WO2016195452A1 - Package damage inspection device - Google Patents

Package damage inspection device Download PDF

Info

Publication number
WO2016195452A1
WO2016195452A1 PCT/KR2016/005994 KR2016005994W WO2016195452A1 WO 2016195452 A1 WO2016195452 A1 WO 2016195452A1 KR 2016005994 W KR2016005994 W KR 2016005994W WO 2016195452 A1 WO2016195452 A1 WO 2016195452A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
sealed
wrapping paper
identification
change information
Prior art date
Application number
PCT/KR2016/005994
Other languages
French (fr)
Korean (ko)
Inventor
최성욱
이나리
장현주
옥경식
박기상
Original Assignee
한국식품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160069819A external-priority patent/KR101859648B1/en
Priority claimed from KR1020160069795A external-priority patent/KR101937233B1/en
Application filed by 한국식품연구원 filed Critical 한국식품연구원
Priority to US15/579,412 priority Critical patent/US20180143131A1/en
Priority to CN201680032553.2A priority patent/CN107690574A/en
Publication of WO2016195452A1 publication Critical patent/WO2016195452A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/38Investigating fluid-tightness of structures by using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/60Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrostatic variables, e.g. electrographic flaw testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/12Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using a selected wavelength, e.g. to sense red marks and ignore blue marks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/22Character recognition characterised by the type of writing
    • G06V30/224Character recognition characterised by the type of writing of printed characters having additional code marks or containing code marks

