WO2016197487A1 - Dispositif à trois tours et procédé pour le recyclage de l'éthylène et de l'éthane à partir de gaz sec par absorption d'huile - Google Patents
Dispositif à trois tours et procédé pour le recyclage de l'éthylène et de l'éthane à partir de gaz sec par absorption d'huile Download PDFInfo
- Publication number
- WO2016197487A1 WO2016197487A1 PCT/CN2015/090879 CN2015090879W WO2016197487A1 WO 2016197487 A1 WO2016197487 A1 WO 2016197487A1 CN 2015090879 W CN2015090879 W CN 2015090879W WO 2016197487 A1 WO2016197487 A1 WO 2016197487A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- absorbent
- outlet
- tower
- absorption
- column
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/04—Purification; Separation; Use of additives by distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/11—Purification; Separation; Use of additives by absorption, i.e. purification or separation of gaseous hydrocarbons with the aid of liquids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G70/00—Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00
- C10G70/04—Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by physical processes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C11/00—Aliphatic unsaturated hydrocarbons
- C07C11/02—Alkenes
- C07C11/04—Ethylene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C9/00—Aliphatic saturated hydrocarbons
- C07C9/02—Aliphatic saturated hydrocarbons with one to four carbon atoms
- C07C9/06—Ethane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/40—Ethylene production
Definitions
- the invention relates to a catalytic cracking dry gas separation process, in particular to an oil absorption process for recovering ethylene and ethane.
- the main feature is that the product can directly enter the deethanizer to obtain polymer grade ethylene. Belongs to chemical technology.
- Catalytic cracking dry gas is a kind of gas produced in the petroleum refining process. Its main components include hydrogen, nitrogen, oxygen, methane, ethylene, ethane and so on. In most cases, dry gas is directly burned as fuel gas due to lack of dry gas recovery means. This is a great waste for the valuable gas represented by ethylene and ethane. At the same time, as the catalytic cracking process for producing olefins continues to develop, the amount of dry gas and the amount of ethylene therein are increasing. Therefore, recycling dry gas, especially the recovery of ethylene, is very important, which is also an important way for refining companies to increase ethylene production and save resources.
- Ethylene in the dry gas of the refinery is currently recycled as follows: cryogenic separation, absorption, pressure swing adsorption, and the like.
- the cryogenic recycling technology is represented by American Shiwei Company, and the purpose of recycling ethylene is achieved by a condenser.
- the pressure swing adsorption method mainly recovers ethylene ethane in the dry gas through an adsorption desorption cycle, and generally has a concentration of ethylene and ethane of 80% or more. This method has application in domestic Maoming Petrochemical.
- the oil absorption method generally uses butane, pentane or an aromatic hydrocarbon as an absorbent to absorb the above components of ethylene in the dry gas, and then separates the absorbed components one by one by distillation.
- the content of methane is high, and the product gas needs to enter the cracking gas cryogenic separation system for separation to obtain the polymerization grade ethylene, which greatly limits the application range of the absorption method.
- the investment in polymer grade ethylene is very large.
- the invention aims at the deficiencies of the prior art, and proposes a three-column device and method for recovering ethylene and ethane products from oil absorption dry gas.
- the dry gas is pressurized by the compressor, cooled, mixed with the rich liquid from the absorption tower and the desorbed gas of the desorption tower, and then enters the heat exchanger to be cooled to reach the absorption temperature; then enters the flash tank for one flash, and the gas phase serves as an absorption tower.
- the gas phase feed enters from the bottom of the column; the liquid phase enters from the top of the column as a feed to the desorption column; the bottom product of the desorber is refined through a rectification column to obtain a C2 product.
- the bottom product of the distillation column is replenished, cooled, and returned to the top of the absorption tower as an absorbent.
- An intermediate condenser is arranged in the absorption tower to remove the heat generated by the absorption in time.
- the advantage is that the content of light components such as methane can be controlled by adjusting the desorption column, the absorbent is recovered by the rectification column, and the absorption temperature is controlled by the heat exchanger.
- the content of methane relative to ethylene is less than 0.05%, and it is possible to directly enter the ethylene column to obtain polymer grade ethylene.
- the method of the present invention is suitable for separating and recovering C2 components from catalytic cracking dry gas, and is expected to replace the cryogenic method.
