WO2016194899A1 - Magnetic resonance imaging device and high-frequency magnetic field shimming method - Google Patents

Magnetic resonance imaging device and high-frequency magnetic field shimming method Download PDF

Info

Publication number
WO2016194899A1
WO2016194899A1 PCT/JP2016/066019 JP2016066019W WO2016194899A1 WO 2016194899 A1 WO2016194899 A1 WO 2016194899A1 JP 2016066019 W JP2016066019 W JP 2016066019W WO 2016194899 A1 WO2016194899 A1 WO 2016194899A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
index
shimming
magnetic field
magnetic resonance
Prior art date
Application number
PCT/JP2016/066019
Other languages
French (fr)
Japanese (ja)
Inventor
金子 幸生
久晃 越智
眞次 黒川
公輔 伊藤
高橋 哲彦
尾藤 良孝
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2016194899A1 publication Critical patent/WO2016194899A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems

Definitions

  • the present invention relates to a magnetic resonance imaging (MRI) technique, and more particularly to a high-frequency magnetic field irradiation technique for generating a rotating magnetic field that induces a magnetic resonance phenomenon.
  • MRI magnetic resonance imaging
  • the MRI apparatus is a medical image diagnostic apparatus that causes magnetic resonance to occur in nuclei in an arbitrary cross section that crosses the examination target, and obtains a tomographic image in the cross section from the generated magnetic resonance signal.
  • a radio wave (Radio Frequency wave, hereinafter referred to as RF), which is a type of electromagnetic wave, is transmitted to the inspection object to excite the spins of the nuclei in the inspection object, and then receives a nuclear magnetic resonance signal generated by the nuclear spins.
  • the inspection object is imaged.
  • RF transmission to the inspection object is performed by the RF transmission coil, and reception of the nuclear magnetic resonance signal from the inspection object is performed by the RF reception coil.
  • the B 1 distribution is non-uniform, uneven brightness occurs. If this non-uniformity is large, the fat signal cannot be sufficiently suppressed, and the effect of removing the fat signal may be insufficient.
  • RF shimming As an RF irradiation method for reducing nonuniformity of the B 1 distribution.
  • This is a technique for reducing B 1 nonuniformity in an imaging region by using a transmission coil having a plurality of channels and controlling the phase and amplitude (hereinafter referred to as an RF parameter) of an RF pulse applied to each channel.
  • an RF parameter phase and amplitude of an RF pulse applied to each channel.
  • Patent Document 1 There has also been proposed a method of calculating an RF parameter that makes the B 1 distribution uniform with higher accuracy by changing the gradient magnetic field waveform.
  • the standard deviation of the B 1 value see, for example, Patent Document 3
  • the B 1 maximum value the B 1 minimum value, and the like are used.
  • RF shimming is not only to reduce the non-uniformity of the B 1 distribution, but also to suppress SAR and suppress fat signals.
  • the difference between the maximum value and the minimum value of the B 1 value is often used as an index. If the B 1 non-uniformity is large and deviates from the reference B 1 value, fat suppression cannot be performed. Therefore, the RF parameter is determined so as to make the index as small as possible.
  • the B 1 value is easily affected by noise components (measurement noise) generated during imaging.
  • the standard deviation is used as an index when determining the RF parameter
  • the influence of the measurement noise is small if the number of points where the measurement noise enters is sufficiently small relative to the number of measurement points of the B 1 value.
  • the time of the fat signal suppression when using the difference between the maximum and minimum values of B 1 value in the index under the influence of the measurement noise, the extremely small value or large value is mixed even one, It is greatly affected when RF parameters are determined, and optimal parameters cannot be obtained, and fat cannot be sufficiently suppressed even in an image.
  • the present invention has been made in view of the above circumstances, and in an MRI apparatus using a transmission coil having a plurality of channels, even if measurement noise is included, RF shimming that achieves the maximum effect regardless of the purpose.
  • the purpose is to provide technology.
  • the present invention performs RF shimming using an optimization index capable of calculating an optimum RF parameter even when measurement noise is included in RF shimming.
  • Optimization index the B 1 value, obtained by performing weighting according to at least one of the magnitude of the position and initial B 1 value of the imaging region. Weighting, for example, be done by multiplying the weighting function to the B 1 value.
  • each B 1 distribution and a binarized map are explanatory diagrams for explaining the case.
  • (A) ⁇ (C) is a state measurement noise is not, no RF shimming, in the case of performing the RF shimming using standard deviation index U SD, and were RF shimming using a maximum minimum index U NEMA
  • a histogram of B 1 values in the human body model is not, no RF shimming, in the case of performing the RF shimming using standard deviation index U SD, and were RF shimming using a maximum minimum index U NEMA.
  • each B 1 distribution and a binarized map are explanatory diagrams for explaining the case.
  • a histogram of B 1 values in the human body model in a state in which measurement noise is present, no RF shimming, in the case of performing the RF shimming using standard deviation index U SD, and were RF shimming using a maximum minimum index U NEMA
  • (A) ⁇ (F) is a state measurement noise is not, in the case of performing the RF shimming using standard deviation index U SD, in the presence of measurement noise, performing RF shimming using a maximum minimum index U NEMA
  • the RF shimming is performed using the optimization index U WSD of the present embodiment in a state where there is measurement noise, the B 1 distribution and the binarization map will be described.
  • (A) ⁇ (C) is a state measurement noise is not, in the case of performing the RF shimming using standard deviation index U SD, in the presence of measurement noise, performing RF shimming using a maximum minimum index U NEMA
  • each is a histogram of B 1 values in the human body model.
  • (A) to (E) are explanatory diagrams for explaining modifications of the weighting function according to the embodiment of the present invention.
  • FIG. 1 is a block diagram of the MRI apparatus 100 of the present embodiment.
  • the MRI apparatus 100 of the present embodiment includes a magnet 101 that generates a static magnetic field, a gradient coil 102 that generates a gradient magnetic field, a shim coil 112 that adjusts the static magnetic field uniformity, a sequencer 104, An RF transmission coil (transmission coil) 114 that irradiates (transmits) a high-frequency magnetic field (RF); an RF reception coil (reception coil) 115 that detects (receives) a nuclear magnetic resonance signal generated from the subject 103; A table 107 on which the subject 103 is placed, a gradient magnetic field power source 105, a high-frequency magnetic field generator 106, a receiver 108, a shim power source 113, and a computer 109 that controls each part of the MRI apparatus 100 and realizes imaging. .
  • the gradient magnetic field coil 102 and the shim coil 112 are connected to the gradient magnetic field power source 105 and the shim power source 113, respectively.
  • the transmission coil 114 and the reception coil 115 are connected to the high-frequency magnetic field generator 106 and the receiver 108, respectively.
  • the sequencer 104 sends a command to the gradient magnetic field power source 105, the shim power source 113, and the high frequency magnetic field generator 106 according to an instruction from the computer 109 to generate a gradient magnetic field and RF, respectively.
  • RF is irradiated (transmitted) to the subject 103 through the transmission coil 114.
  • the nuclear magnetic resonance signal generated from the subject 103 by irradiating (transmitting) RF is detected (received) by the receiving coil 115 and detected by the receiver 108.
  • a magnetic resonance frequency used as a reference for detection by the receiver 108 is set by the computer 109 via the sequencer 104.
  • the detected signal is sent to the computer 109 through an A / D conversion circuit, where signal processing such as image reconstruction is performed.
  • the result is displayed on the display device 110 connected to the computer 109.
  • the detected signals and measurement conditions are stored in the storage device 111 connected to the computer 109 as necessary.
  • the magnet 101, shim coil 112, and shim power supply 113 constitute a static magnetic field forming unit that forms a static magnetic field space.
  • the gradient magnetic field coil 102 and the gradient magnetic field power source 105 constitute a gradient magnetic field application unit that applies a gradient magnetic field to the static magnetic field space.
  • the transmission coil 114 and the high-frequency magnetic field generator 106 constitute a high-frequency magnetic field transmission unit that irradiates (transmits) a high-frequency magnetic field (RF) to the subject 103 arranged in the static magnetic field.
  • the receiving coil 115 and the receiver 108 constitute a signal receiving unit that detects (receives) a nuclear magnetic resonance signal generated from the subject 103.
  • the transmission coil 114 of the present embodiment is a multi-channel coil that includes a plurality of channels that independently transmit a high-frequency magnetic field (RF) to the subject 103.
  • FIG. 2 shows an example of the transmission coil 114 of the present embodiment.
  • the transmission coil 114 is a four-channel (4ch) coil including four channels (114a, 114b, 114c, 114d) is illustrated.
  • the amplitude and phase of RF transmitted from each channel (114a, 114b, 114c, 114d) are individually set by the computer 109.
  • the high-frequency magnetic field generator 106 according to the present embodiment is independent of each channel via feeding points (117a, 117b, 117c, 117d) included in each channel (114a, 114b, 114c, 114d) in accordance with control from the computer 109.
  • An RF waveform (RF pulse) is transmitted.
  • reference numeral 116 denotes an RF shield.
  • the computer 109 controls each unit of the MRI apparatus 100 to realize imaging.
  • a static magnetic field shimming process for adjusting the uniformity of the static magnetic field in the imaging space and an RF shimming process for adjusting the uniformity of the B 1 distribution in the region of interest according to the purpose are further performed.
  • the computer 109 collects image data according to the imaging condition setting unit 210 that sets the imaging conditions and the imaging conditions set by the imaging condition setting unit 210, as shown in FIG.
  • An imaging unit 220 that performs imaging.
  • the imaging condition setting unit 210 includes an imaging position setting unit 211 that sets an imaging position, a static magnetic field shimming unit 212 that performs static magnetic field shimming processing, and an RF shimming unit 213 that performs RF shimming processing.
  • Each function realized by the computer 109 is realized by a CPU included in the computer 109 loading a program stored in advance in the storage device 111 to the memory and executing the program.
  • ASIC Application Specific Integrated Circuit
  • FPGA field-programmable gate array
  • the imaging position setting unit 211 sets an imaging position (imaging cross section).
  • the imaging section is set using a positioning image obtained by performing a scout scan or the like before performing the main imaging. For example, on the positioning image displayed on the display device 110, designation by the user is accepted, and the designated position is set as an imaging section.
  • an imaging cross section a predetermined position may be automatically set for each part, using a feature point on the positioning image as a clue. Note that the region of the subject 103 on the imaging section is referred to as an imaging region.
  • the static magnetic field shimming unit 212 measures the static magnetic field distribution and performs adjustment so that the static magnetic field is as uniform as possible. The adjustment is performed by operating the shim coil 112 via the shim power supply 113. If it is not necessary to adjust the uniformity of the static magnetic field, the static magnetic field shimming process may not be performed. Further, the static magnetic field shimming unit 212, the shim power source 113, and the shim coil 112 may not be provided.
  • the RF shimming unit 213 uses the parameters of the high frequency magnetic field (RF) transmitted from each channel of the transmission coil 114 so as to correct the nonuniformity of the B 1 distribution that is the high frequency magnetic field distribution in the region of interest (ROI).
  • a certain high frequency magnetic field parameter (RF parameter) is determined.
  • at least one of the amplitude and phase of the RF transmitted from each channel of the transmission coil 114 is determined so as to reduce the B 1 non-uniformity in the ROI according to the purpose.
  • the RF amplitude and phase are collectively referred to as an RF parameter when it is not necessary to distinguish between them.
  • the RF shimming unit 213 determines an optimal RF parameter using an optimization index prepared in advance. In the present embodiment, this index is created using the B 1 value. Then, the optimization index is weighted according to the magnitude of the B 1 value is generated by performing the B 1 value. This weighting is performed by a weighting function.
  • the RF shimming unit 213 of the present embodiment includes an index creating unit 232 that creates an optimization index used for RF shimming, and an RF parameter determination unit 233 that determines an RF parameter using the determined optimization index. Prepare.
  • the index creating unit 232 creates an optimization index that realizes this using the value of the B 1 distribution.
  • the standard deviation indicator U SD.
  • the standard deviation index USD is expressed by the following formula (1).
  • R is a spatial coordinate
  • B 1 (r) is a B 1 distribution
  • ⁇ (B 1 (r)) is a standard deviation of B 1 value
  • m (B 1 (r)) is an average value of B 1.
  • the standard deviation index U SD is the standard deviation which is normalized, as the standard deviation index U SD is small, variation in the values is small, indicating a uniform.
  • the difference between the maximum value and the minimum value of the B 1 value in the ROI may be minimized.
  • the index (maximum / minimum index) U NEMA using the B 1 maximum value and the B 1 minimum value is expressed by the following equation (2). Note that max (B 1 ) indicates the B 1 maximum value, and min (B 1 ) indicates the B 1 minimum value. That is, the maximum / minimum index U NEMA is a standardized difference between the B 1 maximum value and the B 1 minimum value. The smaller the maximum / minimum index U NEMA , the smaller the value difference and the more uniform.
  • the maximum / minimum index U NEMA uses two specific points of the maximum value and the minimum value, for example, if an extremely small value is mixed under the influence of measurement noise, the accuracy as the index is lowered.
  • the B 1 distribution in the ROI is optimized, and even if there is measurement noise, the optimization index that maximizes the fat suppression effect is a value within a predetermined range including the minimum value. And an index using a predetermined range including the maximum value.
  • the index creation unit 232 of the present embodiment uses the B 1 distribution, and uses a B 1 value that is smaller than a predetermined threshold (first threshold) and a B 1 value that is larger than a predetermined threshold (second threshold). Create optimization metrics.
  • the first threshold value is a value that is not less than the minimum value and smaller than the second threshold value
  • the second threshold value is not more than the maximum value and larger than the first threshold value.
  • 300 is a histogram showing the distribution of B 1 values.
  • the magnitude of the B 1 value is represented on the horizontal axis, and the frequency (frequency) of each B 1 value is represented on the vertical axis.
  • Index creation unit 232 of the present embodiment uses and B 1 value in the first threshold value 321 is smaller than range 331, a and B 1 value in the second threshold 322 is larger than range 332, to create an optimized index.
  • Such an optimization index can be calculated by weighting the B 1 value of the B 1 distribution according to the size of the B 1 value. Therefore, the index creation unit 232 according to the present embodiment creates an optimization index by determining the weighting function w (B 1 ) 602 for performing weighting.
  • the weighting function is a function having the B 1 value as a variable.
  • Weighting function w (B 1 ) 310 for extracting the B 1 value in the range 331 smaller than the first threshold 321 and the B 1 value in the range 332 larger than the second threshold 322 as described above is shown in FIG. Shown in B).
  • Weighting function w (B 1) 310 shown in the figure a first threshold value 321 is smaller than B 1 value determined in advance, the greater first threshold 321, a second threshold value 322 is greater than B 1 a predetermined It has a shape to extract values.
  • this weighting function w (B 1 ) 310 By multiplying the B 1 distribution by this weighting function w (B 1 ) 310, only the B 1 value in the above range is extracted.
  • the first threshold 321 and the second threshold 322 are, for example, predetermined fixed values and are held in the storage device 111.
  • the first threshold value 321 and the second threshold value 322 are also calculated from the B 1 value.
  • the first threshold value 321 is a threshold value for extracting the lower p% value of the B 1 value
  • the second threshold value 322 is a threshold for extracting the upper q% value of the B 1 value (p and q are Predetermined positive real number). These p and q are determined in advance and held in the storage device 111.
  • the first threshold 321 and the second threshold 322 are not limited to this.
  • an average value (m) and a standard deviation ( ⁇ ) of the B 1 value may be calculated and defined using these values.
  • the first threshold 321 is m ⁇ r ⁇
  • the second threshold 322 is m + r ⁇ .
  • the index creating unit 232 determines the weighting function w (B 1 ) 310 using the first threshold value 321 and the second threshold value 322 obtained by the above-described method, and then the weighting function w (B 1 ). 310 is multiplied (masked) by the initial B 1 value to create an optimization index.
  • Optimization metrics U WSD for example, as shown in the following equation (3), although the weighting function w (B 1) 310 obtained by multiplying the B 1 value (position each of B 1 value (B 1 (r)) The standard deviation is obtained by dividing by the average value of B 1 values.
  • the optimization index U WSD shown in Expression (3) is an index created using a relatively small B 1 value and a relatively large B 1 value. Compared to the fact that the conventional maximum and minimum index U NEMA was created using two values, the maximum and minimum values of B 1 , the optimization index U WSD is the B 1 value used for index generation. The number increases. That is, the B 1 value used for index creation increases. As a result, the optimization index U WSD of the present embodiment is less susceptible to measurement noise than the conventional maximum / minimum index U NEMA .
  • index creation unit 232 of the present embodiment creates the optimization index U WSD before the RF parameter determination processing by the RF parameter determination unit 233.
  • the weighting function w (B 1 ) 310 may be stored in the storage device 111 in advance, and the optimization index U WSD may be generated using the weighting function w (B 1 ) 310. Further, the weighting function w (B 1 ) 310 and the optimization index U WSD using the weighting function w (B 1 ) 310 may be stored in the storage device 111 in advance. In this case, the index creation unit 232 may not be provided. An RF parameter determination unit 233 described later determines an RF parameter using an optimization index U WSD stored in advance in the storage device 111.
  • the RF parameter determination unit 233 uses the optimization index U WSD created by the index creation unit 232 to determine an RF parameter that realizes a desired B 1 distribution.
  • the RF parameter determination unit 233 determines each RF parameter so as to minimize the optimization index U WSD . That is, the RF parameter determination unit 233 obtains an RF parameter as a solution for minimizing the optimization index U WSD created by the index creation unit 232. Computation of solutions covers various optimization problems such as steepest descent, gradient, Newton, least squares, conjugate gradient, linear programming, nonlinear programming, amplitude and phase values. A method of calculating an optimal solution by changing the value can be used. Further, the optimization index U WSD may be approximated by a polynomial by fitting or the like to obtain the minimum value of the approximated function.
  • the RF shimming unit 213 replaces the RF parameter set as the imaging condition with the RF parameter determined by the RF parameter determination unit 233. Then, the imaging unit 220 performs imaging using the RF parameter determined by the RF shimming unit 213.
  • FIG. 5 is a processing flow of the imaging process of the present embodiment.
  • the imaging process of this embodiment is started by an instruction from the user.
  • the static magnetic field shimming process is omitted.
  • the imaging condition setting unit 210 receives an input of imaging conditions including patient information, imaging region, imaging purpose, imaging parameters, and the like from the user (step S1101).
  • the imaging position setting unit 211 performs a scout scan and sets the imaging position (step S1102).
  • the RF shimming unit 213 performs RF shimming and determines an RF parameter (step S1103).
  • the imaging condition setting unit 210 sets the RF parameters determined by the RF shimming unit 213 as imaging amplitudes together with other imaging parameters as the amplitude and phase of the RF transmitted to each channel used for imaging (step S1104).
  • the imaging unit 220 performs imaging in accordance with the imaging conditions set by the RF parameter determination unit 233 (step S1105), and ends the process.
  • FIG. 6 shows a part 401 and the ROI 402 of the numerical human body model used at this time.
  • the B 1 distribution in the ROI 402 was optimized with a SAG (sagittal) cross section including the lumbar vertebra region 403.
  • RF irradiation method In this simulation, for example, the four-channel transmission coil 114 shown in FIG. 2 is modeled, and the numerical human body model 401 is placed therein and irradiated with RF.
  • the frequency of the irradiated RF was set to 128 MHz assuming a 3T MRI apparatus.
  • RF (B_ch1, B_ch2, B_ch3, B_ch4) of the sine waveform shown in the following formula (4) is provided at the feeding point (117a, 117b, 117c, 117d) of each channel (114a, 114b, 114c, 114d).
  • A1 and ⁇ 1 are the amplitude and phase of the sine waveform voltage supplied to the feeding point 117a of the channel 114a, respectively.
  • A2 and ⁇ 2 are the same amplitude and phase supplied to the feeding point 117b of the channel 114b, respectively.
  • A3 and ⁇ 3 Are the same amplitude and phase supplied to the feeding point 117c of the channel 114c
  • A4 and ⁇ 4 are the amplitude and phase supplied to the feeding point 117d of the channel 114d, respectively.
  • QD Quadrature Drive
  • the RF parameters determined by the RF shimming unit 213 include the amplitudes (A1, A2, A3, A4) of waveform voltages supplied to the feeding points 117a, 117b, 117c, 117d of the channels 114a, 114b, 114c, 114d, respectively. At least one of the phases ( ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4).
  • FIG. 7A shows a B 1 distribution 510 in the numerical human body model 401 without RF shimming, that is, when the initially set QD irradiation is performed as it is. Note that the B 1 distribution 510 shown in FIG. 7A is referred to as an initial B 1 distribution.
  • FIG. 7 (B) shows the case of performing the RF shimming using standard deviation index U SD of (U SD minimized), a B 1 distribution 520 in the voxel model 401.
  • FIG. 7C shows the B 1 distribution 530 in the numerical human body model 401 when RF shimming is performed using the maximum / minimum index U NEMA (U NEMA minimization).
  • the B 1 distribution shown in 510 to 530 is divided into a B 1 value within a range where fat can be suppressed and a B 1 value outside the range. It distinguishes and shows.
  • the B 1 value region 501 in the range where fat can be suppressed is shown in white
  • the B 1 value region 502 outside the range is shown in black.
  • the hatched area 503 is an area where the human body model 401 does not exist.
  • a black region 502 is a region where the fat signal cannot be removed and the fat signal remains in the final image because the B 1 value is outside the range in which fat can be suppressed.
  • B 1 distribution, and distinction and B 1 value and the range of B 1 value of fat suppression extent possible the binarized figure, referred to as a binary map.
  • FIG. 7D is a binarized map 511 in the numerical human body model 401 without RF shimming shown in FIG. Further, FIG. 7 (E) in the case of performing RF shimming using standard deviation index U SD, a binary map 521 in the voxel model 401.
  • FIG. 7F is a binarized map 531 in the numerical human body model 401 when RF shimming is performed using the maximum / minimum index U NEMA .
  • a black region 502 remains in a region (lumbar vertebra region) 403 where the lumbar spine exists, as in a region 504 indicated by a white arrow in the figure.
  • the index (binary map 531) when performing RF shimming (binary map 521) using a standard deviation index U SD to index In comparison, the area of the black region 502 is small. Further, the area of the black region 502 of the lumbar region 403 is reduced.
  • FIG. 8A to FIG. 8C show the appearance frequency (histogram) for each B 1 value in the numerical human body model 401 in each case of FIG. 7A to FIG. 7C.
  • FIG. 8 (A) is a histogram 610 of the case of no RF shimming
  • FIG. 8 (B) the histogram 620 in the case of performing RF shimming using a standard deviation index U SD
  • FIG. 8 (C) Max Min It is a histogram 630 when RF shimming using the index U NEMA is performed.
  • the horizontal axis indicates the B 1 value
  • the vertical axis indicates the number of points (frequency) at which the B 1 value exists.
  • the B 1 value is further increased compared to when RF shimming is performed using the standard deviation index U SD (histogram 620).
  • the range to take is narrow.
  • An initial B 1 distribution 512 is shown in FIG.
  • a black point 551 is a B 1 value inserted assuming measurement noise.
  • the B 1 value inserted as the measurement noise 551 is a small B 1 value in accordance with the actual measurement noise.
  • the region in which the measurement noise 551 is inserted is a region where the B 1 value is originally small due to B 1 non-uniformity, and the measurement noise is likely to be included even in actual B 1 measurement. Therefore, it can be said that the measurement noise 551 reproduces the measurement noise that may occur in actual measurement.
  • FIG. 9 (B) if there is a measurement noise, i.e. of the initial B 1 distribution 512 shown in FIG. 9 (A), in the case of performing RF shimming using standard deviation index U SD, voxel models 401 B 1 distribution 522.
  • FIG. 9 (C) the B 1 distribution to, in the case of performing RF shimming using a maximum minimum index U NEMA, a B 1 distribution 532 in the voxel model 401.
  • FIG. 9D is a binarized map 513 in the numerical human body model 401 without RF shimming, that is, with the initially set QD irradiation.
  • Figure 9 (E) is, in the case of performing RF shimming using standard deviation index U SD, a binary map 523 in the voxel model 401.
  • FIG. 9F is a binarized map 533 in the numerical human body model 401 when RF shimming is performed using the maximum / minimum index U NEMA .
  • FIG. 9 (D) and FIG. 9 (E) when there is no RF shimming, and binarized map 513, 523 in the case of performing RF shimming using a deviation index U SD, as shown in FIG. 7 (D ) And the binarized maps 511 and 521 when there is no measurement noise 551 shown in FIG.
  • the binarization map 533 in the case of performing RF shimming using the maximum / minimum index U NEMA shown in FIG. 9F is compared with the binarization map 531 of the same RF shimming shown in FIG.
  • the black region 502 is enlarged. This indicates that the B 1 non-uniformity is not properly reduced.
  • B 1 is used for calculating the maximum / minimum index U NEMA . That is, when there is a measurement noise 551, extremely small B 1 value (B 1 value of the measured noise 551) will be included one point. In the calculation of the maximum and minimum indices U NEMA, because this B 1 value is employed as a minimum value B. As described above, when an index based on the difference between the B 1 maximum value and the B 1 minimum value is used, the calculation of this index is greatly affected by noise. Therefore, an appropriate RF parameter cannot be calculated.
  • FIGS. 10A to 10C show histograms of the B 1 value in the numerical human body model 401 in each case of FIGS. 9A to 9C.
  • the histogram 631 when RF shimming using the maximum / minimum index U NEMA is performed is B 1 compared to the histogram 630 of FIG. 8C showing the result without the measurement noise 551.
  • the range of values is widened. For this reason, the fat signal cannot be removed in a wide area and remains.
  • FIG. 11 (A) is in the absence of noise, the same B 1 distribution as in the case of performing RF shimming, B 1 distribution 520 in the voxel model 401 (FIG. 7 (B) using a standard deviation index U SD ).
  • FIG. 11B shows a B 1 distribution 532 (same as B in FIG. 9C) in the numerical human body model 401 when RF shimming is performed using the maximum and minimum deviations U NEMA in the presence of measurement noise 551. 1 distribution).
  • FIG. 11C shows the B 1 distribution 542 in the numerical human body model 401 when RF shimming is performed using the optimization index U WSD of this embodiment in the presence of measurement noise 551. Note that the measurement noise 551 was inserted in the same region as in the case of FIGS. 9 (A) to 9 (C).
  • FIG. 11D is a binarized map 521 (the same binarized map as FIG. 7E) in the numerical human body model 401 of the B 1 distribution 520 in FIG. 11A.
  • FIG. 11E is a binarization map 533 (the same binarization map as FIG. 9F) in the numerical human body model 401 of the B 1 distribution 532 in FIG. 11B.
  • FIG. 11F is a binarized map 543 in the numerical human body model 401 of the B 1 distribution 542 of FIG.
  • FIG. 12A to 12C show histograms of the B 1 value in the numerical human body model 401 in each case of FIGS. 11A to 11C.
  • FIG. 12A is a histogram 620 in the case of FIG.
  • FIG. 12B is a histogram 631 in the case of FIG.
  • FIG. 12C is a histogram 641 in the case of FIG. Incidentally, B 1 value between dashed lines 601 dashed 602, a fat suppression possible B 1 value.
  • the distribution range of the B 1 value becomes the narrowest even when the measurement noise 551 is present. That is, it can be seen that the difference between the B 1 maximum value and the B 1 minimum value can be minimized.
  • the optimization index U of the present embodiment is weighted according to the B 1 value and created using the value in the predetermined range on the minimum value side and the value in the predetermined range on the maximum value side. It was shown that by using WSD , the difference between the B 1 maximum value and the B 1 minimum value can be minimized, and the fat suppression effect is maximized.
  • the MRI apparatus 100 includes the transmission coil 114 having a plurality of channels that transmit a high-frequency magnetic field to the subject 103 and the nonuniformity of the B 1 distribution that is the high-frequency magnetic field distribution in the region of interest.
  • RF shimming section for performing high-frequency shimming for determining a high-frequency parameter that is a parameter of a high-frequency magnetic field transmitted from each channel so as to correct the image
  • An imaging unit 220 wherein the high frequency shimming unit 213 determines the high frequency parameter using an optimization index specified by the B 1 value, and the optimization index includes the position of the imaging region and the B 1 value It is created by weighting the B 1 value according to at least one of the sizes.
  • the weighting may be performed by a weighting function.
  • the optimization index is created to suppress fat signals.
  • the high frequency shimming unit 213 may further include an index creating unit 232 that creates the optimization index, and the index creating unit 232 may create the index by determining a weighting function for performing the weighting. .
  • the optimization index U WSD of the present embodiment is calculated using a B 1 value equal to or lower than the first threshold and a B 1 value equal to or higher than the second threshold by weighting. Therefore, the number of points used when calculating the index is greater than when calculating the conventional maximum and minimum index UNEMA . For this reason, the index U WSD of this embodiment is not easily affected even when there is measurement noise.
  • the RF parameter is determined so that the B 1 uniformity is optimum. At this time, even if measurement noise is mixed, the difference between the B 1 maximum value and the B 1 minimum value can be minimized. For this reason, the fat suppression effect is also acquired.
  • RF shimming that can also provide a fat suppression effect can be realized even when measurement noise is included.
  • a weight function (mask) 310 formed so that the maximum group and the minimum value group are extracted from the B 1 value of the imaging region is used. . That is, in the present embodiment, only the B 1 value smaller than the first threshold 321 and the B 1 value larger than the second threshold 322 are extracted as the weighting function w (B 1 ) corresponding to the distribution of B 1 values.
  • a weighting function w (B 1 ) 310 is used.
  • the weighting function is not limited to this.
  • variations of the weighting function W (B 1 ) will be described with reference to the drawings.
  • FIGS. 13A to 13E show examples of the weighting function w (B 1 ) that can be used in this embodiment.
  • the B 1 value is larger than the third threshold 323 and smaller than the first threshold 321 and the second A weighting function 311 that extracts B 1 values in a range larger than the threshold and smaller than the fourth threshold 324 may be used.
  • the third threshold value 323 is smaller than the first threshold value 321 and the fourth threshold value 324 is larger than the second threshold value 322, and each of them is stored in the storage device 111 in advance.
  • these threshold values for example, values outside the range of B 1 values that can be taken when there is no measurement noise are selected.
  • weighting function 310 shown in FIG. 4B and the weighting function 311 shown in FIG. 13A show discontinuous changes in values.
  • a function 312 whose value continuously changes may be set as a weighting function.
  • the weighting function may determine the weighting function based on it. For example, when the measurement accuracy is worse as the B 1 value is smaller, a weighting function that uses a smaller weight as the smaller B 1 value is used. Examples of such weighting functions 313 and 314 are shown in FIGS. 13C and 13D.
  • the weight value continuously increases as the B 1 value increases in a predetermined range, and is constant in a region larger than the range. In a small area, the shape is zero.
  • a weighting function 314 shown in FIG. 13D has a shape that employs a B 1 value that is equal to or greater than a predetermined threshold.
  • a weighting function 315 as shown in FIG. 13E may be used.
  • the local SAR when it is known that the local SAR is increased due to a particularly large B 1 value, the local SAR can be reduced by weighting using the weighting function 315 shown in FIG.
  • the weighting function is determined according to the B 1 value.
  • the weight multiplied by the B 1 value may be a weight corresponding to the position in the ROI.
  • the weighting function is a function having the position in the ROI as a variable.
  • An example of the optimization index U WSD calculation formula in this case is shown in Formula (5).
  • the weight to be multiplied by the B 1 value can be a weight according to the position and B 1 value in the ROI.
  • the weighting function may be a function w (B 1 , r) having the position (spatial coordinate r) in the ROI and the B 1 value as variables.
  • An example of the optimization index U WSD calculation formula in this case is shown in Formula (6).
  • the region of the part is set to ROI. Then, the overlap value of a part of the region in the set ROI is set to 1, and in other regions, the weight is set so as to approach 0 as the distance from the set part of the region increases. As a result, the B 1 distribution in a part of the set regions is made uniform, and the other regions can be gradually set to low signals.
  • optimization index U WSD of the present embodiment is not limited to the above calculation formula.
  • optimization metrics U WSD is a weighting function w (B 1) 310 the B 1 value (standard deviation of those by multiplying the B 1 value for each position (B 1 (r)), the weighting function w (B 1 ) 310 but obtained by multiplying the B 1 value (position each of B 1 value (B 1 (r)) obtained by dividing an average value.
  • the optimization index U WNEMA used in the present embodiment may be calculated according to the following equation (8).
  • the conventional maximum / minimum index U NEMA uses a specific B 1 value as the maximum and minimum values, but the optimization index U WNEMA calculated by the following equation (8) Instead of the minimum value, an average value of B 1 values in a predetermined range is used.
  • Nupper, Nlower are each a second threshold 322 is greater than B 1 value, the first threshold value 321 is smaller than B 1 value in FIG. 4 (B).
  • the optimization metrics U WNEMA is the difference between the first threshold value 321 is smaller than B 1 value and the second threshold 322 is greater than B 1 value, is smaller than B 1 value and the second first threshold 321 Divided by the sum of B 1 values greater than the threshold 322.
  • indexes include, for example, an index related to whole body SAR, an index related to local SAR, an index related to RF irradiation power, and an index related to the average value of a high-frequency magnetic field.
  • the RF parameter determination unit 233 calculates an optimal solution using either the optimization index U WSD of this embodiment or the combination index as an objective function and the other as a constraint.
  • the RF parameter determination unit 233 determines the RF parameter so as to minimize the optimization index U WSD under a constraint condition determined using a predetermined second optimization index.
  • the constraint conditions are, for example, setting the whole body specific absorption rate to a predetermined value or less, setting the local specific absorption rate to a predetermined value or less, minimizing the irradiation power of the high-frequency magnetic field, For example, the ratio of the average value of the high-frequency magnetic field in the region to the predetermined average value of the high-frequency magnetic field in the second region is minimized.
  • the uniformity of the B 1 value can be reduced while keeping the whole body SAR below a certain value.
  • the uniformity of the B 1 value is reduced while keeping the irradiation power of the high frequency magnetic field below a certain value. Can do.
  • the uniformity of the B 1 value can be reduced while keeping the local SAR below a certain value.
  • the whole body SAR when the index related to the whole body SAR is used as the objective function and the index U WSD of this embodiment is used as the constraint condition, the whole body SAR can be reduced while ensuring the uniformity of the B 1 value.
  • the local SAR can be reduced while ensuring the uniformity of the B 1 value.
  • the RF irradiation power can be reduced while ensuring the uniformity of the B 1 value.
  • an index used for the objective function and the constraint condition an index combining a plurality of types of indices may be used.
  • ⁇ ⁇ U WSD + ⁇ ⁇ whole body SAR is used as an objective function
  • the unevenness of B 1 value is considered in consideration of the balance of whole body SAR while keeping the local SAR below a certain value. Can be reduced.
  • ⁇ and ⁇ are proportional coefficients.
  • the types of indicators to be used may be registered in the storage device 111 in advance.
  • the RF shimming unit 213 extracts an index type used for RF parameter calculation from the storage device 111 according to a user instruction, and calculates an RF parameter.
  • RF shimming that achieves the maximum effect can be realized in an MRI apparatus using a transmission coil having a plurality of channels even when measurement noise is included. .
  • the type of index to be registered is not the purpose but may be held in association with the imaging region. Further, the type of the index may be held in association with the imaging condition. In this case, when the imaging condition is set instead of the user giving an instruction each time, the index type used for the RF shimming is automatically extracted from the storage device 111, and the RF parameter is set accordingly. You may comprise.
  • the RF parameter determination unit 233 calculates the RF parameter using a general optimization problem solving method.
  • the RF parameter calculation method is not limited to this.
  • a solution that minimizes the objective function by exhaustively changing the amplitude and phase values may be obtained.
  • the value of the objective function is calculated by changing the values of the amplitude and the phase by 1 dB and 5 degrees, respectively, and the amplitude and the phase in the case of the minimum are obtained.
  • the amplitude and phase may be obtained in the vicinity of the amplitude and phase values with the amount of change reduced.
  • the initial values of the amplitude and phase when performing these solutions are stored in the storage device 111 in advance.
  • the predicted value may be used as an initial value, and the amplitude and phase may be comprehensively changed only for the nearby values.
  • the RF parameter determination unit 233 may determine only the high frequency magnetic field condition by changing only one of the amplitude and the phase.
  • RF shimming unit 213, every time the high-frequency magnetic field conditions are changed, perform B 1 distribution measurement for measuring the B 1 distribution in the imaging area may be obtained B 1 value in the imaging region.
  • the index creation unit 232 uses the obtained B 1 value every time the RF parameter is changed, or the histogram shown in FIG.
  • a B1 distribution and a binarized map may be presented to the user, and designation of the first threshold value 321 and the second threshold value 322 may be received from the user via a histogram.
  • the 3T MRI apparatus 100 and the 4-channel transmission coil 114 have been described as examples.
  • the configuration of the MRI apparatus 100 is not limited thereto.
  • a transmission coil 114 having a higher magnetic field than 3T and a number of channels larger than 4 channels may be used.
  • the computer 109 included in the MRI apparatus 100 includes the RF shimming unit 213 and is configured to calculate at least one of the optimum RF amplitude and phase, but is not limited thereto.
  • the RF shimming unit 213 may be constructed on a computer that can transmit and receive data to and from the MRI apparatus 100 and is independent of the MRI apparatus 100.
  • data necessary for each process and data generated by each process are stored not on the storage device 111 included in the MRI apparatus 100 but on an independent storage device accessible by the MRI apparatus 100 or the computer 109. May be.
  • the method of the present embodiment can be applied to various imaging fields including medical use.
  • 100 MRI apparatus, 101: magnet, 102: gradient coil, 103: subject, 104: sequencer, 105: gradient magnetic field power source, 106: high-frequency magnetic field generator, 107: table, 108: receiver, 109: calculator, 110: display device, 111: storage device, 112: shim coil, 113: shim power source, 114: transmission coil, 114a: channel, 114a: channel, 114b: channel, 114c: channel, 114d: channel, 115: reception coil, 117a : Feeding point, 117b: feeding point, 117c: feeding point, 117d: feeding point, 210: imaging condition setting unit, 211: imaging position setting unit, 212: static magnetic field shimming unit, 213: RF shimming unit, 220: imaging unit , 231: B 1 distribution measuring unit, 232: index creation unit, 233: RF Pas Meter determination unit, 300: histogram of B 1 value, 310: weighting function, 311: weight

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Provided is an RF shimming technique whereby maximum effect is obtained irrespective of purpose even when measurement noise is included in an MRI device which uses a transmission coil having a plurality of channels. In the present invention, RF shimming is performed using an optimization index whereby the optimum RF parameters can be calculated even when measurement noise is included in the RF shimming. The optimization index is obtained by weighting the B1 value in accordance with at least one of the position of an imaging region and the size of the initial B1 value. The weighting is performed by multiplying the B1 value by a weighting function, for example.

