WO2016195334A1 - Mimo 기반 빔포밍을 지원하는 통신 시스템에서 채널을 추정하는 방법 및 장치 - Google Patents

Mimo 기반 빔포밍을 지원하는 통신 시스템에서 채널을 추정하는 방법 및 장치 Download PDF

Info

Publication number
WO2016195334A1
WO2016195334A1 PCT/KR2016/005654 KR2016005654W WO2016195334A1 WO 2016195334 A1 WO2016195334 A1 WO 2016195334A1 KR 2016005654 W KR2016005654 W KR 2016005654W WO 2016195334 A1 WO2016195334 A1 WO 2016195334A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
candidate
serving
channel estimation
beam combination
Prior art date
Application number
PCT/KR2016/005654
Other languages
English (en)
French (fr)
Inventor
유현일
김태영
노지환
설지윤
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US15/578,045 priority Critical patent/US10511360B2/en
Publication of WO2016195334A1 publication Critical patent/WO2016195334A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • H04L25/0216Channel estimation of impulse response with estimation of channel length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present disclosure relates to a method and apparatus for estimating a channel in a communication system supporting multiple input multiple output (MIMO) based beamforming.
  • MIMO multiple input multiple output
  • a 5G communication system or a pre-5G communication system is called a system after a 4G network (beyond 4G network) or after a LTE system (Post LTE).
  • 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (e.g., 60 gigabyte (60 GHz) band).
  • mmWave ultra-high frequency
  • MIMI massive multi-input multi-output
  • FD-MIMO Full Dimensional MIMO
  • array antenna analog beam-forming, and large scale antenna techniques are discussed.
  • advanced small cells in the 5G communication system, advanced small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) ), Device to device communication (D2D), wireless backhaul, moving network, cooperative communication, coordinated multi-points, and received interference cancellation Technology development, etc.
  • cloud RAN cloud radio access network
  • ultra-dense network ultra-dense network
  • D2D Device to device communication
  • wireless backhaul moving network
  • cooperative communication coordinated multi-points
  • received interference cancellation Technology development etc.
  • FQAM hybrid FSK and QAM modulation
  • SWSC sliding window superposition coding
  • ACM advanced coding modulation
  • FBMC filter bank multi carrier
  • NOMA advanced access technology
  • SAP Non orthogonal multiple access
  • SCMA sparse code multiple access
  • IEEE 802.11ad a standard for a wireless LAN system, which is one of the systems implemented in the ultra high frequency band, uses broadband and beamforming at high frequencies and transmits and receives data through a single input single output (SISO) based transmission scheme.
  • SISO single input single output
  • MIMO multiple-input multiple-output
  • the present disclosure proposes a method and apparatus for estimating a channel in a communication system supporting MIMO based beamforming.
  • a method for estimating a channel by a transmitting end in a communication system supporting multiple input multiple output (MIMO) based beamforming comprising: at least one transmitting beam and at least one of the transmitting beams of the transmitting end and the receiving beams of the receiving end; Acquiring a candidate channel estimate of each of the plurality of candidate beam combinations through a channel estimation interval corresponding to each of the plurality of candidate beam combinations composed of receive beams of
  • the corresponding channel estimation interval includes a serving channel estimation interval corresponding to the serving beam combination of the transmitter and the receiver, a channel gain estimation interval of one candidate beam combination among the plurality of candidate beam combinations, and a channel estimation interval of the candidate beam combination.
  • An optimal channel of the transmitter and the receiver based on the obtained candidate channel estimates. It comprises the step of obtaining an estimated value.
  • a transmitter for estimating a channel in a communication system supporting multiple input multiple output (MIMO) based beamforming comprising: at least one transmit beam and at least one receive beam among the transmit beams and the receive beams of the receiver;
  • Each channel estimation section corresponds to a serving channel estimation section corresponding to a serving beam combination of the transmitter and the receiver, a channel gain estimation section of one candidate beam combination among the plurality of candidate beam combinations, and a channel estimation of the candidate beam combination.
  • an interval the optimum of the transmitter and the receiver based on the obtained candidate channel estimates.
  • the present disclosure can reduce the overhead of beam change by estimating a channel in a communication system supporting MIMO based beamforming by extending a training (TRN) structure of a SISO based communication system according to an embodiment.
  • AGC Automatic Gain Control
  • the quantization noise is minimized for each beam, which maximizes the channel estimation performance and maximizes the performance of channel capacity measurement. You can choose.
  • feedback information may be transmitted using existing SISO-based channel measurement information.
  • FIG. 1 is a diagram illustrating an example of a structure of a packet used in a SISO-based communication system
  • FIG. 2 is a diagram illustrating an example of an operation of performing beam training using a TRN field included in the packet structure of FIG. 1;
  • FIG. 3 is a diagram illustrating an example of one-shot beamforming training that can generally perform transmit beamforming and receive beamforming simultaneously.
  • FIG. 4 is an example of an AGC operation flowchart performed for beam training in a TRN field of a packet used in a SISO based communication system
  • FIG. 5 is a diagram illustrating an example of a quantization process when receiving signals of different sizes in a SISO based communication system
  • FIG. 6 is an example of a result graph when a SISO based packet structure is used for measuring a capacity of a MIMO channel.
  • FIG. 7A illustrates an example of a packet structure for performing AGC on each beam combination based on an SISO-based TRN structure according to an embodiment of the present disclosure.
  • FIG. 7B is an example of an operation flowchart of performing beam training based on the TRN section of FIG. 7A according to an embodiment of the present disclosure
  • FIGS. 7A and 7B are diagrams illustrating an example of channel capacity for a MIMO channel to which beam training is applied according to the embodiments of FIGS. 7A and 7B;
  • FIG. 10A illustrates an example of a TRN structure according to another embodiment of the present disclosure
  • FIG. 10B is an example of a channel measurement block operating based on the A-TRN structure of FIG. 10A.
  • 11A is a diagram illustrating another example of an A-TRN structure according to another embodiment of the present disclosure.
  • FIG. 11B is an example of a channel measurement block operating based on the A-TRN structure of FIG. 11A.
  • FIG. 11B is an example of a channel measurement block operating based on the A-TRN structure of FIG. 11A.
  • TRN MIMO beam selection process
  • SISO single input single output
  • FIG. 1 is a diagram illustrating an example of a structure of a packet used in a SISO based communication system.
  • the packet 100 includes a short training field 102, a channel estimation (CE) field 104, a header 106, a data 108, and a training field (TRN). 110).
  • the STF 102 is a field for obtaining time and frequency synchronization
  • the CE field 104 is a field for channel estimation.
  • the TRN field 110 is a field for performing beam refinement, and includes an automatic gain control (AGC) section 112 for measuring reception power for each beam, and training for a transmission beam or a reception beam. It consists of a section for. For example, suppose that the packet 100 includes a section TRN-R 114 for reception beam training.
  • AGC automatic gain control
  • the TRN-R 114 may be, for example, a CE field 120 and a TRN sub that performs beam training on each of a total of four candidate beams (candidate beams # 1 to # 4) for receiving beam training. Fields 122-128.
  • the TRN field 110 of the packet 100 may include a section TRN-T for transmission beam training.
  • FIG. 2 is a diagram for describing an example of an operation of performing beam training using a TRN field included in the packet structure of FIG. 1.
  • the operation of FIG. 2 illustrates an operation of performing beam training on a reception beam as an example.
  • the operation of FIG. 2 may be equally applied to an operation of performing beam training on a transmission beam.
  • a beam training procedure for an optimal reception beam for the receiver 202 may be performed.
  • the transmitter 200 transmits the beam training signal by N, the number corresponding to the total number of the received beams of the receiver 202 through the currently set transmission beam in step 204.
  • the receiving end 202 receives the received signal size of the beam training signal transmitted by the transmitting end 200 received through the corresponding receiving beam in a beam refinement protocol (BRP) -RX (reception) period corresponding to each of the receiving beams.
  • BRP beam refinement protocol
  • RX rejection
  • the BRP-RXs are received at predetermined time intervals, that is, at intervals of short beam forming inter frame space (SBIFS).
  • SIFS short interframe space
  • the predetermined time interval for receiving beam training of the transmitting terminal 200 after receiving beam training of the receiving terminal 202 is greater than or equal to short interframe space (SIFS), smaller than or equal to Beam Refinement Protocol Interframe Spacing (BRPIFS). It can be set within the same value range.
  • SIFS short interframe space
  • BRPIFS Beam Refinement Protocol Interframe Spacing
  • the receiving end 202 may transmit information indicating that the beam training is completed.
  • the receiver 202 transmits a beam training signal by N, which is a number corresponding to the total number of reception beams of the transmitter 200 in step 206. .
  • the transmitting end 200 also measures the received signal size of the beam training signal transmitted by the receiving end 202 received through the corresponding receiving beam in the BRP-RX section corresponding to each of the receiving beams, and receives the received signal size. May determine the reception beam that has received the beam training signal having the maximum value as an optimal reception beam.
  • the transmitter 200 may transmit information indicating that the beam training is completed.
  • the SISO-based beam training procedure is performed sequentially on the reception beam or the reception beam. Therefore, in the structure of FIG. 2, it is difficult to simultaneously perform transmission / reception beam training on a MIMO channel having a rank.
  • FIG. 3 is a diagram illustrating an example of one-shot beamforming training that can generally perform transmit beamforming and receive beamforming simultaneously.
  • the receiving end 300 is a BRP section that is mapped 1: 1 to each of the currently set receiving beams (beam index 1 to NI) and the total transmission beams (beam index 1 to NR) of the transmitting end 302.
  • the beam may be determined as an optimal transmission beam and a reception beam.
  • One-shot beamforming procedure as described above has a problem that the complexity increases because the beam training procedure should be performed for the entire beam combination that can be composed of the beams of the transmitter and the receiver.
  • FIG. 4 is an example of an AGC operation flowchart performed for beam training in a TRN field of a packet used in a SISO based communication system.
  • FIG. 4 illustrates a case in which the transmitting end determines an optimal reception beam as an example, but the same applies to the case of determining an optimal transmission beam. Similarly, the same applies to the case where the receiving end determines the optimal transmission beam and the reception beam.
  • the transmitter identifies a beam combination index i to perform beam training.
  • the total number of beam combinations that can be composed of one transmission beam and one reception beam is K, and i represents a beam combination index.
  • the transmitter determines the received power magnitude P of the signal received through the beam combination corresponding to the beam combination index i using Equation 1 below.
  • a received signal received through the beam combination is composed of a total of N samples, and n represents a sample index.
  • P i [n] represents the received power at the n th sample constituting the signal received through the beam combination corresponding to the beam combination index i
  • Y i [n] represents the beam combination corresponding to the beam combination index i.
  • L AGC represents the window size for measuring the received power size.
  • step 406 the transmitting end selects the maximum value by using Equation 2 below among the calculated received power magnitudes for each of the entire beam combinations.
  • the transmitter calculates an AGC gain according to Equation 3 using the maximum value of the received power magnitude obtained through Equation 2.
  • G AGC [t] represents the AGC gain in the t th packet.
  • G pre represents a reference of a predefined gain value.
  • the transmitter performs beam training on the quantized signal obtained based on Equation 5. That is, the transmitter measures the received power magnitude of the quantized signal and estimates the beam corresponding to the beam index corresponding to the measured received power magnitude as the optimal beam based on SISO as shown in Equation 6 below. .
  • beam_idx represents a beam index estimated with respect to the received power magnitude of the quantized signal
  • P i is calculated using Equation 7 below.
  • P i [n] represents the received power magnitude estimated for the n th sample of the signal received through the beam combination corresponding to the beam combination index i in the time domain
  • L_measurement is the window length for measuring the received power magnitude.
  • step 412 it is checked whether the index of the estimated beam combination is equal to K. As a result of the check, if the index of the estimated beam combination is less than K, the process returns to step 408. As a result of the check, if the index of the estimated beam combination is equal to K, the transmitter ends the operation of FIG. 4A.
  • channel capacity may be represented by using the SNR of the received signal as shown in Equation 8 below.
  • SNR signal to noise ratio
  • Equation 8 may be represented by considering quantization noise of a received signal, as shown in Equation 9 below.
  • Is the signal component Is the noise component
  • the quantization noise component Denotes the quantization noise component.
  • the quantization noise of the received signal affects the SNR, and the channel capacity is represented by an increase function with respect to the SNR.
  • this quantization noise does not affect the estimation of the SISO-based optimal beam combination index as shown in Equation (7).
  • the channel capacity in the MIMO based communication system should consider the rank of the channel that is not considered in calculating the channel capacity in the SISO based communication system, as shown in Equation 10 below. .
  • N R xN R Represents an identity matrix of magnitude
  • Is transmit power N o is noise
  • H N R xN T
  • N R represents the number of receive antennas
  • N T represents the number of transmit antennas.
  • FIG. 5 is a diagram illustrating an example of a quantization process when receiving signals of different sizes in a SISO based communication system.
  • the TRN interval 500 of the SISO-based packet may be, for example, an AGC interval 502 including subfields corresponding to each of a total of four beam combinations, one CE interval, and the four total intervals.
  • TRN unit 504 composed of TRN subfields corresponding to each of the beam combinations.
  • the received power magnitudes of the signals received in each of the four TRN subfields included in the TRN unit 504 are different.
  • the rank of the first signal is close to one.
  • the received power magnitude of the third signal received through the beam combination corresponding to the beam combination index 3 is lower than the received power magnitude of the first signal, but the rank of the third signal is greater than one.