- a three-column device for recovering high-purity ethylene and ethane by oil absorption dry gas comprises: a compressor, an absorption tower, a desorption tower and a rectification tower; wherein the outlet of the compressor is connected with the inlet of the raw material primary cooler, The outlet of the raw material primary cooler is connected to an inlet of the raw material secondary cooler; the outlet of the raw material secondary cooler is connected to the inlet of the separation tank, the separation tank
- the gas phase outlet is connected to the gas phase inlet of the absorption tower, and the liquid phase outlet of the separation tank is connected to the liquid phase inlet of the top of the desorption column; the liquid phase outlet of the absorption tower and the gas phase outlet of the desorption column and the other two of the raw material secondary coolers
- the inlets of the desorption column are connected to the cold stream inlet of the preheater, the cold stream outlet of the preheater is connected to the feed port of the rectification column; the bottom liquid phase outlet of the rectification column is added
- the invention relates to a three-column recovery method for recovering ethylene and ethane from oil absorption dry gas. After the raw material gas is pressurized in the compressor, it is cooled by the raw material primary cooler, and enters the secondary cooling of the raw material together with the absorption liquid and the desorbed gas.
- the secondary cooling feed enters the separation tank for vapor-liquid separation to generate absorption gas and desorption liquid; the absorption gas enters the lower part of the absorption tower, and the desorbed liquid enters the upper part of the desorption tower; the desorption liquid is taken out from the bottom of the desorption tower and enters the preheater After preheating, preheating liquid is formed into the rectification column; ethylene and ethane products are produced at the top of the distillation column, and heat absorbent is produced at the bottom of the column; the heat absorbent forms a pressure absorbent after being pressurized by the pump; The agent is cooled by the preheater to form a pre-cooling absorbent; the pre-cooling absorbent passes through the first-stage cooler of the absorbent and the secondary cooler of the absorbent to form a secondary cooling absorbent; the secondary cooling absorbent and the supplement The absorbent is mixed in an absorbent mixer to form a circulating absorbent 2 which enters the upper portion of the absorption tower 2; the top of the absorption tower produces
- the compressor outlet pressure is 2.8 ⁇ 3.4Mpa
- the raw material primary cooler outlet temperature is 32 to 40 ° C; the raw material secondary cooler outlet temperature is -20 to -10 ° C.
- the absorption tower pressure is 2.8 to 3.4 MPa, and the theoretical number of plates is 18 to 24.
- the operating pressure of the desorption column is 2.9 to 3.5 MPa, and the number of theoretical plates is 10 to 16.
- the cold material outlet temperature of the preheater is 130 to 140 °C.
- the distillation column has an operating pressure of 2.2 to 2.8 MPa, a reflux ratio of 1.8 to 2.2, and a theoretical plate number of 16 to 24.
- the outlet temperature of the absorbent primary cooler is 32-40 ° C, and the outlet temperature of the secondary cooler of the absorbent is
- a three-tower process for recovering ethylene and ethane from oil absorption dry gas is proposed.
- the ethylene in the dry gas is recovered by the conventional absorption method, since there is no stripping effect, the content of impurity gases such as methane in the ethylene and ethane products is high, and it is impossible to directly enter the deethanizer to obtain the polymerization grade ethylene; Used in conjunction with cryogenic or other processes, this will result in additional investment.
- the new process requires only absorption to obtain a polymer grade ethylene feedstock with a recovery rate of over 90%.
- the method utilizes the characteristics of flexible absorption method and strong adaptability to raw materials, and has a good absorption effect on the composition of complex catalytic cracking dry gas. Compared with the cryogenic method, this method avoids the ethylene refrigerator and saves energy and investment.
- Figure 1 is a schematic view of the process flow of the present invention.
- the outlet of the compressor 2 is connected to the inlet of the raw material primary cooler 4, and the outlet of the raw material primary cooler 4 is connected to a dry gas phase inlet of the raw material secondary cooler 6.
- the outlet of the raw material secondary cooler 6 is connected to the inlet of the separation tank 8
- the gas phase outlet of the separation tank 8 is connected to the gas phase inlet of the absorption column 29, and the liquid phase outlet is connected to the liquid phase inlet of the top of the desorption column 13.
