WO2016197583A1 - 一种网络间共享频谱优化系统及方法 - Google Patents

一种网络间共享频谱优化系统及方法 Download PDF

Info

Publication number
WO2016197583A1
WO2016197583A1 PCT/CN2015/099266 CN2015099266W WO2016197583A1 WO 2016197583 A1 WO2016197583 A1 WO 2016197583A1 CN 2015099266 W CN2015099266 W CN 2015099266W WO 2016197583 A1 WO2016197583 A1 WO 2016197583A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
network
cell cluster
pool
shared
Prior art date
Application number
PCT/CN2015/099266
Other languages
English (en)
French (fr)
Inventor
顾旭波
王江
徐景
滕勇
霍内曼卡里
Original Assignee
上海无线通信研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海无线通信研究中心 filed Critical 上海无线通信研究中心
Priority to US15/329,802 priority Critical patent/US10321325B2/en
Priority to EP15894836.4A priority patent/EP3310084A4/en
Publication of WO2016197583A1 publication Critical patent/WO2016197583A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • H04W16/16Spectrum sharing arrangements between different networks for PBS [Private Base Station] arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to an inter-network shared spectrum optimization system based on CSG (Closed Subscriber Group) base station ratio dynamic allocation shared spectrum, and also relates to a corresponding inter-network shared spectrum optimization method, and belongs to the field of wireless communication technologies.
  • CSG Cell Subscriber Group
  • the sharing of dynamic spectrum resources between operators is mainly realized by the shared spectrum pool technology. Different operators share some or all of the spectrum resources owned by the shared spectrum pools, and dynamically share the resources of the shared spectrum pool through relevant optimization mechanisms. distribution. Compared with the intra-operator dynamic spectrum resource sharing, the dynamic spectrum resource sharing technology between operators can effectively alleviate the imbalance of different operators in specific areas, improve the flexibility and fairness of spectrum resource sharing, and also Further improve the utilization of spectrum resources and alleviate the shortage of spectrum resources.
  • R.H. Kamal et al. propose a centralized dynamic cross-operator spectrum sharing scheme based on a game algorithm (see PIMRC'09, pp. 425-429). It analyzes the competition between different operators by establishing a non-zero sum game algorithm model. process.
  • the base stations of different carrier cells are managed by a common spectrum management entity.
  • the entity optimizes the allocation of spectrum resources by analyzing the related information reported by the base stations of each cell.
  • how to ensure the fairness of its spectrum allocation and the privacy of interactive information is crucial. Considering the sensitivity of interactive information between different operators, it is still difficult to achieve the same spectrum management entity by different operators.
  • the technical problem to be solved by the present invention is to provide an inter-network shared spectrum optimization system and method capable of dynamically allocating a shared spectrum based on the CSG base station ratio.
  • An inter-network shared spectrum optimization system includes at least a first network and a second network, the first network includes a first cell cluster, and the second network includes a second cell cluster, and the two cell clusters share a spectrum pool
  • the cell clusters each have a plurality of base stations operating in a CSG mode or an OPEN mode, wherein the spectrum resources allocated to the first network in the shared spectrum pool, including the OPEN mode base station occupied by the first cell cluster Spectrum resource, the shared spectrum pool a spectrum resource allocated to the second network, including a spectrum resource occupied by an OPEN mode base station of the second cell cluster, a spectrum resource occupied by each of the OPEN mode base stations in the first cell cluster, and the Each of the OPEN mode base stations in the second cell cluster occupies the same spectrum resource size; or the spectrum resource occupied by the terminal served by each of the OPEN mode base stations in the first cell cluster and the second cell The terminals served by each of the OPEN mode base stations in the cluster occupy the same spectrum resource size.
  • An inter-network shared spectrum optimization method including at least a first network and a second network, where the first network includes a first cell cluster, the second network includes a second cell cluster, and the cell cluster shares a spectrum pool.
  • Each of the cell clusters has a plurality of base stations operating in a CSG mode or an OPEN mode, wherein:
  • Establishing the shared spectrum pool between the first network and the second network and then the first network triggers initialization of the shared spectrum pool according to its own spectrum requirement, and performs initialization of the shared spectrum pool with the second network.
  • the spectrum resources occupied by each of the OPEN mode base stations in the first cell cluster are the same as the spectrum resources occupied by each of the OPEN mode base stations in the second cell cluster.
  • the spectrum resources occupied by the terminals served by each of the OPEN mode base stations in the first cell cluster are the same as the spectrum resources occupied by the terminals served by each of the OPEN mode base stations in the second cell cluster.
  • the present invention optimizes the shared spectrum pool allocation strategy by providing a cross-operator dynamic spectrum sharing mechanism based on the CSG base station ratio, which is beneficial to improving the average service quality of each operator base station in the cell cluster.
  • the method proposed by the present invention comprehensively considers the difference in spectrum requirements of factors such as the working mode of the base station, the change of the service load, and the change of the topology structure, and can be more reasonably shared with the dynamic change of the working mode of the base station.
  • the spectrum pool is initially allocated and redistributed to improve spectral efficiency and quality of service of the base station.
  • FIG. 1 is a schematic diagram showing the difference in spectrum resource allocation of each cell cluster having different CSG base station ratios
  • FIG. 2 is a schematic diagram of a process of sharing a shared spectrum pool across operators
  • FIG. 3 is a schematic diagram of an initialization process of a shared spectrum pool
  • FIG. 5 is a schematic diagram of a redistribution process of a shared spectrum pool
  • Figure 6 is a flow chart of the redistribution process of the shared spectrum pool.
  • the issue of cross-operator spectrum sharing in heterogeneous networks of LTE is considered.
  • LTE including but not limited to TD-LTE and FDD-LTE
  • the technical idea provided by the present invention can also be applied to other wireless communication systems of hybrid networking, such as wireless communication systems of TD-SCDMA, CDMA2000 and WCDMA hybrid networking, even at 4G/. Used in 5G networks.
  • some home base stations are deployed in the coverage of the macro base station, and the working modes of the home base stations include a CSG (Closed Subscriber Group) mode and an OPEN mode.
  • the home base station working in the CSG mode only serves the registered users of the operator, and the home base station working in the OPEN mode can serve all users under the carrier.
  • the number of users that the CSG mode base station can serve is relatively small, and the number of users that the OPEN mode base station can serve is relatively large.
  • the CSG base station ratio of each cell cluster may also be different. In order to allocate the shared spectrum pool resources more reasonably and fairly, the CSG base station ratio of each cluster may be considered as a key parameter of resource allocation.
  • the present invention is described by taking a cell cluster of two or more different carrier operating networks (hereinafter referred to as “operator operating network” as “operator”) as an example, the present invention is not limited to networks of different operators, and Can be the same carrier's network. Moreover, although the present invention has been described by taking two networks as an example, the present invention is not limited to two networks, and may be a plurality of networks.
  • the cell cluster A and the cell cluster B belong to the first network and the second network, respectively.
  • the cell cluster A and the cell cluster B each have 10 home base stations, and each base station is allocated at least one component carrier (CC), and each component carrier can serve multiple users.
  • CC component carrier
  • cell cluster A has three base stations in CSG mode, seven base stations in OPEN mode, twenty users (three CSG registered users and 17 non-CSG registered users), and ten component carriers.
  • each base station of the CSG mode uses only the component carrier services it owns. A registered user, so three CSG mode base stations need at least three component carriers.
  • the remaining seven OPEN mode base stations need to use the remaining seven component carriers to serve seventeen users, with an average bandwidth of 7/17 per user.
  • cell cluster B there are seven CSG mode base stations and three OPEN mode base stations, twenty users (7 CSG registered users and 13 non-CSG registered users) and 10 component carriers. Seven CSG mode base stations require at least seven subcarriers to serve seven registered users. Then the remaining three OPEN mode base stations need to serve thirteen users with the remaining three subcarriers, and each user has an average bandwidth of 3/13. According to the above analysis, we can find that the OPEN mode base station in the cell cluster B needs more component carriers to achieve the same quality of service as the OPEN mode base station in the cell cluster A.
  • the key to the problem lies in the number and proportion of CSG base stations in the cell cluster.
  • a cell cluster having a higher CSG base station ratio for example, cell cluster B
  • Base stations have similar quality of service.
  • the present invention proposes a cross-operator spectrum sharing mechanism based on the proportion of cell cluster CSG base stations, and shares the CSG base station based on the clusters of different cell clusters and their dynamic changes between different operators.
  • Spectrum pool resources are allocated/reallocated.
  • the mechanism can be implemented in two phases: a shared spectrum pool initial allocation phase and a shared spectrum pool redistribution phase. In the initial allocation phase, the cell clusters belonging to different operators allocate the spectrum resources in the shared spectrum pool according to the proportion of the respective CSG base stations.
  • a cell cluster with a high CSG base station occupies more spectrum resources in the shared spectrum pool, and a cell cluster with a lower CSG base station occupies less spectrum resources in the shared spectrum pool. In this way, it is ensured that the high CSG base station occupies the service quality of the OPEN base station in the cell cluster.
  • the present invention ensures that the OPEN mode base stations in the two clusters of the shared spectrum in different networks have the same service bandwidth (when the number of base station service terminals in the OPEN mode is the same) to ensure the relative fairness of QoS.
  • the first network operated by the first operator and the second network operated by the second operator, the two different operators (networks) are taken as an example, and the description is based on different operators.
  • the ratio of CSG base stations of each operator cell cluster is dynamically allocated to the shared spectrum pool between different operators. It should be noted that the present invention can also be applied if the same operator has different CSG base stations in different cell clusters.
  • the cluster needs to allocate the shared spectrum pool according to the proportion of the respective CSG base stations, so that the cell clusters with the higher CSG base station ratio occupy more spectrum resources in the shared spectrum pool, thereby ensuring multiple cells with different CSG base station ratios.
  • Clusters the relative fairness of the quality of service of multiple OPEN mode base stations of these cell clusters can be achieved.
  • the relative fairness means that the spectrum resources occupied by the base stations in the same cell cluster as in the OPEN mode are the same, or the spectrum resources occupied by the terminals served by the base station in the OPEN mode are the same, so that the base station OPEN mode base stations of different cell clusters have similar quality of service.
  • the spectrum resource Band A allocated to the first network in the shared spectrum pool is equal to the spectrum resource occupied by the CSG mode base station in the cell cluster A (first cell cluster) of the first network, and occupied by the OPEN mode base station in the cell cluster A.
  • the spectrum resource occupied by the base station in the OPEN mode in the cell cluster A is calculated by the following method: the number of the OPEN mode base stations in the cell cluster A of the first network, multiplied by all the OPEN mode base stations for the cell cluster A or the cell cluster B in the shared spectrum pool resource.
  • the spectrum resource is divided by the total number of base stations in the OPEN mode of the cell cluster A and the cell cluster B.
  • the spectrum resource Band B allocated to the second network in the shared spectrum pool is equal to the spectrum resource occupied by the CSG mode base station in the cell cluster B (second cell cluster) of the second network, and the occupied by the OPEN mode base station in the cell cluster B.
  • the spectrum resource occupied by the base station in the OPEN mode in the cell cluster B is calculated by the following method: the number of the OPEN mode base stations in the cell cluster B of the second network, multiplied by all the OPEN mode base stations used for the cell cluster A or the cell cluster B in the shared spectrum pool resource.
  • the spectrum resource is divided by the total number of base stations in the OPEN mode of the cell cluster A and the cell cluster B.
  • the implementation process of the mechanism for initializing allocation and reallocation of the shared spectrum pool across the operator in the present invention can be divided into two phases: a shared spectrum pool initialization phase and a redistribution phase, as shown in FIG. 2 .
  • the first is to establish a shared spectrum pool between networks operated by different operators.
  • the first network triggers the initialization of the shared spectrum pool according to its own spectrum requirements, and initializes the shared spectrum pool with the second network.
  • the first network or the second network determines whether the spectrum requirement changes. If the change reaches the preset threshold, the shared spectrum pool is redistributed. It should be noted that, according to the actual situation, a shared spectrum pool can be set up between networks operated by different operators, and then the shared spectrum pool initialization is directly performed.
  • the shared spectrum pool initialization phase includes the following steps: the first network (for example, the network where the cell cluster A is located) triggers the initialization of the shared spectrum pool according to the resource requirement, and the second network is used. For example, the network where the cell cluster B is located issues a shared spectrum pool initialization indication signaling. After receiving the signaling, the second network calculates a shared spectrum pool initial allocation ratio according to the signaling parameters, and then sends a shared spectrum pool initial allocation ratio indication signaling to the first network.
  • the first network for example, the network where the cell cluster A is located
  • the second network After receiving the signaling, the second network calculates a shared spectrum pool initial allocation ratio according to the signaling parameters, and then sends a shared spectrum pool initial allocation ratio indication signaling to the first network.
  • the first network receives the shared spectrum pool initial allocation ratio indication signaling, and compares with the initial allocation ratio of the shared spectrum pool calculated by the first network, and if yes, sends an indication of consistency to the second network (or to the second network) An indication of allocating spectrum resources is issued; if the comparison result is inconsistent, an inconsistent indication is sent to the second network (or an indication of recalculation is sent to the second network), and the step of returning to the second network to calculate the shared spectrum pool initial allocation ratio is performed.
  • Phase 1 Shared spectrum pool initialization phase
  • the method for establishing a shared spectrum pool mentioned in the present invention may be implemented in various manners, and may be a communication negotiation between spectrum controllers of different operator networks dedicated to spectrum resource allocation, thereby establishing a shared spectrum pool.
  • the cluster header of each cell cluster may collect related spectrum resource information of the cluster member base station of the cell, and then establish a shared spectrum pool by using a communication negotiation mechanism between the cluster heads.
