WO2016195218A1 - Wireless charging system - Google Patents

Wireless charging system Download PDF

Info

Publication number
WO2016195218A1
WO2016195218A1 PCT/KR2016/002646 KR2016002646W WO2016195218A1 WO 2016195218 A1 WO2016195218 A1 WO 2016195218A1 KR 2016002646 W KR2016002646 W KR 2016002646W WO 2016195218 A1 WO2016195218 A1 WO 2016195218A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless power
wireless
power transmission
transmission module
circuit
Prior art date
Application number
PCT/KR2016/002646
Other languages
French (fr)
Korean (ko)
Inventor
정두원
Original Assignee
주식회사 엘트로닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘트로닉스 filed Critical 주식회사 엘트로닉스
Publication of WO2016195218A1 publication Critical patent/WO2016195218A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • Embodiments of the present invention relate to wireless charging technology.
  • An embodiment of the present invention is to provide a wireless charging system that can reduce the power consumption.
  • An embodiment of the present invention is to provide a wireless charging system that can improve the wireless power transmission efficiency.
  • the wireless charging system includes a wireless power transmission module for transmitting wireless power and at least one wireless charger for receiving the wireless power to charge a battery, wherein the wireless power transmission module is A wireless power transmission circuit generating wireless power and transmitting the same to the air; A first communication block checking whether a wireless charger exists within a preset distance; And a control block for generating a sleep signal to the wireless power transmission circuit when the wireless charger does not exist within the preset distance.
  • the wireless power transmission module may be configured to wirelessly charge a plurality of wireless chargers simultaneously, each of the plurality of wireless chargers including: a receiving coil configured to receive wireless power transmitted from the wireless power transmission module; A matching circuit electrically connected to the receiving coil; And a control block for checking whether the charging of the battery is completed and controlling the matching circuit so that the resonance frequency band of the receiving coil is out of the frequency band of the wireless power when the charging of the battery is completed.
  • the wireless charger may include: a power conversion circuit configured to charge a battery by receiving wireless power transmitted from the wireless power transmission module; A monitoring unit monitoring a change in impedance of the power conversion circuit when the wireless power is received; And a second communication block configured to transmit the information on the impedance change to the wireless power transmission module, wherein the wireless power transmission module is configured to, from the second communication block.
  • the current and voltage of the amplifier in the wireless power transmission circuit may be adjusted using the received information about the impedance change.
  • the power consumption when the mobile device is not charged, the power consumption may be reduced by operating at low power.
  • the power change of the wireless power receiving device to the wireless power transmitting device and accordingly impedance matching through the voltage / current control of the amplifier in the wireless power transmitting side, it is possible to improve the wireless power transmission efficiency. Will be.
  • FIG. 1 is a block diagram illustrating a wireless charging system in accordance with an exemplary embodiment.
  • FIG. 2 is a circuit diagram illustrating a circuit capable of implementing low power in a standby state according to an exemplary embodiment of the present invention.
  • FIG. 3 illustrates a structure of a Class-E amplifier according to an exemplary embodiment.
  • FIG. 4 is a circuit diagram of a Class-E power amplifier according to an exemplary embodiment.
  • FIG. 5 illustrates a rectifier, an analog digital converter (ADC), a low drop out regulator (LDO), and a monitoring circuit of an RF / DC power conversion circuit according to an exemplary embodiment.
  • ADC analog digital converter
  • LDO low drop out regulator
  • FIG. 6 illustrates a DC / DC converter circuit of an RF / DC power conversion circuit according to an exemplary embodiment.
  • FIG. 7 is a graph illustrating a change in current voltage during battery charging in a wireless charger according to an exemplary embodiment.
  • FIG. 8A schematically illustrates a wireless charging system according to an exemplary embodiment.
  • FIG. 8B is a diagram showing a circuit configuration of the wireless charging system shown in FIG. 8A.
  • FIG. 9 is a diagram showing an equivalent circuit of the wireless charging system circuit shown in FIG. 8B.
  • FIG. 10 is a schematic block diagram illustrating a state in which a control block of a wireless power transmission module controls a DC / DC converter to control a voltage current input to an amplifier according to an embodiment of the present invention and a structure of an amplifier.
  • FIG. 11 is a diagram showing a transmission block (wireless power transmission module) of a 6.78 MHz wireless charging system according to an exemplary embodiment.
  • FIG. 12 is a circuit diagram for current and voltage control of an amplifier of a wireless power transmission module according to an exemplary embodiment.
  • the terms "transfer”, “communication”, “transmit”, “receive” and other similar meanings of signals or information are not only meant to directly convey the signal or information from one component to another. It also includes passing through other components.
  • “transmitting” or “sending” a signal or information to a component indicates the final destination of the signal or information and does not mean a direct destination. The same is true for the "reception” of a signal or information.
  • that two or more pieces of data or information are "related” means that if one data (or information) is obtained, at least a portion of the other data (or information) can be obtained based thereon.
  • FIG. 1 is a block diagram illustrating a wireless charging system according to an exemplary embodiment.
  • the wireless charging system 100 includes a wireless power transmission module 102 and a wireless charger 104.
  • the wireless power transmission module 102 transmits wireless power to the air, and the wireless charger 104 receives the wireless power transmitted from the wireless power transmission module 102 to charge the battery.
  • wireless transmission efficiency depends on the efficiency of the amplifier to amplify by DC / RF conversion.
  • the wireless power transmission module 102 may use a Class-E power amplifier that is switchable to an amplifier 111 that converts DC to AC and amplifies it.
  • the wireless power transmission module 102 and the wireless charger 104 may include communication blocks 113 and 133 (ie, communication modules) for bidirectional communication.
  • the wireless power transmission module 102 may recognize the charging situation of the wireless charger 104 through the communication block 113.
  • the wireless power transmission module 102 may charge two or more wireless chargers 104 simultaneously.
  • the 2.4GHz Bluetooth communication module may be used as the communication block 113.
  • the wireless charger 104 supports the charging of the mobile device using the RF / DC power conversion circuit 131.
  • the RF / DC power conversion circuit 131 may rectify the wireless power (ie, AC power) received from the wireless power transmission module 102 into direct current (DC), convert DC-DC, and charge the battery.
  • the wireless power transmission module 102 may have circuitry that can minimize power consumption when not transmitting power (ie, in a standby state).
  • 2 is a circuit diagram illustrating a circuit capable of implementing low power in a standby state according to an exemplary embodiment of the present invention.
  • the wireless power transmission module 102 supplies 3.3V to the control block 125 of the wireless power transmission module 102 to sleep in the control block 125 when there is no wireless charger 104 within a predetermined distance.
  • a signal may be generated to turn off the wireless power transmission circuit 127.
  • the control block 125 may generate a sleep signal to a U1 (DC / DC Converter) chip in the circuit shown in FIG. 2 to turn off the U1 chip.
  • the U1 DC / DC converter operates every 400 ms.
  • the wireless power transmission module 102 may check whether the wireless charger 104 is within a predetermined distance through the communication block 113.
  • Class-E amplifiers are complex in structure but are energy efficient and can be made small.
  • the Class-E amplifier which is the amplifier 111, is designed to sequentially amplify two MOSFETs M1 and M2 by turning them ON / OFF.
  • 3 is a diagram illustrating a structure of a Class-E amplifier according to an exemplary embodiment. The Class-E amplifier shown in FIG. 3 has been proposed for improving intermodulation distortion (IMD).
  • IMD intermodulation distortion
  • the capacitor C0 and the inductor L0 are resonant circuits and may operate as a low pass filter (LPF) in the 6.78 MHz band.
  • the inductor L0 may be implemented to design a corresponding inductance as a resonant antenna of the wireless power transmission module 102 and perform impedance matching only with the capacitor C0.
  • the resonant antenna is viewed as a load, and an inductor is complicated by adding an inductor. Substituting the inductance of the resonant antenna eliminates the need for additional inductors.
  • the gate driver 115 may be used to synchronize the gate input signals of the two MOSFETs M1 and M2 of the amplifier 111.
  • an AND gate and a NAND gate may be used to make the phases of the gate input signals of the two MOSFETs M1 and M2 180 degrees out of phase.
  • 4 shows a circuit diagram of a Class-E power amplifier according to an exemplary embodiment.
  • the wireless charger 104 includes an RF / DC power conversion circuit 131.
  • the RF / DC power conversion circuit 131 includes a monitoring unit 141 for monitoring an input voltage when receiving wireless power, a rectifier 143 for rectifying the received wireless power, and different levels of rectified DC power. It may include a DC-DC converter 145 for converting the DC power of the, and a battery 147 for storing and charging the converted DC power.
  • the monitoring unit 141 may monitor the input voltage.
  • the input voltage of the rectifier 143 of the RF / DC power conversion circuit 131 may be designed to 6.5V ⁇ 60V.
  • the rectifier 134 may include a bridge circuit.
  • FIG. 5 is a diagram illustrating a rectifier, an analog digital converter (ADC), a low drop out regulator (LDO), and a monitoring circuit of the RF / DC power conversion circuit 131 according to an exemplary embodiment.
  • ADC Analog Digital Converter
  • LDO low drop out regulator
  • FIG. 5 the ADC (Analog Digital Converter) used a four-channel ADC IC, of which two channels (battery voltage and DC / DC output voltage monitoring) were used.
  • a circuit using a resistor was designed to reduce the voltage to the ADC input.
  • the Low Drop Out Regulator (LDO) TPS54160 IC has a 0.5V to 58V output and up to 1.5A current output. Rectifier output is expected to be designed up to 60V input. En pin operates in float setting, RT / CLK ping is set as resistor timing and external clock and 581KHz is applied by applying switching frequency as external resistance value of 200K. The distribution resistor was set to 5V output. The DC / DC output goes through the monitoring circuit to the ADC input.
  • 6 is a diagram illustrating a DC / DC converter circuit of the RF / DC power conversion circuit 131 according to an exemplary embodiment.
  • the wireless charging system 100 may use a Bluetooth low power communication mode between the wireless power transmission module 102 and the wireless charger 104.
  • a topology of a star structure in which several slaves (for example, the wireless charger 104) exist in one master (for example, the wireless power transmission module 102) may be used. Power transmission is possible only from the master to the slave, and communication may be implemented to enable bidirectional communication between the master and the slave.
  • the wireless power transmission module 102 When power is supplied to the wireless power transmission module 102, the wireless power transmission module 102 sends a beacon in a standby state through its own setting step to supply power for communication to the wireless charger 104.
  • the wireless charger 104 enters a boot state when the power for communication is transmitted and transmits a connection signal.
  • the wireless power transmission module 102 When the wireless charger 104 sends a connection signal, the wireless power transmission module 102 is in a low power state to prepare for power transmission.
  • the wireless power transmission module 102 may determine whether the wireless charger 104 exists in the vicinity through the reception of the access signal. Power transmission is started while the wireless power transmission module 102 sends a power transmission control signal, and the wireless charger 104 is in a power receiving state.
  • the wireless power transmission module 102 and the wireless charger 104 may include monitoring units 121 and 141 for voltage and current monitoring, respectively. Through the monitoring units 121 and 141, the wireless power transmission efficiency between the wireless power transmission module 102 and the wireless charger 104 may be calculated in real time to control voltage and current for wireless power transmission.
  • the matching circuit of the fully charged wireless charger 104 is controlled to 6.78MHz. (I.e., it is possible to prevent resonance from occurring in the wireless power frequency band).
  • the charging completion of the wireless charger 104 may move the resonance frequency band of the receiving coil of the wireless charger 104 out of the wireless power frequency band by adjusting the impedance of the matching circuit electrically connected to the receiving coil. have. Through this, when charging two or more wireless charger 104 at the same time, it is possible to continue the wireless charging for the remaining wireless charger 104 is not completed.
  • the coupling coefficient changes according to two situations (a situation where the coupling coefficient changes as the distance between the transmitting antenna and the receiving antenna gets closer and the impedance of the receiver changes due to the control method when the battery is charged). This coupling coefficient changes the input impedance by the reflected impedance.
  • the present invention proposes a method for solving impedance matching by adjusting the current and voltage of the amplifier 111 of the wireless power transmission module 102.
  • FIG. 7 is a graph illustrating a change in current voltage when charging a battery in a wireless charger according to an exemplary embodiment.
  • V (voltage) I (current) R ( Resistance)
  • This not only affects the resonance frequency at the receiver side, but also affects the impedance at the transmitter side.
  • FIG. 8A is a diagram schematically illustrating a wireless charging system according to an exemplary embodiment
  • FIG. 8B is a diagram illustrating a circuit configuration of the wireless charging system illustrated in FIG. 8A
  • 9 is a figure which shows the equivalent circuit of the wireless charging system circuit shown to FIG. 8 (b).
  • Equation 1 the input impedance Zin seen by the amplifier 111 of the wireless power transmission module 102 is expressed by Equation 1 below.
  • Zpm is the impedance seen from the transmitter coil to the receiver side.
  • Equation 1 it can be seen that the input impedance is changed by the load resistance Z0 on the receiver side.
  • the communication block 133 (That is, the voltage current detection information may be transmitted to the wireless power transmission module 113 through the communication module. Then, the control block of the wireless power transmission module 113 may calculate the impedance of the wireless charger 104 using the received voltage current detection information.
  • FIG. 10 is a schematic block diagram illustrating a state in which the control block 125 of the wireless power transmission module 113 controls the DC / DC converter to control the voltage current input to the amplifier 111 according to an embodiment of the present invention. And a diagram showing the structure of the recorder.
  • control block 125 may control a change in the impedance of the amplifier 111 facing the receiver according to the change in the impedance of the wireless charger 104 calculated based on the voltage current detection information. In this case, a change in the voltage current at the receiver side occurs and reflects the change again to detect the optimum transmission efficiency by performing the voltage current.
  • 11 is a diagram illustrating a transmission block (wireless power transmission module) of a 6.78 MHz wireless charging system according to an exemplary embodiment.
  • 12 is a circuit diagram for controlling current and voltage of an amplifier of a wireless power transmission module according to an exemplary embodiment.