- the liquid phase outlet of the absorption column 29 is connected to the liquid phase inlet of the raw material secondary cooler 6, and the gas phase outlet of the desorption column 13 is connected to the desorption gas inlet of the raw material secondary cooler 6.
- the bottom liquid phase outlet of the desorber 13 is connected to the cold stream inlet of the preheater 15, and the cold stream outlet of the preheater 15 is connected to the feed port of the rectification column 17.
- the bottom liquid phase outlet of the rectification column 17 is connected to the inlet of the pressurizing pump 19, and the outlet of the pressurizing pump 19 is connected to the hot stream inlet of the preheater 15.
- the hot stream outlet of the preheater 15 is connected to the inlet of the absorbent primary cooler 22, and the outlet of the absorbent primary cooler 22 is connected to the inlet of the absorbent secondary cooler 24.
- the outlet of the absorbent secondary cooler 24 is connected to an inlet of the absorbent mixer 27, and the outlet of the absorbent mixer 27 is connected to the liquid phase inlet of the absorption tower 29.
- the invention provides a three-column method for recovering ethylene and ethane by oil absorption dry gas, wherein the separation process is: after the raw material gas 1 is pressurized in the compressor 2, it is cooled by the raw material primary cooler 4, and the absorption liquid 12 Together with the desorbed gas 11, it enters the raw material secondary cooler 6.
- the secondary cooling feed 7 enters the separation tank 8 for vapor-liquid separation to produce the absorption gas 10 and the desorption liquid 9.
- the absorption gas 10 enters the lower portion of the absorption tower 29, and the desorbed liquid 9 enters the upper portion of the desorption column 13.
- the desorbed liquid 14 is taken out from the bottom of the desorption column 13, it is preheated into the preheater 15 to form the preheated liquid 16 and enters the rectification column 17.
- the top of the rectification column 17 produces ethylene and ethane product 31, and the bottom of the column produces a heat absorbent 18.
- the heat absorbent 18 passes through the pressurizing pump 19 to form a pressurized absorbent 20.
- the pressurized absorbent 20 is cooled by the heat exchange of the preheater 15 to form a pre-cooling absorbent 21.
- the pre-cooling absorbent 21 passes through the absorbent primary cooler 21 and the absorbent secondary cooler 24 to form a secondary cooling absorbent 25.
- the secondary cooling absorbent 25 is mixed with the supplemental absorbent 26 in the absorbent mixer 27 to form a circulating absorbent 28 which enters the upper portion of the absorption tower 29.
- the fuel tail gas 30 is produced at the top of the absorption tower 29.
- the outlet pressure of the compressor 2 is 2.8 ⁇ 3.4Mpa; the outlet temperature of the raw material primary cooler 4 is 32 ⁇ 40 ° C; the outlet temperature of the raw material secondary cooler 6 is -20 ⁇ -10 ° C; the pressure of the absorption tower 29 It is 2.8 to 3.4 MPa, and the number of theoretical plates is 18 to 24.
- the absorbent absorbs most of the heavy components such as ethylene and ethane, and concentrates on the bottom of the column, while impurity gases such as methane are concentrated at the top of the column.
- the operating pressure of the desorption column 13 is 2.9 to 3.5 MPa, and the number of theoretical plates is 10 to 16.
- the cold material outlet temperature of the preheater 15 is 130 to 140 °C.
- the operating pressure of the rectification column 17 is 2.2 to 2.8 MPa, the reflux ratio is 1.8 to 2.2, and the number of theoretical plates is 16 to 24.
- the outlet temperature of the absorbent primary cooler 22 is 32 to 40 ° C, and the outlet temperature of the absorbent secondary cooler 24 is -20 to -10 °C.
- the absorbent in the entire process uses a C5 fraction.
- the molar composition of the feed gas 1 is 21.1% H 2 + 24.5% N 2 + 24.3% CH 4 + 21% C 2 H 4 + 7.8% C 2 H 6 + 0.2 C 3 H 6 + 0.4% O 2 + 0.6% CO
- the mass flow rate is 7.5 tons/hr and the temperature is 40 °C.
- C5 was used as the absorbent in the process, and the amount of the circulating absorbent was 20 tons/hr.
- the compressor 2 compresses the raw material gas 1 to 3.05 MPa, and the raw material primary cooler 4 cools the compressed gas 3 to 32 ° C.