  • the CSG base station ratio of the cell cluster is used as a key factor for the allocation of the shared spectrum pool, and other related parameters (such as service load, topology, number of end users, etc.) may also be considered. For example, considering the differences that may exist in different cell clusters (such as the actual traffic load of each cell cluster, the number of service users, etc.), it is not advantageous to treat them in the present invention without any difference. Improve the utilization of spectrum resources.
  • the cell cluster with a higher proportion of CSG base stations should occupy more spectrum resources in the shared spectrum pool.
  • the first network and the second network ensure the implementation of the initialization process by the following new interaction signaling.
  • the shared spectrum pool initial allocation indication signaling includes the following parameters:
  • the shared spectrum pool initialization allocation indication signaling may also include other related parameters, such as traffic load, topology, number of end users, and the like.
  • Figure 3 and Figure 4 show the shared spectrum pool initial allocation method for different carrier networks.
  • the solid line in the “shared spectrum pool” indicates the state of the spectrum resource allocation when the shared spectrum pool is not initialized, and the spectrum resources on both sides of the solid line belong to different operator cell clusters.
  • the cell cluster A and the cell cluster B have the same number of base stations. Therefore, the cell cluster A and the cell cluster B occupy the same spectrum resource before the shared spectrum pool is initialized, in other words, FIG.
  • the solid line in the "shared spectrum pool" is in the middle of the entire spectrum resource shown in Figure 3. In fact, cell cluster A and cell cluster B may have different numbers of base stations.
  • the cell cluster A and the cell cluster B may also be in a case where the cell cluster A and the cell cluster B have the same number of base stations, but the number of base stations in the CSG mode in the cell cluster A at the time of initialization is higher than the CSG mode in the cell cluster B. There are more base stations.
  • the number of base stations in the CSG mode is different, and the shared spectrum pool spectrum resources can be divided according to the CSG base station ratio of each cell cluster and the number of the member base stations.
  • the number of member base stations of the cell cluster A is TA
  • the proportion of CSG base stations is A CSG
  • the number of member base stations of the cell cluster B is TB
  • the proportion of CSG base stations is B CSG
  • the size of the shared spectrum pool is Band (MHz).
  • the Band CSG should be set to a value smaller than Band/(TA+TB), that is, Band CSG ⁇ Band /(TA+TB).
  • the spectrum resource Band A occupied by the cell cluster A in the shared spectrum pool should be expressed as:
  • cell cluster A pool of shared spectrum resources occupied spectrum Band A is a CSG cell cluster A
  • the base station mode spectrum resources occupied by the cell cluster in the OPEN mode of the base station A spectrum resources occupied by the sum of The spectrum resource occupied by the base station in the OPEN mode is obtained by evenly distributing the spectrum resources except the spectrum resources occupied by the CSG mode base stations in each network in the shared spectrum pool to the OPEN mode base stations in each network.
  • the spectrum resource resource Band B occupied by the cell cluster B is the sum of the spectrum resource occupied by the CSG mode base station in the cell cluster B and the spectrum resource occupied by the OPEN mode base station in the cell cluster B, wherein the OPEN mode base station occupies
  • the spectrum resource is obtained by evenly distributing the spectrum resources except the spectrum resources occupied by the CSG mode base stations in each network in the shared spectrum pool to the OPEN mode base stations in the respective networks.
  • Equations (1) and (2) show that the spectrum bandwidth of the shared spectrum pool is equal to the sum of the spectrum resources used by the CSG base stations sharing the two cell clusters (A and B) of the shared spectrum pool and the spectrum resources used by the OPEN base station.
  • the spectrum resources used by the CSG base stations of the two cell clusters (A and B) are TA*A CSG *Band CSG and TB*B CSG *Band CSG, respectively .
  • the spectrum resources used by the base stations of the respective OPEN modes of the two cell clusters (A and B) are the sum of the spectrum resources used by the OPEN base stations of the two cell clusters (A and B) divided by two cell clusters (A and B). The average number of base stations in the OPEN mode is averaged.
  • the proportion of the CSG base station in the allocation indication signaling and other related parameters are initialized, and each operator spectrum controller calculates the proportion and quantity of the spectrum resources corresponding to the shared spectrum pool.
  • the spectrum controller of the network where the cell cluster A is located calculates that the proportion of the spectrum resources occupied by the network in the shared spectrum pool is Band A / (Band A + Band B ), and the spectrum controller of the network where the cell cluster B is located calculates the shared spectrum of the network.
  • the proportion of spectrum resources in the pool is Band B / (Band A + Band B ).
  • the spectrum controllers of the respective networks respectively send the shared spectrum pool initialization spectrum allocation ratio indication signaling to the other party, and indicate the proportion of the spectrum resources occupied by the clusters in the shared spectrum pool.
  • the spectrum controller of the network where the cell cluster A is located only sends out the ratio of the spectrum resources occupied by the cell cluster A, Band A / (Band A + Band B ), and the proportion of the spectrum resources occupied by the cell cluster B, Band B / ( Band A+ Band B ).
  • the spectrum controller of the network where the cell cluster B is located only sends out the ratio of the spectrum resources occupied by the cell cluster B, Band B / (Band A + Band B ), and the ratio of the spectrum resources occupied by the cell cluster A, Band A / (Band A + Band B ).
  • the shared spectrum pool initialization spectrum allocation ratio indication signaling may only be the allocation value of the spectrum resources occupied by the local cluster in the shared spectrum pool, that is, the spectrum controller SCA of the network where the cell cluster A is located only sends the cell cluster A.
  • the spectrum controller of the spectrum resource Band A and the cell cluster B is only the distribution value Band B of the spectrum resource occupied by the cell cluster B.
  • the spectrum allocation ratio indication signaling is initialized, and each operator spectrum controller needs to negotiate and determine the initial allocation ratio of the shared spectrum pool, that is, the initialization line, and respectively occupy the shared spectrum resources.
  • Each operator's spectrum controller (each network spectrum controller) sends a shared spectrum pool initial allocation response signaling to the other party, indicating whether each operator's spectrum controller agrees to the shared spectrum pool spectrum allocation ratio division result in the above initialization process.
  • Shared spectrum pool initialization spectrum allocation ratio The indication signaling includes a proportional parameter of a spectrum resource occupied by each cluster of the shared spectrum pool obtained by each cluster calculation, and a corresponding parameter quantity parameter of the spectrum resource.
  • the spectrum controller SCB of the network where the cell cluster B is located receives the shared spectrum pool initialized spectrum allocation ratio indication signaling sent by the spectrum controller SCA, and obtains the cell cluster A in the signaling.
  • the proportion of spectrum resources is Band A / (Band A + Band B ) and the ratio of spectrum resources occupied by cell cluster B is Band B / (Band A + Band B ).
  • the spectrum controller SCA of the network where the cell cluster A is located can also learn from the shared spectrum pool initial allocation response signaling sent by the spectrum controller SCB, and know the proportion of the spectrum resources occupied by the cell cluster B. Band B / (Band A+ Band B And the ratio of the spectrum resources occupied by the cluster A to Band A / (Band A + Band B ).
  • Each operator spectrum controller separately compares the proportion of the spectrum resource of each cell cluster in the received spectrum allocation ratio indicating signaling to the shared spectrum pool, and compares the ratio of the spectrum resources of each cell cluster calculated by each operator spectrum controller. If they are consistent, the shared spectrum pool initialization allocation response signaling is sent to the other party to complete the negotiation. Specifically, the spectrum controller SCA of the network where the cell cluster A is located, from the received shared spectrum pool initial allocation response signaling, knows the ratio of the spectrum resources occupied by the cell cluster B, Band B / (Band A + Band B ) and the cell cluster.
  • the proportion of the spectrum resources occupied by A is Band A / (Band A + Band B ), which is consistent with the ratio of the spectrum resources occupied by the cluster cluster A and the cell cluster B calculated by the spectrum controller SCA, and the spectrum controller SCA issues a shared spectrum pool.
  • the allocation response signaling is initialized, indicating that the shared spectrum pool spectrum allocation ratio division result is agreed: the cell cluster A occupies Band A / (Band A + Band B ), and the cell cluster B occupies Band B / (Band A + Band B ).
  • Cell cluster A has a higher CSG ratio. Therefore, compared to cell cluster B, cell cluster A should occupy more spectrum resources in the shared spectrum pool to ensure the QoS of its OPEN mode base station.
  • the dashed line in the "shared spectrum pool" in FIG. 3 indicates the amount of shared pool resources in the shared spectrum occupied by the cell cluster A and the cell cluster B after the shared spectrum pool initialization process.
  • the dotted line in the Shared Spectrum Pool is the initialization line.
  • the shared spectrum pool initialization line indicates that the cell clusters A and B have negotiated to determine the proportion of their shared spectrum pools. The initialization line divides the shared spectrum pool according to this negotiation ratio, and each cell cluster occupies the spectrum on both sides of the initialization line. Resources.
  • the spectrum controller SCA of the network where the cell cluster A is located calculates the spectrum resources occupied by the cell cluster A in the shared spectrum pool according to the negotiated ratio, and allocates them to the base stations of the cell cluster A.
  • the spectrum controller SCB of the network where the cell cluster B is located calculates the shared spectrum according to the negotiated ratio.
  • the spectrum resources occupied by the cluster B in the pool are allocated to the base stations of the cell cluster B.
  • the initialization process described in phase 1 ensures the relative fairness and stability of the spectrum allocation of the shared spectrum pool, which can reduce the signaling overhead required by the entire network in the inter-operator spectrum sharing negotiation process.
  • the CSG base station ratio of the cell cluster or other related parameters such as increased traffic load, topology change, etc.
  • the spectrum requirements corresponding to the cell cluster also increase.
  • the process of shared spectrum pool redistribution will be triggered (in the following description, we use cell cluster A (operator A) and cell cluster B (operator B).
  • the CSG base station ratio or other related parameters of the cell cluster A are transformed.
  • the spectrum controller SCA (first network) will evaluate its current state to decide whether to perform the shared spectrum pool redistribution process.
  • the spectrum controller SCA will send a shared spectrum pool reassignment request indication signaling to the spectrum controller SCB (second network).
  • the threshold value can be defined as a corresponding ratio.
  • the threshold value can be defined as 10% when the spectrum controller SCA's spectrum demand increment ( ⁇ ) exceeds 10% of its currently owned spectrum resource amount. , triggering the spectrum redistribution process.
  • the shared spectrum pool redistribution request indication signaling includes the following three parameters:
  • Redistribution Flags Indicates the reason for triggering the redistribution of shared spectrum pools. Here, we set different redistribution flags to indicate different trigger causes. When the redistribution flag is 0, it indicates that the spectrum demand increment is caused by the increase of the traffic load; when the redistribution flag is 1, it indicates that the spectrum demand increment is caused by the increase of the CSG base station ratio; the redistribution flag is 3, when, indicates that the spectrum demand increment is caused by a change in the cell cluster topology.
  • the spectrum demand delta ( ⁇ ) is the number of CSG mode base stations and OPEN mode base stations that are multiplied by their corresponding spectrum resource requirements. If the spectrum demand increment ( ⁇ ) is greater than the preset threshold, the redistribution process is triggered. For example, if the CSG mode base station in the cell cluster A increases M and the OPEN mode base station decreases N, the spectrum resource demand increment ( ⁇ ) is:
  • the number of member base stations of the cell cluster A is TA
  • the proportion of CSG base stations is A CSG
  • the number of member base stations of the cell cluster B is TB
  • the proportion of CSG base stations is B CSG
  • the size of the shared spectrum pool is Band (MHz).
  • the spectrum demand increment is the amount of spectrum resources required to satisfy the current load service of the cell cluster A minus the amount of spectrum resources it now has.
  • the sum of the spectrum bandwidths of the member base stations in the cell cluster A that meet the current traffic load can be expressed as Bandcur.
  • the current spectrum bandwidth of cell cluster A is BandA. If Bandcur-BandA > 10%, the redistribution process is triggered.
  • the spectrum redistribution response indication signaling includes the following parameters:
  • reject flag If the reject flag is 1, it indicates that the spectrum controller SCB has no free spectrum available to cell cluster A, it will reject the shared spectrum pool reassignment request of cell cluster A; if the reject flag is 0, it indicates The spectrum controller SCB has idle spectrum resources that can be provided to the cell cluster A.
  • the amount of concession spectrum resources f indicates that one operator is in the process of reallocation of shared spectrum pools The amount of spectrum resources that a cell cluster can retreat to another operator cell cluster in a shared spectrum pool.
  • Figure 5 and Figure 6 show the shared spectrum redistribution method across the operator scenario.
  • the change of the cell cluster CSG ratio causes an increase in spectrum demand. If the spectrum demand increment reaches a preset threshold, the redistribution process of the shared spectrum pool will be triggered (for example, the CSG of the cell cluster A) As the ratio increases, it will require more spectrum resources to guarantee the QoS of the OPEN mode base station.
  • the present invention takes different approaches to implement the redistribution process in response to an increase in spectrum demand due to these different reasons.
  • the specific implementation is as follows (taking the spectrum demand of the cell cluster A as an example):
  • Step 1 In cell cluster A, an increase in the CSG ratio or other related parameters may trigger a shared spectrum pool spectrum redistribution process.
  • Step 2 When the spectrum demand increment caused by the change of the CSG ratio or other related parameters of the cell cluster A reaches a preset threshold, the spectrum controller SCA will send a shared spectrum pool reassignment request indication signaling. Give the spectrum controller SCB.
  • This signaling includes re-allocation flag bits (flag 0: traffic load increase; flag 1: CSG ratio increase; flag 3: topology change, etc.), corresponding spectrum demand.
  • Step 3 According to the received shared spectrum pool reassignment request indication signaling, the spectrum controller SCB will evaluate its spectrum usage and determine whether there are free spectrum resources available to the cell cluster A. If the spectrum controller SCB does not have idle spectrum resources, the reject flag will be set to 1 in the spectrum redistribution response indication signaling, and the spectrum controller SCA will perform internal optimization allocation and adjustment of the spectrum resources after receiving the response information; If the spectrum controller SCB has a free band, the reject flag will be set to 0 in the spectrum redistribution response indication signaling. In response to this situation, there are two methods for spectrum redistribution: a. The first is based on the spectrum demand increment of the cluster A, the spectrum controller SCB tries to meet its spectrum requirements; b.
  • the second is based on the cell.
