WO2016198787A1 - Échangeur de chaleur tubulaire à tubes de graphite comprenant un organe de contrôle de l'encrassement, son procédé de mise en œuvre et son procédé de montage - Google Patents

Échangeur de chaleur tubulaire à tubes de graphite comprenant un organe de contrôle de l'encrassement, son procédé de mise en œuvre et son procédé de montage Download PDF

Info

Publication number
WO2016198787A1
WO2016198787A1 PCT/FR2016/051367 FR2016051367W WO2016198787A1 WO 2016198787 A1 WO2016198787 A1 WO 2016198787A1 FR 2016051367 W FR2016051367 W FR 2016051367W WO 2016198787 A1 WO2016198787 A1 WO 2016198787A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
tubes
fouling
heat exchanger
control member
Prior art date
Application number
PCT/FR2016/051367
Other languages
English (en)
Inventor
Jérémie BENOIT
Guillaume BRUN
Original Assignee
Mersen France Py Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mersen France Py Sas filed Critical Mersen France Py Sas
Publication of WO2016198787A1 publication Critical patent/WO2016198787A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G15/00Details
    • F28G15/003Control arrangements

Definitions

  • Tubular heat exchanger with graphite tubes comprising a fouling control member, its method of implementation and its method of assembly
  • the invention relates to the field of industrial heat exchangers. It relates more specifically to the monitoring of fouling (also called fouling) inside these exchangers.
  • the invention also relates to the probes for carrying out this monitoring, and the methods for detecting fouling using appropriate probes. More particularly, the invention relates to the monitoring of fouling of a shell-and-tube heat exchanger type heat exchanger comprising tubes made of graphite and or graphite-based.
  • the invention more specifically targets such an exchanger, in which the fluid flowing outside the aforementioned tubes undergoes a phase change, namely that it is admitted in the vapor state and is evacuated in the predominantly liquid state.
  • Such heat exchangers are used in plants for concentrating phosphoric acid.
  • fouling in English "fouling" of pipes in which a fluid circulates is a well-known phenomenon. It is related to the undesirable deposition of material from said fluid; this material is deposited on the internal walls of the pipes. This deposit often shows a structure in successive layers. It modifies the conditions of heat exchange between the fluid and the tube. It ends up narrowing the inner diameter of the tube; thus it modifies the hydrodynamic flow conditions of the tube and possibly of the whole piping system of which the tube is a part: to guarantee a constant flow the flow velocity must be increased, which can lead to certain parts of the piping system to phenomena of turbulence or cavitation. Alternatively, at constant flow rate, the effectiveness of the tube as a conveying means and / or heat exchanger decreases.
  • the degradation of the heat exchange due to the undesirable deposition of material requires a change in the operating regime of the piping system.
  • the piping system may be forced to operate under conditions for which it has not been sized, or it must operate under operating conditions that no longer fulfill the function for which it was sized.
  • the deposited layer due to the modification of the flow conditions in the tube, can spontaneously release particles of deposited material which is driven by the fluid, and which can cause problems in the fluid system: it is susceptible obstruct filters, orifices, nozzles, or contaminate the fluid. This release may be related to the erosion of the layer, the flaking, the internal stresses in the deposited layer and the interface between this layer and the tube, or to a spontaneous rupture related to an external effect (blow , vibration, thermal expansion).
  • the deposited layer may change over time, not only in thickness but also by transformation of its chemical structure, for example under the effect of the temperature of the transported fluid.
  • the fouling of the tubes of an industrial exchanger represents a cost factor: the efficiency of the tube, in terms of flow and heat exchange, decreases; the maintenance intervals of the exchanger must take into account the fouling; and finally an undetected clogging can cause irreversible damage to the equipment.
  • the clogging of the tubes requires the complete shutdown of the exchanger for maintenance or repair.
  • These heat exchangers are generally of the shell and tube heat exchanger type and include several hundred (or more than a thousand) straight and parallel tubes made of graphite and / or based on graphite within which circulates phosphoric acid.
  • a graphite or graphite tube designates a tube comprising zones or graphitic domains.
  • These tubes may be manufactured in particular by machining industrial graphite blocks, these blocks having advantageously been fired at a temperature greater than 2500 ° C., preferably greater than 2700 ° C., for example close to 3000 ° C. They can also be manufactured by extrusion, followed by a heat treatment as explained above.
  • Such tubes are available under the trademark GRAPHILOR®. Between the aforementioned tubes circulates a coolant, typically water in liquid form and / or steam, which is confined in the interior volume formed by the aforementioned calender. In these graphite tubes, it is formed over time a deposit which gradually turns into gypsum, an insoluble compound and very difficult to remove. A typical maintenance procedure for removing this deposit involves stopping the installation and rinsing the tubes with a hot solution of 5% sulfuric acid: this process works well for fairly thin layers, but becomes harder for thick layers. Indeed, the layers of gypsum tend to swell under the effect of sulfuric acid, and this can cause significant internal stresses in the pipes, with a risk of cracking or even rupture.
  • a coolant typically water in liquid form and / or steam
  • Each stop of the exchanger causes a loss of production.
  • In order to be able to carry out predictive maintenance it would be necessary to be able to detect the fouling condition of a tube: this makes it possible to take a decision as to the desirability of a maintenance operation.
  • a pressure drop in the system can be detected by local pressure measurements, but this does not make it easy to locate the narrowed area of the tube.
  • Local temperature measurements can also detect a change in the temperature difference between two points of the tube, indicating a decrease in the heat exchange in the tube; to locate the location of the narrowed tube requires a large number of thermal probes.
  • probes are external to the system: as such they are usually added to the installation by the operator of the installation, which is also responsible for instrumentation and monitoring. As such, the probes can be omitted, or remain disconnected by the operator after maintenance operations, or be stolen.
  • detection thresholds and the generation of alerts can be set (or disordered) by the operator.
  • WO-A-2007/099240 discloses a heat exchanger, equipped with a device for evaluating its fouling state. This device can be placed at different points of the exchanger. Typically it is interposed between, on the one hand, the plate located at the end of the stack and, on the other hand, the frame of the exchanger or an additional plate of dummy type.
  • the solutions described in this document are not applicable to a tubular exchanger such as that targeted by the invention.
  • WO-A-2009/153323 discloses a method for the detection and / or measurement of fouling in exchangers. A resistor is placed at a wall of this exchanger and this resistor is subjected to two successive power levels. This document deals more specifically with the electrical aspect of this detection and does not provide detailed structural information as to which exchangers can be controlled by this method. Again, the teaching of this state of the art can not be transposed in a simple way to an exchanger covered by the present invention.
  • No. 4,024,751 relates to a tubular heat exchanger, at least one tube of which is surrounded by a heating element, in particular of electrical resistance type, itself covered with an insulator.
  • a heating element in particular of electrical resistance type, itself covered with an insulator.
  • water and a hydrocarbon circulate respectively inside and outside each tube, in order to be put in heat exchange.
  • a so-called reference temperature corresponding to a location of the remote tube of the heating element.
  • This heating element is then activated so as to apply a predetermined amount of heat to the wall of the tube. After deactivating this heating element, the evolution of the so-called variable temperature of the tube in the zone thereof surrounded by the heating element is noted.
  • WO 2014/184421 relates to a heat exchange assembly, comprising a primary heat exchanger and a secondary heat exchanger.
  • the fouling is controlled in the secondary exchanger, which gives indications on the fouling existing in the primary exchanger.
  • a sensor located on the internal or external face of the tube is used.
  • This document does not meet one of the aims of the invention, namely the detection of internal fouling by means of a sensor located on the outside of the tube.
  • US 2014/0177673 relates to a method and a device for estimating fouling in a heat exchanger.
  • This document provides for a bypass, in the form of a conduit placed laterally with respect to the exchanger.
  • This duct is associated with a sensor that includes a heating element, as well as two remote temperature sensors.
  • the heating element is activated, the difference between the temperatures measured by the sensors is compared.
  • this measured value moves away from a reference value, for which no fouling is present, this means that the duct wall is covered with a fouling layer.
  • This device has a major disadvantage, in that it involves making an additional conduit, external to the exchanger itself.
  • a first object of the invention is a heat exchanger comprising:
  • an enclosure having a peripheral calender defining an interior volume, - a plurality of graphite tubes disposed in said interior volume, each tube comprising a peripheral wall,
  • said exchanger being characterized in that at least one tube is equipped with at least one member for controlling the fouling of its peripheral wall, this control member comprising
  • measurement means making it possible to measure the temperature of the electrical resistance.
  • the body of the control member is a collar surrounding at least partially the outer face of the wall of the tube.
  • the collar is surrounded by an insulating sleeve to prevent a substantial loss of heat opposite the wall of the tube.
  • the enclosure comprises at least one end plate, which is pierced with axial holes for the passage of the tubes, and at least one auxiliary channel connecting the outside and an axial orifice occupied by a tube equipped with a control member for fouling, this control member being equipped with a sheath containing at least one functional wire of said member, this sheath extending in the auxiliary channel.
  • each tube is equipped with a fouling control member, in particular between two and eight tubes, in particular between four and six tubes.