Description

磁気共鳴撮像装置および高周波磁場シミング方法Magnetic resonance imaging apparatus and high-frequency magnetic field shimming method
 本発明は、磁気共鳴撮像(MRI:Magnetic Resonance Imaging)技術に関し、特に、磁気共鳴現象を誘起する回転磁界を生成するための高周波磁場の照射技術に関する。 The present invention relates to a magnetic resonance imaging (MRI) technique, and more particularly to a high-frequency magnetic field irradiation technique for generating a rotating magnetic field that induces a magnetic resonance phenomenon.
 MRI装置は、検査対象を横切る任意の断面内の原子核に磁気共鳴を起こさせ、発生する磁気共鳴信号からその断面内における断層像を得る医用画像診断装置である。検査対象に電磁波の一種であるラジオ波(Radio Frequency wave、以下、RF)を送信し、検査対象内の原子核のスピンを励起すると共に、その後、核スピンにより発生する核磁気共鳴信号を受信し、検査対象を画像化する。検査対象へのRFの送信は、RF送信用コイルによってなされ、検査対象からの核磁気共鳴信号の受信は、RF受信用コイルによってなされる。 The MRI apparatus is a medical image diagnostic apparatus that causes magnetic resonance to occur in nuclei in an arbitrary cross section that crosses the examination target, and obtains a tomographic image in the cross section from the generated magnetic resonance signal. A radio wave (Radio Frequency wave, hereinafter referred to as RF), which is a type of electromagnetic wave, is transmitted to the inspection object to excite the spins of the nuclei in the inspection object, and then receives a nuclear magnetic resonance signal generated by the nuclear spins. The inspection object is imaged. RF transmission to the inspection object is performed by the RF transmission coil, and reception of the nuclear magnetic resonance signal from the inspection object is performed by the RF reception coil.
 近年、画像のSNR(Signal to Noise Ratio)の向上を目指して、静磁場強度が大きくなる傾向があり、静磁場強度が3T(テスラ)以上の高磁場MRI装置(超高磁場MRI装置)の普及が始まっている。しかし、静磁場強度が大きくなるほど、SNRは向上するが、撮像画像に輝度のムラが生じやすい。これは、高磁場化に伴って、磁気共鳴現象を誘起するために使用されるRFの周波数が高くなり、検査対象のサイズとの関係で、照射RF分布、およびそのRFにより生成され磁気共鳴現象を誘起する回転磁界の空間分布が不均一となるためである。これを送信感度分布(高周波磁場分布、B1分布)の不均一と呼ぶ。 In recent years, with the aim of improving the SNR (Signal to Noise Ratio) of images, the static magnetic field strength tends to increase, and the spread of high magnetic field MRI devices (super high magnetic field MRI devices) with a static magnetic field strength of 3 T (Tesla) or higher. Has begun. However, as the static magnetic field strength increases, the SNR improves, but uneven brightness tends to occur in the captured image. This is because the RF frequency used for inducing the magnetic resonance phenomenon increases with the increase in the magnetic field, and the irradiation RF distribution and the magnetic resonance phenomenon generated by the RF in relation to the size of the inspection object. This is because the spatial distribution of the rotating magnetic field that induces non-uniformity. This is called non-uniformity of the transmission sensitivity distribution (high-frequency magnetic field distribution, B 1 distribution).
 B1分布に不均一があると、輝度ムラが生じる。そして、この不均一が大きいと、脂肪信号を十分に抑制することができず、脂肪信号を除去する効果が不十分となることもある。 If the B 1 distribution is non-uniform, uneven brightness occurs. If this non-uniformity is large, the fat signal cannot be sufficiently suppressed, and the effect of removing the fat signal may be insufficient.
 B1分布の不均一を低減するRF照射方法として、「RFシミング」と呼ばれる手法がある。これは、複数のチャンネルを持つ送信用コイルを用い、各チャンネルに与えるRFパルスの位相と振幅(以下、RFパラメータと呼ぶ)を制御して、撮像領域のB1不均一を低減させる手法である(例えば、特許文献1参照)。また、傾斜磁場波形を変化させることによって、B1分布をより高精度に均一化するようなRFパラメータを算出する方法も提案されている(例えば、特許文献2参照)。 There is a technique called “RF shimming” as an RF irradiation method for reducing nonuniformity of the B 1 distribution. This is a technique for reducing B 1 nonuniformity in an imaging region by using a transmission coil having a plurality of channels and controlling the phase and amplitude (hereinafter referred to as an RF parameter) of an RF pulse applied to each channel. (For example, refer to Patent Document 1). There has also been proposed a method of calculating an RF parameter that makes the B 1 distribution uniform with higher accuracy by changing the gradient magnetic field waveform (see, for example, Patent Document 2).
 B1不均一を低減するためのRFパラメータを算出する方法として、B1均一度の指標を定義し、その値を最小化する最適化問題を解く方法がある。その際のB1均一度指標としては、B1値の標準偏差(例えば、特許文献3参照)、B1最大値とB1最小値などが用いられる。 As a method for calculating the RF parameter for reduction of the B 1 uneven, define an index of B 1 uniformity, there is a method for solving an optimization problem for minimizing the value. As the B 1 uniformity index at that time, the standard deviation of the B 1 value (see, for example, Patent Document 3), the B 1 maximum value, the B 1 minimum value, and the like are used.
米国特許第7078901号明細書US Pat. No. 7,078,901 米国特許出願公開第2003/0214294号明細書US Patent Application Publication No. 2003/0214294 特表2012-502683号公報Special table 2012-502683 gazette
 RFシミングの目的には、B1分布の不均一を低減するだけではなく、SARを抑える、脂肪信号を抑制するといったものがある。この中で、脂肪信号を抑制する場合、指標としてB1値の最大値と最小値との差を用いることが多い。B1不均一が大きく、基準のB1値から外れてしまうと、脂肪抑制ができなくなるため、その指標をできるだけ小さくするよう、RFパラメータは決定される。 The purpose of RF shimming is not only to reduce the non-uniformity of the B 1 distribution, but also to suppress SAR and suppress fat signals. Among these, when the fat signal is suppressed, the difference between the maximum value and the minimum value of the B 1 value is often used as an index. If the B 1 non-uniformity is large and deviates from the reference B 1 value, fat suppression cannot be performed. Therefore, the RF parameter is determined so as to make the index as small as possible.
 B1値は、撮像時に生じるノイズ成分(計測ノイズ)の影響を受けやすい。RFパラメータを決定する際、指標として標準偏差を用いると、B1値の計測点数に対して計測ノイズの入る点数が十分小さければ、計測ノイズの影響は小さい。しかしながら、脂肪信号抑制時のように、指標にB1値の最大値と最小値との差を用いる場合、計測ノイズの影響を受けて、極端に小さな値または大きな値が1つでも混入すると、RFパラメータ決定時に大きな影響を受け、最適なパラメータを得られず、画像内においても、十分脂肪が抑制できない。 The B 1 value is easily affected by noise components (measurement noise) generated during imaging. When the standard deviation is used as an index when determining the RF parameter, the influence of the measurement noise is small if the number of points where the measurement noise enters is sufficiently small relative to the number of measurement points of the B 1 value. However, as the time of the fat signal suppression, when using the difference between the maximum and minimum values of B 1 value in the index under the influence of the measurement noise, the extremely small value or large value is mixed even one, It is greatly affected when RF parameters are determined, and optimal parameters cannot be obtained, and fat cannot be sufficiently suppressed even in an image.
 本発明は、上記事情に鑑みてなされたもので、複数チャンネルを有する送信コイルを用いるMRI装置において、計測ノイズが含まれる場合であっても、目的によらず、最大の効果が得られるRFシミング技術を提供することを目的とする。 The present invention has been made in view of the above circumstances, and in an MRI apparatus using a transmission coil having a plurality of channels, even if measurement noise is included, RF shimming that achieves the maximum effect regardless of the purpose. The purpose is to provide technology.
 本発明は、RFシミングにおいて、計測ノイズが含まれる場合であっても、最適なRFパラメータを算出可能な最適化指標を用い、RFシミングを行う。最適化指標は、B1値に、撮像領域の位置および初期B1値の大きさの少なくとも一方に応じた重み付けを行うことにより得る。重み付けは、例えば、B値に重み付け関数を乗算することによりなされる。 The present invention performs RF shimming using an optimization index capable of calculating an optimum RF parameter even when measurement noise is included in RF shimming. Optimization index, the B 1 value, obtained by performing weighting according to at least one of the magnitude of the position and initial B 1 value of the imaging region. Weighting, for example, be done by multiplying the weighting function to the B 1 value.
 本発明によれば、複数チャンネルを有する送信コイルを用いるMRI装置において、計測ノイズが含まれる場合であっても、目的によらず、最大の効果が得られるRFシミングを実現できる。 According to the present invention, in an MRI apparatus using a transmission coil having a plurality of channels, even if measurement noise is included, RF shimming that achieves the maximum effect can be realized regardless of the purpose.
本発明の実施形態のMRI装置のブロック図である。It is a block diagram of the MRI apparatus of embodiment of this invention. 本発明の実施形態の送信コイルを説明するための説明図である。It is explanatory drawing for demonstrating the transmission coil of embodiment of this invention. 本発明の実施形態の計算機の機能ブロック図である。It is a functional block diagram of the computer of the embodiment of the present invention. (A)は、本発明の実施形態の、最適化指標作成時に用いるB1値を説明するための説明図であり、(B)は、本発明の実施形態の重み付け関数例を説明するための説明図である。(A) is, embodiments of the present invention, is an explanatory diagram for explaining the B 1 value used when creating optimization metrics, (B) it is for illustrating the weighting function of the embodiment of the present invention It is explanatory drawing. 本発明の実施形態の撮像処理のフローチャートである。It is a flowchart of the imaging process of embodiment of this invention. 本発明の実施形態の電磁シミュレーションに用いた人体モデル内の設定領域を説明するための説明図である。It is explanatory drawing for demonstrating the setting area | region in the human body model used for the electromagnetic simulation of embodiment of this invention. (A)~(F)は、計測ノイズが無い状態で、RFシミング無し、標準偏差指標USDを用いてRFシミングを行った場合、および、最大最小指標UNEMAを用いてRFシミングを行った場合、それぞれのB1分布および2値化マップを説明するための説明図である。(A) to (F), when there is no measurement noise, no RF shimming, RF shimming is performed using the standard deviation index U SD , and RF shimming is performed using the maximum / minimum index U NEMA In this case, each B 1 distribution and a binarized map are explanatory diagrams for explaining the case. (A)~(C)は、計測ノイズが無い状態で、RFシミング無し、標準偏差指標USDを用いてRFシミングを行った場合、および、最大最小指標UNEMAを用いてRFシミングを行った場合、それぞれの、人体モデル内のB1値のヒストグラムである。(A) ~ (C) is a state measurement noise is not, no RF shimming, in the case of performing the RF shimming using standard deviation index U SD, and were RF shimming using a maximum minimum index U NEMA In each case, a histogram of B 1 values in the human body model. (A)~(F)は、計測ノイズが有る状態で、RFシミング無し、標準偏差指標USDを用いてRFシミングを行った場合、および、最大最小指標UNEMAを用いてRFシミングを行った場合、それぞれのB1分布および2値化マップを説明するための説明図である。(A) to (F), when there is measurement noise, no RF shimming, RF shimming is performed using the standard deviation index U SD , and RF shimming is performed using the maximum / minimum index U NEMA In this case, each B 1 distribution and a binarized map are explanatory diagrams for explaining the case. (A)~(C)は、計測ノイズが有る状態で、RFシミング無し、標準偏差指標USDを用いてRFシミングを行った場合、および、最大最小指標UNEMAを用いてRFシミングを行った場合、それぞれの、人体モデル内のB1値のヒストグラムである。(A) ~ (C), in a state in which measurement noise is present, no RF shimming, in the case of performing the RF shimming using standard deviation index U SD, and were RF shimming using a maximum minimum index U NEMA In each case, a histogram of B 1 values in the human body model. (A)~(F)は、計測ノイズが無い状態で、標準偏差指標USDを用いてRFシミングを行った場合、計測ノイズがある状態で、最大最小指標UNEMAを用いてRFシミングを行った場合、計測ノイズがある状態で、本実施形態の最適化指標UWSDを用いてRFシミングを行った場合、それぞれの、B1分布および2値化マップを説明するための説明図である。(A) ~ (F) is a state measurement noise is not, in the case of performing the RF shimming using standard deviation index U SD, in the presence of measurement noise, performing RF shimming using a maximum minimum index U NEMA When the RF shimming is performed using the optimization index U WSD of the present embodiment in a state where there is measurement noise, the B 1 distribution and the binarization map will be described. (A)~(C)は、計測ノイズが無い状態で、標準偏差指標USDを用いてRFシミングを行った場合、計測ノイズがある状態で、最大最小指標UNEMAを用いてRFシミングを行った場合、計測ノイズがある状態で、本実施形態の最適化指標UWSDを用いてRFシミングを行った場合、それぞれの、人体モデル内のB1値のヒストグラムである。(A) ~ (C) is a state measurement noise is not, in the case of performing the RF shimming using standard deviation index U SD, in the presence of measurement noise, performing RF shimming using a maximum minimum index U NEMA In the case where RF shimming is performed using the optimization index U WSD of the present embodiment in the presence of measurement noise, each is a histogram of B 1 values in the human body model. (A)~(E)は、本発明の実施形態の重み付け関数の変形例を説明するための説明図である。(A) to (E) are explanatory diagrams for explaining modifications of the weighting function according to the embodiment of the present invention.
 以下、本発明を適用する実施形態の一例を、図面を用いて説明する。なお、実施形態を説明するための全図において、同一機能を有するものは、特に断らない限り、同一の符号を付し、その繰り返しの説明は省略する。なお、この実施形態により本発明が限定されるものではない。 Hereinafter, an example of an embodiment to which the present invention is applied will be described with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments unless otherwise specified, and repetitive description thereof is omitted. In addition, this invention is not limited by this embodiment.
 [MRI装置の構成]
 まず、本実施形態のMRI装置の全体構成について説明する。図1は、本実施形態のMRI装置100のブロック図である。
[Configuration of MRI system]
First, the overall configuration of the MRI apparatus of this embodiment will be described. FIG. 1 is a block diagram of the MRI apparatus 100 of the present embodiment.
 本図に示すように、本実施形態のMRI装置100は、静磁場を発生するマグネット101と、傾斜磁場を発生する傾斜磁場コイル102と、静磁場均一度を調整するシムコイル112と、シーケンサ104と、高周波磁場(RF)を照射(送信)するRF送信用コイル(送信コイル)114と、被検体103から発生する核磁気共鳴信号を検出(受信)するRF受信用コイル(受信コイル)115と、被検体103を載置するテーブル107と、傾斜磁場電源105と、高周波磁場発生器106と、受信器108と、シム電源113と、MRI装置100の各部を制御し、撮像を実現する計算機109と、を備える。 As shown in the figure, the MRI apparatus 100 of the present embodiment includes a magnet 101 that generates a static magnetic field, a gradient coil 102 that generates a gradient magnetic field, a shim coil 112 that adjusts the static magnetic field uniformity, a sequencer 104, An RF transmission coil (transmission coil) 114 that irradiates (transmits) a high-frequency magnetic field (RF); an RF reception coil (reception coil) 115 that detects (receives) a nuclear magnetic resonance signal generated from the subject 103; A table 107 on which the subject 103 is placed, a gradient magnetic field power source 105, a high-frequency magnetic field generator 106, a receiver 108, a shim power source 113, and a computer 109 that controls each part of the MRI apparatus 100 and realizes imaging. .
 傾斜磁場コイル102およびシムコイル112は、それぞれ傾斜磁場電源105およびシム電源113に接続される。また、送信コイル114および受信コイル115は、それぞれ、高周波磁場発生器106および受信器108に接続される。 The gradient magnetic field coil 102 and the shim coil 112 are connected to the gradient magnetic field power source 105 and the shim power source 113, respectively. The transmission coil 114 and the reception coil 115 are connected to the high-frequency magnetic field generator 106 and the receiver 108, respectively.
 シーケンサ104は、計算機109からの指示に従って、傾斜磁場電源105、シム電源113、および高周波磁場発生器106に命令を送り、それぞれ傾斜磁場およびRFを発生させる。RFは、送信コイル114を通じて被検体103に照射(送信)される。 The sequencer 104 sends a command to the gradient magnetic field power source 105, the shim power source 113, and the high frequency magnetic field generator 106 according to an instruction from the computer 109 to generate a gradient magnetic field and RF, respectively. RF is irradiated (transmitted) to the subject 103 through the transmission coil 114.
 RFを照射(送信)することにより被検体103から発生する核磁気共鳴信号は受信コイル115によって検出(受信)され、受信器108で検波が行われる。受信器108での検波の基準とする磁気共鳴周波数は、計算機109によりシーケンサ104を介してセットされる。 The nuclear magnetic resonance signal generated from the subject 103 by irradiating (transmitting) RF is detected (received) by the receiving coil 115 and detected by the receiver 108. A magnetic resonance frequency used as a reference for detection by the receiver 108 is set by the computer 109 via the sequencer 104.
 検波された信号はA/D変換回路を通して計算機109に送られ、ここで画像再構成などの信号処理が行われる。その結果は、計算機109に接続される表示装置110に表示される。検波された信号や測定条件は、必要に応じて、計算機109に接続される記憶装置111に保存される。 The detected signal is sent to the computer 109 through an A / D conversion circuit, where signal processing such as image reconstruction is performed. The result is displayed on the display device 110 connected to the computer 109. The detected signals and measurement conditions are stored in the storage device 111 connected to the computer 109 as necessary.
 マグネット101とシムコイル112とシム電源113とは、静磁場空間を形成する静磁場形成部を構成する。傾斜磁場コイル102と傾斜磁場電源105とは、静磁場空間に傾斜磁場を印加する傾斜磁場印加部を構成する。また、送信コイル114と高周波磁場発生器106とは、静磁場内に配置された被検体103に高周波磁場(RF)を照射(送信)する高周波磁場送信部を構成する。受信コイル115と受信器108とは、被検体103から発生する核磁気共鳴信号を検出(受信)する信号受信部を構成する。 The magnet 101, shim coil 112, and shim power supply 113 constitute a static magnetic field forming unit that forms a static magnetic field space. The gradient magnetic field coil 102 and the gradient magnetic field power source 105 constitute a gradient magnetic field application unit that applies a gradient magnetic field to the static magnetic field space. The transmission coil 114 and the high-frequency magnetic field generator 106 constitute a high-frequency magnetic field transmission unit that irradiates (transmits) a high-frequency magnetic field (RF) to the subject 103 arranged in the static magnetic field. The receiving coil 115 and the receiver 108 constitute a signal receiving unit that detects (receives) a nuclear magnetic resonance signal generated from the subject 103.
 本実施形態の送信コイル114は、それぞれ独自に被検体103に高周波磁場(RF)を送信する複数のチャンネルを備える多チャンネルコイルとする。図2に、本実施形態の送信コイル114の例を示す。ここでは、送信コイル114が、4つのチャンネル(114a、114b、114c、114d)を備える4チャンネル(4ch)コイルである場合を例示する。 The transmission coil 114 of the present embodiment is a multi-channel coil that includes a plurality of channels that independently transmit a high-frequency magnetic field (RF) to the subject 103. FIG. 2 shows an example of the transmission coil 114 of the present embodiment. Here, a case where the transmission coil 114 is a four-channel (4ch) coil including four channels (114a, 114b, 114c, 114d) is illustrated.
