前および治療後のDAS28-CRPおよびDAS28-ESRスコアのプロット図を図10に示す。このように、ナイーブ患者では、sgp130、logIL-6、logIL-8、logEotaxin、logIP-10の値が予測マーカー(バイオマーカー)であることを示し、スイッチ患者では、sgp130、logGM-CSFおよびlogIP-10の値が予測マーカー(バイオマーカー)であることを示した。
 本発明は、健康産業(医療、製薬等)などの分野で利用可能である。

Claims (44)

  1. 関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで特定生物学的製剤による該患者の寛解を事前に判定する方法。
  2. 前記特定生物学的製剤は抗IL-6剤であり、前記特定マーカーはIP-10、sTNFRII、IL-6、IL-7、MCP-1およびIL-1βからなる群より選択される少なくとも1つとsgp130との組み合わせを含む、請求項1に記載の方法。
  3. 前記特定生物学的製剤は抗IL-6剤であり、前記特定マーカーは(i)sgp130と、(ii)IP-10と、(iii)sTNFRIIと、(iv)IL-6、IL-7、MCP-1またはIL-1βとの組み合わせを含む、請求項1に記載の方法。
  4. 前記特定生物学的製剤は抗IL-6剤であり、前記患者は過去に抗サイトカイン療法を受けている関節リウマチ患者であり、前記マーカーは(i)sgp130と、(ii)IP-10と、(iii)sTNFRIIと、(iv)IL-6またはIL-1βとの組み合わせである、請求項1に記載の方法。
  5. 前記特定生物学的製剤は抗TNF-α剤であり、前記特定マーカーはIL-9およびTNF-αの組み合わせ、またはVEGFもしくはMIP-1a、PDGFbbおよび前記患者の治療前の状態の指標の組み合わせを含む、請求項1に記載の方法。
  6. 前記特定生物学的製剤は抗TNF-α剤であり、前記特定マーカーはIL-9およびTNF-αの組み合わせを含む、請求項1に記載の方法。
  7. 前記身体サンプルは血清である、請求項1に記載の方法。
  8. 前記患者の寛解の事前の判定は、前記特定マーカーの濃度の値もしくはそのlog値または前記患者の治療前の状態の指標を用いた回帰式で算出された寛解の確率に基づいて行われる、請求項1~7のいずれか1項に記載の方法。
  9. 前記回帰式での算出は、前記sgp130では濃度値を、および他の前記特定マーカーでは濃度のlog値を用いてなされる、請求項8に記載の方法。
  10. 前記回帰式は回帰式(8)~(16)のいずれかから選択される、請求項9に記載の方法。
  11. 請求項1~10のいずれか1項に記載の方法に従って前記特定生物学的製剤による寛解を事前に判定し、該寛解の確率が高い特定生物学的製剤を選択することにより前記患者に有効な生物学的製剤を選択する方法。
  12. (A)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで特定生物学的製剤による該患者の寛解を事前に判定する工程と、(B)(A)工程により該特定生物学的製剤により該患者が寛解すると判定された場合、該特定生物学的製剤を該患者に投与する工程とを包含する関節リウマチ患者の治療方法。
  13. (A)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで複数の特定生物学的製剤による該患者の寛解の確率を事前に算出する工程と、(B)(A)工程により得られた寛解の確率が高い特定生物学的製剤を該患者に投与する工程とを包含する関節リウマチ患者の治療方法。
  14. 関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して特定生物学的製剤による該患者の寛解を事前に判定する方法に用いられる、該特定マーカーを検出するための試薬を含む診断剤。
  15. 関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して複数の特定生物学的製剤による該患者の寛解の確率を事前に算出し、該寛解の確率が高い特定生物学的製剤を選択することにより該患者に有効な生物学的製剤を選択する方法に用いられる、該特定マーカーを検出するための試薬を含む診断剤。
  16. 特定生物学的製剤を含む関節リウマチ患者を治療するための治療剤であって、該患者の身体サンプル中の特定マーカーの濃度を測定して該特定生物学的製剤による該患者の寛解が事前に判定され、寛解すると判断された場合に該特定生物学的製剤が投与されることを特徴とする、治療剤。
  17. 関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで該患者への特定生物学的製剤による治療後の症状の改善度を事前に判定する方法。
  18. 前記特定生物学的製剤は抗IL-6剤であり、前記特定マーカーはIL-1β、IL-7、TNF-αおよびsIL-6Rの組み合わせを含む、請求項17に記載の方法。
  19. 前記特定生物学的製剤は抗TNF-α剤であり、前記特定マーカーはIL-2、IL-15、sIL-6R、およびsTNFRIの組み合わせ、またはIL-6およびIL-13の組み合わせを含む、請求項17に記載の方法。
  20. 前記身体サンプルは血清である、請求項17~19のいずれか1項に記載の方法。
  21. 前記治療後の症状の改善度の事前の判定は、前記特定マーカーの濃度の値もしくはそのlog値または前記患者の治療前の状態の指標を用いた回帰式で算出された治療後の症状の改善度に基づいて行われる、請求項17~20のいずれか1項に記載の方法。
  22. 前記回帰式での算出は、前記sgp130では濃度値を、および他の前記特定マーカーでは濃度のlog値を用いてなされる、請求項21に記載の方法。
  23. 前記回帰式は、回帰式(1)~(2)のいずれかから選択される、請求項22に記載の方法。
  24. 請求項17~23のいずれか1項に記載の方法に従って前記特定生物学的製剤による治療後の症状の改善度を事前に判定し、該治療後の症状の改善度が高い生物学的製剤を選択することにより前記患者に有効な生物学的製剤を選択する方法。
