WO2016197791A1 - 光伏逆变器的机柜及光伏逆变器 - Google Patents

光伏逆变器的机柜及光伏逆变器 Download PDF

Info

Publication number
WO2016197791A1
WO2016197791A1 PCT/CN2016/082250 CN2016082250W WO2016197791A1 WO 2016197791 A1 WO2016197791 A1 WO 2016197791A1 CN 2016082250 W CN2016082250 W CN 2016082250W WO 2016197791 A1 WO2016197791 A1 WO 2016197791A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
circuit
power
disposed
photovoltaic inverter
Prior art date
Application number
PCT/CN2016/082250
Other languages
English (en)
French (fr)
Inventor
黄创盛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016197791A1 publication Critical patent/WO2016197791A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/26Casings; Parts thereof or accessories therefor
    • H02B1/30Cabinet-type casings; Parts thereof or accessories therefor

Definitions

  • This document relates to, but is not limited to, the field of photovoltaic grid-connecting technology, in particular to a cabinet for a photovoltaic inverter, and to a photovoltaic inverter.
  • Solar energy is a kind of green energy. It is clean, efficient and never exhausted. It is widely used in every field of social life, especially in photovoltaic grid-connected power generation systems.
  • the photovoltaic grid-connected power generation system converts solar energy into electrical energy and transmits it to the power grid, thereby greatly increasing the application value of solar energy.
  • the photovoltaic inverter cabinet is configured to convert the direct current generated by the photovoltaic power generation component into alternating current power and transmit it to the power grid.
  • the internal layout of the traditional photovoltaic inverter cabinet is unreasonable.
  • the strong electric and weak electric hybrids in the circuit together have serious electromagnetic interference, which makes the stability of the photovoltaic inverter cabinet poor.
  • Embodiments of the present invention provide a cabinet for a photovoltaic inverter that is advantageous for improving the stability of a photovoltaic inverter.
  • Embodiments of the present invention also provide a photovoltaic inverter.
  • a cabinet of a photovoltaic inverter comprising a cabinet body, the cabinet body comprises a frame and a door panel structure; the door panel structure is fixed on the rack; the cabinet body is arranged to install the photovoltaic inverter a circuit device portion; the circuit device portion includes a power module, a DC circuit, an AC circuit, and a control circuit; the frame is an integrated frame formed by a beam, a longitudinal beam, and a column; the column body is internally by the column Dividing into three cavities arranged in parallel; the three cavities are a first power chamber, a control chamber and a second power chamber; the structures of the first power chamber and the second power chamber The same and symmetrically distributed on both sides of the control cavity; the power module mounting plate and the DC mounting plate are disposed in the frame; the power module mounting plate is disposed on an upper portion of the DC mounting plate to form an upper portion of the power cavity An upper cavity; the DC mounting plate is disposed perpendicular to the power module mounting plate such that a lower portion of the power cavity is
  • a baffle and a side plate are further disposed in the rack; the baffle divides the upper cavity into at least two sub-cavities; and the at least two sub-cavities are configured to install the control circuit;
  • the side plates are disposed around the at least two sub-cavities and are arranged to separate each sub-cavity into separate cavities.
  • a photovoltaic inverter comprising the cabinet of any of the preceding embodiments and a circuit device portion mounted in the cabinet body; the circuit device portion comprising a power module, a DC circuit, an AC circuit, and a control circuit; A DC circuit is coupled to an input terminal of the power module; the AC circuit is coupled to an output terminal of the power module.
  • the DC circuit includes a DC input terminal, a DC fuse, a DC load switch, a first DC filter, and a Hall sensor; the DC input terminal, the DC fuse, the DC load switch, and The first DC filter is mounted on the DC mounting board; the DC input terminal, the DC fuse, the DC load switch, and the first DC filter are sequentially connected and connected The input terminal of the power module is connected; the Hall sensor is disposed on a positive output terminal or a negative output terminal of the first DC filter.
  • the DC circuit further includes at least one of a second DC filter and a DC contactor; the second DC filter is connected to the DC input terminal; and the DC contactor is disposed in the The output of a DC filter.
  • each of the first power cavity and the second power cavity is formed with two circuits; the DC circuit further includes a maximum power point tracking MPPT configuration copper row; the MPPT configuration copper row And disposed between the DC fuse and the DC load switch, configured to perform MPPT configuration.
  • the AC circuit in the back cavity includes sequentially setting a single-phase reactor module, a three-phase reactor, an AC contactor, and a filter capacitor;
  • the single-phase reactor module includes three single-phase reactors; Three single-phase reactors are respectively connected to the three-phase lines of the three-phase reactor; the three single-phase reactors are misaligned; the three single-phase reactors are connected to the output terminals of the power module;
  • the AC circuit of the lower cavity of the control cavity includes an AC fuse connected in sequence, a first AC filter, an AC load switch, and an AC output terminal; the AC fuse and the first AC filter are disposed under the The cavity is disposed on the same side as the rear cavity; the alternating current load switch and the alternating current output terminal are disposed on the lower cavity and disposed on the same side of the front cavity.
  • the AC circuit further includes a second AC filter; the second AC filter is connected to the AC output terminal and disposed on the same side of the AC output terminal.
  • a spacer is disposed around the single-phase reactor module, and the single-phase reactor module is disposed to be separated from other devices.
  • the circuit device part further includes a fan module; the fan module is disposed in a rear cavity of the power cavity, and is located between the power module and the single-phase reactor module; At least three air inlets are disposed on the door panel structure on a side of the front cavity; the at least three air inlets are respectively located at a lower portion of the first power chamber, the control chamber and the second power chamber; the top of the cabinet body
  • the door panel structure is provided with at least three air outlets; the at least three air outlets are respectively located at the top of the first power chamber, the control chamber and the second power chamber.
  • the column body is divided into a first power chamber, a control chamber and a second power chamber by the column of the rack.
  • the first power chamber and the second power chamber are symmetrically disposed on both sides of the control cavity.
  • the upper cavity of the power chamber is arranged to install a power module, and the front cavity of the power cavity is arranged to install a DC circuit, and the rear cavity of the power cavity and the lower cavity of the control cavity are arranged to install an AC circuit, and the upper cavity of the control cavity It is set to install the control circuit, so as to realize the separation between the DC circuit and the AC circuit and the separation of the control circuit and the main circuit portion, which greatly reduces mutual electromagnetic interference and is beneficial to improving the stability of the photovoltaic inverter.
  • FIG. 1 is a schematic overall structural view of a photovoltaic inverter in an embodiment of the present invention
  • FIG. 2 is a schematic view showing the internal structure of the photovoltaic inverter shown in FIG. 1;
  • FIG. 3 is a schematic view showing the internal structure of the front surface of the photovoltaic inverter shown in FIG. 1;
  • FIG. 4 is a schematic view showing the internal structure of the back surface of the photovoltaic inverter shown in FIG. 1;
  • FIG. 5 is a schematic side view showing the internal structure of the photovoltaic inverter shown in FIG. 1.
  • FIG. 5 is a schematic side view showing the internal structure of the photovoltaic inverter shown in FIG. 1.