  • the spectrum demand increment of cluster A the spectrum controller SCB will gradually meet the spectrum demand of the cluster A.
  • Different spectrum redistribution methods will be used according to different triggering causes that increase the spectrum demand of the cell cluster A (see step 4 for details).
  • Step 4 If the redistribution flag in the shared spectrum pool reassignment request indication signaling received by the spectrum controller SCB is 1 (the spectrum demand is increased due to the increase in the CSG ratio), the spectrum controller SCB will adopt the first type.
  • the allocation method tries to meet the spectrum requirement of the cell cluster A (see step 5 for details); if the spectrum controller B receives the shared spectrum pool redistribution request indication signaling, the redistribution flag is not 1 (the spectrum requirement is caused by other reasons) Increase, such as increased traffic load, topology change, etc., then the spectrum controller SCB will adopt the second redistribution method to gradually meet the spectrum requirements of the cell cluster A (see step 6 for details).
  • the spectrum controller SCB will send a spectrum redistribution response indication signal to the spectrum controller SCA.
  • Step 5 If the spectrum controller SCB selects the first method, it will try to meet the spectrum requirements of the cell cluster A.
  • the maximum available spectrum resource amount of the spectrum controller SCB is f max , which is defined as the maximum amount of idle spectrum resources currently owned by the cell cluster B, that is, the total amount of spectrum resources owned by the cell cluster B after the shared spectrum pool initialization process is reduced. The amount of spectrum resources that have been used by the current cell cluster B.
  • the spectrum controller SCB selects the second method, the spectrum controller SCB will not satisfy the full spectrum requirement of the spectrum controller SCA at one time, and it will satisfy the spectrum requirements of the cluster A in a stepwise manner.
  • the spectrum demand increment of cell cluster A is ( ⁇ ).
  • the spectrum controller SCB will provide part of the spectrum resource f to the cell cluster A, where f is less than the spectrum demand increment ([Delta]) of the cell cluster A.
  • the spectrum controller SCA Upon receiving the spectrum resource f that is withdrawn from the spectrum controller SCB, the spectrum controller SCA will evaluate its current spectrum usage status and decide whether to perform the spectrum redistribution process again.
  • the spectrum controller SCB will evaluate its current spectrum usage status and reply to the spectrum redistribution response indication signaling. If the spectrum controller SCB does not have an idle spectrum, then in the new spectrum redistribution response indication signaling, the reject flag will be set to A, otherwise the reject flag will be set to zero.
  • the second network is incremented according to the spectrum demand of the first network.
  • the corresponding spectrum resource is provided to the first cell cluster A at one time; if the shared spectrum pool redistribution is triggered due to the increase of the service load of the first cell cluster A or the topology change, the second network is increased according to the spectrum requirement of the first network.
  • the corresponding spectrum resources are sequentially provided to the first cell cluster A.
  • the second network When the corresponding spectrum resource is provided to the first network at one time, if the maximum spectrum resource amount f max that the second network can provide is greater than the spectrum demand increment of the first cell cluster A, the second network once to the first cell cluster A The spectrum resource provided by the first cell is equal to the spectrum demand increment of the first cell cluster A; if the maximum spectrum resource amount f max that the second network can provide is less than or equal to the spectrum demand increment of the first cell cluster A, then the second network is first The spectrum resource provided by the cell cluster A at one time is equal to the maximum spectrum resource quantity, where f max is the total amount of spectrum resources owned by the second cell cluster B after the shared spectrum pool initialization process minus the current used by the second cell cluster B The amount of spectrum resources.
  • the second network receives the spectrum demand increment of the first network, determines whether there is an idle spectrum, and if there is a free spectrum, the second network provides the spectrum resource, and the second network
  • the spectrum resource for the first cell cluster A is smaller than the spectrum demand increment of the first cell cluster A; if there is no idle spectrum, the spectrum resource is rejected.
  • the first network determines whether to initiate the spectrum redistribution process again. If necessary, the first network initiates spectrum redistribution again, and returns to the foregoing second network to receive the first network. Incremental spectrum requirements, determine if there are steps available in the free spectrum; end if not needed.
  • the present invention optimizes the shared spectrum pool allocation strategy by designing a cross-operator spectrum dynamic sharing mechanism based on the CSG base station ratio, which is beneficial to improving the average service quality of each operator base station in the cell cluster.
  • each cell base station is subordinate to a different operator.
  • their working modes can also be divided into CSG mode and OPEN mode.
  • the cell base station working in the CSG mode only serves the end users registered with the operator. Generally, the number of end users serving the number is small and the load is light; and the cell base station working in the OPEN mode serves all the terminals. Users usually have a large number of end users and heavy loads.
  • the CSG base station ratio of a certain cell cluster increases or other related factors, causing an increase in the spectrum requirement of the cell cluster, which will trigger the shared spectrum pool redistribution process.
  • the shared spectrum pool redistribution phase due to the increase in the proportion of CSG base stations, etc. (the change of the base station working mode in the cell cluster causes the CSG base station ratio of the cell cluster to increase or the cell cluster service load to increase), the spectrum requirement of the cell cluster increases. The redistribution process will be triggered. Through the redistribution process, the spectrum resource allocation of the shared spectrum pool is more flexible and reasonable, further improving the spectrum efficiency and ensuring the fairness of spectrum allocation among operators.
  • the method proposed by the present invention comprehensively considers the spectrum differentiation requirement of the working mode of the base station, and combines the dynamic change of the working mode of the base station to more accurately allocate and redistribute the shared spectrum pool, thereby Improve spectrum efficiency and quality of service for base stations.
  • the first network and the second network divide the shared spectrum pool spectrum resources according to the CSG base station ratio of each cell cluster and the number of member base stations.
  • the proportion of CSG base stations is considered to be relatively small.
  • the number of service users of the CSG base station is relatively small.
  • a lower than average spectrum resource amount can be allocated, and the remaining spectrum resources in the shared spectrum pool are allocated to work in OPEN.
  • the mode of the base station guarantees its quality of service. And if you use the OPEN base station ratio calculation, have the same performance.
  • the spectrum resource Band A occupied by the cell cluster A in the corresponding shared spectrum pool shall be adjusted to:
  • the spectrum resource Band B occupied by the cell cluster B in the corresponding shared spectrum pool should be adjusted to:
  • the number of the member base stations of the cell cluster A is TA
  • the proportion of the base stations of the OPEN mode is A OPEN
  • the number of the base stations of the cell cluster B is TB
  • the proportion of the base stations of the OPEN mode is B OPEN
  • the size of the shared spectrum pool is Band (MHz). )
  • the first network and the second network divide the spectrum resources of the shared spectrum pool according to the number of CSG base stations and the number of the member base stations, and the spectrum resource Band A occupied by the cell cluster A in the corresponding shared spectrum pool should be adjusted to :
  • the spectrum resource Band B occupied by the cell cluster B in the shared spectrum pool shall be adjusted to:
  • the number of member base stations of the cell cluster A is TA
  • the number of CSG base stations is NA CSG
  • the number of member base stations of the cell cluster B is TB
  • the number of CSG base stations is NB CSG
  • the size of the shared spectrum pool is Band (MHz)
  • the first network and the second network divide the shared spectrum pool spectrum resources according to the number of OPEN base stations and the total number of the first network and the second network member base stations.
  • the spectrum resource Band A occupied by the cell cluster A in the shared spectrum pool should be adjusted to:
  • the spectrum resource Band B occupied by the cell cluster B in the shared spectrum pool shall be adjusted to:
  • the number of member base stations of the cell cluster A is TA
  • the number of base stations in the OPEN mode is MA OPEN
  • the number of member base stations of the cell cluster B is TB
  • the number of base stations in the OPEN mode is MB OPEN
  • the size of the shared spectrum pool is Band (MHz).
  • CSG mode base station working bandwidth Band CSG (MHz).
  • the first network and the second network divide the shared spectrum pool spectrum resources according to the CSG base station ratio of each cell cluster and the number of member base stations.
  • the first network and the second network are OPEN according to an initialization stage. The number of terminals served by the base station and the number of member base stations divide the spectrum resources of the shared spectrum pool. Because the number of terminals served by the home base station remains unchanged for a long time, the changes are infrequent.
  • the spectrum resource Band A allocated to the first network in the shared spectrum pool is equal to the sum of the spectrum resources occupied by the CSG mode base station in the cell cluster A of the first network and the spectrum resources occupied by the OPEN mode base station in the cell cluster A.
  • the spectrum resource occupied by the base station in the OPEN mode in the cell cluster A is calculated by the following method: the number of terminals served by the OPEN mode base station in the cell cluster A of the first network when triggering the initialization of the shared spectrum pool, multiplied by the shared spectrum pool resource for the cell cluster.
  • the spectrum resource Band B allocated to the second network in the shared spectrum pool is equal to the spectrum resource occupied by the CSG mode base station in the cell cluster B of the second network, and the sum of the spectrum resources occupied by the OPEN mode base station in the cell cluster B.
  • the spectrum resource occupied by the base station in the OPEN mode in the cell cluster B is calculated by the following method: the number of terminals served by the OPEN mode base station in the cell cluster B of the second network when triggering the initialization of the shared spectrum pool, multiplied by the shared spectrum pool resource for the cell cluster.
  • the spectrum resource Band A occupied by the cell cluster A in the shared spectrum pool should be adjusted to:
  • the spectrum resource Band B occupied by the cell cluster B in the shared spectrum pool shall be adjusted to:
  • the number of member base stations of the cell cluster A is TA
  • the number of base stations in the OPEN mode is MA OPEN
  • the number of member base stations of the cell cluster B is TB
  • the number of base stations in the OPEN mode is MB OPEN
  • the size of the shared spectrum pool is Band (MHz).
  • CSG mode base station working bandwidth Band CSG (MHz).
  • the number of terminals that are served when the shared spectrum pool is initialized may be the number of terminals that the first network and the second network exchange through signaling during the initial stage of the shared spectrum pool spectrum resource initialization.
  • the OPEN initial value is used to calculate OPEN in the initialization phase.
  • Mode resource required by the base station if the remaining resources can meet the requirements of the CSG mode base station, then allocate the shared pool; if the remaining resources cannot meet the requirements of the CSG mode base station, reduce the Qos value and recalculate the resources required by the OPEN mode base station until The remaining resources satisfy the Qos requirements of the CSG mode base station.
  • the spectrum resource Band A occupied by the cell cluster A in the shared spectrum pool should be adjusted to:
  • the spectrum resource Band B occupied by the cell cluster B in the shared spectrum pool shall be adjusted to:
  • Band B (TB-MB OPEN ) ⁇ Band CSG + MB OPEN ⁇ Band OPEN (13)
  • the number of member base stations of the cell cluster A is TA
  • the number of base stations in the OPEN mode is MA OPEN
  • the number of member base stations of the cell cluster B is TB
  • the number of base stations in the OPEN mode is MB OPEN
  • the size of the shared spectrum pool is Band (MHz).
  • the second network calculates the shared spectrum pool initial allocation ratio or initializes the allocation value
  • the OPEN mode base station operating bandwidth preset initial value Band OPEN MHz
  • formula 11 calculates the shared spectrum resources respectively occupied by the first network and the second network.
  • the first network determines whether it is acceptable, that is, whether the shared spectrum pool has sufficient resources to satisfy the first network and the second network. The sum of shared spectrum resources.
  • the first network determines that the shared spectrum pool has sufficient resources to satisfy the sum of the shared spectrum resources occupied by the first network and the second network, send a preset initial value of the OPEN mode base station to the second network, Band OPEN (MHz). Instructions.
  • the first network may also calculate that the OPEN mode base station operating bandwidth preset initial value Band OPEN (MHz) is raised to a median value, and adjust to the second network to adjust the OPEN mode base station working bandwidth preset initial value Band OPEN (MHz) to The indication of the median.
  • the first network and the second network allocate spectrum resources to respective OPEN mode base stations according to a median value.
  • the first network determines that the shared spectrum pool does not have sufficient resources to satisfy the sum of the shared spectrum resources occupied by the first network and the second network, send a preset initial value of the OPEN mode base station to the second network, Band OPEN (MHz). Indicated as the lowest value.
  • the first network and the second network allocate spectrum resources to the respective OPEN mode base stations according to the lowest value.
  • the shared spectrum pool can reserve some resources and is not allocated during the initialization phase. Therefore, in the foregoing six embodiments, the spectrum resource Band A allocated to the first network in the shared spectrum pool is equal to the spectrum resource occupied by the CSG mode base station in the cell cluster A of the first network, and is occupied by the OPEN mode base station in the cell cluster A.
  • the sum of the spectrum resources; the spectrum resource Band B of the second network is equal to the spectrum resource occupied by the CSG mode base station in the cell cluster B of the second network, and the sum of the spectrum resources occupied by the OPEN mode base station in the cell cluster B; the shared spectrum pool
  • the spectrum resource is equal to the sum of Band A and Band B plus the reserved spectrum resources.
  • the present invention is directed to different working modes of the home base station, and the number of service users in the actual scenario is different.
  • the process of initializing and allocating the spectrum resources of the shared spectrum pool based on the proportion of CSG base stations in each cell cluster can be regarded as static. Under the condition, the optimized allocation of the shared spectrum pool is performed; and the subsequent redistribution process can be regarded as the process of re-optimizing the initial allocation result under dynamic conditions, and the spectrum demand for a certain cluster is increased (trigger causes include: cell cluster) CSG base station ratio change, service load increase, topology change, etc., adopt different sharing and retreat mechanisms, thereby improving the utilization of idle spectrum and improving the performance of the overall network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种网络间共享频谱优化系统及方法。在该优化方法中,共享频谱池中分配给第一网络的频谱资源,包括第一小区簇的OPEN模式基站占用的频谱资源,共享频谱池中分配给第二网络的频谱资源,包括第二小区簇的OPEN模式基站占用的频谱资源,第一小区簇中的每个OPEN模式基站占用的频谱资源与第二小区簇中的每个OPEN模式基站占用的频谱资源大小相同。本发明综合考虑了基站工作模式或业务负载等变化对频谱的差异化需求,并结合基站工作模式的动态变化能够更加合理的对共享频谱池进行初始化分配和再分配,从而提高频谱效率与基站的服务质量。

