WO2016194707A1 - Production method for functional composite film - Google Patents

Production method for functional composite film Download PDF

Info

Publication number
WO2016194707A1
WO2016194707A1 PCT/JP2016/065323 JP2016065323W WO2016194707A1 WO 2016194707 A1 WO2016194707 A1 WO 2016194707A1 JP 2016065323 W JP2016065323 W JP 2016065323W WO 2016194707 A1 WO2016194707 A1 WO 2016194707A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite film
functional
functional composite
nonwoven fabric
producing
Prior art date
Application number
PCT/JP2016/065323
Other languages
French (fr)
Japanese (ja)
Inventor
渡辺 直樹
善宏 瀬戸口
学 本居
Original Assignee
日本バルカー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本バルカー工業株式会社 filed Critical 日本バルカー工業株式会社
Priority to JP2017521842A priority Critical patent/JPWO2016194707A1/en
Publication of WO2016194707A1 publication Critical patent/WO2016194707A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4318Fluorine series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a functional composite film that is less likely to cause wrinkles or distortion in a thin-walled functional composite film in each production process.
  • Solid polymer fuel cells can be reduced in size and weight, and are expected to be used in a wide range of fields such as home use, portable use, and automobile use.
  • the polymer electrolyte fuel cell is configured by stacking a single cell and a separator, and the cell is configured such that an electrode of a fuel electrode and an air electrode sandwiches a polymer electrolyte membrane.
  • the polymer solid electrolyte membrane used in the polymer electrolyte fuel cell needs to have a low membrane resistance. For this reason, it is desirable that the film thickness be as thin as possible, but if the film thickness is too thin, There have been problems such as pinholes during film formation, film tearing during electrode molding, and short-circuiting between the electrodes.
  • the polymer solid electrolyte membrane is often used in a wet state, and the electrolyte membrane swells.
  • the polymer solid electrolyte membrane shrinks by drying. In this way, the electrolyte membrane is easily deformed by repeated swelling or shrinkage. There has been a problem with reliability such as pressure resistance and cross leak during differential pressure operation due to such deformation.
  • the solid polymer electrolyte membrane disclosed in Patent Document 1 uses a stretched membrane (stretched polytetrafluoroethylene) as a reinforcing membrane to achieve stability of the solid polymer electrolyte membrane.
  • the electrolyte membrane for a polymer electrolyte fuel cell disclosed in Patent Document 2 discloses a configuration in which the membrane is reinforced with fibers, woven fabric, nonwoven fabric, porous membrane or porous sheet.
  • Such a polymer solid electrolyte membrane forms, for example, a porous membrane or a nonwoven fabric which is a reinforcing body of the polymer solid electrolyte membrane as disclosed in Patent Document 2, and the porous membrane or the nonwoven fabric. And a composite process such as impregnation and filling with a functional material.
  • Patent Documents 3 and 4 disclose a configuration in which a nonwoven fabric is formed by an electrospinning method.
  • the nonwoven fabric formed by the electrospinning method disclosed in Patent Documents 3 and 4 has a thin film thickness of the nonwoven fabric.
  • the polymer solid electrolyte membrane is likely to be wrinkled and distorted, which has been a cause of an increase in the number of defective polymer solid electrolyte membranes.
  • the present invention is to provide a method for producing a functional composite film.
  • the method for producing a functional composite membrane of the present invention comprises a fiber assembly from a spinning solution containing a spinning material on a substrate sheet placed on an electrode by an electrospinning method.
  • a non-woven fabric forming step for forming a non-woven fabric, and the non-woven fabric formed on the substrate sheet is contacted with a functional material solution containing a functional material, thereby filling the non-woven fabric with the functional material and functioning.
  • a compositing step for producing a conductive composite film By this manufacturing method, when performing each manufacturing process and when transferring between each manufacturing process, the nonwoven fabric is always formed on the base sheet in a state where it adheres to the base sheet. Wrinkles and distortion can be made difficult to occur, and a functional composite film having a thinner film can be generated.
  • the method for producing a functional composite film of the present invention includes a drying step in which the functional composite membrane generated by the composite step is dried by heating. By this manufacturing method, it is possible to remove the functional material solution remaining without being filled.
  • the manufacturing method of the functional composite film of this invention is characterized by the said base material sheet being formed from a material with small specific heat.
  • the manufacturing method of the functional composite film of this invention has the peeling process which peels the said base material sheet from the functional composite film produced
  • the manufacturing method of the functional composite film of this invention is characterized by the said base material sheet having heat resistance of at least 200 degreeC while having electroconductivity.
  • the method for producing a functional composite membrane of the present invention is characterized in that the functional material is an ion exchange material.
  • the produced functional composite film can be used for electrochemical devices.
  • the nonwoven fabric forming step is carried out on a substrate sheet placed on an electrode by an electrospinning method from a spinning solution containing polytetrafluoroethylene and a fiber forming agent. It is a step of forming a non-woven fabric precursor made of a fiber aggregate and forming a fluororesin non-woven fabric made only of polytetrafluoroethylene by subjecting the formed non-woven fabric precursor to a heat-firing treatment.
  • the method for producing a functional composite film of the present invention is always formed on a base sheet during the execution of each manufacturing process and during the transfer between the manufacturing processes, the functional composite film is wrinkled or distorted. Can be made difficult to occur, and a functional composite film having a thinner film can be produced.
  • FIG. 1 is a schematic cross-sectional view of the functional composite film of the present embodiment.
  • the functional composite film 10 of the present embodiment includes a nonwoven fabric 11 having a plurality of voids and a functional material. As shown in the schematic cross-sectional view shown in FIG. 1, the functional composite film 10 is a nanofiber reinforced functional composite film in which at least a part of voids formed in the nonwoven fabric 11 is filled with a functional material.
  • the nonwoven fabric 11 is not particularly limited as long as it has a plurality of voids and serves as a reinforcing material in the functional composite film 10.
  • the film thickness of the nonwoven fabric 11 is preferably 1 ⁇ m to 500 ⁇ m, and more preferably 5 ⁇ m to 200 ⁇ m. When the film thickness of the nonwoven fabric 11 is within this range, it is possible to cope with downsizing and thinning of the electrochemical element, and to make a composite film having high uniformity in strength, film resistance, and durability. Become.
  • the porosity of the nonwoven fabric 11 is preferably 40 to 98%, more preferably 65 to 95%, from the viewpoint of the film resistance and strength of the functional composite film 10 to be obtained.
  • the material which comprises the nonwoven fabric 11 is not specifically limited, For example, olefin resin, ester resin, amide resin, imide resin, phenol resin, acrylic resin, styrene resin, fluorine resin, cellulose, etc. It can be composed of inorganic materials such as organic materials, metals, carbon, and inorganic compounds.
  • a fluororesin nonwoven fabric formed from a fluororesin is preferable.
  • the average fiber diameter of the fluororesin nonwoven fabric is preferably 10 to 2000 nm, more preferably 50 to 1200 nm, although it depends on the type of fluororesin.
  • the average fiber diameter is determined by randomly specifying a region to be observed with a scanning electron microscope (SEM) on the nonwoven fabric to be measured, and this region is randomly observed by SEM observation (magnification: 10,000 times), for example, It is a value calculated by selecting ten fibers and measuring the fiber diameter of the fibers using a measuring instrument.
  • SEM scanning electron microscope
  • the average fiber diameter is preferably 400 to 2000 nm, and more preferably 600 to 1200 nm, from the viewpoint of the strength, stability, and high functionality of the resulting composite membrane. Is preferred.
  • the cross-sectional shape of the fiber is not particularly limited, and fibers having a cross-sectional shape such as a circular shape, an elliptical shape, a flat shape, and a polygonal shape can be used.
  • a cross-sectional shape such as a circular shape, an elliptical shape, a flat shape, and a polygonal shape
  • the strength and uniformity of characteristics of the functional composite film 10 can be used. From this point of view, a circular shape is preferable.
  • the fluororesin constituting the fluororesin fiber includes polyvinylidene fluoride, polyhexafluoropropylene, polyperfluoroalkyl vinyl ether, polychlorotrifluoroethylene, polytetrafluoroethylene, and the like. Moreover, you may use the polymer blend which consists of these copolymers and several fluororesin. Among these fluororesins, a fluororesin composed of polytetrafluoroethylene is preferable in terms of heat resistance, long-term stability, and chemical durability of the obtained composite film.
  • the above-described nonwoven fabric can be formed by a known fiber manufacturing method.
  • a fiber having a circular cross section and a small average fiber diameter is manufactured by a dry method.
  • -It is preferable because it can be deposited (without applying a large load such as water pressure) and a non-woven fabric having a high porosity can be produced.
  • the electrospinning method a spinning solution containing a fiber constituent material and, if necessary, a solvent and an additive is ejected from an injection port to which high voltage is applied, and is collected into a collector while being fiberized by electrostatic attraction. In this method, fibers and a nonwoven fabric in which the fibers are accumulated are obtained.
  • a spinning solution is prepared by dispersing and dissolving a polymer to be fiberized and polytetrafluoroethylene in a solvent.
  • the spinning solution is supplied to a charged needle container.
  • the target is placed at a position separated from the needle-like container by a predetermined distance, and the target is grounded.
  • the spinning solution is electrostatically attracted from the needle-like container to the target to generate fluororesin fibers.
  • the fluororesin fibers are accumulated, and the formed fluororesin nonwoven precursor is 280 ° C. to 500 ° C.
  • a fluororesin nonwoven fabric made of only polytetrafluoroethylene is formed by removing the polymer and the fiber that are formed by heating and baking at ° C.
  • the functional material is not particularly limited as long as it is a material that can exhibit its function by being filled and impregnated into the nonwoven fabric 11, and is an electrically conductive material, a light transmissive material, an ion exchange material (anion exchange material, cation exchange material). ), Catalytic materials (chemical reaction catalysts, photocatalysts, etc.), adsorbing materials (gas adsorbing materials, metal adsorbing materials, etc.), surface modifying materials (hydrophilic materials, oil repellent materials, etc.), heat insulating materials, reinforcing materials, etc. be able to.