  • FIG. 1 is a schematic overall structural view of a photovoltaic inverter in an embodiment.
  • 2 is a schematic diagram of the internal structure of the photovoltaic inverter (the circuit device part inside the cabinet body is not shown)
  • FIG. 3 is a schematic diagram of the internal structure of the front side of the photovoltaic inverter
  • FIG. 4 is a schematic diagram of the internal structure of the back side of the photovoltaic inverter
  • 5 is a schematic diagram of the internal structure of the side of the photovoltaic inverter cabinet. The photovoltaic inverter will be described in detail below with reference to FIGS. 1 to 5. In this paper, one side of the PV inverter along the length direction is front (or In front of the person), the opposite side to the front is the back.
  • the photovoltaic inverter includes a cabinet and a circuit device portion mounted inside the cabinet.
  • the cabinet includes a base 110, a cabinet body 200, and a lifting device 120.
  • the circuit device portion is mounted within the cabinet body 200.
  • the cabinet body 200 is fixed to the base 110, and the lifting device 120 is disposed at the top of the cabinet body 200.
  • the hoisting device 120 is a sling strip disposed on the top of the cabinet body 200.
  • the sling strips are disposed along the length direction of the cabinet body 200.
  • the loop strips may also be disposed along the width direction of the cabinet body 200.
  • the photovoltaic inverter cabinet has a left-right symmetric structure about the center, so that the center of gravity of the cabinet is centered, which is convenient for assembly, middle assembly, and maintenance.
  • the cabinet body 200 includes a frame 204, a door panel structure 206, and a circuit device portion mounted inside the cabinet body 200.
  • the door panel structure 206 is secured to the frame 204 to form a receiving cavity that is configured to house the portion of the circuit components required for operation of the photovoltaic inverter.
  • the frame 204 is an integrated frame that is directly welded by the beam 208, the longitudinal beam 210, and the column 212.
  • the integrated rack reduces the number of cabinet movements for easy installation.
  • the beam 208 and the longitudinal beam 210 form the main structure of the photovoltaic inverter cabinet.
  • the column 212 divides the inside of the cabinet main body 200 into three cavities arranged in parallel along the longitudinal direction of the cabinet.
  • the three chambers are in turn a first power chamber 214, a control chamber 216, and a second power chamber 218.
  • the internal structure of the first power cavity 214 and the internal structure of the second power cavity 218 are the same and symmetrically distributed on both sides of the control cavity 216, so that the center of gravity of the photovoltaic inverter is centered, facilitating assembly, relaying, and maintenance.
  • the first power cavity 214 and the second power cavity 218 are hereinafter referred to simply as power cavities.
  • the door panel structure 206 is detachably mounted to the frame 204 by fixing means such as screws, thereby facilitating maintenance of the photovoltaic inverter.
  • the door panel structure 206 located on the front side of the cabinet body 200 is a three-door structure, that is, the door panel structure 206 corresponding to each cavity can be opened.
  • a handle 220 and a door lock 222 are disposed on the door panel structure 206 corresponding to each cavity.
  • an indicator light 224 and a liquid crystal display 226 are further disposed on the corresponding door panel structure 206 of the control cavity 216.
  • the indicator light 224 is set to indicate the working state of the photovoltaic inverter
  • the liquid crystal display 226 is set to display important monitoring parameters during the working process of the photovoltaic inverter for the staff to view, Keep abreast of the working status of the PV inverter.
  • the power module mounting board 228, the DC mounting board 230, and the control device mounting board 232 are further disposed on the rack 204.
  • the power module mounting plate 228 is horizontally disposed at an upper portion of the power chamber, thereby forming an upper cavity at an upper portion of the power chamber.
  • the DC mounting plate 230 is disposed perpendicular to the power module mounting plate 228 and disposed along the length of the cabinet body 200 such that the lower portion of the power chamber is the front cavity and the rear cavity.
  • the front cavity of the power chamber is a cavity near the front side of the cabinet body 200, and the rear cavity of the power chamber is a cavity near the back side of the cabinet body 200.
  • the control device mounting plate 232 is horizontally disposed to divide the control cavity 216 into an upper cavity and a lower cavity.
  • the circuit device portion of the photovoltaic inverter includes a power module 202, a direct current circuit, an alternating current circuit, and a control circuit.
  • the power module 202 is mounted in the upper cavity of the power chamber, and the DC circuit is mounted on the front side of the DC mounting board 230, that is, the DC circuit is installed in the front cavity of the power chamber.
  • the AC circuit is mounted in the rear cavity of the power chamber and the lower cavity of the control chamber 216.
  • the control circuit is mounted in the upper chamber of the control chamber 216.
  • the control circuit includes a control circuit board and an auxiliary device.
  • the frame 204 is further provided with a baffle to divide the upper cavity of the control cavity 216 into at least two sub-cavities.
  • the control circuit board and the auxiliary device in the control circuit are installed in the mutually isolated sub-cavities, which can further reduce electromagnetic interference between the control circuit boards.
  • a side plate 246 is further disposed around each of the upper cavities of the control cavity 216. Each sub-cavity is separated from the other spaces by side plates 246, control device mounting plates 232, and baffles to form separate cavities.
  • the control circuit is disposed in the independent cavity of the control cavity 216, so that electromagnetic interference between each other can be further reduced, and the stability of the photovoltaic inverter can be improved.
  • the DC circuit is mounted on the front side of the DC mounting board 230, and has the advantage of convenient installation operation.
  • the DC circuit includes a DC input terminal 248, a DC fuse 250, a DC load switch 252, a first DC filter 254, and a Hall sensor 256.
  • the DC input terminal 248, the DC fuse 250, the DC load switch 252, and the first DC filter 254 are sequentially connected, and are sequentially mounted from bottom to top.
  • the DC input terminal 248 is configured to be coupled to a DC output terminal of the photovoltaic power generation assembly to receive a DC input.
  • the first DC filter 254 is then coupled to the input terminal of the power module 202.
  • the Hall sensor 256 is disposed on the positive output or the negative output of the first DC filter 254.
  • the DC input terminal 248 and the input terminals of the power module 202 are all in a copper row structure, and each module is connected by a copper row.
  • the Hall sensor 256 is disposed on the positive row (positive copper row) or the negative row of the first DC filter 254.
  • the DC input terminal 248 and the input terminal of the power module 202 can also be fabricated using other materials commonly used in the art.
  • the DC circuit further includes at least one of a second DC filter 258 and a DC contactor 260.
  • the second DC filter 258 adopts a filter board structure and is disposed under the DC input terminal 248.
  • the DC contactor 260 is disposed between the first DC filter 254 and the input terminal of the power module 202, that is, the DC contactor 260 is mounted above the first DC filter 254.
  • the on/off of the direct current circuit can be controlled by the direct current contactor 260.
  • the DC circuit further includes an MPPT (Maximum Power Point Tracking) configuration copper busbar 262.
  • the MPPT configuration copper busbar 262 is disposed between the DC fuse 250 and the DC load switch 252, and is configured for MPPT configuration.
  • the alternating current circuit is mounted in the rear cavity of the power chamber and the lower cavity of the control cavity 216, respectively.
  • the AC circuit includes a single-phase reactor module, a three-phase reactor 266, an AC contactor 268, a filter capacitor (not visible in the figure), an AC fuse 270, a first AC filter 272, an AC load switch 274, and an AC. Output terminal 276.