Definitions

  • the present invention relates to an apparatus capable of conveniently inspecting whether a package is damaged by using a sensor.
  • the present invention relates to a humidity sensor using a waveguide mode resonant element and a wrapping paper inspection device using the same.
  • the packaging is damaged in the manufacturing process / distribution process of food, etc., the problem that the food or the like contained in the package is frequently changed or broken.
  • the packaging is damaged by insects entering the packaging during the manufacturing / distribution process, the packaging is damaged due to dropping during delivery, the packaging is damaged during the process of touching the displayed goods, or a person injects poisons into the packaging.
  • packaging is being compromised in various situations.
  • the method of inspecting the damage of the packaging generated during the manufacturing / distribution of the product is as follows: 1 Visual inspection during the manufacturing process 2 Inspection for the occurrence of air bubbles during the manufacturing process 3 Vision inspection using the camera 4 Pinhole using various methods An inspection method using a detector is used.
  • Korean Patent Publication No. 10-2008-0014240 name of the invention: a device and method for detecting pinholes in a container.
  • the general humidity sensor since the general humidity sensor has a higher production cost than the wrapping paper, it may be applicable to expensive electronic products, but there is a difficulty in terms of productivity when applied to general foods.
  • a packaging damage inspection device that can not only easily and accurately inspect the damage of the package by using the sensor, but also accurately determine whether the damage of the package occurred in the process by inspecting the damage of the package throughout the distribution process. I would like to.
  • a packaging damage inspection apparatus includes a sensor for recognizing internal change information of a sealed wrapping paper, an identification device including an identification code of the sealed wrapping paper, and the identification code included in the identification device.
  • the determination unit compares the internal change information recognized by the sensor with the reference change information to determine whether there is a change in the internal environment of the sealed wrapper, and when it is determined that there is a change in the internal environment, the sealed state of the sealed wrapper is determined. It can be judged that it was not maintained.
  • the determination unit may determine that the sealed state of the sealed wrapper is not maintained by comparing the internal change information generated in the current measurement step with the internal change information generated in the previous measurement step.
  • the determination unit may determine whether to maintain the sealed state of the sealed package by comparing the internal change information generated in the current measurement step and the current external environment information.
  • the internal change information may be at least one of temperature information, humidity information, presence or absence information of a specific substance included in the seal, and concentration information of a substance contained in the seal.
  • the sensor may be provided inside the wrapper and may transmit the internal change information to the determination unit through a communication unit periodically or whenever a request signal is input.
  • the packaging damage device further includes an information generating unit for generating at least one of internal change information for each identification code / distribution step, determination result information of whether there is an internal change, external environment information at the time of measurement, information on the measurement date and time, and information on the measured person. It may include.
  • the information generator may transmit the generated information and the warning message to the external device through the communication unit.
  • the identification element may be any one of a barcode, a QR code, and an RFID code
  • the recognition unit may be a device capable of recognizing any one of a barcode, a QR code, and an RFID code.
  • the packaging damage inspection apparatus further includes an electromagnetic wave generating unit for generating electromagnetic waves, the sensor is provided in the sealed wrapping paper, and generated by changing the electromagnetic wave incident in accordance with the change inside, the determination unit and the electromagnetic wave generated from the sensor and the By comparing the reference electromagnetic waves corresponding to the identification code, it is possible to determine whether to maintain the sealed state of the sealed wrapping paper.
  • the identification element may be an optical identification element that generates a natural resonance frequency when the electromagnetic wave is incident.
  • the packaging damage inspection apparatus further includes a detector configured to detect a characteristic of the electromagnetic wave generated from the sensor, and detect a natural resonance frequency of the electromagnetic wave generated from the optical identification device, wherein the recognition unit is configured based on the detected natural resonance frequency. Recognizing the identification code of the wrapping paper, the determination unit may determine whether to maintain the sealed state of the sealed wrapping paper by comparing the electromagnetic wave generated from the wrapping paper and the reference electromagnetic wave corresponding to the identification code.
  • the determination unit may determine that the sealed state of the sealed package is not maintained when the difference between the natural resonance frequency of the electromagnetic wave generated from the package and the natural resonance frequency of the reference electromagnetic wave is greater than the set difference value.
  • the reference change information has different reference change information for each of the first distribution step, the second distribution step, and the Nth distribution step, and the determination unit corresponds to the internal change information recognized by the sensor and the identification code of the sealed wrapping paper. By comparing the reference change information corresponding to the current distribution step, it is possible to determine whether to maintain the sealed state of the sealed wrapping paper.
  • the optical identification element includes m identification units, and the identification unit has resonance at an inherent resonance frequency when the electromagnetic wave transmission layer made of a material transmitting electromagnetic waves and the transmitted electromagnetic waves are irradiated. It may include a waveguide diffraction grating which is any one of the natural resonance frequency and the nth natural resonance frequency.
  • the optical identification element has n kinds of natural resonance frequencies and the number of the identification units is m, there may be n m identification codes that can be expressed.
  • the packaging damage inspection apparatus may include internal change information for each identification code / distribution step, determination result information of whether the sealed package is kept sealed, external environment information during the measurement, information on the measurement date and time, and the measurement person.
  • the apparatus may further include a writing unit configured to write at least one piece of information about the identification element, and the recognition unit may recognize the information included in the identification element.
  • the packaging damage inspection apparatus is a terahertz wave transmission layer made of a sensor for recognizing the internal change information of the sealed wrapping paper and a material transmitting the terahertz wave, and the transmitted terahertz wave
  • resonance occurs at a natural resonant frequency
  • the natural resonant frequency is composed of a waveguide diffraction grating which is any one of a first natural resonant frequency and an nth natural resonant frequency, and m identifications composed of identification codes of the sealed wrapping paper.
  • An identification unit for recognizing the terahertz wave identification element including a unit, the identification code included in the terahertz wave identification element, and recognizing identification information of the sealed wrapping paper, and internal change information recognized by the sensor;
  • a determination unit which determines whether to maintain the sealed state of the sealed wrapping paper by comparing reference change information; It can be included.
  • the packaging damage inspection apparatus further includes a light source for irradiating the terahertz wave with the terahertz wave identification element, the recognition unit detects the inherent resonant frequency of each terahertz wave generated from each of the terahertz wave identification elements, The identification code may be recognized based on the detected natural resonance frequency.
  • the sensor may include a terahertz wave transmission layer made of a material that transmits terahertz waves, and a field reinforcing structure that enhances an electric field in response to a preset frequency band among terahertz waves transmitted through the terahertz wave transmission layers.
  • the determination unit compares the internal change information recognized by the sensor with the reference change information to determine whether there is a change in the internal environment of the sealed wrapper, and when it is determined that there is a change in the internal environment, the sealed state of the sealed wrapper is determined. It can be judged that it was not maintained.
  • the determination unit may determine that the sealed state of the sealed wrapper is not maintained by comparing the internal change information generated in the current measurement step with the internal change information generated in the previous measurement step.
  • the determination unit may determine whether to maintain the sealed state of the sealed package by comparing the internal change information generated in the current measurement step and the current external environment information.
  • the packaging damage inspection apparatus diffracts the waveguide diffraction information of at least one of determination result information of whether the sealed wrapping paper is maintained in a sealed state, external environment information at the time of measurement, information on the measurement date and time, and information on the person measured.
  • the identification unit may further include a writing unit for writing the identification unit described in the identification unit by changing the natural resonance frequency of the grating.
  • Packaging damage inspection system is a sensor for recognizing the internal change information of the sealed wrapping paper, an identification element including the identification code of the sealed wrapping paper, and the identification code included in the identification element
  • Packaging damage inspection including a recognition unit for recognizing and recognizing the identification information of the wrapping paper and the internal change information and the reference change information recognized by the sensor, and determining whether to maintain the sealed state of the sealed wrapping paper Device; And a server for receiving information on whether to maintain the sealed state of the sealed wrapping paper from the packaging damage inspection device, and storing information on whether to maintain the sealed state or transmitting the information to the terminal of the manager. can do.
  • the packaging damage inspection device is provided in the first distribution step, the second distribution step and the N distribution step, and the server is sealed from the packaging damage inspection device in the first distribution step, the second distribution step, and the N distribution step.
  • Information on whether the package is kept sealed, internal change information per identification code / distribution phase, external environmental information at the time of measurement, information on the measurement date and time, and information on the measured person can be received.
  • the determination unit may determine whether to maintain the sealed state of the sealed wrapping paper by comparing the internal change information recognized by the sensor with reference change information corresponding to the identification code of the sealed wrapping paper and corresponding to the current distribution stage. have.
  • the determination unit compares the internal change information recognized by the sensor with the reference change information to determine whether there is a change in the internal environment of the sealed wrapper, and when it is determined that there is a change in the internal environment, the sealed state of the sealed wrapper is determined. It can be judged that it was not maintained.
  • the determination unit may determine that the sealed state of the sealed wrapper is not maintained by comparing the internal change information generated in the current measurement step with the internal change information generated in the previous measurement step.
  • the determination unit may determine whether to maintain the sealed state of the sealed package by comparing the internal change information generated in the current measurement step and the current external environment information.
  • a humidity sensor using a waveguide mode resonator device for realizing the above object is a waveguide mode resonance (GMR) device; and is applied to the waveguide mode resonator device to absorb moisture;
  • the moisture sensing film may be formed to change the reflectivity of the second electromagnetic wave.
  • the moisture sensing layer may be formed of an inorganic material including at least one of lithium chloride, silica gel, and activated alumina.
  • the moisture sensing film may be made of an organic material including at least one of a carboxyl group (-COOH), an amine group (-NH2), and an alcohol group (-OH).
  • a grating layer may be formed in one direction, and the moisture sensing film may be applied to the grating layer.
  • the wrapping paper inspecting apparatus for realizing the above object is applied to the waveguide mode resonating element and the waveguide mode resonating element so as to absorb moisture, so that a first electromagnetic wave from the outside is applied to the waveguide mode resonating element.
  • a detector configured to detect the second electromagnetic wave generated from the humidity sensor;
  • a humidity information generator configured to generate humidity information based on the second electromagnetic wave detected by the detector.
  • the humidity information generator may generate the humidity information based on at least one of the reflectivity and the cue value of the second electromagnetic wave.
  • the apparatus may further include a user input unit configured to input component information, thickness information, refractive index information, and frequency information of the first electromagnetic wave.
  • the humidity information generator may generate the humidity information based on at least one of the thickness information, the component information, the refractive index information, and the frequency information.
  • the display unit may further include a display unit configured to output humidity information.
  • the moisture sensing layer may be formed of an inorganic material including at least one of lithium chloride, silica gel, and activated alumina.
  • the moisture sensing film may be made of an organic material including at least one of a carboxyl group (-COOH), an amine group (-NH2), and an alcohol group (-OH).
  • the coating mode resonating element, the grating layer is formed in one direction, the moisture sensing film may be applied to the grating layer.
  • the disclosed invention by determining whether the sealed wrapping paper is kept in a sealed state by using a sensor provided in the sealed wrapping paper, and inspecting whether the wrapping paper is damaged, it is possible to inspect whether the packaging is damaged in a non-destructive manner.
  • the humidity sensor using the waveguide mode resonant element and the wrapping paper inspection device using the same according to the present invention can be applied to various products at low cost.
  • the convenience of inspecting the wrapping paper can be further improved through a simple operation of recognizing the humidity sensor as the inspection device.
  • 1 is a view for explaining the damage inspection apparatus of the sealed wrapping paper according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining a packaging damage inspection apparatus according to another embodiment of the present invention.
  • 3A to 3E are diagrams for describing an application example of a packaging damage inspection apparatus according to an exemplary embodiment of the present invention.
  • FIGS. 4A to 4C are diagrams for describing a driving example of a packaging damage inspection apparatus according to an exemplary embodiment of the present invention.
  • 5A to 5C are views for explaining a driving example of the packaging damage inspection apparatus according to another embodiment of the present invention.
  • 6A to 6C are diagrams for describing a driving example of a packaging damage inspection apparatus according to another exemplary embodiment of the present invention.
  • FIG. 7 is a view for explaining a wrapping paper according to an embodiment of the present invention.
  • FIG. 8 is a view for explaining a wrapping paper according to another embodiment of the present invention.
  • FIG. 9 is a view for explaining a sensor provided in the wrapping paper according to an embodiment of the present invention.
  • 10A to 10C are diagrams for describing the electric field strengthening structure according to the exemplary embodiment of the present invention.
  • FIG. 11 is a view for explaining an optical identification device according to an embodiment of the present invention.
  • 12A to 12D are diagrams for describing in detail an optical identification device according to an embodiment of the present invention.
  • FIGS. 13A to 13C are diagrams for describing a writing apparatus for an identification unit according to an embodiment of the present invention.
  • FIG. 14 is a view for explaining a packaging damage inspection system according to an embodiment of the present invention.
  • 15 is a side view for explaining the structure of the humidity sensor 400 according to an embodiment of the present invention.
  • FIG. 16 is a diagram for describing an operating method of the humidity sensor 400 of FIG. 1.
  • 17 is a view for explaining a change in the cue value of the second electromagnetic wave according to the change in the damping coefficient of the moisture sensing film 430.
  • 18 is a view for explaining a change in reflectivity of the second electromagnetic wave according to a change in the damping coefficient of the moisture sensing film 430.
  • 19 is a view for explaining the wrapping paper inspection apparatus 200 according to another embodiment of the present invention.
  • 1 is a view for explaining the damage inspection apparatus of the sealed wrapping paper according to an embodiment of the present invention.
  • the apparatus for inspecting damage to a sealed package 10 may include a display unit 11, a storage unit 12, a communication unit 13, a recognition unit 14, a determination unit 15, and an information generation unit ( 16) and the lighting unit 17.
  • the sealed wrapper refers to a wrapper applied to a packaging method that is isolated from the external environment after packaging, such as vacuum packaging / gas filled packaging.
  • a sealed wrapper may be in a state where the entry and exit of gases, liquids and solids from the external environment are blocked.
  • the display unit 11 may display various data information. For example, the display unit 11 may display information about whether the inside of the wrapping paper is changed.
  • the display unit 11 includes a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), and a flexible display (flexible). and at least one of a 3D display.
  • LCD liquid crystal display
  • TFT LCD thin film transistor-liquid crystal display
  • OLED organic light-emitting diode
  • flexible display flexible display (flexible). and at least one of a 3D display.
  • the storage unit 12 may store various data information.
  • the storage unit 12 may store identification code information, internal change information, internal change existence result determination information, and the like.
  • the communication unit 13 may transmit and receive various information.
  • the communication unit 13 may receive the internal change information or the identification code information transmitted from the sensor 21 and the identification element 22.
  • the communication unit 13 may transmit various information to an external terminal or a management server.
  • the recognition unit 14 may recognize the identification code included in the identification element 22.
  • the identification code may be given differently for each wrapping paper.
  • the identification element 22 may be any one of a barcode, a QR code, and an RFID code
  • the recognition unit 14 may be a device capable of recognizing any one of a barcode, a QR code, and an RFID code.
  • the identification element may be an optical identification element. The optical identification element will be described in detail in FIG. 11.
  • the determination unit 15 may determine whether to maintain the sealed state of the sealed wrapping paper by comparing the internal change information recognized by the sensor 21 and the reference change information. For example, the determination unit 15 may compare the internal change information recognized by the sensor 21 and the reference change information to determine whether there is a change in the internal environment of the sealed wrapping paper. If it is determined that there is a change in the internal environment, the determination unit 15 may determine that the sealed state of the sealed wrapping paper is not maintained. That is, the determination unit 15 may determine that the sealing portion of the sealed wrapping is damaged.
  • the determination unit 15 may know an environment change inside the wrapper including physical / chemical / biological changes.
  • the internal environment change information may include physical change information, chemical change information, biological change information, and the like. Physical change means changes in temperature, volume, form, etc., and chemical change means quantitative changes in constituents such as substances, gases, and moisture. It may mean.
  • the degree of change may be determined according to the degree of difference between the internal change information and the reference change information recognized by the sensor 21.
  • the reference change information may be a reference value for determining internal change information set for each identification code / step of distribution.
  • the determination unit 15 may determine whether the sealing state is maintained by comparing the internal change information generated in the current distribution step with the internal change information generated in the previous distribution step. For example, when the humidity in the previous distribution step is the value A, the determination unit 15 determines that there is no internal change when the humidity generated in the current distribution step is the A value. On the other hand, the determination unit 15 may determine that there is an internal change when the humidity generated at the current distribution stage is a B value, and may determine that the sealed packaging portion is damaged. In other words, the judging unit 15 compares the internal change information in the current sealing state with the internal change information in the normal sealing state to determine whether the sealed packaging portion is damaged ('whether the sealing state is maintained'). You can judge.
  • the present invention utilizes a phenomenon in which when the sealed packaging portion is damaged, the internal environment of the sealed packaging paper differs from when the sealed packaging paper is first sealed.
  • the information generating unit 16 may generate information on changes in the wrapping paper for each identification code / distribution step, external environment information at the time of measurement, information on the measurement date and time, information on the measured person, and the like.
  • the information generating unit 16 transmits the generated information and the warning message to an external device such as a terminal or a management server used by a user who manages distribution damage on the distribution through the communication unit 13, or the generated information is stored in the storage unit 12. ) Can be stored. Through this, the manager can check in real time whether the packaging damage in the distribution.
  • the lighting unit 17 may write various information measured at the present stage to the identification element 22.
  • the various information may include internal change information for each identification code / distribution step, determination result information on whether the sealed package is kept sealed, external environment information during the measurement, information on the measurement date and time, and the measured person. Information and the like.
  • the recognition unit 14 can recognize various pieces of information measured in the previous stage included in the identification element 22. Accordingly, the recognition unit 14 may recognize directly from the identification element 22 without receiving various information measured in the previous step from the server (not shown) or the like.
  • the sensor 21 may be attached to the sealed wrapper 20, may be integrally provided on the sealed wrapper 20, or may be provided inside the sealed wrapper 20.
  • the sensor 21 when a wave is incident from the outside, the sensor 21 may be generated by changing the incident wave according to the change in the inside. Accordingly, the sensor 21 may recognize the internal change information.
  • the wave may include electromagnetic waves, ultrasonic waves, and the like.
  • the senor 21 may transmit internal change information to the determination unit 15 through a communication unit (not shown) periodically or whenever a request signal is input.
  • the sensor 21 may be a passive type without a separate power source or an active power source, and may be an active type capable of actively transmitting internal change information to the determination unit 15. It may be.
  • FIG. 2 is a view for explaining a packaging damage inspection apparatus according to another embodiment of the present invention.
  • the packaging damage inspection apparatus 100 may include a display 101, an electromagnetic wave generator 102, a detector 103, a recognizer 104, a determiner 105, and an information generator 106. And a lighting unit 107.
  • the display unit 101 may display various data information.
  • the display 102 may display information on whether the inside of the wrapping paper is changed.
  • the display unit 101 includes a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), and a flexible display (flexible). and at least one of a 3D display.
  • LCD liquid crystal display
  • TFT LCD thin film transistor-liquid crystal display
  • OLED organic light-emitting diode
  • flexible display flexible display
  • the electromagnetic wave generator 102 may irradiate the electromagnetic wave with the wrapping paper 111 and the optical identification element 112.
  • the electromagnetic wave generator 102 may be various types of devices capable of generating terahertz waves.
  • the terahertz wave is an electromagnetic wave located in a region between infrared and microwaves, and may generally have a frequency of 0.1 THz to 10 THz. However, even if somewhat out of this range, it can be recognized as a terahertz wave in the present invention as long as it can be easily conceived by those skilled in the art.
  • the wrapping paper 111 may be generated by changing an electromagnetic wave incident from an external electromagnetic wave generating unit according to a change in the inside.
  • the optical identification element 112 may generate a natural resonance frequency when electromagnetic waves are incident. A detailed description of the wrapping paper 111 and the optical identification element 112 will be described later.
  • the detector 103 may detect the characteristics of the terahertz wave generated from the wrapping paper 111, and detect the inherent resonance frequency of the electromagnetic wave generated from the optical identification element 112.
  • the detector 103 may detect the characteristics of the terahertz wave reflected, transmitted, diffracted or scattered from the wrapping paper 111. Specifically, for example, the detector 103 may detect the intensity of the terahertz wave or the resonant frequency of the terahertz wave generated from the terahertz wrapping paper 111.
  • the detector 103 may detect a natural resonance frequency of the electromagnetic wave generated from the optical identification element 112.
  • the recognition unit 104 may recognize the identification code of the wrapping paper 111 based on the natural resonance frequency detected by the detection unit 103.
  • the identification code may include code information to distinguish a plurality of wrappers.
  • the determination unit 105 may compare the electromagnetic wave generated from the wrapping paper 111 detected by the detection unit 103 with the reference electromagnetic wave corresponding to the identification code, and determine whether to maintain the sealed state of the sealed wrapping paper. For example, the determination unit 105 may know a change in the wrapping paper including physical / chemical / biological changes. Physical change means changes in temperature, volume, form, etc., and chemical change means quantitative changes in constituents such as substances, gases, and moisture. It may mean. The degree of change may be determined according to the difference between the resonance frequency of the electromagnetic wave detected from the wrapping paper 111 and the resonance frequency of the reference terahertz wave.
  • the reference electromagnetic wave may have different values for each identification code / step of distribution.
  • the wrapping paper 111 may be used. It can be judged that there is an internal change.
  • the reference resonance frequency for each step of the identification code 1 may be A / B / C.
  • the reference resonance frequency may be set in advance or may be a resonance frequency value of the electromagnetic wave measured in a previous step.
  • the reference resonance frequency of the delivery step may be set to B.
  • the reference resonant frequency of the electromagnetic wave actually detected from the wrapping paper 111 in the delivery step is C
  • the reference resonant frequency of the purchase step may be set to C.
  • the determination unit 105 determines whether there is a change in the wrapping paper 111 based on BA (difference value) in the processing step, and in the wrapping paper 111 based on the CB (difference value) in the delivery step. It may be determined whether there is a change, and it may be determined whether the sealed wrapping paper 111 is kept sealed based on the DC (difference value) in the purchase step.
  • the determination unit 105 may determine a sealed wrapper based on a difference value between the resonance frequency of the electromagnetic wave detected by the detector 103 and the resonance frequency of the reference terahertz wave corresponding to the recognized identification code. It may be determined whether or not to maintain the sealed state of the 111.
  • the determination unit 105 may quantify the degree of physical / chemical / biological change in the wrapping paper 111 based on the difference value.
  • the determination unit 105 may derive the difference value of the humidity based on the difference value.
  • the determination unit 105 compares the intensity of the terahertz wave detected by the detector 103 at the specific wavelength with the intensity of the reference terahertz wave corresponding to the recognized identification code, and detects the detection unit at the specific wavelength. If the difference between the intensity of the terahertz wave detected at 103 and the intensity of the reference terahertz wave corresponding to the recognized identification code is greater than the set difference value, it is determined that the sealed state of the sealed wrapping paper 111 is damaged. Can be.
  • the information generation unit 106 may generate information about changes in the wrapping paper for each identification code / distribution step, external environment information at the time of measurement, information on the measurement date and time, information on the measured person, and the like .
  • the information generating unit 106 may transmit the generated information and the warning message to an external device such as a terminal or a management server used by a user who manages distribution damage on the distribution through the communication unit. Through this, the manager can check in real time whether the packaging damage in the distribution.
  • the lighting unit 107 may determine various types of information measured at the present stage in the identification element 112 as a result of determining whether to maintain the state of sealing of the device, external environment information during the measurement, information about the measurement date and time, and the measured person. It may include information about.
  • the package damage inspection apparatus may determine whether the package is damaged by determining whether the sealed package is kept in a sealed state using a sensor provided in the sealed package, thereby inspecting whether the package is damaged by a non-destructive method.
  • the packaging damage inspection apparatus can accurately check whether the damage by inspecting the damage based on the changed characteristics of the electromagnetic wave.
  • the packaging damage inspection apparatus can accurately determine whether the packaging damage occurs in any process by inspecting whether the packaging is damaged during the entire flow.
  • the packaging damage inspection apparatus transmits information on whether the packaging is damaged or not to the user, the manager, and the management server, thereby notifying the information on whether the packaging is damaged in real time and simultaneously managing the damage information on the server.
  • 3A to 3E are diagrams for describing an application example of a packaging damage inspection apparatus according to an exemplary embodiment of the present invention.
  • a user or the like may inspect whether a sealed package is kept sealed at each distribution stage by using the packaging damage inspection apparatus 10.
  • the packaging damage inspection apparatus 10 may acquire whether the sealing state is maintained by each identification code / distribution step, external environment information, measurement date and time, and measurer information.
  • the packaging damage inspection apparatus 10 is maintained in the sealed state by the identification code / distribution stage for each sealed packaging paper in the first stage, the production stage of the processor, external environmental information, Measurement date and time, information of a measurer, and the like can be obtained.
  • the packaging damage inspection device 10 is sealed in each distribution code for each sealed package / distribution step in the distribution stage of the distribution center in the second stage or the third stage in the distribution stage. Whether it is maintained, external environment information, measurement date and time, and information of a measurer can be obtained.
  • the packaging damage inspection apparatus 10 maintains the sealed state by the identification code / distribution stage for each sealed package in the fourth storage stage, which is the consumer's storage stage ('conversion presence') , External environment information, measurement date and time, and information of a measurer can be obtained.
  • the packaging damage inspection apparatus 10 is provided in the refrigerator, and the packaging damage inspection apparatus 10 may determine whether the sealed state is maintained by inspecting each sealed wrapping paper.
  • the packaging damage inspection apparatus 10 stores the sealed state ('conversion presence'), external environment information, measurement date and time, and information of a measurer for each acquired identification code / distribution step. It may be stored in the unit 12, displayed on the display unit 11, or transmitted in real time to the external device through the communication unit 13.
  • FIGS. 4A to 4C are diagrams for describing a driving example of a packaging damage inspection apparatus according to an exemplary embodiment of the present invention.
  • the packaging damage inspection apparatus may acquire information at a manufacturing stage.
  • the information may include whether the seal is maintained ('no change'), internal change information (humidity, temperature, specific gas concentration, etc.), measurement date and time information, and meter information.
  • the temperature may be 5 degrees and the humidity may be 1%.
  • the moth-sealed wrapping paper may be damaged in a distribution stage or a selling stage, and eggs may be laid in the sealed wrapping paper.
  • the part damaged by the moth is very fine, there is a problem that can not be determined by the naked eye.
  • a user or the like may inspect a sealed package by using a package damage inspection apparatus after a manufacturing step. If the inspection result shows that the temperature is 20 degrees and the humidity is 7%, the packaging damage inspection device has a large difference in internal change information compared to the normal state ('temperature: 5 degrees, humidity: 1%'), and thus the sealing state is damaged. Can be judged.
  • the entry / exit of external gas, liquid or solid is allowed, so that the inner environment of the sealed wrapper tends to be similar to the external environment.
  • 5A to 5C are views for explaining a driving example of the packaging damage inspection apparatus according to another embodiment of the present invention.
  • the packaging damage inspection apparatus may acquire information at a manufacturing stage.
  • the information may include whether the seal is maintained ('no change'), internal change information (humidity, temperature, specific gas concentration, etc.), measurement date and time information, and meter information.
  • the temperature may be -5 degrees and the humidity may be 1%.
  • a criminal may put harmful substances into a sealed package using a syringe in a distribution stage or a sales stage.
  • the part damaged by the syringe is very fine, and there is a problem in that it cannot be determined by the naked eye.
  • a user or the like may inspect a sealed package using a packaging damage inspection apparatus after a manufacturing step.
  • the inspection result shows that the temperature is 3 degrees and the humidity is 8%
  • the packaging damage inspection device has a large difference in the internal change information compared to the normal state ('temperature: -5 degrees, humidity: 1%'). It can be judged that it is damaged.
  • the entry / exit of external gas, liquid or solid is allowed, so that the inner environment of the sealed wrapper tends to be similar to the external environment.
  • 6A to 6C are diagrams for describing a driving example of a packaging damage inspection apparatus according to another exemplary embodiment of the present invention.
  • the packaging damage inspection apparatus may acquire information at a manufacturing stage.
  • the information may include whether the seal is maintained ('no change'), internal change information (humidity, temperature, specific gas concentration, etc.), measurement date and time information, and meter information.
  • the temperature may be 5 degrees and the humidity may be 1%.
  • the sealed wrapper may be damaged by a sharp tool or dropped in a process of carrying an object.
  • the sharp tool or the damaged part is very fine, and there is a problem that it is impossible to determine whether the damage is with the naked eye.
  • a user or the like may inspect a sealed package using a packaging damage inspection apparatus after a manufacturing step. If the inspection result shows that the temperature is 20 degrees and the humidity is 7%, the packaging damage inspection device has a large difference in internal change information compared to the normal state ('temperature: 5 degrees, humidity: 1%'), and thus the sealing state is damaged. Can be judged.
  • FIG. 7 is a view for explaining a wrapping paper according to an embodiment of the present invention.
  • the packaging container 700 including a region through which electromagnetic waves are transmitted may include a space surrounded by the packaging paper 701 for electromagnetic waves. Inside the space, a substance such as food may be inserted.
  • the electromagnetic wave wrapping paper 701 may include a first electromagnetic wave transmitting layer 702, a field reinforcing structure 703, an optional sensing layer 704, a filter layer 705, and an electromagnetic wave blocking layer 706.
  • the electromagnetic wave wrapping paper 701 may include an electromagnetic wave transmitting layer 702 through which electromagnetic waves can pass, and an electromagnetic wave blocking layer 706 through which electromagnetic waves are blocked.
  • the electromagnetic wave transmitting layer 702 and the electromagnetic wave blocking layer 706 The shape and size of the area can be variously modified. As such, an area through which electromagnetic waves are transmitted may be formed in only a part of the packaging container 700 but not in its entirety. For example, electromagnetic waves may be terahertz piles.
  • the electromagnetic wave transmitting layer 702 is made of a material that transmits electromagnetic waves.
  • the electric field reinforcement structure 703 may enhance an electric field in response to a preset frequency band among electromagnetic waves transmitted through the electromagnetic wave transmitting layer 702.
  • the field strengthening structure 703 may include a diffraction grating, a metal mesh, a metamaterial, a metal layer including an opening having a width below a wavelength of an electromagnetic wave generating unit, a structure inducing surface plasmon resonance, a photonic crystal structure, and the like. It can be a variety of structures that can enhance the electric field.
  • the selective sensing layer 704 may be a layer in which a sensing material that binds only to a specific material is fixed to the support. For example, if a particular material is a particular ion, a particular gas, moisture, a hazard, or the like, the selective sensing layer 704 only binds to a particular ion, a particular gas, moisture, a hazard, and not to another substance. Can be.
  • the filter layer 705 may pass only certain materials through the selective sensing layer 704.
  • the filter layer 705 may be formed on the innermost side of the packaging container 700, and may include a specific material (eg, a specific ion, among various kinds of materials existing in the interior space of the packaging container 700). Only certain gases, moisture, hazards) may pass through the selective sensing layer 704.
  • the electromagnetic wave blocking layer 706 is formed on both sides of the terahertz wave transmitting layer 702, the electric field strengthening structure 703, the selective sensing layer 704, and the filter layer 705, and may reflect electromagnetic waves.
  • the electromagnetic wave shielding layer 706 is originally made of a polymer packaging material (polyethylene; PE, etc.) to protect the product from ultraviolet rays, visible light, infrared rays, moisture, harmful substances, etc. introduced from the outside of the package. It is coated on polypropylene (PP) and contains metal component to reflect electromagnetic wave.
  • a polymer packaging material polyethylene; PE, etc.
  • PE polypropylene
  • a sensing window composed of an electromagnetic wave transmitting layer 702, a field reinforcing structure 703, an optional sensing layer 704, and a filter layer 705 only in a specific portion of the whole wrapping paper so as to easily detect the inside of the wrapping paper by a non-destructive method. sensing window).
  • FIG. 8 is a view for explaining a wrapping paper according to another embodiment of the present invention.
  • the wrapping paper 800 may include a first area 810 capable of acquiring reference electromagnetic wave characteristics and a second area 820 capable of acquiring changed electromagnetic wave characteristics.
  • the first region 810 may include a terahertz wave transmitting layer 811, a field strengthening structure 812, an optional sensing layer 813 that does not include a sensing material, and a filter layer 814.
  • the second region 820 may include a terahertz wave transmitting layer 821, a field reinforcing structure 822, an optional sensing layer 823 including a sensing material, and a filter layer 824.
  • the detector may detect the first resonant frequency f1 of the electromagnetic wave detected in the first region 810.
  • the first resonant frequency f1 becomes the resonant frequency of the reference electromagnetic wave.
  • the detector may detect the second resonant frequency f2 of the electromagnetic wave detected in the second region 820.
  • the second resonant frequency f2 is the resonant frequency of the electromagnetic wave changed as the sensing material and the specific material included in the selective sensing layer 823 are combined. In other words, when a specific material is coupled to the selective sensing layer 823, the second resonant frequency f2 changes.
  • the determination unit includes a first resonant frequency f1 ('resonant frequency of the reference terahertz wave') of the electromagnetic waves detected in the first region 810 and a second of the electromagnetic waves detected in the second region 820. By comparing the resonant frequencies f2, if the difference between the two resonant frequencies is greater than the set range, it may be determined that a physical / chemical / biological change has occurred inside the packaging container (not shown).
  • FIG. 9 is a view for explaining a sensor provided in the wrapping paper according to an embodiment of the present invention.
  • the packaging container 900 including a region through which electromagnetic waves are transmitted may be a container for drinking water.
  • the packaging container 900 may include a region 910 through which electromagnetic waves are transmitted to some of the side surfaces.
  • the sensor 920 may be provided inside the packaging container 900.
  • the sensor 920 includes the substrate layer 921, the field reinforcing structure 922, the selective sensing layer 923, the filter layer 924, the electromagnetic wave transmitting layer 925, the waveguide diffraction grating 926, and the substrate layer 927. It may include.
  • the substrate layer 921, the field reinforcing structure 922, the selective sensing layer 923, the filter layer 924, and the electromagnetic wave transmitting layer 925 are configured to detect changes in the package, and the electromagnetic wave transmitting layer 925.
  • which comprises a waveguide diffraction grating 926 and a substrate layer 927 is a configuration ('optical identification element') capable of storing an identification code assigned to a package.
  • the substrate layer 921 and the electromagnetic wave transmitting layer 925 may be integrally implemented as one layer. The optical identification element will be described in detail with reference to FIGS. 10 to 12C below.
  • the substrate layer 921 is made of a material that transmits electromagnetic waves.
  • the field reinforcement structure 922 may enhance a field in response to a preset frequency band among electromagnetic waves transmitted through the substrate layer 921.
  • the field strengthening structure 922 may include a diffraction grating, a metal mesh, a metamaterial, a metal layer including an opening having a width below a wavelength of an electromagnetic wave generating unit, a structure inducing surface plasmon resonance, a photonic crystal structure, and the like. It can be a variety of structures that can enhance the electric field.
  • the selective sensing layer 923 may be a layer in which a sensing material that binds only to a specific material is fixed to the support. For example, if a particular material is a particular ion, a particular gas, moisture, a hazard, or the like, the selective sensing layer 923 may only bind to a particular ion, a particular gas, moisture, a hazard, and may not bind to another substance. Can be.
  • the filter layer 924 may pass only a specific material to the selective sensing layer 923.
  • the filter layer 924 may be formed on the innermost side of the packaging container 900, and may include a specific material (eg, a specific ion, among various kinds of materials present in the interior space of the packaging container 900). Only certain gases, moisture, hazards) may pass through the selective sensing layer 923.
  • the selective sensing layer 923 uses a layer that can only combine with moisture, and the filter layer 924 has a layer that can pass only moisture.
  • the detector 940 may detect the resonance frequency of the electromagnetic wave detected by the sensing sensor 920.
  • the determination unit compares the resonant frequency of the electromagnetic wave detected from the sensing sensor 920 with the resonant frequency of the reference electromagnetic wave ('resonant frequency in the absence of moisture'), so that the difference between the two resonant frequencies is greater than the set range. If there is a difference, it can be determined that water is generated around the field strengthening structure. That is, the determination unit (not shown) may determine that moisture has occurred inside the packaging container 900.
  • 10A to 10C are diagrams for describing the electric field strengthening structure according to the exemplary embodiment of the present invention.
  • the field enhancement structure may be a waveguide grating that causes Guided Mode Resonance (GMR) for a particular wavelength.
  • GMR Guided Mode Resonance
  • the waveguide diffraction grating layer 1002 may diffract light incident under a given condition (wavelength, incident angle, waveguide thickness, effective refractive index, etc.) of the incident light.
  • the higher order diffraction waves other than the zeroth order may form a guided mode in the waveguide diffraction grating layer 1002.
  • the zeroth order reflected wave-transmission wave is guided mode and phase matching, and the energy of the waveguide mode is transmitted to the zeroth order reflected wave-transmission wave again.
  • the zero-order reflected diffraction wave is 100% reflected by constructive interference
  • the zero-order transmitted diffraction wave is 0% transmitted by destructive interference, resulting in a very sharp resonance curve in a specific wavelength band.
  • the waveguide diffraction grating layer 1002 when the permittivity of the cover layer 901 is ⁇ 1 , the permittivity of the waveguide diffraction grating layer 1002 is ⁇ 2 , and the permittivity of the bottom substrate layer 1003 is ⁇ 3 , the waveguide
  • the dielectric constant ⁇ 2 of the diffraction grating layer can be expressed as Equation 1 below.
  • ⁇ 2 (x) ⁇ g + ⁇ ⁇ * cos ( K x)
  • ⁇ g is the average value of the two repeated dielectric constants ( ⁇ H , ⁇ L )
  • is the maximum change in dielectric constant
  • K is the wavenumber of the grating
  • 2 ⁇ / ⁇ is the period of the grating
  • X is a distance from the origin to the X axis direction.
  • the effective refractive index N of the waveguide only needs to satisfy the following condition.
  • the sensing film is formed near the waveguide diffraction grating, and the chemical-physical coupling of the minute sensing material generated in the sensing film is represented by the change of the resonance frequency, which can be used as a sensitive sensing principle.
  • this principle can be applied in the electromagnetic wave region to form a GMR sensing element that reacts in the electromagnetic wave region in a package, thereby making it possible to make the electromagnetic wave sensing element with high sensitivity.
  • non-destructive detection is possible with high sensitivity.
  • 10C is a perspective view for explaining the structure and shape of the waveguide diffraction grating.
  • the diffraction grating may include grooves or ridges formed on the surface of the dielectric slab.
  • the diffraction grating is a planar dielectric sheet having a refractive index (eg, a phase grating) that alternates periodically in the dielectric sheet.
  • exemplary phase gratings may be formed by forming an array of periodic holes in and through the dielectric sheet.
  • the diffraction grating may comprise either a one-dimensional (1D) diffraction grating or a two-dimensional diffraction grating.
  • the 1D diffraction grating may, for example, comprise a set of substantially straight grooves that are periodic and parallel only in the first direction (eg along the x-axis).
  • An example of a 2D diffraction grating may include an array of holes in a dielectric slab or sheet, where the holes are periodically spaced along two orthogonal directions (eg, along both the x-axis and the y-axis). It is. In this case, the 2D diffraction grating is also called a photonic crystal.
  • FIG. 11 is a view for explaining an optical identification device according to an embodiment of the present invention.
  • the optical identification device 1100 may include m identification units.
  • Each identification unit may include an electromagnetic wave transmitting layer 1110, a waveguide diffraction grating 1120, and a substrate layer 1130.
  • the area of the identification unit may be influenced by the irradiation area, the natural resonance frequency, the lattice period, etc., of which the largest area is affected. For example, when the diameter of the irradiation beam of electromagnetic waves is 6 mm, the area of the identification unit may be 8 mm * 8 mm. Thus, since the diameter of the irradiation beam of electromagnetic waves is small, the area of the identification unit is also very small.
  • the optical identification element 112 of FIG. 1 may be implemented with the optical identification element 1100 of this embodiment.
  • the electromagnetic wave transmitting layer 1110 is made of a material that transmits electromagnetic waves.
  • the waveguide grating 1120 When the waveguide grating 1120 is irradiated with electromagnetic waves transmitted through the electromagnetic wave transmission layer 1110, the waveguide grating 1120 may generate electromagnetic waves having a natural resonance frequency.
  • the natural resonance frequency may be any one of the first natural resonance frequency and the nth natural resonance frequency.
  • the first natural resonant frequency may be f 1 . If n is 10, the natural resonance frequency may be any one of the 10 natural resonance frequencies.
  • the waveguide diffraction grating 1120 may be formed of a material such as photosensitive, thermally sensitive, or electrically sensitive.
  • Waveguide diffraction grating 1120 may include grooves or ridges formed on the surface of the dielectric slab.
  • the diffraction grating is a planar dielectric sheet having a refractive index (eg, a phase grating) that alternates periodically in the dielectric sheet.
  • exemplary phase gratings may be formed by forming an array of periodic holes in and through the dielectric sheet.
  • Waveguide diffraction grating 1120 may include either a one-dimensional (1D) diffraction grating or a two-dimensional diffraction grating.
  • the 1D diffraction grating may, for example, comprise a set of substantially straight grooves that are periodic and parallel only in the first direction (eg along the x-axis).
  • An example of a 2D diffraction grating may include an array of holes in a dielectric slab or sheet, where the holes are periodically spaced along two orthogonal directions (eg, along both the x-axis and the y-axis). It is. In this case, the 2D diffraction grating is also called a photonic crystal.
  • the substrate layer 1130 may be a layer capable of being combined with the waveguide diffraction grating 1120 to fix the waveguide diffraction grating 1120.
  • the optical identification element can express a large amount of identification code in a small area.
  • the security is also excellent.
  • 12A to 12D are diagrams for describing in detail an optical identification device according to an embodiment of the present invention.
  • 12A is a graph illustrating detection and detection of electromagnetic waves reflected from an optical identification element.
  • each of the identification units 1 to n may have natural resonance frequencies f 1 , f 2, and f3 to fn, respectively.
  • the first identification unit 1 has a first natural resonance frequency f 1
  • the second identification unit 2 has a second natural resonance frequency f 2
  • the nth identification unit n May have an n th natural resonance frequency f n.
  • 12B is a graph illustrating detection and detection of electromagnetic waves transmitted from the optical identification element.
  • each of the identification units 1 to n may have natural resonance frequencies f 1 , f 2, and f3 to fn, respectively.
  • the first identification unit 1 has a first natural resonance frequency f 1
  • the second identification unit 2 has a second natural resonance frequency f 2
  • the nth identification unit n May have an n th natural resonance frequency f n.
  • 12C is a diagram for explaining an optical identification element consisting of 16 identification units.
  • the first identification unit is the first identification unit 1 having the first natural resonance frequency f 1
  • the second identification unit is the fourth identification unit 4 having the fourth natural resonance frequency f 4
  • the third identification unit is the second identification unit 2 having the second natural resonant frequency f 2
  • the identification units existing at the remaining positions may also be constituted by the identification units as shown in FIG. 2C.
  • FIG. 12D is a diagram for explaining the number of identification codes that can be expressed when there are n kinds of natural resonant frequencies and the number of identification units is m.
  • 12E is a diagram for explaining an arrangement of various types of identification units.
  • the identification units may be arranged in various forms, and the form of the arrangement may mean identification information different from the identification code.
  • the identification units can be arranged in various forms such as linear, circular, square, grid and cross shapes.
  • the identification units may be arranged in the form of a line, a cross, and a circular band.
  • the line shape may mean an A article
  • the crossed shape may mean a B article
  • the circular band shape may mean a C article.
  • the arrangement of the identification units may be used as the identification information.
  • FIGS. 13A to 13C are diagrams for describing a writing apparatus for an identification unit according to an embodiment of the present invention.
  • the natural resonance frequency may be set for each frequency band (G1, G2, ..., Gm).
  • the frequency band may be set based on a frequency band that the modulator (1310b of FIG. 13B) can change. For example, when the frequency band of the modulation section (1310b of FIG. 13b) can be changed relative to the f 2 f 3 f in 1, a first frequency band (G1) is in the f3 f 1.
  • the frequency band that the modulator (1310b of FIG. 13B) can change based on f 5 is f 4 to f 6
  • the first frequency band G1 becomes f 4 to f 6 .
  • the writing apparatus for the identification unit may include an identification unit 1300b and a modulator 1310b.
  • the identification unit 1300b is a waveguide diffraction grating having a terahertz wave transmission layer made of a material that transmits terahertz waves, and a natural resonance frequency f 2 corresponding to the frequency band G1 set for the transmitted terahertz waves. It may include.
  • the modulator 1310b may change the natural resonance frequency of the waveguide diffraction grating to another natural resonance frequency within a set frequency band.
  • the modulator 1310b may change the natural resonance frequency f 2 of the waveguide diffraction grating to another natural resonance frequency f 1 or f 3 within the set frequency band G1.
  • the modulator 1310b may change the natural resonance frequency of the waveguide diffraction grating to another natural resonance frequency within a set frequency band.
  • the writing apparatus for the identification unit may include an identification unit 1300c and a modulator 1310c.
  • the identification unit 1300c is a waveguide diffraction grating having a terahertz wave transmission layer made of a material that transmits terahertz waves, and a natural resonance frequency f 5 corresponding to the frequency band G2 set for the transmitted terahertz waves. It may include.
  • the modulator 1310c may change the natural resonance frequency of the waveguide diffraction grating to another natural resonance frequency within a set frequency band.
  • the modulator 1310c may change the natural resonance frequency f 5 of the waveguide diffraction grating to another natural resonance frequency f 4 or f 6 within the set frequency band G2.
  • the writing apparatus for the identification unit when used, the user or the like can freely change the resonance frequency of the identification unit within the set resonance frequency range. Therefore, the identification unit does not have to be produced for each resonant frequency, thereby reducing the production cost of the identification unit and the optical identification element. In addition, user convenience can be increased by changing the identification unit to a desired resonance frequency in the field using a writing device for the identification unit.
  • FIG. 14 is a view for explaining a packaging damage inspection system according to an embodiment of the present invention.
  • the packaging damage inspection system includes at least one packaging damage inspection apparatus 50, 60, 70 and a server 40.
  • each of the packaging damage inspection devices (50, 60, 70) is used in the manufacturing stage, the device used in the distribution stage and the sales stage Device may be used.
  • the packaging damage inspection apparatus 50, 60, 70 includes a sensor 51, 61, 71 for recognizing the internal change information of the sealed wrapping paper, an identification element (not shown) including an identification code of the sealed wrapping paper, and identification. Recognizing the identification code included in the device, by comparing the recognition unit 54, 64, 74 for recognizing the identification information of the wrapping paper and the internal change information and the reference change information recognized by the sensor, sealing the sealed wrapper It may include a determination unit (55, 65, 75) for determining whether to maintain the state.
  • the server 40 receives information on whether or not to maintain the sealed state of the sealed wrapping paper from the packaging damage inspection device (50, 60, 70), and stores information on whether or not to maintain the received sealed state in the storage unit or Can be sent to the terminal of the administrator.
  • Packaging damage inspection apparatus (50, 60, 70) may be provided in the first distribution step, the second distribution step and the N-th distribution step.
  • the server 40, the first distribution step, the second distribution step and the N-th distribution step of the information on whether or not to maintain the sealed state of the sealed wrapping paper from the packaging damage inspection device, each identification code / internal change by distribution step Information, external environment information at the time of measurement, information on the measurement date and time, and information on the measured person can be received.
  • the determination unit 55, 65, 75 compares the internal change information recognized by the sensor with reference change information corresponding to the identification code of the sealed package paper and corresponding to the current distribution stage, thereby sealing the sealed package paper. It can be determined whether to maintain the state.
  • the determination unit 55, 65, 75 compares the internal change information recognized by the sensor with the reference change information to determine whether there is a change in the internal environment of the sealed wrapper, and when it is determined that there is a change in the internal environment. It may be determined that the sealed state of the sealed wrapper is not maintained.
  • the determination unit 55, 65, 75 may compare the internal change information generated in the current measurement step with the internal change information generated in the previous measurement step to determine that the sealed state of the sealed wrapping paper is not maintained.
  • the determination unit 55, 65, 75 may determine whether to maintain the sealed state of the sealed wrapper by comparing the internal change information generated in the current measurement step with the current external environment information.
  • Figure 15 is a side view for explaining the structure of the humidity sensor 400 according to an embodiment of the present invention
  • Figure 16 is a view for explaining the operation method of the humidity sensor 400 of FIG.
  • the humidity sensor 400 may include a waveguide mode resonating element 410 and a moisture sensing layer 430.
  • the GMR (Guided Mode Resonance) device 440 is a device in which a light incident on a diffraction grating is diffracted under given conditions (wavelength, incident angle, waveguide thickness, and effective refractive index, etc.), The waveguide is converted into the Leaky Guided Mode, which is formed in the diffraction grating. At this time, the zero-order reflected wave-transmission wave occurs in phase matching with Leaky Mode, and the energy of the leaky mode is transmitted to the zero-order reflected wave-transmission wave again.
  • the waveguide mode resonating element 140 When resonance occurs, the zero-order reflected diffraction wave is 100% reflected by constructive interference, and the zero-order transmitted diffraction wave is 0% transmitted by destructive interference, resulting in a very sharp resonance curve in a specific wavelength band and increasing the cue value. Therefore, when the first electromagnetic wave such as the terahertz wave is irradiated from the outside according to the above-described principle, the waveguide mode resonating element 140 has a second wavelength having a specific wavelength band and cue value according to the diffraction grating formed by the grating layer 411. It can generate electromagnetic waves. In addition, through analysis of the second electromagnetic wave, environmental information (humidity information) of a place where the waveguide mode resonating element 410 is disposed may be sensed.
  • environmental information humidity information
  • the moisture sensing layer 430 may be formed of a material capable of absorbing moisture and may be coated on the waveguide mode resonating element 410.
  • the moisture sensing film 430 is applied to the grating layer 411 of the waveguide mode resonating element 410 to change the property of the second electromagnetic wave generated by irradiating the waveguide mode resonating element 410 with the first electromagnetic wave. Can be.
  • the moisture sensing film 430 is a water absorbent inorganic material composed of lithium chloride, silica gel, and activated alumina, or a carboxyl group (-COOH), an amine group (-NH2), and an alcohol. It may include at least one or more of the material selected from the water-absorbent organic material consisting of a group (-OH).
  • Lithium chloride is deliquescent and absorbs moisture in the air to melt.
  • Silica gel has a myriad of pores of about 50% of its volume in the inside, so that the surface area of the silica gel is large, so that the adsorption power of water vapor and gas is large.
  • Activated alumina is porous and can adsorb moisture and acid because of its large surface area. Hygroscopicity is higher than calcium chloride and silica gel.
  • the low molecular or high molecular organic material having a carboxyl group, an amine group and an alcohol functional group is adsorbed through hydrogen bonding with moisture, and the functional group can be formed through a physical treatment such as plasma without applying to a grating layer or applying a substance.
  • the moisture M when moisture M is present around the waveguide mode resonating element 410, the moisture M may be absorbed by the moisture sensing layer 430.
  • an attenuation coefficient of the moisture sensing film 130 may be changed, and characteristics (wavelength band, cue value, etc.) of the second electromagnetic wave generated by the waveguide mode resonating element 410 may be changed according to the changed attenuation coefficient.
  • the humidity sensor 400 using the principle that the second electromagnetic wave is changed according to the degree of attenuation coefficient of the moisture sensing film 430 may be implemented.
  • the attenuation coefficient may be a numerical value of the degree to which the light energy of the first electromagnetic wave irradiated toward the water is absorbed and absorbed by the water molecules of the moisture sensing film 430 when water is adsorbed on the moisture sensing film 430.
  • the attenuation coefficient may be an absorption coefficient of a complex refractive index.
  • a conduction current proportional to the electrical spectrum is generated in addition to the electrical flux current proportional to the time change of the electrical vector. Since the electric current is 90 ° out of phase with the electric flux current, the conductive medium can be treated as a non-conductor medium, considering the phases of the two currents, grouping them together to generate only the electric current.
  • the dielectric constant ⁇ of the conductive medium becomes ⁇ 0 -i 4 ⁇ ⁇ / ⁇ , which is a complex number, so the refractive index defined by sqrt ( ⁇ * ⁇ ) also becomes a complex number.
  • ⁇ 0 is the dielectric constant that makes the original electric flux current
  • i4 ⁇ / ⁇ is the dielectric constant of the conduction current
  • is the conductivity
  • is each frequency of light in the medium
  • i is an imaginary unit
  • is the permeability (the attenuation coefficient ⁇ and the permeability ⁇ of the complex refractive index described above are interpreted differently with the same sign applied to different formulas).
  • n 0 is the refractive index
  • k o is the extinction coefficient
  • k is the absorption coefficient
  • the second electromagnetic wave corresponding thereto may be generated through the moisture sensing layer 430.
  • the second electromagnetic wave is changed according to the attenuation coefficient or absorption coefficient of the moisture sensing film 430, and thus the humidity information of the target object may be calculated by comparing the degree of change with a reference value.
  • FIG. 17 is a view for explaining a change in the cue value of the second electromagnetic wave according to the change in the damping coefficient of the moisture sensing film 430.
  • the damping coefficient is expressed as ⁇ , but this is only an expression in a related formula, and in this drawing, the damping coefficient is referred to as k for ease of explanation.
  • the cue value of the second electromagnetic wave may be substantially maintained in a constant correlation. Specifically, when the attenuation coefficient increases from 0 to 1.0 in 0.02 units, the cue value gradually decreases from about 300 to 80.
  • the waveguide mode resonating element 410 to which the moisture sensing layer 430 is coated is installed on the object, and the second electromagnetic wave is generated from the waveguide mode resonating element 410 by irradiating the first electromagnetic wave, moisture sensing is performed.
  • the cue value of the second electromagnetic wave may change according to the attenuation coefficient of the film 430, and the change rate may be established through simulation data.
  • the waveguide mode resonating element 410 is disposed inside the package of the product and the humidity inside It can be used as a humidity sensor 400 that can detect a change.
  • the humidity is defined as A%
  • the humidity is defined as B%
  • the humidity is defined as C% when the Q value is 100
  • the detector measures the electromagnetic waves generated from the humidity sensor 400, and the humidity information generator calculates a Q value based on the measured electromagnetic waves.
  • the humidity information generator may generate humidity information by deriving a corresponding humidity value (A%, B%, or C%) according to the calculated Q value.
  • the device according to the present invention can measure the humidity value according to the change in the Q value.
  • 18 is a view for explaining a change in reflectivity of the second electromagnetic wave according to a change in the damping coefficient of the moisture sensing film 430.
  • the humidity sensor with the moisture sensing film changes not only the cue value in FIG. 17 but also the reflection.
  • the reflectivity is a value representing the degree to which the first electromagnetic wave is irradiated by the humidity sensor and may be calculated as a detection value of the second electromagnetic wave.
  • the reflectivity decreases from 1 to about 0.1.
  • the humidity is defined as A% when the reflectivity is 1, the humidity is defined as B% when the reflectivity is 0.5, and the humidity is defined as C% when the Q value is 100 when the reflectivity is 0.2. do.
  • the detector measures the electromagnetic waves generated from the humidity sensor 400, and the humidity information generator calculates the reflectivity based on the measured electromagnetic waves.
  • the humidity information generator may generate humidity information by deriving a corresponding humidity value (A%, B%, or C%) according to the calculated reflectivity.
  • the device according to the invention can measure the humidity value according to the change in reflectivity.
  • the cue value and the reflectivity of the second electromagnetic wave are both calculated to obtain humidity information through a combination thereof.
  • more accurate humidity information can be generated.
  • 19 is a view for explaining the wrapping paper inspection apparatus 200 according to another embodiment of the present invention.
  • the pavement inspection apparatus may include a light source 210, a detector 230, a user input unit 250, a display unit 270, and a humidity information generator 290.
  • the light source 210 is a means for irradiating the first electromagnetic wave W1 toward the humidity sensor 400.
  • the light source 210 may be various types of devices capable of generating terahertz waves.
  • the terahertz blue is the first electromagnetic wave W1 positioned in the region between infrared and microwaves, and may generally have a frequency of 0.1 THz to 10 THz. However, even if somewhat out of this range, it can be recognized as a terahertz wave in the present invention as long as it can be easily conceived by those skilled in the art.
  • the detector 230 may detect the second electromagnetic wave W2 generated from the humidity sensor 400. In other words, the detector 230 may detect the intensity (reflection) and cue value of the second electromagnetic wave W2 reflected from the humidity sensor 400.
  • the user input unit 250 may input component information, thickness information, refractive index information, frequency information of the first electromagnetic wave W1, and the like of the moisture sensing film.
  • the frequency information of the moisture sensing film 430 and the first electromagnetic wave W1 applied to the humidity sensor 400 may vary according to the type of the product wrapping paper P to be inspected. Therefore, information about the type of the humidity sensor 100 installed in the wrapping paper P may be inputted to the user input unit 250 to be changed.
  • the display unit 270 may visually output humidity information and various types of information generated by the humidity information generator 290 to be described later. Therefore, the user input unit 250 and the display unit 270 may be integrated into a device such as a touch screen.
  • the humidity information generator 290 may generate humidity information about the product wrapper P based on the second electromagnetic wave W2 detected by the detector 230. In other words, the humidity information generator 290 may generate humidity information corresponding thereto based on at least one of the reflectivity and the cue value of the second electromagnetic wave W2.
  • the operation method of the wrapping paper inspection apparatus 200 is as follows.
  • the user inputs information corresponding to the type of the humidity sensor 400 installed on the product package P to be inspected (components, thickness, and refractive index information of the moisture detection layer 430) into the user input unit 250.
  • the frequency information of the first electromagnetic wave W1 to be irradiated can be set.
  • the user may irradiate the first electromagnetic wave W1 toward the area of the wrapping paper P in which the humidity sensor 400 exists using the wrapping paper inspecting apparatus 200.
  • the first electromagnetic wave W1 may be converted into a second electromagnetic wave W2 corresponding to the humidity sensor 400.
  • the second electromagnetic wave W2 may be changed in nature and reflected by the detector 230 of the wrapping paper inspecting apparatus 200 due to the reasons described above with reference to FIG. 16. .
  • the humidity information generator 290 may compare the preset reference value with the detected second electromagnetic wave W2. In detail, the humidity information generator 290 may generate humidity information regarding moisture content or moisture content of the humidity sensor 400 by comparing the reflectance and the cue value of the second electromagnetic wave W2 with a reference value.
  • the information on which humidity information is generated may be displayed on the display unit 270 or output as image, text, or voice information through a speaker unit not described in this drawing. Therefore, the user can easily determine the humidity-containing state inside the product package (P) by referring to the humidity information output.
  • the packaging paper inspection apparatus 200 it is possible to determine the water-containing state inside the product packaging paper (P) through a simple operation, and can be mass-produced at low cost, the waveguide mode resonating element 410 and the moisture sensing film 430
  • This humidity sensor 400 can be used to improve productivity.
  • the reflectance and the cue value closely correlated with the attenuation coefficient as the moisture detection reference value, the reliability of the inspection result can be increased.
  • packaging damage inspection apparatus and the packaging damage inspection system described above are not limited to the configuration and method of the above-described embodiments, but the embodiments may be modified in whole or in part to enable various modifications. It may alternatively be configured in combination.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Artificial Intelligence (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A package damage inspection device according to one embodiment of the present invention can comprise: a sensor for recognizing internal change information of sealed wrapping paper; an identification element including an identification code of the sealed wrapping paper; a recognition unit recognizing the identification code included in the identification element so as to recognize identification information of the sealed wrapping paper; and a determination unit comparing the internal change information recognized by the sensor and reference change information so as to determine whether the sealed wrapping paper is maintained in a sealed state.