  25. (A)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで該患者への特定生物学的製剤による治療後の症状の改善度を事前に判定する工程と、(B)(A)工程により判定された該改善度が所定の基準以上である場合、該特定生物学的製剤を該患者に投与する工程とを包含する関節リウマチ患者の治療方法。
  26. (A)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで該患者への複数の特定生物学的製剤による治療後の症状の改善度を事前に判定する工程と、(B)(A)工程により得られた該改善度が高い特定生物学的製剤を該患者に投与する工程とを包含する関節リウマチ患者の治療方法。
  27. 関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して該患者への特定生物学的製剤による治療後の症状の改善度を事前に判定する方法に用いられる、該特定マーカーを検出するための試薬を含む診断剤。
  28. 関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して該患者への複数の特定生物学的製剤による治療後の症状の改善度を事前に判定し、該改善度が高い特定生物学的製剤を選択することにより該患者に有効な生物学的製剤を選択する方法に用いられる、該特定マーカーを検出するための試薬を含む診断剤。
  29. 特定生物学的製剤を含む関節リウマチ患者を治療するための治療剤であって、該関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して該患者への特定生物学的製剤による治療後の症状の改善度が事前に判定され、該改善度が所定の基準以上である場合に該特定生物学的製剤が投与されることを特徴とする、治療剤。
  30. 関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで該患者への特定生物学的製剤による治療後の疾患活動性指標を事前に判定する方法。
  31. 前記特定生物学的製剤は抗IL-6剤であり、前記特定マーカーはIL-8、Eotaxin、sTNFRI、sTNFRII、IL-6、VEGFおよびGM-CSFから選択される少なくとも1つと、sgp130と、IP-10との組み合わせを含む、請求項30に記載の方法。
  32. 前記特定生物学的製剤は抗IL-6剤であり、前記特定マーカーはsgp130、IL-8、Eotaxin、IP-10、sTNFRI、sTNFRIIおよびIL-6の組み合わせ、またはsgp130、IL-8、Eotaxin、IP-10、sTNFRI、sTNFRII、IL-6およびVEGFの組み合わせを含み、前記患者は過去に抗サイトカイン療法を受けていないリウマチ患者である、請求項30に記載の方法。
  33. 前記特定生物学的製剤は抗IL-6剤であり、前記特定マーカーはsgp130、IP-10、およびGM-CSFの組み合わせを含み、前記患者は過去に抗サイトカイン療法を受けているリウマチ患者である、請求項30に記載の方法。
  34. 前記特定生物学的製剤は抗TNF-α剤であり、前記特定マーカーはIL-9、TNF-αおよびVEGFの組み合わせ、またはIL-6およびIL-13の組み合わせを含む、請求項30に記載の方法。
  35. 前記身体サンプルは血清である、請求項30~34のいずれか1項に記載の方法。
  36. 前記治療後の疾患活動性指標の事前の判定は、前記特定マーカーの濃度の値もしくはそのlog値または前記患者の治療前の状態の指標を用いた回帰式で算出された治療後の疾患活動性指標の確率に基づいて行われる、請求項30~35のいずれか1項に記載の方法。
  37. 前記回帰式での算出は、前記sgp130では濃度値を、および他の前記特定マーカーでは濃度のlog値を用いてなされる、請求項36に記載の方法。
  38. 前記回帰式は、回帰式(3)~(7)のいずれかから選択される、請求項37に記載の方法。
  39. 請求項30~38のいずれか1項に記載の方法に従って前記患者への特定生物学的製剤による治療後の疾患活動性指標を事前に判定し、該疾患活動性指標が所定の基準より低い生物学的製剤を選択することにより前記患者に有効な生物学的製剤を選択する方法。
  40. (A)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで関節リウマチ患者への特定生物学的製剤による治療後の疾患活動性指標を事前に判定する工程と、(B)(A)工程により該疾患活動性指標が所定の基準以下である場合、該特定生物学的製剤を該患者に投与する工程とを包含する関節リウマチ患者の治療方法。
  41. (A)関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定することで関節リウマチ患者への複数の特定生物学的製剤による治療後の疾患活動性指標を事前に判定する工程と、(B)(A)工程により得られた該疾患活動性指標が低い特定生物学的製剤を該患者に投与する工程とを包含する関節リウマチ患者の治療方法。
  42. 関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して該患者への特定生物学的製剤による治療後の疾患活動性指標を事前に判定する方法に用いられる、該特定マーカーを検出するための試薬を含む診断剤。
  43. 関節リウマチ患者の身体サンプル中の特定マーカーの濃度を測定して該患者への複数の特定生物学的製剤による治療後の疾患活動性指標を事前に判定し、該疾患活動性指標が低い特定生物学的製剤を選択することにより該患者に有効な生物学的製剤を選択する方法に用いられる、該特定マーカーを検出するための試薬を含む診断剤。
  44. 特定生物学的製剤を含む関節リウマチ患者を治療するための治療剤であって、該患者の身体サンプル中の特定マーカーの濃度を測定して該患者への特定生物学的製剤による治療後の疾患活動性指標が事前に判定され、該疾患活動性指標が所定の基準以下である場合に該特定生物学的製剤が投与されることを特徴とする、治療剤。
     