  • the single-phase reactor module optionally includes three single-phase reactors 264. Three single-phase reactors 264, three-phase reactors 266, AC contactors 268, and filter capacitors are sequentially connected and are mounted in the rear cavity of the power chamber.
  • three single-phase reactors The power module 202 is connected to the output terminal of the power module 202 and to the three-phase line of the three-phase reactor 266.
  • Three single-phase reactors 264 are mounted below the power module 202 and above the three-phase reactor 266.
  • three single-phase reactors 264 in the single-phase reactor module are placed in a vertical position (see FIG. 4, in which a partition 290 in one power chamber is retained, and One removes the partition 290) so that the single-phase reactor 264 can dissipate heat quickly, thereby improving the heat dissipation performance of the photovoltaic inverter.
  • An AC contactor 268 is mounted to the bottom of the rear cavity.
  • the output copper row of the three-phase reactor 266 is connected to the AC contactor 268. Therefore, the single-phase reactor 264, the three-phase reactor 266, and the AC contactor 268 can be installed in a post-maintenance manner by removing the door panel structure 206 on the back side of the cabinet main body 200 to install and repair the above-mentioned devices, and to install and maintain the above-mentioned devices. More convenient.
  • the filter capacitor is disposed between the three-phase reactor 266 and the DC mounting board 230 (not visible in the figure). The filter capacitor can be maintained in the front maintenance mode. The fastening screw can be removed and removed from below.
  • the output terminal of the power module 202 and the AC output terminal 276 are both in a copper row structure.
  • the AC fuse 270, the first AC filter 272, the AC load switch 274, and the AC output terminal 276 are mounted in the lower cavity of the control cavity 216.
  • the AC fuse 270 and the first AC filter 272 are both disposed in the lower cavity of the control cavity 216 and disposed on the same side of the rear cavity of the control cavity 216 (ie, the back side of the lower cavity of the control cavity 216 is disposed), and the AC The load switch 274 and the AC output terminal 276 are disposed on opposite sides of the AC fuse 270, that is, on the front side of the lower cavity of the control chamber 216.
  • an AC fuse 270 is disposed on each phase AC output circuit. Therefore, four AC fuses 270 are disposed on the four-way AC output circuit.
  • the twelve AC fuses 270 are disposed on the bottom side of the lower cavity of the control cavity 216, and can be post-maintained to realize a full-split full-phase circuit. protection.
  • the first alternating current filter 272 is mounted above the alternating current fuse 270, and each of the branches is connected to the first alternating current filter 272 as a way, and is routed through the copper to the front side of the lower cavity of the control cavity 216.
  • the load switch 274 and the AC output terminal 276 perform AC output.
  • a second alternating current filter 278 is further disposed under the alternating current output terminal 276.
  • the second AC filter 278 adopts a filter board structure and is configured to implement two filterings as needed to improve the output performance of the circuit.
  • a safety shield (not shown) is further disposed on the surface of the DC circuit and the AC circuit, and is configured to achieve electrical isolation.
  • the safety shield is made of PC material, so as to avoid personal injury caused by leakage of the circuit part to the maintenance personnel.
  • the circuit device portion in the cabinet body 200 further includes a fan module 280.
  • the fan module 280 is located in the rear chamber.
  • a fan module 280 is disposed below each power module 202 and above the single phase reactor module.
  • the fan module 280 can be maintained in a post-maintenance manner.
  • at least three air inlets 282 are disposed at the bottom of the door panel structure 206 on the front side of the cabinet body 200 (ie, the side adjacent to the front cavity). At least three air inlets 282 are respectively located at a lower portion of the first power chamber 214, the control chamber 216 and the second power chamber 218 such that the three chambers are each provided with an air inlet 282.
  • an air inlet baffle 284 is further disposed at the bottom of the DC mounting plate 230, and the air inlet baffle 284 is disposed parallel to the DC mounting plate 230, thereby realizing mutual mutual interaction between the front cavity and the rear cavity. isolation.
  • At least three air outlets 286 are correspondingly disposed on the door panel structure 206 at the top of the cabinet body 200. At least three air outlets 286 are located at the top of the first power chamber 214, the control chamber 216, and the second power chamber 218, respectively.
  • the air outlet 286 on the power chamber is provided with two, and the two air outlets 286 are disposed parallel to the installation direction of the power module 202 to form a vertical air passage.
  • the top of the control chamber 216 is provided with an air outlet 286 which is disposed parallel to the baffle 240 at the top of the control chamber 216.
  • a partition 290 is further disposed around the single-phase reactor module of the cabinet main body 200 to separate other parts, thereby reducing electromagnetic interference between each other, and forming an independent branch air passage, thereby improving Thermal performance.
  • the air inlet 282 and the air outlet 286 adopt a honeycomb structure, so that the air inlet and the dustproof function can be achieved.
  • the air inlet 282 and the air outlet 286 can be implemented using other structures commonly used in the art.
  • the heat dissipation process of the photovoltaic inverter cabinet is as follows: under the operation of the fan module 280, the cold air entering by the air inlet 282 enters the rear cavity through the air inlet baffle 284, and passes through the three-phase reactor 266 and the single-phase reactor module. After entering the fan module 280 and passing through the power module 202, the air is discharged from the top air outlet 286 of the power chamber, thereby achieving heat dissipation of the power chamber. Since the control circuit and part of the AC circuit are mainly disposed in the control cavity 216, the heat generated by itself is small, so there is no need to specifically set the fan module 280. Control The heat generated by the control circuit in the cavity 216 can be dissipated from the air outlet 286 at the top of the control cavity 216, so that the entire photovoltaic inverter cabinet has better heat dissipation performance.
  • the photovoltaic inverter of the above embodiment adopts an integrated rack cabinet, which can reduce the movement of the cabinet.
  • the DC circuit and the AC circuit in the internal circuit device part of the cabinet are separated, and the control circuit is located in the closed space of the control cavity 216, thereby reducing mutual electromagnetic interference.
  • the internal layout of the above-mentioned photovoltaic inverter cabinet is reasonable, the device is modular, and the front or the rear maintenance can be realized, thereby improving the installation and maintenance convenience.
  • the above-mentioned photovoltaic inverter adopts a symmetrical design, and the center of gravity is centered, which is convenient for assembly, transfer, maintenance and maintenance.
  • the three single-phase reactors 264 in the single-phase reactor module are misaligned to form an independent branch air duct, which has smooth ventilation, which is conducive to heat dissipation and improves the stability of the photovoltaic inverter.
  • the above technical solutions reduce mutual electromagnetic interference.
  • the internal layout of the cabinet is reasonable, the device is modular, and the front or rear maintenance can be realized, thereby improving the installation and maintenance convenience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种光伏逆变器的机柜及光伏逆变器,机柜包括机柜主体(200),机柜主体(200)包括机架(204)和门板结构(206);机柜主体(200)内部由机架(204)的立柱分为第一功率腔(214)、控制腔(216)和第二功率腔(218);第一功率腔(214)和第二功率腔(218)的结构相同且对称分布于控制腔(216)两侧;机架(204)内的功率模块安装板(228)设置于直流安装板(230)的上部从而使得功率腔的上部形成上腔体;直流安装板(230)将功率腔的下部分为前腔体和后腔体;功率腔的上腔体设置为安装功率模块;前腔体设置为安装直流电路;机架(204)内的控制器件安装板(232)将控制腔(216)分为上腔体和下腔体;控制腔(216)的上腔体设置为安装控制电路;控制腔(216)的下腔体和功率腔的后腔体设置为安装交流电路。