  • an embodiment using the ion exchange material 12 as a functional material will be described.
  • the ion exchange material 12 may be any material having an ion exchange group, such as a known organic material (thermoplastic ion conductive resin, thermosetting ion conductive resin precursor, etc.), inorganic material (ion conductive metal compound, etc.). ), An ionic liquid, and an organic-inorganic composite material may be used, and a plurality of ion exchange materials may be used. If necessary, additives such as a binder resin may be mixed.
  • an ion exchange material made of an organic material is preferable from the viewpoint of flexibility of the functional composite membrane, and a perfluorocarbon sulfonic acid resin is preferable from the viewpoint of durability of the functional composite membrane. It is more preferable.
  • Examples of commercially available perfluorocarbon sulfonic acid resins include Nafion (registered trademark, manufactured by E. I. du Pont de Nemours and Company, hereinafter omitted) having a structure of the following formula, Aquivion (registered trademark, Solvay Solexis) Can be used.
  • the ion exchange material 12 may be combined with the nonwoven fabric 11 alone, or may be combined with the nonwoven fabric 11 by being dispersed or dissolved in a solvent.
  • a composite method a known method can be used.
  • the ion exchange material 12 alone a method of immersing and impregnating the nonwoven fabric 11 in a dispersed or dissolved solution, or the nonwoven fabric 11 with the ion exchange material 12 alone.
  • the ion exchange material 12 is impregnated in the pores of the nonwoven fabric 11 by applying or adhering a dispersed or dissolved solution.
  • heat drying treatment may be performed as necessary, or ionizing radiation irradiation treatment such as an electron beam or chemical treatment using a crosslinking agent may be performed.
  • SUS304, plate thickness 50 ⁇ m
  • the base material sheet 13 is formed in a sheet shape, and the material and shape thereof are not particularly limited as long as the base material sheet 13 is placed on the electrode and the nonwoven fabric 11 can be formed by the electrospinning method.
  • a material of the base sheet 13 for example, a metal such as copper, nickel, aluminum, iron, titanium, magnesium, molybdenum, and chromium and an alloy containing these metals (SUS301, SUS302, SUS304, stainless steel such as SUS310) are used.
  • An inorganic material, an organic material such as polyolefin resin, fluororesin, polypyrrole, polythiophene, polyaniline, a composite material of an inorganic material and an organic material, or the like can be used.
  • the base material sheet 13 As a shape of the base material sheet 13, it can be set as non-porous film shapes, such as a film, a sheet
  • the base sheet 13 is preferably conductive from the viewpoint of the production stability of the fiber by the electrospinning method, and specifically, it may be made of a material having an electrical resistivity of 10 8 ⁇ ⁇ m or less. Preferably, it is 10 3 ⁇ ⁇ m or less, more preferably 10 ⁇ 5 ⁇ ⁇ m or less.
  • the base material sheet 13 has heat resistance which can endure the heating of 200 degreeC or more from the viewpoint of the heat processing in a nonwoven fabric formation process and a composite process, and also has heat resistance of 500 degreeC or more. Particularly preferred.
  • the base material sheet 13 is formed from a material with small specific heat, for example, the metal foil formed from aluminum, copper, stainless steel etc. is mentioned.
  • the base sheet 13 is a non-porous material and the surface thereof is formed into a smooth surface.
  • the base sheet 13 has chemical resistance and the like.
  • the spinning solution is electrostatically attracted from the needle-like container to the target on which the base sheet 13 is installed, so that fibers having a desired average fiber diameter are formed on the base sheet 13.
  • the average fiber diameter in this embodiment is 300 to 5000 nm.
  • the nonwoven fabric 11 is formed by heating and baking the nonwoven fabric precursor formed by accumulating the generated fibers at a temperature of 30 to 500 ° C. as necessary. Since the nonwoven fabric 11 formed in this manner is in a state of adhering onto the base sheet 13, it is possible to perform the following manufacturing steps without separately bonding the nonwoven fabric 11 to the base sheet 13 using an adhesive or the like. It is possible to suppress peeling during the transfer operation. In addition, it is preferable to manufacture the nonwoven fabric 11 so that it may not have anisotropy such as MD direction or TD direction seen in a stretched film.
  • the nonwoven fabric 11 and the ion exchange material 12 are combined (hereinafter referred to as a combining step).
  • a combining step For example, when compounding by the impregnation method, first, an ion exchange material solution is prepared by dissolving Nafion, which is the ion exchange material 12, in a solvent. Then, the nonwoven fabric 11 is immersed in the produced ion exchange material solution while being formed on the base sheet 13, and is allowed to stand for 1 minute to 24 hours.
  • the amount of impregnation of the functional material such as the ion exchange material 12 into the voids inside the nonwoven fabric 11 can be appropriately adjusted depending on the use of the functional composite membrane 10 to be obtained.
  • the amount of impregnation of the functional material can be controlled by adjusting the solution (concentration / viscosity) of the functional material and the impregnation (composite) time.
  • the base sheet 13 is a non-porous material and the surface thereof is formed into a smooth surface, the ion exchange material 12 is difficult to be impregnated in the base sheet 13. 12 losses can be reduced.
  • the ion exchange material 12 may not be able to fill the voids inside the nonwoven fabric 11 with a desired amount even if it is immersed in the ion exchange material solution. is there.
  • the non-woven fabric 11 is once impregnated with an organic solvent such as propanol, methyl alcohol, acetone, diethyl ether or the like before the compounding step with the ion exchange material solution, whereby ion exchange is performed in the pores of the fluororesin. It is preferable to treat the material solution so as to easily penetrate uniformly.
  • the non-woven fabric 11 that has been allowed to stand in the ion exchange material solution for a certain period of time is taken out from the ion exchange material solution, and the solvent is evaporated and removed in an environment of 30 to 250 ° C. for 1 minute to 24 hours (hereinafter referred to as a drying step).
  • the drying process may be performed at a single temperature or may be dried stepwise under different temperature environments. Moreover, you may make it dry in pressure reduction or a pressurization environment as needed.
  • the base sheet 13 is made of a material having a small specific heat in addition to heat resistance that can withstand at least 200 ° C.
  • the temperature rise due to heating is quick, so the nonwoven fabric 11 and the functional composite Excess solvent and the like can be removed from the film 10 in a short time and without drying unevenness.
  • the nonwoven fabric 11 exists in the state adhering on the base material sheet 13, when the excess solvent from the internal space
  • the ion exchange material 12 After this drying process, it is confirmed whether or not the ion exchange material 12 can fill the voids inside the nonwoven fabric 11 with the target amount, and the ion exchange material 12 cannot fill the nonwoven fabric 11 with the target amount. If determined, the above-described compounding step and drying step may be repeated. In addition, it judges from the filling condition of the ion exchange material 12, and repeats on the same conditions or different conditions from the compounding process and drying process mentioned above. Moreover, you may use a different functional material for every compounding process.
  • the base sheet 13 is peeled from the functional composite film 10 (hereinafter referred to as a peeling step). Since the base sheet 13 is a non-porous material and has a smooth surface, the functional composite film 10 is deformed when the base sheet 13 is peeled off from the functional composite film 10. Or the risk of breakage can be reduced.
  • the functional composite film 10 can be wound and carried in a roll shape with the functional composite film 10 attached to the base sheet 13. Since the functional composite film 10 is attached to the base sheet 13, there is a risk of damage to the functional composite film 10 during transportation of a truck or the like, and adhesion between the wound functional composite films 10. Can be reduced.
  • the manufacturing method of the functional composite film 10 of the present invention is handled in a stable state in each manufacturing process by forming the functional composite film 10 while being composited while being placed on the base sheet 13. Therefore, the functional composite film 10 is unlikely to be deformed or damaged, and the functional composite film 10 having a thinner film thickness can be generated.
  • the manufacturing method capable of producing such a thin functional composite film 10 can be particularly preferably used as a method for manufacturing a composite film for an electrochemical device that is required to be thin. It becomes possible to easily manufacture the functional composite membrane 10 composed of the non-woven fabric 11 having a size of 1 ⁇ m or more and 50 ⁇ m and the ion exchange material 12.
  • the nonwoven fabric 11 formed by the electrospinning method is attached to the base sheet 13
  • the nonwoven fabric 11 is bonded to the base sheet 13 using an adhesive or the like. Even if they are not separately bonded to each other, they are not peeled off during the transfer operation between the manufacturing steps.
  • the method for producing the functional composite film 10 of the present invention can be carried more easily by winding the functional composite film 10 on the base sheet 13 while being wound. That is, since the functional composite film 10 is attached to the base sheet 13, the risk of damage to the functional composite film 10 during transportation of a truck or the like can be reduced.
  • the manufacturing method of the functional composite film 10 of the present invention is such that the base sheet 13 has conductivity and heat resistance of at least 200 ° C., and is a non-porous material.
  • the functional material is less likely to be impregnated into the base sheet 13 and the loss of the functional material can be reduced.
  • the base sheet 13 is easily peeled from the functional composite film 10 during the subsequent peeling process.
  • the base sheet 13 is formed of a material having a small specific heat, so the temperature rise due to heating is fast, so the nonwoven fabric 11 and the functional composite film 10 can be quickly produced. In addition, unnecessary solvents and the like can be removed without drying unevenness.
  • the manufacturing method of the functional composite film 10 of this embodiment can be used as a manufacturing method of an optical film member, an ion conductive film, a catalyst film, an adsorption film, a moisture permeable film, a filter film, a cell culture film, and a heat insulating film.
  • it can be used as a method for producing an electrolyte membrane for a fuel cell, a separator for a secondary battery, and an ion exchange membrane for an electrochemical device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Fuel Cell (AREA)