  • the AGC gain calculated according to Equation 3 is applied to the remaining signal reception intervals. Accordingly, the signals received through the beam combinations corresponding to the beam combination indices 2 to 4 generate quantization noise as indicated by reference numeral 508 as AGC gains different from the received power magnitudes of the corresponding signals are applied.
  • Equation 10 since the channel gain matrix is used to obtain the MIMO based channel capacity, channel estimation for each beam combination must be preceded.
  • the channel estimate of the beam combination corresponding to the beam combination index i may be calculated as in Equation 11 below.
  • Equation 11 Denotes the channel estimate in the kth subchannel for the beam combination corresponding to beam combination index i, and H i (k) represents the actual channel in the kth subchannel for the beam combination corresponding to beam combination index i.
  • W i (k) represents noise
  • N i, Q (k) represents quantization noise.
  • Equation 11 when calculating the MIMO based channel capacity, it is difficult to accurately measure the channel capacity due to quantization noise.
  • the noise W i (k) is the same on each beam combination, while N i, Q (k) affects differently, the channel capacity is not measured fairly for each beam combination.
  • 6 is an example of a result graph when the SISO based packet structure is used for measuring the capacity of the MIMO channel.
  • the actual channel capacity 302 in the beam combination 3 is compared to the maximum channel capacity 300 that can be obtained at the above-described beam combination index 3 having a rank greater than one. Has a low value.
  • an embodiment of the present disclosure proposes a method of performing AGC for each beam combination in an existing SISO-based TRN structure.
  • 7A is an example of a packet structure for performing AGC on each beam combination based on the SISO-based TRN structure according to an embodiment of the present disclosure.
  • the TRN interval 700 is applied to an MIMO channel including two transmitting antennas and a receiving antenna as an example.
  • the TRN interval 700 is a AGC interval 704 for performing AGC for each of the four transmit and receive beam combinations constituting the CE field 702 and the MIMO channel and the TRN sub for each of the beam combinations It may consist of a beam training interval 706 that includes fields.
  • FIG. 7B is an example of an operation flowchart of performing beam training based on the TRN section of FIG. 7A according to an embodiment of the present disclosure.
  • the beam training of FIG. 7B assumes a case where the transmitting end determines an optimal reception beam.
  • the transmitter calculates a gain difference with respect to G Pre by subtracting the gain value of the beam combination index i from the predetermined gain value GPre using Equation 12 below.
  • the transmitter calculates the AGC gain of the beam combination corresponding to the beam combination index i using the gain difference with respect to the G Pre .
  • the transmitter performs beam training on the quantized received signal of the beam combination. That is, the transmitter measures the received power magnitude of the quantized signal and estimates the beam combination corresponding to the beam index corresponding to the measured received power magnitude as the optimal beam combination as shown in Equation (6).
  • it is determined whether the beam combination index corresponding to the signal on which the beam training is performed is K. If K is confirmed, the operation of Fig. 7B is terminated. If the beam combination index i is smaller than K as a result of the checking, the transmitter returns to step 720 and performs the operations of FIG. 7B for the next beam combination index.
  • the quantization is performed on signals received through the beam combination using AGC gains 708 to 714 calculated differently for each beam combination, as shown in the graph of FIG. 7A.
  • quantization noise generated after quantization of the received signal of each beam combination is reduced. Accordingly, the channel estimated in the beam training interval for each beam combination may be represented as in Equation 14 below.
  • Equation 15 Equation 15 below.
  • quantization noise according to an embodiment of the present disclosure. Can be minimized compared to quantization noise generated when SISO-based channel capacity estimation for each transmission beam. Accordingly, the embodiment of the present disclosure proposes an A-TRN (Advanced TRN) structure that can efficiently calculate the AGC gain for each beam combination by extending the SISO-based TRN structure, thereby optimizing the quantization noise for the MIMO channel. Beam combinations can be selected.
  • A-TRN Advanced TRN
  • FIG. 8 is a diagram illustrating an example of channel capacity for a MIMO channel to which beam training according to the embodiment of FIGS. 7A and 7B is applied.
  • the channel capacity 802 of the beam combination index 3 to which the embodiment of FIGS. 7A and 7B is applied is compared to the channel capacity 808 of the beam combination index 3 to which the embodiment of FIG. 4A is applied. It is approaching the channel capacity.
  • the transmitting end may select an optimal beam combination through beam training in the A-TRN section and feed back the index of the selected beam combination to the receiving end.
  • the index of the beam combination may be included in the channel measurement feedback information used in the SISO based communication system configured as shown in FIG. 9.
  • the AGC gain is calculated for each beam combination according to the embodiment of FIGS. 7A and 7B, since the AGC gain of the serving beam combination and the AGC gain for each beam combination are different, training is performed by comparing with the channel value of the current serving beam combination. It is not possible to represent channel values in relative candidate beam combinations. Accordingly, another embodiment of the present disclosure proposes a method for correctly measuring a relative value of AGC gain values between a serving beam combination and a corresponding candidate beam combination.
  • 10A is a diagram illustrating an example of an A-TRN structure according to another embodiment of the present disclosure.
  • an A-TRN structure 1000 includes a TRN unit that is mapped one-to-one to each of supportable beam combinations.
  • FIG. 10A assumes that a TRN unit corresponding to a total of N beam combinations exists in the TRN structure 1000.
  • Each TRN unit includes one CE field, an AGC interval, and a TRN subfield, in order to minimize quantization error.
  • the CE field 1004 is a section for measuring a channel corresponding to the serving beam combination currently being served.
  • each of btx and brx represents an index of a transmission beam and a reception beam constituting the serving beam combination.
  • the AGC section included in each TRN unit is a section for measuring AGC gain of a candidate beam combination corresponding to the corresponding TRN unit
  • the TRN subfield is a section for performing beam training and channel measurement of the candidate beam combination.
  • t1,... , tN represents an index of a transmission beam mapped to each TRN unit
  • r1,... , rN represents the index of the reception beam mapped to each TRN unit.
  • the transmitter measures the channel corresponding to the current serving beam combination through the CE field 1004 of the TRN unit 1 1002.
  • the AGC gain is calculated for the beam combination 1 mapped to the TRN unit 1 1002 through the AGC section 1006, and beam training of the candidate beam combination is performed using the TRN subfield.
  • the beam combination 1 includes a transmission beam t1 and a reception beam t2.
  • AGC gain calculation and beam training of the corresponding candidate beam combination are performed through the TRN unit corresponding to each of the remaining beam combinations.
  • the AGC gain of the candidate beam combination mapped to the corresponding TRN unit in the AGC period may be obtained through a channel estimation block configured as shown in FIG. 10B.
  • a corresponding node when performing a beam training procedure based on an A-TRN structure according to an embodiment of the present disclosure, receives a flag indicating that the node operates based on the A-TRN structure.
  • FIG. 10B is an example of a block diagram for performing channel estimation based on the A-TRN structure of FIG. 10A.
  • the block configuration of FIG. 10B is only shown as an example, and may be configured differently such that each sub unit is further subdivided or integrated into one unit, and a transmitting node or a receiving node which wants to perform beam training on a MIMO channel. It may be included in the configuration.
  • the channel estimation block 1010 may be divided into two channels according to a check result of the received signal determining unit 1011 confirming whether an input signal indicates a CE field or a TRN field. It can be configured to be separated into paths.
  • the channel gain calculator 1 1012 calculates and stores the AGC gain G btx , brx of the signal received through the serving channel corresponding to the current serving beam combination, and adds the quantizer 1 1014 and the gain compensation coefficient to the channel.
  • the channel estimator 1 1016 uses the serving channel AGC gain to provide the serving channel value. (P is a pilot signal), and the estimate of the serving channel value is transmitted to the relative channel estimator 1019.
  • the A-TRN flag check unit 1011-1 may further check whether the corresponding TRN field is an A-TRN field or an existing SISO-based TRN field. As described above, the A-TRN flag checker 1011-1 may determine whether the TRN field is an A-TRN field according to whether or not the A-TRN flag received through a predetermined interval before the signal is received. Check whether it is an existing SISO based TRN field. When the TRN field is an A-TRN field according to the verification result, the signal is first passed through the channel gain calculator 21013 and then received through a candidate beam combination corresponding to the TRN field, similarly to the CE field. The channel measurement corresponding to is performed by the quantizer 2 1015 and the channel estimator 2 1017.
  • the channel gain calculator 21013 calculates and stores the AGC gains G tn and rn for each of the candidate beam combinations to perform the beam training, and quantizes them.
  • the data is transmitted to the second unit 1015 and the gain compensation coefficient estimator 1018.
  • the quantization unit 2 1015 performs quantization of a channel gain corresponding to the TRN field or the A-TRN field.
  • the quantization unit 2 1015 uses the AGC gain of the serving channel corresponding to the serving beam combination to quantize Q (Q) with respect to the signal received through the candidate beam combination corresponding to the TRN field.
  • G btx, brx yi In the case of the A-TRN field, the quantization unit 2 1015 uses the AGC gain of the corresponding candidate channel received from the channel gain calculation unit 2 1013 to select a candidate beam combination corresponding to the A-TRN field.
  • the quantized Q (G tn, rm yi) is performed on the received signal and transmitted to the channel estimator 2 1017.
  • the gain compensation coefficient estimator 1018 receives a serving channel estimate of the serving beam combination of the channel gain calculator 11012 and a candidate channel estimate of the candidate beam combination of the channel gain calculator 1013. . The gain compensation coefficient estimator 1018 then estimates a weighting coefficient W com for compensating for the difference between the channel estimate of the serving beam combination and the channel estimate of the candidate beam combination.
  • the channel estimator 2 1018 uses the AGC gain of the candidate channel and the pilot signal P to set the candidate channel value. Can be estimated.
  • the channel estimator 2 1017 receives one of the quantization signal corresponding to the existing TRN field and the quantization signal corresponding to the A-TRN field through the quantization unit 2 1015. Accordingly, the channel estimate of the channel estimator 2 107 is input to the A-TRN flag checker 1017-1. Then, the A-TRN flag checker 1017-1 checks again whether the channel estimate is based on the A-TRN field or the general TRN field.
  • the weight coefficient output from the gain coefficient estimator 1018 is multiplied by the candidate channel estimate to be output to the relative channel estimator 1019.
  • the candidate channel estimate is transferred to the relative channel estimator 1019 as it is.
  • the relative channel estimator 1019 estimates the relative channel of the candidate channel corresponding to the corresponding TRN field. Calculate That is, in the case of the existing TRN field, the relative channel estimator 1019 subtracts the serving channel estimate from the candidate channel estimate to obtain a relative channel estimate. In the case of an A-TRN field, the relative channel estimator 1019 obtains a relative channel estimate by subtracting the serving channel estimate from a candidate channel estimate multiplied by the weighting coefficient W com .
  • 11A is a diagram illustrating another example of an A-TRN structure according to another embodiment of the present disclosure.
  • the TRN field 1100 according to the embodiment of FIG. 11A is compared with the structure of the TRN field 1000 of FIG. 10A, and positions of CE fields and AGC sections constituting each of the TRN units included in the TRN field 1100. Is different.
  • TRN unit 1 1102 is where AGC interval 1104 is located before CE field 1106. Accordingly, as the AGC section and the TRN subfield are continuously arranged in each of the TRN units according to the embodiment of FIG. 10A, beam switching does not occur in the same TRN unit. In contrast, in the TRN unit according to the embodiment of FIG. 11A, beam switching occurs three times in the same TRN unit as the CE field is disposed between the AGC section and the TRN subfield.
  • FIG. 11B is an example of a channel measurement block operating based on the TRN structure of FIG. 11A.
  • a channel measurement block may be configured to be included in a transmitting node or a receiving node to perform beam training on a MIMO channel.
  • the channel estimation block 1110 may be, for example, a channel gain calculator 1112 of a serving channel, a channel gain calculator 1114 of a candidate channel, and a comparator 1116. , A channel estimator 1118 and a beam training and channel measurer 1120.
  • the block configuration of FIG. 11B is only illustrated as an example, and may be configured differently such that each sub unit is more subdivided or integrated into one unit.
  • the channel gain calculator 112 of the serving channel estimates and stores the AGC gain for the serving channel in advance.
  • the AGC gain of the serving channel can be estimated, for example, via the SFT 102 corresponding to the preamble in the packet structure of FIG.
  • the channel gain calculator 114 of the candidate channel calculates and transmits the AGC gain of the candidate beam combination corresponding to each TRN unit to the comparison unit 1116.
  • the comparing unit 1116 compares the AGC gain of the serving channel with the AGC gain of the corresponding candidate beam, and selects a maximum value to the channel estimating unit 1118 and the beam training and channel measuring unit 1120. To pass. Then, as the channel estimator 1118 and the beam training and channel measurer 1120 perform beam training by applying channel estimation and quantization based on the maximum value, the signal received from the corresponding TRN unit is saturation. It can prevent the phenomenon. In this case, a quantization error may occur, but since only the signal of the current serving combination is compared with the signal of the candidate combination, performance degradation caused by the quantization error is not so large.
  • the beam training and channel measuring unit 1120 may estimate the relative channel measurement by comparing the channel estimate of the serving combination with the channel estimate for each candidate beam from the channel estimating unit 118.
  • the channel estimate for may be fed back.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)