  • the length of each tube is between 1 and 9 meters, in particular between 3 and 9 meters.
  • the outer diameter of each tube is between 45 and 55 millimeters, especially between 50 and 52 millimeters.
  • the inside diameter of each tube is between 35 and 45 millimeters, in particular between 37 and 39 millimeters.
  • the so-called safety length separating the top of the tube, adjacent to the fouling control member, and the end of the fouling control member opposite said top is between 0.1 and 3 meters, especially between 0.5 and 2 meters.
  • the main axis of each graphite tube forms, with the vertical, an angle less than 5 °, especially less than 2 °.
  • Another subject of the invention is a method for controlling the fouling of a heat exchanger comprising
  • each tube comprising a peripheral wall
  • phosphoric acid is admitted into the tubes, and the phosphoric acid is discharged from the tubes;
  • a second fluid is circulated in said inner volume (V) at the outer periphery of the tubes, countercurrently with the phosphoric acid,
  • the body of a fouling control device is arranged on the outer face of the wall of at least one tube, this control member also comprising
  • measuring means for measuring the temperature of the electrical resistance
  • the electrical resistance is electrically powered
  • each instantaneous curve showing the evolution as a function of time of the temperature of the resistance
  • the instantaneous or each instantaneous curve is compared with at least one reference curve.
  • the reference curve shows the evolution as a function of time of the temperature of the resistance, for a tube whose fouling has a known threshold thickness.
  • the phosphoric acid is flowed into the tubes at a substantially constant temperature as a function of time, at least in the vicinity of the control member.
  • the phosphoric acid is flowed in a substantially vertical direction, from bottom to top.
  • the fouling control member is placed so that the so-called safety length, separating the top of the tube, adjacent to the fouling control member, and the end of the fouling control member opposite said vertex is between 0.1 and 3 meters, in particular between 0.5 and 2 meters.
  • Yet another object of the invention is a method of mounting a heat exchanger as above, wherein:
  • each tube equipped with its fouling control member is fixed in the axial orifice formed in the end plate of the enclosure
  • the auxiliary channel is arranged in the plate and the sheath of said control member is passed through said auxiliary channel
  • Yet another object of the invention is a heat exchange tube made of graphite belonging to the exchanger as above, this tube being equipped with at least one device for controlling the fouling of its peripheral wall.
  • control member comprising a body disposed on the outer face of said wall, an electrical resistance extending in the body, measuring means for measuring the temperature of the electrical resistance.
  • Yet another object of the invention is a phosphoric acid concentration plant comprising at least one heat exchanger as above.
  • the Applicant has realized that the problem presented above can be solved by integrating at least one active sensor-type fouling control element in at least one of the graphite tubular elements of the heat exchanger. to monitor.
  • a probe is said to be active because it measures the response of the perturbation it has itself generated.
  • the so-called active probe can locally cause a controlled thermal disturbance (advantageously a controlled heating and / or the emission of a predetermined quantity of energy).
  • a controlled thermal disturbance advantageousously a controlled heating and / or the emission of a predetermined quantity of energy.
  • the active probe comprises at least one means for emitting a certain amount of thermal energy.
  • said active probe comprises means for rapidly heating a surface area of said tubular element, for creating in said surface zone a determined temperature difference, and / or for dissipating in said surface zone a predetermined quantity of energy.
  • the system according to the invention also comprises at least one heating measurement means caused by said energy emission.
  • this measuring means is a thermocouple, positioned in a manner adapted to collect a usable signal. It can be inserted into a hole provided for this purpose in a surface area of said tubular element.
  • the active probe has a collar which is fixed around the outer surface of the tubular element, so as to cover at least one segment of said outer surface.
  • Said active probe can be connected to at least one means for measuring the temperature.
  • the heat exchanger of the invention comprises a plurality (and typically a large number, for example several hundred or more than a thousand) of tubes, also called tubular elements, which are typically identical to each other, as well as at least a tubular element (typically identical to the others, except for the following) which comprises on its outer wall or in its outer wall at least one active sensor capable of locally causing a thermal disturbance, and at least one means for measuring said thermal disturbance.
  • said tubular element extends between two parallel end plates, also called tubular plates, and each end of said tubular element is inserted into an orifice formed in one of the two tubular plates.
  • One of these tubular plates is fixed, the other can be mobile.
  • the installation of the active probe on the outer face of the wall of the tubular element is advantageous. Indeed, it avoids a direct contact between the probe and the phosphoric acid which circulates inside the tubular element. However, such contact is undesirable for reasons related to corrosion, the difficulty of ensuring a tight insertion of the probe in the channel of the tubular element, and the possible disruption of hydrodynamic flow conditions. of this phosphoric acid by the probe itself.
  • the term "on" the outer face means first of all that the body of the control member, for example made in the form of a collar, can be fixed against this external face, which is then smooth, or in a recess formed in this outer face. This body can also be placed in the immediate vicinity of this external face, without however being in direct contact with it.
  • Said heat exchanger can be integrated in an industrial plant of phosphoric acid concentration.
  • this exchanger it is advantageous to position this exchanger in an area where the phosphoric acid circulating in the tubes has the highest temperature.
  • the fouling layer has a maximum thickness in this zone, in particular related to the fact that the rise in temperature of the phosphoric acid leads to a significant deposit of gypsum.
  • the fact of being able to control the fouling of graphite tubes, in which the phosphoric acid flows is particularly advantageous.
  • the service fluid typically water vapor
  • the service fluid is admitted at a predetermined initial temperature, for example close to 135 ° C.
  • a predetermined initial temperature for example close to 135 ° C.
  • this increase in the temperature of the service fluid contributes, in turn, to further accelerate the formation rate of this layer.
  • this layer reaches an undesirable thickness, it is necessary to stop the exchanger and carry out a maintenance operation.
  • the temperature of the water vapor is increased in a predetermined manner, so that the maintenance is carried out at the end of a predefined implementation time, typically close to 120 hours.
  • the latter value may be too high, namely that there is an inadvertent plugging of the tubes before the end of the predefined period of implementation.
  • the thickness of the fouling layer can be substantially controlled in real time.
  • the temperature of the water vapor is appropriately increased, depending on this measured thickness value, and not in a predefined manner as in the prior art. Therefore, if the operating conditions are more severe than expected, the invention makes it possible to alert the operator to avoid early clogging of the tubes. On the other hand, if these conditions are less severe, the water vapor is heated slower than expected, which makes it possible to reduce the formation rate of the fouling layer and, as a result, significantly increase the service time before maintenance.
  • Figures 1 to 6 illustrate embodiments of the invention.
  • Figures 1 to 1f show a vertical section through a heat exchanger according to the invention; to simplify the figure it shows only a single tube 2 taken between two tubular plates 3,4; these figures illustrate an embodiment of the method according to the invention.
  • Figure 2 shows schematically a perspective view of a tube 2 according to the invention with the fouling control member 5 in the form of a collar which at least partially surrounds the circumference of the tube.
  • FIG. 3 is a view in longitudinal section, illustrating in more detail the constituent elements of the control member 5.
  • Figure 4 is a longitudinal sectional view of a tube 2 according to the invention with a curve which schematically shows the heat transfer along the different media.
  • FIG. 5 is an electrical diagram of the collar, belonging to the fouling control member
  • FIG. 6 represents several curves, illustrating the variation of the temperature of the integrated resistance in this collar, for several states of fouling of the exchanger.
  • tube or tubular element
  • tubular element a construction element having at least one channel within which can flow a liquid when said tubular element is used according to its purpose.
  • FIG. 1 illustrates a heat exchanger according to the invention, designated as a whole by reference numeral 1.
  • This exchanger firstly comprises, in a manner known per se, an enclosure formed by end tube plates 3, 4 , as well as a peripheral shell forming an outer wall, or a shell 16.
  • This exchanger used in installations of the chemical industry, typically comprises a plurality of parallel straight tubes 2 graphite or graphite-based, which are received in the enclosure. Typically it is several hundred or more than a thousand tubes of graphite or graphite.
  • These tube type exchangers and shell are known as such. They include the aforementioned shell 16 and said plurality of straight and parallel tubes 2.
  • these tubes 2 are graphite and or graphite-based.
  • Their length L2 is typically between 1 and 9 meters, especially between 3 and 9 meters.
  • this exchanger is arranged so that the tubes 2 are oriented substantially vertically, namely that their main axis forms, with the vertical, an angle of less than 5 °, in particular less than 2 °. This arrangement has advantages which will be explained below.
  • the internal diameter Dlnt is typically between 35 and 45 millimeters, especially between 37 and 39 millimeters; in one embodiment it is 38.1 millimeters.
  • the outside diameter Dext is typically between 45 and 55 millimeters, in particular between 50 and 52 millimeters; in one embodiment it is 50.8 millimeters.
  • the exchanger further comprises means for entering, into the tubes, phosphoric acid as the first fluid or process fluid, phosphoric acid exit means out of the tubes, inlet means of a second fluid or fluid service in the chamber, to the outer periphery of the tubes, and means for output of the second fluid out of the envelope.