Abstract

[Problem] Provided is a production method for a functional composite film, wherein deformation, breakage, etc. can be suppressed during the execution of each production step and during transport between the production steps. [Solution] The present invention has: a non-woven-cloth formation step wherein an electrospinning method is used to form, from a spinning solution that includes a spinning material, a non-woven cloth 11 that comprises a fiber integrated body upon a base-material sheet 13 that is provided upon an electrode; and a conjugation step wherein a functional-material solution that includes a functional material is brought into contact with the non-woven cloth 11 that has been formed upon the base-material sheet 13 so as to fill the non-woven cloth 11 with the functional material and to generate a functional composite film 10.

Description

機能性複合膜の製造方法Method for producing functional composite membrane
 本発明は、各製造工程において、薄肉膜の機能性複合膜にシワや歪みを生じさせにくい機能性複合膜の製造方法に関する。 The present invention relates to a method for producing a functional composite film that is less likely to cause wrinkles or distortion in a thin-walled functional composite film in each production process.
 固体高分子型燃料電池は、小型・軽量化が可能であり、家庭用、携帯用、自動車用と幅広い分野で利用できると期待されている。固体高分子型燃料電池は単セルとセパレータとを積み重ねて構成されており、さらにセルは燃料極と空気極との電極が高分子電解質膜を挟持する構成である。 Solid polymer fuel cells can be reduced in size and weight, and are expected to be used in a wide range of fields such as home use, portable use, and automobile use. The polymer electrolyte fuel cell is configured by stacking a single cell and a separator, and the cell is configured such that an electrode of a fuel electrode and an air electrode sandwiches a polymer electrolyte membrane.
 固体高分子型燃料電池に使用される高分子固体電解質膜は、膜自体の膜抵抗を低くする必要があり、そのために膜厚はできるだけ薄い方が望まれているが、膜厚をあまりに薄くすると、製膜時にピンホールが生じたり、電極成形時に膜が破れたり、また電極間の短絡が発生しやすくなる等の問題点がみられた。 The polymer solid electrolyte membrane used in the polymer electrolyte fuel cell needs to have a low membrane resistance. For this reason, it is desirable that the film thickness be as thin as possible, but if the film thickness is too thin, There have been problems such as pinholes during film formation, film tearing during electrode molding, and short-circuiting between the electrodes.
 また、高分子固体電解質膜は、湿潤状態で使用されることが多く、当該電解質膜が膨潤する、一方乾燥状態に置かれた場合、高分子固体電解質膜は乾燥収縮する。このように当該電解質膜が、膨潤又は収縮が繰り返されることにより、変形が生じやすくなる。そのような変形等による差圧運転時の耐圧性やクロスリーク等の信頼性に問題が生じていた。 In addition, the polymer solid electrolyte membrane is often used in a wet state, and the electrolyte membrane swells. On the other hand, when placed in a dry state, the polymer solid electrolyte membrane shrinks by drying. In this way, the electrolyte membrane is easily deformed by repeated swelling or shrinkage. There has been a problem with reliability such as pressure resistance and cross leak during differential pressure operation due to such deformation.
 上述した問題を解消するために様々な高分子固体電解質膜が研究されている。例えば、特許文献1に開示された高分子固体電解質膜は、その補強膜として、延伸膜(延伸ポリテトラフルオロエチレン)を用いることにより、高分子固体電解質膜の安定性を図っている。また、特許文献2に開示された固体高分子形燃料電池用電解質膜は、繊維、織布、不織布、多孔質膜又は多孔シートで補強した構成が開示されている。 Various solid polymer electrolyte membranes have been studied to solve the above problems. For example, the solid polymer electrolyte membrane disclosed in Patent Document 1 uses a stretched membrane (stretched polytetrafluoroethylene) as a reinforcing membrane to achieve stability of the solid polymer electrolyte membrane. In addition, the electrolyte membrane for a polymer electrolyte fuel cell disclosed in Patent Document 2 discloses a configuration in which the membrane is reinforced with fibers, woven fabric, nonwoven fabric, porous membrane or porous sheet.
 このような高分子固体電解質膜は、特許文献2に開示されているように高分子固体電解質膜の補強体である例えば多孔質膜や、不織布等を形成し、当該多孔質膜や、不織布等と機能性材料を含浸・充填する等の複合化工程を経て、形成されるものである。そして、特許文献3、及び4には不織布が電界紡糸法により形成される構成が開示されている。 Such a polymer solid electrolyte membrane forms, for example, a porous membrane or a nonwoven fabric which is a reinforcing body of the polymer solid electrolyte membrane as disclosed in Patent Document 2, and the porous membrane or the nonwoven fabric. And a composite process such as impregnation and filling with a functional material. Patent Documents 3 and 4 disclose a configuration in which a nonwoven fabric is formed by an electrospinning method.
特開2010-155233号公報JP 2010-155233 A 特開2007-95433号公報JP 2007-95433 A 特開2011-216269号公報JP 2011-216269 A 特表2014-506714号公報Special table 2014-506714 gazette
 しかしながら、特許文献3、4に開示された電界紡糸法により形成された不織布は、不織布の膜厚が薄いために、各製造工程の実行中、及び各製造工程間の移送の際に、不織布や高分子固体電解質膜にシワや歪みが生じ易く、高分子固体電解質膜の不良品発生の増加の一因となっていた。 However, the nonwoven fabric formed by the electrospinning method disclosed in Patent Documents 3 and 4 has a thin film thickness of the nonwoven fabric. The polymer solid electrolyte membrane is likely to be wrinkled and distorted, which has been a cause of an increase in the number of defective polymer solid electrolyte membranes.
 本発明は、上記課題に鑑みて、機能性複合膜の製造方法を提供することにある。 In view of the above problems, the present invention is to provide a method for producing a functional composite film.
 上記課題を解決するためになされた本発明の機能性複合膜の製造方法は、紡糸材料を含む紡糸溶液から、電界紡糸法により、電極上に設置された基材シート上に繊維集積体からなる不織布を形成する不織布形成工程と、前記基材シート上に形成された前記不織布に対し、機能性材料を含む機能性材料溶液と接触させることにより、前記不織布内に機能性材料を充填し、機能性複合膜を生成する複合化工程と、を有することを特徴とする。
 この製造方法により、各製造工程の実行の際、及び各製造工程間の移送の際に、常に基材シート上で不織布が基材シートに付着した状態で形成されるため、機能性複合膜にシワや歪みが生じ難くすることができ、より薄肉膜の機能性複合膜を生成することができる。
The method for producing a functional composite membrane of the present invention, which has been made to solve the above problems, comprises a fiber assembly from a spinning solution containing a spinning material on a substrate sheet placed on an electrode by an electrospinning method. A non-woven fabric forming step for forming a non-woven fabric, and the non-woven fabric formed on the substrate sheet is contacted with a functional material solution containing a functional material, thereby filling the non-woven fabric with the functional material and functioning. And a compositing step for producing a conductive composite film.
By this manufacturing method, when performing each manufacturing process and when transferring between each manufacturing process, the nonwoven fabric is always formed on the base sheet in a state where it adheres to the base sheet. Wrinkles and distortion can be made difficult to occur, and a functional composite film having a thinner film can be generated.
 また、本発明の機能性複合膜の製造方法は、前記複合化工程により生成された機能性複合膜を加熱乾燥させる乾燥工程を有することを特徴とする。
 この製造方法により、充填されずに残った機能性材料溶液を除去することが可能となる。
In addition, the method for producing a functional composite film of the present invention includes a drying step in which the functional composite membrane generated by the composite step is dried by heating.
By this manufacturing method, it is possible to remove the functional material solution remaining without being filled.
 また、本発明の機能性複合膜の製造方法は、前記基材シートが、比熱の小さい材料から形成されることを特徴とする。
 この製造方法により、基材シートが短時間で加熱されるため、機能性複合膜から不要な溶媒等を除去でき、乾燥工程の工程時間を短縮することができる。
Moreover, the manufacturing method of the functional composite film of this invention is characterized by the said base material sheet being formed from a material with small specific heat.
By this manufacturing method, since the base material sheet is heated in a short time, unnecessary solvents and the like can be removed from the functional composite film, and the process time of the drying process can be shortened.
 また、本発明の機能性複合膜の製造方法は、前記複合化工程により生成された機能性複合膜から前記基材シートを剥離する剥離工程を有することを特徴とする。
 この製造方法により、機能性複合膜のみを取得することができる。
Moreover, the manufacturing method of the functional composite film of this invention has the peeling process which peels the said base material sheet from the functional composite film produced | generated by the said composite process.
By this manufacturing method, only the functional composite film can be obtained.
 また、本発明の機能性複合膜の製造方法は、前記基材シートが、導電性を有すると共に、少なくとも200℃の耐熱性を有することを特徴とする。
 この製造方法により、各製造工程の実行を容易にし、特に不織布形成工程及び乾燥工程の実行がより容易となる。
Moreover, the manufacturing method of the functional composite film of this invention is characterized by the said base material sheet having heat resistance of at least 200 degreeC while having electroconductivity.
By this manufacturing method, execution of each manufacturing process is facilitated, and in particular, the nonwoven fabric forming process and the drying process are more easily performed.
 また、本発明の機能性複合膜の製造方法は、前記機能性材料が、イオン交換材料であることを特徴とする。
 この製造方法により、生成された機能性複合膜は電気化学素子用として利用することができる。
The method for producing a functional composite membrane of the present invention is characterized in that the functional material is an ion exchange material.
By this manufacturing method, the produced functional composite film can be used for electrochemical devices.
 また、本発明の機能性複合膜の製造方法は、前記不織布形成工程が、ポリテトラフルオロエチレン及び繊維形成剤を含む紡糸溶液から、電界紡糸法により、電極上に設置された基材シート上に繊維集積体からなる不織布前駆体を形成し、形成された前記不織布前駆体を加熱焼成処理することでポリテトラフルオロエチレンのみからなるフッ素樹脂不織布を形成する工程であることを特徴とする。 Further, in the method for producing a functional composite film of the present invention, the nonwoven fabric forming step is carried out on a substrate sheet placed on an electrode by an electrospinning method from a spinning solution containing polytetrafluoroethylene and a fiber forming agent. It is a step of forming a non-woven fabric precursor made of a fiber aggregate and forming a fluororesin non-woven fabric made only of polytetrafluoroethylene by subjecting the formed non-woven fabric precursor to a heat-firing treatment.