Abstract

본 개시는 LTE와 같은 4G 통신 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 또는 pre-5G 통신 시스템에 관련된 것이다. 본 개시는, 다중 입출력(MIMO: Multiple Input Multiple Output) 기반 빔포밍을 지원하는 통신 시스템에서 송신단이 채널을 추정하는 방법에 있어서, 상기 송신단의 송신빔들과 수신단의 수신빔들 중 적어도 하나의 송신 빔과 적어도 하나의 수신빔으로 구성되는 복수개의 후보빔 조합들 각각에 대응하는 채널 추정 구간을 통해서 상기 복수개의 후보빔 조합들 각각의 후보 채널 추정치를 획득하는 과정과, 여기서, 상기 복수개의 후보빔 조합들 각각에 대응하는 채널 추정 구간은 상기 송신단과 수신단의 서빙 빔 조합에 대응하는 서빙 채널 추정 구간과, 상기 복수개의 후보빔 조합 중 하나의 후보빔 조합의 채널 이득 추정 구간 및 상기 후보빔 조합의 채널 추정 구간을 포함하여 구성되며, 상기 획득한 후보 채널 추정치들을 기반으로 상기 송신단과 상기 수신단의 최적의 채널 추정값을 획득하는 과정을 포함한다.

Description

MIMO 기반 빔포밍을 지원하는 통신 시스템에서 채널을 추정하는 방법 및 장치
본 개시는 다중 입출력(MIMO: Multiple Input Multiple Output) 기반 빔포밍을 지원하는 통신 시스템에서 채널을 추정하는 방법 및 장치에 관한 것이다.
4G (4th-Generation) 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G (5th-Generation) 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (beyond 4G network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리고 있다.
높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파 (mmWave) 대역 (예를 들어, 60기가 (60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로 손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive multi-input multi-output: massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나(large scale antenna) 기술들이 논의되고 있다.
또한, 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀(advanced small cell), 클라우드 무선 액세스 네트워크(cloud radio access network: cloud RAN), 초고밀도 네트워크(ultra-dense network), 기기 간 통신(device to device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크(moving network), 협력 통신(cooperative communication), CoMP (coordinated multi-points), 및 수신 간섭제거(interference cancellation) 등의 기술 개발이 이루어지고 있다.
이 밖에도, 5G 시스템에서는 진보된 코딩 변조(advanced coding modulation: ACM) 방식인 FQAM(hybrid FSK and QAM modulation) 및 SWSC (sliding window superposition coding)과, 진보된 접속 기술인 FBMC (filter bank multi carrier), NOMA (non orthogonal multiple access), 및 SCMA (sparse code multiple access) 등이 개발되고 있다.
초고주파 대역에서 구현되는 시스템 중 하나인 무선랜 시스템의 표준인 IEEE 802.11ad에서는 초고주파에서 광대역 및 빔포밍을 사용하고 SISO(Single Input Single Output) 기반의 전송 방안을 통해 데이터를 송수신한다. 그리하여, 현재의 IEEE 802.11ad 표준을 향후의 pre-5G 혹은 post-11ad 표준에 적용시키기 위해서는, IEEE 802.11ad 기반 시스템에서 MIMO(multiple-input multiple-output) 기반 통신을 지원하는 방안들이 요구되고 있다.
본 개시는 MIMO 기반 빔포밍을 지원하는 통신 시스템에서 채널을 추정하는 방법 및 장치를 제안한다.
본 개시의 실시 예에 따른 방법은; 다중 입출력(MIMO: Multiple Input Multiple Output) 기반 빔포밍을 지원하는 통신 시스템에서 송신단이 채널을 추정하는 방법에 있어서, 상기 송신단의 송신빔들과 수신단의 수신빔들 중 적어도 하나의 송신 빔과 적어도 하나의 수신빔으로 구성되는 복수개의 후보빔 조합들 각각에 대응하는 채널 추정 구간을 통해서 상기 복수개의 후보빔 조합들 각각의 후보 채널 추정치를 획득하는 과정과, 여기서, 상기 복수개의 후보빔 조합들 각각에 대응하는 채널 추정 구간은 상기 송신단과 수신단의 서빙 빔 조합에 대응하는 서빙 채널 추정 구간과, 상기 복수개의 후보빔 조합 중 하나의 후보빔 조합의 채널 이득 추정 구간 및 상기 후보빔 조합의 채널 추정 구간을 포함하여 구성되며, 상기 획득한 후보 채널 추정치들을 기반으로 상기 송신단과 상기 수신단의 최적의 채널 추정값을 획득하는 과정을 포함한다.
본 개시의 실시 예에 따른 장치는; 다중 입출력(MIMO: Multiple Input Multiple Output) 기반 빔포밍을 지원하는 통신 시스템에서 채널을 추정하는 송신단에 있어서, 상기 송신단의 송신빔들과 수신단의 수신빔들 중 적어도 하나의 송신 빔과 적어도 하나의 수신빔으로 구성되는 복수개의 후보빔 조합들 각각에 대응하는 채널 추정 구간을 통해서 상기 복수개의 후보빔 조합들 각각의 후보 채널 추정치를 획득하는 제1채널 추정부와, 여기서, 상기 복수개의 후보빔 조합들 각각에 대응하는 채널 추정 구간은 상기 송신단과 수신단의 서빙 빔 조합에 대응하는 서빙 채널 추정 구간과, 상기 복수개의 후보빔 조합 중 하나의 후보빔 조합의 채널 이득 추정 구간 및 상기 후보빔 조합의 채널 추정 구간을 포함하여 구성되며, 상기 획득한 후보 채널 추정치들을 기반으로 상기 송신단과 상기 수신단의 최적의 채널 추정값을 획득하는 제2채널 추정부를 포함한다.
본 개시는, 실시 예에 따라 SISO 기반 통신 시스템의 트레이닝(TRN: training)구조를 확장하여 MIMO 기반 빔포밍을 지원하는 통신 시스템에서 채널을 추정함으로써, 빔 변경의 오버헤드를 감소시킬 수 있고, 채널 환경에 따라 AGC(Automatic gain control) 이득을 다르게 적용하여 빔마다 양자화 잡음을 최소화시킴으로써, 채널 추정 성능을 최대화하여 채널 용량 측정의 성능을 최대로 끌어올릴 수 있으므로, 결과적으로 MIMO 전송에 최적인 빔을 선택할 수 있다.
또한, 실시 예에 따라 서빙 채널과 후보 채널간의 상대적인 채널 추정치를 획득함에 따라, 기존의 SISO 기반 채널 측정 정보를 이용하여 피드백 정보를 전달할 수 있다.
도 1은 SISO 기반 통신 시스템에서 사용하는 패킷의 구조의 일 예를 도시한 도면,
도 2는 도 1의 패킷 구조에 포함된 TRN 필드를 이용하여 빔 트레이닝을 수행하는 동작의 일 예를 설명하기 위한 도면,
도 3은 일반적으로 송신 빔포밍과 수신 빔포밍을 동시에 수행할 수 있는 원 샷 빔포밍 (one-shot beamforming) 트레이닝의 일 예를 도시한 도면,
도 4는 SISO 기반 통신 시스템에서 사용하는 패킷의 TRN 필드에서 빔 트레이닝을 위해서 수행하는 AGC 동작 흐름도의 일 예,
도 5는 SISO 기반 통신 시스템에서 서로 다른 크기의 신호 수신 시 양자화 과정의 일 예를 보여주는 도면,
도 6은 SISO 기반 패킷 구조를 MIMO 채널의 용량 측정을 위해서 사용한 경우의 결과 그래프의 일 예,
도 7a는 본 개시의 실시 예에 따른 SISO 기반 TRN 구조를 기반으로 각 빔 조합에 대해 AGC를 수행하는 패킷 구조의 일 예,
도 7b는 본 개시의 실시 예에 따라 도 7a의 TRN 구간을 기반으로 빔 트레이닝을 수행하는 동작 흐름도의 일 예,
도 8은 도 7a,b의 실시 예에 따른 빔 트레이닝이 적용된 MIMO 채널에 대한 채널 용량의 일 예를 보여주는 도면,
도 9는 SISO 기반 통신 시스템에서 사용하는 채널 측정 피드백 정보의 일 예,
도 10a는 본 개시의 다른 실시 예에 따른 TRN 구조의 일 예를 나타낸 도면,
도 10b는 도 10a의 A-TRN 구조를 기반으로 동작하는 채널 측정 블록의 일 예,
도 11a는 본 개시의 다른 실시 예에 따라 A-TRN 구조의 다른 예를 나타낸 도면,
도 11b는 도 11a의 A-TRN 구조를 기반으로 동작하는 채널 측정 블록의 일 예.
이하 첨부된 도면을 참조하여 본 개시의 바람직한 실시 예에 대한 동작 원리를 상세히 설명한다. 도면상에 표시된 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 참조번호로 나타내었으며, 다음에서 본 개시를 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하, 본 개시의 실시 예에서는, SISO(Single Input Single Output) 기반의 통신 시스템에서 MIMO(multiple-input multiple-output)를 적용할 수 있도록 MIMO 빔 선택(beam selection) 과정에서 이용할 트레이닝(TRN: training) 구조를 제안한다. 이하, 본 명세서에서는 SISO 기반 통신 시스템의 일 예로, IEEE 802.11ad 기반 시스템을 기반으로 설명하기로 한다.
도 1은 SISO 기반 통신 시스템에서 사용하는 패킷의 구조의 일 예를 도시한 도면이다.
도 1을 참조하면, 패킷(100)은 STF(short training field, 102), CE(channel estimation) 필드(104), 헤더(Header, 106), 데이터(Data, 108) 및 TRN(training) 필드(110)를 포함한다. 상기 STF(102)는 시간 및 주파수 동기를 획득하기 위한 필드이고, 상기 CE 필드(104)는 채널 추정을 위한 필드이다. 그리고, 상기 TRN 필드(110)는 빔 정렬(beam refinement)을 수행하기 위한 필드로, 빔 별 수신 전력을 측정하는 AGC(Automatic gain control) 구간(112)과, 송신빔 또는 수신빔에 대한 트레이닝을 위한 구간으로 구성된다. 예를 들어, 상기 패킷(100)이 수신빔 트레이닝을 위한 구간(TRN-R, 114)을 포함하는 경우를 가정하자. 이 경우, 상기 TRN-R(114)은 일 예로, CE 필드(120)와, 수신 빔 트레이닝을 위한 총 4개의 후보 빔들(후보 빔 #1~#4) 각각에 대해 빔 트레이닝을 수행하는 TRN 서브 필드들(122~128)을 포함한다. 다른 실시 예에 따라, 상기 패킷(100)의 TRN 필드(110)는 송신빔 트레이닝을 위한 구간(TRN-T)을 포함할 수도 있다.