  • the second fluid is water vapor.
  • the first tubular plate is a fixed plate 3, that is to say that it is fixed on the not shown head of the exchanger 1, typically using a flange 17 of Tightening.
  • the second tube plate 4 is advantageously a sliding plate, that is to say movable relative to the shell 16.
  • Each tube 2 is inserted into the orifice 12a formed in this sliding tubular plate 4 and fixed by gluing.
  • at least one tube 2 of said heat exchanger 1 is equipped with a fouling control member, generally designated by the reference 5.
  • a tube is selected near the outer wall 16 of the exchanger 1, as shown in Figure 1.
  • Advantageously equips several tubes 2, for example two, three, four or five tubes 2.
  • Said control member 5 which is of the active probe type, is for example in accordance with that marketed by the company NeoTim in Albi (France), under the reference “FP2C Conductivimeter Fil Chaud”.
  • this control member firstly comprises a body made in the form of a collar 51, which at least partially surrounds the tube 2, namely that it is arranged against the external face 2 'from the wall of this tube. Note also 2 "the inner face of the wall of this tube.
  • This collar 51 which is in the form of a planar and flexible element, of integrated circuit type, comprises an electrical resistance 52, shown schematically in FIG. 3.
  • the electrical resistance can be realized, as illustrated in FIG. Figure 5, in the form of a metal track deposited on the collar.
  • This resistor 52 is associated with one or more thermocouples 53, making it possible to measure the temperature in the direct vicinity of this resistance.
  • Two power supply terminals 54 are provided, with all the necessary connectors, to be able to supply this resistance from outside the exchanger.
  • the thermocouples are associated with at least one output terminal not shown, for transmitting the electrical signal delivered in use by this thermocouple.
  • the control member 5 is further equipped with a sheath 6, the implementation of which will be detailed in the following.
  • This sheath 6 encloses at least one functional wire of the active probe, in particular wires 55 for supplying the resistor, electrically connected to the terminals 54, and at least one signal wire connected to the output terminal of the thermocouples. .
  • These different functional threads can be distinct or confused.
  • This sheath is placed in electrical communication with an alarm, not shown, of any appropriate type, which makes it possible to alert the operator in the event of a malfunction, as will be explained in what follows.
  • L51 is the length of the contact surface between the collar and the wall of the tube 2, according to the main direction of the latter. This length is for example between 0.02 and 0.1 meters.
  • the collar 51 is provided in the upper part of the tube, namely that in which the phosphoric acid circulating inside this tube is the hottest. Indeed, the fouling is maximum in this zone.
  • LS is the so-called safety length, separating the top S2 of the tube and the lower end 51 B of the collar 51, which is opposed to said vertex. This length LS is for example between 0.1 and 3 meters, especially between 0.5 and 2 meters.
  • the control member 5 is surrounded, on its opposite end faces as well as on its outer face, by a sleeve 58 made of a thermally insulating material.
  • This sleeve thus allows anisotropic heat transfer from the collar to the tube. In other words, when the collar is heated, this heat dissipates substantially completely in the wall of the tube 2.
  • FIGS. 1a to 1f show schematically a graphite tube 2 intended to be inserted in the orifice 12b of the first tubular plate 3 (fixed plate) and in the orifice 12a of the second tubular plate 4 (sliding plate); this tube 2 is situated at the periphery of the tube bundle, close to the external wall 16 of the heat exchanger 1.
  • a marking or prior checking is carried out. For this purpose is positioned the tube 2 within the fixed tubular plate 3, in the precise position that must adopt in service.
  • the facing walls of the tube and the openings of the plates 3 and 4 are not glued.
  • This marking makes it possible to check whether the sheath 6 protrudes outside the orifice 12a of the sliding tubular plate 4, at a suitable distance for the implementation of the subsequent steps. If this distance is not suitable, the position of this sheath is modified in a detailed manner.
  • a suitable glue is applied to a gluing zone 7 which represents at least a part of the surface outer tube which protrudes from said sliding tubular plate, and applying a suitable glue on a gluing area 8 which represents at least a portion of the inner surface of the orifice 12b of the fixed tubular plate 3.
  • said tube is moved through the orifice 12b of the fixed tubular plate 3 and through the orifice 12a of the sliding tubular plate 4, in order to spread the glue on the surfaces to be glued well.
  • a fourth step illustrated in FIG. 1d the tube 2 is permanently put into the orifices 12a, 12b and the sheath 6 is recovered in an auxiliary channel formed by a lateral orifice 11 formed in the sliding tubular plate 4. and which communicates with the orifice 12a.
  • this orifice 11 can be arranged in an axial direction. Its diameter may be of the order of 10 mm.
  • a jacket 13, 14, that is to say a tubular insert is inserted respectively in the orifice 12b of the fixed tubular plate 3 and in the orifice 12a of the sliding tube plate 4. At least a portion of the outer surface of said sleeves 13,14 is coated with a suitable glue.
  • the lateral orifice 11 is closed by a suitable cement forming a sealing plug 15.
  • the exchanger according to the invention is used in the position "vertical tubes” with phosphoric acid, as “process fluid”, which is heated by the "service fluid”.
  • process fluid which is heated by the "service fluid”.
  • This exchanger is used in such a way that at least the phosphoric acid, advantageously in the liquid phase, undergoes a temperature change such that the temperature at the top of the exchanger is higher than the temperature at the bottom of the exchanger.
  • the service fluid is water vapor, which undergoes partial condensation as it transfers its heat to phosphoric acid.
  • the fouling member disposed in the vicinity of the outer wall of the tube, is capable of detecting this fouling present against the inner wall of this tube. This is even more surprising in the case of using graphite or graphite tubes which have a significant thickness, of the order of 5 to 10 millimeters.
  • the phosphoric acid is flowed into the tubes 2, at a substantially constant temperature as a function of time.
  • the temperature of the phosphoric acid can vary in space, ie from one end to the other of the tubes.
  • this temperature is invariant in time, at least in the vicinity of the control member, or at any point of the tube.
  • the resistor 52 is then electrically energized.
  • This supply can be effected by pulses or, preferably, by a current step.
  • the resistance heats up and the calories thus generated dissipate substantially completely in the wall of the tube, due to the presence of the insulation.
  • Thermocouples measure the evolution of the temperature of this resistance, as a function of time. Since the temperature of the phosphoric acid is constant, as explained below above, it is understood that the measured temperature of the resistance is representative of the temperature difference between the resistance and the phosphoric acid.
  • the power supply phase of the resistor is of the order of seconds to minutes. It is conceivable that, as a function of time t, the temperature T52 of the resistance increases and then reaches a plateau. Characteristic curves of this evolution are shown in FIG. 6, which will be explained in what follows.
  • FIG. 4 further shows the heat transfer between the collar and the phosphoric acid, along the wall of the graphite tube and then with a fouling layer.
  • the temperature decreases firstly by conduction (k conductivity) through the wall of the tube, according to a DT2 value.
  • a layer E said fouling, which tends to form as the operating time of the exchanger.
  • This layer induces an additional thermal resistance rE per unit area, which is associated with a decrease in temperature DTE.
  • the thicker the fouling layer the higher the DTE value and the higher the temperature difference between the active surface and the phosphoric acid.
  • the assembly formed by the wall and the fouling layer has a thermal conductivity lower than the thermal conductivity of the wall alone.
  • the curve C0 illustrates the change in temperature for a non-fouled heat exchanger. Curves C1 to C3, which illustrate increasingly clogged exchangers, are therefore located above this curve C0.
  • a reference measurement is first made, corresponding to the change in temperature for an exchanger having a fouling layer, the known thickness of which has a threshold value.
  • the exchanger is typically stopped and the interior of the tubes is cleaned.
  • the evolution of the temperature of the resistance as a function of time, for this exchanger having this threshold fouling layer, is materialized by the curve C2.
  • the process according to the invention can be implemented in a phosphoric acid concentration plant.
  • such an installation comprises a heat exchanger in which the phosphoric acid is heated using a heat-transfer medium (usually water vapor) to be concentrated in an evaporator.
  • a heat-transfer medium usually water vapor
  • the temperature difference between the coolant (in this case: water vapor) and the phosphoric acid is not too high in order to limit the fouling of the graphite tubular elements and the thermal stresses in the installation.
  • the temperature of the steam used will be between 110 ° C and 160 ° C while the temperature of the phosphoric acid will be between 70 ° C and 90 ° C.
  • a heat exchanger is considered in which the water vapor, forming a coolant, heats the phosphoric acid, which forms the process fluid, with a view to its concentration in an evaporator.
  • the process it is preferred to conduct the process so that the phosphoric acid enters the tubular element of the heat exchanger at about 82 ° C, is heated with water vapor at a temperature of of 133 ° C, and leaves said tubular element at a temperature of 85 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Echangeur thermique comprenant; une enceinte (3, 4, 16), une pluralité de tubes (2) en graphite, disposés dans l'enceinte, chaque tube comprenant une paroi périphérique, des moyens d'entrée d'acide phosphorique dans les tubes des moyens de sortie d'acide phosphorique hors des tubes des moyens d'entrée d'un second fluide dans l'enceinte, vers la périphérie extérieure des tubes des moyens de sortie du second fluide hors de l'enceinte ledit échangeur étant caractérisé en ce qu'au moins un tube en graphite (2) est équipé d'au moins un organe (5) de contrôle de l'encrassement de sa paroi périphérique, cet organe de contrôle comprenant; un corps (51) disposé sur la face externe (2') de cette paroi, une résistance électrique (52) s'étendant dans le corps (51) des moyens de mesure (53), permettant de mesurer la température de la résistance électrique (52).