Abstract

Disclosed is a wireless charging system. A wireless charging system according to an exemplary embodiment comprises: a wireless power transmission module for transmitting wireless power; and at least one wireless charger for charging a battery by receiving the wireless power, wherein the wireless power transmission module comprises: a wireless power transmission circuit which generates wireless power and transmits the generated wireless power into the air; a first communication block for checking whether a wireless charger exists within a predetermined distance; and a control block which, when no wireless charger exists within the predetermined distance, generates a sleep signal in the wireless power transmission circuit.

Description

무선 충전 시스템Wireless charging system
본 발명의 실시예는 무선 충전 기술과 관련된다.Embodiments of the present invention relate to wireless charging technology.
소출력 RF 에너지 전송 시스템을 적용하기 위하여 A4WP, WPC, PMA 등 여러 단체에서 무선 충전 표준을 만들며 시장 형성을 위하여 노력하고 있다. 국내에서는 6.78MHz을 사용 할 수 있게 기술 마련을 준비하고 있어 무선 충전 제품을 이 주파수에 맞게 소형 고효율의 제품을 개발 할 필요가 있다.In order to apply the low power RF energy transmission system, various organizations such as A4WP, WPC, and PMA are making wireless charging standards and trying to form a market. In Korea, technology is being prepared to use 6.78MHz, so it is necessary to develop a small, high efficiency product for wireless charging products at this frequency.
본 발명의 실시예는 전력 소비량을 줄일 수 있는 무선 충전 시스템을 제공하고자 한다. An embodiment of the present invention is to provide a wireless charging system that can reduce the power consumption.
본 발명의 실시예는 무선 전력 전송 효율을 향상시킬 수 있는 무선 충전 시스템을 제공하고자 한다.An embodiment of the present invention is to provide a wireless charging system that can improve the wireless power transmission efficiency.
예시적인 실시예에 따른 무선 충전 시스템은, 무선 전력을 송출하는 무선 전력 송신 모듈 및 상기 무선 전력을 수신하여 배터리를 충전하는 적어도 하나의 무선 충전기를 포함하는 무선 충전 시스템으로서, 상기 무선 전력 송신 모듈은, 무선 전력을 생성하여 공기 중으로 송출하는 무선 전력 송신 회로; 기 설정된 거리 이내에 무선 충전기의 존재 여부를 확인하는 제1 커뮤니케이션 블록; 및 상기 기 설정된 거리 이내에 무선 충전기가 존재하지 않는 경우, 상기 무선 전력 송신 회로로 슬립(Sleep) 신호를 발생시키는 컨트롤 블록을 포함한다.The wireless charging system according to an exemplary embodiment includes a wireless power transmission module for transmitting wireless power and at least one wireless charger for receiving the wireless power to charge a battery, wherein the wireless power transmission module is A wireless power transmission circuit generating wireless power and transmitting the same to the air; A first communication block checking whether a wireless charger exists within a preset distance; And a control block for generating a sleep signal to the wireless power transmission circuit when the wireless charger does not exist within the preset distance.
상기 무선 전력 송신 모듈은, 복수 개의 무선 충전기를 동시에 무선 충전시키도록 마련되고, 상기 복수 개의 무선 충전기 각각은, 상기 무선 전력 송신 모듈에서 송출되는 무선 전력을 수신하는 수신 코일; 상기 수신 코일과 전기적으로 연결되는 매칭 회로; 및 배터리의 충전이 완료되는지 여부를 확인하고, 상기 배터리의 충전이 완료되는 경우 상기 수신 코일의 공진 주파수 대역이 상기 무선 전력의 주파수 대역을 벗어나도록 상기 매칭 회로를 제어하는 컨트롤 블록을 포함할 수 있다. The wireless power transmission module may be configured to wirelessly charge a plurality of wireless chargers simultaneously, each of the plurality of wireless chargers including: a receiving coil configured to receive wireless power transmitted from the wireless power transmission module; A matching circuit electrically connected to the receiving coil; And a control block for checking whether the charging of the battery is completed and controlling the matching circuit so that the resonance frequency band of the receiving coil is out of the frequency band of the wireless power when the charging of the battery is completed. .
상기 무선 충전기는, 상기 무선 전력 송신 모듈에서 송출하는 무선 전력을 수신하여 배터리를 충전하는 전력 변환 회로; 상기 무선 전력 수신 시 상기 전력 변환 회로의 임피던스 변화를 모니터링하는 모니터링부; 및 상기 임피던스 변화에 대한 정보를 상기 무선 전력 송신 모듈로 전송하는 제2 커뮤니케이션 블록을 포함하고, 상기 무선 전력 송신 모듈은, 상기 제2 커뮤니케이션 블록으로부터The wireless charger may include: a power conversion circuit configured to charge a battery by receiving wireless power transmitted from the wireless power transmission module; A monitoring unit monitoring a change in impedance of the power conversion circuit when the wireless power is received; And a second communication block configured to transmit the information on the impedance change to the wireless power transmission module, wherein the wireless power transmission module is configured to, from the second communication block.
수신한 상기 임피던스 변화에 대한 정보를 이용하여 상기 무선 전력 송신 회로 내 증폭기의 전류 및 전압을 조절할 수 있다. The current and voltage of the amplifier in the wireless power transmission circuit may be adjusted using the received information about the impedance change.
예시적인 실시예에 의하면, 모바일 기기의 충전을 하지 않는 경우 저전력으로 동작하여 전력 소비량을 줄일 수 있게 된다. 또한, 무선 전력 수신측 기기의 전력 변화를 피드백하여 무선 전력 송신측 기기로 전달하고 이에 따라 무선 전력 송신측 내의 증폭기의 전압/전류 제어를 통해 임피던스 매칭을 하도록 함으로써, 무선 전력 전송 효율을 향상시킬 수 있게 된다.According to an exemplary embodiment, when the mobile device is not charged, the power consumption may be reduced by operating at low power. In addition, by feeding back the power change of the wireless power receiving device to the wireless power transmitting device and accordingly impedance matching through the voltage / current control of the amplifier in the wireless power transmitting side, it is possible to improve the wireless power transmission efficiency. Will be.
도 1은 예시적인 실시예에 따른 무선 충전 시스템을 나타낸 블록 다이어그램1 is a block diagram illustrating a wireless charging system in accordance with an exemplary embodiment.
도 2는 본 발명의 실시예에 따른 대기 상태에서 저전력을 구현할 수 있는 회로를 나타낸 회로도2 is a circuit diagram illustrating a circuit capable of implementing low power in a standby state according to an exemplary embodiment of the present invention.
도 3은 예시적인 실시예에 따른 Class-E 증폭기의 구조를 나타낸 도면3 illustrates a structure of a Class-E amplifier according to an exemplary embodiment.
도 4는 예시적인 실시예에 따른 Class-E전력 증폭기의 회로도4 is a circuit diagram of a Class-E power amplifier according to an exemplary embodiment.
도 5는 예시적인 실시예에 따른 RF/DC 전력변환 회로의 Rectifier, ADC(Analog Digital Converter), LDO(Low Drop Out Regulator), Monitoring 회로를 각각 나타낸 도면5 illustrates a rectifier, an analog digital converter (ADC), a low drop out regulator (LDO), and a monitoring circuit of an RF / DC power conversion circuit according to an exemplary embodiment.
도 6은 예시적인 실시예에 따른 RF/DC 전력변환 회로의 DC/DC 컨버터 회로를 나타낸 도면6 illustrates a DC / DC converter circuit of an RF / DC power conversion circuit according to an exemplary embodiment.