도 2는 도 1의 패킷 구조에 포함된 TRN 필드를 이용하여 빔 트레이닝을 수행하는 동작의 일 예를 설명하기 위한 도면이다. 설명의 편의상, 도 2의 동작은 수신 빔에 대한 빔 트레이닝을 수행하는 동작을 일 예로서, 설명하지만, 송신 빔을 위한 빔 트레이닝을 수행하는 동작에서도 동일하게 적용될 수 있다.
도 2를 참조하면, 먼저, 수신단(202)에 대한 최적의 수신빔을 위한 빔 트레이닝 절차를 수행할 수 있다. 이 경우, 송신단(200)은 204단계에서 현재 세팅된 송신빔을 통해서 수신단(202)의 수신빔들의 총 수에 대응하는 수인 N만큼 빔 트레이닝 신호를 전송한다. 그러면, 수신단(202)은 수신빔들 각각에 대응하는 BRP(beam refinement protocol)-RX(reception) 구간에서 해당 수신빔을 통해서 수신되는 상기 송신단(200)이 전송한 빔 트레이닝 신호에 대한 수신 신호 크기를 측정하고, 수신 신호 크기가 최대값을 갖는 빔 트레이닝 신호를 수신한 수신빔을 최적의 수신빔으로 결정할 수 있다. 이때, BRP-RX들은 각각 미리 결정된 시구간 즉, SBIFS(short beam forming inter frame space)을 간격으로 수신된다. 수신단(200)이 마지막 수신빔인 수신빔 N을 통해서 빔 트레이닝 신호를 수신한 후, 미리 결정된 시구간이 지나면, 상기 송신단(200)에 대한 최적의 수신빔을 결정하기 위한 빔 트레이닝 절차를 수행한다. 여기서, 상기 수신단(202)의 수신빔 트레이닝 이후 송신단(200)의 수신빔 트레이닝을 위한 상기 미리 결정된 시구간은 SIFS(short interframe space)보다 크거나 같고, BRPIFS(Beam Refinement Protocol Interframe Spacing) 보다 작거나 같은 값 범위 내에서 설정될 수 있다. 수신빔에 대한 빔 트레이닝이 완료되면, 수신단(202)은 빔 트레이닝이 완료됨을 알리는 정보를 전송할 수 있다.
상기 송신단(200)에 대한 최적의 수신빔을 결정하기 위해 206단계에 상기 수신단(202)은 206단계에서 상기 송신단(200)의 수신빔의 총 수에 대응하는 수인 N만큼 빔 트레이닝 신호를 전송한다. 마찬가지로, 상기 송신단(200) 역시 수신빔들 각각에 대응하는 BRP-RX 구간에서 해당 수신빔을 통해서 수신되는 상기 수신단(202)이 전송한 빔 트레이닝 신호에 대한 수신 신호 크기를 측정하고, 수신 신호 크기가 최대값을 갖는 빔 트레이닝 신호를 수신한 수신빔을 최적의 수신빔으로 결정할 수 있다. 그리고, 수신빔에 대한 빔 트레이닝이 완료되면, 송신단(200)은 빔 트레이닝이 완료됨을 알리는 정보를 전송할 수 있다.
도 2에 도시한 바와 같이, SISO 기반 빔 트레이닝 절차는 수신빔 또는 수신빔에 대해 순차적으로 수행된다. 따라서, 도 2의 구조에서는 랭크를 갖는 MIMO 채널에 대한 송수신빔 트레이닝을 동시에 수행하기 어렵다.
도 3은 일반적으로 송신 빔포밍과 수신 빔포밍을 동시에 수행할 수 있는 원 샷 빔포밍 (one-shot beam forming) 트레이닝의 일 예를 도시한 도면이다.
도 3을 참조하면, 수신단(300)은 현재 설정된 수신빔 (빔 인덱스1~NI)들과 송신단(302)의 총 송신빔 (빔 인덱스 1~NR)들 각각에 1:1로 매핑되는 BRP 구간들(304)에서 상기 송신단(302)의 각 송신빔으로부터 송신되는 빔 트레이닝 신호를 수신단(300)에서 수신하고, 빔 트레이닝 신호들 각각에 대한 수신 전력 크기를 측정하여 최대값을 갖는 송신빔 및 수신 빔을 최적의 송신빔 및 수신빔으로 결정할 수 있다.
상기한 바와 같은 원 샷 빔포밍 절차는 송신단과 수신단 각각의 빔들로 구성될 수 있는 전체 빔 조합에 대해 빔 트레이닝 절차가 수행되어야 하므로 복잡도가 증가하는 문제점이 있다.
도 4는 SISO 기반 통신 시스템에서 사용하는 패킷의 TRN 필드에서 빔 트레이닝을 위해서 수행하는 AGC 동작 흐름도의 일 예이다. 설명의 편의상, 도 4는 송신단이 최적의 수신빔을 결정하는 경우를 예로 들어 설명하지만, 최적의 송신빔을 결정하는 경우에도 동일하게 적용 가능하다. 마찬가지로, 수신단이 최적의 송신빔 및 수신빔을 결정하는 경우에도 동일하게 적용 가능하다.
도 4를 참조하면, 400단계에서 송신단은 빔 트레이닝을 수행할 빔 조합 인덱스 i를 확인한다. 여기서, 하나의 송신빔과 하나의 수신빔으로 구성할 수 있는 전체 빔조합의 수를 K라 가정하고, i는 빔 조합 인덱스를 나타낸다. 그리고, 402단계에서 송신단은 상기 빔 조합 인덱스 i에 대응하는 빔 조합을 통해서 수신한 신호의 수신 전력 크기(P)를 일 예로, 하기 <수학식 1>을 사용하여 결정한다.
Figure PCTKR2016005654-appb-M000001
여기서, 해당 빔 조합을 통해서 수신한 수신 신호는 총 N개의 샘플(sample)들로 구성된 경우를 가정하고, n은 샘플 인덱스를 나타낸다. 그리고, Pi[n]은 빔 조합 인덱스 i에 대응하는 빔 조합을 통해서 수신한 신호를 구성하는 n번째 샘플에서의 수신 전력을 나타내고, Yi[n]은 빔 조합 인덱스 i에 대응하는 빔조합을 통해서 수신한 n번째 샘플을 나타내고, LAGC는 수신 전력 크기를 측정하기 위한 윈도우(window) 크기를 나타낸다. 본 실시 예에서는 TRN 구간에서 빔 트레이닝을 수행할 모든 빔 조합 각각에 대해 해당 빔 조합으로부터 수신한 신호의 수신 전력 크기를 상기 <수학식 1>을 기반으로 결정한다. 이에 따라, 404단계에서 송신단은 상기 빔 조합 인덱스 i가 전체 빔 조합의 수인 K와 동일한지 확인한다. 상기 확인 결과, i가 K보다 작으면, 400단계 내지 404단계를 반복한다. 상기 확인 결과, i가 K와 같으면, 406단계에서 송신단은 전체 빔조합 들 각각에 대해 계산된 수신 전력 크기 중 하기 <수학식 2>를 사용하여 최대값을 선택한다.
Figure PCTKR2016005654-appb-M000002
그리고, 408단계에서 송신단은, 상기 <수학식 2>를 통해서 획득한 수신 전력 크기의 최대값을 이용하여, 하기 <수학식 3>에 따라 AGC 이득을 계산한다.
Figure PCTKR2016005654-appb-M000003
여기서, GAGC[t]는 t번째 패킷에서의 AGC 이득을 나타낸다. 여기서,
Figure PCTKR2016005654-appb-I000001
는 하기 <수학식 4>와 같이 계산된다.
Figure PCTKR2016005654-appb-M000004
여기서, Gpre는 미리 정의된 이득값의 기준치(reference)를 나타낸다. 그리고, 상기 <수학식 2> 내지 <수학식 4>를 기반으로, 해당 패킷의 AGC 이득이 결정되면, 결정된 AGC 이득을 해당 패킷의 송신빔 또는 수신빔을 위한 TRN 구조에 적용하여 하기 <수학식 5>와 같이 양자화(quantization)를 수행한다.
Figure PCTKR2016005654-appb-M000005
여기서,
Figure PCTKR2016005654-appb-I000002
는 q 비트의 양자화 함수(quantization function)을 나타낸다.
그리고, 410단계에서 상기 송신단은 상기 <수학식 5>를 기반으로 획득한 양자화된 신호에 대해 빔 트레이닝을 수행한다. 즉, 상기 송신단은 상기 양자화된 신호의 수신 전력 크기를 측정하고, 하기 <수학식 6>과 같이 상기 측정한 수신 전력 크기에 대응하는 빔 인덱스에 대응하는 빔을 SISO 기반의 최적의 빔으로 추정한다.
Figure PCTKR2016005654-appb-M000006
여기서, beam_idx는 양자화된 신호의 수신 전력 크기에 대해 추정한 빔 인덱스(beam index)를 나타내고, Pi는 하기 <수학식 7>을 이용하여 계산된다.
Figure PCTKR2016005654-appb-M000007
여기서, Pi[n]은 시간 도메인 상에서 빔 조합 인덱스 i에 대응하는 빔 조합을 통해서 수신한 신호의 n번째 샘플에 대해 추정한 수신 전력 크기를 나타내고, L_measurement는 수신 전력 크기의 측정을 위한 윈도우 길이를 나타낸다.
이후, 412단계에서 상기 추정한 빔 조합의 인덱스가 K와 동일한지 확인한다. 상기 확인 결과, 상기 추정한 빔 조합의 인덱스가 K보다 작으면 408단계로 복귀한다. 상기 확인 결과, 상기 추정한 빔 조합의 인덱스가 K와 같으면, 상기 송신단은 도 4a의 동작을 종료한다.
한편, SISO 기반 통신 시스템에서 채널 용량(channel capacity)은 하기 <수학식 8>과 같이 수신 신호의 SNR을 이용하여 나타낼 수 있다.
Figure PCTKR2016005654-appb-M000008
그리고, <수학식 8>에서의 SNR(signal to noise ratio)은 하기 <수학식 9>에 나타낸 바와 같이, 수신 신호의 양자화 잡음을 고려하여 나타낼 수 있다.
Figure PCTKR2016005654-appb-M000009
여기서,
Figure PCTKR2016005654-appb-I000003
는 신호성분,
Figure PCTKR2016005654-appb-I000004
는 잡음 성분,
Figure PCTKR2016005654-appb-I000005
는 양자화 잡음 성분을 나타낸다. 상기 <수학식 9>에서와 같이 수신 신호의 양자화 잡음이 SNR에 영향을 끼치고, 채널 용량은 SNR에 대한 증가함수로 나타난다. 그러나, 이러한 양자화 잡음은 <수학식 7>에서 나타낸 바와 같이 SISO기반 최적의 빔 조합 인덱스의 추정 시 영향을 주지 않는다.
이와 비교하여, MIMO 기반 통신 시스템에서의 채널 용량은 하기 <수학식 10>에 나타낸 바와 같이, SISO 기반 통신 시스템에서의 채널 용량 계산 시 고려되지 않는 채널의 랭크(rank)를 고려해야 함을 알 수 있다.
Figure PCTKR2016005654-appb-M000010
여기서, I는 NRxNR 크기의 identity matrix를 나타내고,
Figure PCTKR2016005654-appb-I000006
는 송신전력, No는 잡음, H는 NRxNT 크기의 채널 이득 행렬을 나타낸다. 그리고, NR은 수신 안테나의 개수를 나타내고, NT는 송신 안테나의 개수를 나타낸다.