Description

포장 훼손 검사 장치Packaging Damage Inspection Device
본 발명은 센서를 이용하여 포장의 훼손 여부를 편리하게 검사할 수 있는 장치에 관한 것이다.The present invention relates to an apparatus capable of conveniently inspecting whether a package is damaged by using a sensor.
본 발명은 도파모드 공진 소자를 이용한 습도 센서 및 이를 이용한 포장지 검사장치에 관한 것이다.The present invention relates to a humidity sensor using a waveguide mode resonant element and a wrapping paper inspection device using the same.
최근 식품 등을 제조 과정 / 유통 과정 등에서 포장이 훼손되어, 포장 내부에 포함된 식품 등이 변하거나 부셔지는 문제가 빈번히 발생되고 있다. 식품의 경우, 제조 과정 / 유통 과정 등에서 포장을 벌레가 뚫고 들어가거나, 배송 중 떨어트려 포장이 훼손되거나, 진열된 상품을 만지는 과정에서 포장이 훼손되거나, 사람이 악의적으로 독극물을 포장의 내부에 주입하는 것과 같이, 다양한 상황에서 포장이 훼손되고 있다.Recently, the packaging is damaged in the manufacturing process / distribution process of food, etc., the problem that the food or the like contained in the package is frequently changed or broken. In the case of food, the packaging is damaged by insects entering the packaging during the manufacturing / distribution process, the packaging is damaged due to dropping during delivery, the packaging is damaged during the process of touching the displayed goods, or a person injects poisons into the packaging. As can be seen, packaging is being compromised in various situations.
이렇게 제품이 제조 / 유통되는 과정에서 발생되는 포장의 훼손을 검사하는 방법으로는 ① 제조 과정에서 육안으로 검사 ② 제조 과정에서 기포의 발생 여부를 검사 ③ 카메라를 이용한 비젼 검사 및 ④ 다양한 방식을 이용한 핀홀 검출기를 이용한 검사 방법이 이용되고 있다.The method of inspecting the damage of the packaging generated during the manufacturing / distribution of the product is as follows: ① Visual inspection during the manufacturing process ② Inspection for the occurrence of air bubbles during the manufacturing process ③ Vision inspection using the camera ④ Pinhole using various methods An inspection method using a detector is used.
종래 기술과 관련된 기술은 '한국공개특허 10-2008-0014240(발명의 명칭 : 용기의 핀홀 검출 장치 및 방법'에 개시되어 있다.The technology related to the prior art is disclosed in Korean Patent Publication No. 10-2008-0014240 (name of the invention: a device and method for detecting pinholes in a container).
일반적으로 유통 및 판매되고 있는 다양한 제품들은 포장 상태로 판매되고 있어, 포장지의 직접적인 훼손 상태는 육안으로 확인 가능하나 포장지 내부의 상태 정보는 확인하기가 어렵다. 특히, 식료품이나 전자 제품과 같이 포장지 내부에 수분이 존재하면 심각한 손상이 발생되는 제품들의 경우, 이에 대한 감지가 보다 요구된다.In general, various products being distributed and sold are sold in a packaged state, so the direct damage state of the wrapping paper can be visually confirmed, but the status information inside the wrapping paper is difficult to verify. In particular, in the case of products in which serious damage occurs when moisture is present in the packaging such as food or electronic products, detection of this is required.
이를 해결하기 위해 포장지 내부에 전기적으로 구동되는 습도 센서를 구비하여 습도 정보를 인지하는 방법이 있을 수 있다.In order to solve this problem, there may be a method of recognizing humidity information by having a humidity sensor electrically driven inside the wrapping paper.
하지만, 일반적인 습도 센서는 포장지 대비 높은 생산 비용을 가지므로, 고비용의 전자제품에 대해서는 적용성이 있을 수 있으나, 일반 식료품에 적용하기에는 생산성 측면에서 곤란성이 존재한다.However, since the general humidity sensor has a higher production cost than the wrapping paper, it may be applicable to expensive electronic products, but there is a difficulty in terms of productivity when applied to general foods.
따라서, 저비용으로 다양한 포장 상태의 제품에 적용될 수 있는 습도 센서에 대한 개발이 필요하다.Therefore, there is a need for the development of a humidity sensor that can be applied to a variety of packaging products at low cost.
포장의 훼손 여부를 센서를 이용하여 용이하면서도 정확하게 검사할 수 있을 뿐만 아니라 유통 전체 과정에서 포장의 훼손 여부를 검사함으로써 어느 과정에서 포장의 훼손이 발생하였는지 여부를 정확하게 파악할 수 있는 포장 훼손 검사 장치를 제공하고자 한다.Provides a packaging damage inspection device that can not only easily and accurately inspect the damage of the package by using the sensor, but also accurately determine whether the damage of the package occurred in the process by inspecting the damage of the package throughout the distribution process. I would like to.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.Other objects and advantages of the present invention can be understood by the following description, and will be more clearly understood by the embodiments of the present invention. Also, it will be readily appreciated that the objects and advantages of the present invention may be realized by the means and combinations thereof indicated in the claims.
본 발명의 일 실시예에 따른 포장 훼손 검사 장치는 밀봉된 포장지의 내부 변화 정보를 인식하는 센서와, 상기 밀봉된 포장지의 식별 코드를 포함하는 식별 소자와, 상기 식별 소자에 포함된 상기 식별 코드를 인식하여, 상기 밀봉된 포장지의 식별 정보를 인식하는 인식부 및 상기 센서에 의해 인식된 내부 변화 정보와 기준 변화 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단하는 판단부를 포함할 수 있다.According to an embodiment of the present invention, a packaging damage inspection apparatus includes a sensor for recognizing internal change information of a sealed wrapping paper, an identification device including an identification code of the sealed wrapping paper, and the identification code included in the identification device. A recognition unit for recognizing and recognizing identification information of the sealed wrapper, and a determination unit for comparing the internal change information recognized by the sensor with reference change information, and determining whether to maintain the sealed state of the sealed wrapper. Can be.
판단부는 상기 센서에 의해 인식된 내부 변화 정보와 기준 변화 정보를 비교하여, 상기 밀봉된 포장지의 내부 환경 변화가 있는지 여부를 판단하고, 내부 환경 변화가 있다고 판단되는 경우 상기 밀봉된 포장지의 밀봉 상태가 유지되지 않았다고 판단할 수 있다.The determination unit compares the internal change information recognized by the sensor with the reference change information to determine whether there is a change in the internal environment of the sealed wrapper, and when it is determined that there is a change in the internal environment, the sealed state of the sealed wrapper is determined. It can be judged that it was not maintained.
판단부는 현재 측정 단계에서 생성된 내부 변화 정보와 이전 측정 단계에서 생성된 내부 변화 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태가 유지되지 않았다고 판단할 수 있다.The determination unit may determine that the sealed state of the sealed wrapper is not maintained by comparing the internal change information generated in the current measurement step with the internal change information generated in the previous measurement step.
판단부는 현재 측정 단계에서 생성된 내부 변화 정보와 현재 외부 환경 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단할 수 있다. The determination unit may determine whether to maintain the sealed state of the sealed package by comparing the internal change information generated in the current measurement step and the current external environment information.
내부 변화 정보는 온도 정보, 습도 정보, 밀봉 내부에 포함된 특정 물질의 존재 유무 정보 및, 밀봉 내부에 포함된 물질의 농도 정보 중 적어도 하나일 수 있다.The internal change information may be at least one of temperature information, humidity information, presence or absence information of a specific substance included in the seal, and concentration information of a substance contained in the seal.
센서는 상기 포장지의 내부에 구비되고, 주기적으로 또는 요청 신호가 입력될 때 마다 상기 내부 변화 정보를 통신부를 통해 상기 판단부로 송신할 수 있다.The sensor may be provided inside the wrapper and may transmit the internal change information to the determination unit through a communication unit periodically or whenever a request signal is input.
포장 훼손 장치는 식별 코드별 / 유통 단계별 내부 변화 정보, 내부 변화 유무의 판단 결과 정보, 측정시 외부 환경 정보, 측정 일시에 대한 정보 및 측정한 사람에 대한 정보 중 적어도 하나를 생성하는 정보 생성부를 더 포함할 수 있다.The packaging damage device further includes an information generating unit for generating at least one of internal change information for each identification code / distribution step, determination result information of whether there is an internal change, external environment information at the time of measurement, information on the measurement date and time, and information on the measured person. It may include.
정보 생성부는 상기 생성된 정보 및 경고 메시지를 통신부를 통해 외부 장치로 전송할 수 있다.The information generator may transmit the generated information and the warning message to the external device through the communication unit.
식별 소자는 바코드, QR 코드, 및 RFID 코드 중 어느 하나이고, 인식부는 바코드, QR 코드, 및 RFID 코드 중 어느 하나를 인식할 수 있는 장치일 수 있다.The identification element may be any one of a barcode, a QR code, and an RFID code, and the recognition unit may be a device capable of recognizing any one of a barcode, a QR code, and an RFID code.
포장 훼손 검사 장치는 전자기파를 생성하는 전자기파 생성부를 더 포함하고, 센서는 상기 밀봉된 포장지에 구비되며, 내부의 변화에 따라 입사되는 전자기파를 변화시켜 생성하고, 판단부는 상기 센서로부터 생성된 전자기파와 상기 식별 코드에 대응되는 기준 전자기파를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단할 수 있다.The packaging damage inspection apparatus further includes an electromagnetic wave generating unit for generating electromagnetic waves, the sensor is provided in the sealed wrapping paper, and generated by changing the electromagnetic wave incident in accordance with the change inside, the determination unit and the electromagnetic wave generated from the sensor and the By comparing the reference electromagnetic waves corresponding to the identification code, it is possible to determine whether to maintain the sealed state of the sealed wrapping paper.
식별 소자는 상기 전자기파가 입사되면 고유 공진 주파수를 생성하는 광학적 식별 소자일 수 있다.The identification element may be an optical identification element that generates a natural resonance frequency when the electromagnetic wave is incident.
포장 훼손 검사 장치는 상기 센서로부터 생성된 전자기파의 특성을 검출하고, 상기 광학적 식별소자로부터 생성된 전자기파의 고유 공진 주파수를 검출하는 검출부를 더 포함하고, 인식부는 상기 검출된 고유 공진 주파수에 기초하여 상기 포장지의 식별 코드를 인식하고, 판단부는 상기 포장지로부터 생성된 전자기파와 상기 식별 코드에 대응되는 기준 전자기파를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단할 수 있다.The packaging damage inspection apparatus further includes a detector configured to detect a characteristic of the electromagnetic wave generated from the sensor, and detect a natural resonance frequency of the electromagnetic wave generated from the optical identification device, wherein the recognition unit is configured based on the detected natural resonance frequency. Recognizing the identification code of the wrapping paper, the determination unit may determine whether to maintain the sealed state of the sealed wrapping paper by comparing the electromagnetic wave generated from the wrapping paper and the reference electromagnetic wave corresponding to the identification code.
판단부는 상기 포장지로부터 생성된 전자기파의 고유 공진 주파수와 상기 기준 전자기파의 고유 공진 주파수의 차이값이 설정된 차이값보다 큰 경우, 상기 밀봉된 포장지의 밀봉 상태가 유지되지 않았다고 판단할 수 있다.The determination unit may determine that the sealed state of the sealed package is not maintained when the difference between the natural resonance frequency of the electromagnetic wave generated from the package and the natural resonance frequency of the reference electromagnetic wave is greater than the set difference value.
기준 변화 정보는 제 1 유통 단계, 제 2 유통 단계 및 제 N 유통 단계별로 다른 기준 변화 정보를 갖으며, 판단부는 상기 센서에 의해 인식된 내부 변화 정보와, 상기 밀봉된 포장지의 식별 코드에 대응되고 현재 유통 단계에 대응되는 기준 변화 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단할 수 있다.The reference change information has different reference change information for each of the first distribution step, the second distribution step, and the Nth distribution step, and the determination unit corresponds to the internal change information recognized by the sensor and the identification code of the sealed wrapping paper. By comparing the reference change information corresponding to the current distribution step, it is possible to determine whether to maintain the sealed state of the sealed wrapping paper.
광학적 식별 소자는 m개의 식별 유니트를 포함하고, 상기 식별 유니트는 전자기파를 투과시키는 물질로 이루어진 전자기파 투과층 및 상기 투과된 전자기파가 조사되면 고유 공진 주파수에서 공진이 일어나되, 상기 고유 공진 주파수는 제 1 고유 공진 주파수부터 제 n 고유 공진 주파수 중 어느 하나인 도파로 회절격자를 포함할 수 있다.The optical identification element includes m identification units, and the identification unit has resonance at an inherent resonance frequency when the electromagnetic wave transmission layer made of a material transmitting electromagnetic waves and the transmitted electromagnetic waves are irradiated. It may include a waveguide diffraction grating which is any one of the natural resonance frequency and the nth natural resonance frequency.
광학적 식별 소자는 상기 고유 공진 주파수의 종류가 n개이고, 상기 식별 유니트의 개수가 m개이므로, 표현할 수 있는 식별 코드가 nm개일 수 있다.Since the optical identification element has n kinds of natural resonance frequencies and the number of the identification units is m, there may be n m identification codes that can be expressed.
포장 훼손 검사 장치는 상기 식별 코드별 / 유통 단계별 내부 변화 정보, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부의 판단 결과 정보, 상기 측정시 외부 환경 정보, 상기 측정 일시에 대한 정보 및 상기 측정한 사람에 대한 정보 중 적어도 하나의 정보를 상기 식별 소자에 기재하는 라이팅부를 더 포함하고, 상기 인식부는 상기 식별 소자에 포함된 정보를 인식할 수 있다.The packaging damage inspection apparatus may include internal change information for each identification code / distribution step, determination result information of whether the sealed package is kept sealed, external environment information during the measurement, information on the measurement date and time, and the measurement person. The apparatus may further include a writing unit configured to write at least one piece of information about the identification element, and the recognition unit may recognize the information included in the identification element.
본 발명의 또 다른 일실시예에 따른 포장 훼손 검사 장치는 밀봉된 포장지의 내부 변화 정보를 인식하는 센서와 테라헤르츠파를 투과시키는 물질로 이루어진 테라헤르츠파 투과층과, 상기 투과된 테라헤르츠파가 조사되면 고유 공진 주파수에서 공진이 일어나되, 상기 고유 공진 주파수는 제 1 고유 공진 주파수부터 제 n 고유 공진 주파수 중 어느 하나인 도파로 회절격자로 구성되고, 상기 밀봉된 포장지의 식별 코드로 구성된 m개의 식별 유니트를 포함하는 테라헤르츠파용 식별 소자와, 상기 테라헤르츠파용 식별 소자에 포함된 상기 식별 코드를 인식하여, 상기 밀봉된 포장지의 식별 정보를 인식하는 인식부 및 상기 센서에 의해 인식된 내부 변화 정보와 기준 변화 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단하는 판단부;를 포함할 수 있다.The packaging damage inspection apparatus according to another embodiment of the present invention is a terahertz wave transmission layer made of a sensor for recognizing the internal change information of the sealed wrapping paper and a material transmitting the terahertz wave, and the transmitted terahertz wave When irradiated, resonance occurs at a natural resonant frequency, wherein the natural resonant frequency is composed of a waveguide diffraction grating which is any one of a first natural resonant frequency and an nth natural resonant frequency, and m identifications composed of identification codes of the sealed wrapping paper. An identification unit for recognizing the terahertz wave identification element including a unit, the identification code included in the terahertz wave identification element, and recognizing identification information of the sealed wrapping paper, and internal change information recognized by the sensor; A determination unit which determines whether to maintain the sealed state of the sealed wrapping paper by comparing reference change information; It can be included.
포장 훼손 검사 장치는 상기 테라헤르츠파용 식별 소자로 테라헤르츠파를 조사하는 광원을 더 포함하고, 인식부는 상기 각각의 테라헤르츠파용 식별 소자로부터 생성된 각각의 테라헤르츠파의 고유 공진 주파수를 검출하고, 검출된 고유 공진 주파수에 기초하여 상기 식별 코드를 인식할 수 있다.The packaging damage inspection apparatus further includes a light source for irradiating the terahertz wave with the terahertz wave identification element, the recognition unit detects the inherent resonant frequency of each terahertz wave generated from each of the terahertz wave identification elements, The identification code may be recognized based on the detected natural resonance frequency.
센서는 테라헤르츠파를 투과시키는 물질로 이루어진 테라헤르츠파 투과층 및 상기 테라헤르츠파 투과층을 투과한 테라헤르츠파 중 미리 설정된 주파수 대역에 반응하여 전계를 강화시키는 전계 강화 구조체를 포함할 수 있다.The sensor may include a terahertz wave transmission layer made of a material that transmits terahertz waves, and a field reinforcing structure that enhances an electric field in response to a preset frequency band among terahertz waves transmitted through the terahertz wave transmission layers.
판단부는 상기 센서에 의해 인식된 내부 변화 정보와 기준 변화 정보를 비교하여, 상기 밀봉된 포장지의 내부 환경 변화가 있는지 여부를 판단하고, 내부 환경 변화가 있다고 판단되는 경우 상기 밀봉된 포장지의 밀봉 상태가 유지되지 않았다고 판단할 수 있다.The determination unit compares the internal change information recognized by the sensor with the reference change information to determine whether there is a change in the internal environment of the sealed wrapper, and when it is determined that there is a change in the internal environment, the sealed state of the sealed wrapper is determined. It can be judged that it was not maintained.
판단부는 현재 측정 단계에서 생성된 내부 변화 정보와 이전 측정 단계에서 생성된 내부 변화 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태가 유지되지 않았다고 판단할 수 있다.The determination unit may determine that the sealed state of the sealed wrapper is not maintained by comparing the internal change information generated in the current measurement step with the internal change information generated in the previous measurement step.
판단부는 현재 측정 단계에서 생성된 내부 변화 정보와 현재 외부 환경 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단할 수 있다.The determination unit may determine whether to maintain the sealed state of the sealed package by comparing the internal change information generated in the current measurement step and the current external environment information.
포장 훼손 검사 장치는 상기 밀봉된 포장지의 밀봉 상태의 유지 여부의 판단 결과 정보, 상기 측정시 외부 환경 정보, 상기 측정 일시에 대한 정보 및 상기 측정한 사람에 대한 정보 중 적어도 하나의 정보를 상기 도파로 회절격자의 고유 공진 주파수를 다른 고유 공진 주파수로 변경하여, 상기 식별 유니트에 기재하는 식별 유니트용 라이팅부를 더 포함할 수 있다.The packaging damage inspection apparatus diffracts the waveguide diffraction information of at least one of determination result information of whether the sealed wrapping paper is maintained in a sealed state, external environment information at the time of measurement, information on the measurement date and time, and information on the person measured. The identification unit may further include a writing unit for writing the identification unit described in the identification unit by changing the natural resonance frequency of the grating.
본 발명의 일실시예에 따른 포장 훼손 검사 시스템은 밀봉된 포장지의 내부 변화 정보를 인식하는 센서와, 상기 밀봉된 포장지의 식별 코드를 포함하는 식별 소자와, 상기 식별 소자에 포함된 상기 식별 코드를 인식하여, 포장지의 식별 정보를 인식하는 인식부와 상기 센서에 의해 인식된 내부 변화 정보와 기준 변화 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단하는 판단부를 포함하는 포장 훼손 검사 장치; 및 상기 포장 훼손 검사 장치로부터 상기 밀봉된 포장지의 밀봉 상태의 유지 여부에 대한 정보를 수신하고, 수신된 밀봉 상태의 유지 여부에 대한 정보를 저장부에 저장하거나 관리자의 단말기로 전송하는 서버;를 포함할 수 있다.Packaging damage inspection system according to an embodiment of the present invention is a sensor for recognizing the internal change information of the sealed wrapping paper, an identification element including the identification code of the sealed wrapping paper, and the identification code included in the identification element Packaging damage inspection including a recognition unit for recognizing and recognizing the identification information of the wrapping paper and the internal change information and the reference change information recognized by the sensor, and determining whether to maintain the sealed state of the sealed wrapping paper Device; And a server for receiving information on whether to maintain the sealed state of the sealed wrapping paper from the packaging damage inspection device, and storing information on whether to maintain the sealed state or transmitting the information to the terminal of the manager. can do.
포장 훼손 검사 장치는 제 1 유통 단계, 제 2 유통 단계 및 제 N 유통 단계별로 구비되어 있으며, 서버는 제 1 유통 단계, 제 2 유통 단계 및 제 N 유통 단계별로 상기 포장 훼손 검사 장치로부터 상기 밀봉된 포장지의 밀봉 상태의 유지 여부에 대한 정보, 식별 코드별 / 유통 단계별 내부 변화 정보, 측정시 외부 환경 정보, 측정 일시에 대한 정보 및 측정한 사람에 대한 정보를 수신할 수 있다.The packaging damage inspection device is provided in the first distribution step, the second distribution step and the N distribution step, and the server is sealed from the packaging damage inspection device in the first distribution step, the second distribution step, and the N distribution step. Information on whether the package is kept sealed, internal change information per identification code / distribution phase, external environmental information at the time of measurement, information on the measurement date and time, and information on the measured person can be received.
판단부는 상기 센서에 의해 인식된 내부 변화 정보와, 상기 밀봉된 포장지의 식별 코드에 대응되고 현재 유통 단계에 대응되는 기준 변화 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단할 수 있다.The determination unit may determine whether to maintain the sealed state of the sealed wrapping paper by comparing the internal change information recognized by the sensor with reference change information corresponding to the identification code of the sealed wrapping paper and corresponding to the current distribution stage. have.
판단부는 상기 센서에 의해 인식된 내부 변화 정보와 기준 변화 정보를 비교하여, 상기 밀봉된 포장지의 내부 환경 변화가 있는지 여부를 판단하고, 내부 환경 변화가 있다고 판단되는 경우 상기 밀봉된 포장지의 밀봉 상태가 유지되지 않았다고 판단할 수 있다.The determination unit compares the internal change information recognized by the sensor with the reference change information to determine whether there is a change in the internal environment of the sealed wrapper, and when it is determined that there is a change in the internal environment, the sealed state of the sealed wrapper is determined. It can be judged that it was not maintained.
판단부는 현재 측정 단계에서 생성된 내부 변화 정보와 이전 측정 단계에서 생성된 내부 변화 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태가 유지되지 않았다고 판단할 수 있다.The determination unit may determine that the sealed state of the sealed wrapper is not maintained by comparing the internal change information generated in the current measurement step with the internal change information generated in the previous measurement step.
판단부는 현재 측정 단계에서 생성된 내부 변화 정보와 현재 외부 환경 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단할 수 있다.The determination unit may determine whether to maintain the sealed state of the sealed package by comparing the internal change information generated in the current measurement step and the current external environment information.
상기한 과제를 실현하기 위한 본 발명의 일 실시예와 관련된 도파모드 공진 소자를 이용한 습도 센서는, 도파모드 공진(Guided Mode Resonance, GMR) 소자;및 수분을 흡수하도록 상기 도파모드 공진 소자에 도포되어, 외부에서 제1 전자기파가 상기 도파모드 공진 소자에 조사되는 경우, 상기 수분에 의한 감쇠계수(Attenuation Coefficient)에 따라 상기 도파모드 공진 소자에서 생성되는 제2 전자기파를 변화시키도록 형성되는 수분 감지막;을 포함할 수 있다.A humidity sensor using a waveguide mode resonator device according to an embodiment of the present invention for realizing the above object is a waveguide mode resonance (GMR) device; and is applied to the waveguide mode resonator device to absorb moisture; A moisture sensing film formed to change the second electromagnetic wave generated by the waveguide mode resonator according to an attenuation coefficient due to moisture when the first electromagnetic wave is irradiated to the waveguide mode resonance device from the outside; It may include.
여기서, 상기 수분 감지막은, 상기 제2 전자기파의 반사도를 변화시키도록 형성될 수 있다.Here, the moisture sensing film may be formed to change the reflectivity of the second electromagnetic wave.
여기서, 상기 수분 감지막은, 상기 제2 전자기파의 큐값(Quality Factor, Q= f/Δf, f:공진주파수,Δf:반치폭)을 변화시키도록 형성될 수 있다.Here, the moisture sensing layer may be formed to change a cue value (Quality Factor, Q = f / Δf, f: resonance frequency, Δf: half width) of the second electromagnetic wave.
여기서, 상기 수분 감지막은, 염화리튬(Lithium Chloride), 실리카겔(Silica gel) 및 활성알루미나(Activated Alumina) 중 적어도 어느 하나를 포함하는 무기물로 이루어질 수 있다.The moisture sensing layer may be formed of an inorganic material including at least one of lithium chloride, silica gel, and activated alumina.
여기서, 상기 수분 감지막은, 카르복실기(-COOH), 아민기(-NH2), 및 알콜기(-OH) 중 적어도 어느 하나를 포함하는 유기물로 이루어질 수 있다.Here, the moisture sensing film may be made of an organic material including at least one of a carboxyl group (-COOH), an amine group (-NH2), and an alcohol group (-OH).
여기서, 상기 도파모드 공진 소자는, 일방향으로 그레이팅층이 형성되고, 상기 수분 감지막은, 상기 그레이팅층에 도포될 수 있다.Here, in the waveguide mode resonating element, a grating layer may be formed in one direction, and the moisture sensing film may be applied to the grating layer.
상기한 과제를 실현하기 위한 본 발명의 다른 실시예와 관련된 포장지 검사장치는, 도파모드 공진 소자와 수분을 흡수하도록 상기 도파모드 공진 소자에 도포되어, 외부에서 제1 전자기파가 상기 도파모드 공진 소자에 조사되는 경우, 상기 수분에 의한 감쇠계수(Attenuation Coefficient)에 따라 상기 도파모드 공진 소자에서 생성되는 제2 전자기파를 변화시키도록 형성되는 수분 감지막을 구비하는 도파모드 공진 소자를 이용한 습도 센서; 상기 습도 센서로 제1 전자기파를 조사하는 광원; 상기 습도 센서로부터 생성된 상기 제2 전자기파를 검출하는 검출부; 및 상기 검출부로부터 검출된 상기 제2 전자기파에 기초하여 습도 정보를 생성하는 습도 정보 생성부;를 포함할 수 있다.The wrapping paper inspecting apparatus according to another embodiment of the present invention for realizing the above object is applied to the waveguide mode resonating element and the waveguide mode resonating element so as to absorb moisture, so that a first electromagnetic wave from the outside is applied to the waveguide mode resonating element. A humidity sensor using a waveguide mode resonating element having a moisture sensing film formed to change a second electromagnetic wave generated by the waveguide mode resonating element according to the attenuation coefficient due to moisture when irradiated; A light source for irradiating a first electromagnetic wave with the humidity sensor; A detector configured to detect the second electromagnetic wave generated from the humidity sensor; And a humidity information generator configured to generate humidity information based on the second electromagnetic wave detected by the detector.
여기서, 상기 습도 정보 생성부는, 상기 제2 전자기파의 반사도 및 큐값 중 적어도 어느 하나에 기초하여 상기 습도 정보를 생성할 수 있다.Here, the humidity information generator may generate the humidity information based on at least one of the reflectivity and the cue value of the second electromagnetic wave.
여기서, 상기 수분 감지막의 성분 정보, 두께 정보, 및 굴절률 정보와, 상기 제1 전자기파의 주파수 정보를 입력하도록 형성되는 사용자 입력부를 더 포함할 수 있다.The apparatus may further include a user input unit configured to input component information, thickness information, refractive index information, and frequency information of the first electromagnetic wave.
여기서, 상기 습도 정보 생성부는, 상기 두께 정보, 상기 성분 정보, 상기 굴절률 정보, 및 상기 주파수 정보 중 적어도 어느 하나에 기초하여 상기 습도 정보를 생성할 수 있다.Here, the humidity information generator may generate the humidity information based on at least one of the thickness information, the component information, the refractive index information, and the frequency information.
여기서, 습도 정보를 출력하도록 형성되는 디스플레이부를 더 포함할 수 있다.The display unit may further include a display unit configured to output humidity information.
여기서, 상기 수분 감지막은, 염화리튬(Lithium Chloride), 실리카겔(Silica gel) 및 활성알루미나(Activated Alumina) 중 적어도 어느 하나를 포함하는 무기물로 이루어질 수 있다.The moisture sensing layer may be formed of an inorganic material including at least one of lithium chloride, silica gel, and activated alumina.
여기서, 상기 수분 감지막은, 카르복실기(-COOH), 아민기(-NH2), 및 알콜기(-OH) 중 적어도 어느 하나를 포함하는 유기물로 이루어질 수 있다.Here, the moisture sensing film may be made of an organic material including at least one of a carboxyl group (-COOH), an amine group (-NH2), and an alcohol group (-OH).
여기서, 상기 도포모드 공진 소자는, 일방향으로 그레이팅층이 형성되고, 상기 수분 감지막은, 상기 그레이팅층에 도포될 수 있다.Here, the coating mode resonating element, the grating layer is formed in one direction, the moisture sensing film may be applied to the grating layer.
개시된 발명에 따르면, 밀봉된 포장지에 구비된 센서를 이용하여 밀봉된 포장지의 밀봉 상태 유지 여부를 판단하여 포장지의 훼손 여부를 검사함으로써, 비파괴적인 방법으로 훼손 여부를 검사할 수 있다.According to the disclosed invention, by determining whether the sealed wrapping paper is kept in a sealed state by using a sensor provided in the sealed wrapping paper, and inspecting whether the wrapping paper is damaged, it is possible to inspect whether the packaging is damaged in a non-destructive manner.
또한, 유동 전 과정에서 포장의 훼손 여부를 검사함으로써, 어느 과정에서 포장의 훼손이 발생하였는지 여부를 정확하게 파악할 수 있다.In addition, by inspecting whether the package is damaged in the entire flow process, it is possible to accurately determine whether the damage of the package occurred in any process.
또한, 포장의 훼손 여부에 대한 정보를 사용자, 관리자 및 관리 서버에 전송함으로써, 실시간으로 훼손 여부에 대한 정보를 알려줌과 동시에 서버에서 일괄적으로 훼손 정보를 관리할 수 있다.In addition, by transmitting information on whether the packaging is damaged to the user, the manager and the management server, it is possible to inform the information on whether the damage in real time and at the same time manage the damage information in the server collectively.
또한, 전자기파의 변화된 특성에 기초하여 훼손 여부를 검사함으로써, 정확하게 훼손 여부를 검사할 수 있다.In addition, by examining whether the damage is based on the changed characteristics of the electromagnetic wave, it is possible to accurately determine whether the damage.
본 발명에 관련된 도파모드 공진 소자를 이용한 습도 센서 및 이를 이용한 포장지 검사장치에 의하면, 저비용으로 다양한 제품에 적용될 수 있다.According to the humidity sensor using the waveguide mode resonant element and the wrapping paper inspection device using the same according to the present invention, it can be applied to various products at low cost.
또한, 수분에 의한 감쇠계수에 따른 큐값의 변화에 기초하여 수분 감지 여부를 판단할 수 있다.In addition, it is possible to determine whether to detect the moisture based on the change in the cue value according to the damping coefficient by the moisture.
또한, 습도 센서를 검사장치로 인식하는 간단한 동작을 통해 포장지 검사의 편리성을 보다 향상시킬 수 있다.In addition, the convenience of inspecting the wrapping paper can be further improved through a simple operation of recognizing the humidity sensor as the inspection device.
도 1은 본 발명의 일 실시예와 관련된 밀봉된 포장지의 훼손 검사 장치를 설명하기 위한 도면이다.1 is a view for explaining the damage inspection apparatus of the sealed wrapping paper according to an embodiment of the present invention.
도 2는 본 발명의 또 다른 일 실시예와 관련된 포장 훼손 검사 장치를 설명하기 위한 도면이다.2 is a view for explaining a packaging damage inspection apparatus according to another embodiment of the present invention.
도 3a 내지 도 3e는 본 발명의 일 실시예와 관련된 포장 훼손 검사 장치의 활용예를 설명하기 위한 도면이다.3A to 3E are diagrams for describing an application example of a packaging damage inspection apparatus according to an exemplary embodiment of the present invention.
도 4a 내지 도 4c는 본 발명의 일실시예에 따른 포장 훼손 검사 장치의 구동예를 설명하기 위한 도면이다.4A to 4C are diagrams for describing a driving example of a packaging damage inspection apparatus according to an exemplary embodiment of the present invention.
도 5a 내지 도 5c는 본 발명의 또 다른 일실시예에 따른 포장 훼손 검사 장치의 구동예를 설명하기 위한 도면이다.5A to 5C are views for explaining a driving example of the packaging damage inspection apparatus according to another embodiment of the present invention.
도 6a 내지 도 6c는 본 발명의 또 다른 일실시예에 따른 포장 훼손 검사 장치의 구동예를 설명하기 위한 도면이다.6A to 6C are diagrams for describing a driving example of a packaging damage inspection apparatus according to another exemplary embodiment of the present invention.
도 7은 본 발명의 일실시예에 따른 포장지를 설명하기 위한 도면이다.7 is a view for explaining a wrapping paper according to an embodiment of the present invention.
도 8은 본 발명의 또 다른 일실시예에 따른 포장지를 설명하기 위한 도면이다.8 is a view for explaining a wrapping paper according to another embodiment of the present invention.
도 9는 본 발명의 일실시예에 따른 포장지 내부에 구비되는 센서를 설명하기 위한 도면이다.9 is a view for explaining a sensor provided in the wrapping paper according to an embodiment of the present invention.
도 10a 내지 도 10c는 본 발명의 일 실시예에 따른 전계 강화 구조체를 설명하기 위한 도면이다.10A to 10C are diagrams for describing the electric field strengthening structure according to the exemplary embodiment of the present invention.
도 11은 본 발명의 일 실시예와 관련된 광학적 식별 소자를 설명하기 위한 도면이다.11 is a view for explaining an optical identification device according to an embodiment of the present invention.
도 12a 내지 도 12d는 본 발명의 일 실시예와 관련된 광학적 식별 소자를 구체적으로 설명하기 위한 도면이다.12A to 12D are diagrams for describing in detail an optical identification device according to an embodiment of the present invention.
도 13a 내지 도 13c는 본 발명의 일 실시예와 관련된 식별 유니트용 라이팅 장치를 설명하기 위한 도면이다.13A to 13C are diagrams for describing a writing apparatus for an identification unit according to an embodiment of the present invention.
도 14는 본 발명의 일 실시예에 따른 포장 훼손 검사 시스템을 설명하기 위한 도면이다.14 is a view for explaining a packaging damage inspection system according to an embodiment of the present invention.
도 15는 본 발명의 일 실시예에 따른 습도 센서(400)의 구조를 설명하기 위한 측면도이다.15 is a side view for explaining the structure of the humidity sensor 400 according to an embodiment of the present invention.
도 16는 도 1의 습도 센서(400)의 동작 방법을 설명하기 위한 도면이다.FIG. 16 is a diagram for describing an operating method of the humidity sensor 400 of FIG. 1.
도 17은 수분 감지막(430) 감쇠계수 변화에 따른 제2 전자기파의 큐값 변화를 설명하기 위한 도면이다.17 is a view for explaining a change in the cue value of the second electromagnetic wave according to the change in the damping coefficient of the moisture sensing film 430.
도 18은 수분 감지막(430) 감쇠계수 변화에 따른 제2 전자기파의 반사도 변화를 설명하기 위한 도면이다.18 is a view for explaining a change in reflectivity of the second electromagnetic wave according to a change in the damping coefficient of the moisture sensing film 430.
도 19는 본 발명의 다른 실시예에 따른 포장지 검사장치(200)를 설명하기 위한 도면이다.19 is a view for explaining the wrapping paper inspection apparatus 200 according to another embodiment of the present invention.
이하, 첨부된 도면을 참조하여 발명을 실시하기 위한 구체적인 내용에 대하여 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the specific contents for carrying out the invention.
도 1은 본 발명의 일 실시예와 관련된 밀봉된 포장지의 훼손 검사 장치를 설명하기 위한 도면이다.1 is a view for explaining the damage inspection apparatus of the sealed wrapping paper according to an embodiment of the present invention.
도 1을 참조하면, 밀봉된 포장지의 훼손 검사 장치(10)는 디스플레이부(11), 저장부(12), 통신부(13), 인식부(14), 판단부(15), 정보 생성부(16) 및 라이팅부(17)를 포함한다.Referring to FIG. 1, the apparatus for inspecting damage to a sealed package 10 may include a display unit 11, a storage unit 12, a communication unit 13, a recognition unit 14, a determination unit 15, and an information generation unit ( 16) and the lighting unit 17.
밀봉된 포장지는 진공 포장 / 가스 충진 포장 등과 같이 포장 후, 외부 환경과 차단된 포장법이 적용된 포장지를 의미한다. 예를 들면, 밀봉된 포장지는 외부 환경으로부터의 기체, 액체 및 고체의 진출입이 차단된 상태일 수 있다.The sealed wrapper refers to a wrapper applied to a packaging method that is isolated from the external environment after packaging, such as vacuum packaging / gas filled packaging. For example, a sealed wrapper may be in a state where the entry and exit of gases, liquids and solids from the external environment are blocked.