Description

光伏逆变器的机柜及光伏逆变器 技术领域
本文涉及但不限于光伏并网技术领域,特别是涉及一种光伏逆变器的机柜,还涉及一种光伏逆变器。
背景技术
太阳能是一种绿色能源,具有清洁、高效、永不衰竭的特点,被日益广泛应用于社会生活的每个领域,特别是应用于光伏并网发电系统中。光伏并网发电系统将太阳能转换为电能传输至电网中,从而大大提高了太阳能的应用价值。
光伏逆变器机柜设置为将光伏发电组件生成的直流电转换为交流电后传输至电网中。传统的光伏逆变器机柜的内部布局不合理,电路中的强电和弱电混放一起,电磁干扰现象严重,使得光伏逆变器机柜的稳定性较差。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种有利于提高光伏逆变器的稳定性的光伏逆变器的机柜。
本发明实施例还提供一种光伏逆变器。
一种光伏逆变器的机柜,包括机柜主体,所述机柜主体包括机架和门板结构;所述门板结构固定于所述机架上;所述机柜主体设置为安装所述光伏逆变器的电路器件部分;所述电路器件部分包括功率模块,直流电路、交流电路以及控制电路;所述机架为一体化机架,由横梁、纵向梁和立柱形成;所述机柜主体内部由所述立柱分为并列的三个腔体;所述三个腔体依次为第一功率腔、控制腔和第二功率腔;所述第一功率腔和所述第二功率腔的结构 相同且对称分布于所述控制腔两侧;所述机架内设有功率模块安装板和直流安装板;所述功率模块安装板设置于所述直流安装板的上部从而使得功率腔的上部形成上腔体;所述直流安装板垂直于所述功率模块安装板设置从而将所述功率腔的下部分为前腔体和后腔体;所述功率腔的上腔体设置为安装所述功率模块;所述前腔体设置为安装所述直流电路;所述机架内还设置有控制器件安装板;所述控制器件安装板将所述功率腔分为上腔体和下腔体;所述控制腔的上腔体设置为安装所述控制电路;所述控制腔的下腔体和所述功率腔的后腔体设置为安装所述交流电路。
可选地,所述机架内还设置挡板和侧板;所述挡板将所述上腔体分为至少两个子腔体;所述至少两个子腔体设置为安装所述控制电路;所述侧板设置于所述至少两个子腔体的四周,设置为将每个子腔体分隔为独立的腔体。
一种光伏逆变器,包括前述任一实施例所述的机柜以及安装于所述机柜主体内的电路器件部分;所述电路器件部分包括功率模块、直流电路、交流电路和控制电路;所述直流电路与所述功率模块的输入端子连接;所述交流电路与所述功率模块的输出端子连接。
可选地,所述直流电路包括直流输入端子、直流熔丝、直流负荷开关、第一直流滤波器以及霍尔传感器;所述直流输入端子、所述直流熔丝、所述直流负荷开关以及所述第一直流滤波器均安装于所述直流安装板上;所述直流输入端子、所述直流熔丝、所述直流负荷开关以及所述第一直流滤波器顺次连接后与所述功率模块的输入端子连接;所述霍尔传感器设置于所述第一直流滤波器的正输出端或者负输出端上。
可选地,所述直流电路还包括第二直流滤波器和直流接触器中的至少一种;所述第二直流滤波器与所述直流输入端子连接;所述直流接触器设置于所述第一直流滤波器的输出端。
可选地,所述第一功率腔和所述第二功率腔内每个形成有两路电路;所述直流电路还包括最大功率点跟踪MPPT配置铜排;所述MPPT配置铜排设 置于所述直流熔丝和所述直流负荷开关之间,设置为进行MPPT配置。
可选地,所述后腔体内的交流电路包括依次设置单相电抗器模块、三相电抗器、交流接触器以及滤波电容;所述单相电抗器模块包括三个单相电抗器;所述三个单相电抗器分别与所述三相电抗器的三相线相连;所述三个单相电抗器错位设置;所述三个单相电抗器与所述功率模块的输出端子连接;所述控制腔的下腔体的交流电路包括依次连接的交流熔丝、第一交流滤波器、交流负荷开关以及交流输出端子;所述交流熔丝和所述第一交流滤波器设置于所述下腔体且与所述后腔体同侧设置;所述交流负荷开关和所述交流输出端子设置于所述下腔体且与所述前腔体同侧设置。
可选地,所述交流电路还包括第二交流滤波器;所述第二交流滤波器与所述交流输出端子连接,且与所述交流输出端子同侧设置。
可选地,所述单相电抗器模块的四周还设置有隔板,设置为将所述单相电抗器模块与其他器件分离。
可选地,所述电路器件部分还包括风机模块;所述风机模块设置于所述功率腔的后腔体内,且位于所述功率模块和所述单相电抗器模块之间;所述机柜主体上靠近所述前腔体一侧的门板结构上设置有至少三个进风口;所述至少三个进风口分别位于第一功率腔、控制腔和第二功率腔的下部;所述机柜主体顶部的门板结构上设置有至少三个出风口;所述至少三个出风口分别位于所述第一功率腔、控制腔和所述第二功率腔的顶部。
上述实施例的光伏逆变器,机柜主体内由机架的立柱分为有第一功率腔、控制腔和第二功率腔。第一功率腔和第二功率腔对称设置于控制腔的两侧。功率腔的上腔体设置为安装功率模块,功率腔的前腔体设置为安装直流电路,功率腔的后腔体和控制腔的下腔体则设置为安装交流电路,控制腔的上腔体设置为安装控制电路,从而实现直流电路和交流电路之间的分离以及控制电路和主电路部分的分离,极大减小了相互的电磁干扰,有利于提高光伏逆变器的稳定性。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为一本发明实施例中的光伏逆变器的整体结构示意图;
图2为图1所示的光伏逆变器的内部结构示意图;
图3为图1所示的光伏逆变器的正面内部结构示意图;
图4为图1所示的光伏逆变器的背面内部结构示意图;
图5为图1所示的光伏逆变器的侧面内部结构示意图。
本发明的实施方式
以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