 本発明の機能性複合膜の製造方法は、各製造工程の実行の際、及び各製造工程間の移送の際に、常に基材シート上で形成されるため、機能性複合膜にシワや歪みが生じ難くすることができ、より薄肉膜の機能性複合膜を生成することができる。 Since the method for producing a functional composite film of the present invention is always formed on a base sheet during the execution of each manufacturing process and during the transfer between the manufacturing processes, the functional composite film is wrinkled or distorted. Can be made difficult to occur, and a functional composite film having a thinner film can be produced.
本実施形態の機能性複合膜の断面模式図である。It is a cross-sectional schematic diagram of the functional composite film of this embodiment. 本実施形態の機能性複合膜が基材上で複合化された状態を示す断面模式図である。It is a cross-sectional schematic diagram which shows the state by which the functional composite film of this embodiment was compounded on the base material.
 以下、本実施形態の機能性複合膜を図1に基づいて説明する。尚、図1は、本実施形態の機能性複合膜の断面模式図である。 Hereinafter, the functional composite film of the present embodiment will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view of the functional composite film of the present embodiment.
 本実施形態の機能性複合膜10は、複数の空隙が形成された不織布11と、機能性材料とを有する。図1に示す断面模式図のように、機能性複合膜10は、不織布11中に形成された空隙の少なくとも一部が機能性材料により満たされたナノ繊維強化機能性複合膜である。 The functional composite film 10 of the present embodiment includes a nonwoven fabric 11 having a plurality of voids and a functional material. As shown in the schematic cross-sectional view shown in FIG. 1, the functional composite film 10 is a nanofiber reinforced functional composite film in which at least a part of voids formed in the nonwoven fabric 11 is filled with a functional material.
 不織布11は、複数の空隙を有し、機能性複合膜10における補強材としての役割を果たすものであれば特に限定されない。また、不織布11の膜厚は、1μm~500μmであると好ましく、さらに5μm~200μmであるとより好ましい。不織布11の膜厚がこの範囲内であると、電気化学素子の小型化薄膜化に対応することが出来ると共に、強度、膜抵抗、及び耐久性の均一性が高い複合膜とすることが可能となる。 The nonwoven fabric 11 is not particularly limited as long as it has a plurality of voids and serves as a reinforcing material in the functional composite film 10. The film thickness of the nonwoven fabric 11 is preferably 1 μm to 500 μm, and more preferably 5 μm to 200 μm. When the film thickness of the nonwoven fabric 11 is within this range, it is possible to cope with downsizing and thinning of the electrochemical element, and to make a composite film having high uniformity in strength, film resistance, and durability. Become.
 さらに、不織布11の気孔率は、得られる機能性複合膜10の膜抵抗、強度の観点から、40~98%であると好ましく、さらに65~95%であるとより好ましい。 Furthermore, the porosity of the nonwoven fabric 11 is preferably 40 to 98%, more preferably 65 to 95%, from the viewpoint of the film resistance and strength of the functional composite film 10 to be obtained.
 不織布11は、それを構成する材料は特に限定されず、例えば、オレフィン系樹脂、エステル系樹脂、アミド系樹脂、イミド系樹脂、フェノール系樹脂、アクリル系樹脂、スチレン系樹脂、フッ素樹脂、セルロース等の有機材料、金属、カーボン、無機化合物等の無機材料等から構成することができる。例えば得られる機能性複合膜10の強度、安定性の観点から、フッ素樹脂から形成されたフッ素樹脂不織布が好ましい。フッ素樹脂不織布の平均繊維径は、フッ素樹脂の種類にもよるが、10~2000nmであることが好ましく、50~1200nmであるとより好ましい。一方、平均繊維径が5000nmより大きくなると、その繊維径が大きい繊維により機能性複合膜10のイオン交換(透過)機能が阻害されるおそれがある。ここで、平均繊維径は、測定対象となる不織布について、無作為に走査型電子顕微鏡(SEM)観察する領域を特定し、この領域をSEM観察(倍率:10000倍)して無作為に、例えば10本の繊維を選び出し、当該繊維の繊維径を測定器具に用いてそれぞれ測定することにより、算出した値である。また、不織布11がポリテトラフルオロエチレンからなる場合、得られる複合膜の強度、安定性、高機能性の観点から、平均繊維径は400~2000nmであることが好ましく、さらに600~1200nmであることが好ましい。 The material which comprises the nonwoven fabric 11 is not specifically limited, For example, olefin resin, ester resin, amide resin, imide resin, phenol resin, acrylic resin, styrene resin, fluorine resin, cellulose, etc. It can be composed of inorganic materials such as organic materials, metals, carbon, and inorganic compounds. For example, from the viewpoint of strength and stability of the functional composite film 10 to be obtained, a fluororesin nonwoven fabric formed from a fluororesin is preferable. The average fiber diameter of the fluororesin nonwoven fabric is preferably 10 to 2000 nm, more preferably 50 to 1200 nm, although it depends on the type of fluororesin. On the other hand, when the average fiber diameter is larger than 5000 nm, the ion exchange (permeation) function of the functional composite membrane 10 may be hindered by fibers having a large fiber diameter. Here, the average fiber diameter is determined by randomly specifying a region to be observed with a scanning electron microscope (SEM) on the nonwoven fabric to be measured, and this region is randomly observed by SEM observation (magnification: 10,000 times), for example, It is a value calculated by selecting ten fibers and measuring the fiber diameter of the fibers using a measuring instrument. When the nonwoven fabric 11 is made of polytetrafluoroethylene, the average fiber diameter is preferably 400 to 2000 nm, and more preferably 600 to 1200 nm, from the viewpoint of the strength, stability, and high functionality of the resulting composite membrane. Is preferred.
 また、繊維の断面形状としては特に制限はなく、円形状、楕円状、扁平状、多角形状等の断面形状を有する繊維を用いることができるが、機能性複合膜10の強度、特性の均一性の観点からは、円形状であると好ましい。 In addition, the cross-sectional shape of the fiber is not particularly limited, and fibers having a cross-sectional shape such as a circular shape, an elliptical shape, a flat shape, and a polygonal shape can be used. However, the strength and uniformity of characteristics of the functional composite film 10 can be used. From this point of view, a circular shape is preferable.
 尚、前記フッ素樹脂繊維を構成するフッ素樹脂としては、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリパーフルオロアルキルビニルエーテル、ポリクロロトリフルオロエチレン、ポリテトラフルオロエチレンなどが挙げられる。また、これらの共重合体や、複数のフッ素樹脂からなるポリマーブレンドを用いてもよい。これらのフッ素樹脂の中でも、ポリテトラフルオロエチレンからなるフッ素樹脂が、製造時及び得られる複合膜の耐熱性、長期安定性、化学的耐久性の面で好ましい。 The fluororesin constituting the fluororesin fiber includes polyvinylidene fluoride, polyhexafluoropropylene, polyperfluoroalkyl vinyl ether, polychlorotrifluoroethylene, polytetrafluoroethylene, and the like. Moreover, you may use the polymer blend which consists of these copolymers and several fluororesin. Among these fluororesins, a fluororesin composed of polytetrafluoroethylene is preferable in terms of heat resistance, long-term stability, and chemical durability of the obtained composite film.
 また、上述した不織布は、公知の繊維製造方法により形成することができ、例えば、電界紡糸法によって、形成されることにより、断面形状が円形状で、且つ平均繊維径が小さい繊維を乾式で製造・(水圧等の荷重を大きくかけることなく)堆積させることができると共に、高い気孔率を有する不織布を製造出来るため好ましい。ここで、電界紡糸法は、繊維の構成材料及び必要に応じ溶媒や添加剤を含む紡糸溶液を、高電圧をかけた噴射口から射出することによって、静電引力により繊維化させながらコレクターに集積し、繊維及び繊維を集積させた不織布を得る方法である。例えばポリテトラフルオロエチレンからなる繊維を製造する場合、特開昭51-60773号公報、及び特開2012-515850号公報に開示された紡糸法である。具体的には、繊維化するポリマー及びポリテトラフルオロエチレンを溶媒に分散・溶解させて、紡糸液を作成する。当該紡糸液を、帯電させた針状容器に供給する。ここで、当該針状容器から所定の距離離間した位置に標的を設置し、標的を接地する。そして、紡糸液が、当該針状容器から、標的に静電的に引き寄せられることにより、フッ素樹脂繊維が生成され、当該フッ素樹脂繊維を集積し、形成したフッ素樹脂不織布前駆体を280℃~500℃にて加熱焼成処理することにより繊維化するポリマー、及び溶媒を除去することで、ポリテトラフルオロエチレンのみからなるフッ素樹脂不織布が形成される。 Further, the above-described nonwoven fabric can be formed by a known fiber manufacturing method. For example, by forming by an electrospinning method, a fiber having a circular cross section and a small average fiber diameter is manufactured by a dry method. -It is preferable because it can be deposited (without applying a large load such as water pressure) and a non-woven fabric having a high porosity can be produced. Here, in the electrospinning method, a spinning solution containing a fiber constituent material and, if necessary, a solvent and an additive is ejected from an injection port to which high voltage is applied, and is collected into a collector while being fiberized by electrostatic attraction. In this method, fibers and a nonwoven fabric in which the fibers are accumulated are obtained. For example, when producing fibers made of polytetrafluoroethylene, the spinning method disclosed in JP-A-51-60773 and JP-A-2012-515850 is used. Specifically, a spinning solution is prepared by dispersing and dissolving a polymer to be fiberized and polytetrafluoroethylene in a solvent. The spinning solution is supplied to a charged needle container. Here, the target is placed at a position separated from the needle-like container by a predetermined distance, and the target is grounded. Then, the spinning solution is electrostatically attracted from the needle-like container to the target to generate fluororesin fibers. The fluororesin fibers are accumulated, and the formed fluororesin nonwoven precursor is 280 ° C. to 500 ° C. A fluororesin nonwoven fabric made of only polytetrafluoroethylene is formed by removing the polymer and the fiber that are formed by heating and baking at ° C.
 機能性材料としては、不織布11に充填・含浸されることにより機能を発揮できる材料であれば特に限定されず、電気伝導性材料、光透過性材料、イオン交換材料(アニオン交換材料、カチオン交換材料)、触媒材料(化学反応触媒、光触媒等)、吸着材料(ガス吸着材料、金属吸着材料等)、表面改質材料(親水化材料、撥油性材料等)、断熱性材料、補強材料等を用いることができる。本実施形態では、機能性材料としてイオン交換材料12を用いる実施形態について説明する。イオン交換材料12は、イオン交換基を有する材料であればよく、公知の有機材料(熱可塑性イオン伝導性樹脂、熱硬化性イオン伝導性樹脂前駆体等)、無機材料(イオン伝導性金属化合物等)、イオン性液体、有機無機複合材料を用いることができ、また複数のイオン交換材料を用いても良く、必要によりバインダー樹脂等の添加物を混合しても良い。これらイオン交換材料の中でも、機能性複合膜の柔軟性の観点から、有機材料からなるイオン交換材料であることが好ましく、さらに機能性複合膜の耐久性の観点から、パーフルオロカーボンスルホン酸樹脂であることがより好ましい。市販されているパーフルオロカーボンスルホン酸樹脂としては、例えば次式の構造を有するNafion(登録商標、E. I. du Pont de Nemours and Company社製、以下省略する)や、Aquivion(登録商標、Solvay Solexis社製、以下省略する)を用いることができる。 The functional material is not particularly limited as long as it is a material that can exhibit its function by being filled and impregnated into the nonwoven fabric 11, and is an electrically conductive material, a light transmissive material, an ion exchange material (anion exchange material, cation exchange material). ), Catalytic materials (chemical reaction catalysts, photocatalysts, etc.), adsorbing materials (gas adsorbing materials, metal adsorbing materials, etc.), surface modifying materials (hydrophilic materials, oil repellent materials, etc.), heat insulating materials, reinforcing materials, etc. be able to. In this embodiment, an embodiment using the ion exchange material 12 as a functional material will be described. The ion exchange material 12 may be any material having an ion exchange group, such as a known organic material (thermoplastic ion conductive resin, thermosetting ion conductive resin precursor, etc.), inorganic material (ion conductive metal compound, etc.). ), An ionic liquid, and an organic-inorganic composite material may be used, and a plurality of ion exchange materials may be used. If necessary, additives such as a binder resin may be mixed. Among these ion exchange materials, an ion exchange material made of an organic material is preferable from the viewpoint of flexibility of the functional composite membrane, and a perfluorocarbon sulfonic acid resin is preferable from the viewpoint of durability of the functional composite membrane. It is more preferable. Examples of commercially available perfluorocarbon sulfonic acid resins include Nafion (registered trademark, manufactured by E. I. du Pont de Nemours and Company, hereinafter omitted) having a structure of the following formula, Aquivion (registered trademark, Solvay Solexis) Can be used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中、a:b=1:1~9:1、n=0,1,2である。 In the formula, a: b = 1: 1 to 9: 1 and n = 0, 1, 2.