Description

Echangeur de chaleur tubulaire à tubes de graphite comprenant un organe de contrôle de l'encrassement, son procédé de mise en œuvre et son procédé de montage
Domaine technique de l'invention L'invention concerne le domaine des échangeurs de chaleur industriels. Elle concerne plus spécifiquement la surveillance de l'encrassement (appelé aussi encrassage) à l'intérieur de ces échangeurs. L'invention concerne également les sondes permettant d'exercer cette surveillance, et les procédés de détection de l'encrassement à l'aide de sondes appropriées. Plus particulièrement l'invention concerne la surveillance de l'encrassement d'un échangeur de chaleur tubulaire de type échangeur de chaleur à calandre et tubes comprenant des tubes en graphite et ou à base de graphite. L'invention vise plus spécifiquement un tel échangeur, dans lequel le fluide circulant à l'extérieur des tubes précités subit un changement de phase, à savoir qu'il est admis à l'état vapeur et est évacué à l'état majoritairement liquide. De tels échangeurs de chaleur sont utilisés dans des installations pour concentrer l'acide phosphorique.
Etat de la technique
L'encrassement (en anglais « fouling ») de tuyauteries dans lesquels circule un fluide est un phénomène bien connu. Il est lié au dépôt indésirable de matière à partir dudit fluide ; cette matière se dépose sur les parois internes des tuyaux. Ce dépôt montre souvent une structure en couches successives. Il modifie les conditions d'échange thermique entre le fluide et le tube. Il finit par rétrécir le diamètre interne du tube ; ainsi il modifie des conditions d'écoulement hydrodynamique du tube et possiblement de tout le système de tuyauterie dont le tube fait partie : pour garantir un débit constant la vitesse d'écoulement doit être augmentée, ce qui peut conduire à certains endroits du système de tuyauterie à des phénomènes de turbulence, voire de cavitation. Alternativement, à vitesse d'écoulement constante, l'efficacité du tube en tant que moyen d'acheminement et/ou échangeur thermique diminue. De même, la dégradation de l'échange thermique due au dépôt indésirable de matière nécessite une modification du régime de fonctionnement du système de tuyauterie. Ainsi, le système de tuyauterie peut être forcé à fonctionner dans des conditions pour lesquelles il n'a pas été dimensionné, ou il doit opérer dans des conditions de fonctionnement qui ne remplissent plus la fonction pour laquelle il a été dimensionné. Par ailleurs, la couche déposée, due à la modification des conditions d'écoulement dans le tube, peut spontanément relarguer des particules de matière déposée qui est entraînée par le fluide, et qui peut poser des problèmes dans le système de fluide : elle est susceptible d'obstruer des filtres, des orifices, des buses, ou de contaminer le fluide. Ce relargage peut être lié à l'érosion de la couche, à l'écaillage, aux contraintes internes dans la couche déposée et à l'interface entre cette couche et le tube, ou encore à une rupture spontanée liée à un effet externe (coup, vibration, dilatation thermique).
La couche déposée peut évoluer dans le temps, non seulement en épaisseur mais encore par transformation de sa structure chimique, par exemple sous l'effet de la température du fluide transporté.
D'une manière générale, l'encrassage des tubes d'un échangeur industriel représente un facteur de coût : l'efficacité du tube, en termes de débit et d'échange thermique, diminue ; les intervalles de maintenance de l'échangeur doivent tenir compte de l'encrassement ; et enfin un encrassement non détecté peut causer un dommage irréversible pour l'équipement. Dans les échangeurs de chaleur pour la concentration d'acide phosphorique, visés par l'invention, l'encrassement des tubes nécessite l'arrêt complet de l'échangeur pour maintenance ou réparation.
L'encrassement des échangeurs thermiques utilisés dans ces unités de concentration d'acide phosphorique est un phénomène bien connu. Ces échangeurs de chaleur sont en général du type « échangeur de chaleur à calandre et tubes » (« shell and tubes » en anglais) et comprennent plusieurs centaines (voire plus d'un millier) de tubes droits et parallèles en graphite et ou à base de graphite à l'intérieur desquels circule l'acide phosphorique. Au sens de l'invention, un tube en graphite, ou à base de graphite, désigne un tube comprenant des zones ou des domaines graphitiques. Ces tubes peuvent être fabriqués notamment par usinage de blocs de graphite industriel, ces blocs ayant subi avantageusement une cuisson à une température supérieure à 2500°C, de préférence supérieure à 2700°C, par exemple voisine de 3000°C. Ils peuvent aussi être fabriqués par extrusion, suivie d'un traitement thermique tel qu'explicité ci-dessus. De tels tubes sont disponibles sous la marque GRAPHILOR®. Entre les tubes précités circule un fluide caloporteur, typiquement de l'eau sous forme liquide et/ou vapeur, lequel est confiné dans le volume intérieur formé par la calandre précitée. Dans ces tubes en graphite, il se forme au cours du temps un dépôt qui se transforme progressivement en gypse, un composé insoluble et très difficile à enlever. Un procédé typique de maintenance pour enlever ce dépôt implique l'arrêt de l'installation et le rinçage des tubes avec une solution chaude d'acide sulfurique à 5% : ce procédé fonctionne bien pour des couches assez minces, mais devient plus difficile pour des couches épaisses. En effet, les couches de gypse tendent à gonfler sous l'effet de l'acide sulfurique, et cela peut engendrer des tensions internes importants dans les tuyauteries, avec un risque de fissuration voire de rupture. Chaque arrêt de l'échangeur engendre une perte de production. Selon une tendance générale en matière de maintenance préventive, on souhaiterait pouvoir effectuer les opérations de maintenance lorsqu'elles sont nécessaires au lieu de les effectuer à des intervalles réguliers, car la maintenance à des intervalles réguliers peut conduire à une opération de maintenance qui est trop tardive, mais aussi à une opération de maintenance trop précoce. Pour pouvoir faire de la maintenance prédictive il faudrait pouvoir détecter l'état d'encrassement d'un tube : cela permet la prise de décision quant à l'opportunité d'une opération de maintenance.
L'encrassement des échangeurs de chaleur à tubes en graphite, à l'intérieur desquels s'écoule de l'acide phosphorique, est donc un phénomène éminemment indésirable. Or, il ne peut malheureusement pas être détecté facilement, dans l'état de la technique actuel.
Il existe des méthodes indirectes : on peut détecter par des mesures locales de pression une perte de charge dans le système, mais cela ne permet pas facilement de localiser l'endroit du tube qui s'est rétréci. On peut également détecter par des mesures locales de la température un changement dans la différence de température entre deux points du tube, ce qui indique une baisse de l'échange thermique dans le tube ; pour bien localiser l'endroit du tube qui s'est rétréci il faut un nombre important de sondes thermiques.
Ces méthodes fonctionnent assez correctement. Leur inconvénient majeur est le fait que les sondes sont externes au système : à ce titre elles sont habituellement ajoutées à l'installation par l'exploitant de l'installation, qui se charge aussi de l'instrumentation et de la surveillance. A ce titre, les sondes peuvent être omises, ou bien rester déconnectées par l'exploitant à l'issue d'opérations de maintenance, ou encore être volées. Par ailleurs les seuils de détection et de génération d'alertes peuvent être réglés (ou déréglés) par l'exploitant.
Il serait donc souhaitable de disposer d'un échangeur de chaleur, destiné à l'écoulement d'acide phosphorique à l'intérieur de tubes en graphite, qui est pourvu d'un dispositif fiable et simple pour détecter l'état d'encrassement des tubes. Il serait plus particulièrement souhaitable que ce dispositif de détection de l'encrassement montre une bonne reproductibilité et fiabilité, sans dérive significative du signal dans le temps, et que ce dispositif utilise des sondes d'encrassement intégrées auxdits tubes en graphite à surveiller. Par ailleurs, il existe un besoin pour un procédé permettant le montage d'un échangeur de chaleur, dont au moins un des tubes en graphite est muni d'un dispositif de détection de l'encrassement. L'invention vise à proposer un tel procédé de montage, qui est satisfaisant en termes d'étanchéité globale de l'échangeur. WO-A-2007/099240 décrit un échangeur thermique, équipé d'un dispositif d'évaluation de son état d'encrassement. Ce dispositif peut être placé à différents endroits de l'échangeur. De façon typique il est interposé entre, d'une part, la plaque située en extrémité d'empilement et, d'autre part, le bâti de l'échangeur ou bien une plaque supplémentaire de type factice. Les solutions décrites dans ce document ne sont pas applicables à un échangeur tubulaire tel que celui visé par l'invention.
WO-A-2009/153323 divulgue un procédé pour la détection et/ou la mesure de l'encrassement dans des échangeurs. On place une résistance au niveau d'une paroi de cet échangeur et on soumet cette résistance à deux niveaux de puissance successifs. Ce document traite plus spécifiquement de l'aspect électrique de cette détection et ne délivre pas d'informations structurelles détaillées, quant aux échangeurs susceptibles d'être contrôlés par ce procédé. Là encore, l'enseignement de cet état de la technique ne peut pas être transposé de manière simple à un échangeur visé par la présente invention.
US 4,024,751 concerne un échangeur de chaleur tubulaire, dont au moins un tube est entouré d'un élément de chauffage, notamment de type à résistance électrique, lui-même recouvert d'un isolant. En service, de l'eau et un hydrocarbure circulent respectivement à l'intérieur et à l'extérieur de chaque tube, afin d'être mis en échange de chaleur. Puis on mesure une température, dite de référence, correspondant à un endroit du tube distant de l'élément de chauffage. On active ensuite cet élément de chauffage, de manière à appliquer une quantité de chaleur prédéterminée sur la paroi du tube. Après avoir désactivé cet élément de chauffage on note l'évolution de la température, dite variable, du tube dans la zone de celui-ci entourée par l'élément de chauffage. La valeur de la durée, dite de retour, nécessaire pour que la température variable soit à nouveau égale à la température de référence, donne à l'opérateur une indication concernant le degré d'encrassement de la paroi du tube. Ce dernier document n'est pas un point de départ prometteur, pour résoudre les problèmes techniques présentés ci-dessus, spécifiques à un échangeur comprenant des tubes en graphite pour l'écoulement d'acide phosphorique. En effet, dans US 4,024,751 , on fait s'écouler l'eau, en tant que fluide service, à l'intérieur des tubes. Par ailleurs, ce document prévoit de faire s'écouler les fluides selon une direction horizontale. Enfin il ne donne pas de détails constructifs significatifs, concernant le montage et le démontage de cet élément de chauffage au sein de l'installation industrielle. Par conséquent, l'enseignement de ce document ne peut pas être transposé de manière simple à un échangeur de chaleur, tel que spécifiquement visé par l'invention.