一种光伏逆变器,设置为将光伏发电组件产生的直流电转换为交流电后输出至电网。图1为一实施例中的光伏逆变器的整体结构示意图。图2为光伏逆变器的内部结构示意图(未显示机柜主体内部的电路器件部分),图3为光伏逆变器的正面内部结构示意图,图4为光伏逆变器的背面内部结构示意图,图5为光伏逆变器机柜的侧面内部结构示意图。下面结合图1至图5对光伏逆变器做详细说明。在本文中,以光伏逆变器中沿长度方向的一侧面为正面(或 者前面),与正面相对的一面为背面。
光伏逆变器包括机柜以及安装于机柜内部的电路器件部分。其中,机柜包括底座110、机柜主体200以及吊装装置120。电路器件部分安装于机柜主体200内。机柜主体200固定于底座110上,吊装装置120则设置于机柜主体200的顶部。可选地,吊装装置120为设置于机柜主体200顶部的吊环条。在本实施例中,可选地,吊环条沿机柜主体200的长度方向设置。在其他的实施例中,吊环条也可以沿机柜主体200的宽度方向设置。在本实施例中,光伏逆变器机柜关于中心呈左右对称结构,从而使得机柜重心居中,便于装配、中装以及检修维护。
机柜主体200包括机架204、门板结构206以及安装于机柜主体200内部的电路器件部分。门板结构206固定于机架204上,从而形成设置为放置光伏逆变器工作所需要的电路器件部分的容纳腔体。可选地,机架204采用一体化机架,由横梁208、纵向梁210以及立柱212直接焊接而成。采用一体化机架,可以减少并柜动作,从而便于安装。横梁208和纵向梁210构成了光伏逆变器机柜的主体架构。立柱212将机柜主体200内部分为沿机柜的长度方向并列设置的三个腔体。三个腔体依次为第一功率腔214、控制腔216以及第二功率腔218。其中,第一功率腔214的内部结构和第二功率腔218的内部结构相同且对称分布于控制腔216的两侧,从而使得光伏逆变器的重心居中,便于装配、中转以及检修维护。为简化描述,下文中将第一功率腔214和第二功率腔218均简称为功率腔。门板结构206通过螺钉等固定装置可拆卸地安装于机架204上,从而便于对光伏逆变器进行维修。位于机柜主体200正面的门板结构206为三开门结构,即对应于每个腔体的门板结构206均可以打开。在本实施例中,可选地,对应每个腔体的门板结构206上设置有把手220以及门锁222。并且,在控制腔216对应的门板结构206上还设置有指示灯224以及液晶显示屏226。指示灯224设置为对光伏逆变器的工作状态进行指示,液晶显示屏226则设置为对光伏逆变器工作过程中的重要监测参数进行显示,供工作人员进行查看,以 及时掌握光伏逆变器的工作状态。
可选地,机架204上还设置有功率模块安装板228、直流安装板230以及控制器件安装板232。其中,功率模块安装板228水平设置于功率腔的上部,从而在功率腔的上部形成上腔体。直流安装板230垂直于功率模块安装板228设置且沿机柜主体200的长度方向设置,从而将功率腔的下部分为前腔体和后腔体。功率腔的前腔体为靠近机柜主体200的正面一侧的腔体,功率腔的后腔体则为靠近机柜主体200的背面一侧的腔体。控制器件安装板232水平设置,从而将控制腔216分为上腔体和下腔体。
可选地,光伏逆变器的电路器件部分包括功率模块202、直流电路、交流电路和控制电路。其中,功率模块202安装于功率腔的上腔体内,直流电路安装于直流安装板230的正面侧,也即直流电路安装于功率腔的前腔体内。交流电路则安装于功率腔的后腔体和控制腔216的下腔体内。控制电路安装于控制腔216的上腔体内。控制电路包括控制电路板以及辅助器件。通过将直流电路、交流电路以及控制电路分开放置,可以有效减小相互之间的电磁干扰,从而提高了光伏逆变器的稳定性。在本实施例中,可选地,机架204上还设置有挡板,从而将控制腔216的上腔体分为至少两个子腔体。控制电路中的控制电路板和辅助器件安装于相互隔离的子腔体中,可以进一步减小控制电路板之间的电磁干扰。可选地,在本实施例中,控制腔216的上腔体中的每个子腔体的四周还设置有侧板246。通过侧板246、控制器件安装板232以及挡板将每个子腔体与其他空间分离,形成独立的腔体。控制电路设置于控制腔216的独立腔体内,从而可以进一步的减小相互之间的电磁干扰,提高光伏逆变器的稳定性。
可选地,直流电路安装于直流安装板230的正面侧,具有安装操作方便的优点。直流电路包括直流输入端子248、直流熔丝250、直流负荷开关252、第一直流滤波器254以及霍尔传感器256。其中,直流输入端子248、直流熔丝250、直流负荷开关252以及第一直流滤波器254依次连接,并由下至上依次安装于 直流安装板230上。直流输入端子248设置为与光伏发电组件的直流输出端子连接,以接收直流输入。第一直流滤波器254则与功率模块202的输入端子连接。霍尔传感器256设置于第一直流滤波器254的正输出端或者负输出端上。在本实施例中,可选地,直流输入端子248以及功率模块202的输入端子均采用铜排结构,每个模块之间采用铜排进行连接。可选地,霍尔传感器256设置第一直流滤波器254的正排(正铜排)或者负排上。在其他的实施例中,直流输入端子248以及功率模块202的输入端子还可以采用其他本领域常用的材料制备而成。可选地,直流电路还包括第二直流滤波器258以及直流接触器260中的至少一种。在本实施例,可选地,第二直流滤波器258采用滤波板结构,设置于直流输入端子248的下方。通过设置第二直流滤波器258,可以实现对直流输入的二次滤波,提高光伏逆变器的电路性能。直流接触器260设置于第一直流滤波器254和功率模块202的输入端子之间,也即直流接触器260安装于第一直流滤波器254的上方。通过直流接触器260可以对直流电路的通断进行控制。
在本实施例中,可选地,第一功率腔214和第二功率腔218内均对称设置有两路相同功能的电路。直流电路还包括MPPT((Maximum Power Point Tracking,最大功率点跟踪)配置铜排262。MPPT配置铜排262设置于直流熔丝250和直流负荷开关252之间,设置为进行MPPT配置。可选地,通过调整MPPT配置铜排262在两路电路之间的正负极之间的连接关系,可以灵活实现1至4路的MPPT配置,使得光伏逆变器一直工作在最大功率点。