 また、イオン交換材料12は、単体で不織布11と複合化してもよく、溶媒に分散若しくは溶解して不織布11と複合化してもよい。複合化方法としては、公知の方法を用いることができるが、例えばイオン交換材料12単体、又は分散若しくは溶解した溶液中に、不織布11を浸漬・含浸させる方法や、不織布11にイオン交換材料12単体、又は分散若しくは溶解した溶液を塗布・付着させることにより、イオン交換材料12が、不織布11の細孔内に含浸される。尚、複合化工程においては、必要に応じて加熱乾燥処理を行っても良く、電子線等の電離性放射線照射処理や架橋剤を用いた化学的処理を行っても良い。 Further, the ion exchange material 12 may be combined with the nonwoven fabric 11 alone, or may be combined with the nonwoven fabric 11 by being dispersed or dissolved in a solvent. As a composite method, a known method can be used. For example, the ion exchange material 12 alone, a method of immersing and impregnating the nonwoven fabric 11 in a dispersed or dissolved solution, or the nonwoven fabric 11 with the ion exchange material 12 alone. Alternatively, the ion exchange material 12 is impregnated in the pores of the nonwoven fabric 11 by applying or adhering a dispersed or dissolved solution. In the compounding step, heat drying treatment may be performed as necessary, or ionizing radiation irradiation treatment such as an electron beam or chemical treatment using a crosslinking agent may be performed.
 次に、機能性複合膜10の製造方法について、以下説明する。 Next, a method for manufacturing the functional composite film 10 will be described below.
 先ず、電界紡糸法により不織布11を形成する(以下、不織布形成工程という)。具体的には、不織布11がポリテトラフルオロエチレンからなるフッ素樹脂不織布である場合、ポリテトラフルオロエチレン及びポリエチレンオキサイド等の繊維形成剤を溶媒である水に分散・溶解させ、紡糸液を作成する。次に、当該紡糸液を、帯電させた針状容器に供給する。ここで、当該針状容器から所定の距離離間した位置に針状容器とは逆の電荷を帯電させた標的が設置されており、また標的が接地される。さらに標的上に図2に示す基材シート13(SUS304、板厚=50μm)が設置される。 First, the nonwoven fabric 11 is formed by an electrospinning method (hereinafter referred to as a nonwoven fabric forming step). Specifically, when the nonwoven fabric 11 is a fluororesin nonwoven fabric made of polytetrafluoroethylene, a fiber forming agent such as polytetrafluoroethylene and polyethylene oxide is dispersed and dissolved in water as a solvent to create a spinning solution. Next, the spinning solution is supplied to a charged needle-like container. Here, a target charged with a charge opposite to that of the needle-shaped container is installed at a position spaced apart from the needle-shaped container by a predetermined distance, and the target is grounded. Further, a base sheet 13 (SUS304, plate thickness = 50 μm) shown in FIG. 2 is placed on the target.
 ここで、基材シート13は、シート状に形成され、その材質及び形状については、基材シート13を電極上に設置して、電界紡糸法により不織布11が形成できれば、特に限定されない。基材シート13の材質としては、例えば銅、ニッケル、アルミニウム、鉄、チタン、マグネシウム、モリブテン、クロム等の金属及びこれらの金属を含む合金(SUS301、SUS302、SUS304、SUS310等のステンレス材料等)からなる無機材料や、ポリオレフィン樹脂、フッ素樹脂、ポリピロール、ポリチオフェン、ポリアニリン等の有機材料や、無機材料と有機材料の複合材料等を用いることができる。基材シート13の形状としては、例えばフィルム、シート、薄膜等の非多孔質膜形状や、織布、不織布、メッシュ、発泡シート等の多孔質シート形状とすることができる。また、基材シート13は、電界紡糸法による繊維の製造安定性の観点から、導電性であることが好ましく、具体的には、電気抵抗率10Ω・m以下である材料からなることが好ましく、10Ω・m以下であることがより好ましく、さらに10-5Ω・m以下であることが好ましい。 Here, the base material sheet 13 is formed in a sheet shape, and the material and shape thereof are not particularly limited as long as the base material sheet 13 is placed on the electrode and the nonwoven fabric 11 can be formed by the electrospinning method. As a material of the base sheet 13, for example, a metal such as copper, nickel, aluminum, iron, titanium, magnesium, molybdenum, and chromium and an alloy containing these metals (SUS301, SUS302, SUS304, stainless steel such as SUS310) are used. An inorganic material, an organic material such as polyolefin resin, fluororesin, polypyrrole, polythiophene, polyaniline, a composite material of an inorganic material and an organic material, or the like can be used. As a shape of the base material sheet 13, it can be set as non-porous film shapes, such as a film, a sheet | seat, a thin film, and porous sheet shapes, such as a woven fabric, a nonwoven fabric, a mesh, and a foam sheet, for example. In addition, the base sheet 13 is preferably conductive from the viewpoint of the production stability of the fiber by the electrospinning method, and specifically, it may be made of a material having an electrical resistivity of 10 8 Ω · m or less. Preferably, it is 10 3 Ω · m or less, more preferably 10 −5 Ω · m or less.
 さらに、基材シート13は、不織布形成工程及び複合化工程における加熱処理の観点から、少なくとも200℃以上の加熱に耐えうる耐熱性を有することが好ましく、さらに500℃以上の耐熱性を有することが特に好ましい。また、基材シート13は比熱の小さい材料から形成されると好ましく、例えばアルミニウム、銅、ステンレス等から形成された金属箔が挙げられる。さらに、基材シート13は、非多孔質材料であって、その表面が滑らかな面に成形されているとより好ましい。また、基材シート13は、耐薬品性等を有するとより好ましい。 Furthermore, it is preferable that the base material sheet 13 has heat resistance which can endure the heating of 200 degreeC or more from the viewpoint of the heat processing in a nonwoven fabric formation process and a composite process, and also has heat resistance of 500 degreeC or more. Particularly preferred. Moreover, it is preferable that the base material sheet 13 is formed from a material with small specific heat, for example, the metal foil formed from aluminum, copper, stainless steel etc. is mentioned. Furthermore, it is more preferable that the base sheet 13 is a non-porous material and the surface thereof is formed into a smooth surface. Moreover, it is more preferable that the base sheet 13 has chemical resistance and the like.
 そして、紡糸液が、当該針状容器から、その上面に基材シート13が設置された標的に対し、静電的に引き寄せられることにより、所望の平均繊維径を有する繊維が基材シート13上に生成される(本実施形態の平均繊維径は、300~5000nmである)。さらに、生成された繊維を集積し形成した不織布前駆体を、必要に応じて30~500℃の温度にて加熱・焼成処理することにより、不織布11が形成される。このように形成された不織布11は基材シート13上に付着した状態となるため、接着剤等を用いて、不織布11を基材シート13に別途接着しなくとも、以下の各製造工程間の移送作業中に剥離することを抑制できる。尚、不織布11は、延伸膜に見られるMD方向、又はTD方向といった異方性を有しないよう製造することが好ましい。 Then, the spinning solution is electrostatically attracted from the needle-like container to the target on which the base sheet 13 is installed, so that fibers having a desired average fiber diameter are formed on the base sheet 13. (The average fiber diameter in this embodiment is 300 to 5000 nm). Further, the nonwoven fabric 11 is formed by heating and baking the nonwoven fabric precursor formed by accumulating the generated fibers at a temperature of 30 to 500 ° C. as necessary. Since the nonwoven fabric 11 formed in this manner is in a state of adhering onto the base sheet 13, it is possible to perform the following manufacturing steps without separately bonding the nonwoven fabric 11 to the base sheet 13 using an adhesive or the like. It is possible to suppress peeling during the transfer operation. In addition, it is preferable to manufacture the nonwoven fabric 11 so that it may not have anisotropy such as MD direction or TD direction seen in a stretched film.
 次に、不織布11とイオン交換材料12とを、複合化させる(以下、複合化工程という)。例えば含浸法により複合化する場合、先ずイオン交換材料12である、Nafionを溶媒に溶解することにより、イオン交換材料溶液を作製する。そして、不織布11を、基材シート13上で形成された状態のまま、作製したイオン交換材料溶液内に浸し、1分~24時間静置する。複合化工程において、不織布11の内部の空隙へのイオン交換材料12等の機能性材料の含浸量は、得られる機能性複合膜10の用途によって適宜調整することができるため、例えば不織布11の繊維表面に薄くコーティングするよう複合化してもよく、また不織布11の内部全体に充填するよう複合化してもよい。当該機能性材料の含浸量は、機能性材料の溶液(濃度・粘度)や、含浸(複合化)時間を調整することにより、制御することができる。ここで、基材シート13が、非多孔質材料であって、その表面が滑らかな面に成形されていることにより、イオン交換材料12が基材シート13内に含浸し難いため、イオン交換材料12の損失を低減することができる。 Next, the nonwoven fabric 11 and the ion exchange material 12 are combined (hereinafter referred to as a combining step). For example, when compounding by the impregnation method, first, an ion exchange material solution is prepared by dissolving Nafion, which is the ion exchange material 12, in a solvent. Then, the nonwoven fabric 11 is immersed in the produced ion exchange material solution while being formed on the base sheet 13, and is allowed to stand for 1 minute to 24 hours. In the compounding step, the amount of impregnation of the functional material such as the ion exchange material 12 into the voids inside the nonwoven fabric 11 can be appropriately adjusted depending on the use of the functional composite membrane 10 to be obtained. It may be combined so that the surface is thinly coated, or may be combined so that the entire inside of the nonwoven fabric 11 is filled. The amount of impregnation of the functional material can be controlled by adjusting the solution (concentration / viscosity) of the functional material and the impregnation (composite) time. Here, since the base sheet 13 is a non-porous material and the surface thereof is formed into a smooth surface, the ion exchange material 12 is difficult to be impregnated in the base sheet 13. 12 losses can be reduced.