Description

一种网络间共享频谱优化系统及方法 技术领域
本发明涉及一种基于CSG(Closed Subscriber Group,闭合用户组)基站占比动态分配共享频谱的网络间共享频谱优化系统,同时也涉及相应的网络间共享频谱优化方法,属于无线通信技术领域。
背景技术
近年来,随着无线通信系统的不断发展以及智能终端的大量普及,用户对于数据通信业务方面的要求也越来越高,与之相对应的传输频谱需求也越来越大。但是,适合于无线传输的频谱资源是有限的。为了避免相互之间的干扰,目前世界各国都是采用静态的频谱分配政策,将一些授权频段分配给某个固定的无线业务使用,剩下的未授权频段由于很多无线通信技术都在这些未授权频段上进行数据传输,使得这段频谱资源也相当拥挤。另一方面,根据美国联邦通信委员会(FCC)监测数据显示,目前大部分授权频段的频谱利用率很低,大约在15%~85%之间,特别是有一些频谱在绝大部分时间都没有被占用,这样的情况造成了频谱资源的严重浪费。
为了提高频谱利用效率,人们越来越关注对动态频谱资源共享技术的研究,而跨运营商间(跨网络)的动态频谱资源共享技术的研究更是其中的一个热点议题。
目前,跨运营商间的动态频谱资源共享主要通过共享频谱池技术实现,不同运营商将所拥有的部分或全部的频谱资源组成共享频谱池,通过相关优化机制动态地对共享频谱池资源进行合理分配。相比于运营商内部动态频谱资源共享,跨运营商间的动态频谱资源共享技术可以有效缓解不同运营商在特定区域业务的不平衡,提高了频谱资源共享的灵活性与公平性,同时也能进一步提高频谱资源的利用率,缓解频谱资源短缺的问题。
在现有技术中,R.H.Kamal等提出了一种基于博弈算法的集中式动态跨运营商频谱共享方案(参见PIMRC’09,pp.425–429)。它通过建立一种非零和博弈(non-zero sum game)算法模型来分析不同运营商间的竞争 过程。不同运营商小区基站由共同的一个频谱管理实体进行集中式管理,该实体通过分析各小区基站上报的相关信息进行全局最优化频谱资源分配。然而,如何保证其频谱分配的公平性与交互信息的隐私性是至关重要的。考虑到不同运营商间交互信息的敏感性,不同运营商共用同一频谱管理实体仍很难实现。V.L.Anchora等提出了一种根据下行信道选择的优化共享频谱分配方法(参见Proc.IEEE ISWCS,pp.286–290,Aug.2012)。通过不同基站终端用户对不同信道测量的结果,各基站在共享频谱池中选择最优信道资源进行传输,从而提高频谱资源效率。但是,由于各基站在共享频谱池中所选最优信道可能发生重叠,在进行协商退让时将会带来大量的信令开销,影响无线传输系统的服务质量。S.Hailu等进一步提出了一种在不同运营商之间自适应的频谱共享算法(参见Proc.Int.Conf.Cognitive Radio Oriented Wireless Netw.,Jun.2014,pp.131–135),将带宽分为独占和共享两部分使用,用户在接入信道的时候考虑网络间的干扰强度择优选择独占或者共享信道。
然而,上述这些方法都只考虑同一区域内单一工作模式基站的跨运营商频谱共享情况。在实际部署场景中,通常是根据实际需要在一个区域内混合部署不同工作模式的基站。因此一个区域内的不同小区簇内可能分布的基站中,CSG模式基站数量与OPEN模式基站数量不同。如果对各小区簇设定相同的共享频谱大小,用户平均带宽就受到影响,从而影响QoS。另一方面,基站可以根据需要调整工作模式,例如从CSG模式调整为OPEN模式或者从OPEN模式调整为CSG模式。但基站工作模式改变,用户平均带宽就受到影响,从而影响QoS。
发明内容
本发明所要解决的技术问题在于提供一种基于CSG基站占比进行辅助判断,可以动态分配共享频谱的网络间共享频谱优化系统及方法。
为实现上述的发明目的,本发明采用下述的技术方案:
一种网络间共享频谱优化系统,包括至少第一网络和第二网络,所述第一网络包括第一小区簇,所述第二网络包括第二小区簇,所述两个小区簇共享频谱池,所述小区簇各有多个工作于CSG模式或OPEN模式的基站,其中,所述共享频谱池中分配给所述第一网络的频谱资源,包括所述第一小区簇的OPEN模式基站占用的频谱资源,所述共享频谱池 中分配给所述第二网络的频谱资源,包括所述第二小区簇的OPEN模式基站占用的频谱资源,所述第一小区簇中的每个所述OPEN模式基站占用的频谱资源与所述第二小区簇中的每个所述OPEN模式基站占用的频谱资源大小相同;或者,所述第一小区簇中的每个所述OPEN模式基站服务的终端占用的频谱资源与所述第二小区簇中的每个所述OPEN模式基站服务的终端占用的频谱资源大小相同。
一种网络间共享频谱优化方法,包括至少第一网络和第二网络,所述第一网络包括第一小区簇,所述第二网络包括第二小区簇,所述小区簇共享频谱池,所述小区簇各有多个工作于CSG模式或OPEN模式的基站,其中:
所述第一网络和所述第二网络之间建立所述共享频谱池,然后所述第一网络根据自身频谱需求触发共享频谱池初始化,与第二网络进行共享频谱池初始化,
完成所述共享频谱池初始化后,所述第一小区簇中的每个所述OPEN模式基站占用的频谱资源与所述第二小区簇中的每个所述OPEN模式基站占用的频谱资源大小相同;或者,所述第一小区簇中的每个所述OPEN模式基站服务的终端占用的频谱资源与所述第二小区簇中的每个所述OPEN模式基站服务的终端占用的频谱资源大小相同。
本发明通过提供一种基于CSG基站占比的跨运营商动态频谱共享机制,优化了共享频谱池分配策略,有利于改善小区簇中各运营商基站的平均服务质量。相比于现有方法,本发明所提出的方法综合考虑了基站工作模式、业务负载变化、拓扑结构变化等因素对频谱的差异化需求,并结合基站工作模式的动态变化能够更加合理地对共享频谱池进行初始化分配和再分配,从而提高频谱效率与基站的服务质量。
附图说明
图1为具有不同CSG基站占比的各小区簇频谱资源分配差异性示意图;
图2为跨运营商共享频谱池分配过程示意图;
图3为共享频谱池的初始化过程示意图;
图4为共享频谱池的初始化过程流程图;
图5为共享频谱池的再分配过程示意图;
图6为共享频谱池的再分配过程流程图。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案做进一步的详细说明。
在本发明的一个实施例中,重点考虑LTE(包括但不限于TD-LTE和FDD-LTE)异构网络中跨运营商频谱共享的问题。但不言而喻的是,本发明所提供的技术思想也能够应用在其它混合组网的无线通信系统,例如TD-SCDMA、CDMA2000和WCDMA混合组网的无线通信系统中,甚至是在4G/5G网络中使用。
在LTE异构网络中,宏基站覆盖范围内重叠部署了一些家庭基站,这些家庭基站的工作模式包括CSG(闭合用户组)模式和OPEN模式。工作于CSG模式的家庭基站只服务本运营商的注册用户,而工作于OPEN模式的家庭基站则可以服务本运营商下的所有用户。通常情况下,CSG模式基站能服务的用户数量相对较少,而OPEN模式基站能服务的用户数量相对较多。当属于不同运营商的家庭基站所组成的小区簇进行频谱共享时,如何对共享频谱池资源进行合理的分配将直接关系到频谱资源的利用效率。由于不同运营商小区簇的CSG基站与OPEN基站部署数量可能不同,各小区簇的CSG基站占比也可能不同。为了更加合理公平的对共享频谱池资源进行分配,可以考虑将各小区簇的CSG基站占比作为资源分配的关键参数。
虽然本发明以两个或多个不同运营商运营网络(下文将“运营商运营网络”简称为“运营商”)的小区簇为例进行说明,但是本发明不限于不同运营商的网络,也可以是同一运营商的网络。而且,虽然本发明是以两个网络为例进行说明,但本发明不限于两个网络,可以是多个网络。
下面假设一种具体场景进行详细讨论分析。如图1所示,假设小区簇A和小区簇B分别属于第一网络和第二网络。小区簇A和小区簇B各有10个家庭基站,每一个基站至少分配有一个分量载波(Component Carrier,CC),而每一个分量载波可以服务多个用户。假设小区簇A有三个CSG模式的基站、七个OPEN模式的基站、二十个用户(3个CSG注册用户和17个非CSG注册用户)以及10个分量载波。假设为了满足注册用户的QoS要求,每个CSG模式的基站只使用自身拥有的分量载波服 务一个注册用户,所以三个CSG模式基站至少需要三个分量载波。而余下的七个OPEN模式基站需要使用剩余的七个分量载波服务十七个用户,每个用户的平均带宽为7/17。对于小区簇B作同样的分析,有七个CSG模式基站和三个OPEN模式基站、二十个用户(7个CSG注册用户和13个非CSG注册用户)和10个分量载波。七个CSG模式基站至少需要七个子载波来服务七个注册用户。那么余下的三个OPEN模式基站需要用剩余的三个子载波服务十三个用户,每一个用户的平均带宽为3/13。根据以上分析,我们可以发现小区簇B中OPEN模式基站需要更多的分量载波才能达到和小区簇A中OPEN模式基站相同的服务质量。其问题的关键就在于小区簇中CSG基站的数量与占比问题。相比于低CSG基站占比的小区簇(例如小区簇A)中OPEN模式基站,具有较高CSG基站占比的小区簇(例如小区簇B)则需要更多的频谱资源以实现其OPEN模式基站具有相似的服务质量。
在上述分析的基础上,本发明提出一种基于小区簇CSG基站占比的跨运营商频谱共享机制,通过在不同运营商之间基于各小区簇的CSG基站占比及其动态变化,对共享频谱池资源进行分配/重分配。该机制可以分为两个阶段实施:共享频谱池初始化分配阶段与共享频谱池再分配阶段。在初始化分配阶段,属于不同运营商的小区簇根据各自CSG基站的占比情况对共享频谱池中的频谱资源进行分配。由于CSG基站只能为其注册用户服务,CSG基站占比高的小区簇占有共享频谱池中较多的频谱资源,而CSG基站占比低的小区簇占有共享频谱池中较少的频谱资源,以此保证高CSG基站占比小区簇中OPEN基站的服务质量。
本发明保证不同网络中两个共享频谱的小区簇中的OPEN模式基站具有同样的服务带宽(OPEN模式的基站服务终端数量相同的情况下),以确保QoS相对公平性。
在本发明的一个实施例中,以第一运营商运营的第一网络和第二运营商运营的第二网络,这两个不同运营商(网络)为例,说明在不同运营商之间基于各运营商小区簇的CSG基站占比,对不同运营商之间的共享频谱池实现动态优化分配。需要说明的是,如果同一运营商在不同小区簇的CSG基站占比不同,也可以适用本发明。
具体而言,在进行跨运营商(跨网络)频谱共享时,不同运营商小 区簇需要根据各自CSG基站占比对共享频谱池进行分配,使具有较高CSG基站占比的小区簇占有共享频谱池中较多的频谱资源,从而保证具有不同CSG基站占比的多个小区簇,可以实现这些小区簇的多个OPEN模式基站的服务质量的相对公平性。相对公平性是指同一小区簇中如OPEN模式基站占用的频谱资源相同,或者OPEN模式基站服务的终端占用的频谱资源相同,从而使不同小区簇OPEN模式基站具有相似的服务质量。
原则上,共享频谱池中分配给第一网络的频谱资源BandA等于第一网络的小区簇A(第一小区簇)中CSG模式基站占用的频谱资源,与小区簇A中OPEN模式基站占用的频谱资源之和。小区簇A中OPEN模式基站占用的频谱资源通过以下方法计算:第一网络的小区簇A中OPEN模式基站数量,乘以共享频谱池资源中用于小区簇A或小区簇B的所有OPEN模式基站的频谱资源,除以小区簇A和小区簇B的OPEN模式基站总量。
类似的,共享频谱池中分配给第二网络的频谱资源BandB等于第二网络的小区簇B(第二小区簇)中CSG模式基站占用的频谱资源,与小区簇B中OPEN模式基站占用的频谱资源之和。小区簇B中OPEN模式基站占用的频谱资源通过以下方法计算:第二网络的小区簇B中OPEN模式基站数量,乘以共享频谱池资源中用于小区簇A或小区簇B的所有OPEN模式基站的频谱资源,除以小区簇A和小区簇B的OPEN模式基站总量。
本发明所涉及的跨运营商共享频谱池初始化分配与再分配的机制的实施过程可以分为两个阶段共享频谱池初始化阶段和再分配阶段,如图2所示。首先是不同运营商运营的网络之间建立共享频谱池,然后第一网络根据自身频谱需求触发共享频谱池初始化,与第二网络进行共享频谱池初始化。完成共享频谱池初始化后,第一网络或第二网络判断自身频谱需求是否有变化,如果变化达到预设门限值,则触发共享频谱池再分配。需要说明的是,根据实际情况,可以设置为不同运营商运营的网络之间建立共享频谱池,之后直接进行共享频谱池初始化。
共享频谱池初始化阶段,具体包括以下步骤:第一网络(例如小区簇A所在网络)根据资源需求触发共享频谱池初始化,向第二网络(例 如小区簇B所在网络)发出共享频谱池初始化指示信令。第二网络接收到该信令后,根据信令参数计算共享频谱池初始化分配比例,然后向第一网络发出共享频谱池初始化分配比例指示信令。第一网络接收到共享频谱池初始化分配比例指示信令,与第一网络自行计算的共享频谱池初始化分配比例进行比较,如果一致,则向第二网络发出判断一致的指示(或者向第二网络发出分配频谱资源的指示);如果比较结果不一致,则向第二网络发出不一致的指示(或者向第二网络发出重新计算的指示),返回到第二网络计算共享频谱池初始化分配比例的步骤。
<第一实施例>
阶段一:共享频谱池初始化阶段
本发明所提到的共享频谱池的建立方法可采用各种方式,可以是不同运营商网络专门负责频谱资源分配的频谱控制器(spectrum controller)间进行通信协商,从而建立起一个共享频谱池。也可以是各小区簇的簇头(cluster header)通过收集本小区簇成员基站的相关频谱资源信息,再通过各簇头间的通信协商机制建立一个共享频谱池。可以参考本申请人在2014年1月23日申请的《一种网络频谱共享方法》(专利申请号:201410032758.3)中公开的共享频谱池建立方法,在此不予赘述。
在本发明的一个实施例中,将小区簇CSG基站占比作为共享频谱池分配的关键性因素,同时也可以考虑其他一些相关参数(如业务负载、拓扑结构、终端用户数量等)。例如考虑到不同的小区簇在实际中可能存在的差异性(如各小区簇的实际业务负载情况、服务用户的数量等),在本发明如对它们进行无差异的看待,并不利于最大限度地提高频谱资源利用率。所以,可以考虑将各小区簇CSG占比作为共享频谱池频谱资源分配的绝对影响因素,设置较大的权重值(如α=0.9),而其它影响因子的则设置较小的权重值(如β=0.1),从而既考虑到了不同小区簇在进行共享频谱池频谱分配中存在的一定的差异,同时又考虑到了一般性,将小区簇CSG占比作为决定频谱分配的主要因素。