可选地,交流电路分别安装在功率腔的后腔体以及控制腔216的下腔体内。交流电路包括依次设置的单相电抗器模块、三相电抗器266、交流接触器268、滤波电容(图中不可见)、交流熔丝270、第一交流滤波器272、交流负荷开关274以及交流输出端子276。其中,可选地,单相电抗器模块包括三个单相电抗器264。三个单相电抗器264、三相电抗器266、交流接触器268以及滤波电容依次连接且均安装于功率腔的后腔体内。可选地,三个单相电抗器 264与功率模块202分别与功率模块202的输出端子连接,并与三相电抗器266的三相线连接。三个单相电抗器264安装于功率模块202的下方以及三相电抗器266的上方。在本实施例中,可选地,单相电抗器模块中的三个单相电抗器264在竖直方向上错位放置(参见图4,图4中一个功率腔中的隔板290保留,另一个则移出了隔板290),以便单相电抗器264能够快速散热,从而可以提高光伏逆变器的散热性能。交流接触器268安装于后腔体的底部。三相电抗器266的输出铜排与交流接触器268连接。因此,单相电抗器264、三相电抗器266以及交流接触器268可以采用后维护方式,即通过卸下机柜主体200的背面的门板结构206以对上述器件进行安装和维修,安装和维修都较为方便。滤波电容则设置于三相电抗器266和直流安装板230之间(图中不可见)。滤波电容可以采用前维护方式进行维护,可以将紧固螺钉拆卸后将其从下方取出。在本实施例,可选地,功率模块202的输出端子以及交流输出端子276均采用铜排结构。
可选地,交流熔丝270、第一交流滤波器272、交流负荷开关274以及交流输出端子276安装于控制腔216的下腔体内。交流熔丝270和第一交流滤波器272均设置于控制腔216的下腔体中且与控制腔216的后腔体同侧设置(即设置控制腔216的下腔体的背面侧),交流负荷开关274以及交流输出端子276则设置于交流熔丝270的相对侧,也即设置于控制腔216的下腔体的正面侧。在本实施例中,每一相交流输出电路上均设置有交流熔丝270。因此四路交流输出电路上设置有12个交流熔丝270。12个交流熔丝270设置于控制腔216的下腔体的背面侧底部,可以采用后维护,能够实现全分路全相电路的保护。第一交流滤波器272安装于交流熔丝270上方,每个分路在第一交流滤波器272处汇接为一路,并经过铜排转至控制腔216的下腔体的正面侧后与交流负荷开关274、交流输出端子276进行交流输出。可选地,在交流输出端子276下方还设置有第二交流滤波器278。第二交流滤波器278采用滤波板结构,设置为根据需要实现两次滤波,提高电路的输出性能。
可选地,在直流电路和交流电路表面还设置有安全防护板(图中未示),设置为实现电气隔离。可选地,安全防护板采用PC材料,从而可以避免电路部分漏电对维护人员造成的人身伤害。
在本实施例中,可选地,机柜主体200内的电路器件部分还包括风机模块280。风机模块280位于后腔体内。每个功率模块202下方以及单相电抗器模块的上方均设置有风机模块280。风机模块280可以采用后维护方式进行维护。可选地,位于机柜主体200正面(也即靠近前腔体的一面)的门板结构206的底部至少设置有三个进风口282。至少三个进风口282分别位于第一功率腔214、控制腔216和第二功率腔218的下部,从而使得三个腔体均设置有进风口282。在本实施例中,可选地,在直流安装板230的底部还设置有进风隔板284,进风隔板284平行于直流安装板230设置,从而实现前腔体和后腔体的相互隔离。机柜主体200顶部的门板结构206上则对应设置有至少三个出风口286。至少三个出风口286分别位于第一功率腔214、控制腔216以及第二功率腔218的顶部。其中,功率腔上的出风口286设置有两个,两个出风口286平行于功率模块202的安装方向设置,以形成竖直方向的风道。控制腔216的顶部则设置有一个出风口286,该出风口286平行于控制腔216顶部的挡板240而设置。可选地,机柜主体200的单相电抗器模块的四周还设置有隔板290,以分离其他部分,从而既可以减小相互之间的电磁干扰,也可以形成独立的分路风道,提高散热性能。在本实施例中,可选地,进风口282和出风口286采用蜂窝结构,从而既可以实现进风还可以起到一定的防尘作用。在其他的实施例中,进风口282和出风口286可以采用本领域常用的其他结构来实现。
光伏逆变器机柜的散热过程如下:在风机模块280的工作下,由进风口282进入的冷风经过进风隔板284进入到后腔体,并经过三相电抗器266、单相电抗器模块进入风机模块280,再经过功率模块202后从功率腔的顶部出风口286出风,从而实现功率腔的散热。由于控制腔216内主要设置的是控制电路以及部分交流电路,其自身产生的热量较小,因此无需专门设置风机模块280。控 制腔216内控制电路产生的热量可以自控制腔216顶部的出风口286进行散热,从而使得整个光伏逆变机柜均具有较好的散热性能。
上述实施例光伏逆变器采用一体化机架柜,可以减少并柜动作。机柜内部电路器件部分中的直流电路、交流电路分离,同时控制电路位于控制腔216封闭空间内,减少了相互的电磁干扰。上述光伏逆变器的机柜内部布局合理,器件模块化,可以实现前维护或后维护,提高了安装、维护便利性。并且,上述光伏逆变器采用对称设计,重心居中,便于装配、中转以及检修维护。再者,单相电抗器模块中的三个单相电抗器264错位布局,形成独立的分路风道,通风顺畅,利于散热,提高了光伏逆变器的稳定性
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
工业实用性
上述技术方案减少了相互的电磁干扰。上述实施例机柜内部布局合理,器件模块化,可以实现前维护或后维护,提高了安装、维护便利性。