 各チャンネル(114a、114b、114c、114d)から送信されるRFの振幅および位相は、個々独立に計算機109により設定される。本実施形態の高周波磁場発生器106は、計算機109からの制御に従って、各チャンネル(114a、114b、114c、114d)が備える給電点(117a、117b、117c、117d)を介し、それぞれのチャンネルに独立にRF波形(RFパルス)を送信する。なお、本図において116は、RFシールドである。 The amplitude and phase of RF transmitted from each channel (114a, 114b, 114c, 114d) are individually set by the computer 109. The high-frequency magnetic field generator 106 according to the present embodiment is independent of each channel via feeding points (117a, 117b, 117c, 117d) included in each channel (114a, 114b, 114c, 114d) in accordance with control from the computer 109. An RF waveform (RF pulse) is transmitted. In this figure, reference numeral 116 denotes an RF shield.
 本実施形態の計算機109は、上述のように、MRI装置100の各部を制御し、撮像を実現する。本実施形態では、さらに、撮影空間の静磁場の均一度を調整する静磁場シミング処理および関心領域のB1分布の均一度を目的に応じて調整するRFシミング処理を行う。 As described above, the computer 109 according to the present embodiment controls each unit of the MRI apparatus 100 to realize imaging. In the present embodiment, a static magnetic field shimming process for adjusting the uniformity of the static magnetic field in the imaging space and an RF shimming process for adjusting the uniformity of the B 1 distribution in the region of interest according to the purpose are further performed.
 [計算機の機能ブロック]
 これらを実現するため、本実施形態の計算機109は、図3に示すように、撮像条件を設定する撮像条件設定部210と、撮像条件設定部210により設定された撮像条件に従って、画像データを収集する撮像を行う撮像部220と、を備える。また、撮像条件設定部210は、撮像位置を設定する撮像位置設定部211と、静磁場シミング処理を行う静磁場シミング部212と、RFシミング処理を行うRFシミング部213と、を備える。
[Computer function blocks]
In order to realize these, the computer 109 according to the present embodiment collects image data according to the imaging condition setting unit 210 that sets the imaging conditions and the imaging conditions set by the imaging condition setting unit 210, as shown in FIG. An imaging unit 220 that performs imaging. In addition, the imaging condition setting unit 210 includes an imaging position setting unit 211 that sets an imaging position, a static magnetic field shimming unit 212 that performs static magnetic field shimming processing, and an RF shimming unit 213 that performs RF shimming processing.
 計算機109が実現する各機能は、計算機109が備えるCPUが、記憶装置111に予め格納されたプログラムをメモリにロードして実行することにより実現される。 Each function realized by the computer 109 is realized by a CPU included in the computer 109 loading a program stored in advance in the storage device 111 to the memory and executing the program.
 なお、各機能のうち、全部または一部の機能は、ASIC(Application Specific Integrated Circuit)、FPGA(field-programmable gate array)などのハードウェアによって実現してもよい。また、各機能の処理に用いる各種のデータ、処理中に生成される各種のデータは、記憶装置111に格納される。 It should be noted that all or some of the functions may be realized by hardware such as ASIC (Application Specific Integrated Circuit) or FPGA (field-programmable gate array). Various data used for processing of each function and various data generated during the processing are stored in the storage device 111.
 以下、本実施形態の撮像条件設定部210の各部の詳細を説明する。 Hereinafter, details of each unit of the imaging condition setting unit 210 of the present embodiment will be described.
 [撮像位置設定部]
 撮像位置設定部211は、撮像位置(撮像断面)を設定する。撮像断面は、本撮像を行う前にスカウトスキャン等を実施し、得られた位置決め画像を用いて設定される。例えば、表示装置110に表示した位置決め画像上で、ユーザによる指定を受け付け、指定された位置を撮像断面として設定する。撮像断面として、部位毎に、予め定められた位置を、位置決め画像上の特徴点等を手がかりに自動的に設定してもよい。なお、撮像断面上の被検体103領域を撮像領域と呼ぶ。
[Imaging position setting section]
The imaging position setting unit 211 sets an imaging position (imaging cross section). The imaging section is set using a positioning image obtained by performing a scout scan or the like before performing the main imaging. For example, on the positioning image displayed on the display device 110, designation by the user is accepted, and the designated position is set as an imaging section. As an imaging cross section, a predetermined position may be automatically set for each part, using a feature point on the positioning image as a clue. Note that the region of the subject 103 on the imaging section is referred to as an imaging region.
 [静磁場シミング部]
 静磁場シミング部212では、静磁場分布を計測し、静磁場が出来る限り均一となるように調整を行う。調整は、シム電源113を介してシムコイル112を動作させることにより行う。なお、静磁場の均一度調整が不要な場合、静磁場シミング処理はおこなわなくてもよい。また、静磁場シミング部212、シム電源113、シムコイル112は、備えなくてもよい。
[Static magnetic field shimming section]
The static magnetic field shimming unit 212 measures the static magnetic field distribution and performs adjustment so that the static magnetic field is as uniform as possible. The adjustment is performed by operating the shim coil 112 via the shim power supply 113. If it is not necessary to adjust the uniformity of the static magnetic field, the static magnetic field shimming process may not be performed. Further, the static magnetic field shimming unit 212, the shim power source 113, and the shim coil 112 may not be provided.
 [RFシミング部]
 本実施形態のRFシミング部213は、関心領域(ROI)内の高周波磁場分布であるB1分布の不均一を補正するよう、送信コイル114の各チャンネルから送信する高周波磁場(RF)のパラメータである高周波磁場パラメータ(RFパラメータ)を決定する。ここでは、ROI内のB1不均一を、目的に応じて低減するよう、送信コイル114の各チャンネルから送信されるRFの振幅および位相の少なくとも一方を決定する。なお、RFの振幅および位相は、特に区別する必要がない場合は、まとめてRFパラメータと呼ぶ。
[RF shimming section]
The RF shimming unit 213 according to the present embodiment uses the parameters of the high frequency magnetic field (RF) transmitted from each channel of the transmission coil 114 so as to correct the nonuniformity of the B 1 distribution that is the high frequency magnetic field distribution in the region of interest (ROI). A certain high frequency magnetic field parameter (RF parameter) is determined. Here, at least one of the amplitude and phase of the RF transmitted from each channel of the transmission coil 114 is determined so as to reduce the B 1 non-uniformity in the ROI according to the purpose. Note that the RF amplitude and phase are collectively referred to as an RF parameter when it is not necessary to distinguish between them.
 本実施形態では、RFシミング部213は、最適なRFパラメータを、予め用意した最適化指標を用いて決定する。そして、本実施形態では、この指標は、B1値を用いて作成される。そして、最適化指標は、B1値の大きさに応じた重み付けを、B1値に行うことにより作成される。この重み付けは、重み付け関数によりなされる。 In the present embodiment, the RF shimming unit 213 determines an optimal RF parameter using an optimization index prepared in advance. In the present embodiment, this index is created using the B 1 value. Then, the optimization index is weighted according to the magnitude of the B 1 value is generated by performing the B 1 value. This weighting is performed by a weighting function.
 このため、本実施形態のRFシミング部213は、RFシミングに用いる最適化指標を作成する指標作成部232と、決定した最適化指標を用いてRFパラメータを決定するRFパラメータ決定部233と、を備える。 For this reason, the RF shimming unit 213 of the present embodiment includes an index creating unit 232 that creates an optimization index used for RF shimming, and an RF parameter determination unit 233 that determines an RF parameter using the determined optimization index. Prepare.
  [指標作成部]
 本実施形態では、RFシミングに用いる最適化指標として、ROI内のB1分布を最適にするとともに、計測ノイズがある場合であっても、脂肪抑制効果を最大とする指標を用いる。本実施形態の指標作成部232は、上述のように、これを実現する最適化指標を、B1分布の値を用いて作成する。
[Indicator creation section]
In the present embodiment, as an optimization index used for RF shimming, an index that optimizes the B 1 distribution in the ROI and maximizes the fat suppression effect even when there is measurement noise is used. As described above, the index creating unit 232 according to the present embodiment creates an optimization index that realizes this using the value of the B 1 distribution.
   [従来の指標]
 以下、本実施形態の最適化指標の説明に先立ち、RFシミングに用いられていた従来の指標を説明する。
[Conventional indicators]
Prior to the description of the optimization index of the present embodiment, the conventional index used for RF shimming will be described below.
 ROI内のB1分布を最適化するためには、ROI内のB1分布の分散が最小となればよい。従って、これを実現する指標として、B1分布の標準偏差を用いる指標(以下、標準偏差指標と呼ぶ)USDがある。 In order to optimize the B 1 distribution in the ROI, the variance of the B 1 distribution in the ROI may be minimized. Therefore, as an index to achieve this, an indicator using the standard deviation of the B 1 distribution (hereinafter, referred to as the standard deviation indicator) is U SD.
 標準偏差指標USDは、以下の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 なお、rは空間座標を、B1(r)はB1分布を、σ(B1(r))はB1値の標準偏差を、m(B1(r))はB1平均値を、それぞれ示す。すなわち、標準偏差指標USDは規格化された標準偏差であり、標準偏差指標USDが小さいほど、値のばらつきが小さく、均一であることを示す。
The standard deviation index USD is expressed by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
R is a spatial coordinate, B 1 (r) is a B 1 distribution, σ (B 1 (r)) is a standard deviation of B 1 value, and m (B 1 (r)) is an average value of B 1. , Respectively. That is, the standard deviation index U SD is the standard deviation which is normalized, as the standard deviation index U SD is small, variation in the values is small, indicating a uniform.
 また、脂肪抑制効果を最大とするためには、ROI内のB1値の最大値と最小値との差が最小となればよい。これを実現する指標として、B1分布のB1値の最大値と最小値とを用いる指標(以下、最大最小指標)UNEMAがある。 In order to maximize the fat suppression effect, the difference between the maximum value and the minimum value of the B 1 value in the ROI may be minimized. As an index for realizing this, there is an index that uses the maximum value and the minimum value of the B 1 value of the B 1 distribution (hereinafter, maximum and minimum index) U NEMA .
 B1最大値とB1最小値とを用いる指標(最大最小指標)UNEMAは、以下の式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 なお、max(B1)はB1最大値を、min(B1)はB1最小値を、それぞれ示す。すなわち、最大最小指標UNEMAは、規格化された、B1最大値とB1最小値の差である。最大最小指標UNEMAが小さいほど、値の差が小さく、均一であることを示す。
The index (maximum / minimum index) U NEMA using the B 1 maximum value and the B 1 minimum value is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Note that max (B 1 ) indicates the B 1 maximum value, and min (B 1 ) indicates the B 1 minimum value. That is, the maximum / minimum index U NEMA is a standardized difference between the B 1 maximum value and the B 1 minimum value. The smaller the maximum / minimum index U NEMA , the smaller the value difference and the more uniform.
 しかしながら、最大最小指標UNEMAは、最大値と最小値という特定の2点を用いるため、例えば、計測ノイズの影響を受けて極端に小さい値が混入すると、その指標としての精度が低下する。 However, since the maximum / minimum index U NEMA uses two specific points of the maximum value and the minimum value, for example, if an extremely small value is mixed under the influence of measurement noise, the accuracy as the index is lowered.
   [本実施形態の指標]
 そこで、本実施形態では、ROI内のB1分布を最適にするとともに、計測ノイズがある場合であっても、脂肪抑制効果を最大とする最適化指標として、最小値を含む所定の範囲の値と、最大値を含む所定の範囲の値とを用いた指標を作成する。
[Indicator of this embodiment]
Therefore, in the present embodiment, the B 1 distribution in the ROI is optimized, and even if there is measurement noise, the optimization index that maximizes the fat suppression effect is a value within a predetermined range including the minimum value. And an index using a predetermined range including the maximum value.
 すなわち、本実施形態の指標作成部232は、B1分布を用い、所定の閾値(第一の閾値)より小さいB1値および所定の閾値(第二の閾値)より大きいB1値を用いて最適化指標を作成する。なお、第一の閾値は、最小値以上、かつ、第二の閾値より小さい値とし、第二の閾値は、最大値以下、かつ、第一の閾値より大きい値とする。 That is, the index creation unit 232 of the present embodiment uses the B 1 distribution, and uses a B 1 value that is smaller than a predetermined threshold (first threshold) and a B 1 value that is larger than a predetermined threshold (second threshold). Create optimization metrics. The first threshold value is a value that is not less than the minimum value and smaller than the second threshold value, and the second threshold value is not more than the maximum value and larger than the first threshold value.
 本実施形態の最適化指標で用いるB1値を、図4(A)を用いて説明する。図4(A)において、300は、B1値の分布を示すヒストグラムである。B1値の大きさを横軸とし、各B1値の頻度(度数)を縦軸として表したものである。 The B 1 value used in the optimization index of this embodiment will be described with reference to FIG. In FIG. 4A, 300 is a histogram showing the distribution of B 1 values. The magnitude of the B 1 value is represented on the horizontal axis, and the frequency (frequency) of each B 1 value is represented on the vertical axis.
 本実施形態の指標作成部232は、第一の閾値321より小さい範囲331のB1値と、第二の閾値322より大きい範囲332のB1値とを用いて、最適化指標を作成する。 Index creation unit 232 of the present embodiment uses and B 1 value in the first threshold value 321 is smaller than range 331, a and B 1 value in the second threshold 322 is larger than range 332, to create an optimized index.
 このような最適化指標は、B1分布のB1値に、当該B1値の大きさに応じた重み付けを行うことにより算出できる。従って、本実施形態の指標作成部232は、重み付けを行う重み付け関数w(B1)602を決定することにより、最適化指標を作成する。重み付け関数は、B1値を変数とする関数とする。 Such an optimization index can be calculated by weighting the B 1 value of the B 1 distribution according to the size of the B 1 value. Therefore, the index creation unit 232 according to the present embodiment creates an optimization index by determining the weighting function w (B 1 ) 602 for performing weighting. The weighting function is a function having the B 1 value as a variable.
 上述のような、第一の閾値321より小さい範囲331のB1値と、第二の閾値322より大きい範囲332のB1値を抽出する重み付け関数w(B1)310の一例を図4(B)に示す。本図に示す重み付け関数w(B1)310は、予め定めた第一の閾値321より小さいB1値と、前記第一の閾値321より大きい、予め定めた第二の閾値322より大きいB1値とを抽出する形状を有する。この重み付け関数w(B1)310を、B1分布に乗算することにより、上記範囲のB1値のみが抽出される。 An example of the weighting function w (B 1 ) 310 for extracting the B 1 value in the range 331 smaller than the first threshold 321 and the B 1 value in the range 332 larger than the second threshold 322 as described above is shown in FIG. Shown in B). Weighting function w (B 1) 310 shown in the figure, a first threshold value 321 is smaller than B 1 value determined in advance, the greater first threshold 321, a second threshold value 322 is greater than B 1 a predetermined It has a shape to extract values. By multiplying the B 1 distribution by this weighting function w (B 1 ) 310, only the B 1 value in the above range is extracted.
 第一の閾値321および第二の閾値322は、例えば、予め定めた固定値とし、記憶装置111に保持しておく。 The first threshold 321 and the second threshold 322 are, for example, predetermined fixed values and are held in the storage device 111.
 なお、第一の閾値321および第二の閾値322自体も、B1値から算出する。例えば、第一の閾値321は、B1値の下位p%の値を抽出する閾値、第二の閾値322は、B1値の上位q%の値を抽出する閾値とする(p、qは予め定めた正の実数)。これらのp、qは、予め定め、記憶装置111に保持しておく。 The first threshold value 321 and the second threshold value 322 are also calculated from the B 1 value. For example, the first threshold value 321 is a threshold value for extracting the lower p% value of the B 1 value, and the second threshold value 322 is a threshold for extracting the upper q% value of the B 1 value (p and q are Predetermined positive real number). These p and q are determined in advance and held in the storage device 111.
 なお、第一の閾値321および第二の閾値322は、これに限定されない。例えば、B1値の平均値(m)および標準偏差(σ)を算出し、これらを用いて定義してもよい。例えば、第一の閾値321をm-rσ、第二の閾値322をm+rσとする。 Note that the first threshold 321 and the second threshold 322 are not limited to this. For example, an average value (m) and a standard deviation (σ) of the B 1 value may be calculated and defined using these values. For example, the first threshold 321 is m−rσ, and the second threshold 322 is m + rσ.
 本実施形態の指標作成部232は、上述の手法で得た第一の閾値321および第二の閾値322を用いて重み付け関数w(B1)310を決定後、この重み付け関数w(B1)310を初期B1値に乗算(マスク)し、最適化指標を作成する。最適化指標UWSDは、例えば、以下の式(3)に示すように、重み付け関数w(B1)310をB1値(位置毎のB1値(B1(r))に乗算したものの標準偏差を、B1値の平均値で除算することにより得る。
Figure JPOXMLDOC01-appb-M000003
The index creating unit 232 according to the present embodiment determines the weighting function w (B 1 ) 310 using the first threshold value 321 and the second threshold value 322 obtained by the above-described method, and then the weighting function w (B 1 ). 310 is multiplied (masked) by the initial B 1 value to create an optimization index. Optimization metrics U WSD, for example, as shown in the following equation (3), although the weighting function w (B 1) 310 obtained by multiplying the B 1 value (position each of B 1 value (B 1 (r)) The standard deviation is obtained by dividing by the average value of B 1 values.
Figure JPOXMLDOC01-appb-M000003
 式(3)に示す最適化指標UWSDは、比較的小さいB1値と比較的大きいB1値とを用いて作成した指標である。従来の最大最小指標UNEMAが、B1の最大値と最小値という、2つの値を用いて作成されていたことと比較して、最適化指標UWSDは、指標作成に用いるB1値の数が多くなる。すなわち、指標作成に用いるB1値の点数が増える。これにより、本実施形態の最適化指標UWSDは、従来の最大最小指標UNEMAに比べて計測ノイズの影響を受けにくくなる。 The optimization index U WSD shown in Expression (3) is an index created using a relatively small B 1 value and a relatively large B 1 value. Compared to the fact that the conventional maximum and minimum index U NEMA was created using two values, the maximum and minimum values of B 1 , the optimization index U WSD is the B 1 value used for index generation. The number increases. That is, the B 1 value used for index creation increases. As a result, the optimization index U WSD of the present embodiment is less susceptible to measurement noise than the conventional maximum / minimum index U NEMA .
 なお、本実施形態の指標作成部232は、上記最適化指標UWSDを、RFパラメータ決定部233によるRFパラメータ決定処理より前に作成する。 Note that the index creation unit 232 of the present embodiment creates the optimization index U WSD before the RF parameter determination processing by the RF parameter determination unit 233.