PCT/JP2015/002892 2015-06-09 2015-06-09 生物学的製剤による関節リウマチの治療効果の予測判定方法 WO2016199180A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/580,253 US20180224464A1 (en) 2015-06-09 2015-06-09 Method of predicting and determining therapeutic effect on rheumatoid arthritis due to biological formulation
PCT/JP2015/002892 WO2016199180A1 (ja) 2015-06-09 2015-06-09 生物学的製剤による関節リウマチの治療効果の予測判定方法
JP2017522755A JPWO2016199180A1 (ja) 2015-06-09 2015-06-09 生物学的製剤による関節リウマチの治療効果の予測判定方法
EP15894866.1A EP3309553A4 (en) 2015-06-09 2015-06-09 METHOD OF PREDICTING / EVALUATING THE THERAPEUTIC EFFECT OF BIOLOGICAL PREPARATION ON RHEUMATOID ARTHRITIS
US16/798,088 US20210018514A1 (en) 2015-06-09 2020-02-21 Method of predicting and determining therapeutic effect on rheumatoid arthritis due to biological formulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/002892 WO2016199180A1 (ja) 2015-06-09 2015-06-09 生物学的製剤による関節リウマチの治療効果の予測判定方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/580,253 A-371-Of-International US20180224464A1 (en) 2015-06-09 2015-06-09 Method of predicting and determining therapeutic effect on rheumatoid arthritis due to biological formulation
US16/798,088 Continuation US20210018514A1 (en) 2015-06-09 2020-02-21 Method of predicting and determining therapeutic effect on rheumatoid arthritis due to biological formulation

Publications (1)

Publication Number Publication Date
WO2016199180A1 true WO2016199180A1 (ja) 2016-12-15

Family

ID=57503141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002892 WO2016199180A1 (ja) 2015-06-09 2015-06-09 生物学的製剤による関節リウマチの治療効果の予測判定方法