도 7은 예시적인 실시예에 따른 무선 충전기에서, 배터리 충전 시 전류 전압 변화를 나타낸 그래프7 is a graph illustrating a change in current voltage during battery charging in a wireless charger according to an exemplary embodiment.
도 8의 (a)는 예시적인 실시예에 따른 무선 충전 시스템을 개략적으로 나타낸 도면8A schematically illustrates a wireless charging system according to an exemplary embodiment.
도 8의 (b)는 도 8의 (a)에 도시된 무선 충전 시스템의 회로 구성을 나타낸 도면FIG. 8B is a diagram showing a circuit configuration of the wireless charging system shown in FIG. 8A.
도 9은 도 8의 (b)에 도시한 무선 충전 시스템 회로의 등가 회로를 나타낸 도면FIG. 9 is a diagram showing an equivalent circuit of the wireless charging system circuit shown in FIG. 8B.
도 10은 본 발명의 실시예에 따른 무선 전력 송신 모듈의 컨트롤 블록이 DC/DC 컨버터를 제어하여 증폭기에 입력되는 전압 전류를 제어하는 상태를 나타낸 개략적인 블록도 및 증록기의 구조를 나타낸 도면FIG. 10 is a schematic block diagram illustrating a state in which a control block of a wireless power transmission module controls a DC / DC converter to control a voltage current input to an amplifier according to an embodiment of the present invention and a structure of an amplifier.
도 11은 예시적인 실시에에 따른 6.78MHz 무선 충전 시스템의 송신 블록(무선 전력 송신 모듈)을 나타낸 다이어그램11 is a diagram showing a transmission block (wireless power transmission module) of a 6.78 MHz wireless charging system according to an exemplary embodiment.
도 12는 예시적인 실시예에 따른 무선 전력 송신 모듈의 증폭기의 전류 및 전압 제어를 위한 회로도12 is a circuit diagram for current and voltage control of an amplifier of a wireless power transmission module according to an exemplary embodiment.
이하, 도면을 참조하여 본 발명의 구체적인 실시형태를 설명하기로 한다. 이하의 상세한 설명은 본 명세서에서 기술된 방법, 장치 및/또는 시스템에 대한 포괄적인 이해를 돕기 위해 제공된다. 그러나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다.Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The following detailed description is provided to assist in a comprehensive understanding of the methods, devices, and / or systems described herein. However, this is only an example and the present invention is not limited thereto.
본 발명의 실시예들을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 상세한 설명에서 사용되는 용어는 단지 본 발명의 실시예들을 기술하기 위한 것이며, 결코 제한적이어서는 안 된다. 명확하게 달리 사용되지 않는 한, 단수 형태의 표현은 복수 형태의 의미를 포함한다. 본 설명에서, "포함" 또는 "구비"와 같은 표현은 어떤 특성들, 숫자들, 단계들, 동작들, 요소들, 이들의 일부 또는 조합을 가리키기 위한 것이며, 기술된 것 이외에 하나 또는 그 이상의 다른 특성, 숫자, 단계, 동작, 요소, 이들의 일부 또는 조합의 존재 또는 가능성을 배제하도록 해석되어서는 안 된다.In describing the embodiments of the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to the intention or custom of a user or an operator. Therefore, the definition should be made based on the contents throughout the specification. The terminology used in the description is for the purpose of describing embodiments of the invention only and should not be limiting. Unless explicitly used otherwise, the singular forms “a,” “an,” and “the” include plural forms of meaning. In this description, expressions such as "comprises" or "equipment" are intended to indicate certain features, numbers, steps, actions, elements, portions or combinations thereof, and one or more than those described. It should not be construed to exclude the presence or possibility of other features, numbers, steps, actions, elements, portions or combinations thereof.
이하의 설명에 있어서, 신호 또는 정보의 "전송", "통신", "송신", "수신" 기타 이와 유사한 의미의 용어는 일 구성요소에서 다른 구성요소로 신호 또는 정보가 직접 전달되는 것뿐만이 아니라 다른 구성요소를 거쳐 전달되는 것도 포함한다. 특히 신호 또는 정보를 일 구성요소로 "전송" 또는 "송신"한다는 것은 그 신호 또는 정보의 최종 목적지를 지시하는 것이고 직접적인 목적지를 의미하는 것이 아니다. 이는 신호 또는 정보의 "수신"에 있어서도 동일하다. 또한 본 명세서에 있어서, 2 이상의 데이터 또는 정보가 "관련"된다는 것은 하나의 데이터(또는 정보)를 획득하면, 그에 기초하여 다른 데이터(또는 정보)의 적어도 일부를 획득할 수 있음을 의미한다.In the following description, the terms "transfer", "communication", "transmit", "receive" and other similar meanings of signals or information are not only meant to directly convey the signal or information from one component to another. It also includes passing through other components. In particular, "transmitting" or "sending" a signal or information to a component indicates the final destination of the signal or information and does not mean a direct destination. The same is true for the "reception" of a signal or information. In addition, in this specification, that two or more pieces of data or information are "related" means that if one data (or information) is obtained, at least a portion of the other data (or information) can be obtained based thereon.
도 1은 예시적인 실시예에 따른 무선 충전 시스템을 나타낸 블록 다이어그램이다. 1 is a block diagram illustrating a wireless charging system according to an exemplary embodiment.
도 1을 참조하면, 무선 충전 시스템(100)은 무선 전력 송신 모듈(102) 및 무선 충전기(104)를 포함한다. 무선 전력 송신 모듈(102)은 무선 전력을 공기 중으로 송출하고, 무선 충전기(104)는 무선 전력 송신 모듈(102)에서 송출된 무선 전력을 수신하여 배터리를 충전하게 된다.Referring to FIG. 1, the wireless charging system 100 includes a wireless power transmission module 102 and a wireless charger 104. The wireless power transmission module 102 transmits wireless power to the air, and the wireless charger 104 receives the wireless power transmitted from the wireless power transmission module 102 to charge the battery.
무선 충전 시스템(100)에서, 무선 전송 효율은 DC/RF 변환하여 증폭하는 증폭기의 효율이 좌우된다. 이에, 본 발명의 실시예에서는 무선 전력 송신 모듈(102)에서 직류(DC)를 교류(RF)로 변환하여 증폭하는 증폭기(111)로 스위칭 가능한 Class-E 전력 증폭기를 사용할 수 있다. In the wireless charging system 100, wireless transmission efficiency depends on the efficiency of the amplifier to amplify by DC / RF conversion. Thus, in the exemplary embodiment of the present invention, the wireless power transmission module 102 may use a Class-E power amplifier that is switchable to an amplifier 111 that converts DC to AC and amplifies it.
또한, 무선 전력 송신 모듈(102) 및 무선 충전기(104)는 양방향 통신을 위한 커뮤니케이션 블록(113, 133)(즉, 통신 모듈)을 각각 구비할 수 있다. 무선 전력 송신 모듈(102)은 커뮤티케이션 블록(113)을 통해 무선 충전기(104)의 충전 상황을 인식할 수 있다. 무선 전력 송신 모듈(102)은 2대 이상의 무선 충전기(104)를 동시 충전할 수 있다. 이때, 각 무선 충전기(104)의 충전 상황을 모두 인식할 수 있도록 하기 위해, 커뮤니케이션 블록(113)으로 2.4GHz 블루투스 통신 모듈을 사용할 수 있다. In addition, the wireless power transmission module 102 and the wireless charger 104 may include communication blocks 113 and 133 (ie, communication modules) for bidirectional communication. The wireless power transmission module 102 may recognize the charging situation of the wireless charger 104 through the communication block 113. The wireless power transmission module 102 may charge two or more wireless chargers 104 simultaneously. At this time, in order to be able to recognize all the charging status of each wireless charger 104, the 2.4GHz Bluetooth communication module may be used as the communication block 113.