- the secondary cooler 6 cools the absorption liquid 12, the primary cooling gas 5, and the desorbed gas 11 to -15 °C.
- the separation tank 8 was adiabatically flashed at 3.05 MPa.
- the theoretical number of plates of the absorption tower 29 is 12, the operating pressure is 3 MPa; the number of theoretical plates of the desorption column 13 is 10, and the operating pressure is 3.05 MPa.
- the preheater 15 preheats the desorbent 14 to 132 °C.
- the number of theoretical plates of the rectification column 17 is 20, the operating pressure is 2.6 MPa, the reflux ratio is 2, and the preheating liquid 16 is fed from the 10th block.
- the heat absorbent 18 is pressurized to 3 MPa by a pressurizing pump 19.
- the absorbent primary cooler 22 cools the pre-cooling absorbent 21 to 32 ° C, and the absorbent secondary coolant 24 cools the primary cooling absorbent 23 to -15 ° C.
- a first theoretical plate of the circulating absorbent 28 is introduced into the absorption tower 29.
- Table 1 shows that the fraction of the molar flow of methane to methane ethylene in the ethylene and ethane product 31 is 0.045%, and the polymerization grade ethylene can be obtained after de-ethane removal.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510314992.X | 2015-06-10 | ||
CN201510314992.XA CN104892340A (zh) | 2015-06-10 | 2015-06-10 | 一种油吸收干气回收乙烯、乙烷的三塔装置与方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016197487A1 true WO2016197487A1 (fr) | 2016-12-15 |
Family
ID=54025370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/090879 WO2016197487A1 (fr) | 2015-06-10 | 2015-09-28 | Dispositif à trois tours et procédé pour le recyclage de l'éthylène et de l'éthane à partir de gaz sec par absorption d'huile |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104892340A (fr) |
WO (1) | WO2016197487A1 (fr) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107056600A (zh) * | 2017-05-19 | 2017-08-18 | 张家港市华昌新材料科技有限公司 | 丁辛醇尾气吸收方法 |
CN111394116A (zh) * | 2019-08-12 | 2020-07-10 | 中国石化工程建设有限公司 | 一种油气回收的方法和装置 |
CN111747816A (zh) * | 2019-03-29 | 2020-10-09 | 中国石油大学(北京) | 一种从混合气中回收乙烷的系统及工艺 |
CN113336619A (zh) * | 2021-05-13 | 2021-09-03 | 华陆工程科技有限责任公司 | 一种利用羰基合成气制备乙炔气体的方法 |
CN113354506A (zh) * | 2021-03-19 | 2021-09-07 | 北京欧谊德科技有限公司 | 一种组合吸收回收分离炼厂饱和干气中低碳烃的方法 |
CN113355135A (zh) * | 2021-03-19 | 2021-09-07 | 北京欧谊德科技有限公司 | 一种炼厂饱和干气的分离方法 |
CN113651669A (zh) * | 2020-05-12 | 2021-11-16 | 中国石油化工股份有限公司 | 生产丙烯的装置和方法 |
CN114436747A (zh) * | 2020-11-04 | 2022-05-06 | 中国石油化工股份有限公司 | 一种利用干气制备聚合级乙烯的方法和系统 |
CN114436745A (zh) * | 2020-11-04 | 2022-05-06 | 中国石油化工股份有限公司 | 干气制聚合级乙烯的方法及装置 |