为了保证基本的通信服务质量,具有较高CSG基站占比的小区簇应在共享频谱池中占有更多的频谱资源量。第一网络与第二网络通过以下新的交互信令来保证初始化过程的实施。
1.共享频谱池初始化分配指示信令
当共享频谱池建立后,除各运营商独占的一部分频谱资源,需要对频谱池中另外的共享频谱资源进行初始化分配过程。各小区簇中成员基站对频谱资源的需求触发不同网络的频谱控制器进行共享频谱池频谱资源初始化的过程。
当共享频谱池建立后不同网络的频谱控制器将相互发送一个共享频谱池初始化分配指示信令给对方,触发共享频谱池初始化分配过程。该共享频谱池初始化分配指示信令包括以下参数:
-初始化标志位;
-频谱控制器所属网络的小区簇CSG基站占比;
-运营商小区簇频谱控制器位置信息;
共享频谱池初始化分配指示信令还可以包括其他相关参数,如业务负载、拓扑结构、终端用户数量等。
图3和图4展示了不同运营商网络情况下共享频谱池初始化分配方法。在图3中,“共享频谱池”中的实线表示共享频谱池未初始化时频谱资源分配状态,实线两边的频谱资源分属于不同运营商小区簇。
为方便理解,在这一场景中,假设小区簇A与小区簇B具有相同数量的基站数,因此,在共享频谱池初始化之前小区簇A与小区簇B占有相同的频谱资源,换言之,图3中“共享频谱池”中的实线处于图3所示整个频谱资源的正中间位置。实际上,小区簇A与小区簇B可以具有不同数量的基站。
小区簇A与小区簇B也可以处于这样的情况:小区簇A与小区簇B有相同数量的基站,但是初始化时小区簇A中处于CSG模式的基站数量,比小区簇B中处于CSG模式的基站数量更多。
因此,小区簇A和小区簇B的成员基站中,处于CSG模式的基站数量不同,可以根据各小区簇CSG基站占比以及成员基站的数量对共享频谱池频谱资源进行划分。
例如小区簇A的成员基站数量为TA,其CSG基站占比为ACSG,小区簇B的成员基站数量为TB,其CSG基站占比为BCSG,共享频谱池的 大小为Band(MHz),这里需要为CSG基站设置一个工作带宽BandCSG(MHz),考虑到CSG基站的服务终端相对较少,所以BandCSG应设置为小于Band/(TA+TB)的某个值,即BandCSG<Band/(TA+TB)。根据以上相关参数,共享频谱池中小区簇A所占频谱资源BandA应表示为:
Figure PCTCN2015099266-appb-000001
小区簇B所占频谱资源BandB应表示为:
Figure PCTCN2015099266-appb-000002
根据公式(1)和(2)可知,共享频谱池中小区簇A所占频谱资源BandA是小区簇A中CSG模式基站占用的频谱资源与小区簇A中OPEN模式基站占用的频谱资源之和,其中OPEN模式基站占用的频谱资源是,通过将共享频谱池中各个网络中CSG模式基站占用的频谱资源之外的频谱资源平均分配给各个网络中的OPEN模式基站得到的。
根据公式(2)可知,小区簇B所占频谱资源资源BandB是小区簇B中CSG模式基站占用的频谱资源与小区簇B中OPEN模式基站占用的频谱资源之和,其中OPEN模式基站占用的频谱资源是,通过将共享频谱池中各个网络中CSG模式基站占用的频谱资源之外的频谱资源平均分配给各个网络中的OPEN模式基站得到的。
随着某一小区簇CSG占比的升高,其对应占有的共享频谱池中频谱资源数量也在不断升高,这样保证了在小区簇成员基站数量不等的情况下各基站所拥有频谱资源的公平性问题。当然,以上公式具有一般性,同样适用于小区簇A与小区簇B成员基站数量相同的情况,此时在公式中,A=B。
公式(1)和(2)表示,共享频谱池的频谱带宽,等于共享此共享频谱池的两个小区簇(A和B)的CSG基站使用的频谱资源与OPEN基站使用的频谱资源之和。两个小区簇(A和B)的CSG基站使用的频谱资源分别为TA*ACSG*BandCSG以及TB*BCSG*BandCSG。两个小区簇(A和B)的OPEN基站使用的频谱资源之和是Band-TA*ACSG*BandCSG-TB*BCSG*BandCSG=Band-BandCSG(TA*ACSG+TB*BCSG)。两个小区簇(A和B)的各个OPEN模式的基站使用的频谱资源为,前述 两个小区簇(A和B)的OPEN基站使用的频谱资源之和除以两个小区簇(A和B)的OPEN模式的基站总数得到的平均值。
2.共享频谱池初始化频谱分配比例指示信令
根据接收到的共享频谱池初始化分配指示信令中CSG基站占比以及其他相关参数,各运营商频谱控制器分别计算对应其在共享频谱池中所占频谱资源比例与数量。小区簇A所在网络的频谱控制器计算出该网络在共享频谱池中所占频谱资源比例为BandA/(BandA+BandB),小区簇B所在网络的频谱控制器计算出该网络在共享频谱池中所占频谱资源比例为BandB/(BandA+BandB)。
各网络的频谱控制器分别向对方发送共享频谱池初始化频谱分配比例指示信令,指示共享频谱池中各小区簇所占频谱资源的比例。以两个网络为例,小区簇A所在网络的频谱控制器只是发出小区簇A所占频谱资源的比例BandA/(BandA+BandB)以及小区簇B所占频谱资源的比例BandB/(BandA+BandB)。小区簇B所在网络的频谱控制器只是发出小区簇B所占频谱资源的比例BandB/(BandA+BandB)以及小区簇A所占频谱资源的比例BandA/(BandA+BandB)。
需要特别指出的是,在计算中它们需要使用相同的计算法则与标准,其应对的计算结果也应该是一致的。
作为可选方案,共享频谱池初始化频谱分配比例指示信令可以只是共享频谱池中本小区簇所占频谱资源的分配值,即,小区簇A所在网络的频谱控制器SCA只是发出小区簇A所占频谱资源BandA,小区簇B所在网络的频谱控制器只是发出小区簇B所占频谱资源的分配值BandB
3.共享频谱池初始化分配应答信令
根据接收到的共享频谱池初始化频谱分配比例指示信令,各运营商频谱控制器需要协商并确定共享频谱池初始化分配比例,即初始化线,分别按比例占用共享频谱资源。
各运营商频谱控制器(各网络频谱控制器)向对方发出共享频谱池初始化分配应答信令,指示各运营商频谱控制器是否同意上述初始化过程共享频谱池频谱分配比例划分结果。共享频谱池初始化频谱分配比例 指示信令包括各小区簇计算所得到的共享频谱池候中各小区簇所占频谱资源的比例参数以及对应的频谱资源数量参数等。
具体而言,以两个网络为例,小区簇B所在网络的频谱控制器SCB接收到频谱控制器SCA发出的共享频谱池初始化频谱分配比例指示信令,获取该信令中的小区簇A所占频谱资源的比例BandA/(BandA+BandB)以及小区簇B所占频谱资源的比例BandB/(BandA+BandB)。类似的,小区簇A所在网络的频谱控制器SCA也能从频谱控制器SCB发出的共享频谱池初始化分配应答信令中,获知小区簇B所占频谱资源的比例BandB/(BandA+BandB)以及小区簇A所占频谱资源的比例BandA/(BandA+BandB)。
各运营商频谱控制器分别将接收到的共享频谱池初始化频谱分配比例指示信令中的各个小区簇频谱资源比例,与各运营商频谱控制器各自计算得到的各个小区簇频谱资源比例进行比对,如果一致则向对方发出共享频谱池初始化分配应答信令,完成协商。具体而言,小区簇A所在网络的频谱控制器SCA从接收到的共享频谱池初始化分配应答信令中,获知小区簇B所占频谱资源的比例BandB/(BandA+BandB)以及小区簇A所占频谱资源的比例BandA/(BandA+BandB),与频谱控制器SCA计算得到的小区簇A和小区簇B各自所占频谱资源的比例一致,则频谱控制器SCA发出共享频谱池初始化分配应答信令,指示同意共享频谱池频谱分配比例划分结果:小区簇A占用BandA/(BandA+BandB),小区簇B占用BandB/(BandA+BandB)。
小区簇A具有较高CSG占比。所以相比于小区簇B,小区簇A应在共享频谱池中占有更多的频谱资源保证其OPEN模式基站的QoS。而图3中位于“共享频谱池”中的虚线指示出共享频谱池初始化过程后小区簇A与小区簇B各自所占用的共享频谱中的共享池资源量。“共享频谱池”中的虚线为初始化线。共享频谱池初始化线表示小区簇A和B经过协商后,确定各自所占共享频谱池的比例,初始化线则按照这一协商比例将共享频谱池分割,各小区簇分别占有使用初始化线两边的频谱资源。
据此,小区簇A所在网络的频谱控制器SCA按照协商好的比例计算出共享频谱池中小区簇A占用的频谱资源,分配给小区簇A的各个基站。小区簇B所在网络的频谱控制器SCB按照协商好的比例计算出共享频谱 池中小区簇B占用的频谱资源,分配给小区簇B的各个基站。
阶段二:共享频谱池再分配过程
阶段一所述的初始化过程保证了共享频谱池频谱分配的相对公平性与稳定性,这可以减少整个网络在跨运营商频谱共享协商过程中所需要的信令开销。然而,当小区簇的CSG基站占比或者其他相关参数(如业务负载增加、拓扑结构改变等)发生改变时,对应该小区簇的频谱需求也在增加。当频谱需求增量达到预先设定的门限值时,将会触发共享频谱池再分配的过程(在下面的描述中,我们以小区簇A(运营商A)和小区簇B(运营商B)为例,假设小区簇A的CSG基站占比或其他相关参数发生变换)。
1.共享频谱池再分配请求指示信令
当小区簇A的CSG基站占比或者其他相关参数发生改变,频谱控制器SCA(第一网络)将评估其当前状态决定是否进行共享频谱池再分配过程。
如果第一网络的当前频谱需求变化超过了预先设定的门限值,那么频谱控制器SCA将发送一个共享频谱池再分配请求指示信令给频谱控制器SCB(第二网络)。
这里,门限值可以被定义为相应的比例,例如,可以将门限值定义为10%,当频谱控制器SCA的频谱需求增量(Δ)超过其当前拥有频谱资源量的百分之十时,触发频谱再分配过程。
共享频谱池再分配请求指示信令中包括以下3个参数:
-运营商小区簇频谱控制器位置信息
-再分配标志位:指示触发共享频谱池再分配的原因。这里,我们设置不同的再分配标志位表示不同的触发原因。当再分配标志位为0时,表示频谱需求增量是由于业务负载增加引起的;再分配标志位为1时,表示频谱需求增量是由于CSG基站占比提高引起的;再分配标志位为3,时,表示频谱需求增量是由于小区簇拓扑结构发生改变引起的等等。
-频谱需求增量(Δ):指示小区簇A所需要的频谱增量。
根据不同的原因,设定以下两种不同的频谱需求增量(Δ)的计算方 法:
a.如果由于CSG基站占比提高触发再分配过程,我们定义频谱需求增量(Δ)为变化的CSG模式基站和OPEN模式基站数量乘以它们对应的频谱资源需求量。如果频谱需求增量(Δ)大于预设门限值时,将触发再分配过程。例如,小区簇A中的CSG模式基站增加M,OPEN模式基站减少N,则频谱资源需求增量(Δ)为:
Figure PCTCN2015099266-appb-000003
其中,小区簇A的成员基站数量为TA,其CSG基站占比为ACSG,小区簇B的成员基站数量为TB,其CSG基站占比为BCSG,共享频谱池的大小为Band(MHz),CSG基站工作带宽BandCSG(MHz)。
频谱需求增量(Δ)大于预设门限值时,ΔBandA/(BandA+BandB)>10%,这种情况下触发再分配。
b.如果再分配过程是由于业务负载增加或小区簇拓扑改变时,频谱需求增量为满足小区簇A当前负载业务所需的频谱资源量减去其现在自身所拥有的频谱资源量。小区簇A中各成员基站统计满足当前业务负载的频谱带宽的总和,可表示为Bandcur。而小区簇A当前拥有的频谱带宽为BandA。如果Bandcur-BandA>10%,则触发再分配过程。
2.频谱再分配应答指示信令
频谱控制器SCB接收到从频谱控制器SCA发来的再分配请求指示信令后,它将评估其当前频谱使用状态并决定是否同意再分配请求。如果频谱控制器SCB同意再分配请求,它将根据引起小区簇A频谱需求增量的不同原因选择不同的频谱退让方式。频谱再分配应答指示信令包括以下参数:
-拒绝标志位:如果拒绝标志位为1,表明频谱控制器SCB没有空闲的频谱可以提供给小区簇A,它将拒绝小区簇A的共享频谱池再分配请求;如果拒绝标志位为0,表明频谱控制器SCB有空闲频谱资源可以提供给小区簇A。
-退让频谱资源量f:表明在共享频谱池再分配过程中,一个运营商 小区簇在共享频谱池中可以退让给另一个运营商小区簇的频谱资源量。
图5和图6展示了跨运营商场景下共享频谱再分配方法。正如之前所述,许多原因将会导致共享频谱池初始化分配完成的分配结果的变化。一种原因是小区簇CSG占比的改变引起频谱需求的增加,如果频谱需求增量达到预先设定的门限值时,将会触发共享频谱池的再分配过程(例如:小区簇A的CSG占比提高,它将需要更多的频谱资源来保证OPEN模式基站的QoS)。另一个原因是小区簇的业务负载增加或拓扑结构发生改变(小区基站加入/退出),该小区簇需要更多的频谱资源满足其业务负载需求(例如:小区簇A的业务负载升高,它需要占用部分小区簇B的频谱资源保证其QoS)。根据这些不同原因导致的频谱需求的增加,本发明采取不同的方法实施再分配过程。
根据上面所提方法,具体的实施方案如下所述(以小区簇A频谱需求增加为例):
步骤1:在小区簇A中,CSG占比的提高或其它相关参数的改变可能会触发共享频谱池频谱再分配过程。
步骤2:当小区簇A的CSG占比或其它相关参数的改变所引起的频谱需求增量达到预先设定的门限值时,频谱控制器SCA将发送一个共享频谱池再分配请求指示信令给频谱控制器SCB。这一信令中包括再分配标志位(flag 0:业务负载增加;flag 1:CSG占比提高;flag 3:拓扑结构改变等),相对应的频谱需求量。
步骤3:根据接收到的共享频谱池再分配请求指示信令,频谱控制器SCB将评估其频谱使用情况并确定是否有空闲频谱资源可以提供给小区簇A。如果频谱控制器SCB没有空闲的频谱资源,那么在频谱再分配应答指示信令中拒绝标志位将设置为1,频谱控制器SCA在接收到该应答信息后将进行频谱资源内部优化分配与调整;如果频谱控制器SCB有空闲频段,那么在频谱再分配应答指示信令中拒绝标志位将设置为0。针对这种情况,有以下两种方法进行频谱再分配方法:a.第一种是根据小区簇A的频谱需求增量,频谱控制器SCB尽力满足其频谱需求;b.第二种是根据小区簇A的频谱需求增量,频谱控制器SCB将逐步满足小区簇A的频谱需求量。根据引起小区簇A频谱需求增加的不同触发原因,将采用不同的频谱再分配方法(具体见步骤4)。