 上述した複合化工程において、不織布11が撥液性を有するものであれば、イオン交換材料溶液に浸したとしても、イオン交換材料12が不織布11内部の空隙に目的とする量が充填できない場合がある。このような場合、イオン交換材料溶液との複合化工程前に、不織布11を、プロパノール、メチルアルコール、アセトン、ジエチルエーテル等の有機溶媒に一旦含浸させることにより、フッ素樹脂の細孔内にイオン交換材料溶液が均一に浸透し易くなるよう処理しておくことが好ましい。 In the composite step described above, if the nonwoven fabric 11 has liquid repellency, the ion exchange material 12 may not be able to fill the voids inside the nonwoven fabric 11 with a desired amount even if it is immersed in the ion exchange material solution. is there. In such a case, the non-woven fabric 11 is once impregnated with an organic solvent such as propanol, methyl alcohol, acetone, diethyl ether or the like before the compounding step with the ion exchange material solution, whereby ion exchange is performed in the pores of the fluororesin. It is preferable to treat the material solution so as to easily penetrate uniformly.
 イオン交換材料溶液内に一定時間静置された不織布11を、イオン交換材料溶液内から取りだし、30~250℃環境下で1分~24時間溶媒を蒸発除去させる(以下、乾燥工程という)。乾燥工程は、単一の温度で行ってもよく、異なる温度環境下で段階的に乾燥させてもよい。また必要に応じて、減圧又は加圧環境下にて乾燥させてもよい。ここで、基材シート13が、少なくとも200℃以上の加熱に耐えうる耐熱性に加え、さらに比熱の小さい材料から形成されていることにより、加熱による温度上昇が早いため、不織布11及び機能性複合膜10から短時間で、且つ乾燥ムラ無く、余分な溶媒等を除去することが出来る。尚、不織布11は、基材シート13上に付着した状態にあるため、乾燥工程において不織布11の内部空隙からの余分な溶剤が蒸発する際に、溶媒と不織布11間の表面張力によって、シワや歪みが生じにくい。 The non-woven fabric 11 that has been allowed to stand in the ion exchange material solution for a certain period of time is taken out from the ion exchange material solution, and the solvent is evaporated and removed in an environment of 30 to 250 ° C. for 1 minute to 24 hours (hereinafter referred to as a drying step). The drying process may be performed at a single temperature or may be dried stepwise under different temperature environments. Moreover, you may make it dry in pressure reduction or a pressurization environment as needed. Here, since the base sheet 13 is made of a material having a small specific heat in addition to heat resistance that can withstand at least 200 ° C. or more, the temperature rise due to heating is quick, so the nonwoven fabric 11 and the functional composite Excess solvent and the like can be removed from the film 10 in a short time and without drying unevenness. In addition, since the nonwoven fabric 11 exists in the state adhering on the base material sheet 13, when the excess solvent from the internal space | gap of the nonwoven fabric 11 evaporates in a drying process, it is wrinkled by surface tension between a solvent and the nonwoven fabric 11. Distortion is unlikely to occur.
 この乾燥工程後、イオン交換材料12が不織布11内部の空隙に目的とする量が充填できているか否かを確認し、イオン交換材料12が不織布11内に目的とする量が充填できていないと判断した場合には、上述した複合化工程及び乾燥工程を繰り返しても良い。尚、イオン交換材料12の充填具合から判断して、上述した複合化工程及び乾燥工程と同一条件又は異なる条件で繰り返す。また複合化工程毎に、異なる機能性材料を用いてもよい。 After this drying process, it is confirmed whether or not the ion exchange material 12 can fill the voids inside the nonwoven fabric 11 with the target amount, and the ion exchange material 12 cannot fill the nonwoven fabric 11 with the target amount. If determined, the above-described compounding step and drying step may be repeated. In addition, it judges from the filling condition of the ion exchange material 12, and repeats on the same conditions or different conditions from the compounding process and drying process mentioned above. Moreover, you may use a different functional material for every compounding process.
 乾燥工程を実施した後、機能性複合膜10から基材シート13を剥離する(以下、剥離工程という)。基材シート13が、非多孔質材料であって、その表面が滑らかな面に成形されているため、機能性複合膜10から基材シート13を剥離する際に、機能性複合膜10が変形、又は破損のリスクを軽減することができる。 After performing the drying step, the base sheet 13 is peeled from the functional composite film 10 (hereinafter referred to as a peeling step). Since the base sheet 13 is a non-porous material and has a smooth surface, the functional composite film 10 is deformed when the base sheet 13 is peeled off from the functional composite film 10. Or the risk of breakage can be reduced.
 また、機能性複合膜10から基材シート13を剥離する前の状態で、機能性複合膜10が基材シート13に貼り付いた状態のまま、ロール状に巻回し、持ち運ぶことができる。機能性複合膜10が基材シート13に貼り付いた状態にあるため、トラック等の輸送時に機能性複合膜10の破損等や、巻回された機能性複合膜10同士の接着等のリスクを低減することができる。 Further, before the base sheet 13 is peeled from the functional composite film 10, the functional composite film 10 can be wound and carried in a roll shape with the functional composite film 10 attached to the base sheet 13. Since the functional composite film 10 is attached to the base sheet 13, there is a risk of damage to the functional composite film 10 during transportation of a truck or the like, and adhesion between the wound functional composite films 10. Can be reduced.
 本発明の機能性複合膜10の製造方法は、基材シート13上に載置された状態のまま複合化し、機能性複合膜10が生成されることにより、各製造工程において安定した状態で取り扱われるため、機能性複合膜10に変形や破損が生じにくく、より膜厚の薄い機能性複合膜10を生成することが可能となる。このような薄膜の薄い機能性複合膜10を生成することができる製造方法は、薄膜化が求められている電気化学素子用複合膜の製造方法として特に好適に利用することができ、例えば厚さ1μm以上50μmの不織布11とイオン交換材料12とからなる機能性複合膜10を簡便に製造することが可能となる。 The manufacturing method of the functional composite film 10 of the present invention is handled in a stable state in each manufacturing process by forming the functional composite film 10 while being composited while being placed on the base sheet 13. Therefore, the functional composite film 10 is unlikely to be deformed or damaged, and the functional composite film 10 having a thinner film thickness can be generated. The manufacturing method capable of producing such a thin functional composite film 10 can be particularly preferably used as a method for manufacturing a composite film for an electrochemical device that is required to be thin. It becomes possible to easily manufacture the functional composite membrane 10 composed of the non-woven fabric 11 having a size of 1 μm or more and 50 μm and the ion exchange material 12.
 本発明の機能性複合膜10の製造方法は、電界紡糸法により形成された不織布11が基材シート13上に付着した状態となるため、接着剤等を用いて、不織布11を基材シート13に別途接着しなくとも、各製造工程間の移送作業中に剥離することがない。 In the method for producing the functional composite film 10 of the present invention, since the nonwoven fabric 11 formed by the electrospinning method is attached to the base sheet 13, the nonwoven fabric 11 is bonded to the base sheet 13 using an adhesive or the like. Even if they are not separately bonded to each other, they are not peeled off during the transfer operation between the manufacturing steps.
 また、本発明の機能性複合膜10の製造方法は、基材シート13上で機能性複合膜10を形成した状態で、巻回することにより、より容易に持ち運ぶことができる。即ち、機能性複合膜10が基材シート13に貼り付いた状態にあるため、トラック等の輸送時に機能性複合膜10の破損等のリスクを低減することができる。 Moreover, the method for producing the functional composite film 10 of the present invention can be carried more easily by winding the functional composite film 10 on the base sheet 13 while being wound. That is, since the functional composite film 10 is attached to the base sheet 13, the risk of damage to the functional composite film 10 during transportation of a truck or the like can be reduced.
 本発明の機能性複合膜10の製造方法は、基材シート13が導電性を有すると共に、少なくとも200℃の耐熱性を有し、非多孔質材料であることにより、各製造工程における耐久性を有し、複合化工程の際、機能性材料が基材シート13内に含浸しにくく、機能性材料のロスを低減することが可能となる。また複合化工程の際、機能性材料が基材シート13内に含浸しにくいことにより、その後の剥離工程の際、基材シート13は機能性複合膜10から剥離し易くなる。 The manufacturing method of the functional composite film 10 of the present invention is such that the base sheet 13 has conductivity and heat resistance of at least 200 ° C., and is a non-porous material. In the composite step, the functional material is less likely to be impregnated into the base sheet 13 and the loss of the functional material can be reduced. In addition, since the functional material is less likely to be impregnated into the base sheet 13 during the composite process, the base sheet 13 is easily peeled from the functional composite film 10 during the subsequent peeling process.
 本発明の機能性複合膜10の製造方法は、基材シート13が比熱の小さい材料から形成されることにより、加熱による温度上昇が早いため、不織布11及び機能性複合膜10から短時間で、且つ乾燥ムラ無く、不要な溶媒等を除去することが出来る。 In the method for producing the functional composite film 10 of the present invention, since the base sheet 13 is formed of a material having a small specific heat, the temperature rise due to heating is fast, so the nonwoven fabric 11 and the functional composite film 10 can be quickly produced. In addition, unnecessary solvents and the like can be removed without drying unevenness.
 〔実施形態の変形例等〕
 本明細書開示の発明は、各発明や実施形態の構成の他に、適用可能な範囲で、これらの部分的な構成を本明細書開示の他の構成に変更して特定したもの、或いはこれらの構成に本明細書開示の他の構成を付加して特定したもの、或いはこれらの部分的な構成を部分的な作用効果が得られる限度で削除して特定した上位概念化したものを含み、下記の変形例等も包含する。
[Modifications of Embodiment, etc.]
In addition to the configurations of the inventions and embodiments, the invention disclosed in the present specification is specified by changing these partial configurations to other configurations disclosed in the present specification within the applicable range, or these Including those specified by adding other configurations disclosed in this specification, or those obtained by deleting these partial configurations to the extent that partial effects can be obtained, These modifications are also included.
 本実施形態の機能性複合膜10の製造方法は、光学膜部材、イオン伝導膜、触媒膜、吸着膜、透湿膜、フィルター膜、細胞培養膜、断熱膜の製造方法として利用することが可能であり、好適には燃料電池用電解質膜、二次電池のセパレータ、電気化学素子用イオン交換膜の製造方法として利用することが可能である。 The manufacturing method of the functional composite film 10 of this embodiment can be used as a manufacturing method of an optical film member, an ion conductive film, a catalyst film, an adsorption film, a moisture permeable film, a filter film, a cell culture film, and a heat insulating film. Preferably, it can be used as a method for producing an electrolyte membrane for a fuel cell, a separator for a secondary battery, and an ion exchange membrane for an electrochemical device.
10…機能性複合膜
11…不織布
12…イオン交換材料
13…基材シート
DESCRIPTION OF SYMBOLS 10 ... Functional composite film 11 ... Nonwoven fabric 12 ... Ion exchange material 13 ... Base material sheet