Claims (10)

  1. 一种光伏逆变器的机柜,包括机柜主体,所述机柜主体包括机架和门板结构;所述门板结构固定于所述机架上;所述机柜主体设置为安装所述光伏逆变器的电路器件部分;所述电路器件部分包括功率模块,直流电路、交流电路以及控制电路;所述机架为一体化机架,由横梁、纵向梁和立柱形成;所述机柜主体内部由所述立柱分为并列的三个腔体;所述三个腔体依次为第一功率腔、控制腔和第二功率腔;所述第一功率腔和所述第二功率腔的结构相同且对称分布于所述控制腔两侧;
    所述机架内设有功率模块安装板和直流安装板;所述功率模块安装板设置于所述直流安装板的上部从而使得功率腔的上部形成上腔体;所述直流安装板垂直于所述功率模块安装板设置从而将所述功率腔的下部分为前腔体和后腔体;所述功率腔的上腔体设置为安装所述功率模块;所述前腔体设置为安装所述直流电路;
    所述机架内还设置有控制器件安装板;所述控制器件安装板将所述功率腔分为上腔体和下腔体;所述控制腔的上腔体设置为安装所述控制电路;所述控制腔的下腔体和所述功率腔的后腔体设置为安装所述交流电路。
  2. 根据权利要求1所述的光伏逆变器的机柜,所述机架内还设置挡板和侧板;所述挡板将所述上腔体分为至少两个子腔体;所述至少两个子腔体设置为安装所述控制电路;所述侧板设置于所述至少两个子腔体的四周,设置为将每个子腔体分隔为独立的腔体。
  3. 一种光伏逆变器,包括如权利要求1或2所述的机柜以及安装于所述机柜主体内的电路器件部分;所述电路器件部分包括功率模块、直流电路、交流电路和控制电路;所述直流电路与所述功率模块的输入端子连接;所述交流电路与所述功率模块的输出端子连接。
  4. 根据权利要求3所述的光伏逆变器,其中,所述直流电路包括直流输入端子、直流熔丝、直流负荷开关、第一直流滤波器以及霍尔传感器;所述 直流输入端子、所述直流熔丝、所述直流负荷开关以及所述第一直流滤波器均安装于所述直流安装板上;所述直流输入端子、所述直流熔丝、所述直流负荷开关以及所述第一直流滤波器顺次连接后与所述功率模块的输入端子连接;所述霍尔传感器设置于所述第一直流滤波器的正输出端或者负输出端上。
  5. 根据权利要求4所述的光伏逆变器,所述直流电路还包括第二直流滤波器和直流接触器中的至少一种;所述第二直流滤波器与所述直流输入端子连接;所述直流接触器设置于所述第一直流滤波器的输出端。
  6. 根据权利要求4所述的光伏逆变器,其中,所述第一功率腔和所述第二功率腔内每个形成有两路电路;
    所述直流电路还包括最大功率点跟踪MPPT配置铜排;所述MPPT配置铜排设置于所述直流熔丝和所述直流负荷开关之间,设置为进行MPPT配置。
  7. 根据权利要求3所述的光伏逆变器,其中,所述后腔体内的交流电路包括依次设置单相电抗器模块、三相电抗器、交流接触器以及滤波电容;所述单相电抗器模块包括三个单相电抗器;所述三个单相电抗器分别与所述三相电抗器的三相线相连;所述三个单相电抗器错位设置;所述三个单相电抗器与所述功率模块的输出端子连接;
    所述控制腔的下腔体的交流电路包括依次连接的交流熔丝、第一交流滤波器、交流负荷开关以及交流输出端子;所述交流熔丝和所述第一交流滤波器设置于所述下腔体且与所述后腔体同侧设置;所述交流负荷开关和所述交流输出端子设置于所述下腔体且与所述前腔体同侧设置。
  8. 根据权利要求7所述的光伏逆变器,所述交流电路还包括第二交流滤波器;所述第二交流滤波器与所述交流输出端子连接,且与所述交流输出端子同侧设置。
  9. 根据权利要求7所述的光伏逆变器,所述单相电抗器模块的四周还设置有隔板,设置为将所述单相电抗器模块与其他器件分离。
  10. 根据权利要求3所述的光伏逆变器,所述电路器件部分还包括风机 模块;所述风机模块设置于所述功率腔的后腔体内,且位于所述功率模块和所述单相电抗器模块之间;
    所述机柜主体上靠近所述前腔体一侧的门板结构上设置有至少三个进风口;所述至少三个进风口分别位于第一功率腔、控制腔和第二功率腔的下部;
    所述机柜主体顶部的门板结构上设置有至少三个出风口;所述至少三个出风口分别位于所述第一功率腔、控制腔和所述第二功率腔的顶部。
PCT/CN2016/082250 2016-01-05 2016-05-16 光伏逆变器的机柜及光伏逆变器 WO2016197791A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620008507.6 2016-01-05
CN201620008507.6U CN205453514U (zh) 2016-01-05 2016-01-05 光伏逆变器的机柜及光伏逆变器

Publications (1)

Publication Number Publication Date
WO2016197791A1 true WO2016197791A1 (zh) 2016-12-15

Family

ID=56601121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082250 WO2016197791A1 (zh) 2016-01-05 2016-05-16 光伏逆变器的机柜及光伏逆变器