무선 충전기(104)는 RF/DC 전력변환 회로(131)를 사용하여 모바일 기기의 충전을 지원한다. RF/DC 전력변환 회로(131)는 무선 전력 송신 모듈(102)로부터 수신한 무선 전력(즉, 교류 전력)을 직류(DC)로 정류하고, DC-DC 변환하여 배터리를 충전할 수 있다.The wireless charger 104 supports the charging of the mobile device using the RF / DC power conversion circuit 131. The RF / DC power conversion circuit 131 may rectify the wireless power (ie, AC power) received from the wireless power transmission module 102 into direct current (DC), convert DC-DC, and charge the battery.
(1) 저전력 시스템 설계(1) low power system design
사용자의 전력 소비량을 줄이기 위하여 모바일 기기(예를 들어, 무선 충전기(104))의 충전을 하지 않을 경우 저전력으로 동작하는 회로 설계가 필요하다. 무선 전력 송신 모듈(102)은 전력을 전송하지 않을 경우(즉, 대기 상태에서) 전력 소비를 최소화 할 수 있는 회로를 구비할 수 있다. 도 2는 본 발명의 실시예에 따른 대기 상태에서 저전력을 구현할 수 있는 회로를 나타낸 회로도이다. In order to reduce power consumption of a user, a circuit design that operates at low power is required when the mobile device (eg, the wireless charger 104) is not charged. The wireless power transmission module 102 may have circuitry that can minimize power consumption when not transmitting power (ie, in a standby state). 2 is a circuit diagram illustrating a circuit capable of implementing low power in a standby state according to an exemplary embodiment of the present invention.
무선 전력 송신 모듈(102)은 무선 전력 송신 모듈(102)의 컨트롤 블록(125)으로 3.3V를 공급하여 기 설정된 거리 이내에 무선 충전기(104)가 없을 경우, 컨트롤 블록(125)에서 슬립(Sleep) 신호를 발생하여 무선 전력 송신 회로(127)를 오프(OFF) 시킬 수 있다. 예를 들어, 컨트롤 블록(125)은 도 2에 도시된 회로에서 U1(DC/DC Converter) 칩으로 슬립(Sleep) 신호를 발생하여 U1 칩을 오프(OFF) 시킬 수 있다. 이때, 도 2에 도시된 회로에서 저항(R201)과 커패시터(C22)를 사용하여 공진 회로를 구성하면 400ms마다 U1 DC/DC Converter가 동작한다. 무선 전력 송신 모듈(102)은 커뮤니케이션 블록(113)을 통해 기 설정된 거리 이내에 무선 충전기(104)가 있는지 여부를 확인할 수 있다.The wireless power transmission module 102 supplies 3.3V to the control block 125 of the wireless power transmission module 102 to sleep in the control block 125 when there is no wireless charger 104 within a predetermined distance. A signal may be generated to turn off the wireless power transmission circuit 127. For example, the control block 125 may generate a sleep signal to a U1 (DC / DC Converter) chip in the circuit shown in FIG. 2 to turn off the U1 chip. In this case, when the resonant circuit is configured using the resistor R201 and the capacitor C22 in the circuit shown in FIG. 2, the U1 DC / DC converter operates every 400 ms. The wireless power transmission module 102 may check whether the wireless charger 104 is within a predetermined distance through the communication block 113.
(2) Class-E 스위칭 증폭기 설계(2) Class-E Switching Amplifier Design
무선 전력 송신 모듈(102)에서 휴대 기기(즉, 무선 충전기(104))를 충전하기 위해서는 10W 정도의 RF 출력을 만들어야 한다. Class-E 증폭기는 구조는 복잡하지만 에너지 효율도 좋고 크기를 작게 만들 수 있다. 무선 전력 송신 모듈(102)에서 증폭기(111)인 Class-E 증폭기는 두 개의 MOSFET(M1, M2)을 순차적으로 온(ON)/오프(OFF)하여 증폭하도록 설계하였다. 도 3은 예시적인 실시예에 따른 Class-E 증폭기의 구조를 나타낸 도면이다. 도 3에 도시된 Class-E 증폭기는 IMD(Intermodulation Distortion) 개선을 위하여 제안되었다. 도 3에서 커패시터(C0)와 인덕터(L0)는 공진 회로이며 6.78MHz 대역의 LPF(Low pass filter)와 같이 동작할 수 있다. 인덕터(L0)는 무선 전력 송신 모듈(102)의 공진 안테나로서 해당 인덕턴스를 설계하고 커패시터(C0)로만 임피던스 매칭을 수행하도록 구현할 수 있다. In order to charge the portable device (ie, the wireless charger 104) in the wireless power transmission module 102, an RF output of about 10 W should be generated. Class-E amplifiers are complex in structure but are energy efficient and can be made small. In the wireless power transmission module 102, the Class-E amplifier, which is the amplifier 111, is designed to sequentially amplify two MOSFETs M1 and M2 by turning them ON / OFF. 3 is a diagram illustrating a structure of a Class-E amplifier according to an exemplary embodiment. The Class-E amplifier shown in FIG. 3 has been proposed for improving intermodulation distortion (IMD). In FIG. 3, the capacitor C0 and the inductor L0 are resonant circuits and may operate as a low pass filter (LPF) in the 6.78 MHz band. The inductor L0 may be implemented to design a corresponding inductance as a resonant antenna of the wireless power transmission module 102 and perform impedance matching only with the capacitor C0.
기존의 증폭기의 경우, 공진 안테나를 부하(Load)로 보고 인덕터가 추가됨으로써 설계 및 구현이 복잡하였으나, 본 발명의 실시예에서는 증폭기(111)에서 인덕터(L0)을 무선 전력 송신 모듈(102)의 공진 안테나의 인덕턴스로 대체하여 별도의 인덕터가 추가될 필요가 없게 된다. 증폭기(111)의 두 개 MOSFET(M1, M2)의 게이트(Gate) 입력 신호의 동기를 맞추기 위해 게이트 드라이버(115)를 사용할 수 있다. 또한, 두 개 MOSFET(M1, M2)의 게이트 입력 신호의 위상이 180도 차이 나도록 만들기 위해 AND gate와 NAND gate를 사용할 수 있다. 도 4는 예시적인 실시예에 따른 Class-E전력 증폭기의 회로도를 나타낸다.In the conventional amplifier, the resonant antenna is viewed as a load, and an inductor is complicated by adding an inductor. Substituting the inductance of the resonant antenna eliminates the need for additional inductors. The gate driver 115 may be used to synchronize the gate input signals of the two MOSFETs M1 and M2 of the amplifier 111. In addition, an AND gate and a NAND gate may be used to make the phases of the gate input signals of the two MOSFETs M1 and M2 180 degrees out of phase. 4 shows a circuit diagram of a Class-E power amplifier according to an exemplary embodiment.
(3) RF/DC 전력 변환 회로 설계(3) RF / DC power conversion circuit design
무선 충전기(104)는 RF/DC 전력변환 회로(131)를 포함한다. RF/DC 전력변환 회로(131)는 무선 전력 수신 시 입력 전압을 모니터링하는 모니터링(Monitoring)부(141), 수신한 무선 전력을 정류하는 정류기(Rectifier)(143), 정류된 직류 전력을 다른 레벨의 직류 전력으로 변환하는 DC-DC 컨버터(145), 및 변환된 직류 전력을 저장하여 충전하는 배터리(147)를 포함할 수 있다.The wireless charger 104 includes an RF / DC power conversion circuit 131. The RF / DC power conversion circuit 131 includes a monitoring unit 141 for monitoring an input voltage when receiving wireless power, a rectifier 143 for rectifying the received wireless power, and different levels of rectified DC power. It may include a DC-DC converter 145 for converting the DC power of the, and a battery 147 for storing and charging the converted DC power.
24V 10W 송신 출력(무선 전력 송신 모듈(102)에서 송출하는 출력)에서 공진이 일어났을 경우 공진 코일에 따라 무선 충전기(104)에서는 입력 전압이 60V까지 발생한다. 모니터링부(141)는 입력 전압을 모니터링할 수 있다. RF/DC 전력변환 회로(131)의 정류기(143)의 입력 전압은 6.5V ~ 60V로 설계할 수 있다. 정류기(134)에는 브릿지 회로가 포함될 수 있다.  When resonance occurs at the 24V 10W transmission output (output transmitted from the wireless power transmission module 102), the input voltage is generated up to 60V in the wireless charger 104 depending on the resonance coil. The monitoring unit 141 may monitor the input voltage. The input voltage of the rectifier 143 of the RF / DC power conversion circuit 131 may be designed to 6.5V ~ 60V. The rectifier 134 may include a bridge circuit.