WO 2014/184421 a trait à un ensemble d'échange de chaleur, comprenant un échangeur primaire et un échangeur secondaire. L'encrassement est contrôlé dans l'échangeur secondaire, ce qui donne des indications sur l'encrassement existant dans l'échangeur primaire. Ce document mentionne que, pour la détection d'un encrassement interne, respectivement externe, on fait appel à un capteur situé en face interne, respectivement externe, du tube. Ce document ne permet pas de répondre à un des buts de l'invention, à savoir la détection d'un encrassement interne au moyen d'un capteur situé en face externe du tube
US 2014/0177673 a pour objet un procédé et un dispositif en vue de l'estimation de l'encrassement dans un échangeur de chaleur. Ce document prévoit de réaliser une dérivation, sous forme d'un conduit placé latéralement par rapport à l'échangeur. Ce conduit est associé à un capteur qui inclut un élément chauffant, ainsi que deux capteurs de température distants. En service, lorsque l'élément chauffant est activé, on compare la différence entre les températures mesurées par les capteurs. Lorsque cette valeur mesurée s'éloigne d'une valeur de référence, pour laquelle aucun encrassement n'est présent, cela signifie que la paroi du conduit est recouverte d'une couche d'encrassement. Ce dispositif présente un inconvénient majeur, en ce qu'il implique de réaliser un conduit supplémentaire, externe à l'échangeur proprement dit.
Objets de l'invention
Ainsi un premier objet de l'invention est un échangeur thermique comprenant :
une enceinte possédant une calandre périphérique délimitant un volume intérieur, - une pluralité de tubes en graphite, disposés dans ledit volume intérieur, chaque tube comprenant une paroi périphérique,
- des moyens d'entrée d'acide phosphorique dans lesdits tubes,
- des moyens de sortie d'acide phosphorique hors desdits tubes,
- des moyens d'entrée d'un second fluide dans ledit volume intérieur vers la périphérie extérieure des tubes,
- des moyens de sortie du second fluide hors dudit volume intérieur,
ledit échangeur étant caractérisé en ce qu'au moins un tube est équipé d'au moins un organe de contrôle de l'encrassement de sa paroi périphérique, cet organe de contrôle comprenant
- un corps disposé sur la face externe de cette paroi, - une résistance électrique s'étendant dans le corps,
- des moyens de mesure permettant de mesurer la température de la résistance électrique.
Selon d'autres caractéristiques de l'invention : a) le corps de l'organe de contrôle est un collier entourant au moins partiellement la face externe de la paroi du tube. b) le collier est entouré d'un manchon isolant propre à éviter une déperdition substantielle de chaleur à l'opposé de la paroi du tube. c) l'enceinte comprend au moins une plaque d'extrémité, laquelle est percée d'orifices axiaux destinés au passage des tubes, ainsi que d'au moins un canal auxiliaire reliant l'extérieur et un orifice axial occupé par un tube équipé d'un organe de contrôle de l'encrassement, cet organe de contrôle étant équipé d'une gaine renfermant au moins un fil fonctionnel dudit organe, cette gaine s'étendant dans le canal auxiliaire. d) plusieurs tubes sont équipés d'un organe de contrôle de l'encrassement, en particulier entre deux et huit tubes, notamment entre quatre et six tubes. e) la longueur de chaque tube est comprise entre 1 et 9 mètres, notamment entre 3 et 9 mètres. f) le diamètre extérieur de chaque tube est compris entre 45 et 55 millimètres, notamment entre 50 et 52 millimètres. g) le diamètre intérieur de chaque tube est compris entre 35 et 45 millimètres, notamment entre 37 et 39 millimètres. h) la longueur dite de sécurité séparant le sommet du tube, adjacent à l'organe de contrôle de l'encrassement, et l'extrémité de l'organe de contrôle de l'encrassement opposée audit sommet, est comprise entre 0,1 et 3 mètres, notamment entre 0,5 et 2 mètres. i) l'axe principal de chaque tube en graphite forme, avec la verticale, un angle inférieur à 5°, notamment inférieur à 2°. Ces caractéristiques additionnelles (a) à (i) peuvent être mises en œuvre individuellement ou selon toutes combinaisons techniquement compatibles.
Un autre objet de l'invention est un procédé de contrôle de l'encrassement d'un échangeur thermique comprenant
une enceinte possédant une calandre périphérique délimitant un volume intérieur et
une pluralité de tubes en graphite s'étendant dans ledit volume intérieur (V), chaque tube comprenant une paroi périphérique, procédé dans lequel
- on admet de l'acide phosphorique dans les tubes et on évacue l'acide phosphorique hors des tubes;
- on fait circuler un second fluide dans ledit volume intérieur (V), à la périphérie extérieure des tubes, à contre-courant de l'acide phosphorique,
ledit procédé étant caractérisé en ce que
- on dispose, sur la face externe de la paroi d'au moins un tube, le corps d'un organe de contrôle de l'encrassement, cet organe de contrôle comprenant en outre
> une résistance électrique s'étendant dans le corps
> des moyens de mesure, permettant de mesurer la température de la résistance électrique
- on alimente électriquement la résistance électrique,
- on réalise au moins une courbe, dite instantanée, chaque courbe instantanée montrant l'évolution en fonction du temps de la température de la résistance,
- on compare la ou chaque courbe instantanée avec au moins une courbe de référence.
Selon d'autres caractéristiques de l'invention : j) la courbe de référence montre l'évolution en fonction du temps de la température de la résistance, pour un tube dont l'encrassement présente une épaisseur seuil connue. k) on fait s'écouler l'acide phosphorique dans les tubes à une température sensiblement constante en fonction du temps, au moins au voisinage de l'organe de contrôle.
I) on fait s'écouler l'acide phosphorique selon une direction sensiblement verticale, du bas vers le haut. m) on place l'organe de contrôle de l'encrassement de sorte que la longueur dite de sécurité, séparant le sommet du tube, adjacent à l'organe de contrôle de l'encrassement, et l'extrémité de l'organe de contrôle de l'encrassement opposée audit sommet, est comprise entre 0,1 et 3 mètres, notamment entre 0,5 et 2 mètres. n) on provoque une condensation au moins partielle du second fluide durant son trajet dans le volume intérieur.
Ces caractéristiques additionnelles (j) à (n) peuvent être mises en œuvre individuellement ou selon toutes combinaisons techniquement compatibles. Encore autre objet de l'invention est un procédé de montage d'un échangeur de chaleur tel que ci-dessus, dans lequel :
- on fixe une extrémité de chaque tube équipé de son organe de contrôle de l'encrassement dans l'orifice axial aménagé dans la plaque d'extrémité de l'enceinte,
- on aménage le canal auxiliaire dans la plaque et on fait passer la gaine dudit organe de contrôle à travers ledit canal auxiliaire,
- on rebouche ledit canal auxiliaire.
Le rebouchage dudit canal auxiliaire peut se faire à l'aide d'un ciment approprié. Encore un autre objet de l'invention est un tube d'échange thermique en graphite appartenant à l'échangeur tel que ci-dessus, ce tube étant équipé d'au moins un organe de contrôle de l'encrassement de sa paroi périphérique, cet organe de contrôle comprenant un corps disposé sur la face externe de cette paroi, une résistance électrique s'étendant dans le corps, des moyens de mesure, permettant de mesurer la température de la résistance électrique.
Encore un autre objet de l'invention est une installation de concentration d'acide phosphorique comprenant au moins un échangeur de chaleur tel que ci-dessus.
La Demanderesse s'est rendu compte que le problème présenté ci-dessus peut être résolu en intégrant au moins un organe de contrôle de l'encrassement, de type sonde active, dans au moins un des éléments tubulaires en graphite de l'échangeur de chaleur à surveiller. Une sonde est dite active parce qu'elle mesure la réponse de la perturbation qu'elle a elle-même générée.
Plus précisément, la sonde dite active peut provoquer localement une perturbation thermique contrôlée (avantageusement un échauffement contrôlé et/ou l'émission d'une quantité d'énergie prédéterminée). Il est par ailleurs prévu un moyen qui mesure ensuite la conséquence locale de cette perturbation contrôlée ou la réponse à cette perturbation contrôlée.
Ainsi, la sonde active comprend au moins un moyen d'émission d'une certaine quantité d'énergie thermique. Dans un mode de réalisation ladite sonde active comprend un moyen pour chauffer rapidement une zone superficielle dudit élément tubulaire, pour créer dans ladite zone superficielle une différence de température déterminée, et/ou pour dissiper dans ladite zone superficielle une quantité d'énergie prédéterminée.
Le système selon l'invention comprend également au moins un moyen de mesure de réchauffement provoqué par ladite émission d'énergie. Dans un mode de réalisation, ce moyen de mesure est un thermocouple, positionné de manière adaptée pour recueillir un signal exploitable. Il peut être inséré dans un orifice aménagé à cet effet dans une zone superficielle dudit élément tubulaire.
Avantageusement la sonde active présente un collier qui se fixe autour de la surface externe de l'élément tubulaire, de manière à couvrir au moins un segment de ladite surface externe. Ladite sonde active peut être connectée à au moins un moyen de mesure de la température.
L'échangeur de chaleur de l'invention comprend une pluralité (et typiquement un grand nombre, par exemple plusieurs centaines ou plus d'un millier) de tubes, encore appelés éléments tubulaires, qui sont typiquement identiques entre eux, ainsi qu'au moins un élément tubulaire (typiquement identique aux autres, sauf pour ce qui suit) qui comprend sur sa paroi externe ou dans sa paroi externe au moins une sonde active capable de provoquer localement une perturbation thermique, et au moins un moyen pour mesurer ladite perturbation thermique.
Dans un mode de réalisation de cet échangeur, ledit élément tubulaire s'étend entre deux plaques frontales parallèles, encore dénommées plaques tubulaires, et chaque extrémité dudit élément tubulaire est insérée dans un orifice aménagé dans l'une des deux plaques tubulaires. L'une de ces plaques tubulaires est fixe, l'autre peut être mobile.
L'installation de la sonde active sur la face externe de la paroi de l'élément tubulaire est avantageuse. En effet, elle évite un contact direct entre la sonde et l'acide phosphorique qui circule à l'intérieur de l'élément tubulaire. Or, un tel contact n'est pas souhaitable pour des raisons liées à la corrosion, à la difficulté d'assurer une insertion étanche de la sonde dans le canal de l'élément tubulaire, et à la possible perturbation des conditions d'écoulement hydrodynamique de cet acide phosphorique par la sonde elle-même. Le terme « sur » la face externe signifie tout d'abord que le corps de l'organe de contrôle, par exemple réalisé sous forme d'un collier, peut être fixé contre cette face externe, qui est alors lisse, ou encore dans un renfoncement ménagé dans cette face externe. Ce corps peut également être placé à proximité immédiate de cette face externe, sans toutefois être en contact direct avec celle-ci.
Ledit échangeur de chaleur peut être intégré dans une installation industrielle de concentration d'acide phosphorique.