 なお、重み付け関数w(B1)310を予め記憶装置111に保持し、それを用いて上記最適化指標UWSDを作成するよう構成してもよい。また、重み付け関数w(B1)310およびその重み付け関数w(B1)310を用いた上記最適化指標UWSDを、予め記憶装置111に保持しておくよう構成してもよい。この場合、指標作成部232は備えなくてもよい。後述のRFパラメータ決定部233は、記憶装置111に予め記憶されている最適化指標UWSDを用いて、RFパラメータを決定する。 Note that the weighting function w (B 1 ) 310 may be stored in the storage device 111 in advance, and the optimization index U WSD may be generated using the weighting function w (B 1 ) 310. Further, the weighting function w (B 1 ) 310 and the optimization index U WSD using the weighting function w (B 1 ) 310 may be stored in the storage device 111 in advance. In this case, the index creation unit 232 may not be provided. An RF parameter determination unit 233 described later determines an RF parameter using an optimization index U WSD stored in advance in the storage device 111.
  [RFパラメータ決定部]
 RFパラメータ決定部233は、指標作成部232が作成した最適化指標UWSDを用い、所望のB1分布を実現するRFパラメータを決定する。
[RF parameter determination unit]
The RF parameter determination unit 233 uses the optimization index U WSD created by the index creation unit 232 to determine an RF parameter that realizes a desired B 1 distribution.
 本実施形態では、RFパラメータ決定部233は、上記最適化指標UWSDを最小化するよう、各RFパラメータを決定する。すなわち、RFパラメータ決定部233は、指標作成部232が作成した最適化指標UWSDを最小化する解として、RFパラメータを得る。解の算出は、種々の最適化問題の解法、例えば、最急降下法、勾配法、ニュートン法、最小二乗法、共役勾配法、線形計画法、非線形計画法、振幅および位相の値を網羅的に変化させることによって最適解を算出する法などを用いることができる。また、フィッティングなどにより、上記最適化指標UWSDを多項式で近似し、近似した関数の最小値を求めてもよい。 In the present embodiment, the RF parameter determination unit 233 determines each RF parameter so as to minimize the optimization index U WSD . That is, the RF parameter determination unit 233 obtains an RF parameter as a solution for minimizing the optimization index U WSD created by the index creation unit 232. Computation of solutions covers various optimization problems such as steepest descent, gradient, Newton, least squares, conjugate gradient, linear programming, nonlinear programming, amplitude and phase values. A method of calculating an optimal solution by changing the value can be used. Further, the optimization index U WSD may be approximated by a polynomial by fitting or the like to obtain the minimum value of the approximated function.
 なお、RFシミング部213は、撮像条件として設定されたRFパラメータを、RFパラメータ決定部233が決定したRFパラメータに置き換える。そして、撮像部220は、RFシミング部213が決定したRFパラメータを用いて撮像を実行する。 The RF shimming unit 213 replaces the RF parameter set as the imaging condition with the RF parameter determined by the RF parameter determination unit 233. Then, the imaging unit 220 performs imaging using the RF parameter determined by the RF shimming unit 213.
 [撮像処理の流れ]
 以下、本実施形態の計算機109の各機能による、本実施形態のRFシミング処理を含む、撮像処理の流れを説明する。図5は、本実施形態の撮像処理の処理フローである。本実施形態の撮像処理は、ユーザによる指示により開始される。なお、ここでは、静磁場シミング処理は省略する。
[Flow of imaging processing]
Hereinafter, the flow of the imaging process including the RF shimming process of the present embodiment by each function of the computer 109 of the present embodiment will be described. FIG. 5 is a processing flow of the imaging process of the present embodiment. The imaging process of this embodiment is started by an instruction from the user. Here, the static magnetic field shimming process is omitted.
 まず、撮像条件設定部210は、ユーザから患者情報、撮像部位、撮像目的、撮像パラメータ、などを含む撮像条件の入力を受け付ける(ステップS1101)。次に、撮像位置設定部211は、スカウトスキャンを実施し、撮像位置を設定する(ステップS1102)。 First, the imaging condition setting unit 210 receives an input of imaging conditions including patient information, imaging region, imaging purpose, imaging parameters, and the like from the user (step S1101). Next, the imaging position setting unit 211 performs a scout scan and sets the imaging position (step S1102).
 次に、RFシミング部213は、RFシミングを行い、RFパラメータを決定する(ステップS1103)。撮像条件設定部210は、RFシミング部213が決定したRFパラメータを、撮像に用いる各チャンネルに送信するRFの振幅および位相として、他の撮像パラメータとともに撮像条件に設定する(ステップS1104)。 Next, the RF shimming unit 213 performs RF shimming and determines an RF parameter (step S1103). The imaging condition setting unit 210 sets the RF parameters determined by the RF shimming unit 213 as imaging amplitudes together with other imaging parameters as the amplitude and phase of the RF transmitted to each channel used for imaging (step S1104).
 そして、撮像部220は、RFパラメータ決定部233により設定された撮像条件に従って、撮像を行い(ステップS1105)、処理を終了する。 Then, the imaging unit 220 performs imaging in accordance with the imaging conditions set by the RF parameter determination unit 233 (step S1105), and ends the process.
 <シミュレーション結果>
 上記従来の2つの指標(標準偏差指標USDおよび最大最小指標UNEMA)および本実施形態の指標UWSDそれぞれによる、B1分布の均一化および脂肪抑制効果を、電磁場解析シミュレーションを用いて説明する。以下、電磁シミュレーション結果の説明において、予め定めた最適化指標を最小とするよう、RFパラメータを決定することを、当該指標を用いたRFシミング、あるいは、当該指標を用いてRFシミングを行う、などと呼ぶ。
<Simulation results>
The homogenization of the B 1 distribution and the fat suppression effect by the two conventional indexes (standard deviation index U SD and maximum / minimum index U NEMA ) and the index U WSD of this embodiment will be described using electromagnetic field analysis simulation. . Hereinafter, in the description of the electromagnetic simulation results, RF parameters are determined so as to minimize a predetermined optimization index, RF shimming using the index, or RF shimming using the index, etc. Call it.
 [人体モデル]
 本シミュレーションでは、数値人体モデル(Hugoモデル)を用いて、生体内に生成されるB1分布を算出し、均一化および脂肪抑制効果を確認した。このとき用いた数値人体モデルの一部401およびROI402を図6に示す。ここでは、腰椎領域403を含むSAG(サジタル)断面で、ROI402内のB1分布を最適化した。
[Human body model]
In this simulation, the B 1 distribution generated in the living body was calculated using a numerical human body model (Hugo model), and the homogenization and fat suppression effects were confirmed. FIG. 6 shows a part 401 and the ROI 402 of the numerical human body model used at this time. Here, the B 1 distribution in the ROI 402 was optimized with a SAG (sagittal) cross section including the lumbar vertebra region 403.
 [RF照射方法]
 本シミュレーションでは、例えば、図2に示す4チャンネルの送信コイル114をモデル化して、その中に数値人体モデル401を配置し、RFを照射した。照射したRFの周波数については、3T MRI装置を想定して、128MHzとした。
[RF irradiation method]
In this simulation, for example, the four-channel transmission coil 114 shown in FIG. 2 is modeled, and the numerical human body model 401 is placed therein and irradiated with RF. The frequency of the irradiated RF was set to 128 MHz assuming a 3T MRI apparatus.
 また、各チャンネル(114a、114b、114c、114d)それぞれの給電点(117a、117b、117c、117d)には、以下の式(4)に示すsine波形のRF(B_ch1、B_ch2、B_ch3、B_ch4)を給電した。
Figure JPOXMLDOC01-appb-M000004
 なお、A1、φ1は、それぞれチャンネル114aの給電点117aに給電されるsine波形電圧の振幅および位相、A2、φ2は、それぞれチャンネル114bの給電点117bに供給される同振幅および位相、A3、φ3は、それぞれチャンネル114cの給電点117cに供給される同振幅および位相、A4、φ4は、それぞれチャンネル114dの給電点117dに供給される振幅および位相を示す。
Moreover, RF (B_ch1, B_ch2, B_ch3, B_ch4) of the sine waveform shown in the following formula (4) is provided at the feeding point (117a, 117b, 117c, 117d) of each channel (114a, 114b, 114c, 114d). Was fed.
Figure JPOXMLDOC01-appb-M000004
A1 and φ1 are the amplitude and phase of the sine waveform voltage supplied to the feeding point 117a of the channel 114a, respectively. A2 and φ2 are the same amplitude and phase supplied to the feeding point 117b of the channel 114b, respectively. A3 and φ3 Are the same amplitude and phase supplied to the feeding point 117c of the channel 114c, and A4 and φ4 are the amplitude and phase supplied to the feeding point 117d of the channel 114d, respectively.
 また、RFシミング無しの照射には、標準的なRF照射手法であるQD(Quadrature Drive)照射を用いた。すなわち、A1、A2、A3、A4はすべて1、位相は、φ1=0、φ2=π/2、φ3=π、φ4=3π/2とした。 Further, QD (Quadrature Drive) irradiation, which is a standard RF irradiation method, was used for irradiation without RF shimming. That is, A1, A2, A3, and A4 are all 1, and the phases are φ1 = 0, φ2 = π / 2, φ3 = π, and φ4 = 3π / 2.
 RFシミング部213が決定するRFパラメータは、各チャンネル114a、114b、114c、114dの給電点117a,117b、117c、117dにそれぞれ供給される波形電圧の振幅(A1、A2、A3、A4)、および位相(φ1、φ2、φ3、φ4)の少なくとも一方である。 The RF parameters determined by the RF shimming unit 213 include the amplitudes (A1, A2, A3, A4) of waveform voltages supplied to the feeding points 117a, 117b, 117c, 117d of the channels 114a, 114b, 114c, 114d, respectively. At least one of the phases (φ1, φ2, φ3, φ4).
 [シミュレーション結果]
 まず、計測ノイズのない、理想的な状態で行った、従来の指標(USD、UNEMA)を用いたRFシミング後のB1分布を、図7(A)~図7(F)を用いて説明する。ここでは、ノイズは無いものとする。
[simulation result]
First, no measurement noise was performed in an ideal state, a conventional index (U SD, U NEMA) the B 1 distribution after RF shimming with, reference to FIG. 7 (A) ~ FIG 7 (F) I will explain. Here, it is assumed that there is no noise.
 図7(A)は、RFシミング無し、すなわち、当初設定したQD照射をそのまま行った場合の、数値人体モデル401内のB1分布510である。なお、図7(A)に示すB1分布510を初期B1分布と呼ぶ。 FIG. 7A shows a B 1 distribution 510 in the numerical human body model 401 without RF shimming, that is, when the initially set QD irradiation is performed as it is. Note that the B 1 distribution 510 shown in FIG. 7A is referred to as an initial B 1 distribution.
 図7(B)は、標準偏差指標USDを用いてRFシミングを行った場合(USD最小化)の、数値人体モデル401内のB1分布520である。図7(C)は、最大最小指標UNEMAを用いてRFシミングを行った場合(UNEMA最小化)の、数値人体モデル401内のB1分布530である。 7 (B) shows the case of performing the RF shimming using standard deviation index U SD of (U SD minimized), a B 1 distribution 520 in the voxel model 401. FIG. 7C shows the B 1 distribution 530 in the numerical human body model 401 when RF shimming is performed using the maximum / minimum index U NEMA (U NEMA minimization).
 また、図7(D)から図7(F)に、脂肪抑制程度を示すため、510~530に示すB1分布を、脂肪抑制可能な範囲のB1値と、当該範囲外のB1値とに区別して示す。ここでは、脂肪抑制可能な範囲のB1値の領域501を白色で、範囲外のB1値の領域502を黒色で示す。なお、斜線領域503は、人体モデル401の存在しない領域である。これらの図において、黒色の領域502は、B1値が脂肪抑制可能な範囲外であるため、脂肪信号が除去できず、最終的な画像に脂肪信号が残存する領域である。以下、本明細書では、B1分布を、脂肪抑制可能な範囲のB1値と当該範囲外のB1値とに区別し、2値化した図を、2値化マップと呼ぶ。 7D to FIG. 7F, in order to show the degree of fat suppression, the B 1 distribution shown in 510 to 530 is divided into a B 1 value within a range where fat can be suppressed and a B 1 value outside the range. It distinguishes and shows. Here, the B 1 value region 501 in the range where fat can be suppressed is shown in white, and the B 1 value region 502 outside the range is shown in black. The hatched area 503 is an area where the human body model 401 does not exist. In these drawings, a black region 502 is a region where the fat signal cannot be removed and the fat signal remains in the final image because the B 1 value is outside the range in which fat can be suppressed. Hereinafter, in this specification, B 1 distribution, and distinction and B 1 value and the range of B 1 value of fat suppression extent possible, the binarized figure, referred to as a binary map.
 図7(D)は、図7(A)に示すRFシミング無し、すなわち、QD照射による数値人体モデル401内の2値化マップ511である。また、図7(E)は、標準偏差指標USDを用いてRFシミングを行った場合の、数値人体モデル401内の2値化マップ521である。図7(F)は、最大最小指標UNEMAを用いてRFシミングを行った場合の、数値人体モデル401内の2値化マップ531である。 FIG. 7D is a binarized map 511 in the numerical human body model 401 without RF shimming shown in FIG. Further, FIG. 7 (E) in the case of performing RF shimming using standard deviation index U SD, a binary map 521 in the voxel model 401. FIG. 7F is a binarized map 531 in the numerical human body model 401 when RF shimming is performed using the maximum / minimum index U NEMA .
 RFシミング無しの場合(2値化マップ511)と比べ、標準偏差指標USDを指標に用いてRFシミングを行った場合(2値化マップ521)の方が、黒色の領域502の面積が小さく、B1不均一低減効果がみられる。しかしながら、2値化マップ521には、図中の白矢印で示した領域504のように、腰椎が存在する領域(腰椎領域)403において黒色領域502が残る。 If without RF shimming compared with (binary map 511), who in the case of performing RF shimming (binary map 521) using a standard deviation index U SD to index a small area of the black region 502 , B 1 non-uniformity reduction effect is observed. However, in the binarized map 521, a black region 502 remains in a region (lumbar vertebra region) 403 where the lumbar spine exists, as in a region 504 indicated by a white arrow in the figure.
 一方、最大最小指標UNEMAを指標に用いてRFシミングを行った場合(2値化マップ531)、標準偏差指標USDを指標に用いてRFシミングを行った場合(2値化マップ521)に比べて、黒色の領域502の面積が小さくなっている。また、腰椎領域403の黒色領域502の面積が小さくなっている。 On the other hand, in the case of performing the RF shimming using a maximum minimum index U NEMA the index (binary map 531), when performing RF shimming (binary map 521) using a standard deviation index U SD to index In comparison, the area of the black region 502 is small. Further, the area of the black region 502 of the lumbar region 403 is reduced.
 図8(A)から図8(C)に、図7(A)から図7(C)の各場合における、数値人体モデル401内のB1値毎の出現頻度(ヒストグラム)を示す。図8(A)は、RFシミング無しの場合のヒストグラム610、図8(B)は、標準偏差指標USDを用いたRFシミングを行った場合のヒストグラム620、図8(C)は、最大最小指標UNEMAを用いたRFシミングを行った場合のヒストグラム630である。各図において、横軸がB1値、縦軸がそのB1値が存在する点数(度数)を示す。以下、本明細書のヒストグラムを示す図において、同様とする。 FIG. 8A to FIG. 8C show the appearance frequency (histogram) for each B 1 value in the numerical human body model 401 in each case of FIG. 7A to FIG. 7C. FIG. 8 (A) is a histogram 610 of the case of no RF shimming, FIG. 8 (B), the histogram 620 in the case of performing RF shimming using a standard deviation index U SD, FIG. 8 (C) Max Min It is a histogram 630 when RF shimming using the index U NEMA is performed. In each figure, the horizontal axis indicates the B 1 value, and the vertical axis indicates the number of points (frequency) at which the B 1 value exists. Hereinafter, the same applies to the diagrams showing the histograms in this specification.
 これらのヒストグラム610~630から、RFシミング無しの場合(ヒストグラム610)に比べて、標準偏差指標USDを用いたRFシミングを行った場合(ヒストグラム620)の方が、B1値が取る範囲が狭くなっている。すなわち、B1不均一が低減していると言える。 These histograms 610-630, compared to the case without RF shimming (histogram 610), who when performing RF shimming using a standard deviation index U SD of (histogram 620) are in the range of B 1 value takes It is narrower. That is, it can be said that B 1 nonuniformity is reduced.
 また、最大最小指標UNEMAを用いてRFシミングを行った場合(ヒストグラム630)の方が、標準偏差指標USDを用いてRFシミングを行った場合(ヒストグラム620)に比べ、さらにB1値の取る範囲が狭くなっている。 Further, when RF shimming is performed using the maximum / minimum index U NEMA (histogram 630), the B 1 value is further increased compared to when RF shimming is performed using the standard deviation index U SD (histogram 620). The range to take is narrow.
 例えば、図内の2本の破線601、602間にあるB1値が、脂肪抑制が可能だとすると、図8(B)の、標準偏差指標USDを用いたRFシミングでは、一部脂肪抑制ができないB1値を有する点が存在する(図中の矢印603および604のB1値)。一方、図8(C)の最大最小指標UNEMAを用いたRFシミングでは、すべての点が点線内に収まっているため、すべての点において脂肪抑制が可能となる。 For example, B 1 value in between two dashed lines 601 and 602 in the figure, when it can be fat suppression, FIG. 8 (B), the RF shimming using a standard deviation index U SD, some fat suppression There are points with B 1 values that are not possible (B 1 values of arrows 603 and 604 in the figure). On the other hand, in RF shimming using the maximum / minimum index U NEMA in FIG. 8C, since all points are within the dotted line, fat suppression is possible at all points.
 以上の結果より、計測ノイズのない、理想的な状態では、標準偏差指標USDを用いたRFシミングより、最大最小指標UNEMAを用いたRFシミングの方が、B1最大値とB1最小値の差とを最小化することができ、高い脂肪抑制効果が期待される場合があることがわかる。 From the above results, in an ideal state without measurement noise, RF shimming using the maximum / minimum index U NEMA is more effective for B 1 maximum and B 1 minimum than RF shimming using the standard deviation index U SD. It can be seen that the difference between the values can be minimized and a high fat suppression effect may be expected.
 ところが、実際の撮像では、計測ノイズが混入する。ここで、シミュレーション結果に対して、想定される計測ノイズを付与した場合の結果を説明する。すなわち、計測ノイズ有りの状態で行った、従来の指標(USD、UNEMA)を用いたRFシミング後のB1分布を、図9(A)~図9(F)を用いて説明する。 However, in actual imaging, measurement noise is mixed. Here, the result when the assumed measurement noise is added to the simulation result will be described. That was done by measuring noisy state, a conventional index (U SD, U NEMA) the B 1 distribution after RF shimming using, will be described with reference to FIG. 9 (A) ~ FIG 9 (F).
 本シミュレーションでは、計測ノイズとして、初期照射(QD照射)のシミュレーションで得た初期B1分布510に対して、一点のみ小さい値のB1値をノイズとして挿入した。 In this simulation, as a measurement noise, a B 1 value which is smaller by one point than the initial B 1 distribution 510 obtained by the simulation of initial irradiation (QD irradiation) is inserted as noise.
 初期B1分布512を図9(A)に示す。本図において、黒点551は、計測ノイズを想定して挿入したB1値である。計測ノイズ551として挿入したB1値は実際の計測ノイズに即し、小さなB1値とした。 An initial B 1 distribution 512 is shown in FIG. In this figure, a black point 551 is a B 1 value inserted assuming measurement noise. The B 1 value inserted as the measurement noise 551 is a small B 1 value in accordance with the actual measurement noise.
 なお、計測ノイズ551を挿入した領域は、B1不均一のために、元々B1値が小さくなっている領域であり、実際のB1計測においても計測ノイズが含まれやすい点である。よって、この計測ノイズ551は、実際の計測で生じ得る計測ノイズを再現しているといえる。 Note that the region in which the measurement noise 551 is inserted is a region where the B 1 value is originally small due to B 1 non-uniformity, and the measurement noise is likely to be included even in actual B 1 measurement. Therefore, it can be said that the measurement noise 551 reproduces the measurement noise that may occur in actual measurement.
 図9(B)は、計測ノイズがある場合、すなわち図9(A)に示す初期B1分布512に対し、標準偏差指標USDを用いてRFシミングを行った場合の、数値人体モデル401内のB1分布522である。図9(C)は、同B1分布に対し、最大最小指標UNEMAを用いてRFシミングを行った場合の、数値人体モデル401内のB1分布532である。 FIG. 9 (B) if there is a measurement noise, i.e. of the initial B 1 distribution 512 shown in FIG. 9 (A), in the case of performing RF shimming using standard deviation index U SD, voxel models 401 B 1 distribution 522. FIG. 9 (C) the B 1 distribution to, in the case of performing RF shimming using a maximum minimum index U NEMA, a B 1 distribution 532 in the voxel model 401.