도 5는 예시적인 실시예에 따른 RF/DC 전력변환 회로(131)의 Rectifier, ADC(Analog Digital Converter), LDO(Low Drop Out Regulator), Monitoring 회로를 각각 나타낸 도면이다. 도 5를 참조하면, ADC(Analog Digital Converter)는 4채널 ADC IC를 사용하였고 그 중 2채널(배터리 전압, DC/DC Output 전압 모니터링)을 사용하였다. ADC 입력으로 전압을 감압시켜 주기 위하여 저항을 이용한 회로를 설계하였다. 5 is a diagram illustrating a rectifier, an analog digital converter (ADC), a low drop out regulator (LDO), and a monitoring circuit of the RF / DC power conversion circuit 131 according to an exemplary embodiment. Referring to FIG. 5, the ADC (Analog Digital Converter) used a four-channel ADC IC, of which two channels (battery voltage and DC / DC output voltage monitoring) were used. A circuit using a resistor was designed to reduce the voltage to the ADC input.
LDO(Low Drop Out Regulator)의 TPS54160 IC는 0.5V ~ 58V출력을 갖으며 최대 1.5A 전류 출력을 갖는다. 정류기 출력으로 최대 60V입력으로 예상하여 설계하였다. En pin은 float setting으로 동작하며 RT/CLK ping은 resistor timing and external clock으로 설정하였으며 switching frequency를 외부 저항값 200K로 적용하여 581KHz으로 설정하였다. 분배 저항은 5V출력으로 설정하였다. DC/DC 출력은 모니터링 회로를 거쳐 ADC입력으로 들어간다. 도 6은 예시적인 실시예에 따른 RF/DC 전력변환 회로(131)의 DC/DC 컨버터 회로를 나타낸 도면이다.The Low Drop Out Regulator (LDO) TPS54160 IC has a 0.5V to 58V output and up to 1.5A current output. Rectifier output is expected to be designed up to 60V input. En pin operates in float setting, RT / CLK ping is set as resistor timing and external clock and 581KHz is applied by applying switching frequency as external resistance value of 200K. The distribution resistor was set to 5V output. The DC / DC output goes through the monitoring circuit to the ADC input. 6 is a diagram illustrating a DC / DC converter circuit of the RF / DC power conversion circuit 131 according to an exemplary embodiment.
(4) 통신 시스템 및 제어 시스템 설계(4) communication system and control system design
무선 충전 시스템(100)은 무선 전력 송신 모듈(102)과 무선 충전기(104) 간에 블루투스 저전력 통신모드를 사용할 수 있다. 이때, 마스터(예를 들어, 무선 전력 송신 모듈(102)) 하나에 여러 개의 슬레이브(예를 들어, 무선 충전기(104))가 존재하는 스타구조의 토폴로지를 사용할 수 있다. 전력 전송은 마스터에서 슬레이브로만 가능하고, 통신은 마스터와 슬레이브 간 양방향 통신이 가능하도록 구현될 수 있다. The wireless charging system 100 may use a Bluetooth low power communication mode between the wireless power transmission module 102 and the wireless charger 104. In this case, a topology of a star structure in which several slaves (for example, the wireless charger 104) exist in one master (for example, the wireless power transmission module 102) may be used. Power transmission is possible only from the master to the slave, and communication may be implemented to enable bidirectional communication between the master and the slave.
무선 전력 송신 모듈(102)과 무선 충전기(104) 간에 무선 전력을 전송하는 과정을 살펴보면 다음과 같다. 무선 전력 송신 모듈(102)에 전원을 공급하면, 무선 전력 송신 모듈(102)은 자체 설정 단계를 거쳐 대기 상태에서 비콘을 보내 무선 충전기(104)에게 통신을 위한 전력을 공급하게 된다. 무선 충전기(104)는 통신을 위한 전력이 되면 부팅 상태가 되어 접속 신호를 보낸다. 무선 충전기(104)에서 접속 신호를 보내면 무선 전력 송신 모듈(102)은 저전력 상태가 되어 전력 전송을 위한 준비를 하게 된다. 여기서, 무선 전력 송신 모듈(102)은 접속 신호의 수신 여부를 통해 인근에 무선 충전기(104)가 존재하는지를 확인할 수 있게 된다. 무선 전력 송신 모듈(102)에서 전력 전송 제어 신호를 보내면서 전력 전송이 시작되고 무선 충전기(104)는 전력 수신 상태가 된다. Looking at the process of transmitting the wireless power between the wireless power transmission module 102 and the wireless charger 104 as follows. When power is supplied to the wireless power transmission module 102, the wireless power transmission module 102 sends a beacon in a standby state through its own setting step to supply power for communication to the wireless charger 104. The wireless charger 104 enters a boot state when the power for communication is transmitted and transmits a connection signal. When the wireless charger 104 sends a connection signal, the wireless power transmission module 102 is in a low power state to prepare for power transmission. Here, the wireless power transmission module 102 may determine whether the wireless charger 104 exists in the vicinity through the reception of the access signal. Power transmission is started while the wireless power transmission module 102 sends a power transmission control signal, and the wireless charger 104 is in a power receiving state.
무선 전력 송신 모듈(102) 및 무선 충전기(104)는 각각 전압 및 전류 모니터링을 위한 모니터링부(121, 141)을 구비할 수 있다. 모니터링부(121, 141)를 통해 무선 전력 송신 모듈(102)과 무선 충전기(104) 간에 무선 전력 전송 효율을 실시간으로 산출하여 무선 전력 전송을 위한 전압 및 전류를 제어할 수 있다. The wireless power transmission module 102 and the wireless charger 104 may include monitoring units 121 and 141 for voltage and current monitoring, respectively. Through the monitoring units 121 and 141, the wireless power transmission efficiency between the wireless power transmission module 102 and the wireless charger 104 may be calculated in real time to control voltage and current for wireless power transmission.
무선 전력 송신 모듈(102)에서 2대의 무선 충전기(104)를 동시에 충전하는 경우, 하나의 무선 충전기(104)에서 충전이 완료되면, 충전이 완료된 무선 충전기(104)의 매칭 회로를 제어하여 6.78MHz(즉, 무선 전력 주파수 대역)에서 공진이 일어나지 않도록 할 수 있다. 구체적으로, 충전이 완료된 무선 충전기(104)는 수신 코일과 전기적으로 연결되는 매칭 회로의 임피던스를 조절함으로써, 무선 충전기(104)의 수신 코일의 공진 주파수 대역을 무선 전력 주파수 대역을 벗어나도록 이동시킬 수 있다. 이를 통해, 두 대 이상의 무선 충전기(104)를 동시에 충전하는 경우, 충전이 완료되지 않은 나머지 무선 충전기(104)에 대해서도 무선 충전을 계속 진행할 수 있게 된다.When simultaneously charging two wireless chargers 104 in the wireless power transmission module 102, when charging is completed in one wireless charger 104, the matching circuit of the fully charged wireless charger 104 is controlled to 6.78MHz. (I.e., it is possible to prevent resonance from occurring in the wireless power frequency band). In detail, the charging completion of the wireless charger 104 may move the resonance frequency band of the receiving coil of the wireless charger 104 out of the wireless power frequency band by adjusting the impedance of the matching circuit electrically connected to the receiving coil. have. Through this, when charging two or more wireless charger 104 at the same time, it is possible to continue the wireless charging for the remaining wireless charger 104 is not completed.
이하에서는 전압, 전류 제어를 통한 무선 충전 시스템(100)의 효율 향상에 대해 설명하기로 한다.Hereinafter, the efficiency improvement of the wireless charging system 100 through voltage and current control will be described.
일반적으로, 고정 임피던스 정합 회로를 사용하여 설계된 무선 충전 시스템은 임피던스 변화에 따라 효율이 크게 변한다. 2가지 상황(송신 안테나와 수신 안테나 사이의 거리가 가까워짐에 따라 결합 계수가 변하게 되는 상황 및 배터리 충전 시 제어 방식에 따라 수신부의 임피던스가 변하여 결합 계수가 변하게 되는 상황)에 따라 결합 계수가 변하게 되고, 이 결합 계수는 반사 임피던스에 의해 입력 임피던스를 변화시킨다.In general, wireless charging systems designed using fixed impedance matching circuits vary greatly in efficiency as impedance changes. The coupling coefficient changes according to two situations (a situation where the coupling coefficient changes as the distance between the transmitting antenna and the receiving antenna gets closer and the impedance of the receiver changes due to the control method when the battery is charged). This coupling coefficient changes the input impedance by the reflected impedance.