도 5는 SISO 기반 통신 시스템에서 서로 다른 크기의 신호 수신 시 양자화 과정의 일 예를 보여주는 도면이다.
도 5를 참조하면, SISO 기반 패킷의 TRN 구간(500)은 일 예로, 총 4개의 빔조합들 각각에 대응하는 서브 필드들을 포함하는 AGC 구간(502)과, 하나의 CE구간 및 상기 총 4개의 빔조합들 각각에 대응하는 TRN 서브 필드들로 구성된 TRN 유닛(504)으로 구성된다. 이 경우, 상기 TRN 유닛(504)에 포함된 4개의 TRN 서브 필드들 각각에서 수신한 신호의 수신 전력 크기가 서로 다른 경우를 가정하자. 그리고, 총 4개의 빔 조합을 통해 수신되는 신호 중, 빔 인덱스 1에 대응하는 빔 조합을 통해서 수신되는 제1신호의 수신 전력 크기가 최대값을 갖지만, 상기 제1신호의 랭크가 1에 가까운 경우를 가정하자. 그리고 빔 조합 인덱스 3에 대응하는 빔 조합을 통해서 수신되는 제3신호의 수신 전력 크기가 상기 제1신호의 수신 전력 크기보다 낮지만, 상기 제3신호의 랭크가 1보다 큰 경우를 가정하자. 이 경우, 최대값을 가지는 상기 제1신호의 수신 전력 크기(506)를 기반으로, 상기 <수학식 3>에 따라 계산된 AGC 이득이 나머지 신호 수신 구간들에 적용된다. 이에 따라, 빔조합 인덱스2 내지 4에 대응하는 빔 조합을 통해서 수신한 신호들은 해당 신호의 수신 전력 크기와 상이한 AGC 이득이 적용됨에 따라 양자화 잡음이 참조 번호 508에 나타낸 바와 같이 발생하게 된다.
상기 <수학식 10>에 나타낸 바와 같이, MIMO 기반 채널 용량을 획득하기 위해서는 채널 이득 행렬이 사용되므로, 해당 빔 조합별 채널 추정이 선행되어야 한다. 예를 들어, 빔 조합 인덱스 i에 대응하는 빔 조합의 채널 추정치는 하기 <수학식 11>과 같이 계산될 수 있다.
Figure PCTKR2016005654-appb-M000011
여기서,
Figure PCTKR2016005654-appb-I000007
는 빔 조합 인덱스 i에 대응하는 빔 조합에 대해 k번째 서브 채널에서의 채널 추정치를 나타내고, Hi(k)는 빔 조합 인덱스 i에 대응하는 빔 조합에 대해 k번째 서브 채널에서의 실제 채널을 나타내고, Wi(k)는 잡음, Ni,Q(k)는 양자화 잡음을 나타낸다. 상기 <수학식 11>에 나타난 바와 같이, MIMO 기반 채널 용량의 계산 시, 양자화 잡음으로 인해 채널 용량을 정확히 측정하기 어렵다. 또한, 빔 조합마다 잡음 Wi(k)는 평균적으로 동일한데 반해, Ni,Q(k)는 서로 다르게 영향을 주기 때문에, 빔 조합 별로 공정하게 채널 용량을 측정하지 않는 형태가 된다.
도 6은 SISO 기반 패킷 구조를 MIMO 채널의 용량 측정을 위해서 사용한 경우의 결과 그래프의 일 예이다.
도 6을 참조하면, 도 5의 실시 예에서 랭크가 1보다 큰 상기한 빔 조합 인덱스 3에서 획득할 수 있는 최대 채널 용량(300)과 비교하여, 상기 빔 조합3에서의 실질적인 채널 용량(302)은 낮은 값을 가진다.
그리하여, 본 개시의 실시 예에서는 기존의 SISO 기반 TRN 구조에서 각 빔 조합에 대해 AGC를 수행하는 방안을 제안한다.
도 7a는 본 개시의 실시 예에 따른 SISO 기반 TRN 구조를 기반으로 각 빔 조합에 대해 AGC를 수행하는 패킷 구조의 일 예이다.
도 7a를 참조하면, TRN 구간(700)은 일 예로, 총 2개의 송신 안테나 및 수신 안테나로 구성되는 MIMO 채널에 적용되는 경우를 가정하자. 이 경우, 상기 TRN 구간(700)은 CE 필드(702)와 상기 MIMO 채널을 구성하는 4개의 송수신 빔 조합들 각각에 대해 AGC를 수행하는 AGC 구간(704) 및 상기 빔조합들 각각에 대한 TRN 서브 필드들을 포함하는 빔 트레이닝 구간(706)으로 구성될 수 있다.
도 7b는 본 개시의 실시 예에 따라 도 7a의 TRN 구간을 기반으로 빔 트레이닝을 수행하는 동작 흐름도의 일 예이다. 설명의 편의상, 도 7b의 빔 트레이닝은 송신단이 최적의 수신빔을 결정하는 경우를 가정한다.
도 7b를 참조하면, 720단계에서 첫 번째 빔 조합 인덱스 i를 확인하고, 722단계에서 상기 빔 조합 인덱스 i에 대응하는 빔 조합을 통해서 수신된 신호의 수신 전력 크기를 측정한다. 예를 들어, 빔 조합 인덱스 i에 대응하는 빔 조합을 통해서 수신한 신호의 수신 전력 크기를 상기 <수학식 1>과 같이 나타낼 수 있다. 그리고, 724단계에서 송신단은 하기 <수학식 12>를 이용하여 미리 결정된 이득값 GPre로부터 빔 조합 인덱스 i의 이득값을 감산하여 GPre에 대한 이득차를 계산한다.
Figure PCTKR2016005654-appb-M000012
여기서,
Figure PCTKR2016005654-appb-I000008
는 GPre에 대한 빔 조합 인덱스 i에 대응하는 빔조합의 이득차를 나타낸다. 그리고, 726단계에서 상기 송신단은 상기 GPre에 대한 이득차를 이용하여, 하기 <수학식 13>에 따라 빔 조합 인덱스 i에 대응하는 상기 빔 조합의 AGC 이득을 계산한다.
Figure PCTKR2016005654-appb-M000013
여기서,
Figure PCTKR2016005654-appb-I000009
는 시간 도메인 상에서 t번째 패킷을 빔 조합 인덱스 i에 대응하는 빔 조합을 통해서 수신한 경우의 AGC이득을 나타낸다. 그리고, 728단계에서 상기 <수학식 13>에서 추정한 t번째 패킷의 빔 조합 인덱스 i에 대응하는 빔 조합의 AGC 이득을 이용하여, 상기 빔 조합을 통해서 수신한 신호에 대해 상기 <수학식 5>를 이용하여 양자화를 수행한다. 이후, 730단계에서 송신단은 상기 빔 조합의 양자화된 수신 신호에 대해 빔 트레이닝을 수행한다. 즉, 상기 송신단은 상기 양자화된 신호의 수신 전력 크기를 측정하고, 상기 <수학식 6>과 같이 상기 측정한 수신 전력 크기에 대응하는 빔 인덱스에 대응하는 빔 조합을 최적의 빔 조합으로 추정한다. 그리고, 732단계에서 상기 빔 트레이닝을 수행한 신호에 대응하는 빔 조합 인덱스가 K인지 확인한다. 상기 확인 결과, K이면, 도 7b의 동작을 종료한다. 만약, 상기 확인 결과, 상기 빔 조합 인덱스 i가 K보다 작으면, 송신단은 720단계로 복귀하여 다음 차례의 빔조합 인덱스에 대해 도 7b의 동작들을 수행한다.
상기한 바와 같이 도 7a,b의 실시 예에서는 빔 조합별로 다르게 계산된 AGC 이득(708 내지 714)들을 이용하여 해당 빔 조합을 통해서 수신한 신호에 대해 양자화를 수행함에 따라 도 7a의 그래프에서 나타낸 바와 같이 각 빔 조합의 수신 신호에 대한 양자화 후 발생하는 양자화 잡음이 감소하게 된다. 이에 따라, 각 빔조합 별 빔 트레이닝 구간에서 추정한 채널은 하기 <수학식 14>에서와 같이 나타낼 수 있다.
Figure PCTKR2016005654-appb-M000014
여기서,
Figure PCTKR2016005654-appb-I000010
와 상기 <수학식 11>에서 소개된 양자화 잡음 Ni,q(k)의 관계는 하기 <수학식 15>와 같이 나타내어질 수 있다.
Figure PCTKR2016005654-appb-M000015
즉, 상기 <수학식 15>에 나타낸 바와 같이 본 개시의 실시 예에 따른 양자화 잡음
Figure PCTKR2016005654-appb-I000011
은 각 송신 빔 별로 SISO 기반 채널 용량 추정 시 발생하는 양자화 잡음에 비해 최소화할 수 있다. 이에 따라, 본 개시의 실시 예에서는 SISO 기반 TRN 구조를 확장하여 각 빔 조합 별 AGC 이득을 효율적으로 계산할 수 있는 A-TRN(Advanced TRN) 구조를 제안함으로써, MIMO 채널에 대해 양자화 잡음을 고려한 최적의 빔 조합을 선택할 수 있다.
도 8은 도 7a,b의 실시 예에 따른 빔 트레이닝이 적용된 MIMO 채널에 대한 채널 용량의 일 예를 보여주는 도면이다.
도 8을 참조하면, 도 7a,b의 실시 예가 적용된 빔 조합 인덱스 3의 채널 용량(802)은 도 4a의 실시 예가 적용된 빔 조합 인덱스 3의 채널 용량(808)과 비교하여 빔 조합 인덱스 3의 이상적인 채널 용량에 근접함을 나타내고 있다.
도 7a,b의 실시 예에 따라 송신단은 A-TRN 구간의 빔 트레이닝을 통해서 최적의 빔 조합을 선택하고, 선택된 빔 조합의 인덱스를 수신단으로 피드백할 수 있다. 여기서, 상기 빔 조합의 인덱스는 도 9와 같이 구성되는 SISO 기반 통신 시스템에서 사용하는 채널 측정 피드백 정보에 포함될 수 있다.
도 9를 참조하면, 채널 측정 피드백 정보 중 A-TRN 구간에 포함된 빔 조합에 대응하는 각 서브 필드마다 측정하는 채널 추정치와, 탭 지연(Tap delay) 정보의 경우, 현재 설정되어 있는 서빙 빔 조합에 대한 상대적인 채널 추정치를 피드백해야 한다. 그러나, 도 7a,b의 실시 예에 따라 빔 조합 별로 AGC 이득을 계산할 경우, 서빙 빔 조합의 AGC 이득과 빔 조합 별 AGC 이득이 다르기 때문에, 현재 서빙 빔조합에서의 채널값과 비교하여, 트레이닝 하기 위한 후보 빔 조합에서의 채널 값을 상대적인 값으로 나타낼 수가 없다. 따라서, 본 개시의 다른 실시 예에서는 서빙 빔 조합과 해당 후보 빔 조합 간의 AGC 이득값들에 대한 상대적인 값을 올바르게 측정하기 위한 방안을 제안한다.
도 10a는 본 개시의 다른 실시 예에 따른 A-TRN 구조의 일 예를 나타낸 도면이다.
도 10a를 참조하면, 본 개시의 실시 예에 따른 A-TRN 구조(1000)는 지원 가능한 빔 조합들 각각에 일대일로 매핑되는 TRN 유닛을 포함한다. 설명의 편의상, 도 10a는 상기 TRN 구조(1000) 내에 총 N개의 빔 조합에 대응하는 TRN 유닛이 존재하는 경우를 가정하자.
그리고, 본 개시의 실시 예에 따른 각 TRN 유닛은, 양자화 에러를 최소화시키기 위해서, 각각 하나의 CE 필드와, AGC 구간 및 TRN 서브 필드로 구성된다. 여기서, CE 필드(1004)는 현재 서빙되는 서빙 빔 조합에 대응하는 채널을 측정하는 구간이다. 도 10a에서 btx와 brx 각각은 상기 서빙 빔 조합을 구성하는 송신빔과 수신빔의 인덱스를 나타낸다. 그리고, 각 TRN 유닛 내에 포함된 AGC 구간은 해당 TRN 유닛에 대응하는 후보 빔 조합의 AGC 이득을 측정하기 위한 구간이고, TRN 서브 필드는 상기 후보 빔 조합의 빔 트레이닝 및 채널 측정을 수행하는 구간이다. 그리고, t1, … , tN은 각 TRN 유닛에 매핑되는 송신빔의 인덱스를 나타내고, r1, … ,rN은 각 TRN 유닛에 매핑되는 수신빔의 인덱스를 나타낸다.