Claims (7)

  1.  紡糸材料を含む紡糸溶液から、電界紡糸法により、電極上に設置された基材シート上に繊維集積体からなる不織布を形成する不織布形成工程と、
     前記基材シート上に形成された前記不織布に対し、機能性材料を含む機能性材料溶液と接触させることにより、前記不織布内に機能性材料を充填し、機能性複合膜を生成する複合化工程と、
     を有することを特徴とする機能性複合膜の製造方法。
    A non-woven fabric forming step of forming a non-woven fabric composed of fiber aggregates on a substrate sheet placed on an electrode by an electrospinning method from a spinning solution containing a spinning material;
    A composite process for forming a functional composite film by filling a functional material in the nonwoven fabric by bringing the nonwoven fabric formed on the base sheet into contact with a functional material solution containing a functional material. When,
    A method for producing a functional composite film, comprising:
  2.  前記複合化工程により生成された機能性複合膜を加熱乾燥させる乾燥工程を有することを特徴とする請求項1に記載の機能性複合膜の製造方法。 The method for producing a functional composite film according to claim 1, further comprising a drying step of heating and drying the functional composite film generated by the composite step.
  3.  前記基材シートが、比熱の小さい材料から形成されることを特徴とする請求項2に記載の機能性複合膜の製造方法。 The method for producing a functional composite film according to claim 2, wherein the base sheet is formed of a material having a small specific heat.
  4.  前記複合化工程により生成された機能性複合膜から前記基材シートを剥離する剥離工程を有することを特徴とする請求項1~3の何れかに記載の機能性複合膜の製造方法。 The method for producing a functional composite film according to any one of claims 1 to 3, further comprising a peeling step of peeling the base sheet from the functional composite film generated by the composite step.
  5.  前記基材シートが、導電性を有すると共に、少なくとも200℃の耐熱性を有することを特徴とする請求項1~4の何れかに記載の機能性複合膜の製造方法。 The method for producing a functional composite film according to any one of claims 1 to 4, wherein the substrate sheet has conductivity and heat resistance of at least 200 ° C.
  6.  前記機能性材料が、イオン交換材料であることを特徴とする請求項1~5の何れかに記載の機能性複合膜の製造方法。 6. The method for producing a functional composite membrane according to claim 1, wherein the functional material is an ion exchange material.
  7.  前記不織布形成工程が、ポリテトラフルオロエチレン及び繊維形成剤を含む紡糸溶液から、電界紡糸法により、電極上に設置された基材シート上に繊維集積体からなる不織布前駆体を形成し、形成された前記不織布前駆体を加熱焼成処理することでポリテトラフルオロエチレンのみからなるフッ素樹脂不織布を形成する工程であることを特徴とする請求項1~6の何れかに記載の機能性複合膜の製造方法。 The non-woven fabric forming step is formed by forming a non-woven fabric precursor composed of fiber aggregates on a base material sheet placed on an electrode by an electrospinning method from a spinning solution containing polytetrafluoroethylene and a fiber forming agent. The process for producing a functional composite film according to any one of claims 1 to 6, wherein the nonwoven fabric precursor is heated and fired to form a fluororesin nonwoven fabric made of only polytetrafluoroethylene. Method.
PCT/JP2016/065323 2015-05-29 2016-05-24 Production method for functional composite film WO2016194707A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017521842A JPWO2016194707A1 (en) 2015-05-29 2016-05-24 Method for producing functional composite membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015110202 2015-05-29
JP2015-110202 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016194707A1 true WO2016194707A1 (en) 2016-12-08