步骤4:如果频谱控制器SCB接收到的共享频谱池再分配请求指示信令中再分配标志位为1(由CSG占比提高引起频谱需求增加),那么频谱控制器SCB将采用第一种再分配方法,尽力满足小区簇A的频谱需求(详见步骤5);如果谱控制器B接收到的共享频谱池再分配请求指示信令中再分配标志位不为1(由其它原因导致频谱需求增加,如业务负载增加、拓扑结构改变等),那么频谱控制器SCB将采用第二种再分配方法,逐步满足小区簇A的频谱需求(详见步骤6)。频谱控制器SCB将发送一个频谱再分配应答指示信令给频谱控制器SCA。
步骤5:如果频谱控制器SCB选择第一种方法,那么它将尽力满足小区簇A的频谱需求。这里,频谱控制器SCB最大可供的频谱资源量为fmax,定义为小区簇B当前所拥有的最大空闲频谱资源量,即共享频谱池初始化过程后小区簇B所拥有的全部频谱资源量减去当前小区簇B已使用的频谱资源量。
如果频谱控制器SCB可提供的最大频谱资源量fmax大于小区簇A的频谱需求增量(Δ):fmax>Δ,那么频谱控制器SCB提供给小区簇A的频谱资源量就为(Δ);如果频谱控制器SCB可提供的最大频谱资源量fmax小于等于小区簇A的频谱需求增量(Δ):fmax<=Δ,那么频谱控制器SCB提供给小区簇A的频谱资源量则为fmax
如果频谱控制器SCB选择了第二种方法,那么频谱控制器SCB将不会一次性满足频谱控制器SCA的全部频谱需求,它将分步骤满足小区簇A的频谱需求。假设小区簇A的频谱需求增量为(Δ)。在第一次再分配过程中,频谱控制器SCB将提供部分频谱资源f给小区簇A,其中f小于小区簇A的频谱需求增量(Δ)。在接收到从频谱控制器SCB退让的频谱资源f后,频谱控制器SCA将评估其当前频谱使用状态并决定是否再次进行频谱再分配过程。如果频谱控制器SCA再次发送共享频谱池再分配请求指示信令,频谱控制器SCB将评估其当前频谱使用状态并回复频谱再分配应答指示信令。如果频谱控制器SCB没有空闲频谱,那么在新的频谱再分配应答指示信令中,拒绝标志位将设置为A,否则拒绝标志位将设置为0。
换言之,如果是由于第一小区簇A的CSG模式基站占比或数量提高触发共享频谱池再分配,那么第二网络根据第一网络的频谱需求增量, 将相应频谱资源一次性提供给第一小区簇A;如果是由于第一小区簇A的业务负载增加或拓扑结构改变触发共享频谱池再分配,那么第二网络根据第一网络的频谱需求增量,将相应频谱资源逐次提供给第一小区簇A。
在将相应频谱资源一次性提供给第一网络时,如果第二网络可提供的最大频谱资源量fmax大于第一小区簇A的频谱需求增量,那么第二网络向第一小区簇A一次性提供的频谱资源等于第一小区簇A的频谱需求增量;如果第二网络可提供的最大频谱资源量fmax小于等于第一小区簇A的频谱需求增量,那么第二网络向第一小区簇A一次性提供的频谱资源等于最大频谱资源量,其中,fmax为共享频谱池初始化过程之后的第二小区簇B所拥有的全部频谱资源量减去第二小区簇B当前已使用的频谱资源量。
在将相应频谱资源逐次提供给第一网络时,第二网络接收到第一网络的频谱需求增量,判断是否有空闲频谱,如果有空闲频谱,则第二网络提供频谱资源,且第二网络给第一小区簇A的频谱资源小于第一小区簇A的频谱需求增量;如果没有空闲频谱则拒绝。在接收到从第二网络退让的频谱资源后,第一网络判断是否再次发起频谱再分配过程,如果需要则所述第一网络再次发起频谱再分配,返回前述第二网络接收到第一网络的频谱需求增量,判断是否有空闲频谱可提供的步骤;如果不需要就结束。
综上所述,本发明通过设计一种基于CSG基站占比的跨运营商频谱动态共享机制,优化了共享频谱池分配策略,有利于改善小区簇中各运营商基站的平均服务质量。
在本发明中,我们提出了一种基于各运营商小区簇CSG基站占比的跨运营商共享频谱池初始化分配与再分配的机制过程。通过这一机制,可以保证小区簇OPEN模式基站的QoS与公平性,同时也提高了频谱效率。在跨运营商频谱共享中,各小区基站从属于不同的运营商。此外,它们的工作模式也可以分为CSG模式与OPEN模式。工作于CSG模式的小区基站只服务于注册于本运营商的终端用户,通常情况下,其服务的终端用户数量较少,负载较轻;而工作于OPEN模式的小区基站则服务于所有的终端用户,通常情况下,其服务的终端用户数量较多,负载较重。所以,当属于不同运营商的两个小区簇具有相同数量的基站时,假 设CSG模式基站需要固定占有相对数量的频谱资源,那么具有较高CSG基站占比的小区簇需要更多的频谱资源,保证该小区簇OPEN模式基站的频谱资源量以及其下各终端用户的QoS。
由于小小区的开关随机性,某一小区簇的CSG基站占比提高或其它相关因素,引起该小区簇频谱需求的增加,将触发共享频谱池再分配过程。在共享频谱池再分配阶段,由于CSG基站占比升高等原因(小区簇中基站工作模式的改变引起该小区簇CSG基站占比升高或小区簇业务负载的增加),小区簇频谱需求的增加将会触发再分配过程。通过再分配过程,使共享频谱池频谱资源分配更加灵活合理,进一步提高了频谱效率,保障了运营商间频谱分配的公平性。而现有的跨运营商频谱共享方案中,大多只考虑宏基站间的跨运营商频谱共享或基于同一种工作模式的家庭基站间跨运营商频谱共享,而在实际部署中,不同工作模式的家庭基站通常被混合部署于同一区域内。相比于现有方法,本发明所提出的方法综合考虑了基站工作模式对频谱的差异化需求,并结合基站工作模式的动态变化能够更加合理的对共享频谱池进行初始化分配和再分配,从而提高频谱效率与基站的服务质量。
<第二实施例>
为方便理解,在此仅仅介绍第二实施例与第一实施例不同的内容。
第一实施例中,在共享频谱池初始化阶段,第一网络和第二网络根据各小区簇CSG基站占比以及成员基站的数量对共享频谱池频谱资源进行划分。用CSG基站占比是考虑到CSG基站的服务用户数量相对较少,在初始化过程中可以为其分配一个低于均值的频谱资源量,而将共享频谱池中剩余的频谱资源分配给工作于OPEN模式的基站,保证其服务质量。而如果用OPEN基站占比计算,具有相同的性能表现。
相应的共享频谱池中小区簇A所占频谱资源BandA应调整为:
Figure PCTCN2015099266-appb-000004
相应的共享频谱池中小区簇B所占频谱资源BandB应调整为:
Figure PCTCN2015099266-appb-000005
其中,小区簇A的成员基站数量为TA,OPEN模式基站占比为AOPEN,小区簇B的成员基站数量为TB,其OPEN模式基站占比为BOPEN,共享 频谱池的大小为Band(MHz),CSG基站工作带宽BandCSG(MHz)。
<第三实施例>
为方便理解,在此仅仅介绍第三实施例与第一实施例不同的内容。
在第三实施例中,第一网络和第二网络根据CSG基站数量和成员基站的数量对共享频谱池频谱资源进行划分,相应的共享频谱池中小区簇A所占频谱资源BandA应调整为:
Figure PCTCN2015099266-appb-000006
共享频谱池中小区簇B所占频谱资源BandB应调整为:
Figure PCTCN2015099266-appb-000007
其中,小区簇A的成员基站数量为TA,其CSG基站数量为NACSG,小区簇B的成员基站数量为TB,其CSG基站数量为NBCSG,共享频谱池的大小为Band(MHz),CSG基站工作带宽BandCSG(MHz)。
<第四实施例>
为方便理解,在此仅仅介绍第四实施例与第一实施例不同的内容。
在第四实施例中,第一网络和第二网络根据OPEN基站数量和第一网络和第二网络成员基站总量对共享频谱池频谱资源进行划分。
相应的,共享频谱池中小区簇A所占频谱资源BandA应调整为:
Figure PCTCN2015099266-appb-000008
共享频谱池中小区簇B所占频谱资源BandB应调整为:
Figure PCTCN2015099266-appb-000009
其中,小区簇A的成员基站数量为TA,其OPEN模式基站数量为MAOPEN,小区簇B的成员基站数量为TB,其OPEN模式基站数量为MBOPEN,共享频谱池的大小为Band(MHz),CSG模式基站工作带宽BandCSG(MHz)。
<第五实施例>
为方便理解,在此仅仅介绍第五实施例与第一实施例不同的内容。
第一实施例中,在共享频谱池初始化阶段,第一网络和第二网络根据各小区簇CSG基站占比以及成员基站的数量对共享频谱池频谱资源进行划分。在第五实施例中,第一网络和第二网络根据初始化阶段OPEN 基站服务的终端数量和成员基站的数量对共享频谱池频谱资源进行划分。因为家庭基站服务的终端数量在较长时间内保持不变,变化不频繁。
原则上,共享频谱池中分配给第一网络的频谱资源BandA等于第一网络的小区簇A中CSG模式基站占用的频谱资源,与小区簇A中OPEN模式基站占用的频谱资源之和。小区簇A中OPEN模式基站占用的频谱资源通过以下方法计算:第一网络的小区簇A中OPEN模式基站在触发共享频谱池初始化时服务的终端数量,乘以共享频谱池资源中用于小区簇A或小区簇B的所有OPEN模式基站的频谱资源,除以小区簇A和小区簇B的OPEN模式基站在触发共享频谱池初始化时服务的终端总量。
类似的,共享频谱池中分配给第二网络的频谱资源BandB等于第二网络的小区簇B中CSG模式基站占用的频谱资源,与小区簇B中OPEN模式基站占用的频谱资源之和。小区簇B中OPEN模式基站占用的频谱资源通过以下方法计算:第二网络的小区簇B中OPEN模式基站在触发共享频谱池初始化时服务的终端数量,乘以共享频谱池资源中用于小区簇A或小区簇B的所有OPEN模式基站的频谱资源,除以小区簇A和小区簇B的OPEN模式基站在触发共享频谱池初始化时服务的终端总量。
相应的,共享频谱池中小区簇A所占频谱资源BandA应调整为:
Figure PCTCN2015099266-appb-000010
共享频谱池中小区簇B所占频谱资源BandB应调整为:
Figure PCTCN2015099266-appb-000011
其中,小区簇A的成员基站数量为TA,其OPEN模式基站数量为MAOPEN,小区簇B的成员基站数量为TB,其OPEN模式基站数量为MBOPEN,共享频谱池的大小为Band(MHz),CSG模式基站工作带宽BandCSG(MHz)。
需要说明时,前述在触发共享频谱池初始化时服务的终端数量,可以是第一网络和第二网络在共享频谱池频谱资源初始化阶段通过信令交互的终端数量。
<第六实施例>
为方便理解,在此仅仅介绍第六实施例与第一实施例不同的内容。
利用预设Qos初始值,在初始化阶段就以该Qos初始值计算OPEN 模式基站所需资源,如果余下的资源可以满足CSG模式基站的需求则就这样分配共享池;如果余下的资源不能满足CSG模式基站的需求,则降低Qos值,重新计算OPEN模式基站所需资源直至余下资源满足CSG模式基站的Qos需求。
相应的,共享频谱池中小区簇A所占频谱资源BandA应调整为:
BandA=(TA-MAOPEN)×BandCSG+MAOPEN×BandOPEN   (12)
共享频谱池中小区簇B所占频谱资源BandB应调整为:
BandB=(TB-MBOPEN)×BandCSG+MBOPEN×BandOPEN   (13)
其中,小区簇A的成员基站数量为TA,其OPEN模式基站数量为MAOPEN,小区簇B的成员基站数量为TB,其OPEN模式基站数量为MBOPEN,共享频谱池的大小为Band(MHz),CSG模式基站工作带宽BandCSG(MHz),OPEN模式基站工作带宽预设初始值BandOPEN(MHz)。
参考图4,在第二网络计算共享频谱池初始化分配比例或初始化分配值时,首先将OPEN模式基站工作带宽预设初始值BandOPEN(MHz)取低值,作为前述Qos初始值,根据公式11和公式12计算出第一网络和第二网络分别占用的共享频谱资源。第一网络和第二网络交互第一网络和第二网络分别占用的共享频谱资源之后,第一网络判断是否可以接受,即判断共享频谱池是否有足够资源满足第一网络和第二网络占用的共享频谱资源之和。
如果第一网络判断,共享频谱池有足够资源满足第一网络和第二网络占用的共享频谱资源之和,则向第二网络发出提高OPEN模式基站工作带宽预设初始值BandOPEN(MHz)的指示。第一网络也可以计算出将OPEN模式基站工作带宽预设初始值BandOPEN(MHz)提高到中值,并向第二网络发出将OPEN模式基站工作带宽预设初始值BandOPEN(MHz)调整为中值的指示。第一网络和第二网络按照中值给各自的OPEN模式基站分配频谱资源。
如果第一网络判断,共享频谱池没有足够资源满足第一网络和第二网络占用的共享频谱资源之和,则向第二网络发出降低OPEN模式基站工作带宽预设初始值BandOPEN(MHz)的为最低值指示。第一网络和第二网络按照最低值给各自的OPEN模式基站分配频谱资源。
需要说明的是,共享频谱池可以预留部分资源,在初始化阶段不 分配。因此,在前述六个实施例中,共享频谱池中分配给第一网络的频谱资源BandA等于第一网络的小区簇A中CSG模式基站占用的频谱资源,与小区簇A中OPEN模式基站占用的频谱资源之和;第二网络的频谱资源BandB等于第二网络的小区簇B中CSG模式基站占用的频谱资源,与小区簇B中OPEN模式基站占用的频谱资源之和;共享频谱池的频谱资源等于BandA与BandB之和加上预留频谱资源。
本发明针对家庭基站工作模式不同,在实际场景中服务用户数量有差异这一特点,基于各小区簇CSG基站占比对共享频谱池频谱资源进行初始化分配过程,这一过程可以看做是在静态条件下对共享频谱池的一次优化分配;而随后的再分配过程则可以看做是动态条件下对初始化分配结果进行再次优化的过程,针对某小区簇频谱需求的增加(触发原因包括:小区簇CSG基站占比变化、业务负载增加、拓扑改变等),采用不同的共享退让机制,从而提高空闲频谱的利用率,提升整体网络的性能。
上面对本发明所提供的网络间共享频谱优化系统及方法进行了详细的说明,但显然本发明的具体实现形式并不局限于此。对于本技术领域的一般技术人员来说,在不背离本发明的精神和权利要求范围的情况下对它进行的各种显而易见的改变都在本发明的保护范围之内。