설명의 편의상, 송신단이 최적의 빔조합을 선택하는 경우를 가정하자. 그러면, 상기 송신단은, TRN 유닛1(1002)의 CE 필드(1004)를 통해서 현재 서빙 빔 조합에 대응하는 채널을 측정한다. 그리고, AGC 구간(1006)을 통해서 상기 TRN 유닛 1(1002)에 매핑되는 빔조합1에 대한 AGC 이득을 계산하고, TRN 서브 필드를 이용하여 해당 후보빔 조합의 빔 트레이닝을 수행한다. 상기 빔조합 1은 송신빔 t1과 수신빔 t2로 구성된다. 마찬가지로, 나머지 빔조합들 각각에 대응하는 TRN 유닛을 통해서 해당 후보 빔조합의 AGC 이득 계산 및 빔 트레이닝을 수행한다. 도 10a의 실시 예에서 AGC 구간에서 해당 TRN 유닛에 매핑되는 후보빔 조합의 AGC 이득은 도 10b와 같이 구성되는 채널 추정 블록을 통해서 획득될 수 있다.
도 10a에 개시된 바와 같이, 본 개시의 실시 예에 따른 A-TRN 구조를 기반으로 빔 트레이닝 절차를 수행할 경우, 해당 노드는 A-TRN 구조를 기반으로 동작함을 지시하는 플래그(flag)를 수신측에게 전송한다. 이에 따라, 수신측은 플래그의 수신 여부에 따라 빔 트레이닝 절차를 통해서 수신한 패킷이 A-TRN 구조인지 아니면, 기존의 SISO 기반인지를 확인하여 동작할 수 있다.
도 10b는 도 10a의 A-TRN 구조를 기반으로 채널 추정을 수행하는 블록도의 일 예이다. 도 10b의 블록 구성은 일 예로서 도시된 것일 뿐, 각 서브 유닛들이 보다 세분화되거나 하나의 유닛으로 통합되는 등과 같이 다르게 구성될 수 있고, MIMO 채널에 대한 빔 트레이닝을 수행하고자 하는 송신 노드 또는 수신 노드 내에 포함되어 구성될 수 있다.
도 10b를 참조하면, 일 예로, 채널 추정 블록(1010)은, 수신 신호 판단부(1011)가 입력된 신호가 CE 필드를 지시하는지 아니면, TRN 필드를 지시하는 지를 확인한 확인 결과에 따라 크게 2개의 패스로 분리되도록 구성될 수 있다. 먼저, 해당 수신 신호가 CE 필드를 지시하는 경우, 상기 CE 필드에 대응하는 서빙 빔 조합을 통해서 수신한 신호의 채널 추정이 채널 이득 계산부1(1012)와, 양자화부1(1014) 및 채널 추정부1(1016)을 통해서 수행된다. 상기 채널 이득 계산부1(1012)는 현재의 서빙 빔 조합에 대응하는 서빙 채널을 통해서 수신한 신호의 AGC 이득 Gbtx,brx을 계산하여 저장하고, 상기 양자화부1(1014) 및 이득 보상 계수 추정부(1018)에게 전달한다. 그리고, 상기 채널 추정부1(1016)는 상기 서빙 조합의 AGC 이득을 이용하여 상기 서빙 채널값
Figure PCTKR2016005654-appb-I000012
을 추정하고(P는 파일럿 신호), 상기 서빙 채널값의 추정치를 상대 채널 추정부(1019)에게 전달한다.
그리고, 상기 수신 신호가 TRN 필드를 지시할 경우, A-TRN 플래그 확인부(1011-1)를 통해서 해당 TRN 필드가 A-TRN 필드인지 아니면, 기존의 SISO 기반 TRN 필드인지 추가로 확인한다. 앞서 설명한 바와 같이, 상기 A-TRN 플래그 확인부(1011-1)는 상기 신호가 수신되기 전 미리 결정된 구간을 통해서 수신한 A-TRN 플래그의 존재 여부에 따라 상기 TRN 필드가 A-TRN 필드인지 아니면, 기존의 SISO 기반 TRN 필드인지를 확인한다. 그리고, 상기 확인 결과에 따라 상기 TRN 필드가 A-TRN 필드인 경우, 채널 이득 계산부2(1013)를 먼저 거친 후, 상기 CE 필드와 마찬가지로, TRN 필드에 대응하는 후보 빔 조합을 통해서 수신한 신호에 대응하는 채널 측정이 양자화부 2(1015) 및 채널 추정부2(1017)를 통해서 수행된다.
구체적으로, 상기 확인 결과에 따라 A-TRN 필드인 경우, 상기 채널 이득 계산부2(1013)는 빔 트레이닝을 수행할 후보 빔 조합들 각각에 대한 AGC 이득 Gtn,rn 을 계산하여 저장하고, 양자화부2(1015) 및 이득 보상 계수 추정부(1018)에게 전달한다. 다음으로, 상기 양자화부2(1015)는 TRN 필드 또는 A-TRN 필드에 대응하는 채널 이득의 양자화를 수행한다.
먼저, 기존의 TRN 필드의 경우, 상기 양자화부2(1015)는 서빙 빔 조합에 대응하는 서빙 채널의 AGC 이득을 이용하여 상기 TRN 필드에 해당하는 후보 빔 조합을 통해서 수신한 신호에 대해 양자화Q(Gbtx,brxyi)를 수행한다. 그리고, A-TRN 필드의 경우, 상기 양자화부 2(1015)는 상기 채널 이득 계산부2(1013)로부터 입력받은 해당 후보 채널의 AGC 이득을 이용하여 상기 A-TRN 필드에 해당하는 후보 빔 조합을 통해서 수신한 신호에 대해 양자화Q(Gtn,rmyi)를 수행하여 채널 추정부2(1017)에게 전달한다.
한편, 이득 보상 계수 추정부(1018)는 상기 채널 이득 계산부1(1012)의 서빙 빔 조합의 서빙 채널 추정치와, 상기 채널 이득 계산부(1013)의 해당 후보 빔 조합의 후보 채널 추정치가 입력된다. 그러면 상기 이득 보상 계수 추정부(1018)는 상기 서빙 빔 조합의 채널 추정치와 상기 후보 빔 조합의 채널 추정치 간에 차이 값을 보상하기 위한 가중치 계수 Wcom을 추정한다.
상기 채널 추정부2(1018)는 후보 채널의 AGC 이득과 파일럿 신호 P를 이용하여 상기 후보 채널값
Figure PCTKR2016005654-appb-I000013
을 추정할 수 있다. 상기 채널 추정부2(1017)는 상기 양자화부2(1015)를 통해서 기존의 TRN 필드에 대응하는 양자화 신호와 A-TRN 필드에 대응하는 양자화 신호 중 하나를 수신하게 된다. 따라서, 상기 채널 추정부2(107)의 채널 추정치를 A-TRN 플래그 확인부(1017-1)로 입력한다. 그러면, 상기 A-TRN 플래그 확인부(1017-1)는 상기 채널 추정치가 양자화 신호가 A-TRN 필드를 기반으로 하는 지 아니면, 일반 TRN 필드를 기반으로 하는지 다시 확인한다. 상기 확인 결과, A-TRN 필드를 기반으로 할 경우, 상기 이득 계수 추정부(1018)로부터 출력되는 가중치 계수를 상기 후보 채널 추정치에 곱하여 상대 채널 추정부(1019)로 출력하게 된다. 그리고, 상기 확인 결과, 기존의 TRN 필드를 기반으로 하는 후보 채널 추정치일 경우, 상기 후보 채널 추정치를 그대로 상기 상대 채널 추정부(1019)로 전달한다. 그러면, 상기 상대 채널 추정부(1019)는 해당 TRN 필드에 대응하는 후보 채널의 상대적인 채널 추정값
Figure PCTKR2016005654-appb-I000014
을 계산한다. 즉, 기존 TRN 필드일 경우, 상기 상대 채널 추정부(1019)는 후보 채널 추정치에서 상기 서빙 채널 추정치를 감산하여 상대적인 채널 추정값을 획득한다. 그리고, A-TRN 필드일 경우, 상기 상대 채널 추정부(1019)는 상기 가중치 계수 Wcom가 곱해진 후보 채널 추정치에서 상기 서빙 채널 추정치를 감산하여 상대적인 채널 추정값을 획득한다.
도 11a는 본 개시의 다른 실시 예에 따라 A-TRN 구조의 다른 예를 나타낸 도면이다.
도 11a의 실시 예에 따른 TRN 필드(1100)는 도 10a의 TRN 필드(1000)의 구조와 비교하여, 상기 TRN 필드(1100) 내에 포함된 TRN 유닛들 각각을 구성하는 CE 필드와 AGC 구간의 위치가 상이하다. 예를 들어, TRN 유닛 1(1102)은 AGC 구간(1104)이 CE 필드(1106) 앞에 위치한다. 이에 따라, 도 10a의 실시 예에 따른 TRN 유닛들 각각에서 AGC 구간과 TRN 서브 필드가 연속적으로 배치됨에 따라 동일 TRN 유닛 내에서 빔 스위칭이 발생하지 않는다. 이와 비교하여, 도 11a의 실시 예에 따른 TRN 유닛은 AGC 구간 및 TRN 서브 필드 사이에 CE 필드가 배치됨에 따라 동일 TRN 유닛 내에서 빔 스위칭이 3번 발생하게 된다.
도 11b는 도 11a의 TRN 구조를 기반으로 동작하는 채널 측정 블록의 일 예이다. 이러한 채널 측정 블록은 MIMO 채널에 대한 빔 트레이닝을 수행하고자 하는 송신 노드 또는 수신 노드 내에 포함되여 구성될 수 있다.
도 11b를 참조하면, 본 개시의 실시 예에 따른 채널 추정 블록(1110)은 일 예로, 서빙 채널의 채널 이득 계산부(1112), 후보 채널의 채널 이득 계산부(1114), 비교부(1116), 채널 추정부(1118) 및 빔 트레이닝 및 채널 측정부(1120)을 포함하여 구성될 수 있다. 도 11b의 블록 구성은 일 예로서 도시된 것일 뿐, 각 서브 유닛들이 보다 세분화되거나 하나의 유닛으로 통합되는 등과 같이 다르게 구성될 수 있다.
상기 서빙 채널의 채널 이득 계산부(112)는 서빙 채널에 대한 AGC 이득을 미리 추정하여 저장하고 있다. 상기 서빙 채널의 AGC 이득은 예를 들어, 도 1의 패킷 구조에서 프리엠블에 해당하는 SFT(102)를 통해서 추정될 수 있다. 그리고, 상기 후보 채널의 채널 이득 계산부(114)는 각 TRN 유닛에 대응하는 후보 빔 조합의 AGC 이득을 계산하여 상기 비교부(1116)에게 전달한다.
그러면, 상기 비교부(1116)는 서빙 채널의 AGC 이득과 해당 후보 빔의 AGC 이득을 비교하고, 이 중 최대값을 선택하여 채널 추정부(1118) 및 상기 빔 트레이닝 및 채널 측정부(1120)에게 전달한다. 그러면, 상기 채널 추정부(1118)와 상기 빔 트레이닝 및 채널 측정부(1120)는 각각 상기 최대값을 기반으로 채널 추정 및 양자화를 적용하여 빔 트레이닝을 수행함에 따라 해당 TRN 유닛에서 수신한 신호가 saturation되는 현상을 막을 수 있다. 이 경우, 양자화 에러는 발생할 수 있느나, 현재 서빙 조합의 신호와 해당 후보 조합의 신호만을 비교하므로, 양자화 에러로 발생하는 성능 열화는 그리 크지 않다. 그리고, 상기 빔 트레이닝 및 채널 측정부(1120)는 상기 채널 추정부(118)로부터 서빙 조합의 채널 추정치와, 후보 빔 별 채널 추정치를 비교함에 따라 상대적인 채널 측정치를 추정할 수 있다.
도 10a 내지 도 11b의 실시 예를 기반으로, 현재 서빙 빔 조합과 해당 후보 빔 조합간의 상대적인 채널 측정치를 획득함에 따라, 도 9에 도시한 바와 같은 기존의 SISO 기반 채널 측정 피드백 정보를 이용하여 MIMO 채널에 대한 채널 추정치를 피드백할 수 있다.
한편 본 개시의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 개시의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 개시의 범위는 설명된 실시 예에 국한되어 정해져서는 안되며 후술하는 특허 청구의 범위뿐만 아니라 이 특허 청구의 범위와 균등한 것들에 의해 정해져야 한다.