Il est du mérite de la Demanderesse d'avoir mis au point un organe de contrôle de l'encrassement, qui est adapté à un échangeur de chaleur de type calandre et tubes. La Demanderesse a constaté avec surprise qu'un tel organe d'encrassement, disposé au voisinage de la paroi extérieure du tube, est capable de détecter cet encrassement présent contre la paroi intérieure de ce tube. Cela est d'autant plus surprenant que les tubes en graphite, utilisés dans l'échangeur conforme à l'invention, possèdent une épaisseur significative, de l'ordre de 5 à 10 millimètres. Une telle gamme d'épaisseur est nécessaire pour résister aux contraintes spécifiques d'un échangeur conforme à l'invention, notamment en termes de pression.
De plus il est avantageux de positionner cet échangeur dans une zone où l'acide phosphorique, circulant dans les tubes, présente la température la plus élevée. En effet, la couche d'encrassement possède une épaisseur maximale dans cette zone, en particulier liée au fait que l'élévation en température de l'acide phosphorique conduit à un dépôt significatif de gypse.
Il est également du mérite de la Demanderesse d'avoir mis au point un procédé de montage d'un échangeur, dont au moins un tube est équipé d'un organe de contrôle de l'encrassement. Ce procédé de montage, conforme à l'invention, est simple à mettre à œuvre pour un opérateur, dans la mesure où il fait appel à un nombre limité d'étapes. Par ailleurs chaque tube, équipé d'un organe respectif de contrôle de l'encrassement, peut être mis en place en préservant l'étanchéité globale de l'échangeur. Enfin le fait d'intégrer un ou plusieurs tubes, munis d'un tel organe de contrôle, n'induit pas de modification significative de la structure globale de l'échangeur. En particulier, cette intégration ne génère aucune fragilité mécanique substantielle, ni aucune perte d'étanchéité.
De manière générale, le fait de pouvoir contrôler l'encrassement de tubes en graphite, dans lesquels s'écoule l'acide phosphorique, est tout particulièrement avantageux. Lors de la mise en œuvre de l'échangeur on admet le fluide service, typiquement la vapeur d'eau, à une température initiale prédéterminée, par exemple voisine de 135°C. Au fur et à mesure de l'écoulement de l'acide phosphorique, il se forme une couche interne d'encrassement, qui oblige l'opérateur à augmenter la température de ce fluide service, afin de continuer à garantir un échange de chaleur satisfaisant. Or, cette augmentation de la température du fluide service contribue, à son tour, à accélérer encore davantage la vitesse de formation de cette couche. Lorsque cette couche atteint une épaisseur indésirable, il est nécessaire d'arrêter l'échangeur et de procéder à une opération de maintenance.
Dans la technique actuelle, la température de la vapeur d'eau est augmentée de manière prédéterminée, de sorte que la maintenance est réalisée au terme d'une durée de mise en œuvre prédéfinie, typiquement voisine de 120 heures. Or, dans un premier cas, cette dernière valeur peut être trop élevée, à savoir qu'on observe un bouchage intempestif des tubes avant la fin de la durée prédéfinie de mise en œuvre.
En revanche, il peut arriver que la couche d'encrassement se forme moins rapidement que prévu. Dans ce second cas, l'augmentation de la température de la vapeur d'eau est donc plus rapide que nécessaire. En d'autres termes, il aurait été possible d'admettre la vapeur d'eau à des températures plus basses, ce qui aurait permis de réduire la vitesse de formation de la couche d'encrassement. Par conséquent, la maintenance précitée est réalisée de manière prématurée, ce qui est désavantageux en termes économiques.
Conformément à l'invention, on peut contrôler sensiblement en temps réel l'épaisseur de la couche d'encrassement. De la sorte, la température de la vapeur d'eau est augmentée de façon appropriée, en fonction de cette valeur d'épaisseur mesurée, et non pas de manière prédéfinie comme dans l'art antérieur. Par conséquent, si les conditions de service sont plus sévères que prévu, l'invention permet d'alerter l'opérateur afin d'éviter un bouchage précoce des tubes. En revanche, si ces conditions sont moins sévères, la vapeur d'eau est réchauffée de manière moins rapide que prévu, ce qui permet de réduire la vitesse de formation de la couche d'encrassement et, de ce fait, d'augmenter significativement le temps de service avant maintenance.
Figures
Les figures 1 à 6 illustrent des modes de réalisation de l'invention. Les figures 1 a à 1f montrent une section verticale à travers un échangeur de chaleur selon l'invention ; pour simplifier la figure on ne montre qu'un seul tube 2 pris entre deux plaques tubulaires 3,4 ; ces figures illustrent un mode de réalisation du procédé selon l'invention. La figure 2 montre de manière schématique une vue en perspective d'un tube 2 selon l'invention avec l'organe de contrôle de l'encrassement 5 sous la forme d'un collier qui entoure au moins partiellement la circonférence du tube.
La figure 3 est une vue en coupe longitudinale, illustrant de manière plus détaillée les éléments constitutifs de l'organe de contrôle 5.
La figure 4 est une vue en coupe longitudinale d'un tube 2 selon l'invention avec une courbe qui représente de manière schématique le transfert thermique le long des différents milieux.
La figure 5 est un schéma électrique du collier, appartenant à l'organe de contrôle de l'encrassement,
La figure 6 représente plusieurs courbes, illustrant la variation de la température de la résistance intégrée dans ce collier, pour plusieurs états d'encrassement de l'échangeur.
Les signes de référence suivants sont utilisés sur les figures :
1 Echangeur de chaleur 51 Collier
2 Tube graphite ou à base de graphite L51 Longueur de 51
2' Face externe de 2 51 ' Surface active 51
2" Face interne de 2 51 B Extrémité de 51
3 Première plaque tubulaire (fixe) 52 Résistance
4 Deuxième plaque tubulaire 53 Thermocouple
(coulissante)
5 Organe de contrôle d'encrassement 54 Bornes d'alimentation de 52
6 Gaine 55 Fils alimentation 52
7 Zone d'encollage 1ere extrémité tube 58 Manchon
8 Zone d'encollage trou 2eme plaque E Couche d'encrassement
9 Zone d'encollage 2eme extrémité tube F1 Ecoulement d'acide phosphorique
10 Zone d'encollage trou 1ere plaque F2 Ecoulement du second fluide
11 Canal auxiliaire S2 Sommet du tube 2
12 Orifice LS Longueur de sécurité
13 Chemise pour trou 2eme plaque CO Courbe
14 Chemise pour trou 1ere plaque C1 Courbe
15 Bouchon d'étanchéité C2 Courbe
16 Paroi externe C3 Courbe
17 Bride Dint Diamètre intérieur de 2
Dext Diamètre extérieur de 2
Description détaillée
Nous entendons ici, par « tube » ou « élément tubulaire », un élément de construction disposant d'au moins un canal à l'intérieur duquel peut circuler un liquide lorsque ledit élément tubulaire est utilisé conformément à sa destination.
La figure 1 illustre un échangeur de chaleur conforme à l'invention, désigné dans son ensemble par la référence 1. Cet échangeur comprend tout d'abord, de façon connue en soi, une enceinte formée par des plaques tubulaires 3, 4 d'extrémité, ainsi que par une enveloppe périphérique formant paroi externe, ou calandre 16.
Cet échangeur, utilisé dans des installations de l'industrie chimique, comprend typiquement une pluralité de tubes 2 droits parallèles en graphite ou à base de graphite, lesquels sont reçus dans l'enceinte. Typiquement il s'agit de plusieurs centaines ou plus d'un millier de tubes en graphite ou à base de graphite. Ces échangeurs de type « tubes and shell » sont connus en tant que tels. Ils comprennent la calandre précitée 16 (« shell ») et ladite pluralité de tubes 2 droits et parallèles.
De préférence, ces tubes 2 sont en graphite et ou à base de graphite. Leur longueur L2 est typiquement comprise entre 1 et 9 mètres, notamment entre 3 et 9 mètres. Dans un mode préféré de l'invention, cet échangeur est disposé de manière à ce que les tubes 2 soient orientés de manière sensiblement verticale, à savoir que leur axe principal forme, avec la verticale, un angle inférieur à 5°, notamment inférieur à 2°. Cet agencement présente des avantages qui seront explicités ci-dessous.
On note par ailleurs Dlnt et Dext les diamètres respectivement intérieur et extérieur de chaque tube 2, lesquels sont mesurés à l'état non encrassé du tube. Le diamètre intérieur Dlnt est typiquement compris entre 35 et 45 millimètres, notamment entre 37 et 39 millimètres; dans un mode de réalisation il est de 38,1 millimètres. Le diamètre extérieur Dext est typiquement compris entre 45 et 55 millimètres, notamment entre 50 et 52 millimètres; dans un mode de réalisation il est de 50,8 millimètres.
Ces tubes 2 sont tenus par les plaques dites plaques tubulaires 3, 4 dans lesquelles ils sont insérés. Chaque tube 2 est inséré dans un orifice 12b aménagé dans la première plaque tubulaire 3 et fixé, par exemple par collage, et chaque tube 2 est également inséré dans un orifice 12a aménagé dans la deuxième plaque tubulaire 4 et fixé, par exemple par collage. Lesdites première et deuxième plaques tubulaires 3, 4 peuvent être en graphite. L'échangeur comprend en outre des moyens d'entrée, dans les tubes, d'acide phosphorique en tant que premier fluide ou fluide procédé, des moyens de sortie de l'acide phosphorique hors des tubes, des moyens d'entrée d'un second fluide ou fluide service dans l'enceinte, vers la périphérie extérieure des tubes, ainsi que des moyens de sortie du second fluide hors de l'enveloppe. Ces différents moyens d'entrée et de sortie, de type connu, ne sont pas illustrés sur les figures. De manière préférée, le second fluide est de la vapeur d'eau.
Dans un mode de réalisation avantageux la première plaque tubulaire est une plaque fixe 3, c'est-à-dire qu'elle est fixée sur la tête non représentée de l'échangeur 1 , typiquement à l'aide d'une bride 17 de serrage. La deuxième plaque tubulaire 4 est avantageusement une plaque coulissante, c'est-à-dire mobile par rapport à la calandre 16. Chaque tube 2 est inséré dans l'orifice 12a aménagé dans cette plaque tubulaire 4 coulissante et fixé par collage. Selon l'invention au moins un tube 2 dudit échangeur de chaleur 1 est équipé d'un organe de contrôle de l'encrassement, désigné dans son ensemble par la référence 5. De préférence on choisit un tube proche de la paroi 16 externe de l'échangeur 1 , comme cela est montré sur la figure 1. Avantageusement on équipe ainsi plusieurs tubes 2, par exemple deux, trois, quatre ou cinq tubes 2.
Ledit organe de contrôle 5, qui est de type sonde active, est par exemple conforme à celui commercialisé par la société NéoTim à Albi (France), sous la référence « FP2C Conductivimètre Fil Chaud ». Comme montré notamment en figures 2 et 3, cet organe de contrôle comprend tout d'abord un corps réalisé sous forme d'un collier 51 , qui entoure au moins partiellement le tube 2, à savoir qu'il est disposé contre la face externe 2' de la paroi de ce tube. On note par ailleurs 2" la face interne de la paroi de ce tube.
Ce collier 51, qui est réalisé sous forme d'un élément plan et flexible, de type circuit intégré, comporte une résistance électrique 52, représentée de façon schématique sur la figure 3. En pratique la résistance électrique peut être réalisée, comme illustré à la figure 5, sous forme d'une piste métallique déposée sur le collier. Cette résistance 52 est associée à un ou plusieurs thermocouples 53, permettant de mesurer la température au voisinage directe de cette résistance. Deux bornes d'alimentation 54 sont prévues, avec toute la connectique nécessaire, pour pouvoir alimenter cette résistance depuis l'extérieur de l'échangeur. En outre les thermocouples sont associés à au moins une borne de sortie non représentée, permettant de transmettre le signal électrique délivré en service par ce thermocouple.