디스플레이부(11)는 다양한 데이터 정보를 표시할 수 있다. 예를 들면, 디스플레이부(11)는 포장지 내부의 변화 여부에 대한 정보를 표시할 수 있다. The display unit 11 may display various data information. For example, the display unit 11 may display information about whether the inside of the wrapping paper is changed.
디스플레이부(11)는 액정 디스플레이(liquid crystal display, LCD), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display, TFT LCD), 유기 발광 다이오드(organic light-emitting diode, OLED), 플렉시블 디스플레이(flexible display), 3차원 디스플레이(3D display) 중에서 적어도 하나를 포함할 수 있다. The display unit 11 includes a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), and a flexible display (flexible). and at least one of a 3D display.
저장부(12)는 다양한 데이터 정보를 저장할 수 있다. 예를 들면, 저장부(12)는 식별 코드 정보, 내부 변화 정보, 내부 변화 유무 판단 결과 정보 등을 저장할 수 있다. The storage unit 12 may store various data information. For example, the storage unit 12 may store identification code information, internal change information, internal change existence result determination information, and the like.
통신부(13)는 다양한 정보를 송수신할 수 있다. 예를 들면, 통신부(13)는 센서(21) 및 식별 소자(22)로부터 송신된 내부 변화 정보 또는 식별 코드 정보를 수신할 수 있다. 또 다른 예를 들면, 통신부(13)는 다양한 정보를 외부의 단말기 또는 관리 서버로 송신할 수 있다.The communication unit 13 may transmit and receive various information. For example, the communication unit 13 may receive the internal change information or the identification code information transmitted from the sensor 21 and the identification element 22. As another example, the communication unit 13 may transmit various information to an external terminal or a management server.
인식부(14)는 식별 소자(22)에 포함된 식별 코드를 인식할 수 있다. 식별 코드는 각 포장지별로 다르게 부여될 수 있다. 예를 들면, 식별 소자(22)는 바코드, QR 코드, 및 RFID 코드 중 어느 하나이고, 인식부(14)는 바코드, QR 코드, 및 RFID 코드 중 어느 하나를 인식할 수 있는 장치일 수 있다. 또 다른 예를 들면, 식별 소자는 광학적 식별 소자일 수 있다. 광학적 식별 소자는 도 11에서 구체적으로 설명하겠다.The recognition unit 14 may recognize the identification code included in the identification element 22. The identification code may be given differently for each wrapping paper. For example, the identification element 22 may be any one of a barcode, a QR code, and an RFID code, and the recognition unit 14 may be a device capable of recognizing any one of a barcode, a QR code, and an RFID code. As another example, the identification element may be an optical identification element. The optical identification element will be described in detail in FIG. 11.
판단부(15)는 센서(21)에서 인식된 내부 변화 정보와 기준 변화 정보를 비교하여, 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단할 수 있다. 예를 들면, 판단부(15)는 센서(21)에 의해 인식된 내부 변화 정보와 기준 변화 정보를 비교하여, 밀봉된 포장지의 내부 환경 변화가 있는지 여부를 판단할 수 있다. 판단부(15)는 내부 환경 변화가 있다고 판단되는 경우 상기 밀봉된 포장지의 밀봉 상태가 유지되지 않았다고 판단할 수 있다. 즉, 판단부(15)는 밀봉된 포장지의 밀봉 부분이 훼손되었다고 판단할 수 있다. The determination unit 15 may determine whether to maintain the sealed state of the sealed wrapping paper by comparing the internal change information recognized by the sensor 21 and the reference change information. For example, the determination unit 15 may compare the internal change information recognized by the sensor 21 and the reference change information to determine whether there is a change in the internal environment of the sealed wrapping paper. If it is determined that there is a change in the internal environment, the determination unit 15 may determine that the sealed state of the sealed wrapping paper is not maintained. That is, the determination unit 15 may determine that the sealing portion of the sealed wrapping is damaged.
판단부(15)는 물리/화학/생물학적 변화를 포함하는 포장지 내부의 환경 변화를 알 수 있다. 내부 환경 변화 정보는 물리적 변화 정보, 화학적 변화 정보, 생물학적 변화 정보 등을 포함할 수 있다. 물리적 변화는 온도, 부피, 형태 등의 변화를 의미하고, 화학적 변화는 물질, 가스, 수분 등의 구성 성분에 대한 정량적인 변화를 의미하고, 생물학적 변화는 미생물, 바이러스, 곰팜이 등의 개체수 변화 등을 의미할 수 있다. 변화의 정도는 센서(21)에서 인식된 내부 변화 정보 및 기준 변화 정보의 차이 정도에 따라 판단될 수 있다. 기준 변화 정보는 식별 코드별 / 유통 단계별로 설정된 내부 변화 정보를 판단하는 기준 값일 수 있다.The determination unit 15 may know an environment change inside the wrapper including physical / chemical / biological changes. The internal environment change information may include physical change information, chemical change information, biological change information, and the like. Physical change means changes in temperature, volume, form, etc., and chemical change means quantitative changes in constituents such as substances, gases, and moisture. It may mean. The degree of change may be determined according to the degree of difference between the internal change information and the reference change information recognized by the sensor 21. The reference change information may be a reference value for determining internal change information set for each identification code / step of distribution.
판단부(15)는 현재 유통 단계에서 생성된 내부 변화 정보와 직전 유통 단계에서 생성된 내부 변화 정보를 비교하여, 밀봉 상태가 유지되는지 여부를 판단할 수 있다. 예를 들면, 직전 유통 단계에서의 습도가 A 값인 경우, 판단부(15)는 현재 유통 단계에서 생성된 습도가 A 값이면 내부 변화가 없다고 판단한다. 반면에, 판단부(15)는 현재 유통 단계에서 생성된 습도가 B 값이면 내부 변화가 있다고 판단하여, 밀봉된 포장 부분이 훼손되었다고 판단할 수 있다. 다시 말해, 판단부(15)는 현재 밀봉 상태에서의 내부 변화 정보와 정상적인 밀봉 상태에서의 내부 변화 정보를 비교하여, 밀봉된 포장 부분이 훼손되었는지 여부('밀봉 상태가 유지되고 있는지 여부')를 판단할 수 있다. 본 발명은 밀봉된 포장 부분이 훼손된 경우, 밀봉된 포장지의 내부 환경이 처음 포장지를 밀봉했을 때와는 달라지는 현상을 이용한 것이다.The determination unit 15 may determine whether the sealing state is maintained by comparing the internal change information generated in the current distribution step with the internal change information generated in the previous distribution step. For example, when the humidity in the previous distribution step is the value A, the determination unit 15 determines that there is no internal change when the humidity generated in the current distribution step is the A value. On the other hand, the determination unit 15 may determine that there is an internal change when the humidity generated at the current distribution stage is a B value, and may determine that the sealed packaging portion is damaged. In other words, the judging unit 15 compares the internal change information in the current sealing state with the internal change information in the normal sealing state to determine whether the sealed packaging portion is damaged ('whether the sealing state is maintained'). You can judge. The present invention utilizes a phenomenon in which when the sealed packaging portion is damaged, the internal environment of the sealed packaging paper differs from when the sealed packaging paper is first sealed.
정보 생성부(16)는 식별 코드별 / 유통 단계별 포장지 내부의 변화에 대한 정보, 측정시 외부 환경 정보, 측정 일시에 대한 정보 및 측정한 사람에 대한 정보 등을 생성할 수 있다.The information generating unit 16 may generate information on changes in the wrapping paper for each identification code / distribution step, external environment information at the time of measurement, information on the measurement date and time, information on the measured person, and the like.
정보 생성부(16)는 생성된 정보 및 경고 메시지를 통신부(13)를 통해 유통상 포장 훼손을 관리하는 사용자가 사용하는 단말기 또는 관리 서버 등과 같은 외부 장치로 전송하거나, 생성된 정보는 저장부(12)에 저장할 수 있다. 이를 통해, 관리자는 유통상 포장 훼손 여부를 실시간으로 확인할 수 있다.The information generating unit 16 transmits the generated information and the warning message to an external device such as a terminal or a management server used by a user who manages distribution damage on the distribution through the communication unit 13, or the generated information is stored in the storage unit 12. ) Can be stored. Through this, the manager can check in real time whether the packaging damage in the distribution.
라이팅부(17)는 현재 단계에서 측정된 다양한 정보를 식별 소자(22)에 기재할 수 있다. 여기서, 다양한 정보는 식별 코드별 / 유통 단계별 내부 변화 정보, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부의 판단 결과 정보, 상기 측정시 외부 환경 정보, 상기 측정 일시에 대한 정보 및 상기 측정한 사람에 대한 정보 등을 포함할 수 있다. The lighting unit 17 may write various information measured at the present stage to the identification element 22. Herein, the various information may include internal change information for each identification code / distribution step, determination result information on whether the sealed package is kept sealed, external environment information during the measurement, information on the measurement date and time, and the measured person. Information and the like.
이와 같이, 라이팅부(17)가 다양한 정보를 식별 소자(22)에 기재함으로써, 인식부(14)는 식별 소자(22)에 포함된 직전 단계에서 측정된 다양한 정보를 인식할 수 있다. 이에 따라, 인식부(14)는 직전 단계에서 측정된 다양한 정보를 서버(미도시) 등으로부터 수신하지 않고, 식별 소자(22)로부터 직접적으로 인식할 수 있다.As described above, since the writing unit 17 writes various pieces of information on the identification element 22, the recognition unit 14 can recognize various pieces of information measured in the previous stage included in the identification element 22. Accordingly, the recognition unit 14 may recognize directly from the identification element 22 without receiving various information measured in the previous step from the server (not shown) or the like.
센서(21)는 밀봉된 포장지(20)에 부착되거나, 밀봉된 포장지(20)에 일체형으로 구비되거나, 밀봉된 포장지(20)의 내부에 구비될 수 있다.The sensor 21 may be attached to the sealed wrapper 20, may be integrally provided on the sealed wrapper 20, or may be provided inside the sealed wrapper 20.
예를 들면, 센서(21)는 외부로부터 파(wave)가 입사되는 경우, 내부의 변화에 따라 입사되는 파를 변화시켜 생성할 수 있다. 이에 따라, 센서(21)는 내부 변화 정보를 인식할 수 있다. 여기서, 파(wave)는 전자기파, 초음파 등을 포함할 수 있다.For example, when a wave is incident from the outside, the sensor 21 may be generated by changing the incident wave according to the change in the inside. Accordingly, the sensor 21 may recognize the internal change information. Here, the wave may include electromagnetic waves, ultrasonic waves, and the like.
또 다른 예를 들면, 센서(21)는 주기적으로 또는 요청 신호가 입력될 때 마다, 내부 변화 정보를 통신부(미도시)를 통해 판단부(15)로 송신할 수 있다. 예를 들면, 센서(21)는 별도의 전원 공급원이 없는 수동(passive) 타입 또는 별도의 전원 공급원이 있고, 능동적으로 내부 변화 정보를 판단부(15)로 송신할 수 있는 능동(active) 타입일 수도 있다. As another example, the sensor 21 may transmit internal change information to the determination unit 15 through a communication unit (not shown) periodically or whenever a request signal is input. For example, the sensor 21 may be a passive type without a separate power source or an active power source, and may be an active type capable of actively transmitting internal change information to the determination unit 15. It may be.
도 2는 본 발명의 또 다른 일 실시예와 관련된 포장 훼손 검사 장치를 설명하기 위한 도면이다.2 is a view for explaining a packaging damage inspection apparatus according to another embodiment of the present invention.
도 2를 참조하면, 포장 훼손 검사 장치(100)는 디스플레이부(101), 전자기파 생성부(102), 검출부(103), 인식부(104), 판단부(105), 정보 생성부(106) 및 라이팅부(107)를 포함한다.Referring to FIG. 2, the packaging damage inspection apparatus 100 may include a display 101, an electromagnetic wave generator 102, a detector 103, a recognizer 104, a determiner 105, and an information generator 106. And a lighting unit 107.
디스플레이부(101)는 다양한 데이터 정보를 표시할 수 있다. 예를 들면, 디스플레이부(102)는 포장지 내부의 변화 여부에 대한 정보를 표시할 수 있다.The display unit 101 may display various data information. For example, the display 102 may display information on whether the inside of the wrapping paper is changed.
디스플레이부(101)는 액정 디스플레이(liquid crystal display, LCD), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display, TFT LCD), 유기 발광 다이오드(organic light-emitting diode, OLED), 플렉시블 디스플레이(flexible display), 3차원 디스플레이(3D display) 중에서 적어도 하나를 포함할 수 있다. The display unit 101 includes a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), and a flexible display (flexible). and at least one of a 3D display.
전자기파 생성부(102)는 포장지(111) 및 광학적 식별 소자(112)로 전자기파를 조사할 수 있다. 일 예를 들면, 전자기파 생성부(102)는 테라헤르츠파를 발생시킬 수 있는 다양한 형태의 장치일 수 있다. 테라헤르츠파란 적외선과 마이크로파의 사이 영역에 위치한 전자기파로서, 일반적으로 0.1THz 내지 10THz의 진동수를 가질 수 있다. 다만, 이러한 범위를 다소 벗어난다 하더라도, 본 발명이 속하는 기술분야의 당업자가 용이하게 생각해낼 수 있는 범위라면, 본 발명에서의 테라헤르츠파로 인정될 수 있음은 물론이다. 포장지(111)는 내부의 변화에 따라 외부 전자기파 생성부로부터 입사되는 전자기파를 변화시켜 생성할 수 있다. 광학적 식별 소자(112)는 전자기파가 입사되면 고유 공진 주파수를 생성할 수 있다. 포장지(111) 및 광학적 식별 소자(112)에 대한 구체적인 설명은 후술하겠다.The electromagnetic wave generator 102 may irradiate the electromagnetic wave with the wrapping paper 111 and the optical identification element 112. For example, the electromagnetic wave generator 102 may be various types of devices capable of generating terahertz waves. The terahertz wave is an electromagnetic wave located in a region between infrared and microwaves, and may generally have a frequency of 0.1 THz to 10 THz. However, even if somewhat out of this range, it can be recognized as a terahertz wave in the present invention as long as it can be easily conceived by those skilled in the art. The wrapping paper 111 may be generated by changing an electromagnetic wave incident from an external electromagnetic wave generating unit according to a change in the inside. The optical identification element 112 may generate a natural resonance frequency when electromagnetic waves are incident. A detailed description of the wrapping paper 111 and the optical identification element 112 will be described later.
검출부(103)는 포장지(111)로부터 생성된 테라헤르츠파의 특성을 검출하고, 광학적 식별 소자(112)로부터 생성된 전자기파의 고유 공진 주파수를 검출할 수 있다. The detector 103 may detect the characteristics of the terahertz wave generated from the wrapping paper 111, and detect the inherent resonance frequency of the electromagnetic wave generated from the optical identification element 112.
검출부(103)는 포장지(111)로부터 반사, 투과, 회절 또는 산란되는 테라헤르츠파의 특성을 검출할 수 있다. 구체적으로 예를 들면, 검출부(103)는 테라헤르츠용 포장지(111)로부터 생성된 테라헤르츠파의 세기 또는 테라헤르츠파의 공진 주파수 등을 검출할 수 있다.The detector 103 may detect the characteristics of the terahertz wave reflected, transmitted, diffracted or scattered from the wrapping paper 111. Specifically, for example, the detector 103 may detect the intensity of the terahertz wave or the resonant frequency of the terahertz wave generated from the terahertz wrapping paper 111.
검출부(103)는 광학적 식별 소자(112)로부터 생성된 전자기파의 고유 공진 주파수를 검출할 수 있다.The detector 103 may detect a natural resonance frequency of the electromagnetic wave generated from the optical identification element 112.
인식부(104)는 검출부(103)에서 검출된 고유 공진 주파수에 기초하여 포장지(111)의 식별 코드를 인식할 수 있다. 식별 코드는 다수의 포장지를 구별할 수 있는 코드 정보를 포함할 수 있다.The recognition unit 104 may recognize the identification code of the wrapping paper 111 based on the natural resonance frequency detected by the detection unit 103. The identification code may include code information to distinguish a plurality of wrappers.
판단부(105)는 검출부(103)에서 검출된 포장지(111)로부터 생성된 전자파와 식별 코드에 대응되는 기준 전자기파를 비교하여, 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단할 수 있다. 예를 들면, 판단부(105)는 물리/화학/생물학적 변화를 포함하는 포장지 내부의 변화를 알 수 있다. 물리적 변화는 온도, 부피, 형태 등의 변화를 의미하고, 화학적 변화는 물질, 가스, 수분 등의 구성 성분에 대한 정량적인 변화를 의미하고, 생물학적 변화는 미생물, 바이러스, 곰팜이 등의 개체수 변화 등을 의미할 수 있다. 변화의 정도는 포장지(111)로부터 검출된 전자기파의 공진 주파수와 기준 테라헤르츠파의 공진 주파수의 차이 정도에 따라 판단될 수 있다.The determination unit 105 may compare the electromagnetic wave generated from the wrapping paper 111 detected by the detection unit 103 with the reference electromagnetic wave corresponding to the identification code, and determine whether to maintain the sealed state of the sealed wrapping paper. For example, the determination unit 105 may know a change in the wrapping paper including physical / chemical / biological changes. Physical change means changes in temperature, volume, form, etc., and chemical change means quantitative changes in constituents such as substances, gases, and moisture. It may mean. The degree of change may be determined according to the difference between the resonance frequency of the electromagnetic wave detected from the wrapping paper 111 and the resonance frequency of the reference terahertz wave.
기준 전자기파는 식별 코드별 / 유통 단계별로 서로 다른 값을 가질 수 있다.The reference electromagnetic wave may have different values for each identification code / step of distribution.
예를 들면, 판단부(105)는 검출부(103)에서 검출된 전자기파의 공진 주파수와, 인식된 식별 코드에 대응되는 기준 전자기파의 공진 주파수의 차이값이 설정된 차이값보다 큰 경우, 포장지(111) 내부의 변화가 있다고 판단할 수 있다.For example, when the difference value between the resonance frequency of the electromagnetic wave detected by the detector 103 and the resonance frequency of the reference electromagnetic wave corresponding to the recognized identification code is greater than the set difference value, the wrapping paper 111 may be used. It can be judged that there is an internal change.
표 1
구분 가공단계 기준 공진 주파수 배송단계 기준 공진 주파수 구입단계 기준 공진 주파수
식별코드 1 A B C
식별코드 2 D E F
식별코드 3 G H I
식별코드 4 J K L
Table 1
division Resonant frequency at the machining stage Resonant Frequency at Delivery Stage Resonant frequency at purchase stage
Identification code 1 A B C
Identification code 2 D E F
Identification code 3 G H I
Identification code 4 J K L
표 1을 참조하면, 식별 코드 1의 단계 별 기준 공진 주파수는 A / B / C일 수 있다. 기준 공진 주파수는 미리 설정되거나, 직전 단계에서 측정된 전자기파의 공진 주파수 값일 수 있다. 예를 들면, 가공 단계에서 포장지(111)로부터 실제로 검출된 전자기파의 공진 주파수가 B인 경우, 배송 단계의 기준 공진 주파수는 B로 설정될 수 있다. 또한, 배송 단계에서 포장지(111)로부터 실제로 검출된 전자기파의 공진 주파수가 C인 경우, 구입 단계의 기준 공진 주파수는 C로 설정될 수 있다. 이때, 판단부(105)는 가공 단계에서 B-A(차이값)에 기초하여 포장지(111) 내부에 변화가 있는지 여부를 판단하고, 배송 단계에서 C-B(차이값)에 기초하여 포장지(111) 내부에 변화가 있는지 여부를 판단하고, 구입단계에서 D-C(차이값)에 기초하여 밀봉된 포장지(111)의 밀봉 상태 유지 여부를 판단할 수 있다.Referring to Table 1, the reference resonance frequency for each step of the identification code 1 may be A / B / C. The reference resonance frequency may be set in advance or may be a resonance frequency value of the electromagnetic wave measured in a previous step. For example, when the resonance frequency of the electromagnetic wave actually detected from the wrapping paper 111 in the processing step is B, the reference resonance frequency of the delivery step may be set to B. In addition, when the resonant frequency of the electromagnetic wave actually detected from the wrapping paper 111 in the delivery step is C, the reference resonant frequency of the purchase step may be set to C. At this time, the determination unit 105 determines whether there is a change in the wrapping paper 111 based on BA (difference value) in the processing step, and in the wrapping paper 111 based on the CB (difference value) in the delivery step. It may be determined whether there is a change, and it may be determined whether the sealed wrapping paper 111 is kept sealed based on the DC (difference value) in the purchase step.
또 다른 예를 들면, 판단부(105)는 검출부(103)에서 검출된 전자기파의 공진 주파수와, 인식된 식별 코드에 대응되는 기준 테라헤르츠파의 공진 주파수의 차이값에 기초하여, 밀봉된 포장지(111)의 밀봉 상태 유지 여부를 판단할 수 있다. 구체적으로 예를 들면, 판단부(105)는 차이 값에 기초하여 포장지(111) 내부의 물리/화학/생물학적 변화의 정도를 수치화할 수도 있다. 습도를 예를 들면, 판단부(105)는 차이 값에 기초하여 습도의 차이값을 도출할 수 있다.As another example, the determination unit 105 may determine a sealed wrapper based on a difference value between the resonance frequency of the electromagnetic wave detected by the detector 103 and the resonance frequency of the reference terahertz wave corresponding to the recognized identification code. It may be determined whether or not to maintain the sealed state of the 111. In detail, for example, the determination unit 105 may quantify the degree of physical / chemical / biological change in the wrapping paper 111 based on the difference value. For example, the determination unit 105 may derive the difference value of the humidity based on the difference value.
또 다른 예를 들면, 판단부(105)는 특정 파장에서 검출부(103)에서 검출된 테라헤르츠파의 세기와 인식된 식별 코드에 대응되는 기준 테라헤르츠파의 세기를 비교하여, 특정 파장에서의 검출부(103)에서 검출된 테라헤르츠파의 세기와 인식된 식별 코드에 대응되는 기준 테라헤르츠파의 세기의 차이값이 설정된 차이값보다 큰 경우, 밀봉된 포장지(111)의 밀봉 상태가 훼손되었다고 판단할 수 있다.As another example, the determination unit 105 compares the intensity of the terahertz wave detected by the detector 103 at the specific wavelength with the intensity of the reference terahertz wave corresponding to the recognized identification code, and detects the detection unit at the specific wavelength. If the difference between the intensity of the terahertz wave detected at 103 and the intensity of the reference terahertz wave corresponding to the recognized identification code is greater than the set difference value, it is determined that the sealed state of the sealed wrapping paper 111 is damaged. Can be.
정보 생성부(106)는 식별 코드별 / 유통 단계별 포장지 내부의 변화에 대한 정보, 측정시 외부 환경 정보, 측정 일시에 대한 정보 및 측정한 사람에 대한 정보 등을 생성할 수 있다 . The information generation unit 106 may generate information about changes in the wrapping paper for each identification code / distribution step, external environment information at the time of measurement, information on the measurement date and time, information on the measured person, and the like .
정보 생성부(106)는 생성된 정보 및 경고 메시지를 통신부를 통해 유통상 포장 훼손을 관리하는 사용자가 사용하는 단말기 또는 관리 서버 등과 같은 외부 장치로 전송할 수 있다. 이를 통해, 관리자는 유통상 포장 훼손 여부를 실시간으로 확인할 수 있다.The information generating unit 106 may transmit the generated information and the warning message to an external device such as a terminal or a management server used by a user who manages distribution damage on the distribution through the communication unit. Through this, the manager can check in real time whether the packaging damage in the distribution.
라이팅부(107)는 현재 단계에서 측정된 다양한 정보를 식별 소자(112)에 기의 밀봉 상태의 유지 여부의 판단 결과 정보, 상기 측정시 외부 환경 정보, 상기 측정 일시에 대한 정보 및 상기 측정한 사람에 대한 정보 등을 포함할 수 있다. The lighting unit 107 may determine various types of information measured at the present stage in the identification element 112 as a result of determining whether to maintain the state of sealing of the device, external environment information during the measurement, information about the measurement date and time, and the measured person. It may include information about.
포장 훼손 검사 장치는 밀봉된 포장지에 구비된 센서를 이용하여 밀봉된 포장지의 밀봉 상태 유지 여부를 판단하여 포장지의 훼손 여부를 검사함으로써, 비파괴적인 방법으로 훼손 여부를 검사할 수 있다.The package damage inspection apparatus may determine whether the package is damaged by determining whether the sealed package is kept in a sealed state using a sensor provided in the sealed package, thereby inspecting whether the package is damaged by a non-destructive method.
또한, 포장 훼손 검사 장치는 전자기파의 변화된 특성에 기초하여 훼손 여부를 검사함으로써, 정확하게 훼손 여부를 검사할 수 있다.In addition, the packaging damage inspection apparatus can accurately check whether the damage by inspecting the damage based on the changed characteristics of the electromagnetic wave.
또한, 포장 훼손 검사 장치는 유동 전 과정에서 포장의 훼손 여부를 검사함으로써, 어느 과정에서 포장의 훼손이 발생하였는지 여부를 정확하게 파악할 수 있다.In addition, the packaging damage inspection apparatus can accurately determine whether the packaging damage occurs in any process by inspecting whether the packaging is damaged during the entire flow.
또한, 포장 훼손 검사 장치는 포장의 훼손 여부에 대한 정보를 사용자, 관리자 및 관리 서버에 전송함으로써, 실시간으로 훼손 여부에 대한 정보를 알려줌과 동시에 서버에서 일괄적으로 훼손 정보를 관리할 수 있다.In addition, the packaging damage inspection apparatus transmits information on whether the packaging is damaged or not to the user, the manager, and the management server, thereby notifying the information on whether the packaging is damaged in real time and simultaneously managing the damage information on the server.
도 3a 내지 도 3e는 본 발명의 일 실시예와 관련된 포장 훼손 검사 장치의 활용예를 설명하기 위한 도면이다.3A to 3E are diagrams for describing an application example of a packaging damage inspection apparatus according to an exemplary embodiment of the present invention.
도 1 및 도 3a를 참조하면, 사용자 등은 포장 훼손 검사 장치(10)를 이용하여 유통 단계마다 밀봉된 포장지의 밀봉 상태 유지 여부에 대한 검사를 할 수 있다.Referring to FIGS. 1 and 3A, a user or the like may inspect whether a sealed package is kept sealed at each distribution stage by using the packaging damage inspection apparatus 10.
포장 훼손 검사 장치(10)는 식별코드별 / 유통 단계별로 밀봉 상태 유지 여부, 외부 환경 정보, 측정 일시 및, 측정자 정보 등을 획득할 수 있다.The packaging damage inspection apparatus 10 may acquire whether the sealing state is maintained by each identification code / distribution step, external environment information, measurement date and time, and measurer information.
도 1 및 도 3b를 참조하면, 포장 훼손 검사 장치(10)는 가공업체의 생산 단계인 1차 단계에서 각각의 밀봉된 포장지에 대한 식별코드별 / 유통 단계별로 밀봉 상태 유지 여부, 외부 환경 정보, 측정 일시 및, 측정자 정보 등을 획득할 수 있다.1 and 3b, the packaging damage inspection apparatus 10 is maintained in the sealed state by the identification code / distribution stage for each sealed packaging paper in the first stage, the production stage of the processor, external environmental information, Measurement date and time, information of a measurer, and the like can be obtained.
도 1 및 도 3c를 참조하면, 포장 훼손 검사 장치(10)는 물류센터의 유통 단계인 2차 단계 또는 판매 단계인 3차 단계에서 각각의 밀봉된 포장지에 대한 식별코드별 / 유통 단계별로 밀봉 상태 유지 여부, 외부 환경 정보, 측정 일시 및, 측정자 정보 등을 획득할 수 있다. 1 and 3C, the packaging damage inspection device 10 is sealed in each distribution code for each sealed package / distribution step in the distribution stage of the distribution center in the second stage or the third stage in the distribution stage. Whether it is maintained, external environment information, measurement date and time, and information of a measurer can be obtained.
도 1 및 도 3d를 참조하면, 포장 훼손 검사 장치(10)는 소비자의 보관 단계인 제 4차에서 각각의 밀봉된 포장지에 대한 식별코드별 / 유통 단계별로 밀봉 상태 유지 여부('변환 유무'), 외부 환경 정보, 측정 일시 및, 측정자 정보 등을 획득할 수 있다. 예를 들면, 냉장고에 포장 훼손 검사 장치(10)가 구비되어 있으며, 포장 훼손 검사 장치(10)는 각각의 밀봉된 포장지에 대한 검사를 통해, 밀봉 상태가 유지되고 있는지 여부를 판단할 수 있다.Referring to FIGS. 1 and 3D, the packaging damage inspection apparatus 10 maintains the sealed state by the identification code / distribution stage for each sealed package in the fourth storage stage, which is the consumer's storage stage ('conversion presence') , External environment information, measurement date and time, and information of a measurer can be obtained. For example, the packaging damage inspection apparatus 10 is provided in the refrigerator, and the packaging damage inspection apparatus 10 may determine whether the sealed state is maintained by inspecting each sealed wrapping paper.
도 1 및 도 3e를 참조하면, 포장 훼손 검사 장치(10)는 획득된 식별코드별 / 유통 단계별로 밀봉 상태 유지 여부('변환 유무'), 외부 환경 정보, 측정 일시 및, 측정자 정보 등을 저장부(12)에 저장하거나, 디스플레이부(11)에 표시하거나, 통신부(13)를 통해 외부 장치로 실시간으로 전송할 수 있다. 1 and 3E, the packaging damage inspection apparatus 10 stores the sealed state ('conversion presence'), external environment information, measurement date and time, and information of a measurer for each acquired identification code / distribution step. It may be stored in the unit 12, displayed on the display unit 11, or transmitted in real time to the external device through the communication unit 13.
이에 따라, 식별코드별 / 유통 단계별로 밀봉된 포장지의 상태를 일괄적으로 확인할 수 있다.Accordingly, it is possible to collectively check the state of the sealed package by identification code / distribution stage.
도 4a 내지 도 4c는 본 발명의 일실시예에 따른 포장 훼손 검사 장치의 구동예를 설명하기 위한 도면이다.4A to 4C are diagrams for describing a driving example of a packaging damage inspection apparatus according to an exemplary embodiment of the present invention.
도 4a를 참조하면, 포장 훼손 검사 장치는 제조 단계에서의 정보를 획득할 수 있다. 예를 들면, 정보는 밀봉 상태의 유지 여부('변화 유무'), 내부 변화 정보(습도, 온도, 특정 가스 농도 등), 측정 일시 정보 및 측정자 정보를 포함할 수 있다. 밀봉된 포장지가 정상 상태인 경우, 온도는 5도이고, 습도는 1%일 수 있다.Referring to FIG. 4A, the packaging damage inspection apparatus may acquire information at a manufacturing stage. For example, the information may include whether the seal is maintained ('no change'), internal change information (humidity, temperature, specific gas concentration, etc.), measurement date and time information, and meter information. When the sealed wrapper is in a steady state, the temperature may be 5 degrees and the humidity may be 1%.
도 4b를 참조하면, 유통 단계 또는 판매 단계 등에서 나방이 밀봉된 포장지를 훼손하고, 밀봉된 포장지의 내부에 알을 낳을 수 있다. 나방에 의해서 훼손된 부분은 매우 미세하여, 육안으로는 훼손 여부를 판단할 수 없는 문제점이 있다.Referring to FIG. 4B, the moth-sealed wrapping paper may be damaged in a distribution stage or a selling stage, and eggs may be laid in the sealed wrapping paper. The part damaged by the moth is very fine, there is a problem that can not be determined by the naked eye.
도 4c를 참조하면, 사용자 등은 제조 단계 이후에 포장 훼손 검사 장치를 이용하여 밀봉된 포장지를 검사할 수 있다. 검사 결과 온도가 20도이고, 습도가 7%인 경우, 포장 훼손 검사 장치는 정상 상태('온도 : 5도, 습도 : 1%')에 비해 내부 변화 정보의 차이가 크므로, 밀봉 상태가 훼손되었다고 판단할 수 있다. Referring to FIG. 4C, a user or the like may inspect a sealed package by using a package damage inspection apparatus after a manufacturing step. If the inspection result shows that the temperature is 20 degrees and the humidity is 7%, the packaging damage inspection device has a large difference in internal change information compared to the normal state ('temperature: 5 degrees, humidity: 1%'), and thus the sealing state is damaged. Can be judged.
본 실시예와 같이 미세하게 밀봉이 훼손되면, 외부의 기체, 액체 또는 고체의 진출입이 허용되어, 밀봉된 포장지의 내부 환경이 외부 환경과 유사해지는 경향을 보인다.When the seal is finely broken as in the present embodiment, the entry / exit of external gas, liquid or solid is allowed, so that the inner environment of the sealed wrapper tends to be similar to the external environment.
이와 같이, 나방에 의해서 매우 미세하게 밀봉이 훼손된 경우라도, 본 발명에 따른 포장 훼손 검사 장치를 이용하면 밀봉 상태의 유지 여부를 용이하게 판단할 수 있다.In this way, even when the seal is damaged very finely by the moth, it is possible to easily determine whether the sealed state is maintained by using the package damage inspection apparatus according to the present invention.
도 5a 내지 도 5c는 본 발명의 또 다른 일실시예에 따른 포장 훼손 검사 장치의 구동예를 설명하기 위한 도면이다.5A to 5C are views for explaining a driving example of the packaging damage inspection apparatus according to another embodiment of the present invention.
도 5a를 참조하면, 포장 훼손 검사 장치는 제조 단계에서의 정보를 획득할 수 있다. 예를 들면, 정보는 밀봉 상태의 유지 여부('변화 유무'), 내부 변화 정보(습도, 온도, 특정 가스 농도 등), 측정 일시 정보 및 측정자 정보를 포함할 수 있다. 밀봉된 포장지가 정상 상태인 경우, 온도는 -5도이고, 습도는 1%일 수 있다.Referring to FIG. 5A, the packaging damage inspection apparatus may acquire information at a manufacturing stage. For example, the information may include whether the seal is maintained ('no change'), internal change information (humidity, temperature, specific gas concentration, etc.), measurement date and time information, and meter information. When the sealed wrapper is in a normal state, the temperature may be -5 degrees and the humidity may be 1%.
도 5b를 참조하면, 범죄자가 유통 단계 또는 판매 단계 등에서 주사기를 이용하여 밀봉된 포장지 내부에 유해 물질을 넣을 수 있다. 이와 같이, 주사기에 의해서 훼손된 부분은 매우 미세하여, 육안으로는 훼손 여부를 판단할 수 없는 문제점이 있다.Referring to FIG. 5B, a criminal may put harmful substances into a sealed package using a syringe in a distribution stage or a sales stage. As such, the part damaged by the syringe is very fine, and there is a problem in that it cannot be determined by the naked eye.
도 5c를 참조하면, 사용자 등은 제조 단계 이후에 포장 훼손 검사 장치를 이용하여 밀봉된 포장지를 검사할 수 있다. 검사 결과 온도가 3도이고, 습도가 8%인 경우, 포장 훼손 검사 장치는 정상 상태('온도 : -5도, 습도 : 1%')에 비해 내부 변화 정보의 차이가 크므로, 밀봉 상태가 훼손되었다고 판단할 수 있다. Referring to FIG. 5C, a user or the like may inspect a sealed package using a packaging damage inspection apparatus after a manufacturing step. When the inspection result shows that the temperature is 3 degrees and the humidity is 8%, the packaging damage inspection device has a large difference in the internal change information compared to the normal state ('temperature: -5 degrees, humidity: 1%'). It can be judged that it is damaged.
본 실시예와 같이 미세하게 밀봉이 훼손되면, 외부의 기체, 액체 또는 고체의 진출입이 허용되어, 밀봉된 포장지의 내부 환경이 외부 환경과 유사해지는 경향을 보인다.When the seal is finely broken as in the present embodiment, the entry / exit of external gas, liquid or solid is allowed, so that the inner environment of the sealed wrapper tends to be similar to the external environment.
이와 같이, 주사기에 의해서 매우 미세하게 밀봉이 훼손된 경우라도, 본 발명에 따른 포장 훼손 검사 장치를 이용하면 밀봉 상태의 유지 여부를 용이하게 판단할 수 있다. In this way, even when the seal is damaged very finely by the syringe, it is possible to easily determine whether the sealed state is maintained by using the package damage inspection apparatus according to the present invention.
도 6a 내지 도 6c는 본 발명의 또 다른 일실시예에 따른 포장 훼손 검사 장치의 구동예를 설명하기 위한 도면이다.6A to 6C are diagrams for describing a driving example of a packaging damage inspection apparatus according to another exemplary embodiment of the present invention.
도 6a를 참조하면, 포장 훼손 검사 장치는 제조 단계에서의 정보를 획득할 수 있다. 예를 들면, 정보는 밀봉 상태의 유지 여부('변화 유무'), 내부 변화 정보(습도, 온도, 특정 가스 농도 등), 측정 일시 정보 및 측정자 정보를 포함할 수 있다. 밀봉된 포장지가 정상 상태인 경우, 온도는 5도이고, 습도는 1%일 수 있다.Referring to FIG. 6A, the packaging damage inspection apparatus may acquire information at a manufacturing stage. For example, the information may include whether the seal is maintained ('no change'), internal change information (humidity, temperature, specific gas concentration, etc.), measurement date and time information, and meter information. When the sealed wrapper is in a steady state, the temperature may be 5 degrees and the humidity may be 1%.
도 6b를 참조하면, 유통 단계 또는 판매 단계 등에서 밀봉된 포장지가 날카로운 도구에 의해 훼손되거나 물건을 나르는 과정에서 떨어뜨려 훼손될 수 있다. 이와 같이, 날카로운 도구 또는 떨어뜨려 훼손된 부분은 매우 미세하여, 육안으로는 훼손 여부를 판단할 수 없는 문제점이 있다.Referring to FIG. 6B, the sealed wrapper may be damaged by a sharp tool or dropped in a process of carrying an object. As such, the sharp tool or the damaged part is very fine, and there is a problem that it is impossible to determine whether the damage is with the naked eye.
도 6c를 참조하면, 사용자 등은 제조 단계 이후에 포장 훼손 검사 장치를 이용하여 밀봉된 포장지를 검사할 수 있다. 검사 결과 온도가 20도이고, 습도가 7%인 경우, 포장 훼손 검사 장치는 정상 상태('온도 : 5도, 습도 : 1%')에 비해 내부 변화 정보의 차이가 크므로, 밀봉 상태가 훼손되었다고 판단할 수 있다. Referring to FIG. 6C, a user or the like may inspect a sealed package using a packaging damage inspection apparatus after a manufacturing step. If the inspection result shows that the temperature is 20 degrees and the humidity is 7%, the packaging damage inspection device has a large difference in internal change information compared to the normal state ('temperature: 5 degrees, humidity: 1%'), and thus the sealing state is damaged. Can be judged.
이와 같이, 날카로운 도구에 의해서 매우 미세하게 밀봉이 훼손된 경우라도, 본 발명에 따른 포장 훼손 검사 장치를 이용하면 밀봉 상태의 유지 여부를 용이하게 판단할 수 있다. In this way, even when the seal is damaged very finely by a sharp tool, it is possible to easily determine whether the sealed state is maintained by using the packaging damage inspection apparatus according to the present invention.