 図9(D)は、RFシミング無し、すなわち、当初設定したQD照射による数値人体モデル401内の2値化マップ513である。図9(E)は、標準偏差指標USDを用いてRFシミングを行った場合の、数値人体モデル401内の2値化マップ523である。図9(F)は、最大最小指標UNEMAを用いてRFシミングを行った場合の、数値人体モデル401内の2値化マップ533である。 FIG. 9D is a binarized map 513 in the numerical human body model 401 without RF shimming, that is, with the initially set QD irradiation. Figure 9 (E) is, in the case of performing RF shimming using standard deviation index U SD, a binary map 523 in the voxel model 401. FIG. 9F is a binarized map 533 in the numerical human body model 401 when RF shimming is performed using the maximum / minimum index U NEMA .
 図9(D)および図9(E)に示す、RFシミング無しの場合、および、偏差値指標USDを用いたRFシミングを行った場合の2値化マップ513、523は、図7(D)および図7(E)に示す計測ノイズ551が無い場合の2値化マップ511、521とほぼ同じ結果を示す。 Shown in FIG. 9 (D) and FIG. 9 (E), when there is no RF shimming, and binarized map 513, 523 in the case of performing RF shimming using a deviation index U SD, as shown in FIG. 7 (D ) And the binarized maps 511 and 521 when there is no measurement noise 551 shown in FIG.
 一方、図9(F)に示す、最大最小指標UNEMAを用いたRFシミングを行った場合の2値化マップ533は、図7(F)に示す同RFシミングの2値化マップ531と比べて、黒色の領域502が大きくなっている。これは、B1不均一が適切に低減されていないことを示している。 On the other hand, the binarization map 533 in the case of performing RF shimming using the maximum / minimum index U NEMA shown in FIG. 9F is compared with the binarization map 531 of the same RF shimming shown in FIG. Thus, the black region 502 is enlarged. This indicates that the B 1 non-uniformity is not properly reduced.
 この理由は、最大最小指標UNEMAの算出にB1の最小値が用いられているためである。すなわち、計測ノイズ551があると、極端に小さいB1値(計測ノイズ551のB1値)が1点含まれることになる。最大最小指標UNEMAの算出にあたり、このB1値がB1最小値として採用されるためである。このように、B1最大値とB1最小値との差による指標を用いる場合、この指標の算出する際、ノイズの影響を大きく受ける。従って、適切なRFパラメータが算出できなくなる。 This is because the minimum value of B 1 is used for calculating the maximum / minimum index U NEMA . That is, when there is a measurement noise 551, extremely small B 1 value (B 1 value of the measured noise 551) will be included one point. In the calculation of the maximum and minimum indices U NEMA, because this B 1 value is employed as a minimum value B. As described above, when an index based on the difference between the B 1 maximum value and the B 1 minimum value is used, the calculation of this index is greatly affected by noise. Therefore, an appropriate RF parameter cannot be calculated.
 図10(A)から図10(C)に、図9(A)から図9(C)の各場合における、数値人体モデル401内のB1値のヒストグラムを示す。図10(A)は、RFシミング無しの場合のヒストグラム611、図10(B)は、標準偏差指標USDを用いたRFシミングを行った場合のヒストグラム621、図10(C)は、最大最小指標UNEMAを用いたRFシミングを行った場合のヒストグラム631である。 FIGS. 10A to 10C show histograms of the B 1 value in the numerical human body model 401 in each case of FIGS. 9A to 9C. FIG. 10 (A) Histogram 611 of the case of no RF shimming, FIG. 10 (B), the histogram 621 in the case of performing RF shimming using a standard deviation index U SD, FIG. 10 (C) Max Min It is a histogram 631 when RF shimming using the index U NEMA is performed.
 図10(C)に示すように、最大最小指標UNEMAを用いたRFシミングを行った場合のヒストグラム631は、計測ノイズ551無しの結果を示す図8(C)のヒストグラム630に比べ、B1値の取る範囲が広くなっている。このため、広い領域において脂肪信号が除去できず、残存する。 As shown in FIG. 10C, the histogram 631 when RF shimming using the maximum / minimum index U NEMA is performed is B 1 compared to the histogram 630 of FIG. 8C showing the result without the measurement noise 551. The range of values is widened. For this reason, the fat signal cannot be removed in a wide area and remains.
 上述のように、脂肪を効果的に抑制するためには、B1値を所定の範囲内に収める必要がある。そして、計測ノイズが無い場合、最大最小指標UNEMAを用いたRFシミングは、高い脂肪抑制効果が期待できる。しかしながら、この最大最小指標UNEMAは、わずかな計測ノイズの影響を受けやすく、計測ノイズがある場合は、必ずしも常に高い脂肪抑制効果が期待できないことがわかる。 As described above, in order to effectively suppress fat, it is necessary to keep the B 1 value within a predetermined range. Then, when the measured noise is not, RF shimming with maximum and minimum indicators U NEMA can expect high fat suppression effect. However, this maximum / minimum index U NEMA is easily affected by slight measurement noise, and it can be seen that a high fat suppression effect cannot always be expected when there is measurement noise.
 [本実施形態の最適化指標によるシミュレーション結果]
 次に、本実施形態の最適化指標UWSDによるRFシミングを行った場合のB1分布を、図11(A)~図11(F)および図12を用いて説明する。
[Simulation result by optimization index of this embodiment]
Next, the B 1 distribution when RF shimming using the optimization index U WSD of this embodiment is performed will be described with reference to FIGS. 11 (A) to 11 (F) and FIG.
 図11(A)は、ノイズのない状態で、標準偏差指標USDを用いてRFシミングを行った場合の、数値人体モデル401内のB1分布520(図7(B)と同じB1分布)である。図11(B)は、計測ノイズ551がある状態で、最大最小偏差UNEMAを用いてRFシミングを行った場合の、数値人体モデル401内のB1分布532(図9(C)と同じB1分布)である。図11(C)は、計測ノイズ551がある状態で、本実施形態の最適化指標UWSDを用いてRFシミングを行った場合の、数値人体モデル401内のB1分布542である。なお、計測ノイズ551は、図9(A)~図9(C)の場合と同様の領域に挿入した。 11 (A) is in the absence of noise, the same B 1 distribution as in the case of performing RF shimming, B 1 distribution 520 in the voxel model 401 (FIG. 7 (B) using a standard deviation index U SD ). FIG. 11B shows a B 1 distribution 532 (same as B in FIG. 9C) in the numerical human body model 401 when RF shimming is performed using the maximum and minimum deviations U NEMA in the presence of measurement noise 551. 1 distribution). FIG. 11C shows the B 1 distribution 542 in the numerical human body model 401 when RF shimming is performed using the optimization index U WSD of this embodiment in the presence of measurement noise 551. Note that the measurement noise 551 was inserted in the same region as in the case of FIGS. 9 (A) to 9 (C).
 また、図11(D)は、図11(A)のB1分布520の数値人体モデル401内の2値化マップ521(図7(E)と同じ2値化マップ)である。図11(E)は、図11(B)のB1分布532の数値人体モデル401内の2値化マップ533(図9(F)と同じ2値化マップ)である。図11(F)は、図11(C)のB1分布542の数値人体モデル401内の2値化マップ543である。 FIG. 11D is a binarized map 521 (the same binarized map as FIG. 7E) in the numerical human body model 401 of the B 1 distribution 520 in FIG. 11A. FIG. 11E is a binarization map 533 (the same binarization map as FIG. 9F) in the numerical human body model 401 of the B 1 distribution 532 in FIG. 11B. FIG. 11F is a binarized map 543 in the numerical human body model 401 of the B 1 distribution 542 of FIG.
 図11(F)に示すように、本実施形態の最適化指標UWSDを用いたRFシミングによれば、計測ノイズ551がある場合であっても、他のケース図11(D)および図11(E)よりも、黒色の領域502が小さいことがわかる。すなわち、本実施形態の最適化指標UWSDを用いることによって、脂肪抑制可能範囲外の領域を低減できることが示された。 As shown in FIG. 11 (F), according to RF shimming using the optimization index U WSD of this embodiment, even in the case where there is measurement noise 551, other cases are shown in FIGS. It can be seen that the black region 502 is smaller than (E). That is, it has been shown that by using the optimization index U WSD of the present embodiment, it is possible to reduce the region outside the fat suppression possible range.
 図12(A)から図12(C)に、図11(A)から図11(C)の各場合における、数値人体モデル401内のB1値のヒストグラムを示す。図12(A)は、図11(A)の場合のヒストグラム620である。図12(B)は、図11(B)の場合のヒストグラム631である。図12(C)は、図11(C)の場合のヒストグラム641である。なお、破線601から破線602の間のB1値が、脂肪抑制可能なB1値とする。 12A to 12C show histograms of the B 1 value in the numerical human body model 401 in each case of FIGS. 11A to 11C. FIG. 12A is a histogram 620 in the case of FIG. FIG. 12B is a histogram 631 in the case of FIG. FIG. 12C is a histogram 641 in the case of FIG. Incidentally, B 1 value between dashed lines 601 dashed 602, a fat suppression possible B 1 value.
 これらの図に示されるように、本実施形態の最適化指標UWSDによれば、計測ノイズ551がある場合でも、B1値の分布範囲が最も狭くなる。すなわち、B1最大値とB1最小値との差を最小化できることがわかる。 As shown in these drawings, according to the optimization index U WSD of the present embodiment, the distribution range of the B 1 value becomes the narrowest even when the measurement noise 551 is present. That is, it can be seen that the difference between the B 1 maximum value and the B 1 minimum value can be minimized.
 以上の結果より、B1値に応じて重み付けを行い、最小値側の所定の範囲の値と、最大値側の所定の範囲の値とを用いて作成する、本実施形態の最適化指標UWSDを使用することによって、B1最大値とB1最小値との差を最小化でき、脂肪抑制効果が最大となることが示された。 From the above results, the optimization index U of the present embodiment is weighted according to the B 1 value and created using the value in the predetermined range on the minimum value side and the value in the predetermined range on the maximum value side. It was shown that by using WSD , the difference between the B 1 maximum value and the B 1 minimum value can be minimized, and the fat suppression effect is maximized.
 以上説明したように、本実施形態のMRI装置100は、それぞれ被検体103に高周波磁場を送信する複数のチャンネルを有する送信コイル114と、関心領域内の高周波磁場分布であるB1分布の不均一を補正するよう前記各チャンネルから送信する高周波磁場のパラメータである高周波パラメータを決定する高周波シミングを行う高周波シミング部(RFシミング部)213と、高周波シミング部213で決定した高周波パラメータを用いて撮像する撮像部220と、を備え、前記高周波シミング部213は、B値により特定される最適化指標を用いて前記高周波パラメータを決定し、前記最適化指標は、撮像領域の位置およびB1値の大きさの少なくとも一方に応じた重み付けを前記B1値に行うことにより作成される。 As described above, the MRI apparatus 100 according to this embodiment includes the transmission coil 114 having a plurality of channels that transmit a high-frequency magnetic field to the subject 103 and the nonuniformity of the B 1 distribution that is the high-frequency magnetic field distribution in the region of interest. The high-frequency shimming section (RF shimming section) 213 for performing high-frequency shimming for determining a high-frequency parameter that is a parameter of a high-frequency magnetic field transmitted from each channel so as to correct the image An imaging unit 220, wherein the high frequency shimming unit 213 determines the high frequency parameter using an optimization index specified by the B 1 value, and the optimization index includes the position of the imaging region and the B 1 value It is created by weighting the B 1 value according to at least one of the sizes.
 前記重み付けは、重み付け関数によりなされてもよい。また、前記最適化指標は、脂肪信号を抑制するよう作成される。さらに、高周波シミング部213は、前記最適化指標を作成する指標作成部232をさらに備え、前記指標作成部232は、前記重み付けを行う重み付け関数を決定することにより、前記指標を作成してもよい。 The weighting may be performed by a weighting function. The optimization index is created to suppress fat signals. Further, the high frequency shimming unit 213 may further include an index creating unit 232 that creates the optimization index, and the index creating unit 232 may create the index by determining a weighting function for performing the weighting. .
 従来の、最大最小指標UNEMAでは、B1最大値とB1最小値との2点のみを使用している。このため、この2点外の値の計測ノイズが生じると、指標に与える影響が大きい。 In the conventional maximum / minimum index U NEMA , only two points of B 1 maximum value and B 1 minimum value are used. For this reason, if measurement noise of values outside these two points occurs, the influence on the index is large.
 しかしながら、本実施形態の最適化指標UWSDは、重みを付すことにより、第一の閾値以下のB1値と第二の閾値以上のB1値とを用いて、算出される。従って、従来の最大最小指標UNEMAの算出時より、指標算出時の使用点数が増える。このため、本実施形態の指標UWSDは、計測ノイズがある場合であっても、影響を受けにくい。 However, the optimization index U WSD of the present embodiment is calculated using a B 1 value equal to or lower than the first threshold and a B 1 value equal to or higher than the second threshold by weighting. Therefore, the number of points used when calculating the index is greater than when calculating the conventional maximum and minimum index UNEMA . For this reason, the index U WSD of this embodiment is not easily affected even when there is measurement noise.
 このように、本実施形態によれば、B1均一度が最適となるよう、RFパラメータが決定される。このとき、計測ノイズが混入しても、B1最大値とB1最小値との差を最小化できる。このため、脂肪抑制効果も得られる。 Thus, according to the present embodiment, the RF parameter is determined so that the B 1 uniformity is optimum. At this time, even if measurement noise is mixed, the difference between the B 1 maximum value and the B 1 minimum value can be minimized. For this reason, the fat suppression effect is also acquired.
 従って、本実施形態によれば、複数チャンネルを有する送信コイルを用いるMRI装置において、計測ノイズが含まれる場合であっても、脂肪抑制効果も得られるRFシミングを実現できる。 Therefore, according to the present embodiment, in an MRI apparatus using a transmission coil having a plurality of channels, RF shimming that can also provide a fat suppression effect can be realized even when measurement noise is included.
 <重み付け関数の変形例>
 なお、上記実施形態では、図4(B)に示すように、撮像領域のB1値から、最大群および最小値群が抽出されるよう形成された、重み関数(マスク)310を用いている。すなわち、本実施形態では、B1値の分布に応じた重み付け関数w(B1)として、第一の閾値321より小さいB1値、および、第二の閾値322より大きいB1値のみを抽出する重み付け関数w(B1)310を用いる。しかしながら、重み付け関数は、これに限定されない。以下、重み付け関数W(B1)のバリエーションを、図を用いて説明する。
<Modification of weighting function>
In the above embodiment, as shown in FIG. 4B, a weight function (mask) 310 formed so that the maximum group and the minimum value group are extracted from the B 1 value of the imaging region is used. . That is, in the present embodiment, only the B 1 value smaller than the first threshold 321 and the B 1 value larger than the second threshold 322 are extracted as the weighting function w (B 1 ) corresponding to the distribution of B 1 values. A weighting function w (B 1 ) 310 is used. However, the weighting function is not limited to this. Hereinafter, variations of the weighting function W (B 1 ) will be described with reference to the drawings.
 図13(A)~図13(E)に、本実施形態で使用可能な重みづけ関数w(B1)の例を示す。 FIGS. 13A to 13E show examples of the weighting function w (B 1 ) that can be used in this embodiment.
 例えば、計測ノイズの大きさが把握できる場合は、図13(A)に示すように、B1値が、第三の閾値323より大きく、第一の閾値321より小さい範囲、および、第二の閾値より大きく、第四の閾値324より小さい範囲のB1値を抽出する重み付け関数311を用いてもよい。 For example, when the magnitude of the measurement noise can be grasped, as shown in FIG. 13A, the B 1 value is larger than the third threshold 323 and smaller than the first threshold 321 and the second A weighting function 311 that extracts B 1 values in a range larger than the threshold and smaller than the fourth threshold 324 may be used.
 なお、第三の閾値323は第一の閾値321より小さく、第四の閾値324は、第二の閾値322より大きい値とし、それぞれ、予め定めて記憶装置111に保持しておく。これらの閾値は、例えば、計測ノイズが無い場合に取り得るB1値の範囲外の値を選択する。 The third threshold value 323 is smaller than the first threshold value 321 and the fourth threshold value 324 is larger than the second threshold value 322, and each of them is stored in the storage device 111 in advance. For these threshold values, for example, values outside the range of B 1 values that can be taken when there is no measurement noise are selected.
 このような重み付け関数311を用いることにより、たとえば、計測ノイズの影響を大きく受けて明らかに小さい値となったB1値や、明らかに大きい値となったB1値を除外できる。従って、上記実施形態の重み付け関数310以上に計測ノイズの影響を低減することができる。 By using such a weighting function 311, for example, B 1 value and which revealed small value greatly affected by measurement noise, the clearly larger value as since B 1 value can be excluded. Therefore, the influence of measurement noise can be reduced more than the weighting function 310 of the above embodiment.
 また、図4(B)に示す重み付け関数310および図13(A)に示す重み付け関数311は、値が不連続な変化を示す。しかしながら、図13(B)に示すように、値が連続的に変化する関数312を重み付け関数として設定してもよい。 Further, the weighting function 310 shown in FIG. 4B and the weighting function 311 shown in FIG. 13A show discontinuous changes in values. However, as shown in FIG. 13B, a function 312 whose value continuously changes may be set as a weighting function.
 また、B1の計測精度とB1値の関係性が明らかな場合は、それに基づいて重み付け関数を決定してもよい。例えば、B1値が小さいほど計測精度が悪い場合は、小さな値のB1値ほど小さな重みが付される重み付け関数を用いる。このような重み付け関数313、314の例を図13(C)および図13(D)に示す。 Further, if the relationship of the measurement accuracy and B 1 value of B 1 is apparent, it may determine the weighting function based on it. For example, when the measurement accuracy is worse as the B 1 value is smaller, a weighting function that uses a smaller weight as the smaller B 1 value is used. Examples of such weighting functions 313 and 314 are shown in FIGS. 13C and 13D.
 図13(C)に示す重み付け関数313は、所定範囲では、B1値が大きくなるに従って、重み値が連続的に大きくなり、当該範囲より大きい領域では、一定値であり、また、当該範囲より小さい領域では、0となる形状である。また、図13(D)に示す重み付け関数314は、所定の閾値以上のB1値を採用する形状である。 In the weighting function 313 shown in FIG. 13C, the weight value continuously increases as the B 1 value increases in a predetermined range, and is constant in a region larger than the range. In a small area, the shape is zero. A weighting function 314 shown in FIG. 13D has a shape that employs a B 1 value that is equal to or greater than a predetermined threshold.
 このような重み付け関数を用いることにより、計測精度の高いB1値を重点的に用い、RFシミングを行うことができる。 By using such a weighting function, it is possible to perform RF shimming using the B 1 value with high measurement accuracy as a priority.
 さらに、特定の範囲のB1値を用いてRFシミングを行う場合、図13(E)に示すような重み付け関数315を用いてもよい。例えば、B1値が特に大きいことによって局所SARが大きくなっていることが分かっている場合、図13(E)に示す重み付け関数315を用いて重みづけをすることによって、局所SARを低減できる。 Furthermore, when RF shimming is performed using B 1 values in a specific range, a weighting function 315 as shown in FIG. 13E may be used. For example, when it is known that the local SAR is increased due to a particularly large B 1 value, the local SAR can be reduced by weighting using the weighting function 315 shown in FIG.
 <重み付け関数の変形例>
 また、本実施形態では、重み付け関数を、B1値に応じたものとしている。しかしながら、これに限定されない。例えば、B1値に乗算する重みは、ROI内の位置に応じた重みであってもよい。この場合、重み付け関数は、ROI内の位置を変数とする関数とする。この場合の、最適化指標UWSD算出式の例を式(5)に示す。
Figure JPOXMLDOC01-appb-M000005
<Modification of weighting function>
In the present embodiment, the weighting function is determined according to the B 1 value. However, it is not limited to this. For example, the weight multiplied by the B 1 value may be a weight corresponding to the position in the ROI. In this case, the weighting function is a function having the position in the ROI as a variable. An example of the optimization index U WSD calculation formula in this case is shown in Formula (5).
Figure JPOXMLDOC01-appb-M000005
 さらに、B1値に乗算する重みは、ROI内の位置とB1値とに応じた重みであってもよい。この場合、重み付け関数は、ROI内の位置(空間座標r)と、B1値とを変数とする関数w(B1,r)としてもよい。この場合の、最適化指標UWSD算出式の例を式(6)に示す。
Figure JPOXMLDOC01-appb-M000006