L'organe de contrôle 5 est en outre équipé d'une gaine 6, dont la mise en place sera détaillée dans ce qui suit. Cette gaine 6 renferme au moins un fil fonctionnel de la sonde active, en particulier des fils 55 d'alimentation de la résistance, reliés électriquement aux bornes 54, ainsi qu'au moins un fil de signal, relié à la borne de sortie des thermocouples. Ces différents fils fonctionnels peuvent être distincts ou confondus. Cette gaine est mise en communication électrique avec une alarme non représentée, de tout type approprié, qui permet d'alerter l'opérateur en cas de dysfonctionnement, comme cela sera explicité dans ce qui suit. On note L51 la longueur de la surface de contact entre le collier et la paroi du tube 2, selon la direction principale de ce dernier. Cette longueur est par exemple comprise entre 0,02 et 0,1 mètres. De manière préférée, le collier 51 est prévu dans la partie supérieure du tube, à savoir celle où l'acide phosphorique circulant à l'intérieur de ce tube est le plus chaud. En effet, l'encrassement est maximal dans cette zone. On note LS la longueur dite de sécurité, séparant le sommet S2 du tube et l'extrémité inférieure 51 B du collier 51 , laquelle est opposée audit sommet. Cette longueur LS est par exemple comprise entre 0,1 et 3 mètres, notamment entre 0.5 et 2 mètres.
L'organe de contrôle 5 est entouré, sur ses faces frontales opposées ainsi que sur sa face extérieure, par un manchon 58 réalisé en un matériau thermiquement isolant. Ce manchon permet donc un transfert des calories anisotrope, depuis le collier en direction du tube. En d'autres termes, lorsque le collier est chauffé, cette chaleur se dissipe sensiblement en intégralité dans la paroi du tube 2.
Le procédé de mise en place d'un élément tubulaire pourvue d'une sonde active selon l'invention est illustré sur les figures 1a à 1f. Elles montrent de manière schématique un tube en graphite 2 destiné à s'insérer dans l'orifice 12b de la première plaque tubulaire 3 (plaque fixe) et dans l'orifice 12a de la deuxième plaque tubulaire 4 (plaque coulissante) ; ce tube 2 est situé en périphérie du faisceau de tubes, proche de la paroi externe 16 de l'échangeur de chaleur 1. Dans une première étape illustrée sur la figure 1 a on réalise un repérage, ou contrôle préalable. A cet effet on positionne le tube 2 au sein de la plaque tubulaire fixe 3, dans la position précise qu'il doit adopter en service. Les parois en regard du tube et des orifices des plaques 3 et 4 ne sont pas encollées. Ce repérage permet de vérifier si la gaine 6 dépasse hors de l'orifice 12a de la plaque tubulaire 4 coulissante, selon une distance appropriée pour la mise en œuvre des étapes ultérieures. Si cette distance n'est pas convenable, la position de cette gaine est modifiée de façon circonstanciée.
Dans une deuxième étape illustrée sur la figure 1 b on déplace ledit tube 2 à travers l'orifice 12a de la plaque tubulaire 4 coulissante, et on applique une colle appropriée sur une zone d'encollage 7 qui représente au moins une partie de la surface externe du tube qui dépasse de la dite plaque tubulaire coulissante, et on applique une colle appropriée sur une zone d'encollage 8 qui représente au moins une partie de la surface interne de l'orifice 12b de la plaque tubulaire fixe 3.
Dans une troisième étape illustrée sur la figure 1c on déplace ledit tube à travers l'orifice 12b de la plaque tubulaire fixe 3 et à travers l'orifice 12a de la plaque tubulaire coulissante 4, afin de bien étaler la colle sur les surfaces à coller.
Dans une quatrième étape illustrée sur la figure 1d on procède à la mise en place définitive du tube 2 dans les orifices 12a, 12b, et on récupère la gaine 6 dans un canal auxiliaire formé par un orifice latéral 11 aménagé dans la plaque tubulaire coulissante 4 et qui communique avec l'orifice 12a. A titre de variante cet orifice 11 peut être aménagé dans un sens axial. Son diamètre peut être de l'ordre de 10 mm. Dans une cinquième étape illustrée sur la figure 1 e, on insère une chemise 13,14, c'est-à- dire un insert tubulaire, respectivement dans l'orifice 12b de la plaque tubulaire fixe 3 et dans l'orifice 12a de la plaque tubulaire coulissante 4. Au moins une partie de la surface extérieure desdites chemises 13,14 est revêtue d'une colle appropriée. Dans une sixième étape illustrée sur la figure 1f on rebouche l'orifice latéral 11 par un ciment approprié formant un bouchon d'étanchéité 15.
En service on fait s'écouler les deux fluides selon les flèches F1 et F2, respectivement dans les tubes et autour de ces tubes, afin de mettre les fluides précités en échange de chaleur mutuel. Conformément à l'invention, on utilise l'échangeur selon l'invention en position « tubes verticaux » avec l'acide phosphorique, en tant que « fluide procédé », qui est réchauffé par le « fluide service ». On met en œuvre cet échangeur de manière à ce qu'au moins le l'acide phosphorique, avantageusement en phase liquide, subit un changement de température tel que la température en haut de l'échangeur soit plus élevée que la température en pied d'échangeur. De façon avantageuse le fluide service est de la vapeur d'eau, qui subit une condensation partielle au fur et à mesure qu'elle transfère sa chaleur à l'acide phosphorique. Du fait de réchauffement de l'acide phosphorique, l'encrassement du tube peut être rapide et considérable, en particulier dans la zone supérieure de ce tube. Les inventeurs ont constaté avec surprise que l'organe d'encrassement, disposé au voisinage de la paroi extérieure du tube, est capable de détecter cet encrassement présent contre la paroi intérieure de ce tube. Cela est encore plus surprenant, dans le cas où on utilise des tubes en graphite ou à base de graphite qui possèdent une épaisseur significative, de l'ordre de 5 à 10 millimètres.
De façon avantageuse, on fait s'écouler l'acide phosphorique dans les tubes 2, à une température sensiblement constante en fonction du temps. Ceci signifie que la température de l'acide phosphorique peut varier dans l'espace, à savoir d'une extrémité à l'autre des tubes. En revanche cette température est invariante dans le temps, au moins au voisinage de l'organe de contrôle, voire en tout point du tube.
On alimente ensuite électriquement la résistance 52. Cette alimentation peut s'effectuer par des impulsions ou, de préférence, par un échelon de courant. La résistance s'échauffe et les calories ainsi générées se dissipent sensiblement en intégralité dans la paroi du tube, du fait de la présence de l'isolant. Les thermocouples permettent de mesurer l'évolution de la température de cette résistance, en fonction du temps. Etant donné que la température de l'acide phosphorique est constante, comme expliqué ci- dessus, on conçoit que la température mesurée de la résistance est représentative de la différence de températures entre la résistance et l'acide phosphorique.
De façon typique, la phase d'alimentation électrique de la résistance est de l'ordre de quelques secondes à quelques minutes. On conçoit que, en fonction du temps t, la température T52 de la résistance augmente, puis atteint un palier. Des courbes caractéristiques de cette évolution sont montrées à la figure 6, lesquelles seront explicitées dans ce qui suit.
La figure 4 annexée montre en outre le transfert thermique entre le collier et l'acide phosphorique, le long de la paroi du tube en graphite puis d'une couche d'encrassement. La température diminue tout d'abord par conduction (conductivité k) au travers de la paroi du tube, selon une valeur DT2. On retrouve ensuite une couche E dite d'encrassement, qui a tendance à se former au fur et à mesure du temps de fonctionnement de l'échangeur. Cette couche induit une résistance thermique supplémentaire rE par unité de surface, laquelle est associée une diminution DTE de la température. Plus la couche d'encrassement est épaisse, plus la valeur de DTE est importante et plus la différence de températures entre la surface active et l'acide phosphorique est élevée. En d'autres termes, l'ensemble formé par la paroi et la couche d'encrassement possède une conductivité thermique inférieure à la conductivité thermique de la paroi seule.
Par conséquent, plus la couche d'encrassement E est épaisse et plus la température de la résistance est élevée. En référence à nouveau à la figure 6, la courbe C0 illustre l'évolution de la température pour un échangeur non encrassé. Les courbes C1 à C3, qui illustrent des échangeurs de plus en plus encrassés, sont donc situées au-dessus de cette courbe C0.
Avantageusement, on réalise tout d'abord une mesure de référence, correspondant à l'évolution de la température pour un échangeur possédant une couche d'encrassement, dont l'épaisseur connue possède une valeur seuil. En d'autres termes, pour une épaisseur supérieure à cette valeur seuil, on arrête typiquement l'échangeur et on procède au nettoyage de l'intérieur des tubes. L'évolution de la température de la résistance en fonction du temps, pour cet échangeur présentant cette couche d'encrassement seuil, est matérialisée par la courbe C2.
Au fur et à mesure de la mise en service de l'échangeur, on réalise des mesures successives, dites instantanées, de la variation de température T52 en fonction du temps t. Lorsqu'une courbe issue d'une mesure instantanée est située au-dessus de la courbe de référence C2, cela signifie que la couche d'encrassement, d'épaisseur non connue, est plus épaisse que la couche seuil et qu'il faut donc arrêter l'échangeur. Sur la figure 5, la courbe C1 située au-dessous de la courbe C2 matérialise une situation d'encrassement acceptable. En revanche, la courbe C3 située au-dessus de cette courbe C2 illustre une situation où il convient d'arrêter et nettoyer l'échangeur.
Le procédé selon l'invention peut être mis en œuvre dans une installation de concentration d'acide phosphorique. En particulier, une telle installation comprend un échangeur de chaleur dans lequel l'acide phosphorique est chauffé à l'aide d'un milieu caloporteur (le plus souvent de la vapeur d'eau) pour être concentré dans un évaporateur. On préfère que la différence de températures entre le fluide caloporteur (en l'occurrence : vapeur d'eau) et l'acide phosphorique ne soit pas trop élevée afin de limiter l'encrassement des éléments tubulaires en graphite et les contraintes thermiques dans l'installation. Avantageusement, la température de la vapeur utilisée sera comprise entre 110°C et 160°C alors que la température de l'acide phosphorique sera comprise entre 70°C et 90 °C.
A titre d'exemple, on considère un échangeur thermique dans lequel la vapeur d'eau, formant fluide caloporteur, chauffe l'acide phosphorique, formant fluide de procédé, en vue de sa concentration dans un évaporateur. Dans ce cas, on préfère conduire le procédé de manière à ce que l'acide phosphorique entre dans l'élément tubulaire de l'échangeur thermique à environ 82°C, est chauffé à l'aide de vapeur d'eau d'une température de 133°C, et quitte ledit élément tubulaire à une température de 85°C. Selon un autre mode de réalisation avantageux, on peut envisager de conduire le procédé de manière à ce que l'acide phosphorique entre dans l'élément tubulaire de l'échangeur thermique à environ 80°C, est chauffé à l'aide de vapeur d'eau d'une température de 145°C, et quitte ledit élément tubulaire à une température de 92°C.