Country Status (4)

Country Link
US (2) US20180224464A1 (ja)
EP (1) EP3309553A4 (ja)
JP (1) JPWO2016199180A1 (ja)
WO (1) WO2016199180A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7500074B2 (ja) 2020-03-25 2024-06-17 学校法人自治医科大学 関節リウマチの再燃を予測する方法及びそれに用いるバイオマーカー群

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201915222D0 (en) * 2019-10-21 2019-12-04 Univ Court Univ Of Glasgow Diagnostic and prognostic biomarkers of disease remission in rheumatoid arthritis
CN114594266B (zh) * 2022-03-02 2022-12-27 安徽中医药大学第一附属医院(安徽省中医院) M1联合m2型巨噬细胞因子作为生物标志物在类风湿关节炎诊断和治疗监测中的用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100298236A1 (en) * 2007-10-19 2010-11-25 Conaris Research Institute Ag Soluble gp130 muteins with improved binding activity
WO2015083765A1 (ja) * 2013-12-04 2015-06-11 国立大学法人大阪大学 生物学的製剤による関節リウマチの治療効果を予測判定する方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2008100A4 (en) * 2006-04-18 2009-12-16 Univ Leland Stanford Junior ESTABLISHING ANTIBODY PROFILES FOR DETERMINING PATIENT SENSITIVITY TO TREATMENT
ATE533061T1 (de) * 2007-08-03 2011-11-15 Brahms Gmbh Verfahren zur diagnose bakterieller infektionen
JP5399219B2 (ja) * 2009-11-24 2014-01-29 株式会社ケイティーバイオ 関節リウマチに対するヒト型抗TNFα抗体薬の薬効予測方法、及び薬効予測装置
EP2516467A2 (en) * 2009-12-23 2012-10-31 Emergent Product Development Seattle, LLC Compositions comprising tnf-alpha and il-6 antagonists and methods of use thereof
CA2839792A1 (en) * 2011-05-10 2012-11-15 Nestec S.A. Methods of disease activity profiling for personalized therapy management

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100298236A1 (en) * 2007-10-19 2010-11-25 Conaris Research Institute Ag Soluble gp130 muteins with improved binding activity
WO2015083765A1 (ja) * 2013-12-04 2015-06-11 国立大学法人大阪大学 生物学的製剤による関節リウマチの治療効果を予測判定する方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AVDEEV A S ET AL.: "The importance of cytokine profile characteristics for evaluating the therapeutic effectiveness of monoclonal antibodies against IL -6 receptors in patients with rheumatoid arthritis", KLINICHESKAIA MEDITSINA, vol. 92, no. 1, 2014, pages 28 - 34, XP009504635 *
KENSEI TSUZAKA ET AL.: "Kecchu ADAMTS5 Hatsugenryo de Kansetsu Rheumatism ni Okeru Etanercept no Yukosei ga Yosoku Dekiru", ANNUAL GENERAL ASSEMBLY AND SCIENTIFIC MEETING OF THE JAPAN COLLEGE OF RHEUMATOLOGY PROGRAM SHOROKUSHU, vol. 59 th, 20 March 2015 (2015-03-20), pages 482, XP009504670 *
MISATO HASHIZUME ET AL.: "Hitoka Ko IL -6R Kotai tocilizumab no IL -6 Kanren Fukugotai eno Eikyo", ANNUAL GENERAL ASSEMBLY AND SCIENTIFIC MEETING OF JAPAN COLLEGE OF RHEUMATOLOGY/INTERNATIONAL RHEUMATOLOGY SYMPOSIUM PROGRAM SHOROKUSHU, vol. 52 nd-17, 2008, pages 317, XP009504675 *
See also references of EP3309553A4 *
SHUSAKU NAKASHIMA ET AL.: "Tocilizumab no Chiryo Hannosei o Shimesu Biomarker no Kento", ANNUAL GENERAL ASSEMBLY AND SCIENTIFIC MEETING OF JAPAN COLLEGE OF RHEUMATOLOGY/INTERNATIONAL RHEUMATOLOGY SYMPOSIUM PROGRAM SHOROKUSHU, vol. 57 th-22, 2013, pages 419, XP008183936 *
TOMOHIRO KAMEDA ET AL.: "Kansetsu Rheumatism ni Okeru Bio-naive Shorei ni Taisuru Tocilizumab no Koka Yosoku no Kento", ANNUAL GENERAL ASSEMBLY AND SCIENTIFIC MEETING OF THE JAPAN COLLEGE OF RHEUMATOLOGY PROGRAM SHOROKUSHU, vol. 58 th, 2014, pages 447, XP009504674 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7500074B2 (ja) 2020-03-25 2024-06-17 学校法人自治医科大学 関節リウマチの再燃を予測する方法及びそれに用いるバイオマーカー群