Moreover, the weight to be multiplied by the B 1 value can be a weight according to the position and B 1 value in the ROI. In this case, the weighting function may be a function w (B 1 , r) having the position (spatial coordinate r) in the ROI and the B 1 value as variables. An example of the optimization index U WSD calculation formula in this case is shown in Formula (6).
Figure JPOXMLDOC01-appb-M000006
 たとえば、脂肪抑制を効果的に行いたい場合、脂肪の存在する領域の情報をあらかじめ取得する。そして、脂肪の存在する領域の空間座標の重み付けを1とし,存在しない領域の空間座標の重み付けを0とする。これにより、脂肪の存在する領域のみのB1値を用い、RFシミングを行うことができる。 For example, when it is desired to effectively suppress fat, information on a region where fat exists is acquired in advance. Then, the weight of the spatial coordinates of the area where fat exists is set to 1, and the weight of the spatial coordinates of the area where fat does not exist is set to 0. Thereby, RF shimming can be performed using the B 1 value of only the region where fat exists.
 また、被検体103内の所定の部位の局所SARを積極的に低減したい場合、当該部位の領域をROIに設定する。そして、設定したROI内の一部の領域の重値を1とし、他の領域では、設定した一部の領域から遠ざかるにつれて0に近づくよう重みを設定する。これにより、設定した一部の領域のB1分布を均一化し、他の領域は徐々に低信号とできる。 Further, when it is desired to actively reduce the local SAR of a predetermined part in the subject 103, the region of the part is set to ROI. Then, the overlap value of a part of the region in the set ROI is set to 1, and in other regions, the weight is set so as to approach 0 as the distance from the set part of the region increases. As a result, the B 1 distribution in a part of the set regions is made uniform, and the other regions can be gradually set to low signals.
 <指標算出式の変形例>
 また、本実施形態の最適化指標UWSDは、上記算出式に限定されない。例えば、以下の式(7)で算出してもよい。
Figure JPOXMLDOC01-appb-M000007
 この場合、最適化指標UWSDは、重み付け関数w(B1)310をB1値(位置毎のB1値(B1(r))に乗算したものの標準偏差を、重み付け関数w(B1)310をB1値(位置毎のB1値(B1(r))に乗算したものの平均値で除算することにより得る。
<Modification of index calculation formula>
Further, the optimization index U WSD of the present embodiment is not limited to the above calculation formula. For example, you may calculate with the following formula | equation (7).
Figure JPOXMLDOC01-appb-M000007
In this case, optimization metrics U WSD is a weighting function w (B 1) 310 the B 1 value (standard deviation of those by multiplying the B 1 value for each position (B 1 (r)), the weighting function w (B 1 ) 310 but obtained by multiplying the B 1 value (position each of B 1 value (B 1 (r)) obtained by dividing an average value.
 さらに、本実施形態で用いる最適化指標UWNEMAとして、以下の式(8)に従って算出してもよい。従来の最大最小指標UNEMAでは、最大値および最小値として、特定の1点のB1値を使用しているが、以下の式(8)で算出される最適化指標UWNEMAは、最大値、最小値の代わりに、所定の範囲のB1値の平均値を用いたものである。
Figure JPOXMLDOC01-appb-M000008
 なお,Nupper,Nlowerは、各々,図4(B)における第二の閾値322より大きいB1値、第一の閾値321より小さいB1値である。
Further, the optimization index U WNEMA used in the present embodiment may be calculated according to the following equation (8). The conventional maximum / minimum index U NEMA uses a specific B 1 value as the maximum and minimum values, but the optimization index U WNEMA calculated by the following equation (8) Instead of the minimum value, an average value of B 1 values in a predetermined range is used.
Figure JPOXMLDOC01-appb-M000008
Incidentally, Nupper, Nlower are each a second threshold 322 is greater than B 1 value, the first threshold value 321 is smaller than B 1 value in FIG. 4 (B).
 すなわち、この最適化指標UWNEMAは、第一の閾値321より小さいB1値と第二の閾値322より大きいB1値との差を、第一の閾値321より小さいB1値と第二の閾値322より大きいB1値との和で除算したものである。 That is, the optimization metrics U WNEMA is the difference between the first threshold value 321 is smaller than B 1 value and the second threshold 322 is greater than B 1 value, is smaller than B 1 value and the second first threshold 321 Divided by the sum of B 1 values greater than the threshold 322.
 <RF決定処理の変形例>
 なお、上記実施形態の最適化指標UWSDは、他の指標と組み合わせて使用してもよい。
<Modification of RF determination process>
Note that the optimization index U WSD of the above embodiment may be used in combination with other indices.
 他の指標は、例えば、全身SARに関する指標、局所SARに関する指標、RF照射パワーに関する指標、高周波磁場の平均値に関する指標、などである。 Other indexes include, for example, an index related to whole body SAR, an index related to local SAR, an index related to RF irradiation power, and an index related to the average value of a high-frequency magnetic field.
 組み合わせて用いる際は、RFパラメータ決定部233は、本実施形態の最適化指標UWSDと、組み合わせる指標とのいずれか一方を目的関数とし、他方を制約条件として、最適解の算出を行う。 When used in combination, the RF parameter determination unit 233 calculates an optimal solution using either the optimization index U WSD of this embodiment or the combination index as an objective function and the other as a constraint.
 RFパラメータ決定部233は、予め定めた第二の最適化指標を用いて定められる制約条件の下、最適化指標UWSDを最小化するよう、RFパラメータを決定する。このとき、制約条件は、例えば、全身比吸収率を所定値以下とすること、局所比吸収率を所定値以下とすること、高周波磁場の照射パワーを最小化すること、予め定めた第一の領域内の高周波磁場の平均値と予め定めた第二の領域内の高周波磁場の平均値との比を最小化することなどとする。 The RF parameter determination unit 233 determines the RF parameter so as to minimize the optimization index U WSD under a constraint condition determined using a predetermined second optimization index. At this time, the constraint conditions are, for example, setting the whole body specific absorption rate to a predetermined value or less, setting the local specific absorption rate to a predetermined value or less, minimizing the irradiation power of the high-frequency magnetic field, For example, the ratio of the average value of the high-frequency magnetic field in the region to the predetermined average value of the high-frequency magnetic field in the second region is minimized.
 例えば、目的関数として本実施形態の指標UWSDを用い、制約条件として全身比吸収率を用いると、全身SARをある値以下に保ちつつ,B1値の均一度を低減することができる。 For example, when the index U WSD of the present embodiment is used as the objective function and the whole body specific absorption rate is used as the constraint condition, the uniformity of the B 1 value can be reduced while keeping the whole body SAR below a certain value.
 例えば、目的関数として本実施形態の指標UWSDを用い、制約条件として高周波磁場の照射パワーを用いると、高周波磁場の照射パワーをある値以下に保ちつつ、B1値の均一度を低減することができる。 For example, when the index U WSD of the present embodiment is used as the objective function and the irradiation power of the high frequency magnetic field is used as the constraint condition, the uniformity of the B 1 value is reduced while keeping the irradiation power of the high frequency magnetic field below a certain value. Can do.
 例えば、目的関数として本実施形態の指標UWSDを用い、制約条件として局所比吸収率を用いると、局所SARをある値以下に保ちつつ,B1値の均一度を低減することができる。 For example, when the index U WSD of the present embodiment is used as the objective function and the local specific absorption rate is used as the constraint condition, the uniformity of the B 1 value can be reduced while keeping the local SAR below a certain value.
 例えば、目的関数として全身SARに関する指標を用い、制約条件として本実施形態の指標UWSDを用いると、B1値の均一度を確保しつつ、全身SARを低減することができる。 For example, when the index related to the whole body SAR is used as the objective function and the index U WSD of this embodiment is used as the constraint condition, the whole body SAR can be reduced while ensuring the uniformity of the B 1 value.
 また、目的関数として局所SARに関する指標を用い、制約条件に本実施形態の指標UWSDを用いると、B1値の均一度を確保しつつ、局所SARを低減することができる。 Further, when an index relating to the local SAR is used as the objective function and the index U WSD of the present embodiment is used as the constraint condition, the local SAR can be reduced while ensuring the uniformity of the B 1 value.
 また、目的関数としてRF照射パワーに関する指標を用い、制約条件に本実施形態の指標UWSDを用いると、B1値の均一度を確保しつつ、RF照射パワーを低減することができる。 In addition, when an index related to RF irradiation power is used as the objective function and the index U WSD of the present embodiment is used as the constraint condition, the RF irradiation power can be reduced while ensuring the uniformity of the B 1 value.
 さらに、目的関数および制約条件に用いる指標について、複数種類の指標を合わせた指標を用いても良い。例えば、目的関数として、α×UWSD+β×全身SARとし、制約条件として局所SARを用いると、局所SARをある値以下に保ちつつ、B1値の不均一を全身SARのバランスを考慮して低減することができる。なお、αおよびβは、比例係数とする。 Further, as an index used for the objective function and the constraint condition, an index combining a plurality of types of indices may be used. For example, α × U WSD + β × whole body SAR is used as an objective function, and when local SAR is used as a constraint, the unevenness of B 1 value is considered in consideration of the balance of whole body SAR while keeping the local SAR below a certain value. Can be reduced. Α and β are proportional coefficients.
 なお、目的に応じて、用いる指標の種類(あるいは、指標の種類の組み合わせ;以下、単に指標の種類と呼ぶ。)を、予め記憶装置111に登録しておいてもよい。RFシミング部213は、ユーザの指示に従って、RFパラメータ算出に用いる指標の種類を記憶装置111から抽出し、RFパラメータを算出する。 Depending on the purpose, the types of indicators to be used (or combinations of indicator types; hereinafter simply referred to as indicator types) may be registered in the storage device 111 in advance. The RF shimming unit 213 extracts an index type used for RF parameter calculation from the storage device 111 according to a user instruction, and calculates an RF parameter.
 このように、本変形例によれば、複数チャンネルを有する送信コイルを用いるMRI装置において、計測ノイズが含まれる場合であっても、目的によらず、最大の効果が得られるRFシミングを実現できる。 As described above, according to the present modification, RF shimming that achieves the maximum effect can be realized in an MRI apparatus using a transmission coil having a plurality of channels even when measurement noise is included. .
 なお、登録する指標の種類は、目的ではなく、撮影部位に対応づけて保持してもよい。また、指標の種類は、撮像条件に対応づけて保持するよう構成してもよい。この場合、さらに、ユーザがその都度指示を行うのではなく、撮像条件が設定されると、自動的に記憶装置111から、RFシミングに用いる指標の種類が抽出され、それに従って、RFパラメータが設定されるよう構成してもよい。 It should be noted that the type of index to be registered is not the purpose but may be held in association with the imaging region. Further, the type of the index may be held in association with the imaging condition. In this case, when the imaging condition is set instead of the user giving an instruction each time, the index type used for the RF shimming is automatically extracted from the storage device 111, and the RF parameter is set accordingly. You may comprise.
 <最適化方法の変形例>
 上記実施形態では、RFパラメータ決定部233は、一般の最適化問題の解法を用いて、RFパラメータを算出している。しかしながら、RFパラメータの算出手法は、これに限定されない。
<Modification of optimization method>
In the above-described embodiment, the RF parameter determination unit 233 calculates the RF parameter using a general optimization problem solving method. However, the RF parameter calculation method is not limited to this.
 例えば、振幅および位相の値を網羅的に変化させて、目的関数を最小化する解を求めてもよい。たとえば、振幅および位相の値を、それぞれ、1dB、5度ずつ変化させて目的関数の値を計算し、最小となる場合の振幅および位相を求める。ただし、網羅的に振幅や位相を変化させる際に計算時間が膨大にかかる場合は、たとえば、振幅および位相の変化量をはじめは大きくした状態で目的関数の最小値をとる振幅および位相を求め、次に、その振幅および位相の値の近傍で、変化量を小さくした状態で振幅および位相を求めてもよい。これらの解法を行う場合の振幅および位相の初期値は、予め記憶装置111に保持される。また、予め最適な振幅や位相について、ある程度予測のつく場合には、その予測値を初期値として、その近傍の値のみについて、網羅的に振幅や位相を変化させてもよい。 For example, a solution that minimizes the objective function by exhaustively changing the amplitude and phase values may be obtained. For example, the value of the objective function is calculated by changing the values of the amplitude and the phase by 1 dB and 5 degrees, respectively, and the amplitude and the phase in the case of the minimum are obtained. However, if it takes a lot of calculation time to change the amplitude and phase comprehensively, for example, find the amplitude and phase that takes the minimum value of the objective function with the amplitude and phase change amount increased at the beginning, Next, the amplitude and phase may be obtained in the vicinity of the amplitude and phase values with the amount of change reduced. The initial values of the amplitude and phase when performing these solutions are stored in the storage device 111 in advance. In addition, when the optimum amplitude and phase can be predicted to some extent in advance, the predicted value may be used as an initial value, and the amplitude and phase may be comprehensively changed only for the nearby values.
 また、RFパラメータ決定部233は、振幅および位相の一方のみを変化させ、高周波磁場条件を決定してもよい。 Further, the RF parameter determination unit 233 may determine only the high frequency magnetic field condition by changing only one of the amplitude and the phase.
 また、RFシミング部213は、高周波磁場条件が変更される毎に、撮像領域内のB1分布を計測するB1分布計測を行い、撮像領域内のB1値を得てもよい。 Also, RF shimming unit 213, every time the high-frequency magnetic field conditions are changed, perform B 1 distribution measurement for measuring the B 1 distribution in the imaging area may be obtained B 1 value in the imaging region.
 また、網羅的にRFパラメータを変化させる場合、指標作成部232は、RFパラメータを変化させる毎に、得られたB1値を用いて、図4(A)に示すヒストグラム、または、このヒストグラムに加え、B1分布、2値化マップをユーザに提示し、ヒストグラムを介してユーザから第一の閾値321および第二の閾値322の指定を受け付けるよう構成してもよい。 In addition, when the RF parameter is changed comprehensively, the index creation unit 232 uses the obtained B 1 value every time the RF parameter is changed, or the histogram shown in FIG. In addition, a B1 distribution and a binarized map may be presented to the user, and designation of the first threshold value 321 and the second threshold value 322 may be received from the user via a histogram.
 また、上記実施形態では、主に撮像領域が2次元の場合について図示したが、3次元の場合でも同様の方法で、RFシミングを行うことができる。 In the above embodiment, the case where the imaging region is mainly two-dimensional is illustrated, but RF shimming can be performed by the same method even in the case of three-dimensional.
 また、上記実施形態では、3T MRI装置100、および、4チャンネルの送信コイル114を例にあげて説明したが、MRI装置100の構成はこれに限られない。3Tよりも高磁場、4チャンネルより多いチャンネル数の送信コイル114を用いてもよい。 In the above embodiment, the 3T MRI apparatus 100 and the 4-channel transmission coil 114 have been described as examples. However, the configuration of the MRI apparatus 100 is not limited thereto. A transmission coil 114 having a higher magnetic field than 3T and a number of channels larger than 4 channels may be used.
 また、上記実施形態では、MRI装置100が備える計算機109がRFシミング部213を備え、最適なRFの振幅および位相の少なくとも一方を算出するよう構成しているが、これに限られない。例えば、MRI装置100とデータの送受信が可能な、MRI装置100とは独立した計算機上にRFシミング部213が構築されていてもよい。 In the above-described embodiment, the computer 109 included in the MRI apparatus 100 includes the RF shimming unit 213 and is configured to calculate at least one of the optimum RF amplitude and phase, but is not limited thereto. For example, the RF shimming unit 213 may be constructed on a computer that can transmit and receive data to and from the MRI apparatus 100 and is independent of the MRI apparatus 100.
 また、各処理に必要なデータおよび各処理で生成されるデータについても同様に、MRI装置100が備える記憶装置111上ではなく、MRI装置100または計算機109がアクセス可能な独立した記憶装置上に記憶されていてもよい。 Similarly, data necessary for each process and data generated by each process are stored not on the storage device 111 included in the MRI apparatus 100 but on an independent storage device accessible by the MRI apparatus 100 or the computer 109. May be.
 また、本実施形態の手法は、医用をはじめとする各種の撮像分野に適用可能である。 Further, the method of the present embodiment can be applied to various imaging fields including medical use.
 100:MRI装置、101:マグネット、102:傾斜磁場コイル、103:被検体、104:シーケンサ、105:傾斜磁場電源、106:高周波磁場発生器、107:テーブル、108:受信器、109:計算機、110:表示装置、111:記憶装置、112:シムコイル、113:シム電源、114:送信コイル、114a:チャンネル、114a:チャンネル、114b:チャンネル、114c:チャンネル、114d:チャンネル、115:受信コイル、117a:給電点、117b:給電点、117c:給電点、117d:給電点、210:撮像条件設定部、211:撮像位置設定部、212:静磁場シミング部、213:RFシミング部、220:撮像部、231:B1分布計測部、232:指標作成部、233:RFパラメータ決定部、300:B1値のヒストグラム、310:重み付け関数、311:重み付け関数、312:重み付け関数、313:重み付け関数、314:重み付け関数、315:重み付け関数、321:第一の閾値、322:第二の閾値、323:第三の閾値、324:第四の閾値、331:B1値の範囲、332:B1値の範囲、401:数値人体モデル、402:ROI、403:腰椎領域、501:白色領域、502:黒色領域、503:斜線領域、504:領域、510:B1分布、511:2値化マップ、512:B1分布、513:2値化マップ、520:B1分布、521:2値化マップ、522:B1分布、523:2値化マップ、530:B1分布、531:2値化マップ、532:B1分布、533:2値化マップ、542:B1分布、543:2値化マップ、551:計測ノイズ、601:破線、602:破線、603:矢印、610:ヒストグラム、611:ヒストグラム、620:ヒストグラム、621:ヒストグラム、630:ヒストグラム、631:ヒストグラム、641:ヒストグラム 100: MRI apparatus, 101: magnet, 102: gradient coil, 103: subject, 104: sequencer, 105: gradient magnetic field power source, 106: high-frequency magnetic field generator, 107: table, 108: receiver, 109: calculator, 110: display device, 111: storage device, 112: shim coil, 113: shim power source, 114: transmission coil, 114a: channel, 114a: channel, 114b: channel, 114c: channel, 114d: channel, 115: reception coil, 117a : Feeding point, 117b: feeding point, 117c: feeding point, 117d: feeding point, 210: imaging condition setting unit, 211: imaging position setting unit, 212: static magnetic field shimming unit, 213: RF shimming unit, 220: imaging unit , 231: B 1 distribution measuring unit, 232: index creation unit, 233: RF Pas Meter determination unit, 300: histogram of B 1 value, 310: weighting function, 311: weighting function, 312: weighting function, 313: weighting function, 314: weighting function, 315: weighting function, 321: first threshold value, 322 : Second threshold, 323: third threshold, 324: fourth threshold, 331: range of B 1 value, 332: range of B 1 value, 401: numerical human body model, 402: ROI, 403: lumbar region , 501: white areas, 502: black area, 503: hatched region, 504: region, 510: B 1 distribution 511: binarization map, 512: B 1 distribution 513: binarization map, 520: B 1 distribution, 521: binarization map, 522: B 1 distribution 523: binarization map, 530: B 1 distribution 531: binarization map, 532: B 1 distribution 533: binarization map 542 : B 1 distribution, 543: Binary map, 551: Measurement noise, 601: Broken line, 602: Broken line, 603: Arrow, 610: Histogram, 611: Histogram, 620: Histogram, 621: Histogram, 630: Histogram, 631 : Histogram, 641: Histogram