Family

ID=57441202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065323 WO2016194707A1 (en) 2015-05-29 2016-05-24 Production method for functional composite film

Country Status (2)

Country Link
JP (1) JPWO2016194707A1 (en)
WO (1) WO2016194707A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017113884A (en) * 2015-12-21 2017-06-29 日本バイリーン株式会社 Method for producing reinforced resin sheet
CN109238934A (en) * 2018-10-15 2019-01-18 中煤科工集团重庆研究院有限公司 β ray attenuation method particulate matter concentration monitoring method and system considering filter membrane deformation
JP2020125556A (en) * 2019-02-05 2020-08-20 日本バイリーン株式会社 Nonwoven fabric and composite film with nonwoven fabric as support
JP2020528352A (en) * 2017-07-21 2020-09-24 メルク・ミリポア・リミテッド Non-woven fiber membrane
US11154821B2 (en) 2011-04-01 2021-10-26 Emd Millipore Corporation Nanofiber containing composite membrane structures
US12059644B2 (en) 2014-06-26 2024-08-13 Emd Millipore Corporation Filter structure with enhanced dirt holding capacity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023092A (en) * 2005-07-13 2007-02-01 National Institute Of Advanced Industrial & Technology Ion conductive diaphragm
JP2012515850A (en) * 2009-01-16 2012-07-12 ゼウス インダストリアル プロダクツ, インコーポレイテッド Electrospinning of PTFE containing high viscosity materials
WO2015059848A1 (en) * 2013-10-25 2015-04-30 パナソニックIpマネジメント株式会社 Fuel cell electrolyte membrane, method for manufacturing same, membrane electrode-bonded body, and fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023092A (en) * 2005-07-13 2007-02-01 National Institute Of Advanced Industrial & Technology Ion conductive diaphragm
JP2012515850A (en) * 2009-01-16 2012-07-12 ゼウス インダストリアル プロダクツ, インコーポレイテッド Electrospinning of PTFE containing high viscosity materials
WO2015059848A1 (en) * 2013-10-25 2015-04-30 パナソニックIpマネジメント株式会社 Fuel cell electrolyte membrane, method for manufacturing same, membrane electrode-bonded body, and fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11154821B2 (en) 2011-04-01 2021-10-26 Emd Millipore Corporation Nanofiber containing composite membrane structures
US12059644B2 (en) 2014-06-26 2024-08-13 Emd Millipore Corporation Filter structure with enhanced dirt holding capacity
JP2017113884A (en) * 2015-12-21 2017-06-29 日本バイリーン株式会社 Method for producing reinforced resin sheet
JP2020528352A (en) * 2017-07-21 2020-09-24 メルク・ミリポア・リミテッド Non-woven fiber membrane
JP7159308B2 (en) 2017-07-21 2022-10-24 メルク・ミリポア・リミテッド LATERAL FLOW DEVICE AND METHOD FOR DETECTING ANALYTE IN SAMPLE USING SAME
CN109238934A (en) * 2018-10-15 2019-01-18 中煤科工集团重庆研究院有限公司 β ray attenuation method particulate matter concentration monitoring method and system considering filter membrane deformation
JP2020125556A (en) * 2019-02-05 2020-08-20 日本バイリーン株式会社 Nonwoven fabric and composite film with nonwoven fabric as support
JP7296741B2 (en) 2019-02-05 2023-06-23 日本バイリーン株式会社 Nonwoven fabric and composite membrane comprising said nonwoven fabric as support

Also Published As

Publication number Publication date
JPWO2016194707A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
WO2016194707A1 (en) Production method for functional composite film
JP6910382B2 (en) Microporous web with self-supporting dimensional stability
JP5793666B1 (en) ELECTROLYTE MEMBRANE FOR FUEL CELL, METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL
Klose et al. Electrospun sulfonated poly (ether ketone) nanofibers as proton conductive reinforcement for durable Nafion composite membranes
US20150064602A1 (en) Polymer electrolyte membrane, a method for fabricating the same, and a membrane-electrode assembly including the same
JP6962319B2 (en) Gas diffusion electrode substrate, laminate and fuel cell
JP6086164B2 (en) Porous electrode substrate, membrane-electrode assembly using the same, and polymer electrolyte fuel cell using the same
JP2017500688A (en) Method of applying adhesive binder to separation membrane
EP3404757B1 (en) Metal-air battery including a gas diffusion layer and method of manufacturing the same
JP6868685B2 (en) Composite polymer electrolyte membrane
KR102552148B1 (en) Method for preparing positive electrode for lithium air battery, positive electrode for lithium air battery prepared using the same and lithium air battery including the same
CN112335083A (en) Polymer electrolyte membrane, method of manufacturing the same, and membrane electrode assembly including the same
JP2019114504A (en) Composite polymer electrolyte film
JP6471097B2 (en) Composite film for electrochemical devices
AU2021328758B2 (en) Composite electrolyte membrane
JP2016207514A (en) Electrolyte film for fuel cell and fuel cell using the same
JP2002313363A (en) Solid polymer electrolyte film and its manufacturing method
JP2009140657A (en) Electrode catalyst for fuel cell
CN117063315A (en) Electrode base material and method for producing same
WO2016194706A1 (en) Production method for functional composite film
JP2008204950A (en) Solid polymer fuel cell and its manufacturing method
US20190381434A1 (en) Carbon film manufacturing method and film manufacturing method
TW201011963A (en) Acidic nano-fiber/basic polymer used as composite proton exchange membrane and method for manufacturing the same
TW202340570A (en) Electroconductive porous material and method for producing electroconductive porous material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803142

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521842

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803142

Country of ref document: EP

Kind code of ref document: A1