도 7은 본 발명의 일실시예에 따른 포장지를 설명하기 위한 도면이다.7 is a view for explaining a wrapping paper according to an embodiment of the present invention.
도 7을 참조하면, 전자기파가 투과되는 영역을 포함하는 포장 용기(700)는 전자기파용 포장지(701)로 둘러싸인 공간을 포함할 수 있다. 공간의 내부에는 음식물 등과 같은 물질이 삽입될 수 있다.Referring to FIG. 7, the packaging container 700 including a region through which electromagnetic waves are transmitted may include a space surrounded by the packaging paper 701 for electromagnetic waves. Inside the space, a substance such as food may be inserted.
전자기파용 포장지(701)는 제 1 전자기파 투과층(702), 전계 강화 구조체(703), 선택적 감지층(704), 필터층(705), 전자기파 차단층(706)을 포함할 수 있다.The electromagnetic wave wrapping paper 701 may include a first electromagnetic wave transmitting layer 702, a field reinforcing structure 703, an optional sensing layer 704, a filter layer 705, and an electromagnetic wave blocking layer 706.
전자기파용 포장지(701)는 전자기파가 투과될 수 있는 전자기파 투과층(702)과 전자기파가 차단되는 전자기파 차단층(706)을 포함할 수 있으며, 전자기파 투과층(702) 및 전자기파 차단층(706)의 모양, 영역의 크기는 다양하게 변형 가능하다. 이와 같이, 포장 용기(700)의 전체가 아닌 일부분에만 전자기파가 투과되는 영역을 형성할 수 있다. 예를 들면, 전자기파는 테라헤르츠파일 수 있다.The electromagnetic wave wrapping paper 701 may include an electromagnetic wave transmitting layer 702 through which electromagnetic waves can pass, and an electromagnetic wave blocking layer 706 through which electromagnetic waves are blocked. The electromagnetic wave transmitting layer 702 and the electromagnetic wave blocking layer 706 The shape and size of the area can be variously modified. As such, an area through which electromagnetic waves are transmitted may be formed in only a part of the packaging container 700 but not in its entirety. For example, electromagnetic waves may be terahertz piles.
전자기파 투과층(702)은 전자기파를 투과시키는 물질로 이루어져 있다.The electromagnetic wave transmitting layer 702 is made of a material that transmits electromagnetic waves.
전계 강화 구조체(703)는 전자기파 투과층(702)을 투과한 전자기파 중 미리 설정된 주파수 대역에 반응하여 전계(field)를 강화(enhancement)시킬 수 있다. 예를 들면, 전계 강화 구조체(703)는 회절 격자, 메탈 메쉬, 메타물질, 전자기파 생성부의 파장 이하의 폭을 갖는 개구부(opening)를 포함하는 금속층, 표면 플라즈몬 공명을 유도하는 구조물 및 광결정 구조물 등과 같이 전계를 강화할 수 있는 다양한 구조일 수 있다.The electric field reinforcement structure 703 may enhance an electric field in response to a preset frequency band among electromagnetic waves transmitted through the electromagnetic wave transmitting layer 702. For example, the field strengthening structure 703 may include a diffraction grating, a metal mesh, a metamaterial, a metal layer including an opening having a width below a wavelength of an electromagnetic wave generating unit, a structure inducing surface plasmon resonance, a photonic crystal structure, and the like. It can be a variety of structures that can enhance the electric field.
선택적 감지층(704)은 특정 물질과만 결합하는 감지물질을 지지체에 고정한 층일 수 있다. 예를 들면, 특정 물질이 특정 이온, 특정 가스, 수분, 위해물질 등인 경우, 선택적 감지층(704)은 특정 이온, 특정 가스, 수분, 위해물질과만 결합하고, 다른 물질과는 결합을 하지 않을 수 있다.The selective sensing layer 704 may be a layer in which a sensing material that binds only to a specific material is fixed to the support. For example, if a particular material is a particular ion, a particular gas, moisture, a hazard, or the like, the selective sensing layer 704 only binds to a particular ion, a particular gas, moisture, a hazard, and not to another substance. Can be.
필터층(705)은 특정 물질만을 선택적 감지층(704)으로 통과시킬 수 있다. 예를 들면, 필터층(705)은 포장 용기(700)의 가장 안쪽에 형성될 수 있으며, 포장 용기(700)의 내부 공간에 존재하는 다양한 종류의 물질들 중 특정 물질(예를 들면, 특정 이온, 특정 가스, 수분, 위해물질)만이 선택적 감지층(704)으로 통과시킬 수 있다.The filter layer 705 may pass only certain materials through the selective sensing layer 704. For example, the filter layer 705 may be formed on the innermost side of the packaging container 700, and may include a specific material (eg, a specific ion, among various kinds of materials existing in the interior space of the packaging container 700). Only certain gases, moisture, hazards) may pass through the selective sensing layer 704.
전자기파 차단층(706)은 테라헤르츠파 투과층(702), 전계 강화 구조체(703), 선택적 감지층(704) 및 필터층(705)의 양측면에 형성되며, 전자기파를 반사할 수 있다.The electromagnetic wave blocking layer 706 is formed on both sides of the terahertz wave transmitting layer 702, the electric field strengthening structure 703, the selective sensing layer 704, and the filter layer 705, and may reflect electromagnetic waves.
전자기파 차단층(706)은 원래는 포장외부에서 내부로 유입되는 자외선, 가시광, 적외선, 수분, 위해물질 등으로부터 제품을 보호하기 위해, 알루미늄막과 같은 금속 재질의 층을 고분자 포장재(polyethylene; PE, polypropylene; PP)에 코팅한 것으로 금속 성분이 함유되어, 전자기파를 반사시키는 성질을 가진다.The electromagnetic wave shielding layer 706 is originally made of a polymer packaging material (polyethylene; PE, etc.) to protect the product from ultraviolet rays, visible light, infrared rays, moisture, harmful substances, etc. introduced from the outside of the package. It is coated on polypropylene (PP) and contains metal component to reflect electromagnetic wave.
비파괴 방법으로 포장지의 내부를 용이하게 검출할 수 있도록, 전체 포장지 중 특정 부분에만 전자기파 투과층(702), 전계 강화 구조체(703), 선택적 감지층(704) 및 필터층(705)로 구성된 감지창(sensing window)을 형성할 수 있다.A sensing window composed of an electromagnetic wave transmitting layer 702, a field reinforcing structure 703, an optional sensing layer 704, and a filter layer 705 only in a specific portion of the whole wrapping paper so as to easily detect the inside of the wrapping paper by a non-destructive method. sensing window).
도 8은 본 발명의 또 다른 일실시예에 따른 포장지를 설명하기 위한 도면이다.8 is a view for explaining a wrapping paper according to another embodiment of the present invention.
도 8을 참조하면, 포장지(800)는 기준 전자기파 특성을 획득할 수 있는 제 1 영역(810)과 변화된 전자기파 특성을 획득할 수 있는 제 2 영역(820)을 포함할 수 있다. Referring to FIG. 8, the wrapping paper 800 may include a first area 810 capable of acquiring reference electromagnetic wave characteristics and a second area 820 capable of acquiring changed electromagnetic wave characteristics.
제 1 영역(810)은 테라헤르츠파 투과층(811), 전계 강화 구조체(812), 감지물질을 포함하지 않는 선택적 감지층(813) 및 필터층(814)을 포함할 수 있다.The first region 810 may include a terahertz wave transmitting layer 811, a field strengthening structure 812, an optional sensing layer 813 that does not include a sensing material, and a filter layer 814.
제 2 영역(820)는 테라헤르츠파 투과층(821), 전계 강화 구조체(822), 감지 물질을 포함하는 선택적 감지층(823) 및 필터층(824)을 포함할 수 있다.The second region 820 may include a terahertz wave transmitting layer 821, a field reinforcing structure 822, an optional sensing layer 823 including a sensing material, and a filter layer 824.
각 영역에 포함된 층들의 기능은 이미 상술하였으므로 생략한다.The functions of the layers included in each region are already described above and thus will be omitted.
전자기파 생성부(미도시)가 제 1 영역(810)으로 전자기파를 조사하면, 검출부(미도시)는 제 1 영역(810)에서 검출된 전자기파의 제 1 공진 주파수(f1)를 검출할 수 있다. 여기서, 제 1 공진 주파수(f1)는 기준 전자기파의 공진 주파수가 된다. 전자기파 생성부(미도시)가 제 2 영역(820)으로 전자기파를 조사하면, 검출부(미도시)는 제 2 영역(820)에서 검출된 전자기파의 제 2 공진 주파수(f2)를 검출할 수 있다. 여기서, 제 2 공진 주파수(f2)는 선택적 감지층(823)에 포함된 감지물질과 특정 물질이 결합됨에 따라 변화된 전자기파의 공진 주파수가 된다. 다시 말해, 선택적 감지층(823)에 특정 물질이 결합되면, 제 2 공진 주파수(f2)는 변한다.When the electromagnetic wave generator (not shown) irradiates the electromagnetic wave to the first region 810, the detector (not shown) may detect the first resonant frequency f1 of the electromagnetic wave detected in the first region 810. Here, the first resonant frequency f1 becomes the resonant frequency of the reference electromagnetic wave. When the electromagnetic wave generator (not shown) irradiates the electromagnetic wave to the second region 820, the detector (not shown) may detect the second resonant frequency f2 of the electromagnetic wave detected in the second region 820. Here, the second resonant frequency f2 is the resonant frequency of the electromagnetic wave changed as the sensing material and the specific material included in the selective sensing layer 823 are combined. In other words, when a specific material is coupled to the selective sensing layer 823, the second resonant frequency f2 changes.
판단부(미도시)는 제 1 영역(810)에서 검출된 전자기파의 제 1 공진 주파수(f1)('기준 테라헤르츠파의 공진 주파수')와 제 2 영역(820)에서 검출된 전자기파의 제 2 공진 주파수(f2)를 비교하여, 양 공진 주파수의 차이가 설정된 범위보다 큰 차이가 나면 포장 용기(미도시)의 내부에 물리/화학/생물학적 변화가 일어난 것으로 판단할 수 있다.The determination unit (not shown) includes a first resonant frequency f1 ('resonant frequency of the reference terahertz wave') of the electromagnetic waves detected in the first region 810 and a second of the electromagnetic waves detected in the second region 820. By comparing the resonant frequencies f2, if the difference between the two resonant frequencies is greater than the set range, it may be determined that a physical / chemical / biological change has occurred inside the packaging container (not shown).
도 9는 본 발명의 일실시예에 따른 포장지 내부에 구비되는 센서를 설명하기 위한 도면이다.9 is a view for explaining a sensor provided in the wrapping paper according to an embodiment of the present invention.
도 9를 참조하면, 전자기파가 투과되는 영역을 포함하는 포장 용기(900)는 음료수를 담는 용기일 수 있다. 포장 용기(900)는 측면 중 일부에 전자기파가 투과되는 영역(910)을 포함할 수 있다.Referring to FIG. 9, the packaging container 900 including a region through which electromagnetic waves are transmitted may be a container for drinking water. The packaging container 900 may include a region 910 through which electromagnetic waves are transmitted to some of the side surfaces.
센서(920)는 포장 용기(900)의 내부에 구비될 수 있다.The sensor 920 may be provided inside the packaging container 900.
센서(920)는 기판층(921), 전계 강화 구조체(922), 선택적 감지층(923), 필터층(924), 전자기파 투과층(925), 도파로 회절격자(926) 및 기판층(927)을 포함할 수 있다. 기판층(921), 전계 강화 구조체(922), 선택적 감지층(923), 필터층(924), 전자기파 투과층(925)은 포장 내부의 변화를 감지하기 위해 구성된 구성이고, 전자기파 투과층(925), 도파로 회절격자(926) 및 기판층(927)을 포함할은 포장에 부여된 식별 코드를 저장할 수 있는 구성('광학적 식별 소자')이다. 기판층(921) 및 전자기파 투과층(925)은 하나의 층으로 일체형으로 구현될 수 있다. 광학적 식별 소자는 이하의 도 10 내지 도 12c에서 구체적으로 설명하겠다. The sensor 920 includes the substrate layer 921, the field reinforcing structure 922, the selective sensing layer 923, the filter layer 924, the electromagnetic wave transmitting layer 925, the waveguide diffraction grating 926, and the substrate layer 927. It may include. The substrate layer 921, the field reinforcing structure 922, the selective sensing layer 923, the filter layer 924, and the electromagnetic wave transmitting layer 925 are configured to detect changes in the package, and the electromagnetic wave transmitting layer 925. , Which comprises a waveguide diffraction grating 926 and a substrate layer 927, is a configuration ('optical identification element') capable of storing an identification code assigned to a package. The substrate layer 921 and the electromagnetic wave transmitting layer 925 may be integrally implemented as one layer. The optical identification element will be described in detail with reference to FIGS. 10 to 12C below.
기판층(921)은 전자기파를 투과시키는 물질로 이루어져 있다.The substrate layer 921 is made of a material that transmits electromagnetic waves.
전계 강화 구조체(922)는 기판층(921)을 투과한 전자기파 중 미리 설정된 주파수 대역에 반응하여 전계(field)를 강화(enhancement)시킬 수 있다. 예를 들면, 전계 강화 구조체(922)는 회절 격자, 메탈 메쉬, 메타물질, 전자기파 생성부의 파장 이하의 폭을 갖는 개구부(opening)를 포함하는 금속층, 표면 플라즈몬 공명을 유도하는 구조물 및 광결정 구조물 등과 같이 전계를 강화할 수 있는 다양한 구조일 수 있다.The field reinforcement structure 922 may enhance a field in response to a preset frequency band among electromagnetic waves transmitted through the substrate layer 921. For example, the field strengthening structure 922 may include a diffraction grating, a metal mesh, a metamaterial, a metal layer including an opening having a width below a wavelength of an electromagnetic wave generating unit, a structure inducing surface plasmon resonance, a photonic crystal structure, and the like. It can be a variety of structures that can enhance the electric field.
선택적 감지층(923)은 특정 물질과만 결합하는 감지물질을 지지체에 고정한 층일 수 있다. 예를 들면, 특정 물질이 특정 이온, 특정 가스, 수분, 위해물질 등인 경우, 선택적 감지층(923)은 특정 이온, 특정 가스, 수분, 위해물질과만 결합하고, 다른 물질과는 결합을 하지 않을 수 있다.The selective sensing layer 923 may be a layer in which a sensing material that binds only to a specific material is fixed to the support. For example, if a particular material is a particular ion, a particular gas, moisture, a hazard, or the like, the selective sensing layer 923 may only bind to a particular ion, a particular gas, moisture, a hazard, and may not bind to another substance. Can be.
필터층(924)은 특정 물질만을 선택적 감지층(923)으로 통과시킬 수 있다. 예를 들면, 필터층(924)은 포장 용기(900)의 가장 안쪽에 형성될 수 있으며, 포장 용기(900)의 내부 공간에 존재하는 다양한 종류의 물질들 중 특정 물질(예를 들면, 특정 이온, 특정 가스, 수분, 위해물질)만이 선택적 감지층(923)으로 통과시킬 수 있다.The filter layer 924 may pass only a specific material to the selective sensing layer 923. For example, the filter layer 924 may be formed on the innermost side of the packaging container 900, and may include a specific material (eg, a specific ion, among various kinds of materials present in the interior space of the packaging container 900). Only certain gases, moisture, hazards) may pass through the selective sensing layer 923.
만약, 포장 용기(900) 내부의 수분의 변화를 검출하고 싶은 경우, 선택적 감지층(923)은 수분과만 결합할 수 있는 층을 사용하고, 필터층(924)은 수분만을 통과할 수 있는 층을 사용할 수 있다. 예를 들면, 전자기파 생성부(930)가 감지 센서(920)로 전자기파를 조사하면, 검출부(940)는 감지 센서(920)로부터 감지된 전자기파의 공진 주파수를 검출할 수 있다. 판단부(미도시)는 감지 센서(920)로부터 검출된 전자기파의 공진 주파수와 기준 전자기파의 공진 주파수('수분이 없는 경우의 공진 주파수')를 비교하여, 양 공진 주파수의 차이가 설정된 범위보다 큰 차이가 나면 전계 강화 구조체 주변에 수분 생성된 것으로 판단할 수 있다. 즉, 판단부(미도시)는 포장 용기(900)의 내부에 수분이 발생한 것으로 판단할 수 있다.If it is desired to detect a change in moisture inside the packaging container 900, the selective sensing layer 923 uses a layer that can only combine with moisture, and the filter layer 924 has a layer that can pass only moisture. Can be used. For example, when the electromagnetic wave generator 930 irradiates the electromagnetic wave with the sensing sensor 920, the detector 940 may detect the resonance frequency of the electromagnetic wave detected by the sensing sensor 920. The determination unit (not shown) compares the resonant frequency of the electromagnetic wave detected from the sensing sensor 920 with the resonant frequency of the reference electromagnetic wave ('resonant frequency in the absence of moisture'), so that the difference between the two resonant frequencies is greater than the set range. If there is a difference, it can be determined that water is generated around the field strengthening structure. That is, the determination unit (not shown) may determine that moisture has occurred inside the packaging container 900.
도 10a 내지 도 10c는 본 발명의 일 실시예에 따른 전계 강화 구조체를 설명하기 위한 도면이다.10A to 10C are diagrams for describing the electric field strengthening structure according to the exemplary embodiment of the present invention.
도 10a를 참조하면, 전계 강화 구조체는 특정 파장에 대해 Guided Mode Resonance (GMR)를 일으키는 도파로 회절 격자(waveguide grating) 일 수 있다. Referring to FIG. 10A, the field enhancement structure may be a waveguide grating that causes Guided Mode Resonance (GMR) for a particular wavelength.
도파로 회절격자층(1002)은 주어진 조건(입사광의 파장, 입사각, 도파로 두께 및 유효 굴절률 등)에서 입사되는 광을 회절 시킬 수 있다. 0차를 제외한 나머지 고차 회절파들은 도파로 회절격자층(1002)에 도파 모드(guided mode)를 형성할 수 있다. 이때, 0차 반사파-투과파는 도파 모드(guided mode)와 위상 정합(phase matching)이 발생하며, 도파 모드의 에너지는 다시 0차 반사파-투과파로 전달되는 공진(resonance)이 일어나게 된다. 공진이 일어나면서, 0차 반사 회절파는 보강 간섭에 의해 100% 반사가 일어나고, 0차 투과 회절파는 상쇄간섭에 의해 0% 투과가 일어나 결과적으로 특정한 파장 대역에서 매우 날카로운 공명 곡선이 그려진다. The waveguide diffraction grating layer 1002 may diffract light incident under a given condition (wavelength, incident angle, waveguide thickness, effective refractive index, etc.) of the incident light. The higher order diffraction waves other than the zeroth order may form a guided mode in the waveguide diffraction grating layer 1002. At this time, the zeroth order reflected wave-transmission wave is guided mode and phase matching, and the energy of the waveguide mode is transmitted to the zeroth order reflected wave-transmission wave again. As resonance occurs, the zero-order reflected diffraction wave is 100% reflected by constructive interference, and the zero-order transmitted diffraction wave is 0% transmitted by destructive interference, resulting in a very sharp resonance curve in a specific wavelength band.
도 10b는 전자기파대역에서 투명한 polymethylpentene기판(n=1.46) 위에 SU-8 photoresist로 회절격자(nH=1.80, nL=1.72, 두께=80um, 주기=200um)를 형성하고 유한차분요소법으로 계산한 GMR 계산결과이다(0.89 THz에서 공명이 발생).10b shows a diffraction grating (n H = 1.80, n L = 1.72, thickness = 80 um, period = 200 um) formed by SU-8 photoresist on a transparent polymethylpentene substrate (n = 1.46) in the electromagnetic band and calculated by the finite difference element method. GMR calculation results (resonance occurs at 0.99 THz).
도 10a에 도시된 것처럼, 커버층(901)의 유전율을 ε1이라 하고 도파로 회절격자층(1002)의 유전율을 ε2 라고 하고, 맨 아래 기판층(1003)의 유전율을 ε3라 하면, 도파로 회절격자층의 유전율 ε2 는 다음 수학식 1 처럼 표현이 가능하다. As shown in FIG. 10A, when the permittivity of the cover layer 901 is ε 1 , the permittivity of the waveguide diffraction grating layer 1002 is ε 2 , and the permittivity of the bottom substrate layer 1003 is ε 3 , the waveguide The dielectric constant ε 2 of the diffraction grating layer can be expressed as Equation 1 below.
[수학식 1][Equation 1]
ε2(x)=εg+△ε*cos(Kx)ε2 (x) = ε g + △ ε * cos ( K x)
여기에서 εg는 회절격자를 구성하며 반복되는 두 종류의 유전율(εH, εL) 의 평균값이고, △ε은 유전율의 최대변화량, K는 격자의 파수로 2π/Λ, Λ는 격자의 주기이고, x는 원점으로부터 X축 방향으로의 거리이다. Where ε g is the average value of the two repeated dielectric constants (ε H , ε L ), Δε is the maximum change in dielectric constant, K is the wavenumber of the grating, 2π / Λ, Λ is the period of the grating X is a distance from the origin to the X axis direction.
이때, 입사광의 특정한 파장과 입사각에서 도파로 회절격자가 공진, 즉, 도파로 모드가 발생되기 위해서는 도파로의 유효굴절률 N이 다음 조건을 만족하기만 하면 된다. At this time, in order for the waveguide diffraction grating to be resonant at a specific wavelength and incident angle of the incident light, that is, to generate a waveguide mode, the effective refractive index N of the waveguide only needs to satisfy the following condition.
max(sqrt(ε13)|N|< sqrt(εg)max (sqrt (ε 1 , ε 3 ) | N | <sqrt (ε g )
도파로 회절격자에서 GMR이 발생하면 회절격자근처에 전계가 집중되는 현상은 잘 알려져 있으며, 이러한 근접장 강화(near field enhancement)현상 때문에 도파로 회절격자 근처의 미세한 굴절률 변화는 전체적으로 공명 주파수의 변화로 나타나게 된다. 이러한 원리를 이용하면 도파로 회절격자 근처에 감지막을 형성하고 감지막내에서 발생하는 미세한 감지물질의 화학적-물리적 결합은 공명주파수의 변화로 나타나기 때문에 고감도의 감지원리로 활용할 수 있다. It is well known that when GMR occurs in a waveguide grating, the electric field is concentrated near the diffraction grating. Due to the near field enhancement, the slight change in refractive index near the waveguide grating appears as a change in the resonance frequency as a whole. Using this principle, the sensing film is formed near the waveguide diffraction grating, and the chemical-physical coupling of the minute sensing material generated in the sensing film is represented by the change of the resonance frequency, which can be used as a sensitive sensing principle.
여기에서는 이러한 원리를 전자기파 영역에서 적용하여, 포장지내에 전자기파 영역에서 반응하는 GMR 감지소자를 형성함으로, 고감도로 전자기파 감지소자를 만들 수가 있다. 특히 전자기파가 가지는 비파괴 특성과 결합하여 고감도로 비파괴 검출이 가능하게 된다.Here, this principle can be applied in the electromagnetic wave region to form a GMR sensing element that reacts in the electromagnetic wave region in a package, thereby making it possible to make the electromagnetic wave sensing element with high sensitivity. In particular, in combination with the non-destructive characteristics of electromagnetic waves, non-destructive detection is possible with high sensitivity.
도 10c는 도파로 회절격자의 구조와 모양을 설명하기 위한 사시도이다. 10C is a perspective view for explaining the structure and shape of the waveguide diffraction grating.
회절 격자는 유전체 슬랩의 표면 상에 형성된 그루브들(grooves) 또는 리지들(ridges)을 포함할 수 있다. 또 다른 예를 들면, 회절 격자는 유전체 시트 내에서 주기적으로 교대하는 굴절률(예를 들면, 위상 격자)을 가지고 있는 평면형 유전체 시트이다. 예로 든 위상 격자는 유전체 시트 내 및 그를 통과하는 주기적인 홀들의 어레이를 형성함으로써 형성될 수 있다.The diffraction grating may include grooves or ridges formed on the surface of the dielectric slab. In another example, the diffraction grating is a planar dielectric sheet having a refractive index (eg, a phase grating) that alternates periodically in the dielectric sheet. Exemplary phase gratings may be formed by forming an array of periodic holes in and through the dielectric sheet.
또 다른 예를 들면, 회절 격자는 1-차원(1D) 회절 격자 또는 2-차원 회절 격자 중 어느 하나를 포함할 수 있다. 1D 회절 격자는 예를 들면 단지 제1의 방향으로만(예를 들면, x-축을 따라) 주기적이고 평행한 실질적으로 직선인 그루브들의 세트를 포함할 수 있다. 2D 회절 격자의 예는 유전체 슬랩 또는 시트에서 홀들 의 어레이를 포함할 수 있고, 여기에서 홀들은 2개의 직교 방향들에 따라(예를 들면, x-축 및 y-축 양쪽을 따라) 주기적으로 이격되어 있다. 이때 2D 회절 격자는 광결정(photonic crystal)로 불리기도 한다.As another example, the diffraction grating may comprise either a one-dimensional (1D) diffraction grating or a two-dimensional diffraction grating. The 1D diffraction grating may, for example, comprise a set of substantially straight grooves that are periodic and parallel only in the first direction (eg along the x-axis). An example of a 2D diffraction grating may include an array of holes in a dielectric slab or sheet, where the holes are periodically spaced along two orthogonal directions (eg, along both the x-axis and the y-axis). It is. In this case, the 2D diffraction grating is also called a photonic crystal.
도 11은 본 발명의 일 실시예와 관련된 광학적 식별 소자를 설명하기 위한 도면이다.11 is a view for explaining an optical identification device according to an embodiment of the present invention.
도 11을 참조하면, 광학적 식별 소자(1100)는 m개의 식별 유니트를 포함할 수 있다. 각각의 식별 유니트는 전자기파 투과층(1110), 도파로 회절격자(1120) 및 기판층(1130)을 포함할 수 있다. 본 실시예에서는 식별 유니트가 8개인 경우를 기준으로 설명하겠으나, 식별 유니트의 개수는 이에 한정되지 않는다. 식별 유니트의 면적은 조사 면적, 고유공진주파수, 격자 주기 등에 영향을 받을 수 있는데, 그 중 조사면적에 가장 큰 영향을 받게 된다. 예를 들어, 전자기파의 조사빔의 직경이 6mm인 경우, 식별 유니트의 면적은 8mm * 8mm 일 수 있다. 이와 같이, 전자기파의 조사빔의 직경이 작으므로, 식별 유니트의 면적도 매우 작다. 도 1의 광학적 식별 소자(112)는 본 실시예의 광학적 식별 소자(1100)로 구현될 수 있다.Referring to FIG. 11, the optical identification device 1100 may include m identification units. Each identification unit may include an electromagnetic wave transmitting layer 1110, a waveguide diffraction grating 1120, and a substrate layer 1130. In the present embodiment, a description will be given on the basis of eight identification units, but the number of identification units is not limited thereto. The area of the identification unit may be influenced by the irradiation area, the natural resonance frequency, the lattice period, etc., of which the largest area is affected. For example, when the diameter of the irradiation beam of electromagnetic waves is 6 mm, the area of the identification unit may be 8 mm * 8 mm. Thus, since the diameter of the irradiation beam of electromagnetic waves is small, the area of the identification unit is also very small. The optical identification element 112 of FIG. 1 may be implemented with the optical identification element 1100 of this embodiment.
전자기파 투과층(1110)은 전자기파를 투과시키는 물질로 이루어져 있다.The electromagnetic wave transmitting layer 1110 is made of a material that transmits electromagnetic waves.
도파로 회절격자(1120)는 전자기파 투과층(1110)을 투과된 전자기파가 조사되면, 고유 공진 주파수를 갖는 전자기파를 생성할 수 있다. 여기서, 고유 공진 주파수는 제 1 고유 공진 주파수부터 제 n 고유 공진 주파수 중 어느 하나일 수 있다. 예를 들면, 제 1 고유 공진 주파수는 f1일 수 있다. 만약 n이 10인 경우, 고유 공진 주파수는 10개의 고유 공진 주파수 중 어느 하나일 수 있다.When the waveguide grating 1120 is irradiated with electromagnetic waves transmitted through the electromagnetic wave transmission layer 1110, the waveguide grating 1120 may generate electromagnetic waves having a natural resonance frequency. Here, the natural resonance frequency may be any one of the first natural resonance frequency and the nth natural resonance frequency. For example, the first natural resonant frequency may be f 1 . If n is 10, the natural resonance frequency may be any one of the 10 natural resonance frequencies.
도파로 회절격자(1120)는 광감응(photosensitive), 열감응, 전기감응 등의 물질로 이루어질 수 있다. The waveguide diffraction grating 1120 may be formed of a material such as photosensitive, thermally sensitive, or electrically sensitive.
도파로 회절격자(1120)는 유전체 슬랩의 표면 상에 형성된 그루브들(grooves) 또는 리지들(ridges)을 포함할 수 있다. 또 다른 예를 들면, 회절 격자는 유전체 시트 내에서 주기적으로 교대하는 굴절률(예를 들면, 위상 격자)을 가지고 있는 평면형 유전체 시트이다. 예로 든 위상 격자는 유전체 시트 내 및 그를 통과하는 주기적인 홀들의 어레이를 형성함으로써 형성될 수 있다. Waveguide diffraction grating 1120 may include grooves or ridges formed on the surface of the dielectric slab. In another example, the diffraction grating is a planar dielectric sheet having a refractive index (eg, a phase grating) that alternates periodically in the dielectric sheet. Exemplary phase gratings may be formed by forming an array of periodic holes in and through the dielectric sheet.
도파로 회절격자(1120)는 1-차원(1D) 회절 격자 또는 2-차원 회절 격자 중 어느 하나를 포함할 수 있다. 1D 회절 격자는 예를 들면 단지 제1의 방향으로만(예를 들면, x-축을 따라) 주기적이고 평행한 실질적으로 직선인 그루브들의 세트를 포함할 수 있다. 2D 회절 격자의 예는 유전체 슬랩 또는 시트에서 홀들 의 어레이를 포함할 수 있고, 여기에서 홀들은 2개의 직교 방향들에 따라(예를 들면, x-축 및 y-축 양쪽을 따라) 주기적으로 이격되어 있다. 이때 2D 회절 격자는 광결정(photonic crystal)로 불리기도 한다. Waveguide diffraction grating 1120 may include either a one-dimensional (1D) diffraction grating or a two-dimensional diffraction grating. The 1D diffraction grating may, for example, comprise a set of substantially straight grooves that are periodic and parallel only in the first direction (eg along the x-axis). An example of a 2D diffraction grating may include an array of holes in a dielectric slab or sheet, where the holes are periodically spaced along two orthogonal directions (eg, along both the x-axis and the y-axis). It is. In this case, the 2D diffraction grating is also called a photonic crystal.
기판층(1130)은 도파로 회절 격자(1120)와 결합되어 도파로 회절 격자(1120)를 고정시킬 수 있는 층일 수 있다.The substrate layer 1130 may be a layer capable of being combined with the waveguide diffraction grating 1120 to fix the waveguide diffraction grating 1120.
광학적 식별 소자(1100)는 고유 공진 주파수의 종류가 n개이고, 식별 유니트의 개수가 m개인 경우, 표현할 수 있는 식별 코드는 nm개가 된다. 예를 들면, 고유 공진 주파수의 종류가 10개이고, 식별 유니트의 개수가 2개인 경우, 식별 코드는 102=100개가 된다. 이와 같이, 광학적 식별 소자(1100)는 식별 유니트를 2개만 사용하고도 100개의 식별코드를 표현할 수 있다. 또 다른 예를 들면, 고유 공진 주파수의 종류가 10개이고, 식별 유니트의 개수가 8개인 경우, 식별 코드는 108=100.000,000개가 된다. When the optical identification element 1100 has n types of inherent resonance frequencies and the number of identification units is m, there are n m identification codes that can be expressed. For example, when there are ten kinds of natural resonant frequencies and two identification units, the identification code is 10 2 = 100. As such, the optical identification device 1100 may express 100 identification codes even when only two identification units are used. As another example, when there are ten types of natural resonant frequencies and the number of identification units is eight, identification codes are 10 8 = 100.000,000.
따라서, 광학적 식별 소자는 작은 면적 내에 많은 양의 식별 코드를 표현할 수 있다.Thus, the optical identification element can express a large amount of identification code in a small area.
또한, 광학적 식별 소자는 육안으로 인식할 수 없기 때문에, 보안성도 우수하다.In addition, since the optical identification element cannot be visually recognized, the security is also excellent.
도 12a 내지 도 12d는 본 발명의 일 실시예와 관련된 광학적 식별 소자를 구체적으로 설명하기 위한 도면이다.12A to 12D are diagrams for describing in detail an optical identification device according to an embodiment of the present invention.
도 12a는 광학적 식별 소자로부터 반사되는 전자기파를 검출하여 도시한 그래프이다.12A is a graph illustrating detection and detection of electromagnetic waves reflected from an optical identification element.
도 12a를 참조하면, 각각의 식별 유니트들(1 ~ n)은 각각 고유 공진 주파수(f1, f2, f3 내지 fn)을 가질 수 있다. 예를 들면, 제 1 식별 유니트(1)은 제 1 고유 공진 주파수(f1)를 가지며, 제 2 식별 유니트(2)는 제 2 고유 공진 주파수(f2)를 가지며, 제 n 식별 유니트(n)은 제 n 고유 공진 주파수(fn)를 가질 수 있다. Referring to FIG. 12A, each of the identification units 1 to n may have natural resonance frequencies f 1 , f 2, and f3 to fn, respectively. For example, the first identification unit 1 has a first natural resonance frequency f 1 , the second identification unit 2 has a second natural resonance frequency f 2 , and the nth identification unit n ) May have an n th natural resonance frequency f n.
도 12b는 광학적 식별 소자로부터 투과되는 전자기파를 검출하여 도시한 그래프이다.12B is a graph illustrating detection and detection of electromagnetic waves transmitted from the optical identification element.
도 12b를 참조하면, 각각의 식별 유니트들(1 ~ n)은 각각 고유 공진 주파수(f1, f2, f3 내지 fn)를 가질 수 있다. 예를 들면, 제 1 식별 유니트(1)은 제 1 고유 공진 주파수(f1)를 가지며, 제 2 식별 유니트(2)는 제 2 고유 공진 주파수(f2)를 가지며, 제 n 식별 유니트(n)은 제 n 고유 공진 주파수(fn)를 가질 수 있다. Referring to FIG. 12B, each of the identification units 1 to n may have natural resonance frequencies f 1 , f 2, and f3 to fn, respectively. For example, the first identification unit 1 has a first natural resonance frequency f 1 , the second identification unit 2 has a second natural resonance frequency f 2 , and the nth identification unit n ) May have an n th natural resonance frequency f n.
도 12c는 16개의 식별 유니트들로 이루어진 광학적 식별 소자를 설명하기 위한 도면이다. 12C is a diagram for explaining an optical identification element consisting of 16 identification units.
도 12c를 참조하면, 식별 유니트는 총 16개이고, 총 16개의 식별 유니트는 각각의 고유 공진 주파수(f1, f2, f3 내지 f10)를 갖는 10개의 식별 유니트들(1 ~ 10)의 조합으로 이루어질 수 있다. 구체적으로, 첫번째 식별 유니트는 제 1 고유 공진 주파수(f1)를 갖는 제 1 식별 유니트(1)이고, 두번째 식별 유니트는 제 4 고유 공진 주파수(f4)를 갖는 제 4 식별 유니트(4)이고, 세번째 식별 유니트는 제 2 고유 공진 주파수(f2)를 갖는 제 2 식별 유니트(2)이고, 나머지 위치에 존재하는 식별 유니트들도 도 2c에 도시된 바와 같이 식별 유니트들로 구성될 수 있다.Referring to FIG. 12C, there are 16 identification units in total, and a total of 16 identification units are a combination of ten identification units 1 to 10 having respective natural resonant frequencies f 1 , f 2, f 3 to f 10 . Can be made. Specifically, the first identification unit is the first identification unit 1 having the first natural resonance frequency f 1 , and the second identification unit is the fourth identification unit 4 having the fourth natural resonance frequency f 4 . The third identification unit is the second identification unit 2 having the second natural resonant frequency f 2 , and the identification units existing at the remaining positions may also be constituted by the identification units as shown in FIG. 2C.
도 12d는 고유 공진 주파수의 종류가 n개이고, 식별 유니트의 개수가 m개인 경우에 표현될 수 있는 식별코드의 개수를 설명하기 위한 도면이다.FIG. 12D is a diagram for explaining the number of identification codes that can be expressed when there are n kinds of natural resonant frequencies and the number of identification units is m.
도 12d를 참조하면, 각각의 식별 유니트에 형성될 수 있는 식별 유니트의 고유 공진 주파수의 종류는 n개이고, 광학적 식별 소자는 총 16개의 식별 유니트로 이루어진 경우이므로, 표현할 수 있는 식별 코드는 n16개가 된다.Referring to FIG. 12D, since there are n kinds of inherent resonant frequencies of the identification unit that may be formed in each identification unit, and the optical identification element is composed of a total of 16 identification units, n 16 identification codes that can be represented are represented. do.
도 12e는 식별 유니트들의 다양한 형태의 배열을 설명하기 위한 도면이다.12E is a diagram for explaining an arrangement of various types of identification units.
도 12e를 참조하면, 식별 유니트들은 다양한 형태로 배열될 수 있으며, 배열의 형태는 식별 코드와 다른 식별 정보를 의미할 수 있다. 식별 유니트들은 선형, 원형, 사각형, 격자 모양 및 교차 모양 등과 같이 다양한 형태로 배열될 수 있다.Referring to FIG. 12E, the identification units may be arranged in various forms, and the form of the arrangement may mean identification information different from the identification code. The identification units can be arranged in various forms such as linear, circular, square, grid and cross shapes.
도 12e의 (a) 내지 (c)를 참조하면, 식별 유니트들은 선 형태, 교차된 형태 및 원형의 띠 형태로 배열될 수 있다. 이때, 선 형태는 A 물건을 의미하고, 교차된 형태는 B 물건을 의미하고, 원형의 띠 형태는 C 물건을 의미할 수 있다. 이와 같이, 식별 유니트들의 배열 형태를 식별 정보로 이용할 수도 있다.Referring to (a) to (c) of FIG. 12E, the identification units may be arranged in the form of a line, a cross, and a circular band. In this case, the line shape may mean an A article, the crossed shape may mean a B article, and the circular band shape may mean a C article. In this manner, the arrangement of the identification units may be used as the identification information.
도 13a 내지 도 13c는 본 발명의 일 실시예와 관련된 식별 유니트용 라이팅 장치를 설명하기 위한 도면이다.13A to 13C are diagrams for describing a writing apparatus for an identification unit according to an embodiment of the present invention.
도 13a를 참조하면, 고유 공진 주파수를 주파수 대역별(G1, G2, … , Gm)로 설정할 수 있다. 주파수 대역은 변조부(도 13b의 1310b)가 변경시킬 수 있는 주파수 대역에 기초하여 설정될 수 있다. 예를 들면, 변조부(도 13b의 1310b)가 f2를 기준으로 변경시킬 수 있는 주파수 대역이 f1 에서 f3인 경우, 제 1 주파수 대역(G1)은 f1 에서 f3가 된다. 변조부(도 13b의 1310b)가 f5를 기준으로 변경시킬 수 있는 주파수 대역이 f4 에서 f6인 경우, 제 1 주파수 대역(G1)은 f4 에서 f6가 된다. Referring to FIG. 13A, the natural resonance frequency may be set for each frequency band (G1, G2, ..., Gm). The frequency band may be set based on a frequency band that the modulator (1310b of FIG. 13B) can change. For example, when the frequency band of the modulation section (1310b of FIG. 13b) can be changed relative to the f 2 f 3 f in 1, a first frequency band (G1) is in the f3 f 1. When the frequency band that the modulator (1310b of FIG. 13B) can change based on f 5 is f 4 to f 6 , the first frequency band G1 becomes f 4 to f 6 .
도 13b를 참조하면, 식별 유니트용 라이팅 장치는 식별 유니트(1300b) 및 변조부(1310b)를 포함할 수 있다. 식별 유니트(1300b)는 테라헤르츠파를 투과시키는 물질로 이루어진 테라헤르츠파 투과층과, 투과된 테라헤르츠파에 대해 설정된 주파수 대역(G1)에 대응되는 고유 공진 주파수(f2)을 갖는 도파로 회절격자를 포함할 수 있다.Referring to FIG. 13B, the writing apparatus for the identification unit may include an identification unit 1300b and a modulator 1310b. The identification unit 1300b is a waveguide diffraction grating having a terahertz wave transmission layer made of a material that transmits terahertz waves, and a natural resonance frequency f 2 corresponding to the frequency band G1 set for the transmitted terahertz waves. It may include.
변조부(1310b)는 도파로 회절 격자의 고유 공진 주파수를 설정된 주파수 대역 내에서 다른 고유 공진 주파수로 변경할 수 있다. 예를 들면, 변조부(1310b)는 도파로 회절 격자의 고유 공진 주파수(f2)를 설정된 주파수 대역(G1) 내에서 다른 고유 공진 주파수(f1 또는 f3)로 변경할 수 있다.The modulator 1310b may change the natural resonance frequency of the waveguide diffraction grating to another natural resonance frequency within a set frequency band. For example, the modulator 1310b may change the natural resonance frequency f 2 of the waveguide diffraction grating to another natural resonance frequency f 1 or f 3 within the set frequency band G1.