CN115109610A (zh) * | 2021-03-19 | 2022-09-27 | 中国石油化工股份有限公司 | 一种从混合气中回收c2+的系统和方法 |
CN115999314A (zh) * | 2021-10-21 | 2023-04-25 | 中国石油化工股份有限公司 | 一种内部热集成型吸收稳定工艺 |
CN115999315A (zh) * | 2021-10-21 | 2023-04-25 | 中国石油化工股份有限公司 | 内部热集成型吸收稳定工艺 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104892340A (zh) * | 2015-06-10 | 2015-09-09 | 天津大学 | 一种油吸收干气回收乙烯、乙烷的三塔装置与方法 |
CN107022378A (zh) * | 2016-02-01 | 2017-08-08 | 中国石化工程建设有限公司 | 加氢裂化装置或加氢改质装置的干气回收系统及回收干气的工艺 |
CN109627136A (zh) * | 2017-10-09 | 2019-04-16 | 中国石油化工股份有限公司 | 一种干气或裂解气中乙烯乙烷的分离装置及分离方法 |
CN112299942B (zh) * | 2019-08-02 | 2023-04-14 | 中国石化工程建设有限公司 | 一种回收炼厂干气中碳二馏分的方法及系统 |
CN112439303B (zh) * | 2019-09-05 | 2023-02-03 | 中石油吉林化工工程有限公司 | 丙烯腈尾气冷却低温吸收系统及吸收方法 |
CN116059675B (zh) * | 2023-03-15 | 2024-07-02 | 大连理工大学 | 一种采用差压式精馏从吸收剂富液中解吸碳二的方法与装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101602959A (zh) * | 2009-07-09 | 2009-12-16 | 天津大学 | 催化裂化装置下游分离系统提高液化气收率的方法 |
CN101638584A (zh) * | 2008-08-01 | 2010-02-03 | 中国石油化工股份有限公司 | 采用浅冷油吸收法分离炼厂催化干气的方法 |
CN103030494A (zh) * | 2012-12-21 | 2013-04-10 | 天津大学 | 用于分离催化裂化干气或乙烯裂解气中的乙烯、乙烷的吸收水合耦合装置及方法 |
CN103068778A (zh) * | 2010-08-26 | 2013-04-24 | 韩国能量技术研究院 | 用于从流化催化裂化废气中回收乙烯的装置和方法 |
CN104419464A (zh) * | 2013-09-10 | 2015-03-18 | 中国石油化工股份有限公司 | 一种炼厂干气回收系统及干气回收方法 |
CN104892340A (zh) * | 2015-06-10 | 2015-09-09 | 天津大学 | 一种油吸收干气回收乙烯、乙烷的三塔装置与方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103087772A (zh) * | 2011-11-02 | 2013-05-08 | 中国石油化工股份有限公司 | 一种采用油吸收分离炼厂干气的装置及方法 |
-
2015
- 2015-06-10 CN CN201510314992.XA patent/CN104892340A/zh active Pending
- 2015-09-28 WO PCT/CN2015/090879 patent/WO2016197487A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101638584A (zh) * | 2008-08-01 | 2010-02-03 | 中国石油化工股份有限公司 | 采用浅冷油吸收法分离炼厂催化干气的方法 |
CN101602959A (zh) * | 2009-07-09 | 2009-12-16 | 天津大学 | 催化裂化装置下游分离系统提高液化气收率的方法 |
CN103068778A (zh) * | 2010-08-26 | 2013-04-24 | 韩国能量技术研究院 | 用于从流化催化裂化废气中回收乙烯的装置和方法 |
CN103030494A (zh) * | 2012-12-21 | 2013-04-10 | 天津大学 | 用于分离催化裂化干气或乙烯裂解气中的乙烯、乙烷的吸收水合耦合装置及方法 |
CN104419464A (zh) * | 2013-09-10 | 2015-03-18 | 中国石油化工股份有限公司 | 一种炼厂干气回收系统及干气回收方法 |
CN104892340A (zh) * | 2015-06-10 | 2015-09-09 | 天津大学 | 一种油吸收干气回收乙烯、乙烷的三塔装置与方法 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107056600A (zh) * | 2017-05-19 | 2017-08-18 | 张家港市华昌新材料科技有限公司 | 丁辛醇尾气吸收方法 |
CN107056600B (zh) * | 2017-05-19 | 2023-05-02 | 张家港市华昌新材料科技有限公司 | 丁辛醇尾气吸收方法 |
CN111747816A (zh) * | 2019-03-29 | 2020-10-09 | 中国石油大学(北京) | 一种从混合气中回收乙烷的系统及工艺 |
CN111394116A (zh) * | 2019-08-12 | 2020-07-10 | 中国石化工程建设有限公司 | 一种油气回收的方法和装置 |