이에 본 발명의 실시예에서는, 수신부 측(즉, 무선 충전기(104))의 전력 변화를 커뮤니케이션 블록(113, 133)을 통해 송신부 측(즉, 무선 전력 송신 모듈(102))에 피드백하여 줌으로써, 무선 전력 송신 모듈(102)의 증폭기(111)의 전류 및 전압을 조절하여 임피던스 매칭을 해결하는 방안을 제시하고자 한다.Accordingly, in the embodiment of the present invention, by feeding back the power change of the receiver side (that is, the wireless charger 104) to the transmitter side (that is, the wireless power transmission module 102) through the communication blocks 113 and 133, The present invention proposes a method for solving impedance matching by adjusting the current and voltage of the amplifier 111 of the wireless power transmission module 102.
(1) 배터리 충전 시 임피던스의 변화(1) change in impedance during battery charging
도 7은 예시적인 실시예에 따른 무선 충전기에서, 배터리 충전 시 전류 전압 변화를 나타낸 그래프이다. 도 8을 참조하면, 충전 시간이 일정 시간 지남에 따라 충전 전류(Charge Current)가 작아지는데, 그로 인해 수신부 측에서 임피던스의 변화가 커지게 된다(즉, V(전압) = I(전류)R(저항)에 의해). 이는 수신부 측에서 공진 주파수에 영향을 미칠 뿐만 아니라 송신부 측의 임피던스에도 영향을 미치게 된다. 7 is a graph illustrating a change in current voltage when charging a battery in a wireless charger according to an exemplary embodiment. Referring to FIG. 8, as the charging time elapses, the charging current decreases, so that the change of the impedance increases on the receiver side (that is, V (voltage) = I (current) R ( Resistance)). This not only affects the resonance frequency at the receiver side, but also affects the impedance at the transmitter side.
(2) 수신부 측의 임피던스 변화에 따른 송신부 측의 임피던스 변화(2) Impedance change on transmitter side according to impedance change on receiver side
도 8의 (a)는 예시적인 실시예에 따른 무선 충전 시스템을 개략적으로 나타낸 도면이고, 도 8의 (b)는 도 8의 (a)에 도시된 무선 충전 시스템의 회로 구성을 나타낸 도면이다. 또한, 도 9는 도 8의 (b)에 도시한 무선 충전 시스템 회로의 등가 회로를 나타낸 도면이다. 8A is a diagram schematically illustrating a wireless charging system according to an exemplary embodiment, and FIG. 8B is a diagram illustrating a circuit configuration of the wireless charging system illustrated in FIG. 8A. 9 is a figure which shows the equivalent circuit of the wireless charging system circuit shown to FIG. 8 (b).
도 8 및 도 9를 참조하면, 무선 전력 송신 모듈(102)의 증폭기(111)에서 보이는 입력 임피던스 Zin은 다음의 수학식 1과 같다. 여기서 Zpm은 송신 코일에서 수신부 측을 봤을 때 임피던스이다.8 and 9, the input impedance Zin seen by the amplifier 111 of the wireless power transmission module 102 is expressed by Equation 1 below. Where Zpm is the impedance seen from the transmitter coil to the receiver side.
Figure PCTKR2016002646-appb-M000001
Figure PCTKR2016002646-appb-M000001
수학식 1에 의하면, 수신부 측의 부하 저항 Z0에 의해 입력 임피던스가 변하는 걸 볼 수 있다.According to Equation 1, it can be seen that the input impedance is changed by the load resistance Z0 on the receiver side.
(3) 전류 전압 센싱 및 통신 시스템(3) current voltage sensing and communication system
이에, 본 발명의 실시예에서는 무선 충전기(104)의 컨트롤 블록(135)이 RF/DC 전력 변환 회로(131)의 전압 및 전류를 검출한 후, 무선 충전기(104)에서 커뮤티케이션 블록(133)(즉, 통신 모듈)을 통해 전압 전류 검출 정보를 무선 전력 송신 모듈(113)로 전달할 수 있다. 그러면, 무선 전력 송신 모듈(113)의 컨트롤 블록은 수신한 전압 전류 검출 정보를 이용하여 무선 충전기(104)의 임피던스를 산출할 수 있다. Thus, in the embodiment of the present invention, after the control block 135 of the wireless charger 104 detects the voltage and current of the RF / DC power conversion circuit 131, the communication block 133 ( That is, the voltage current detection information may be transmitted to the wireless power transmission module 113 through the communication module. Then, the control block of the wireless power transmission module 113 may calculate the impedance of the wireless charger 104 using the received voltage current detection information.
(4) 전압 및 전류 제어 방법(4) voltage and current control method
도 10은 본 발명의 실시예에 따른 무선 전력 송신 모듈(113)의 컨트롤 블록(125)이 DC/DC 컨버터를 제어하여 증폭기(111)에 입력되는 전압 전류를 제어하는 상태를 나타낸 개략적인 블록도 및 증록기의 구조를 나타낸 도면이다.FIG. 10 is a schematic block diagram illustrating a state in which the control block 125 of the wireless power transmission module 113 controls the DC / DC converter to control the voltage current input to the amplifier 111 according to an embodiment of the present invention. And a diagram showing the structure of the recorder.
도 10을 참조하면, 컨트롤 블록(125)은 전압 전류 검출 정보를 기반으로 산출한 무선 충전기(104)의 임피던스 변화에 따라 증폭기(111)에서 수신부 측을 바라보는 임피던스의 변화를 제어 할 수 있다. 이 경우 수신부 측의 전압 전류의 변화가 발생하고 이를 다시 반영하여 전압 전류를 수행하여 최적의 전송 효율을 검출할 수 있다.Referring to FIG. 10, the control block 125 may control a change in the impedance of the amplifier 111 facing the receiver according to the change in the impedance of the wireless charger 104 calculated based on the voltage current detection information. In this case, a change in the voltage current at the receiver side occurs and reflects the change again to detect the optimum transmission efficiency by performing the voltage current.
한편, 도 11은 예시적인 실시에에 따른 6.78MHz 무선 충전 시스템의 송신 블록(무선 전력 송신 모듈)을 나타낸 다이어그램이다. 도 12는 예시적인 실시예에 따른 무선 전력 송신 모듈의 증폭기의 전류 및 전압 제어를 위한 회로도이다. 11 is a diagram illustrating a transmission block (wireless power transmission module) of a 6.78 MHz wireless charging system according to an exemplary embodiment. 12 is a circuit diagram for controlling current and voltage of an amplifier of a wireless power transmission module according to an exemplary embodiment.
이상에서 본 발명의 대표적인 실시예들을 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.While the exemplary embodiments of the present invention have been described in detail above, those skilled in the art will appreciate that various modifications can be made to the above-described embodiments without departing from the scope of the present invention. . Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims below and equivalents thereof.
[부호의 설명][Description of the code]
100 : 무선 충전 시스템100: wireless charging system
102 : 무선 전력 송신 모듈102: wireless power transmission module
104 : 무선 충전기104: wireless charger
111 : 증폭기111: amplifier
113, 133 : 커뮤니케이션 블록113,133: Communication Block
115 : 게이트 드라이버115: gate driver
121, 141 : 모니터링부121, 141: monitoring unit
125, 135 : 컨트롤 블록125, 135: control block
127 : 무선 전력 송신 회로127: wireless power transmission circuit
131 : 전력 변환 회로131: power conversion circuit
143 : 정류기143: Rectifier
145 : DC/DC 컨버터145: DC / DC converter
147 : 배터리147: Battery