Claims

REVENDICATIONS
1. Echangeur thermique comprenant :
une enceinte (3, 4, 16) possédant une calandre périphérique délimitant un volume intérieur (V),
- une pluralité de tubes (2) en graphite, disposés dans ledit volume intérieur (V), chaque tube comprenant une paroi périphérique,
- des moyens d'entrée d'acide phosphorique dans lesdits tubes (2),
- des moyens de sortie d'acide phosphorique hors desdits tubes (2),
- des moyens d'entrée d'un second fluide dans ledit volume intérieur (V), vers la périphérie extérieure des tubes,
- des moyens de sortie du second fluide hors dudit volume intérieur (V),
ledit échangeur étant caractérisé en ce qu'au moins un tube (2) est équipé d'au moins un organe (5) de contrôle de l'encrassement de sa paroi périphérique, cet organe de contrôle comprenant
- un corps (51 ) disposé sur la face externe (2') de cette paroi,
- une résistance électrique (52) s'étendant dans le corps (51 ),
- des moyens de mesure (53), permettant de mesurer la température de la résistance électrique (52).
2. Echangeur thermique selon la revendication précédente, caractérisé en ce que le corps de l'organe de contrôle (5) est un collier (51 ) entourant au moins partiellement la face externe de la paroi du tube.
3. Echangeur thermique selon la revendication précédente, caractérisé en ce que le collier (51 ) est entouré d'un manchon isolant (58), propre à éviter une déperdition substantielle de chaleur à l'opposé de la paroi du tube (2).
4. Echangeur thermique selon l'une des revendications précédentes, caractérisé en ce que l'enceinte comprend au moins une plaque d'extrémité (4), laquelle est percée d'orifices axiaux (12a) destinés au passage des tubes, ainsi que d'au moins un canal auxiliaire (11 ), reliant l'extérieur et un orifice axial occupé par un tube équipé d'un organe de contrôle de l'encrassement (5), cet organe de contrôle étant équipé d'une gaine (6) renfermant au moins un fil fonctionnel dudit organe, cette gaine s'étendant dans le canal auxiliaire (11 ).
5. Echangeur thermique selon l'une des revendications précédentes, caractérisé en ce que plusieurs tubes sont équipés d'un organe de contrôle de l'encrassement, en particulier entre deux et huit tubes, notamment entre quatre et six tubes.
6. Echangeur thermique selon l'une des revendications précédentes, caractérisé en ce que la longueur de chaque tube est comprise entre 1 et 9 mètres, notamment entre 3 et 9 mètres.
7. Echangeur thermique selon l'une des revendications précédentes, caractérisé en ce que le diamètre extérieur (Dext) de chaque tube est compris entre 45 et 55 millimètres, notamment entre 50 et 52 millimètres.
8. Echangeur thermique selon l'une des revendications précédentes, caractérisé en ce que le diamètre intérieur (Dint) de chaque tube est compris entre 35 et 45 millimètres, notamment entre 37 et 39 millimètres.
9. Echangeur thermique selon l'une des revendications précédentes, caractérisé en ce que la longueur dite de sécurité (LS), séparant le sommet (S2) du tube, adjacent à l'organe de contrôle de l'encrassement, et l'extrémité (51 B) de l'organe de contrôle de l'encrassement opposée audit sommet, est comprise entre 0,1 et 3 mètres, notamment entre 0.5 et 2 mètres.
10. Echangeur thermique selon l'une des revendications précédentes, caractérisé en ce que l'axe principal de chaque tube en graphite forme, avec la verticale, un angle inférieur à 5°, notamment inférieur à 2°.
11. Procédé de contrôle de l'encrassement d'un échangeur thermique comprenant :
une enceinte (3, 4, 16) possédant une calandre périphérique délimitant un volume intérieur (V) et
- une pluralité de tubes (2) en graphite s'étendant dans ledit volume intérieur (V), chaque tube comprenant une paroi périphérique,
procédé dans lequel
- on admet de l'acide phosphorique, dans les tubes et on évacue l'acide phosphorique hors des tubes;
- on fait circuler un second fluide dans ledit volume intérieur (V), à la périphérie extérieure des tubes, à contre-courant de l'acide phosphorique,
ledit procédé étant caractérisé en ce que - on dispose, sur la face externe (2') de la paroi d'au moins un tube (2), le corps (51 ) d'un organe (5) de contrôle de l'encrassement, cet organe de contrôle comprenant en outre
> une résistance électrique (52) s'étendant dans le corps (51 )
> des moyens de mesure (53), permettant de mesurer la température de la résistance électrique (52)
- on alimente électriquement la résistance électrique,
- on réalise au moins une courbe, dite instantanée (C1 , C3), chaque courbe instantanée montrant l'évolution en fonction du temps de la température de la résistance,
- on compare la ou chaque courbe instantanée avec au moins une courbe de référence (C2).
12. Procédé selon la revendication précédente, caractérisé en ce que la courbe de référence (C2) montre l'évolution en fonction du temps de la température de la résistance, pour un tube dont l'encrassement présente une épaisseur seuil connue.
13. Procédé selon l'une des revendications 11 ou 12, caractérisé en ce qu'on fait s'écouler l'acide phosphorique dans les tubes à une température sensiblement constante en fonction du temps, au moins au voisinage de l'organe de contrôle (5).
14. Procédé selon l'une des revendications 11 à 13, caractérisé en ce qu'on fait s'écouler l'acide phosphorique selon une direction sensiblement verticale, du bas vers le haut.
15. Procédé selon l'une des revendications 11 à 14, caractérisé en ce qu'on place l'organe de contrôle de l'encrassement de sorte que la longueur dite de sécurité, séparant le sommet du tube, adjacent à l'organe de contrôle de l'encrassement, et l'extrémité de l'organe de contrôle de l'encrassement opposée audit sommet, est comprise entre 0,1 et 3 mètres, notamment entre 0.5 et 2 mètres.
16. Procédé selon l'une des revendications 11 à 15, caractérisé en ce qu'on provoque une condensation au moins partielle du second fluide durant son trajet dans le volume intérieur.
17. Procédé de montage d'un échangeur de chaleur selon la revendication 4, dans lequel :
- on fixe une extrémité de chaque tube (2) équipé de son organe de contrôle (5) de l'encrassement dans l'orifice axial (12a) aménagé dans la plaque d'extrémité (4) de l'enceinte,
- on aménage le canal auxiliaire (11 ) dans la plaque et on fait passer la gaine (6) dudit organe de contrôle (5) à travers ledit canal auxiliaire,
- on rebouche ledit canal auxiliaire (11 ).
18. Tube d'échange thermique en graphite, appartenant à l'échangeur selon l'une quelconque des revendications 1 à 10, ce tube étant équipé d'au moins un organe (5) de contrôle de l'encrassement de sa paroi périphérique, cet organe de contrôle comprenant
- un corps (51 ) disposé sur la face externe (2') de cette paroi,
- une résistance électrique (52) s'étendant dans le corps (51 )
- des moyens de mesure (53), permettant de mesurer la température de la résistance électrique (52).
19. Installation de concentration d'acide phosphorique comprenant au moins un échangeur de chaleur selon l'une quelconque des revendications 1 à 10.
PCT/FR2016/051367 2015-06-09 2016-06-08 Échangeur de chaleur tubulaire à tubes de graphite comprenant un organe de contrôle de l'encrassement, son procédé de mise en œuvre et son procédé de montage WO2016198787A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1555228A FR3037389B1 (fr) 2015-06-09 2015-06-09 Echangeur de chaleur tubulaire comprenant un organe de controle de l'encrassement, son procede de mise en oeuvre et son procede de montage
FR1555228 2015-06-09

Publications (1)

Publication Number Publication Date
WO2016198787A1 true WO2016198787A1 (fr) 2016-12-15

Family

ID=54291410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/051367 WO2016198787A1 (fr) 2015-06-09 2016-06-08 Échangeur de chaleur tubulaire à tubes de graphite comprenant un organe de contrôle de l'encrassement, son procédé de mise en œuvre et son procédé de montage

Country Status (2)

Country Link
FR (1) FR3037389B1 (fr)
WO (1) WO2016198787A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109237971A (zh) * 2018-08-20 2019-01-18 西安工程大学 一种利用超声波阻垢的换热器
EP3771879A1 (fr) * 2019-08-01 2021-02-03 Commissariat à l'énergie atomique et aux énergies alternatives Dispositif de détection et de caractérisation d'un encrassement apte à se former sur une paroi soumise à un échange thermique

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108225056B (zh) * 2018-01-30 2023-11-14 中国矿业大学 一种可测量的抗垢式套管换热器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024751A (en) * 1975-12-18 1977-05-24 Betz Laboratories, Inc. Apparatus for determining heat transfer efficiency
JPS6126809A (ja) * 1984-07-16 1986-02-06 Showa Denko Kk 流体管内の付着物状況検知方法および装置
US20140177673A1 (en) * 2012-12-20 2014-06-26 Hercules Incorporated Method and apparatus for estimating fouling factor and/or inverse soluble scale thickness in heat transfer equipment
WO2014184421A1 (fr) * 2013-05-17 2014-11-20 Rocsole Ltd Dispositif et procédé de surveillance de l'entartrage dans un échangeur thermique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024751A (en) * 1975-12-18 1977-05-24 Betz Laboratories, Inc. Apparatus for determining heat transfer efficiency
JPS6126809A (ja) * 1984-07-16 1986-02-06 Showa Denko Kk 流体管内の付着物状況検知方法および装置
US20140177673A1 (en) * 2012-12-20 2014-06-26 Hercules Incorporated Method and apparatus for estimating fouling factor and/or inverse soluble scale thickness in heat transfer equipment
WO2014184421A1 (fr) * 2013-05-17 2014-11-20 Rocsole Ltd Dispositif et procédé de surveillance de l'entartrage dans un échangeur thermique

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109237971A (zh) * 2018-08-20 2019-01-18 西安工程大学 一种利用超声波阻垢的换热器
EP3771879A1 (fr) * 2019-08-01 2021-02-03 Commissariat à l'énergie atomique et aux énergies alternatives Dispositif de détection et de caractérisation d'un encrassement apte à se former sur une paroi soumise à un échange thermique
FR3099578A1 (fr) * 2019-08-01 2021-02-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de détection et de caractérisation d’un encrassement apte à se former sur une paroi soumise à un échange thermique

Also Published As

Publication number Publication date
FR3037389A1 (fr) 2016-12-16
FR3037389B1 (fr) 2019-11-29

Similar Documents

Publication Publication Date Title
EP1216380B1 (fr) Procede et dispositif pour la detection d'un depot dans un conduit
WO2016198787A1 (fr) Échangeur de chaleur tubulaire à tubes de graphite comprenant un organe de contrôle de l'encrassement, son procédé de mise en œuvre et son procédé de montage
EP1886116B1 (fr) Méthode et système pour la mesure et l'étude de l'encrassement d'un reacteur
EP0120733B1 (fr) Dispositif pour le réchauffage du carburant dans les moteurs Diesel
FR2941052A1 (fr) Capteur et procede de mesure en continu du niveau d'encrassement
EP1989530A1 (fr) Echangeur thermique a plaques incluant un dispositif d'evaluation de son etat d'encrassement
CA2902274C (fr) Procede et dispositif de regulation de refroidissement d'huile d'une turbomachine
NO332832B1 (no) Fremgangsmate for a male tykkelsen av avsetninger
WO2013107817A1 (fr) Système d'évacuation de la puissance résiduelle d'un réacteur nucléaire à eau sous pression
FR2967752A1 (fr) Conduit isole et chauffe realise par des troncons double enveloppe et procede de pose du conduit
FR3057664A1 (fr) Dispositif de determination de la qualite d'assemblage de composants tubulaires filetes
FR2928442A1 (fr) Installation de production d'eau chaude sanitaire
EP2715851B1 (fr) Pile a combustible a gestion thermique amelioree
EP1987292B1 (fr) Dispositif échangeur de chaleur destiné aux systèmes de chauffage ou de climatisation
EP3339828B1 (fr) Dispositif et procédé d'évaluation d'au moins une condition de fonctionnement d'un échangeur de chaleur
EP3213601B1 (fr) Station de chauffage de fluides circulant dans un reseau de conduites sous-marines
FR2903143A1 (fr) Circuit de refroidissement d'un moteur de vehicule automobile comprenant un tube de circulation de liquide pour une sonde de temperature
CH651388A5 (fr) Debimetre pour la mesure de la vitesse d'ecoulement d'un fluide.
EP1046909B1 (fr) Méthode et dispositif pour la détermination du coefficient de Joule-Thomson d'un fluide
WO2018006183A1 (fr) Reseau de distribution d'energie thermique
WO2015011415A1 (fr) Sonde de controle de l'encrassement et de la corrosion pour un echangeur a chaleur tubulaire et procede utilisant une telle sonde
FR2658332A1 (fr) Dispositif de regulation de temperature d'un outillage ou d'un reacteur au moyen d'un fluide caloporteur.
EP3728935B1 (fr) Procédé de détection de la présence d'hydrate de gaz dans une conduite destinée au transport de fluide d'hydrocarbure
FR3028033A1 (fr) Procede de detection d'un niveau insuffisant de liquide dans une enceinte chauffante d'un rechauffeur electrique
FR3094345A1 (fr) Équipement aéronautique pour un aéronef

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16733165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16733165

Country of ref document: EP

Kind code of ref document: A1