Country Status (2)

Country Link
CN (1) CN205453514U (zh)
WO (1) WO2016197791A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109061254A (zh) * 2018-08-23 2018-12-21 上海国缆智能电气有限公司 一种三相新型电表箱
CN109217480A (zh) * 2018-11-13 2019-01-15 中冶赛迪电气技术有限公司 一种飞轮电池储能装置
CN113036277A (zh) * 2021-03-02 2021-06-25 北京昆兰新能源技术有限公司 一种户外储能柜
CN113078657A (zh) * 2021-05-14 2021-07-06 台州安耐杰电力设备有限公司 一种电力无功补偿配电设备
CN114389170A (zh) * 2022-01-20 2022-04-22 阳光电源股份有限公司 一种风电变流器
US20220271515A1 (en) * 2021-02-19 2022-08-25 Sungrow Power Supply Co., Ltd. Power cabinet
CN116345924A (zh) * 2023-05-29 2023-06-27 深圳市三瑞电源有限公司 一种便于内部检修和元件更换的光伏逆变器
CN118029843A (zh) * 2024-04-11 2024-05-14 福建中能电气有限公司 一种预制舱防水三开门
EP4383486A1 (en) * 2022-12-08 2024-06-12 Sungrow Power Supply Co., Ltd. Electrical cabinet, electrical cabinet combination and electrical cabinet working group

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112739131B (zh) * 2019-10-28 2023-03-14 北京金风科创风电设备有限公司 电气托盘组件及变流器
CN113992015B (zh) * 2021-09-29 2024-06-18 株洲中车时代电气股份有限公司 一种高功率密度的集成式辅助变流器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8233278B2 (en) * 2008-11-11 2012-07-31 Advanced Energy Industries, Inc. Solar inverter cabinet architecture
CN202374160U (zh) * 2011-12-06 2012-08-08 阳光电源股份有限公司 一种逆变装置整机结构
CN202602115U (zh) * 2011-11-29 2012-12-12 国网电力科学研究院 一种大功率光伏逆变器机柜
CN103795282A (zh) * 2014-01-16 2014-05-14 北京能高自动化技术股份有限公司 一种大功率水冷型光伏逆变器
CN204316307U (zh) * 2014-12-12 2015-05-06 天津电气科学研究院有限公司 一种大功率光伏并柜柜体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8233278B2 (en) * 2008-11-11 2012-07-31 Advanced Energy Industries, Inc. Solar inverter cabinet architecture
CN202602115U (zh) * 2011-11-29 2012-12-12 国网电力科学研究院 一种大功率光伏逆变器机柜
CN202374160U (zh) * 2011-12-06 2012-08-08 阳光电源股份有限公司 一种逆变装置整机结构
CN103795282A (zh) * 2014-01-16 2014-05-14 北京能高自动化技术股份有限公司 一种大功率水冷型光伏逆变器
CN204316307U (zh) * 2014-12-12 2015-05-06 天津电气科学研究院有限公司 一种大功率光伏并柜柜体

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109061254A (zh) * 2018-08-23 2018-12-21 上海国缆智能电气有限公司 一种三相新型电表箱
CN109217480A (zh) * 2018-11-13 2019-01-15 中冶赛迪电气技术有限公司 一种飞轮电池储能装置
CN109217480B (zh) * 2018-11-13 2024-02-13 中冶赛迪电气技术有限公司 一种飞轮电池储能装置
US20220271515A1 (en) * 2021-02-19 2022-08-25 Sungrow Power Supply Co., Ltd. Power cabinet
CN113036277B (zh) * 2021-03-02 2022-05-17 北京昆兰新能源技术有限公司 一种户外储能柜
CN113036277A (zh) * 2021-03-02 2021-06-25 北京昆兰新能源技术有限公司 一种户外储能柜
CN113078657A (zh) * 2021-05-14 2021-07-06 台州安耐杰电力设备有限公司 一种电力无功补偿配电设备
CN114389170A (zh) * 2022-01-20 2022-04-22 阳光电源股份有限公司 一种风电变流器
CN114389170B (zh) * 2022-01-20 2024-04-12 阳光电源股份有限公司 一种风电变流器
EP4383486A1 (en) * 2022-12-08 2024-06-12 Sungrow Power Supply Co., Ltd. Electrical cabinet, electrical cabinet combination and electrical cabinet working group
CN116345924A (zh) * 2023-05-29 2023-06-27 深圳市三瑞电源有限公司 一种便于内部检修和元件更换的光伏逆变器
CN116345924B (zh) * 2023-05-29 2023-07-21 深圳市三瑞电源有限公司 一种便于内部检修和元件更换的光伏逆变器
CN118029843A (zh) * 2024-04-11 2024-05-14 福建中能电气有限公司 一种预制舱防水三开门

Also Published As

Publication number Publication date
CN205453514U (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
WO2016197791A1 (zh) 光伏逆变器的机柜及光伏逆变器
CN110299850B (zh) 一种大功率牵引辅助变流器
CN201750356U (zh) 一种光伏逆变器用安装柜
CN107276426B (zh) 一种积木式电能路由器功率单元结构
CN102969875B (zh) 一种用于光伏逆变器的逆变柜
EP3621420A1 (en) Photovoltaic inverter
CN202772807U (zh) 光伏逆变器及光伏逆变器机柜
CN203423630U (zh) 一种变流器dc/ac功率模块
CN203416177U (zh) 一种光伏逆变器
CN207819223U (zh) 一种不间断电源机柜
US9420732B2 (en) Solar inverter
CN206807310U (zh) 一种紧凑型户外机散热结构
CN203645556U (zh) 一种逆变器装置
CN205051223U (zh) 一体化光伏箱式变电站
CN207782646U (zh) 功率模块以及电力转换装置
CN203423620U (zh) 一种变流器dc/dc功率模块
CN202931180U (zh) 一种用于光伏逆变器的逆变柜
CN215185398U (zh) 一种型铠装移开式交流金属封闭开关设备
CN211183778U (zh) 一体化结构紧凑型高压变频器
CN205921262U (zh) 一种高效散热双联配电柜
CN213521684U (zh) 一种新型大功率储能变流器
CN211183805U (zh) 一体化结构紧凑型高压变频器
CN202917839U (zh) 一种光伏逆变器
CN209860816U (zh) 一种柔性消弧逆变器柜
CN102723878A (zh) 一种大功率太阳能三相并网逆变器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16806689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16806689

Country of ref document: EP

Kind code of ref document: A1