Claims (3)

  1. 무선 전력을 송출하는 무선 전력 송신 모듈 및 상기 무선 전력을 수신하여 배터리를 충전하는 적어도 하나의 무선 충전기를 포함하는 무선 충전 시스템으로서, A wireless charging system comprising a wireless power transmission module for transmitting wireless power and at least one wireless charger for receiving the wireless power to charge a battery,
    상기 무선 전력 송신 모듈은, The wireless power transmission module,
    무선 전력을 생성하여 공기 중으로 송출하는 무선 전력 송신 회로;A wireless power transmission circuit generating wireless power and transmitting the same to the air;
    기 설정된 거리 이내에 무선 충전기의 존재 여부를 확인하는 제1 커뮤니케이션 블록; 및A first communication block checking whether a wireless charger exists within a preset distance; And
    상기 기 설정된 거리 이내에 무선 충전기가 존재하지 않는 경우, 상기 무선 전력 송신 회로로 슬립(Sleep) 신호를 발생시키는 컨트롤 블록을 포함하는, 무선 충전 시스템.And a control block for generating a sleep signal to the wireless power transmission circuit when the wireless charger does not exist within the predetermined distance.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 무선 전력 송신 모듈은, 복수 개의 무선 충전기를 동시에 무선 충전시키도록 마련되고, The wireless power transmission module is provided to wirelessly charge a plurality of wireless chargers at the same time,
    상기 복수 개의 무선 충전기 각각은, Each of the plurality of wireless chargers,
    상기 무선 전력 송신 모듈에서 송출되는 무선 전력을 수신하는 수신 코일; A receiving coil receiving wireless power transmitted from the wireless power transmission module;
    상기 수신 코일과 전기적으로 연결되는 매칭 회로; 및A matching circuit electrically connected to the receiving coil; And
    배터리의 충전이 완료되는지 여부를 확인하고, 상기 배터리의 충전이 완료되는 경우 상기 수신 코일의 공진 주파수 대역이 상기 무선 전력의 주파수 대역을 벗어나도록 상기 매칭 회로를 제어하는 컨트롤 블록을 포함하는, 무선 충전 시스템.And a control block to check whether the charging of the battery is completed and to control the matching circuit so that the resonance frequency band of the receiving coil is out of the frequency band of the wireless power when the charging of the battery is completed. system.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 무선 충전기는, The wireless charger,
    상기 무선 전력 송신 모듈에서 송출하는 무선 전력을 수신하여 배터리를 충전하는 전력 변환 회로;A power conversion circuit that receives the wireless power transmitted from the wireless power transmission module and charges the battery;
    상기 무선 전력 수신 시 상기 전력 변환 회로의 임피던스 변화를 모니터링하는 모니터링부; 및A monitoring unit monitoring a change in impedance of the power conversion circuit when the wireless power is received; And
    상기 임피던스 변화에 대한 정보를 상기 무선 전력 송신 모듈로 전송하는 제2 커뮤니케이션 블록을 포함하고, A second communication block for transmitting the information on the impedance change to the wireless power transmission module,
    상기 무선 전력 송신 모듈은, The wireless power transmission module,
    상기 제2 커뮤니케이션 블록으로부터 수신한 상기 임피던스 변화에 대한 정보를 이용하여 상기 무선 전력 송신 회로 내 증폭기의 전류 및 전압을 조절하는, 무선 충전 시스템.And controlling the current and voltage of the amplifier in the wireless power transmission circuit using the information on the impedance change received from the second communication block.
PCT/KR2016/002646 2015-06-03 2016-03-16 Wireless charging system WO2016195218A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150078370A KR20160142524A (en) 2015-06-03 2015-06-03 Wireless charging device
KR10-2015-0078370 2015-06-03