Claims (10)

  1.  それぞれ被検体に高周波磁場を送信する複数のチャンネルを有する送信コイルと、
     関心領域内の高周波磁場分布であるB1分布の不均一を補正するよう前記各チャンネルから送信する高周波磁場のパラメータである高周波パラメータを決定する高周波シミングを行う高周波シミング部と、
     高周波シミング部で決定した高周波パラメータを用いて撮像する撮像部と、を備え、
     前記高周波シミング部は、B値により特定される最適化指標を用いて前記高周波パラメータを決定し、
     前記最適化指標は、撮像領域の位置およびB1値の大きさの少なくとも一方に応じた重み付けを前記B1値に行うことにより得たものであること
     を特徴とする磁気共鳴撮像装置。
    A transmission coil having a plurality of channels each transmitting a high-frequency magnetic field to the subject;
    A high-frequency shimming unit that performs high-frequency shimming to determine a high-frequency parameter that is a parameter of a high-frequency magnetic field transmitted from each channel so as to correct nonuniformity of the B 1 distribution that is a high-frequency magnetic field distribution in the region of interest;
    An imaging unit that images using a high-frequency parameter determined by the high-frequency shimming unit,
    The high-frequency shimming unit determines the high-frequency parameter using an optimization index specified by the B 1 value,
    The optimization indicator, a magnetic resonance imaging apparatus, characterized in that in which the position and weighting according to at least one of the magnitude of the B 1 value in the imaging region obtained by performing the B 1 value.
  2.  請求項1記載の磁気共鳴撮像装置であって、
     前記重み付けは、B値に重み付け関数を乗算することによりなされること
     を特徴とする磁気共鳴撮像装置。
    The magnetic resonance imaging apparatus according to claim 1,
    The weighting is a magnetic resonance imaging apparatus characterized in that it is made by multiplying the weighting function to the B 1 value.
  3.  請求項1記載の磁気共鳴撮像装置であって、
     前記最適化指標は、脂肪信号を抑制するよう作成されること
     を特徴とする磁気共鳴撮像装置。
    The magnetic resonance imaging apparatus according to claim 1,
    The magnetic resonance imaging apparatus, wherein the optimization index is created so as to suppress fat signals.
  4.  請求項2記載の磁気共鳴撮像装置であって、
     前記最適化指標は、前記B1値に応じて重み付けされ、
     前記重み付け関数は、予め定めた第一の閾値より小さい前記B1値と、前記第一の閾値より大きい、予め定めた第二の閾値より大きい前記B1値とを抽出する形状を有すること
     を特徴とする磁気共鳴撮像装置。
    The magnetic resonance imaging apparatus according to claim 2,
    The optimization index is weighted according to the B 1 value,
    The weighting function has a shape for extracting the B 1 value smaller than a predetermined first threshold and the B 1 value larger than the first threshold and larger than a predetermined second threshold. A magnetic resonance imaging apparatus.
  5.  請求項2記載の磁気共鳴撮像装置であって、
     前記最適化指標は、位置毎の前記B1値に前記重み付け関数を乗算した結果の標準偏差を前記B1値の平均値で除算したものであること
     を特徴とする磁気共鳴撮像装置。
    The magnetic resonance imaging apparatus according to claim 2,
    The magnetic resonance imaging apparatus, wherein the optimization index is obtained by dividing a standard deviation obtained by multiplying the B 1 value for each position by the weighting function by an average value of the B 1 values.
  6.  請求項1記載の磁気共鳴撮像装置であって、
     前記高周波シミング部は、前記最適化指標を作成する指標作成部をさらに備え、
     前記指標作成部は、前記重み付けを行う重み付け関数を決定することにより、前記指標を作成すること
     を特徴とする磁気共鳴撮像装置。
    The magnetic resonance imaging apparatus according to claim 1,
    The high frequency shimming unit further includes an index creating unit that creates the optimization index,
    The magnetic resonance imaging apparatus, wherein the index creating unit creates the index by determining a weighting function for performing the weighting.
  7.  請求項6記載の磁気共鳴撮像装置であって、
     前記最適化指標は、前記B1値に応じて重み付けされ、
     前記重み付け関数は、第一の閾値より小さい前記B1値と、前記第一の閾値より大きい、予め定めた第二の閾値より大きい前記B1値とを抽出する形状を有し、
     前記指標作成部は、予め定めた撮像条件で照射した場合のB1値のヒストグラムをユーザに提示し、当該ヒストグラムを介して、前記第一の閾値および前記第二の閾値の指定を受け付けること
     を特徴とする磁気共鳴撮像装置。
    The magnetic resonance imaging apparatus according to claim 6,
    The optimization index is weighted according to the B 1 value,
    The weighting function has a first threshold value smaller than the B 1 value, the greater the first threshold value, a shape for extracting a second threshold value greater than said B 1 value determined in advance,
    The index creation unit presents to the user a histogram of B 1 values when irradiation is performed under a predetermined imaging condition, and accepts designation of the first threshold value and the second threshold value via the histogram. A magnetic resonance imaging apparatus.
  8.  請求項4記載の磁気共鳴撮像装置であって、
     前記最適化指標は、前記第一の閾値より小さいB1値と、前記第二の閾値より大きいB1値との差を、前記第一の閾値より小さいB1値と、前記第二の閾値より大きいB1値との和で除算したものであること
     を特徴とする磁気共鳴撮像装置。
    The magnetic resonance imaging apparatus according to claim 4,
    The optimization metrics, the a first threshold value smaller than B 1 value, the difference between the second threshold value is greater than B 1 value, the a first threshold value smaller than B 1 value, the second threshold value A magnetic resonance imaging apparatus characterized by being divided by the sum of a larger B 1 value.
  9.  請求項1記載の磁気共鳴撮像装置であって、
     前記高周波シミング部は、予め定めた第二の最適化指標を用いて定められる制約条件の下、前記最適化指標を最小化するよう、前記高周波パラメータを決定し、
     前記制約条件は、全身比吸収率を所定値以下とすること、局所比吸収率を所定値以下とすること、高周波磁場の照射パワーを最小化すること、予め定めた第一の領域内の高周波磁場の平均値と予め定めた第二の領域内の高周波磁場の平均値との比を最小化すること、のいずれかを含むこと
     を特徴とする磁気共鳴撮像装置。
    The magnetic resonance imaging apparatus according to claim 1,
    The high-frequency shimming unit determines the high-frequency parameter so as to minimize the optimization index under a constraint condition determined using a predetermined second optimization index,
    The constraint condition is that the whole body specific absorption rate is set to a predetermined value or less, the local specific absorption rate is set to a predetermined value or less, the irradiation power of the high frequency magnetic field is minimized, and the high frequency in the predetermined first region is set. A magnetic resonance imaging apparatus comprising: minimizing a ratio between an average value of a magnetic field and an average value of a high-frequency magnetic field in a predetermined second region.
  10.  予め定めたB値により特定される最適化指標を用いて、関心領域内の高周波磁場分布の不均一を補正するよう、送信コイルの複数のチャンネルそれぞれから送信する高周波磁場のパラメータを決定し、
     前記高周波磁場のパラメータは、前記最適化指標を最小化するよう決定され、
     前記最適化指標は、撮像領域の位置およびB1値の大きさの少なくとも一方に応じた重み付けを前記B1値に行うことにより作成されること
     を特徴とする高周波磁場シミング方法。
    Determining parameters of the high frequency magnetic field transmitted from each of the plurality of channels of the transmission coil so as to correct non-uniformity of the high frequency magnetic field distribution in the region of interest using an optimization index specified by a predetermined B 1 value;
    The high frequency magnetic field parameters are determined to minimize the optimization index;
    The optimization index, high-frequency magnetic field shimming method characterized by being created by performing position and B 1 value of the size weighted according to at least one of the imaging region in the B 1 value.
PCT/JP2016/066019 2015-06-05 2016-05-31 Magnetic resonance imaging device and high-frequency magnetic field shimming method WO2016194899A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-115030 2015-06-05
JP2015115030A JP6513493B2 (en) 2015-06-05 2015-06-05 Magnetic resonance imaging system