Claims (18)

  1. 一种网络间共享频谱优化系统,包括至少第一网络和第二网络,所述第一网络包括第一小区簇,所述第二网络包括第二小区簇,所述两个小区簇共享频谱池,所述小区簇各有多个工作于CSG模式或OPEN模式的基站,其特征在于:
    所述共享频谱池中分配给所述第一网络的频谱资源,包括所述第一小区簇的OPEN模式基站占用的频谱资源,所述共享频谱池中分配给所述第二网络的频谱资源,包括所述第二小区簇的OPEN模式基站占用的频谱资源,
    所述第一小区簇中的每个所述OPEN模式基站占用的频谱资源与所述第二小区簇中的每个所述OPEN模式基站占用的频谱资源大小相同;或者,所述第一小区簇中的每个所述OPEN模式基站服务的终端占用的频谱资源与所述第二小区簇中的每个所述OPEN模式基站服务的终端占用的频谱资源大小相同。
  2. 如权利要求1所述的网络共享频谱优化系统,其特征在于:
    所述第一小区簇的每个所述OPEN模式基站占用的频谱资源为:所述共享频谱池资源中用于所述第一小区簇或所述第二小区簇的所有OPEN模式基站的频谱资源,除以所述第一小区簇或所述第二小区簇的OPEN模式基站总量得到的值。
  3. 如权利要求2所述的网络共享频谱优化系统,其特征在于:
    所述第一小区簇的OPEN模式基站占用的频谱资源为:所述第一小区簇中OPEN模式基站数量,乘以所述共享频谱池资源中用于所述第一小区簇或所述第二小区簇的所有OPEN模式基站的频谱资源,除以所述第一小区簇或所述第二小区簇的OPEN模式基站总量得到的值。
  4. 如权利要求1所述的网络共享频谱优化系统,其特征在于:
    所述第一小区簇的每个所述OPEN模式基站占用的频谱资源为OPEN模式基站工作带宽预设值。
  5. 如权利要求1或2所述的网络共享频谱优化系统,其特征在于:
    所述每个所述OPEN模式基站服务的终端占用的频谱资源大小相同,是指在触发共享频谱池初始化时服务的终端占用的频谱资源大小相同。
  6. 一种网络间共享频谱优化方法,包括至少第一网络和第二网络,所述第一网络包括第一小区簇,所述第二网络包括第二小区簇,所述小区簇共享频谱池,所述小区簇各有多个工作于CSG模式或OPEN模式的基站,其特征在于:
    所述第一网络和所述第二网络之间建立所述共享频谱池,然后所述第一网络根据自身频谱需求触发共享频谱池初始化,与第二网络进行共享频谱池初始化,
    完成所述共享频谱池初始化后,所述第一小区簇中的每个所述OPEN模式基站占用的频谱资源与所述第二小区簇中的每个所述OPEN模式基站占用的频谱资源大小相同;或者,所述第一小区簇中的每个所述OPEN模式基站服务的终端占用的频谱资源与所述第二小区簇中的每个所述OPEN模式基站服务的终端占用的频谱资源大小相同。
  7. 如权利要求6所述的网络间共享频谱优化方法,其特征在于:
    所述第一小区簇中的每个所述OPEN模式基站占用的频谱资源,是通过以下方式得到:将所述共享频谱池减去所述第一小区簇和所述第二小区簇中CSG模式基站占用的频谱资源,将剩下的频谱资源平均分配给所述第一小区簇和所述第二小区簇中的所述OPEN模式基站。
  8. 如权利要求7所述的网络间共享频谱优化方法,其特征在于:
    所述第一小区簇中的每个所述OPEN模式基站占用的频谱资源,是通过以下方式得到:将所述共享频谱池减去所述第一小区簇和所述第二小区簇中CSG模式基站占用的频谱资源,再减去预留频谱资源,将剩下的频谱资源平均分配给所述第一小区簇和所述第二小区簇中的所述OPEN模式基站。
  9. 如权利要求7或8所述的网络间共享频谱优化方法,其特征在于:
    在所述共享频谱池初始化过程中,所述第一网络与所述第二网络交互各自网络中的CSG模式基站占比、CSG模式基站数量、OPEN模式基站占比或者OPEN模式基站数量,用于计算所述第一小区簇中的每个所述OPEN模式基站占用的频谱资源。
  10. 如权利要求6所述的网络间共享频谱优化方法,其特征在于:
    所述第一小区簇中的每个所述OPEN模式基站占用的频谱资源,是 通过以下方式得到:
    所述第一小区簇和所述第二小区簇中的所述OPEN模式基站占用的预设工作带宽。
  11. 如权利要求6所述的网络间共享频谱优化方法,其特征在于:
    所述第一小区簇中的每个所述OPEN模式基站占用的频谱资源,是通过以下方式得到:将所述共享频谱池减去所述第一小区簇和所述第二小区簇中CSG模式基站占用的频谱资源,将剩下的频谱资源平均分配给所述第一小区簇和所述第二小区簇中的所述OPEN模式基站服务的终端。
  12. 如权利要求6所述的网络间共享频谱优化方法,其特征在于:
    所述共享频谱池初始化,包括以下步骤:
    所述第一网络根据资源需求触发共享频谱池初始化,向所述第二网络发出共享频谱池初始化指示信令;
    所述第二网络根据所述信令的参数计算共享频谱池初始化分配比例或者共享频谱池初始化分配值,发送给所述第一网络;
    所述第一网络接收到所述共享频谱池初始化分配比例或者共享频谱池初始化分配值,与所述第一网络自行计算的分配比例或者共享频谱池初始化分配值进行比较,如果比较结果为一致,则向所述第二网络发出指示,进行频谱资源分配;如果比较结果为不一致,则向所述第二网络发出指示,返回上一步骤。
  13. 如权利要求6所述的网络间共享频谱优化方法,其特征在于还包括以下步骤:
    在完成所述共享频谱池初始化后,所述第一网络或所述第二网络在频谱需求增加时触发共享频谱池再分配。
  14. 如权利要求13所述的网络间共享频谱优化方法,其特征在于:
    所述触发共享频谱池再分配的触发条件包括:
    所述小区簇的CSG模式基站占比或数量的改变引起频谱需求的增加,且所述频谱需求增加的增加量达到预先设定的门限值;
    所述小区簇的业务负载增加引起频谱需求的增加,且所述频谱需求增加的增加量达到预先设定的门限值;或者
    所述小区簇的拓扑结构发生改变引起频谱需求的增加,且所述频谱需求增加的增加量达到预先设定的门限值。
  15. 如权利要求13所述的网络间共享频谱优化方法,其特征在于:
    所述共享频谱池再分配包括以下步骤:
    所述第一网络向所述第二网络发起共享频谱池再分配,向所述第二网络发出频谱需求增量;
    所述第二网络确定是否有空闲频谱资源可以提供给所述第一网络,如果所述第二网络没有空闲的频谱资源,那么所述第二网络向所述第一网络发出拒绝指示;如果所述第二网络有空闲的频谱资源,那么所述第二网络根据所述第一网络的所述频谱需求增量,将相应频谱资源一次性或逐次提供给所述第一网络。
  16. 如权利要求14或15所述的网络间共享频谱优化方法,其特征在于:
    如果是由于所述第一网络的所述第一小区簇的CSG模式基站占比或数量提高触发所述共享频谱池再分配,那么所述第二网络根据所述第一网络的所述频谱需求增量,将相应频谱资源一次性提供给所述第一小区簇;
    如果是由于所述第一网络的所述第一小区簇的业务负载增加或拓扑结构改变触发所述共享频谱池再分配,那么所述第二网络根据所述第一网络的所述频谱需求增量,将相应频谱资源逐次提供给所述第一小区簇。
  17. 如权利要求16所述的网络间共享频谱优化方法,其特征在于:
    在将相应频谱资源一次性提供给所述第一网络时,
    如果所述第二网络可提供的最大频谱资源量fmax大于所述第一网络的所述第一小区簇的所述频谱需求增量,那么所述第二网络向所述第一小区簇一次性提供的频谱资源等于所述频谱需求增量;
    如果所述第二网络可提供的最大频谱资源量fmax小于等于所述第一网络的所述第一小区簇的所述频谱需求增量,那么所述第二网络向所述第一小区簇一次性提供的频谱资源等于所述最大频谱资源量,
    其中,fmax为共享频谱池初始化过程之后的所述第二小区簇所拥有的全部频谱资源量减去所述第二小区簇当前已使用的频谱资源量。
  18. 如权利要求16所述的网络间共享频谱优化方法,其特征在于:
    在将相应频谱资源逐次提供给所述第一网络时,
    所述第二网络接收到所述第一网络的频谱需求增量,判断是否有空 闲频谱,如果有空闲频谱,则所述第二网络提供频谱资源,且所述第二网络给所述第一小区簇的频谱资源小于所述频谱需求增量;如果没有空闲频谱则拒绝,
    在接收到从所述第二网络退让的频谱资源后,所述第一网络判断是否再次发起频谱再分配过程,如果需要则所述第一网络再次发起频谱再分配,返回一步;如果不需要就结束。
PCT/CN2015/099266 2015-06-12 2015-12-28 一种网络间共享频谱优化系统及方法 WO2016197583A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/329,802 US10321325B2 (en) 2015-06-12 2015-12-28 Inter-network shared frequency spectrum optimization system and method
EP15894836.4A EP3310084A4 (en) 2015-06-12 2015-12-28 Inter-network shared frequency spectrum optimization system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510323045.7A CN106304093B (zh) 2015-06-12 2015-06-12 一种网络间共享频谱优化系统及方法
CN2015103230457 2015-06-12