Publications (1)

Publication Number Publication Date
WO2016195218A1 true WO2016195218A1 (en) 2016-12-08

Family

ID=57441238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002646 WO2016195218A1 (en) 2015-06-03 2016-03-16 Wireless charging system

Country Status (2)

Country Link
KR (1) KR20160142524A (en)
WO (1) WO2016195218A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018203608A1 (en) * 2017-05-02 2018-11-08 Samsung Electronics Co., Ltd. Wireless power transmission apparatus that is turned off in standby state and electronic apparatus including wireless power transmission apparatus
FR3077738A1 (en) * 2018-02-09 2019-08-16 Orion Biotech Inc. LONG-RANGE WIRELESS LOAD AMPLIFICATION STRUCTURE FOR IMPLANTABLE MEDICAL DEVICES

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11699920B2 (en) 2020-02-04 2023-07-11 Samsung Electronics Co., Ltd. Device and method for receiving power wirelessly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080038683A (en) * 2006-10-30 2008-05-07 엘지전자 주식회사 Apparatus and method for wireless power transmition
KR20120026789A (en) * 2010-09-10 2012-03-20 삼성전자주식회사 Wireless power supply apparatus, wireless charging apparatus and wireless charging system using the same
KR20130083660A (en) * 2012-01-13 2013-07-23 삼성전기주식회사 Appratus and method for transmitting wireless power
KR20140093318A (en) * 2013-01-14 2014-07-28 삼성전자주식회사 Apparatus for power and data transmission and data reception using mutual resonance, apparatus for power and data reception and data transmission using mutual resonance, method thereof
KR20150014180A (en) * 2013-07-29 2015-02-06 삼성전기주식회사 Wireless charging device and controlling method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080038683A (en) * 2006-10-30 2008-05-07 엘지전자 주식회사 Apparatus and method for wireless power transmition
KR20120026789A (en) * 2010-09-10 2012-03-20 삼성전자주식회사 Wireless power supply apparatus, wireless charging apparatus and wireless charging system using the same
KR20130083660A (en) * 2012-01-13 2013-07-23 삼성전기주식회사 Appratus and method for transmitting wireless power
KR20140093318A (en) * 2013-01-14 2014-07-28 삼성전자주식회사 Apparatus for power and data transmission and data reception using mutual resonance, apparatus for power and data reception and data transmission using mutual resonance, method thereof
KR20150014180A (en) * 2013-07-29 2015-02-06 삼성전기주식회사 Wireless charging device and controlling method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018203608A1 (en) * 2017-05-02 2018-11-08 Samsung Electronics Co., Ltd. Wireless power transmission apparatus that is turned off in standby state and electronic apparatus including wireless power transmission apparatus
US10714978B2 (en) 2017-05-02 2020-07-14 Samsung Electronics Co., Ltd. Wireless power transmission apparatus that is turned off in standby state and electronic apparatus including wireless power transmission apparatus
FR3077738A1 (en) * 2018-02-09 2019-08-16 Orion Biotech Inc. LONG-RANGE WIRELESS LOAD AMPLIFICATION STRUCTURE FOR IMPLANTABLE MEDICAL DEVICES

Also Published As

Publication number Publication date
KR20160142524A (en) 2016-12-13

Similar Documents

Publication Publication Date Title
US9899848B2 (en) Mobile terminal, DC-charging power source adaptor, and charging method
US9548796B2 (en) Wireless power transceiver system
US10050466B2 (en) DC-charging power source adaptor and mobile terminal
WO2016133329A1 (en) Wireless power transmission apparatus and wireless power transmission method
WO2012169769A2 (en) Wireless power-transmission apparatus and system
WO2013191398A1 (en) Power transmitter and method for controlling power transmission
WO2017023093A1 (en) Wireless power transmission device and system using impedance matching
WO2014038862A1 (en) Wireless power transmitter for excluding cross-connected wireless power receiver and method for controlling the same
WO2012169794A2 (en) Method of performing bidirectional communication between transmitter and receiver in wireless power transmission/reception system, the transmitter, and the receiver
US20170040814A1 (en) Power Source Adaptor For Charging Directly And Mobile Terminal
WO2012169795A2 (en) Method and apparatus for controlling wireless power of a receiver in a wireless power transmission / reception system
WO2013002516A2 (en) Wireless power repeater and method thereof
WO2014104813A1 (en) Method for controlling wireless power transmission in resonant wireless power transmission system, wireless power transmitting apparatus using same, and wireless power receiving apparatus using same
WO2014137199A1 (en) Wireless power transmitter and method for controlling same
US10686330B2 (en) Smart priority detection for wired and wireless charging
WO2015137729A1 (en) Wireless power transfer system having wireless power transfer system-charger
WO2013109032A1 (en) Wireless power transmitter, wireless power receiver, and control methods thereof
WO2013035978A1 (en) Wireless power repeater and method thereof
EP3072215A1 (en) Wireless charging apparatus and wireless charging method
EP3198704A1 (en) Wireless power transmitter and wireless power receiver
WO2013151259A1 (en) Device and system for wireless power transmission using transmission coil array
WO2012091209A1 (en) Multi-node wireless power transmission system using magnetic resonance induction and wireless charging device
WO2016195218A1 (en) Wireless charging system
WO2013032129A1 (en) Wireless power transmitter and wireless power transmission method
WO2012169729A1 (en) Wireless power transmitter, wireless power receiver and wireless power transmission method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803573

Country of ref document: EP

Kind code of ref document: A1