Also Published As

Publication number Publication date
JPWO2016199180A1 (ja) 2018-04-12
EP3309553A1 (en) 2018-04-18
US20210018514A1 (en) 2021-01-21
US20180224464A1 (en) 2018-08-09
EP3309553A4 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
Abers et al. An immune-based biomarker signature is associated with mortality in COVID-19 patients
JP2021063826A (ja) 生物学的製剤による関節リウマチの治療効果を予測判定する方法
Maarouf et al. Targeted treatments for hidradenitis suppurativa: a review of the current literature and ongoing clinical trials
Torok et al. Peripheral blood cytokine and chemokine profiles in juvenile localized scleroderma: T-helper cell-associated cytokine profiles
US8828668B2 (en) Markers for determination of patient responsiveness
Milman et al. Correlation of a multi-cytokine panel with clinical disease activity in patients with rheumatoid arthritis
Wisniacki et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of anti-TWEAK monoclonal antibody in patients with rheumatoid arthritis
van Mens et al. Brief report: interleukin‐17 blockade with secukinumab in peripheral spondyloarthritis impacts synovial immunopathology without compromising systemic immune responses
Shimauchi et al. Serum interleukin‐22 and vascular endothelial growth factor serve as sensitive biomarkers but not as predictors of therapeutic response to biologics in patients with psoriasis
US20210018514A1 (en) Method of predicting and determining therapeutic effect on rheumatoid arthritis due to biological formulation
AU2017205322A1 (en) Biomarkers and methods for detection of seizures and epilepsy
Choi et al. Effects of tocilizumab therapy on serum interleukin-33 and interleukin-6 levels in patients with rheumatoid arthritis
Aldridge et al. Sex-based differences in association between circulating T cell subsets and disease activity in untreated early rheumatoid arthritis patients
Scanlon et al. IL-17A induces CCL28, supporting the chemotaxis of IgE-secreting B cells
Sarıyıldız et al. Serum GDF‐15 level in Behçet's disease: relationships between disease activity and clinical parameters
Zhang et al. IL-1β, IL-17A, CRP and biologics history might serve as potential markers for clinical response to etanercept in rheumatoid arthritis patients
Brahe et al. Circulating serum interleukin-6, serum chitinase-3-like protein-1, and plasma vascular endothelial growth factor are not predictive for remission and radiographic progression in patients with early rheumatoid arthritis: post-hoc explorative and validation studies based on the CIMESTRA and OPERA trials
Su et al. Treatment response to etanercept in methotrexate refractory juvenile idiopathic arthritis: an analysis of predictors and long-term outcomes
Hoffmann et al. Routine Laboratory Parameter Dynamics and Laboratory Adverse Events in Psoriasis Patients on Long-term Treatment with Adalimumab, Etanercept, and Ustekinumab.
JP7522749B2 (ja) I型インターフェロン媒介性障害
Muhsin et al. Evaluation of interleukins (IL-1α, IL-1Ra, IL-12, IL-17A, IL-31, and IL-33) and chemokines (CXCL10 and CXCL16) in the serum of male patients with ankylosing spondylitis
Sato et al. Involvement of CX3CL1/CX3CR1 axis in etanercept therapy for patients with active rheumatoid arthritis
JP2020180977A (ja) 生物学的製剤による関節リウマチの治療効果の予測判定方法
Hayashi et al. Early prognostic factors associated with the efficacy of infliximab treatment for patients with rheumatoid arthritis with inadequate response to methotrexate
Yeo et al. Evaluation of serum matrix metalloproteinase-3 as an objective indicator for the disease activity in rheumatoid arthritis patients treated with methotrexate versus tocilizumab: 24-week results from a prospective randomized controlled study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017522755

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15580253

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015894866

Country of ref document: EP