Claims (15)

  1. 다중 입출력(MIMO: Multiple Input Multiple Output) 기반 빔포밍을 지원하는 통신 시스템에서 송신단이 채널을 추정하는 방법에 있어서,
    상기 송신단의 송신빔들과 수신단의 수신빔들 중 적어도 하나의 송신 빔과 적어도 하나의 수신빔으로 구성되는 복수개의 후보빔 조합들 각각에 대응하는 채널 추정 구간을 통해서 상기 복수개의 후보빔 조합들 각각의 후보 채널 추정치를 획득하는 과정과, 여기서, 상기 복수개의 후보빔 조합들 각각에 대응하는 채널 추정 구간은 상기 송신단과 수신단의 서빙 빔 조합에 대응하는 서빙 채널 추정 구간과, 상기 복수개의 후보빔 조합 중 하나의 후보빔 조합의 채널 이득 추정 구간 및 상기 후보빔 조합의 채널 추정 구간을 포함하여 구성되며,
    상기 획득한 후보 채널 추정치들을 기반으로 상기 송신단과 상기 수신단의 최적의 채널 추정값을 획득하는 과정을 포함하는 채널 추정 방법.
  2. 제1항에 있어서, 상기 복수개의 후보빔 조합들 각각에 대응하는 채널 추정 구간을 기반으로 상기 채널 추정값을 추정함을 지시하는 정보를 상기 수신단에게 전송하는 과정을 더 포함하는 채널 추정 방법.
  3. 제1항에 있어서, 상기 복수개의 후보빔 조합들 각각의 후보 채널 추정치를 획득하는 과정은,
    상기 복수개의 후보빔 조합들 중 제1후보빔 조합에 대응하는 제1채널 추정 구간에 포함된 제1서빙 채널 추정 구간을 통해서 서빙 채널 추정치를 획득하는 과정과,
    상기 제1채널 추정 구간에 포함된 제1후보 채널 추정 구간을 통해서 상기 제1후보빔 조합의 제1후보 채널 추정치를 획득하는 과정과,
    상기 제1후보 채널 추정치에서 상기 서빙 채널 추정치를 감산하여 상대적인 채널 추정값을 획득하는 과정을 포함하는 채널 추정 방법.
  4. 제1항에 있어서, 상기 상대적인 채널 추정값을 획득하는 과정은,
    상기 제1후보 채널 추정치에 가중치 계수를 곱하는 과정을 포함하는 채널 추정 방법.
  5. 제3항에 있어서, 상기 서빙 채널 추정치를 획득하는 과정은,
    기준 이득값과의 전체 빔 조합의 수신 전력 최대값간의 차이값을 기반으로 상기 서빙 빔 조합을 구성하는 서빙 송신빔 및 서빙 수신빔을 통해서 수신한 신호의 이득값을 계산하는 과정과,
    상기 계산된 이득값을 기반으로 상기 서빙 채널 추정치를 획득하여 양자화 하는 과정을 포함하는 채널 추정 방법.
  6. 제3항에 있어서, 상기 제1후보 채널 추정치를 획득하는 과정은,
    기준 이득값과의 전체 빔 조합의 수신 전력 최대값간의 차이값을 기반으로 상기 제1후보빔 조합을 구성하는 제1후보 송신빔 및 제1후보 수신빔을 통해서 수신한 신호의 이득값을 계산하는 과정과,
    상기 계산된 이득값을 기반으로 상기 제1후보 채널 추정치를 획득하여 양자화하는 과정을 포함하는 채널 추정 방법.
  7. 제1항에 있어서, 상기 복수개의 후보빔 조합들 각각에 대응하는 채널 추정 구간은, 상기 서빙 채널 추정 구간과, 해당 후보빔 조합의 채널 이득 추정 구간 및 상기 후보빔 조합의 채널 추정 구간을 순차적으로 포함하여 구성됨을 특징으로 하는 채널 추정 방법.
  8. 제1항에 있어서, 상기 구성하는 과정은,
    상기 복수개의 후보빔 조합들 각각에 대응하는 채널 추정 구간을 해당 후보빔 조합의 채널 이득 추정 구간과, 상기 서빙 채널 추정 구간 및 상기 후보빔 조합의 채널 추정 구간을 순차적으로 포함하여 구성됨을 특징으로 하는 채널 추정 방법.
  9. 다중 입출력(MIMO: Multiple Input Multiple Output) 기반 빔포밍을 지원하는 통신 시스템에서 채널을 추정하는 송신단에 있어서,
    상기 송신단의 송신빔들과 수신단의 수신빔들 중 적어도 하나의 송신 빔과 적어도 하나의 수신빔으로 구성되는 복수개의 후보빔 조합들 각각에 대응하는 채널 추정 구간을 통해서 상기 복수개의 후보빔 조합들 각각의 후보 채널 추정치를 획득하는 제1채널 추정부와, 여기서, 상기 복수개의 후보빔 조합들 각각에 대응하는 채널 추정 구간은 상기 송신단과 수신단의 서빙 빔 조합에 대응하는 서빙 채널 추정 구간과, 상기 복수개의 후보빔 조합 중 하나의 후보빔 조합의 채널 이득 추정 구간 및 상기 후보빔 조합의 채널 추정 구간을 포함하여 구성되며,
    상기 획득한 후보 채널 추정치들을 기반으로 상기 송신단과 상기 수신단의 최적의 채널 추정값을 획득하는 제2채널 추정부를 포함하는 송신단.
  10. 제9항에 있어서, 상기 복수개의 후보빔 조합들 각각에 대응하는 채널 추정 구간을 기반으로 상기 채널 추정값을 추정함을 지시하는 정보를 상기 수신단에게 전송하는 송신부를 더 포함하는 송신단.
  11. 제9항에 있어서, 제1채널 추정부는, 상기 복수개의 후보빔 조합들 중 제1후보빔 조합에 대응하는 제1채널 추정 구간에 포함된 제1서빙 채널 추정 구간을 통해서 서빙 채널 추정치를 획득하는 서빙 채널 추정부와,
    상기 제1채널 추정 구간에 포함된 제1후보 채널 추정 구간을 통해서 상기 제1후보빔 조합의 제1후보 채널 추정치를 획득하는 후보 채널 추정부를 포함하며;
    상기 제2채널 추정부는, 상기 제1후보 채널 추정치에서 상기 서빙 채널 추정치를 감산하여 상대적인 채널 추정값을 획득함을 특징으로 하는 송신단.
  12. 제11항에 있어서, 상기 제2채널 추정부는,
    상기 상대적인 채널 추정값 계산 시 상기 제1후보 채널 추정치에 가중치 계수를 곱함을 특징으로 하는 송신단.
  13. 제11항에 있어서, 상기 서빙 채널 추정부는, 기준 이득값과의 전체 빔 조합의 수신 전력 최대값간의 차이값을 기반으로 상기 서빙 빔 조합을 구성하는 서빙 송신빔 및 서빙 수신빔을 통해서 수신한 신호의 이득값을 계산하여 양자화부에 전달하면, 상기 양자화부가 상기 계산된 이득값을 기반으로 상기 서빙 채널 추정치를 획득하여 양자화함을 특징으로 하는 송신단.
  14. 제11항에 있어서, 상기 제1후보 채널 추정부는,
    기준 이득값과의 전체 빔 조합의 수신 전력 최대값간의 차이값을 기반으로 상기 제1후보빔 조합을 구성하는 제1후보 송신빔 및 제1후보 수신빔을 통해서 수신한 신호의 이득값을 계산하여 양자화부에 전달하면, 상기 양자화부가 상기 계산된 이득값을 기반으로 상기 제1후보 채널 추정치를 획득하여 양자화홤을 특징으로 하는 송신단.
  15. 제11항에 있어서, 상기 복수개의 후보빔 조합들 각각에 대응하는 채널 추정 구간은, 상기 서빙 채널 추정 구간과, 해당 후보빔 조합의 채널 이득 추정 구간 및 상기 후보빔 조합의 채널 추정 구간을 순차적으로 포함하여 구성되거나,
    상기 복수개의 후보빔 조합들 각각에 대응하는 채널 추정 구간을 해당 후보빔 조합의 채널 이득 추정 구간과, 상기 서빙 채널 추정 구간 및 상기 후보빔 조합의 채널 추정 구간을 순차적으로 포함하여 구성됨을 특징으로 하는 송신단.
PCT/KR2016/005654 2015-05-29 2016-05-27 Mimo 기반 빔포밍을 지원하는 통신 시스템에서 채널을 추정하는 방법 및 장치 WO2016195334A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/578,045 US10511360B2 (en) 2015-05-29 2016-05-27 Method and apparatus for estimating channel in communication system supporting MIMO-based beamforming