CN111394116B (zh) * | 2019-08-12 | 2022-05-24 | 中国石化工程建设有限公司 | 一种油气回收的方法和装置 |
CN113651669A (zh) * | 2020-05-12 | 2021-11-16 | 中国石油化工股份有限公司 | 生产丙烯的装置和方法 |
CN114436747A (zh) * | 2020-11-04 | 2022-05-06 | 中国石油化工股份有限公司 | 一种利用干气制备聚合级乙烯的方法和系统 |
CN114436745A (zh) * | 2020-11-04 | 2022-05-06 | 中国石油化工股份有限公司 | 干气制聚合级乙烯的方法及装置 |
CN113355135A (zh) * | 2021-03-19 | 2021-09-07 | 北京欧谊德科技有限公司 | 一种炼厂饱和干气的分离方法 |
CN113354506A (zh) * | 2021-03-19 | 2021-09-07 | 北京欧谊德科技有限公司 | 一种组合吸收回收分离炼厂饱和干气中低碳烃的方法 |
CN115109610A (zh) * | 2021-03-19 | 2022-09-27 | 中国石油化工股份有限公司 | 一种从混合气中回收c2+的系统和方法 |
CN115109610B (zh) * | 2021-03-19 | 2024-02-13 | 中国石油化工股份有限公司 | 一种从混合气中回收c2+的系统和方法 |
CN113336619A (zh) * | 2021-05-13 | 2021-09-03 | 华陆工程科技有限责任公司 | 一种利用羰基合成气制备乙炔气体的方法 |
CN115999314A (zh) * | 2021-10-21 | 2023-04-25 | 中国石油化工股份有限公司 | 一种内部热集成型吸收稳定工艺 |
CN115999315A (zh) * | 2021-10-21 | 2023-04-25 | 中国石油化工股份有限公司 | 内部热集成型吸收稳定工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN104892340A (zh) | 2015-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016197487A1 (fr) | Dispositif à trois tours et procédé pour le recyclage de l'éthylène et de l'éthane à partir de gaz sec par absorption d'huile | |
CN108610229B (zh) | 一种轻烃分离系统及方法 | |
JP7546555B2 (ja) | 軽質炭化水素の分離方法及びシステム | |
CN107827698B (zh) | 一种含乙烯的裂解气非深冷分离方法及其系统 | |
CN103588604A (zh) | 一种组合吸收法回收炼厂干气中碳二的系统及方法 | |
CN103030494B (zh) | 用于分离催化裂化干气或乙烯裂解气中的乙烯、乙烷的吸收水合耦合装置及方法 | |
CN103772106A (zh) | 用于回收催化裂化干气或乙烯裂解气中的乙烯、乙烷的水合吸收气提的装置及方法 | |
CN110407658B (zh) | 一种低能耗乙烷裂解气深冷分离工艺方法 | |
CN111320523B (zh) | 一种从炼厂干气中分离乙烯的方法及装置 | |
CN111393250B (zh) | 一种轻烃分离装置及方法 | |
CN111004079B (zh) | 一种甲烷氧化偶联制乙烯反应气体的分离方法及装置 | |
CN113354506B (zh) | 一种组合吸收回收分离炼厂饱和干气中低碳烃的方法 | |
CN110156557B (zh) | 一种石油化工产出气体的回收方法 | |
CN113354501B (zh) | 一种组合式吸收法回收催化富气中c1、c2和c3的分离方法 | |
CN113354502B (zh) | 一种组合吸收回收分离非饱和干气中低碳烃的方法 | |
CN110387274B (zh) | 热解煤气制lng联产lpg的设备以及方法 | |
CN112707787B (zh) | 一种带净化的裂解气分离系统及利用方法 | |
CN108456553B (zh) | 一种基于氩循环制冷的干气分壁塔分离系统及分离方法 | |
CN111320522B (zh) | 一种从炼厂干气中分离乙烯的方法及装置 | |
CN205024119U (zh) | 一种油吸收干气回收乙烯、乙烷的三塔装置 | |
CN108384594B (zh) | 费托合成尾气净化并回收轻烃的工艺与装置 | |
CN112920007A (zh) | 一种产品为高浓度乙烯的催化裂解气分离工艺与装置 | |
CN107036393B (zh) | 采用双塔连续精馏生产5n级高纯丙烷的装置及生产工艺 | |
CN112707785B (zh) | 一种带冷量回收的裂解气分离系统及分离方法 | |
CN210711336U (zh) | 一种乙烷裂解装置的前脱乙烷分离装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15894754 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15894754 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/08/2018) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15894754 Country of ref document: EP Kind code of ref document: A1 |