공진 주파수를 변경하는 방법에 대한 구체적인 예를 들면, 변조부(1310b)는 하여 도파로 회절 격자의 고유 공진 주파수를 설정된 주파수 대역 내에서 다른 고유 공진 주파수로 변경할 수 있다.As a specific example of a method of changing the resonance frequency, the modulator 1310b may change the natural resonance frequency of the waveguide diffraction grating to another natural resonance frequency within a set frequency band.
도 13c를 참조하면, 식별 유니트용 라이팅 장치는 식별 유니트(1300c) 및 변조부(1310c)를 포함할 수 있다. 식별 유니트(1300c)는 테라헤르츠파를 투과시키는 물질로 이루어진 테라헤르츠파 투과층과, 투과된 테라헤르츠파에 대해 설정된 주파수 대역(G2)에 대응되는 고유 공진 주파수(f5)를 갖는 도파로 회절격자를 포함할 수 있다.Referring to FIG. 13C, the writing apparatus for the identification unit may include an identification unit 1300c and a modulator 1310c. The identification unit 1300c is a waveguide diffraction grating having a terahertz wave transmission layer made of a material that transmits terahertz waves, and a natural resonance frequency f 5 corresponding to the frequency band G2 set for the transmitted terahertz waves. It may include.
변조부(1310c)는 도파로 회절 격자의 고유 공진 주파수를 설정된 주파수 대역 내에서 다른 고유 공진 주파수로 변경할 수 있다. 변조부(1310c)는 도파로 회절 격자의 고유 공진 주파수(f5)를 설정된 주파수 대역(G2) 내에서 다른 고유 공진 주파수(f4 또는 f6)로 변경할 수 있다.The modulator 1310c may change the natural resonance frequency of the waveguide diffraction grating to another natural resonance frequency within a set frequency band. The modulator 1310c may change the natural resonance frequency f 5 of the waveguide diffraction grating to another natural resonance frequency f 4 or f 6 within the set frequency band G2.
이와 같이, 식별 유니트용 라이팅 장치를 이용하면, 사용자 등은 식별 유니트의 공진 주파수를 설정된 공진 주파수 범위 내에서 자유롭게 변경할 수 있다. 따라서, 식별 유니트를 각 공진 주파수별로 각각 생산하지 않아도 되므로, 식별 유니트 및 광학적 식별 소자의 생산 비용을 절감할 수 있습니다. 또한, 사용자 등이 식별 유니트용 라이팅 장치를 이용하여 현장에서 식별 유니트를 원하는 공진 주파수로 변경함으로써, 사용자 편의성이 증대될 수 있습니다. In this way, when the writing apparatus for the identification unit is used, the user or the like can freely change the resonance frequency of the identification unit within the set resonance frequency range. Therefore, the identification unit does not have to be produced for each resonant frequency, thereby reducing the production cost of the identification unit and the optical identification element. In addition, user convenience can be increased by changing the identification unit to a desired resonance frequency in the field using a writing device for the identification unit.
도 14는 본 발명의 일 실시예에 따른 포장 훼손 검사 시스템을 설명하기 위한 도면이다.14 is a view for explaining a packaging damage inspection system according to an embodiment of the present invention.
도 14를 참조하면, 포장 훼손 검사 시스템은 적어도 하나의 포장 훼손 검사 장치(50, 60, 70) 및 서버(40)를 포함한다. Referring to FIG. 14, the packaging damage inspection system includes at least one packaging damage inspection apparatus 50, 60, 70 and a server 40.
포장 훼손 검사 장치(50, 60, 70)는 다수개가 존재할 수 있으며, 각각의 포장 훼손 검사 장치(50, 60, 70)는 제조 단계에 사용되는 장치, 유통 단계에 사용되는 장치 및 판매 단계에서 사용되는 장치 등이 있을 수 있다.There may be a plurality of packaging damage inspection devices (50, 60, 70), each of the packaging damage inspection devices (50, 60, 70) is used in the manufacturing stage, the device used in the distribution stage and the sales stage Device may be used.
포장 훼손 검사 장치(50, 60, 70)는 밀봉된 포장지의 내부 변화 정보를 인식하는 센서(51, 61, 71)와, 밀봉된 포장지의 식별 코드를 포함하는 식별 소자(미도시)와, 식별 소자에 포함된 상기 식별 코드를 인식하여, 포장지의 식별 정보를 인식하는 인식부(54, 64, 74)와 센서에 의해 인식된 내부 변화 정보와 기준 변화 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단하는 판단부(55, 65, 75)를 포함할 수 있다. The packaging damage inspection apparatus 50, 60, 70 includes a sensor 51, 61, 71 for recognizing the internal change information of the sealed wrapping paper, an identification element (not shown) including an identification code of the sealed wrapping paper, and identification. Recognizing the identification code included in the device, by comparing the recognition unit 54, 64, 74 for recognizing the identification information of the wrapping paper and the internal change information and the reference change information recognized by the sensor, sealing the sealed wrapper It may include a determination unit (55, 65, 75) for determining whether to maintain the state.
포장 훼손 검사 장치(50, 60, 70)에 포함된 각각의 구성들은 이미 설명하였으므로, 본 실시예에서는 이에 대한 설명을 생략하도록 하겠다.Since the respective components included in the package damage inspection apparatuses 50, 60, and 70 have already been described, the description thereof will be omitted in the present embodiment.
서버(40)는 포장 훼손 검사 장치(50, 60, 70)로부터 상기 밀봉된 포장지의 밀봉 상태의 유지 여부에 대한 정보를 수신하고, 수신된 밀봉 상태의 유지 여부에 대한 정보를 저장부에 저장하거나 관리자의 단말기로 전송할 수 있다.The server 40 receives information on whether or not to maintain the sealed state of the sealed wrapping paper from the packaging damage inspection device (50, 60, 70), and stores information on whether or not to maintain the received sealed state in the storage unit or Can be sent to the terminal of the administrator.
포장 훼손 검사 장치(50, 60, 70)는 제 1 유통 단계, 제 2 유통 단계 및 제 N 유통 단계별로 구비되어 있을 수 있다. 이때, 서버(40)는 제 1 유통 단계, 제 2 유통 단계 및 제 N 유통 단계별로 상기 포장 훼손 검사 장치로부터 상기 밀봉된 포장지의 밀봉 상태의 유지 여부에 대한 정보, 식별 코드별 / 유통 단계별 내부 변화 정보, 측정시 외부 환경 정보, 측정 일시에 대한 정보 및 측정한 사람에 대한 정보를 수신할 수 있다.Packaging damage inspection apparatus (50, 60, 70) may be provided in the first distribution step, the second distribution step and the N-th distribution step. At this time, the server 40, the first distribution step, the second distribution step and the N-th distribution step of the information on whether or not to maintain the sealed state of the sealed wrapping paper from the packaging damage inspection device, each identification code / internal change by distribution step Information, external environment information at the time of measurement, information on the measurement date and time, and information on the measured person can be received.
판단부(55, 65, 75)는 상기 센서에 의해 인식된 내부 변화 정보와, 상기 밀봉된 포장지의 식별 코드에 대응되고 현재 유통 단계에 대응되는 기준 변화 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단할 수 있다.The determination unit 55, 65, 75 compares the internal change information recognized by the sensor with reference change information corresponding to the identification code of the sealed package paper and corresponding to the current distribution stage, thereby sealing the sealed package paper. It can be determined whether to maintain the state.
판단부(55, 65, 75)는 상기 센서에 의해 인식된 내부 변화 정보와 기준 변화 정보를 비교하여, 상기 밀봉된 포장지의 내부 환경 변화가 있는지 여부를 판단하고, 내부 환경 변화가 있다고 판단되는 경우 상기 밀봉된 포장지의 밀봉 상태가 유지되지 않았다고 판단할 수 있다.The determination unit 55, 65, 75 compares the internal change information recognized by the sensor with the reference change information to determine whether there is a change in the internal environment of the sealed wrapper, and when it is determined that there is a change in the internal environment. It may be determined that the sealed state of the sealed wrapper is not maintained.
판단부(55, 65, 75)는 현재 측정 단계에서 생성된 내부 변화 정보와 이전 측정 단계에서 생성된 내부 변화 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태가 유지되지 않았다고 판단할 수 있다.The determination unit 55, 65, 75 may compare the internal change information generated in the current measurement step with the internal change information generated in the previous measurement step to determine that the sealed state of the sealed wrapping paper is not maintained.
판단부(55, 65, 75)는 현재 측정 단계에서 생성된 내부 변화 정보와 현재 외부 환경 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단할 수 있다.The determination unit 55, 65, 75 may determine whether to maintain the sealed state of the sealed wrapper by comparing the internal change information generated in the current measurement step with the current external environment information.
도 15는 본 발명의 일 실시예에 따른 습도 센서(400)의 구조를 설명하기 위한 측면도이고, 도 16은 도 15의 습도 센서(400)의 동작 방법을 설명하기 위한 도면이다.15 is a side view for explaining the structure of the humidity sensor 400 according to an embodiment of the present invention, Figure 16 is a view for explaining the operation method of the humidity sensor 400 of FIG.
도 15에 도시된 바와 같이, 습도 센서(400)는 도파모드 공진 소자(410) 및 수분 감지막(430)을 포함할 수 있다.As shown in FIG. 15, the humidity sensor 400 may include a waveguide mode resonating element 410 and a moisture sensing layer 430.
GMR(Guided Mode Resonance, GMR) 소자(440)는, 주어진 조건(입사광의 파장, 입사각, 도파로 두께 및 유효 굴절률 등)에서 회절격자로 입사하는 광이 회절된 후, 0차를 제외한 나머지 고차 회절파는 도파로 회절격자에서 형성되는 Leaky Guided Mode로 변환된다. 이때, 0차 반사파-투과파는 Leaky Mode와 위상정합(Phase Matching)이 발생하며 Leaky Mode의 에너지는 다시 0차 반사파-투과파에게 전달되는 공진(Resonance)이 일어나게 된다.The GMR (Guided Mode Resonance) device 440 is a device in which a light incident on a diffraction grating is diffracted under given conditions (wavelength, incident angle, waveguide thickness, and effective refractive index, etc.), The waveguide is converted into the Leaky Guided Mode, which is formed in the diffraction grating. At this time, the zero-order reflected wave-transmission wave occurs in phase matching with Leaky Mode, and the energy of the leaky mode is transmitted to the zero-order reflected wave-transmission wave again.
공진이 일어나면 0차 반사 회절파는 보강간섭에 의해 100% 반사가 일어나고 0차 투과 회절파는 상쇄간섭에 의해 0% 투과가 일어나 결과적으로 특정한 파장대역에서 매우 날카로운 공명 곡선이 그려지며 큐값이 증가하게 된다. 따라서, 도파모드 공진 소자(140)는 상술한 원리에 따라 외부에서 테라헤르츠파와 같은 제1 전자기파가 조사되는 경우, 그레이팅층(411)으로 형성되는 회절격자에 따라 특정 파장대역 및 큐값을 갖는 제2 전자기파를 생성할 수 있다. 그리고, 제2 전자기파의 분석을 통해 도파모드 공진 소자(410)가 배치되어 있는 장소에 대한 환경 정보(습도 정보)를 감지할 수 있다.When resonance occurs, the zero-order reflected diffraction wave is 100% reflected by constructive interference, and the zero-order transmitted diffraction wave is 0% transmitted by destructive interference, resulting in a very sharp resonance curve in a specific wavelength band and increasing the cue value. Therefore, when the first electromagnetic wave such as the terahertz wave is irradiated from the outside according to the above-described principle, the waveguide mode resonating element 140 has a second wavelength having a specific wavelength band and cue value according to the diffraction grating formed by the grating layer 411. It can generate electromagnetic waves. In addition, through analysis of the second electromagnetic wave, environmental information (humidity information) of a place where the waveguide mode resonating element 410 is disposed may be sensed.
여기서, 큐값(Quality Factor)은 일반적인 공진 구조물의 성능을 표현하기 위해 사용하는 지수로 공진 주파수(fr)를 반치폭의 대역 주파수(Full width half maximum frequency: Δf)로 나눈 값으로 표현할 수 있다. 따라서, 큐값의 산출 공식은 Q= f/Δf으로 정의될 수 있다. 예를 들어, 습도 센서(400)로부터 생성된 제2 전자기파가 900Ghz의 공진 주파수와 50Ghz의 반치폭을 갖는 경우, Q= 900/50의 계산식에 따라 18의 큐값이 산출될 수 있다. Here, the quality factor is an index used to express the performance of a general resonant structure, and may be expressed as a value obtained by dividing a resonance frequency fr by a full width half maximum frequency (Δf). Therefore, the calculation formula of the cue value may be defined as Q = f / Δf. For example, when the second electromagnetic wave generated from the humidity sensor 400 has a resonance frequency of 900 Ghz and a half width of 50 Ghz, a cue value of 18 may be calculated according to a calculation equation of Q = 900/50.
수분 감지막(430)은, 수분을 흡수할 수 있는 소재로 형성되어 도파모드 공진 소자(410) 상에 도포될 수 있다. 다시 말해, 수분 감지막(430)은 도파모드 공진 소자(410)의 그레이팅층(411)에 도포되어 제1 전자기파가 도파모드 공진 소자(410)에 조사되어 생성되는 제2 전자기파의 성질을 변화시킬 수 있다.The moisture sensing layer 430 may be formed of a material capable of absorbing moisture and may be coated on the waveguide mode resonating element 410. In other words, the moisture sensing film 430 is applied to the grating layer 411 of the waveguide mode resonating element 410 to change the property of the second electromagnetic wave generated by irradiating the waveguide mode resonating element 410 with the first electromagnetic wave. Can be.
이러한 수분 감지막(430)은, 염화리튬(Lithium Chloride), 실리카겔(Silica gel) 및 활성알루미나(Activated Alumina)로 구성되는 수분 흡착성 무기물 또는, 카르복실기(-COOH), 아민기(-NH2), 알콜기(-OH)로 구성된 수분흡착성 유기물 중에서 선택된 물질 중 적어도 어느 하나 이상을 포함할 수 있다.The moisture sensing film 430 is a water absorbent inorganic material composed of lithium chloride, silica gel, and activated alumina, or a carboxyl group (-COOH), an amine group (-NH2), and an alcohol. It may include at least one or more of the material selected from the water-absorbent organic material consisting of a group (-OH).
염화리튬은 조해성이 있어 공기 중에서 수분을 흡수하여 녹는 성질이 있다. Lithium chloride is deliquescent and absorbs moisture in the air to melt.
실리카겔은 그 내부에 체적의 약 50 % 정도의 무수한 구멍을 갖고 있어서 표면적을 크게 하고 있기 때문에 수증기와 가스의 흡착력이 크다. Silica gel has a myriad of pores of about 50% of its volume in the inside, so that the surface area of the silica gel is large, so that the adsorption power of water vapor and gas is large.
활성알루미나는 다공질이며 표면적이 크기 때문에 수분과 산을 흡착할 수 있다. 흡습력은 염화칼슘과 실리카겔보다 높다.Activated alumina is porous and can adsorb moisture and acid because of its large surface area. Hygroscopicity is higher than calcium chloride and silica gel.
카르복실기, 아민기 및 알콜기능기를 가지는 저분자 또는 고분자 유기물은 수분과의 수소결합을 통해 흡착하게 되며, 그레이팅층에 도포하거나 물질의 도포없이 플라즈마와 같은 물리적 처리를 통해 상기의 기능기를 형성시킬 수 있다.The low molecular or high molecular organic material having a carboxyl group, an amine group and an alcohol functional group is adsorbed through hydrogen bonding with moisture, and the functional group can be formed through a physical treatment such as plasma without applying to a grating layer or applying a substance.
도 16을 참고하면, 도파모드 공진 소자(410) 주위에 수분(M)이 존재하는 경우 수분(M)은 수분 감지막(430)에 의해 흡착될 수 있다. 이러한 경우, 수분 감지막(130) 감쇠계수(Attenuation Coefficient)가 변화되고, 변화된 감쇠계수에 따라 도파모드 공진 소자(410)에 의해 생성되는 제2 전자기파의 특성(파장대역, 큐값 등)이 변화될 수 있다. 따라서, 수분 감지막(430)의 감쇠계수 정도에 따라 제2 전자기파가 변화되는 원리를 이용한 습도 센서(400)를 구현할 수 있다.Referring to FIG. 16, when moisture M is present around the waveguide mode resonating element 410, the moisture M may be absorbed by the moisture sensing layer 430. In this case, an attenuation coefficient of the moisture sensing film 130 may be changed, and characteristics (wavelength band, cue value, etc.) of the second electromagnetic wave generated by the waveguide mode resonating element 410 may be changed according to the changed attenuation coefficient. Can be. Therefore, the humidity sensor 400 using the principle that the second electromagnetic wave is changed according to the degree of attenuation coefficient of the moisture sensing film 430 may be implemented.
여기서, 감쇠계수는 수분 감지막(430)에 수분이 흡착되는 경우, 이를 향해 조사된 제1 전자기파의 광에너지가 수분 감지막(430)의 물분자에 흡수되어 감쇠되는 정도에 관한 수치일 수 있다. 다시 말해, 감쇠계수는 전파 등이 특정 물질을 통과할때 감쇠되는 비율을 나타내는 계수로, 광속 또는 전파 세기 A를 구하는 공식인 A = A0*e- μx 에서 μ로 산출될 수 있다. (x는 물질의 두께, A0는 x=0일 때의 값, A는 광속이나 전파가 x를 통과하였을 때의 세기, μ는 감쇠계수)Here, the attenuation coefficient may be a numerical value of the degree to which the light energy of the first electromagnetic wave irradiated toward the water is absorbed and absorbed by the water molecules of the moisture sensing film 430 when water is adsorbed on the moisture sensing film 430. . In other words, the damping coefficient is the formula A = A 0, such as radio wave to obtain this, the light beam or radio wave intensity A as a coefficient representing the attenuation ratio as it passes through the specific substance * e - μx Can be calculated as μ. (x is the thickness of the material, A 0 is the value of x = 0, A is the intensity of light or radio waves passing through x, μ is the damping coefficient)
또한, 감쇠계수는 복소 굴절률의 흡수계수일 수 있다. 구체적으로, 빛이 금속과 같은 전도성 매질 속에 들어가면, 전기 벡터의 시간 변화에 비례하는 전기선속 전류 외에 전기 스펙트럼에 비례하는 전도 전류가 생긴다. 이 전류는 전기선속 전류로 위상이 90°정도 다르므로 전도성 매질은 이 두 전류의 위상을 고려해서 하나로 묶어 전기선속 전류만을 생성하는 매질, 즉 부도체 매질로서 취급할 수 있다. 이때 전도성 매질의 유전율 ε은 ε0-i4πσ/ω로 되어 복소수로 되기 때문에 sqrt(ε*μ)로 정의되는 굴절률도 복소수로 된다. 이것을 복소 굴절률이라 한다. 여기에서 ε0는 본래의 전기선속 전류를 만드는 유전율, i4πσ/ω는 위상을 고려해서 전기선속 전류라 볼 때 전도 전류의 유전율이고, σ는 전도율, ω는 매질 내의 빛의 각 주파수, i는 허수 단위이고, μ는 투자율이다(상술한 감쇠계수 μ와 복소 굴절율의 투자율 μ는 서로 다른 공식에 적용되는 동일한 부호로 각각 상이하게 해석된다) 이에 따른 복소 굴절률은,In addition, the attenuation coefficient may be an absorption coefficient of a complex refractive index. Specifically, when light enters a conductive medium such as a metal, a conduction current proportional to the electrical spectrum is generated in addition to the electrical flux current proportional to the time change of the electrical vector. Since the electric current is 90 ° out of phase with the electric flux current, the conductive medium can be treated as a non-conductor medium, considering the phases of the two currents, grouping them together to generate only the electric current. At this time, the dielectric constant ε of the conductive medium becomes ε 0 -i 4 π σ / ω, which is a complex number, so the refractive index defined by sqrt (ε * μ) also becomes a complex number. This is called a complex refractive index. Where ε0 is the dielectric constant that makes the original electric flux current, i4πσ / ω is the dielectric constant of the conduction current, considering the phase, σ is the conductivity, ω is each frequency of light in the medium, i is an imaginary unit Where μ is the permeability (the attenuation coefficient μ and the permeability μ of the complex refractive index described above are interpreted differently with the same sign applied to different formulas).
n=n0-i*ko=n0(1-i*k)n = n 0 -i * k o = n 0 (1-i * k)
로 수식되며, n0는 굴절률이고, ko는 소쇠(消衰)계수라 하며 k를 흡수계수라고 할 수 있다.Where n 0 is the refractive index, k o is the extinction coefficient, and k is the absorption coefficient.
따라서, 본 발명의 습도 센서(400)를 향해 제1 전자기파가 조사되는 경우, 수분 감지막(430)을 통해 이에 대응되는 제2 전자기파가 생성될 수 있다. 제2 전자기파는 수분 감지막(430)의 감쇠계수 또는 흡수계수에 따라 변화됨으로써, 해당 변화정도를 기준값과 비교하여 대상물의 습도 정보를 산출할 수 있다.Therefore, when the first electromagnetic wave is irradiated toward the humidity sensor 400 of the present invention, the second electromagnetic wave corresponding thereto may be generated through the moisture sensing layer 430. The second electromagnetic wave is changed according to the attenuation coefficient or absorption coefficient of the moisture sensing film 430, and thus the humidity information of the target object may be calculated by comparing the degree of change with a reference value.
이상은 수분 감지막(430)을 갖는 도파모드 공진 소자(410)에 대하여 설명하였다. 도 17 내지 도 18에서는 수분 감지막(430)의 변화에 따라 제2 전기파의 성질이 변화되는 과정을 상세히 설명하도록 한다.The above has described the waveguide mode resonating element 410 having the moisture sensing film 430. 17 to 18 will be described in detail the process of changing the properties of the second electric wave in accordance with the change of the moisture sensing film 430.
도 17은 수분 감지막(430) 감쇠계수 변화에 따른 제2 전자기파의 큐값 변화를 설명하기 위한 도면이다. (도 16에서 감쇠계수를 μ라고 표현하였으나, 이는 관련 수식에서의 표현일뿐이며, 본 도면에서는 설명의 용이성을 위해 감쇠계수를 k라고 하도록 한다.)17 is a view for explaining a change in the cue value of the second electromagnetic wave according to the change in the damping coefficient of the moisture sensing film 430. (In FIG. 16, the damping coefficient is expressed as μ, but this is only an expression in a related formula, and in this drawing, the damping coefficient is referred to as k for ease of explanation.)
도시된 바와 같이, 수분 감지막(130)의 수분에 흡수 정도에 대한 감쇠계수(k)가 증가하는 경우 큐값(Quality Factor, 도 17에서 Q= f/Δf, f:공진주파수,Δf:반치폭))이 감소되는 계산 결과(유한차분요소해석)를 보인다. 다시 말해, 수분 감지막(430)의 감쇠계수에 따라 제2 전자기파의 큐값이 대체로 일정한 상관관계를 유지하며 변화가 이루어질 수 있다. 구체적으로, 감쇠계수가 0에서 1.0까지 0.02 단위로 증가하는 경우, 큐값은 약 300에서 80으로 점진적으로 감소된다.As shown, when the attenuation coefficient k with respect to the degree of absorption is increased in the moisture of the moisture detection film 130, the cue value (Quality Factor, Q = f / Δf, f: resonance frequency, Δf: half width) in FIG. ) Results in a reduced calculation (finite difference factor analysis). In other words, according to the attenuation coefficient of the moisture sensing film 430, the cue value of the second electromagnetic wave may be substantially maintained in a constant correlation. Specifically, when the attenuation coefficient increases from 0 to 1.0 in 0.02 units, the cue value gradually decreases from about 300 to 80.
따라서, 수분 감지막(430)이 도포되는 도파모드 공진 소자(410)가 대상물에 설치되고, 이에 대하여 제1 전자기파를 조사하여 도파모드 공진 소자(410)로부터 제2 전자기파가 생성되는 경우, 수분 감지막(430)의 감쇠계수에 따라 제2 전자기파의 큐값이 변화될 수 있으며, 해당 변화율은 시뮬레이션 데이터를 통해 정립될 수 있다.Therefore, when the waveguide mode resonating element 410 to which the moisture sensing layer 430 is coated is installed on the object, and the second electromagnetic wave is generated from the waveguide mode resonating element 410 by irradiating the first electromagnetic wave, moisture sensing is performed. The cue value of the second electromagnetic wave may change according to the attenuation coefficient of the film 430, and the change rate may be established through simulation data.
수분 감지막(430)을 갖는 도파모드 공진 소자(410)와 제2 전자기파의 큐값이 상술한 상관관계를 가짐에 따라, 해당 도파모드 공진 소자(410)는 제품의 포장지 내부에 배치되어 내부의 습도 변화를 감지할 수 있는 습도 센서(400)로 이용될 수 있다.As the cue value of the waveguide mode resonating element 410 having the moisture sensing film 430 and the second electromagnetic wave have the above-described correlation, the waveguide mode resonating element 410 is disposed inside the package of the product and the humidity inside It can be used as a humidity sensor 400 that can detect a change.
예를 들면, Q값이 300인 경우 습도를 A % 라고 정의하고, Q값이 200인 경우 습도를 B % 라고 정의하고, Q값이 100인 경우 Q값이 100인 경우 습도를 C% 라고 정의한 경우를 가정한다. 검출부는 습도센서(400)로부터 생성된 전자기파를 측정하고, 습도 정보 생성부는 측정된 전자기파에 기초하여 Q 값을 연산한다. 습도 정보 생성부는 연산된 Q 값에 따라 대응되는 습도 값(A% 또는 B% 또는 C%)을 도출하여 습도 정보를 생성할 수 있다. 이에, 본 발명에 따른 장치는 Q 값의 변화에 따른 습도 값을 측정할 수 있다.For example, when the Q value is 300, the humidity is defined as A%, when the Q value is 200, the humidity is defined as B%, and when the Q value is 100, the humidity is defined as C% when the Q value is 100 Assume the case. The detector measures the electromagnetic waves generated from the humidity sensor 400, and the humidity information generator calculates a Q value based on the measured electromagnetic waves. The humidity information generator may generate humidity information by deriving a corresponding humidity value (A%, B%, or C%) according to the calculated Q value. Thus, the device according to the present invention can measure the humidity value according to the change in the Q value.
도 18은 수분 감지막(430) 감쇠계수 변화에 따른 제2 전자기파의 반사도 변화를 설명하기 위한 도면이다.18 is a view for explaining a change in reflectivity of the second electromagnetic wave according to a change in the damping coefficient of the moisture sensing film 430.
도시된 바와 같이, 수분 감지막을 구비하는 습도 센서는 도 17에서의 큐값뿐만 아니라, 반사도 역시 변화된다. 반사도는 제1 전자기파가 조사되어 습도 센서에 의해 반사된 정도를 나타냄 값으로 제2 전자기파의 검출 값으로 산출될 수 있다.As shown, the humidity sensor with the moisture sensing film changes not only the cue value in FIG. 17 but also the reflection. The reflectivity is a value representing the degree to which the first electromagnetic wave is irradiated by the humidity sensor and may be calculated as a detection value of the second electromagnetic wave.
구체적으로, 수분 감지막(430)의 감쇠계수가 도 17과 마찬가지로 0에서 0.1까지 0.02 단위로 증가하는 경우, 반사도는 1에서 약 0.1까지 감소가 이루어진다. Specifically, when the attenuation coefficient of the moisture sensing film 430 increases from 0 to 0.1 in 0.02 units as in FIG. 17, the reflectivity decreases from 1 to about 0.1.
이와 같은 실험 결과에 따르면, 감쇠계수와 반사도 사이에는 상관관계(감쇠계수 증가 시 반사도 감소)가 성립됨을 알 수 있다. 따라서, 습도 센서에서 생성되는 제2 전자기파의 반사도를 측정하여, 기준값과의 비교를 실시하는 경우 습도 센서의 습도 정보를 측정할 수 있다.According to the experimental results, it can be seen that a correlation between the attenuation coefficient and the reflectivity (the reflectivity decreases when the attenuation coefficient is increased) is established. Therefore, when the reflectance of the second electromagnetic wave generated by the humidity sensor is measured and compared with a reference value, humidity information of the humidity sensor may be measured.
예를 들면, 반사도가 1인 경우 습도를 A % 라고 정의하고, 반사도가 0.5인 경우 습도를 B % 라고 정의하고, 반사도가 0.2인 경우 Q값이 100인 경우 습도를 C% 라고 정의한 경우를 가정한다. 검출부는 습도센서(400)로부터 생성된 전자기파를 측정하고, 습도 정보 생성부는 측정된 전자기파에 기초하여 반사도를 연산한다. 습도 정보 생성부는 연산된 반사도에 따라 대응되는 습도 값(A% 또는 B% 또는 C%)을 도출하여 습도 정보를 생성할 수 있다. 이에, 본 발명에 따른 장치는 반사도의 변화에 따른 습도 값을 측정할 수 있다.For example, suppose the humidity is defined as A% when the reflectivity is 1, the humidity is defined as B% when the reflectivity is 0.5, and the humidity is defined as C% when the Q value is 100 when the reflectivity is 0.2. do. The detector measures the electromagnetic waves generated from the humidity sensor 400, and the humidity information generator calculates the reflectivity based on the measured electromagnetic waves. The humidity information generator may generate humidity information by deriving a corresponding humidity value (A%, B%, or C%) according to the calculated reflectivity. Thus, the device according to the invention can measure the humidity value according to the change in reflectivity.
뿐만 아니라, 도 17의 큐값 및 도 18의 반사도는 모두 감쇠계수가 증가하는 경우 해당 값들이 감소하는 경향을 나타내고 있으므로, 제2 전자기파의 큐값 및 반사도를 모두 산출하여 이들의 조합을 통해 습도 정보를 획득함으로써, 더욱 정확한 습도 정보를 생성할 수도 있다.In addition, since the values of the cue values of FIG. 17 and the reflectivity of FIG. 18 all tend to decrease when the attenuation coefficient increases, the cue value and the reflectivity of the second electromagnetic wave are both calculated to obtain humidity information through a combination thereof. Thus, more accurate humidity information can be generated.
도 19는 본 발명의 다른 실시예에 따른 포장지 검사장치(200)를 설명하기 위한 도면이다.19 is a view for explaining the wrapping paper inspection apparatus 200 according to another embodiment of the present invention.
도 15 및 도 19를 참조하면, 포장지 검사장치(200)는 도 15의 습도 센서(400)가 내용물(C)이 밀봉된 포장지(P) 내부에 설치되는 경우, 이를 인식하여 포장지(P) 내부의 습도 정보를 인식할 수 있다. 이를 위해, 포장치 검사장치는 광원(210), 검출부(230), 사용자 입력부(250), 디스플레이부(270), 및 습도 정보 생성부(290)를 포함할 수 있다.Referring to FIGS. 15 and 19, when the wrapping paper inspecting apparatus 200 is installed inside the wrapping paper P in which the humidity sensor 400 of FIG. 15 is sealed, the inside of the wrapping paper P is recognized. Humidity information can be recognized. To this end, the pavement inspection apparatus may include a light source 210, a detector 230, a user input unit 250, a display unit 270, and a humidity information generator 290.
광원(210)은, 습도 센서(400)를 향해 제1 전자기파(W1)를 조사하기 위한 수단이다. 예를 들면, 광원(210)은 테라헤르츠파를 발생시킬 수 있는 다양한 형태의 장치일 수 있다. 테라헤르츠파란 적외선과 마이크로파의 사이 영역에 위치한 제1 전자기파(W1)로서, 일반적으로 0.1THz 내지 10THz의 진동수를 가질 수 있다. 다만, 이러한 범위를 다소 벗어난다 하더라도, 본 발명이 속하는 기술분야의 당업자가 용이하게 생각해낼 수 있는 범위라면, 본 발명에서의 테라헤르츠파로 인정될 수 있음은 물론이다.The light source 210 is a means for irradiating the first electromagnetic wave W1 toward the humidity sensor 400. For example, the light source 210 may be various types of devices capable of generating terahertz waves. The terahertz blue is the first electromagnetic wave W1 positioned in the region between infrared and microwaves, and may generally have a frequency of 0.1 THz to 10 THz. However, even if somewhat out of this range, it can be recognized as a terahertz wave in the present invention as long as it can be easily conceived by those skilled in the art.
검출부(230)는, 습도 센서(400)로부터 생성되는 제2 전자기파(W2)를 검출할 수 있다. 다시 말해, 검출부(230)는 습도 센서(400)로부터 반사되는 제2 전자기파(W2)의 세기(반사도) 및 큐값 등을 검출할 수 있다.The detector 230 may detect the second electromagnetic wave W2 generated from the humidity sensor 400. In other words, the detector 230 may detect the intensity (reflection) and cue value of the second electromagnetic wave W2 reflected from the humidity sensor 400.
사용자 입력부(250)는, 수분 감지막의 성분 정보, 두께 정보, 및 굴절률 정보와 제1 전자기파(W1)의 주파수 정보 등을 입력할 수 있다. 습도 센서(400)에 적용되는 수분 감지막(430) 및 제1 전자기파(W1)의 주파수 정보는 검사 대상인 제품 포장지(P)의 종류에 따라 변화될 수 있다. 따라서 해당 포장지(P)에 설치되는 습도 센서(100)의 종류에 대한 정보들을 사용자 입력부(250)로 입력하여 변경하도록 할 수 있다.The user input unit 250 may input component information, thickness information, refractive index information, frequency information of the first electromagnetic wave W1, and the like of the moisture sensing film. The frequency information of the moisture sensing film 430 and the first electromagnetic wave W1 applied to the humidity sensor 400 may vary according to the type of the product wrapping paper P to be inspected. Therefore, information about the type of the humidity sensor 100 installed in the wrapping paper P may be inputted to the user input unit 250 to be changed.
디스플레이부(270)는 후술하는 습도 정보 생성부(290)에 의해 생성되는 습도 정보 및 각종 정보들을 시각적으로 출력할 수 있다. 따라서, 사용자 입력부(250)와 디스플레이부(270)는 터치 스크린과 같은 장치로 일체화될 수 있다.The display unit 270 may visually output humidity information and various types of information generated by the humidity information generator 290 to be described later. Therefore, the user input unit 250 and the display unit 270 may be integrated into a device such as a touch screen.
습도 정보 생성부(290)는, 검출부(230)로부터 검출되는 제2 전자기파(W2)에 기초하여 제품 포장지(P)에 대한 습도 정보를 생성할 수 있다. 다시 말해, 습도 정보 생성부(290)는 제2 전자기파(W2)의 반사도 및 큐값 중 적어도 하나를 기초하여 이에 대응되는 습도 정보를 생성할 수 있다.The humidity information generator 290 may generate humidity information about the product wrapper P based on the second electromagnetic wave W2 detected by the detector 230. In other words, the humidity information generator 290 may generate humidity information corresponding thereto based on at least one of the reflectivity and the cue value of the second electromagnetic wave W2.
이와 같은 포장지 검사장치(200)의 동작 방법은 다음과 같다.The operation method of the wrapping paper inspection apparatus 200 is as follows.
먼저, 사용자는 검사하고자 하는 제품 포장지(P)에 설치된 습도 센서(400)의 종류에 해당되는 정보(수분 감지막(430)의 성분, 두께, 및 굴절률 정보 등)를 사용자 입력부(250)에 입력하고, 조사하는 제1 전자기파(W1)의 주파수 정보를 설정할 수 있다. 해당 설정이 완료되면, 사용자는 포장지 검사장치(200)를 이용해 습도 센서(400)가 존재하는 포장지(P)의 영역을 향해 제1 전자기파(W1)를 조사할 수 있다. 제1 전자기파(W1)는 습도 센서(400)와 반응하여 대응되는 제2 전자기파(W2)로 변환될 수 있다. 이때, 수분 감지막(430)이 수분을 흡착하는 경우, 도 16에서 상술한 이유에 의해 제2 전자기파(W2)는 성질이 변경되어 포장지 검사장치(200)의 검출부(230)로 반사될 수 있다. First, the user inputs information corresponding to the type of the humidity sensor 400 installed on the product package P to be inspected (components, thickness, and refractive index information of the moisture detection layer 430) into the user input unit 250. The frequency information of the first electromagnetic wave W1 to be irradiated can be set. When the setting is completed, the user may irradiate the first electromagnetic wave W1 toward the area of the wrapping paper P in which the humidity sensor 400 exists using the wrapping paper inspecting apparatus 200. The first electromagnetic wave W1 may be converted into a second electromagnetic wave W2 corresponding to the humidity sensor 400. In this case, when the moisture sensing film 430 absorbs moisture, the second electromagnetic wave W2 may be changed in nature and reflected by the detector 230 of the wrapping paper inspecting apparatus 200 due to the reasons described above with reference to FIG. 16. .
이렇게 제2 전자기파(W2)가 검출부(230)를 통해 검출되면, 습도 정보 생성부(290)는 기설정된 기준값과 검출된 제2 전자기파(W2)를 서로 비교할 수 있다. 구체적으로, 습도 정보 생성부(290)는 제2 전자기파(W2)의 반사도 및 큐값을 기준값과 비교하여, 습도 센서(400)의 수분 함유 여부 또는 수분 함유량에 대한 습도 정보를 생성할 수 있다.When the second electromagnetic wave W2 is detected through the detector 230, the humidity information generator 290 may compare the preset reference value with the detected second electromagnetic wave W2. In detail, the humidity information generator 290 may generate humidity information regarding moisture content or moisture content of the humidity sensor 400 by comparing the reflectance and the cue value of the second electromagnetic wave W2 with a reference value.
습도 정보가 생성되는 해당 정보를 디스플레이부(270)에 표시하거나 본 도면에서는 기재하는 않은 스피커부를 통해 이미지나 텍스트 또는 음성 정보 등으로 출력될 수 있다. 따라서, 사용자는 출력되는 습도 정보를 참고하여 제품 포장지(P) 내부의 습도 함유 상태를 용이하게 판단할 수 있다.The information on which humidity information is generated may be displayed on the display unit 270 or output as image, text, or voice information through a speaker unit not described in this drawing. Therefore, the user can easily determine the humidity-containing state inside the product package (P) by referring to the humidity information output.
이와 같은 포장지 검사장치(200)에 따르면, 간단한 조작을 통해 제품 포장지(P) 내부의 수분 함유 상태를 판단할 수 있고, 저비용으로 대량 생산 가능한 도파모드 공진 소자(410)와 수분 감지막(430)이 습도 센서(400)로 이용되어 생산성을 향상시킬 수 있다. 또한, 감쇠계수와 밀접한 상관관계를 갖는 반사도 및 큐값을 수분 검출 기준값으로 설정함에 따라, 검사 결과에 대한 신뢰도를 높일 수 있다.According to the packaging paper inspection apparatus 200 as described above, it is possible to determine the water-containing state inside the product packaging paper (P) through a simple operation, and can be mass-produced at low cost, the waveguide mode resonating element 410 and the moisture sensing film 430 This humidity sensor 400 can be used to improve productivity. In addition, by setting the reflectance and the cue value closely correlated with the attenuation coefficient as the moisture detection reference value, the reliability of the inspection result can be increased.
상기와 같이 설명된 포장 훼손 검사 장치 및 포장 훼손 검사 시스템은 상기 설명된 실시예들의 구성과 방법에 한정되어 적용되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.The packaging damage inspection apparatus and the packaging damage inspection system described above are not limited to the configuration and method of the above-described embodiments, but the embodiments may be modified in whole or in part to enable various modifications. It may alternatively be configured in combination.
또한, 본 발명의 기술사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술분야의 통상의 전문가라면 본 발명의 기술사상의 범위에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.In addition, although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above embodiment is for the purpose of description and not for the limitation thereof. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

Claims (20)

  1. 밀봉된 포장지의 내부 변화 정보를 인식하는 센서;A sensor for recognizing internal change information of the sealed wrapping paper;
    상기 밀봉된 포장지의 식별 코드를 포함하는 식별 소자;An identification element comprising an identification code of the sealed wrapper;
    상기 식별 소자에 포함된 상기 식별 코드를 인식하여, 상기 밀봉된 포장지의 식별 정보를 인식하는 인식부; 및A recognition unit recognizing the identification code included in the identification element, and recognizing identification information of the sealed wrapping paper; And
    상기 센서에 의해 인식된 내부 변화 정보와 기준 변화 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단하는 판단부;를 포함하는, 포장 훼손 검사 장치.And a judging unit which compares the internal change information recognized by the sensor and the reference change information to determine whether to maintain the sealed state of the sealed wrapping paper.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 판단부는,The determination unit,
    상기 센서에 의해 인식된 내부 변화 정보와 기준 변화 정보를 비교하여, 상기 밀봉된 포장지의 내부 환경 변화가 있는지 여부를 판단하고, 내부 환경 변화가 있다고 판단되는 경우 상기 밀봉된 포장지의 밀봉 상태가 유지되지 않았다고 판단하는, 포장 훼손 검사 장치.By comparing the internal change information recognized by the sensor and the reference change information, it is determined whether there is a change in the internal environment of the sealed package, and if it is determined that there is a change in the internal environment, the sealed state of the sealed package is not maintained. Judging by the packaging damage inspection device.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 판단부는,The determination unit,
    현재 측정 단계에서 생성된 내부 변화 정보와 이전 측정 단계에서 생성된 내부 변화 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태가 유지되지 않았다고 판단하는, 포장 훼손 검사 장치.And comparing the internal change information generated in the current measurement step with the internal change information generated in the previous measurement step to determine that the sealed state of the sealed wrapping paper is not maintained.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 판단부는,The determination unit,
    현재 측정 단계에서 생성된 내부 변화 정보와 현재 외부 환경 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단하는, 포장 훼손 검사 장치. And comparing the internal change information generated in the current measurement step with the current external environment information to determine whether to maintain the sealed state of the sealed package paper.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 내부 변화 정보는,The internal change information,
    온도 정보, 습도 정보, 밀봉 내부에 포함된 특정 물질의 존재 유무 정보 및, 밀봉 내부에 포함된 물질의 농도 정보 중 적어도 하나인, 포장 훼손 검사 장치.At least one of temperature information, humidity information, presence or absence information of a specific substance contained in the seal, and concentration information of the substance contained in the seal.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 센서는,The sensor,
    상기 포장지의 내부에 구비되고, 주기적으로 또는 요청 신호가 입력될 때 마다 상기 내부 변화 정보를 통신부를 통해 상기 판단부로 송신하는, 포장 훼손 검사 장치.And a packing damage inspection apparatus provided inside the wrapping paper and transmitting the internal change information to the determining unit through a communication unit periodically or whenever a request signal is input.
  7. 제 1 항에 있어서,The method of claim 1,
    식별 코드별 / 유통 단계별 내부 변화 정보, 내부 변화 유무의 판단 결과 정보, 측정시 외부 환경 정보, 측정 일시에 대한 정보 및 측정한 사람에 대한 정보 중 적어도 하나를 생성하는 정보 생성부를 더 포함하는, 포장 훼손 검사 장치.The package further comprises an information generation unit for generating at least one of the internal change information by identification code / distribution step by step, the determination result information of the presence or absence of the internal change, the external environmental information at the time of measurement, the information on the measurement date and time and the information about the measured person. Tamper-proof device.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 정보 생성부는,The information generation unit,
    상기 생성된 정보 및 경고 메시지를 통신부를 통해 외부 장치로 전송하는, 포장 훼손 검사 장치.The packaging damage inspection apparatus for transmitting the generated information and warning message to an external device through a communication unit.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 식별 소자는,The identification element,
    바코드, QR 코드, 및 RFID 코드 중 어느 하나이고,Any one of a barcode, a QR code, and an RFID code,
    상기 인식부는, The recognition unit,
    바코드, QR 코드, 및 RFID 코드 중 어느 하나를 인식할 수 있는 장치인, 포장 훼손 검사 장치.A packaging damage inspection device, which is a device capable of recognizing any one of a barcode, a QR code, and an RFID code.
  10. 제 1 항에 있어서,The method of claim 1,
    전자기파를 생성하는 전자기파 생성부를 더 포함하고,Further comprising an electromagnetic wave generating unit for generating electromagnetic waves,
    상기 센서는, The sensor,
    상기 밀봉된 포장지에 구비되며, 내부의 변화에 따라 입사되는 전자기파를 변화시켜 생성하고,It is provided in the sealed wrapper, is generated by changing the incident electromagnetic waves in accordance with the change inside,
    상기 판단부는, The determination unit,
    상기 센서로부터 생성된 전자기파와 상기 식별 코드에 대응되는 기준 전자기파를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단하는, 포장 훼손 검사 장치.And comparing the electromagnetic wave generated from the sensor with a reference electromagnetic wave corresponding to the identification code, and determining whether to maintain the sealed state of the sealed package.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 기준 변화 정보는The reference change information is
    제 1 유통 단계, 제 2 유통 단계 및 제 N 유통 단계별로 다른 기준 변화 정보를 갖으며,Has different reference change information in the first distribution stage, the second distribution stage, and the Nth distribution stage,
    상기 판단부는,The determination unit,
    상기 센서에 의해 인식된 내부 변화 정보와, 상기 밀봉된 포장지의 식별 코드에 대응되고 현재 유통 단계에 대응되는 기준 변화 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단하는, 포장 훼손 검사 장치.Comparing the internal change information recognized by the sensor with reference change information corresponding to the identification code of the sealed wrapping paper and corresponding to the current distribution stage, to determine whether to maintain the sealed state of the sealed wrapping paper, Inspection device.
  12. 제 7 항에 있어서,The method of claim 7, wherein
    상기 식별 코드별 / 유통 단계별 내부 변화 정보, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부의 판단 결과 정보, 상기 측정시 외부 환경 정보, 상기 측정 일시에 대한 정보 및 상기 측정한 사람에 대한 정보 중 적어도 하나의 정보를 상기 식별 소자에 기재하는 라이팅부를 더 포함하고,At least one of internal change information for each identification code / distribution step, determination result information on whether the sealed package is maintained in a sealed state, external environment information during the measurement, information on the measurement date and time, and information on the measured person It further comprises a writing unit for writing the information of the identification element,
    상기 인식부는,The recognition unit,
    상기 식별 소자에 포함된 정보를 인식하는, 포장 훼손 검사 장치.Packaging damage inspection apparatus for recognizing the information contained in the identification element.
  13. 밀봉된 포장지의 내부 변화 정보를 인식하는 센서;A sensor for recognizing internal change information of the sealed wrapping paper;
    테라헤르츠파를 투과시키는 물질로 이루어진 테라헤르츠파 투과층과, 상기 투과된 테라헤르츠파가 조사되면 고유 공진 주파수에서 공진이 일어나되, 상기 고유 공진 주파수는 제 1 고유 공진 주파수부터 제 n 고유 공진 주파수 중 어느 하나인 도파로 회절격자;로 구성되고, 상기 밀봉된 포장지의 식별 코드로 구성된 m개의 식별 유니트를 포함하는 테라헤르츠파용 식별 소자;When the terahertz wave transmission layer made of a material transmitting the terahertz wave and the transmitted terahertz wave are irradiated, resonance occurs at a natural resonance frequency, and the natural resonance frequency is the first natural resonance frequency from the nth natural resonance frequency. Any one of a waveguide diffraction grating; a terahertz wave identification element comprising m identification units composed of identification codes of the sealed wrapping paper;
    상기 테라헤르츠파용 식별 소자에 포함된 상기 식별 코드를 인식하여, 상기 밀봉된 포장지의 식별 정보를 인식하는 인식부; 및A recognition unit recognizing the identification code included in the terahertz wave identification element, and recognizing identification information of the sealed wrapping paper; And
    상기 센서에 의해 인식된 내부 변화 정보와 기준 변화 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단하는 판단부;를 포함하는, 포장 훼손 검사 장치.And a judging unit which compares the internal change information recognized by the sensor and the reference change information to determine whether to maintain the sealed state of the sealed wrapping paper.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 테라헤르츠파용 식별 소자로 테라헤르츠파를 조사하는 광원을 더 포함하고,Further comprising a light source for irradiating terahertz wave with the terahertz wave identification device,
    상기 인식부는,The recognition unit,
    상기 각각의 테라헤르츠파용 식별 소자로부터 생성된 각각의 테라헤르츠파의 고유 공진 주파수를 검출하고, 검출된 고유 공진 주파수에 기초하여 상기 식별 코드를 인식하는, 포장 훼손 검사 장치.And detecting the natural resonant frequency of each terahertz wave generated from the respective terahertz wave identification elements, and recognizing the identification code based on the detected natural resonant frequency.
  15. 제 13 항에 있어서,The method of claim 13,
    상기 판단부는,The determination unit,
    상기 센서에 의해 인식된 내부 변화 정보와 기준 변화 정보를 비교하여, 상기 밀봉된 포장지의 내부 환경 변화가 있는지 여부를 판단하고, 내부 환경 변화가 있다고 판단되는 경우 상기 밀봉된 포장지의 밀봉 상태가 유지되지 않았다고 판단하는, 포장 훼손 검사 장치.By comparing the internal change information recognized by the sensor and the reference change information, it is determined whether there is a change in the internal environment of the sealed package, and if it is determined that there is a change in the internal environment, the sealed state of the sealed package is not maintained. Judging by the packaging damage inspection device.
  16. 제 13 항에 있어서,The method of claim 13,
    상기 판단부는,The determination unit,
    현재 측정 단계에서 생성된 내부 변화 정보와 이전 측정 단계에서 생성된 내부 변화 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태가 유지되지 않았다고 판단하는, 포장 훼손 검사 장치.And comparing the internal change information generated in the current measurement step with the internal change information generated in the previous measurement step to determine that the sealed state of the sealed wrapping paper is not maintained.
  17. 제 13 항에 있어서,The method of claim 13,
    상기 판단부는,The determination unit,
    현재 측정 단계에서 생성된 내부 변화 정보와 현재 외부 환경 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단하는, 포장 훼손 검사 장치. And comparing the internal change information generated in the current measurement step with the current external environment information to determine whether to maintain the sealed state of the sealed package paper.
  18. 밀봉된 포장지의 내부 변화 정보를 인식하는 센서와, 상기 밀봉된 포장지의 식별 코드를 포함하는 식별 소자와, 상기 식별 소자에 포함된 상기 식별 코드를 인식하여, 포장지의 식별 정보를 인식하는 인식부와 상기 센서에 의해 인식된 내부 변화 정보와 기준 변화 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단하는 판단부를 포함하는 포장 훼손 검사 장치; 및A recognition unit for recognizing internal change information of the sealed wrapping paper, an identification element including an identification code of the sealed wrapping paper, a recognition unit recognizing the identification code included in the identification element, and recognizing identification information of the wrapping paper; A packaging damage inspection apparatus including a determination unit which compares the internal change information recognized by the sensor and the reference change information to determine whether to maintain the sealed state of the sealed wrapping paper; And
    상기 포장 훼손 검사 장치로부터 상기 밀봉된 포장지의 밀봉 상태의 유지 여부에 대한 정보를 수신하고, 수신된 밀봉 상태의 유지 여부에 대한 정보를 저장부에 저장하거나 관리자의 단말기로 전송하는 서버;를 포함하는, 포장 훼손 검사 시스템.A server for receiving information on whether to maintain the sealed state of the sealed wrapping paper from the packaging damage inspection device, and storing information on whether to maintain the sealed state or transmitting the information to the terminal of the manager; , Packaging damage inspection system.
  19. 제 18 항에 있어서,The method of claim 18,
    상기 포장 훼손 검사 장치는,The packaging damage inspection device,
    제 1 유통 단계, 제 2 유통 단계 및 제 N 유통 단계별로 구비되어 있으며,It is equipped with the 1st distribution stage, the 2nd distribution stage, and the Nth distribution stage,
    상기 서버는,The server,
    제 1 유통 단계, 제 2 유통 단계 및 제 N 유통 단계별로 상기 포장 훼손 검사 장치로부터 상기 밀봉된 포장지의 밀봉 상태의 유지 여부에 대한 정보, 식별 코드별 / 유통 단계별 내부 변화 정보, 측정시 외부 환경 정보, 측정 일시에 대한 정보 및 측정한 사람에 대한 정보를 수신하는, 포장 훼손 검사 시스템.Information on whether or not to maintain the sealed state of the sealed wrapping paper from the packaging damage inspection device in the first distribution step, the second distribution step and the N distribution step, the internal change information for each identification code / distribution step, the external environment information at the time of measurement Packaging damage inspection system, which receives information about the measurement date and time, and the information about the measured person.
  20. 제 18 항에 있어서,The method of claim 18,
    상기 판단부는,The determination unit,
    상기 센서에 의해 인식된 내부 변화 정보와, 상기 밀봉된 포장지의 식별 코드에 대응되고 현재 유통 단계에 대응되는 기준 변화 정보를 비교하여, 상기 밀봉된 포장지의 밀봉 상태의 유지 여부를 판단하는, 포장 훼손 검사 시스템.Comparing the internal change information recognized by the sensor with reference change information corresponding to the identification code of the sealed wrapping paper and corresponding to the current distribution stage, to determine whether to maintain the sealed state of the sealed wrapping paper, Inspection system.
PCT/KR2016/005994 2015-06-04 2016-06-07 Package damage inspection device WO2016195452A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/579,412 US20180143131A1 (en) 2015-06-04 2016-06-07 Package damage inspection device
CN201680032553.2A CN107690574A (en) 2015-06-04 2016-06-07 Package failure check device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20150079073 2015-06-04
KR10-2015-0079073 2015-06-04
KR1020160069819A KR101859648B1 (en) 2016-06-03 2016-06-03 Humidity information detection method using humidity sensor and package inspection apparatus using the same
KR10-2016-0069819 2016-06-03
KR1020160069795A KR101937233B1 (en) 2015-06-04 2016-06-03 Apparatus for detecting damage of packing
KR10-2016-0069795 2016-06-03

Publications (1)

Publication Number Publication Date
WO2016195452A1 true WO2016195452A1 (en) 2016-12-08

Family

ID=57441224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005994 WO2016195452A1 (en) 2015-06-04 2016-06-07 Package damage inspection device

Country Status (1)

Country Link
WO (1) WO2016195452A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109799042A (en) * 2017-11-17 2019-05-24 现代自动车株式会社 Device and method for waterproof test

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060003057A (en) * 2003-04-24 2006-01-09 발티온 테크닐리덴 투트키무스케스쿠스 Method for noticing changes in a package, method for locating a package, package and system for locating a package
KR20130061532A (en) * 2011-12-01 2013-06-11 한국전자통신연구원 Rfid tag having acoustic alarm and method thereof
KR20130077221A (en) * 2011-12-29 2013-07-09 한국식품연구원 Apparatus for inspecting objects using terahertz wave
WO2014182283A1 (en) * 2013-05-07 2014-11-13 Empire Technology Development Llc Terahertz frequency tags and methods for their preparation and use
KR20150010853A (en) * 2013-07-19 2015-01-29 한국식품연구원 Packing sheet, detection sensor for terahertz wave and detection apparatus using terahertz wave

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060003057A (en) * 2003-04-24 2006-01-09 발티온 테크닐리덴 투트키무스케스쿠스 Method for noticing changes in a package, method for locating a package, package and system for locating a package
KR20130061532A (en) * 2011-12-01 2013-06-11 한국전자통신연구원 Rfid tag having acoustic alarm and method thereof
KR20130077221A (en) * 2011-12-29 2013-07-09 한국식품연구원 Apparatus for inspecting objects using terahertz wave
WO2014182283A1 (en) * 2013-05-07 2014-11-13 Empire Technology Development Llc Terahertz frequency tags and methods for their preparation and use
KR20150010853A (en) * 2013-07-19 2015-01-29 한국식품연구원 Packing sheet, detection sensor for terahertz wave and detection apparatus using terahertz wave

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109799042A (en) * 2017-11-17 2019-05-24 现代自动车株式会社 Device and method for waterproof test
CN109799042B (en) * 2017-11-17 2022-07-26 现代自动车株式会社 Apparatus and method for water resistance testing

Similar Documents

Publication Publication Date Title
WO2015008903A1 (en) Wrapper for terahertz, detection sensor, detection apparatus using terahertz wave, optical identification device for terahertz, apparatus for recognizing optical identification device for terahertz wave, and writing apparatus for identification unit
Naftaly Terahertz metrology
Betz et al. Acousto-ultrasonic sensing using fiber Bragg gratings
US5789750A (en) Optical system employing terahertz radiation
Wynne et al. An integrated description of terahertz generation through optical rectification, charge transfer, and current surge
Ellrich et al. Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength
WO2004106900A1 (en) Reflection type terahertz spectrometer and spectrometric method
WO2016195452A1 (en) Package damage inspection device
KR20170108281A (en) Apparatus and method for inspecting thickness of transparent thin film using terahertz wave
Wang et al. Metamaterial absorber for THz polarimetric sensing
Chen et al. Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry
US10119903B2 (en) Interferometric ellipsometry and method using conical refraction
Zanotto et al. Optomechanical modulation spectroscopy of bound states in the continuum in a dielectric metasurface
KR101859648B1 (en) Humidity information detection method using humidity sensor and package inspection apparatus using the same
JP2007057407A (en) Terahertz spectral device
Bae et al. An oscillator-based sensor using a capacitive metal mesh for sensitive detection of dielectric materials in the terahertz region
Zhao et al. Standoff and Point Detection of Thin Polymer Layers Using Microcantilever Photothermal Spectroscopy
KR100606420B1 (en) Optical potential transformer interleaved detector
JP2017173055A (en) Photoacoustic cell and photoacoustic measurement device
Varasi et al. A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing
WO2024147429A1 (en) Elliptical amplitude sensor device comprising semiconductor oxide film and measurement method
Pahlevaninezhad Design and implementation of efficient terahertz waveguides
Ranacher et al. Intrinsic damping in silicon slab waveguides in the mid-infrared
KR101937233B1 (en) Apparatus for detecting damage of packing
Lin Theory and analysis of phase sensitivity-tunable optical sensor based on total internal reflection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803805

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15579412

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803805

Country of ref document: EP

Kind code of ref document: A1