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0076086 2015-05-29
KR1020150076086A KR102293045B1 (ko) 2015-05-29 2015-05-29 Mimo 기반 빔포밍을 지원하는 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2016195334A1 true WO2016195334A1 (ko) 2016-12-08

Family

ID=57441481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005654 WO2016195334A1 (ko) 2015-05-29 2016-05-27 Mimo 기반 빔포밍을 지원하는 통신 시스템에서 채널을 추정하는 방법 및 장치

Country Status (3)

Country Link
US (1) US10511360B2 (ko)
KR (1) KR102293045B1 (ko)
WO (1) WO2016195334A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102574954B1 (ko) 2015-08-13 2023-09-05 삼성전자주식회사 통신 시스템에서 기준 신호를 송수신하는 방법 및 장치
CN111526543A (zh) * 2019-02-02 2020-08-11 索尼公司 电子设备、通信方法和存储介质
DE102019135900A1 (de) * 2019-02-22 2020-08-27 Samsung Electronics Co., Ltd. Drahtlose Kommunikationsvorrichtung, die zur schnellen Strahlauswahl fähig ist, und Betriebsverfahren derselben
CN111786708B (zh) * 2020-07-02 2022-06-07 电子科技大学 大规模mimo系统的联合信道信息获取方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130089000A1 (en) * 2011-10-11 2013-04-11 Broadcom Corporation Beamforming training within a wireless communication system utilizing a directional antenna
US20130315325A1 (en) * 2012-05-22 2013-11-28 Mediatek Singapore Pte. Ltd. Method and Apparatus of Beam Training for MIMO Operation
WO2014074894A1 (en) * 2012-11-09 2014-05-15 Interdigital Patent Holdings, Inc. Beamforming methods and methods for using beams
US20140198681A1 (en) * 2013-01-15 2014-07-17 Samsung Electronics Co., Ltd. Method and device for measuring signal in beam forming system
KR20140131056A (ko) * 2013-05-03 2014-11-12 삼성전자주식회사 빔포밍을 사용하는 통신 시스템에서 채널 정보 측정 및 피드백을 위한 방법 및 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111266A1 (ja) 2006-03-24 2007-10-04 Matsushita Electric Industrial Co., Ltd. 無線通信端末装置及び無線通信基地局装置
KR101772040B1 (ko) 2013-01-02 2017-08-29 삼성전자주식회사 이동통신 시스템에서 빠른 빔 링크 형성을 위한 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130089000A1 (en) * 2011-10-11 2013-04-11 Broadcom Corporation Beamforming training within a wireless communication system utilizing a directional antenna
US20130315325A1 (en) * 2012-05-22 2013-11-28 Mediatek Singapore Pte. Ltd. Method and Apparatus of Beam Training for MIMO Operation
WO2014074894A1 (en) * 2012-11-09 2014-05-15 Interdigital Patent Holdings, Inc. Beamforming methods and methods for using beams
US20140198681A1 (en) * 2013-01-15 2014-07-17 Samsung Electronics Co., Ltd. Method and device for measuring signal in beam forming system
KR20140131056A (ko) * 2013-05-03 2014-11-12 삼성전자주식회사 빔포밍을 사용하는 통신 시스템에서 채널 정보 측정 및 피드백을 위한 방법 및 장치

Also Published As

Publication number Publication date
KR20160140024A (ko) 2016-12-07
KR102293045B1 (ko) 2021-08-26
US10511360B2 (en) 2019-12-17
US20180152222A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
WO2016036226A1 (en) Method and apparatus for channel-related information feedback in a beamforming system
WO2010005162A1 (en) Collaborative mimo using sounding channel in multi-cell environment
WO2013191517A1 (en) Communication method and apparatus using beamforming in a wireless communication system
WO2013100579A1 (en) Channel state information feedback apparatus and method in wireless communication system operating in fdd mode
WO2014178687A1 (en) Precoder selection method and apparatus for performing hybrid beamforming in wireless communication system
WO2017105126A1 (ko) 무선 통신 시스템에서 비직교 다중 접속을 위한 장치 및 방법
WO2010101425A2 (en) Method and apparatus for eliminating multi-user interference in multi-antenna system
WO2013022274A2 (en) Method and apparatus for determining analog beam in hybrid beam-forming system
TWI526090B (zh) 用於協同操作的波束成形之天線組態
WO2013157785A1 (en) Hierarchical channel sounding and channel state information feedback in massive mimo systems
WO2009136736A2 (en) Method for transmitting and receiving data in a cooperative multiple-input multiple-output mobile communication system
WO2013100719A1 (en) Beamforming method and apparatus for acquiring transmission beam diversity in a wireless communication system
WO2010056008A2 (ko) 다중입력다중출력 시스템에서 신호 전송 방법 및 신호 수신 방법
WO2010079926A2 (ko) 다중 셀 환경에서 comp 수행 셀 결정방법 및 장치
WO2011037413A2 (ko) 다중 송수신 노드를 가지는 인접 셀 간섭 관리 방법 및 장치
WO2009125956A1 (en) Feedback method for performing a feedback by using a codebook in mimo system
WO2011122783A2 (ko) Mimo 통신 시스템에서의 데이터 전송 방법 및 장치
WO2010024556A2 (en) System for transmitting and receiving channel state information
WO2011099714A2 (en) Multiple input multiple output communication method and system for exchanging coordinated rank information for neighbor cell
WO2017023054A1 (en) Methods for acquiring and feeding back channel state information, base station and terminal
WO2016195334A1 (ko) Mimo 기반 빔포밍을 지원하는 통신 시스템에서 채널을 추정하는 방법 및 장치
WO2011013965A2 (en) Downlink pmi coordination based on base station antenna configuration
WO2014119940A1 (en) Per-stream channel gain feedback-based multi-stream mu-cqi estimation method and apparatus
WO2017003208A1 (en) Pmi transmitting method, pmi receiving method and devices thereof
WO2014119922A1 (en) Method and apparatus for feeding back channel estimation in multi-input multi-output system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803689

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15578045

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803689

Country of ref document: EP

Kind code of ref document: A1