Publications (1)

Publication Number Publication Date
WO2016194899A1 true WO2016194899A1 (en) 2016-12-08

Family

ID=57441211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066019 WO2016194899A1 (en) 2015-06-05 2016-05-31 Magnetic resonance imaging device and high-frequency magnetic field shimming method

Country Status (2)

Country Link
JP (1) JP6513493B2 (en)
WO (1) WO2016194899A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7201360B2 (en) * 2018-08-06 2023-01-10 キヤノンメディカルシステムズ株式会社 Magnetic resonance imaging device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029640A (en) * 2008-06-26 2010-02-12 Toshiba Corp Magnetic resonance imaging apparatus
JP2013505046A (en) * 2009-09-17 2013-02-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Simultaneous optimization of RF power and RF field uniformity in MRI
WO2014021172A1 (en) * 2012-08-03 2014-02-06 株式会社日立メディコ Magnetic resonance imaging device, and determination method for high-frequency magnetic field conditions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029640A (en) * 2008-06-26 2010-02-12 Toshiba Corp Magnetic resonance imaging apparatus
JP2013505046A (en) * 2009-09-17 2013-02-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Simultaneous optimization of RF power and RF field uniformity in MRI
WO2014021172A1 (en) * 2012-08-03 2014-02-06 株式会社日立メディコ Magnetic resonance imaging device, and determination method for high-frequency magnetic field conditions

Also Published As

Publication number Publication date
JP2017000254A (en) 2017-01-05
JP6513493B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
JP5885845B2 (en) Magnetic resonance imaging apparatus and high-frequency magnetic field condition determination method
US8724875B2 (en) Attenuation correction for PET or SPECT nuclear imaging systems using magnetic resonance spectroscopic image data
JP6055425B2 (en) Restriction of imaging area for MRI in inhomogeneous magnetic field
KR100828220B1 (en) Method for slice position planning of tomographic measurements, using statistical images
JP6169573B2 (en) Reduction of radio frequency transmission field within a given volume during magnetic resonance imaging
US9784807B2 (en) Method and magnetic resonance apparatus to acquire magnetic resonance data of a target region including a metal object
US9651644B2 (en) Method and magnetic resonance system to acquire MR data in a predetermined volume segment of an examination subject
EP3127083B1 (en) A method estimating a pseudo hounsfield unit value
WO2015029652A1 (en) Magnetic resonance imaging device and imaging parameter determination method
WO2013047583A1 (en) Image analysis device, image analysis method, and image analysis programme
Lundman et al. Patient-induced susceptibility effects simulation in magnetic resonance imaging
US9874621B2 (en) Method of generating a susceptibility weighted image
JP5797765B2 (en) Magnetic resonance imaging apparatus, high-frequency magnetic field irradiation method, and program
WO2016194899A1 (en) Magnetic resonance imaging device and high-frequency magnetic field shimming method
WO2014125876A1 (en) Magnetic resonance imaging device and processing method thereof
US10156616B2 (en) Nuclear magnetic resonance imaging apparatus and RF shimming method
JP6408954B2 (en) Magnetic resonance imaging apparatus, information processing apparatus, and high-frequency magnetic field shimming method
JP2015019813A (en) Magnetic resonance imaging apparatus and method for calculating correcting b1 map
JP2016214277A5 (en)
US10761164B2 (en) Generating a spatially resolved magnetic resonance dataset
JP2018068954A (en) Magnetic resonance imaging apparatus and image processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803333

Country of ref document: EP

Kind code of ref document: A1