Publications (1)

Publication Number Publication Date
WO2016197583A1 true WO2016197583A1 (zh) 2016-12-15

Family

ID=57502775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099266 WO2016197583A1 (zh) 2015-06-12 2015-12-28 一种网络间共享频谱优化系统及方法

Country Status (4)

Country Link
US (1) US10321325B2 (zh)
EP (1) EP3310084A4 (zh)
CN (1) CN106304093B (zh)
WO (1) WO2016197583A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10405193B1 (en) 2018-06-28 2019-09-03 At&T Intellectual Property I, L.P. Dynamic radio access network and intelligent service delivery for multi-carrier access for 5G or other next generation network
CN112867011A (zh) * 2019-11-28 2021-05-28 上海华为技术有限公司 一种频谱资源复用方法以及装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116112105A (zh) 2015-09-25 2023-05-12 瑞典爱立信有限公司 用于执行信道状态测量的方法、用户设备和网络节点
WO2017133763A1 (en) * 2016-02-03 2017-08-10 Nokia Solutions And Networks Oy Multiconnectivity cluster
US11758527B2 (en) * 2016-12-27 2023-09-12 Federated Wireless, Inc. Generalized content-aware spectrum allocation system
CN109729527A (zh) * 2017-10-31 2019-05-07 普天信息技术有限公司 频谱共享机制下的频点分配方法及装置
JP7004061B2 (ja) * 2018-03-09 2022-01-21 日本電気株式会社 ノード装置、方法、及びプログラム
CN108712221B (zh) * 2018-03-29 2020-08-18 中国科学院软件研究所 一种vhf通信电台信道测量集优化选择方法及系统
US10827416B2 (en) * 2018-06-21 2020-11-03 At&T Intellectual Property I, L.P. Multi-operator spectrum resource sharing management
CN109831787B (zh) * 2018-12-21 2023-07-14 中国科学院上海微系统与信息技术研究所 一种电力无线通信系统中基站间资源协调方法
WO2020237222A1 (en) 2019-05-22 2020-11-26 Mission Bio, Inc. Method and apparatus for simultaneous targeted sequencing of dna, rna and protein
CN111800738B (zh) * 2020-07-13 2021-10-12 深圳大学 基于聚类算法的毫米波移动基站在线频谱共享方法及系统
JP2022127162A (ja) * 2021-02-19 2022-08-31 富士通株式会社 通信制御装置及び通信制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102017753A (zh) * 2008-04-28 2011-04-13 英飞凌科技股份有限公司 用于控制资源分配的无线电通信设备和方法
JP2012080347A (ja) * 2010-10-01 2012-04-19 Kddi Corp 無線通信システム及び無線通信プログラム
US20120289274A1 (en) * 2010-01-15 2012-11-15 Panasonic Corporation Communication terminal and communication method
CN103763708A (zh) * 2014-01-23 2014-04-30 上海无线通信研究中心 一种网络频谱共享方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2457431A (en) 2008-01-28 2009-08-19 Fujitsu Lab Of Europ Ltd Interference mitigation method in a wireless network
CN101815319B (zh) * 2009-02-20 2013-01-23 中国移动通信集团公司 一种家庭基站的接入控制方法及装置
US9094899B2 (en) * 2013-05-28 2015-07-28 Rivada Networks, Llc Cell selection in dynamic spectrum arbitrage system
CN104540236B (zh) * 2015-01-30 2017-04-05 深圳酷派技术有限公司 用于终端直连通信的资源配置方法、系统、终端和基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102017753A (zh) * 2008-04-28 2011-04-13 英飞凌科技股份有限公司 用于控制资源分配的无线电通信设备和方法
US20120289274A1 (en) * 2010-01-15 2012-11-15 Panasonic Corporation Communication terminal and communication method
JP2012080347A (ja) * 2010-10-01 2012-04-19 Kddi Corp 無線通信システム及び無線通信プログラム
CN103763708A (zh) * 2014-01-23 2014-04-30 上海无线通信研究中心 一种网络频谱共享方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3310084A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10405193B1 (en) 2018-06-28 2019-09-03 At&T Intellectual Property I, L.P. Dynamic radio access network and intelligent service delivery for multi-carrier access for 5G or other next generation network
US10791467B2 (en) 2018-06-28 2020-09-29 At&T Intellectual Property I, L.P. Dynamic radio access network and intelligent service delivery for multi-carrier access for 5G or other next generation network
CN112867011A (zh) * 2019-11-28 2021-05-28 上海华为技术有限公司 一种频谱资源复用方法以及装置
CN112867011B (zh) * 2019-11-28 2023-05-12 上海华为技术有限公司 一种频谱资源复用方法以及装置

Also Published As

Publication number Publication date
CN106304093B (zh) 2019-09-20
US10321325B2 (en) 2019-06-11
CN106304093A (zh) 2017-01-04
EP3310084A4 (en) 2018-11-07
US20170272956A1 (en) 2017-09-21
EP3310084A1 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
WO2016197583A1 (zh) 一种网络间共享频谱优化系统及方法
WO2015127880A1 (zh) 一种基站频率资源配置方法及网络设备
KR102169766B1 (ko) 전체 스펙트럼 공유를 위한 스펙트럼 자원 할당 방법 및 장치
CN106332088B (zh) 不同运营商间基于用户公平性的频谱共享方法
US10182448B2 (en) Inter-network interference coordination method
CN103338454B (zh) 用于电力系统的认知无线通信系统及mac协议实现方法
JP2005504492A5 (zh)
WO2013120444A1 (zh) 一种无线电系统及其频谱资源重配方法
WO2012174916A1 (zh) 异系统间频谱共享情况下的干扰抑制方法和设备
CN107205236B (zh) 一种应用于小区间中继蜂窝网负载均衡的公平性提升方法
CN101753234A (zh) 认知复合无线网络中基于诚实合作的频谱资源分配方法
Wang et al. Traffic-aware graph-based dynamic frequency reuse for heterogeneous Cloud-RAN
CN104540178A (zh) 一种认知异构网络联合频谱切换与功率分配方法
AU2012370634B2 (en) Communication control device, communication control method, and communication control system
CN101841818B (zh) 认知无线电中一种保证服务质量的多级信道分配方法
CN106304267B (zh) 一种以用户为中心的虚拟小区选择方法
Berlemann et al. Spectrum load smoothing for optimized spectrum utilization-rationale and algorithm
Coupechoux et al. Network controlled joint radio resource management for heterogeneous networks
Xiao et al. Optimizing inter-operator network slicing over licensed and unlicensed bands
Yuan et al. A selfishness-aware coexistence scheme for 802.22 and 802.11 af networks
Li et al. Combined channel aggregation and fragmentation strategy in cognitive radio networks
Omitola et al. A channel borrowing CAC scheme in two-tier LTE/LTE-Advance networks
Zarin et al. QoS based joint radio resource allocation for multi-Homing calls in heterogeneous wireless access network
Salameh et al. An opportunistic guard-band-aware channel assignment: A batch-based approach
Li et al. Dynamic spectrum management in a smart grid heterogeneous network environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894836

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15329802

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015894836

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015894836

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE