TW201011963A - Acidic nano-fiber/basic polymer used as composite proton exchange membrane and method for manufacturing the same - Google Patents

Acidic nano-fiber/basic polymer used as composite proton exchange membrane and method for manufacturing the same Download PDF

Info

Publication number
TW201011963A
TW201011963A TW097133472A TW97133472A TW201011963A TW 201011963 A TW201011963 A TW 201011963A TW 097133472 A TW097133472 A TW 097133472A TW 97133472 A TW97133472 A TW 97133472A TW 201011963 A TW201011963 A TW 201011963A
Authority
TW
Taiwan
Prior art keywords
proton exchange
exchange membrane
composite proton
acidic
membrane
Prior art date
Application number
TW097133472A
Other languages
Chinese (zh)
Inventor
Leon Tzyy-Lung Yu
Hsiu-Li Lin
Chin-Tsung Chang
Chih-Chen Chiang
Shih-Hung Chan
Original Assignee
Univ Yuan Ze
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Yuan Ze filed Critical Univ Yuan Ze
Priority to TW097133472A priority Critical patent/TW201011963A/en
Publication of TW201011963A publication Critical patent/TW201011963A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

An acidic nano-fiber/basic polymer used as a composite proton exchange membrane and methods for manufacturing the same are provided. An acid nano-fiber membrane is provided as a matrix. A basic resin for proton exchange is then added to reinforce the acid nano-fiber membrane matrix.

Description

201011963 九、發明說明: 【發明所屬之技術領域】 本發明係關於質子交換膜及其製造方法。詳言之,本 發明係關於酸性奈米纖維/鹼性高分子之複合質子交換膜 及其製造方法。 【先前技術】 目前可在低溫(<100°C)操作之質子交換膜燃料電池, 大多使用石黃酸聚氟碳化物(perfluorosulfonic acid, PFSA) 質子交換薄膜來製作膜電極組,常用之質子交換薄膜為Du PontCo·生產之全氟磺酸樹脂(Nafion)。PFSA質子交換膜 的特性為高機械強度、高化學安定性、高分解溫度 (>280°C)、高離子傳導能力。然而,當PFSA質子交換膜 運用於曱醇燃料電池中時,燃料曱醇極易由陽極穿透薄膜 至陰極,使得發電效率顯著降低。再者,當燃料電池的操 作溫度高於l〇〇°C時,由於水份揮發,使得離子傳導率降 低並導致燃料電池發電效率不佳。此外,PFSA的價格非常 昂貴。 近年也有許多碳氫聚合物被開發使用於質子交換膜燃 料電池,例如聚苯並p米。坐(polybenzimidazole,PBI )、績酸 化聚芳醚醚酮I ( sulfonated polyarylether ether ketone, S-PEEK )、績酸化聚醚石風(sulfonated poly(ethersulfone), S-PES)、石黃酸化聚苯盼碟氮化物(sulfonatedpoly(phenoxy phosphazene))及其摻合物或改質衍生聚合物。 一般而言,欲提高燃料電池的發電功率,可提高質子 5 201011963 交換膜的離子傳導率,或者是降低質子交換薄膜的厚度以 減少離子傳導的阻抗(resistance)。然而,一般聚合物的機 械強度較低,因此製成質子交換膜時必須具備相當的膜厚 才會有足夠之支撐力。 ' 【發明内容】201011963 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a proton exchange membrane and a method of manufacturing the same. More specifically, the present invention relates to a composite proton exchange membrane of an acidic nanofiber/alkaline polymer and a method for producing the same. [Prior Art] Currently, proton exchange membrane fuel cells that can be operated at low temperatures (<100 °C) mostly use perfluorosulfonic acid (PFSA) proton exchange membranes to form membrane electrode sets, commonly used protons. The exchange membrane was a perfluorosulfonic acid resin (Nafion) manufactured by Du Pont Co. The properties of the PFSA proton exchange membrane are high mechanical strength, high chemical stability, high decomposition temperature (>280 °C), and high ion conductivity. However, when the PFSA proton exchange membrane is used in a methanol fuel cell, the fuel sterol is easily penetrated from the anode to the cathode, so that the power generation efficiency is remarkably lowered. Further, when the operating temperature of the fuel cell is higher than 10 °C, the ionic conductivity is lowered due to the evaporation of water and the fuel cell power generation efficiency is poor. In addition, the price of PFSA is very expensive. In recent years, many hydrocarbon polymers have also been developed for use in proton exchange membrane fuel cells, such as polybenzopyrene. Polybenzimidazole (PBI), sulfonated polyarylether ether ketone (S-PEEK), sulfonated poly(ethersulfone), S-PES, rheinated polyphenylene Sulfated poly(phenoxy phosphazene) and blends thereof or modified derived polymers. In general, to increase the power generation of a fuel cell, the ion conductivity of the exchange membrane of Proton 5 201011963 can be increased, or the thickness of the proton exchange membrane can be reduced to reduce the resistance of ion conduction. However, in general, polymers have low mechanical strength, so a proton exchange membrane must be made with a considerable film thickness to provide sufficient support. 'Content of the invention】

因此,本發明之一態樣提供一種酸性奈米纖維/鹼性高 分子之複合質子交換膜及其製備方法,該方法包含製備一 種酸性奈米纖㈣基材’以及利驗性樹脂來補強上述酸 性奈米纖維膜基材,其中上述驗性樹脂為高分子聚合物且 具有質子交換能力,藉以製備高機械強度、低膜厚之酸性 奈米纖維/鹼性高分子之複合質子交換膜。 本發明具體實施例中提出兩種酸性奈米纖維膜基材之 製備方法。兩種方法皆利用電紡絲(心——㈣)技術 製備高分子奈米纖維膜,以得到酸性奈米纖維膜基材,茲 將上述二方法分述如下。 酸性奈米纖維膜基材之第一種製備方法係利用電纺絲 技術製備局分子奈米纖維膜’再利用化學改質方法使上述 高分子奈米纖維膜帶有酸性官能基,其步驟如下.將一含 (N>N,_dimethyi acetami^ Ac中’以配製成電纺絲溶液’根據本發明之較佳實施 例’其重量百分濃度為約5%至約观之電紡絲溶液。接著, 利用電紡絲溶液進行電纺絲,以得到纖維膜基m 以酸化改質液浸潰纖維膜基材,纟中酸化改質液之重量湲 6 201011963 約24小時,以便將纖賴基㈣化而得賴性奈米纖維膜 基材。以去離子水沖洗該酸性奈米纖維膜基材,以 夕 餘之酸性分子。 ’夕 酸性奈米纖維膜基材之第二種製備方法係利用電纺絲 技術’將具有酸基之高分子材料製成酸性之高分子太米纖 維膜,其步驟如下:製備酸化之高分子材料,將高:;材 料加入酸化改質液中以使得高分子材料酸化,其中化 改質液之重量漢百分濃度為約5%至約99%,且隨著酸化改 質液之漢度以及進行改質之時間及溫度等條件不同,高分 子材料與該酸化改質液之重量比可為約1:1至約丨:⑺^ 接著,將蒸餾水以約1:1之體積比加入前述酸化改質液中, 以使酸化改質液中之酸化之高分子材料形成料粒子,並 過濾'出該’粒子。之後’ 錄子並乾燥 之。將上述乾燥之懸浮粒子溶於DMAc中,以配製重量百 分濃度約5%至約50%之電紡絲溶液。利用電紡絲溶液進行 電紡絲’以得到酸性奈米纖維膜基材。Therefore, one aspect of the present invention provides a composite proton exchange membrane of an acidic nanofiber/alkaline polymer and a preparation method thereof, the method comprising the steps of: preparing an acidic nanofiber (four) substrate and a repellent resin to reinforce the above The acidic nanofiber membrane substrate, wherein the above-mentioned test resin is a high molecular polymer and has proton exchange capacity, thereby preparing a composite proton exchange membrane of acidic nanofiber/basic polymer having high mechanical strength and low film thickness. In the specific embodiment of the present invention, a method of preparing two acidic nanofiber membrane substrates is proposed. Both methods utilize the electrospinning (heart-(4)) technique to prepare a polymer nanofiber membrane to obtain an acidic nanofiber membrane substrate. The above two methods are described below. The first preparation method of the acidic nanofiber membrane substrate is to prepare a local nanofiber membrane by electrospinning technology to re-use a chemical modification method to bring the above-mentioned polymer nanofiber membrane with an acidic functional group, and the steps are as follows An electrospinning solution containing (N>N, _dimethyi acetami^ Ac' to be formulated into an electrospinning solution according to a preferred embodiment of the invention having a weight percent concentration of from about 5% to about 5% Then, electrospinning is performed by using an electrospinning solution to obtain a fiber membrane base m, and the fiber membrane substrate is impregnated with an acidified modified liquid, and the weight of the acidified reforming liquid in the crucible is 湲6 201011963 for about 24 hours, so as to be Base (4) derived nanofiber membrane substrate. The acidic nanofiber membrane substrate is rinsed with deionized water to remove acidic molecules. The second preparation method of the organic acid nanofiber membrane substrate The electrospinning technology is used to make an acid-based polymer material into an acidic polymer rice fiber membrane, the steps of which are as follows: preparing an acidified polymer material, adding a high:; material into an acidified upgrading liquid to make Acidification of polymer materials, which is chemicalized The weight of the liquid is from about 5% to about 99%, and the weight of the polymer material and the acidified modifier is different depending on the acidity of the acidification solution and the time and temperature of the modification. The ratio may be from about 1:1 to about 丨: (7)^ Next, distilled water is added to the acidified upgrading solution in a volume ratio of about 1:1 to form an acidified polymer material in the acidification reforming liquid to form a particle. And filtering out the 'particles'. Then 'recorded and dried. The above dried suspension particles are dissolved in DMAc to prepare an electrospinning solution at a concentration of about 5% to about 50% by weight. The solution was electrospun 'to obtain an acidic nanofiber membrane substrate.

根據本具體實施例,酸性奈米纖維/鹼性高分子之複合 質子交換膜之製備方法如下:製備重量百分濃度約〇1%至 約30%之鹼性樹脂溶液,其係將具有質子交換能力之鹼性 樹脂溶於DMAc溶劑中。使鹼性樹脂溶液與利用上述方法 製造之酸性奈米纖維膜基材接觸,其中該酸性奈米纖維膜 基材具有多重孔隙以容納鹼性.樹脂溶液。最後,移除酸性 奈米纖維/鹼性高分子之複合質子交換膜中殘餘之DMAc溶 劑,即可得到酸性奈米纖維/鹼性高分子之複合質子交換 膜。 7 201011963 . 根據本發明之具體實施例製備而得之酸性奈米纖維/ 驗性高分子之複合質子交換膜包含酸性奈米纖維膜基材, 以及複數個鹼性樹脂’上述鹼性樹脂分布於酸性奈米纖維 媒基材之孔隙中’並利用鹼性樹脂之鹼性官能基與該酸性 不米纖維膜基材之酸性官能基結合,使得驗性樹脂可分布 於整個酸性奈米纖維/鹼性高分子之複合質子交換膜之中 而非僅存在於酸性奈米纖維/鹼性高分子之複合質子交換 琪之表面’以提高該酸性奈米纖維/鹼性高分子之複合質子 φ 交換膜之離子傳導率以及機械強度。 本發明之另一態樣提供一種膜電極組及其製備方法, 其係利用根據本發明上述具體實施例之酸性奈米纖維/鹼 性高分子之複合質子交換膜所製成。膜電極組包含陽極、 陰極以及上述酸性奈米纖維/鹼性高分子之複合質子交換 膜’其中酸性奈米纖維/驗性高分子之複合質子交換膜介於 陽極以及陰極之間。 ❹ 【實施方式】 為了降低質子交換膜之厚度並提高質子交換膜之機械 強度,本發明一態樣提出一種酸性奈米纖維/鹼性高分子之 複合質子交換膜及其製備方法。此外,本發明另一態樣提 出一種膜電極組及其製備方法,其係利用上述酸性奈米纖 維/鹼性高分子之複合質子交換膜所製成。 (1)酸性奈米纖維/鹼性高分子之複合質子交換膜及其製 備方法According to the specific embodiment, the composite proton exchange membrane of the acidic nanofiber/basic polymer is prepared by preparing an alkaline resin solution having a concentration by weight of about 1% to about 30%, which has a proton exchange. The basic resin of the ability is dissolved in the DMAc solvent. The alkaline resin solution is contacted with an acidic nanofiber membrane substrate produced by the above method, wherein the acidic nanofiber membrane substrate has multiple pores to accommodate the alkaline resin solution. Finally, the residual DMAc solvent in the composite proton exchange membrane of the acidic nanofiber/basic polymer is removed to obtain a composite proton exchange membrane of acidic nanofiber/basic polymer. 7 201011963. A composite proton exchange membrane of an acidic nanofiber/inspective polymer prepared according to a specific embodiment of the present invention comprises an acidic nanofiber membrane substrate, and a plurality of basic resins The acidic functional group of the acidic nanofiber medium substrate is combined with the acidic functional group of the acidic non-fiber fiber membrane substrate, so that the test resin can be distributed throughout the acidic nanofiber/alkali In the composite proton exchange membrane of a polymer, rather than only on the surface of a composite proton exchange of acidic nanofibers/alkaline polymers, to improve the composite proton φ exchange membrane of the acidic nanofiber/basic polymer Ionic conductivity and mechanical strength. Another aspect of the present invention provides a membrane electrode assembly and a method of producing the same, which are produced by using a composite proton exchange membrane of an acidic nanofiber/alkaline polymer according to the above specific embodiment of the present invention. The membrane electrode assembly comprises an anode, a cathode, and a composite proton exchange membrane of the above acidic nanofiber/alkaline polymer. The composite proton exchange membrane of the acidic nanofiber/initial polymer is interposed between the anode and the cathode.实施 [Embodiment] In order to reduce the thickness of the proton exchange membrane and increase the mechanical strength of the proton exchange membrane, the present invention provides a composite proton exchange membrane of an acidic nanofiber/alkaline polymer and a preparation method thereof. Further, another aspect of the present invention provides a membrane electrode assembly and a method for producing the same, which are produced by using the above-described acidic nanofiber/alkaline polymer composite proton exchange membrane. (1) Acid nanofiber/alkaline polymer composite proton exchange membrane and preparation method thereof

S 201011963 . 第1圖闡明根據本發明之具體實施例之一種酸性奈米 纖維/鹼性高分子之複合質子交換膜的剖面示意圖。酸性奈 米纖維/鹼性高分子之複合質子交換膜100包含酸性奈米纖 維膜102以及具有質子交換能力之鹼性樹脂1〇6。其中,酸 性奈米纖維膜102係由複數個纖維束1〇4所構成,並可作 為酸性奈米纖維/鹼性高分子之複合質子交換膜1〇〇之基 材。上述之鹼性樹脂106分布於纖維束1〇4所形成之孔隙 中,並利用鹼性樹脂1〇6之鹼性官能基與該酸性奈米纖維 • 膜基材ι〇2之酸性官能基結合,以提高酸性奈米纖維/鹼性 问刀子之複σ質子父換膜100之離子傳導率以及機械強度。 (1.1)酸性奈米纖維膜基材之製備方法 根據本發明之具體實施例,有兩種方法可利用電纺絲 技術製備高分子奈米纖維膜以得到酸性奈米纖維膜基材 102,茲將上述二方法分述如下。S 201011963. Fig. 1 is a schematic cross-sectional view showing a composite nanoporous membrane of an acidic nanofiber/alkaline polymer according to a specific embodiment of the present invention. The acidic nanofiber/basic polymer composite proton exchange membrane 100 comprises an acidic nanofiber membrane 102 and an alkali resin 1〇6 having proton exchange capacity. Among them, the acid nanofiber membrane 102 is composed of a plurality of fiber bundles 1〇4, and can be used as a base material of a composite nanoporous membrane of an acidic nanofiber/alkaline polymer. The above-mentioned basic resin 106 is distributed in the pores formed by the fiber bundles 1〇4, and is combined with the acidic functional groups of the acidic nanofibers/membrane substrate ι2 using the basic functional groups of the basic resin 1〇6. In order to improve the ionic conductivity and mechanical strength of the complex σ proton parent film 100 of the acidic nanofiber/alkaline knife. (1.1) Method for preparing acid nanofiber membrane substrate According to a specific embodiment of the present invention, there are two methods for preparing a polymer nanofiber membrane by electrospinning to obtain an acidic nanofiber membrane substrate 102. The above two methods are described as follows.

1·1·1)酸性奈米纖維膜基材之第—種製備方法 根據本發明—具體實施例,利用不具酸性官能基之高 分子材料進行電紡絲’以得到奈米纖維膜基材。接著,利 用酸化改質液來改質該奈米纖維膜基材,㈣㈣㈣ 性官能基之酸性奈米纖維膜基材 102。 本發明實施例中,電紡絲所用之電纺絲溶液中’高 二:材重量百分濃度為…%。此外,將纖維膜基 材改質時所用之酴 之酸化改質液中之酸可含有磺酸根 3、缓酸s (_C00H,請確認是竣酸)或填酸根 9 201011963 -〇P〇3H2)’且其重量百分濃度為約5-99%。而進行改質 之條件’可利用習知手段’隨著所選用之酸化改質液種類、 濃度之不同而力口以調整’例如反應時間可為@ 〇.5_24小時。 必須指出,雖然本實施例中係利用酸化改質液將 纖維媒基材酸化’本發明所述技術領域具有通常知識者當 I根據本發明之原理及精神而輕易想見,亦可利用其他二 备=學手&或化學反應,使得上述奈米纖維膜基材具有酸 性官能基。因而,各種此類變化及修飾,皆屬於本發明之 (1.1.2)酸性奈米纖維臈基材之第二種製備方法 根據本發明另一具體實施例,先以酸化改質液來改質 所用之高分子材肖,以形成帶有酸性官能基之高分子材 料。然後利用帶有酸性官能基之高分子材料進行電纺絲, 以得到酸性奈米纖維膜基材1G2。在本發明實施例中,電、纺1·1·1) First Preparation Method of Acid Nanofiber Membrane Substrate According to the present invention - a specific embodiment, electrospinning is carried out using a high molecular material having no acidic functional group to obtain a nanofiber membrane substrate. Next, the nanofiber membrane substrate is modified with an acidified upgrading liquid, and (4) (d) (iv) a functional functional acid nanofiber membrane substrate 102. In the embodiment of the present invention, the electrospinning solution used in the electrospinning has a concentration of ...% by weight of the material. In addition, the acid in the acidified upgrading solution used in the modification of the fiber membrane substrate may contain a sulfonate 3, a slow acid s (_C00H, please confirm that it is citric acid) or an acidate 9 201011963 - 〇P〇3H2) 'And its weight percent concentration is about 5-99%. The condition for the modification can be adjusted by the conventional means depending on the type and concentration of the acidified upgrading liquid to be used. For example, the reaction time can be @〇.5_24 hours. It should be noted that although in this embodiment, the fiber medium substrate is acidified by the acidification modifying liquid. The person skilled in the art of the present invention has a general knowledge. I can easily use the other principles according to the principle and spirit of the present invention. Preparation = learning hand & or chemical reaction, such that the above nanofiber membrane substrate has an acidic functional group. Therefore, various such variations and modifications are the second preparation method of the (1.1.2) acidic nanofiber enamel substrate of the present invention. According to another embodiment of the present invention, the acidified modified solution is first modified. The polymer material used is formed to form a polymer material having an acidic functional group. Then, electrospinning is carried out using a polymer material having an acidic functional group to obtain an acidic nanofiber membrane substrate 1G2. In the embodiment of the invention, electric, spinning

絲所用之電紡絲溶液中,酸性高分子材料的重量百分濃度 為約5 - 5 0 %。 上述兩種製備方法中所用之高分子材料可為聚芳趟驗 嗣(P〇ly(Aryl Ether Ether Ket〇ne),pEEK )、聚硬 (polysul W,PSU )、聚苯紛磷氮化物(p〇⑽^⑽ Phosphaz—)、聚苯乙烯(P〇lystyrene,ps)。上述酸性官 能基可為-SO#基團、-COOH基團或_OP〇3H2基團。 根據本發明上述具體實施例,酸性奈米纖維膜基材 之膜厚可為約5-70 μπι,在較佳情形甲可為約1〇_5〇叫^· 在更佳的情形中可為25-40 μηι。 ’ 201011963 . a須指出,雖然本實施例中係利用酸化改質液將高分 子材料酸化,本發明所述技術領域具有通常知識者當可根 據本發明之原理及精神而輕易想見,亦可利用其他適當化 學手段或化學反應,使得上述高分子材料具有酸性=能 基。因而,各種此類變化及修飾,皆屬於本發明之範圍。 0.2)酸性奈米纖維/鹼性高分子之複合質子交換膜之製備 φ 方法 根據本發明一具體實施例,提出酸性奈米纖維/鹼性高 分子之複合質子交換膜100之製備方法。例如以喷灑、塗 佈、網印、旋轉塗佈、刮刀塗佈或浸潰的方法,使鹼性樹 脂溶液與上述酸性奈米纖維膜基材1〇2相接觸,以使得鹼 性樹脂104和酸性奈米纖維膜基材ι〇2之纖維束ι〇4結合, 而得到酸性奈米纖維/鹼性高分子之複合質子交換膜1〇〇。 上述驗性樹脂溶液中所含之鹼性樹脂1〇4是具有質子 〇 交換能力之高分子聚合物’鹼性樹脂104可以是聚亞醯胺 (P〇lyimide )、聚葡萄胺糖(chitosan )、聚笨並味唾 (polybenzimidazole,PBI)、聚亞胺(polyimine)、聚笨胺 (polyaniline )、聚醢胺(p〇iyamide )、聚乙稀醇(p〇iyVinyi alcohol)或其他含有鹼性官能基支鏈之高分子聚合物。鹼 性樹脂104所含之鹼性官能基可為一級胺基團、二級胺基 . 團、三級胺基團或-OH基團。上述鹼性樹脂溶液之重量百 分濃度為約0.1-30% (第5頁寫0.1-30%)。 根據本發明另一具體實施例,可進一步將上述酸性奈 11 201011963 . 米纖維/鹼性高分子之複合質子交換膜100浸潰於酸液 (protonation solution )中。如此一來酸液中之酸性分子 可充滿於酸性奈米纖維/鹼性高分子之複合質子交換膜1〇〇 中之孔隙,以提高酸性奈米纖維/驗性高分子之複合質子交 換膜100之離子傳導度。上述酸液可為硫酸、硝酸、鹽酸 或磷酸溶液。 本發明上述實施例中所採用之電紡絲技術係藉由高電 位使高分子溶液或熔融體帶有噴射電荷,並將噴出之奈米 ® 纖維乾燥固化,所生成之纖維束104的直徑為約20〜200 nm。這些纖維束104交錯形成之酸性奈米纖維膜1〇2具有 尚孔洞性、高纖維表面積以及纖維表面富含酸性官能基等 特性。此外,這些纖維束可相互連接而形成網狀的纖維結 構,此種網狀結構本身即有助於提升酸性奈米纖維臈基材 之機械強度。 另一方面,由於酸性奈米纖維膜1〇2的纖維表面積較 大,利用含有鹼性官能基之鹼性樹脂溶液來補強酸性奈米 • ,纖維膜基材102時,驗性樹脂溶液中之驗性官能基和纖維 膜基材_之酸性官能基的接觸面積較大,可進一步提高酸 性奈米纖維媒基材與驗性樹月旨間之接合力。因此根據本發 明具體實施例製備之酸性奈米纖維/鹼性高分子之複合質 父換膜100,其膜厚雖僅有約5_7〇 μιη,但卻具有高機# 強度。 * 由於上述酸性奈米纖維/鹼性高分子之複合質子交換 . 膜ι〇0的臈厚小、機械強度高,可顯著降低其離子傳導阻 抗,因而將之運用於燃料電池之膜電極組中時,將可顯著 12 201011963 提升燃料電池之性能。 (1.3)酸性奈米纖維/鹼性高分子之複合質子交換膜之實例 此處將詳細說明根據上述本發明實施例,製備酸性奈 米纖維/驗性高分子之複合質子交換膜丨00之實例,以及所 製備之酸性奈米纖維/鹼性高分子之複合質子交換膜1〇〇的 成刀分析及膜厚。在下述實例中,首先分別利用上述兩種 方法製備酸性奈米纖維膜基材102,然後再將之製成酸性奈 © 米纖維/鹼性高分子之複合質子交換膜1 00〇 (1.3.1)實例1 :酸性奈米纖維膜基材之製備 本實例係彻電紡技術將高分子材料PSU製成PSU纖 維膜再將PSU纖維膜⑽化以製成雜化psu( s祕崎d P〇lysulw,s-PSU)纖維膜基材1〇2,,其製備方法如下: (a)將PSU溶於OMAc中,以晰制士壬旦 約斷電紡絲溶液;。中以配製成重量百分濃度In the electrospinning solution used for the yarn, the acid polymer material has a concentration by weight of about 5 - 50% by weight. The polymer materials used in the above two preparation methods may be P〇ly (Aryl Ether Ether Ket〇ne), pEEK), polysul W (PSU), polyphenylene phosphate nitride ( P〇(10)^(10) Phosphaz-), polystyrene (P〇lystyrene, ps). The above acidic functional group may be a -SO# group, a -COOH group or a _OP〇3H2 group. According to the above specific embodiment of the present invention, the film thickness of the acidic nanofiber membrane substrate may be about 5 to 70 μπι, and in a preferred case, it may be about 1 〇 _5 ^ ^ ^ · In a better case, 25-40 μηι. '201011963. a It should be noted that although in this embodiment, the acid material is acidified by acidification, the technical field of the present invention can be easily imagined according to the principle and spirit of the present invention. The above polymer material has an acidic = energy group by other suitable chemical means or chemical reaction. Accordingly, various such changes and modifications are within the scope of the invention. 0.2) Preparation of composite proton exchange membrane of acidic nanofiber/basic polymer φ method According to a specific embodiment of the present invention, a preparation method of a composite nanoparticle/basic high molecular composite proton exchange membrane 100 is proposed. For example, the alkaline resin solution is brought into contact with the above-mentioned acidic nanofiber membrane substrate 1〇2 by spraying, coating, screen printing, spin coating, blade coating or dipping to make the basic resin 104 The fiber bundle ι〇4 of the acidic nanofiber membrane substrate ι〇2 is combined to obtain a composite proton exchange membrane of acidic nanofiber/basic polymer. The basic resin 1〇4 contained in the above-mentioned test resin solution is a high molecular polymer having proton exchange capacity. The basic resin 104 may be polypyridylamine or chitosan. , polybenzimidazole (PBI), polyimine, polyaniline, p〇iyamide, p〇iyVinyi alcohol or others containing alkaline Functional polymer branched polymer. The basic functional group contained in the basic resin 104 may be a primary amine group, a secondary amine group, a tertiary amine group or an -OH group. The above basic resin solution has a weight concentration of about 0.1 to 30% (on page 5, 0.1 to 30%). According to another embodiment of the present invention, the above-mentioned acidic naphthalene/macropolymer composite proton exchange membrane 100 can be further immersed in a protonation solution. In this way, the acidic molecules in the acid solution can be filled in the pores of the composite proton exchange membrane of the acidic nanofiber/basic polymer to improve the composite proton exchange membrane 100 of the acidic nanofiber/initial polymer. Ion conductivity. The above acid solution may be a solution of sulfuric acid, nitric acid, hydrochloric acid or phosphoric acid. The electrospinning technique used in the above embodiments of the present invention causes the polymer solution or the melt to have an ejection charge by a high potential, and the dried nanofibers are dried and solidified, and the diameter of the generated fiber bundle 104 is About 20~200 nm. The acidic nanofiber membranes 1〇2 formed by the interlacing of the fiber bundles 104 have the characteristics of a porous hole, a high fiber surface area, and an acidic functional group on the surface of the fiber. Further, these fiber bundles may be joined to each other to form a network structure of fibers which contributes to the mechanical strength of the acidic nanofiber 臈 substrate. On the other hand, since the fiber surface area of the acidic nanofiber membrane 1〇2 is large, the acidic resin solution is reinforced by the alkaline resin solution containing a basic functional group, and the fibrous film substrate 102 is in the test resin solution. The contact area of the functional functional group and the acidic functional group of the fibrous film substrate is large, and the bonding force between the acidic nanofiber medium substrate and the test tree can be further improved. Therefore, the composite nano-matrix/basic polymer composite film 100 prepared according to the specific embodiment of the present invention has a film thickness of only about 5-7 μm, but has a high machine strength. * Due to the above-mentioned acidic nanofiber/basic polymer composite proton exchange. Membrane ι〇0 has a small thickness and high mechanical strength, which can significantly reduce its ion conduction impedance, and thus it is used in the membrane electrode group of a fuel cell. At the time, the performance of the fuel cell will be significantly improved by 12 201011963. (1.3) Example of Composite Proton Exchange Membrane of Acidic Nanofiber/Basic Polymer Here, an example of preparing a composite proton exchange membrane 丨00 of an acidic nanofiber/initial polymer according to the above-described embodiment of the present invention will be described in detail. And the formed analysis and film thickness of the composite proton exchange membrane of the prepared acidic nanofiber/basic polymer. In the following examples, the acidic nanofiber membrane substrate 102 is first prepared by the above two methods, respectively, and then formed into a composite proton exchange membrane of acidic nanofiber/alkaline polymer 100 〇 (1.3.1). Example 1: Preparation of Acid Nanofiber Membrane Substrate This example is a electrospinning technique in which a polymer material PSU is made into a PSU fiber membrane and then a PSU fiber membrane is formed (10) to form a hybrid psu (s. Lysulw, s-PSU) fiber membrane substrate 1〇2, which is prepared as follows: (a) Dissolving PSU in OMAc to clear the electrospinning solution. Medium to weight ratio

(b )利用步驟 以得到PSU纖維膜 所得之電紡絲溶液進行電紡絲, 纖維膜以重量百分濃度約250/0 以得到S-PSU纖維膜; 騍(〇 s-PSU纖維膜,以除去 (〇將步驟(㈧之Psu 之硫酸水溶液浸潰2小時, (d)以去離子水沖洗步 s-PSU纖維膜表面之硫酸。 在本實例中,係以重晋 液作為酸化改質液1 psnh分濃度約25%之硫酸水溶 電纺絲操作參數如 _維膜續酸化。本實例所用之 *衣i所示: 13 201011963 —~—------ 表 1 電位 ——— _____j 20 kV 工作距離 ^流量 20 cm 〇·5 ml/hr 度 23 °C 目對溼度 5 1 % RH ^------- 第圖及第3圖分別顯示本實例之psu纖維膜基材以 ❹ 及SU纖維膜基材102,之掃猫電子顯微鏡(scanning electron mierograph,贿)照片。由第2圖可以發現,psu ,維膜基材中電纺纖維之纖維束交錯形成網狀之結構而使 得 纖維膜基材成為多孔性模材,且纖維束之直徑為約 100 8000 nm。由第3圖可以發現磺酸化處理後之S-Psu纖 維膜基材102’仍然為多孔洞膜材。 (1.3.2)實例2:酸性奈米纖維膜基材之製備 • 本實例係利用電紡絲技術,將具有酸基之高分子材料 製成酸性奈米纖維膜1〇2,,。 本實例利用續酸化聚趟喊酮(sulfonated poly(ether ether ketcme),s_pEEK)高分子材料製成s_PEEK纖維膜 102’’ ’其製備方法如下: (a )將約 1 g 之 PEEK (購自 p〇iyscience Co.)加入約 . 5 g重量百分濃度約96%之H2S04溶液中,於約50 °C下加 熱攪拌約24小時,以便將PEEK磺酸化;(b) electrospinning using the electrospinning solution obtained by obtaining a PSU fiber membrane at a weight concentration of about 250/0 to obtain an S-PSU fiber membrane; 骒(〇s-PSU fiber membrane, Removal (〇) the step ((8) Psu aqueous solution of sulfuric acid was immersed for 2 hours, (d) rinsing the sulfuric acid on the surface of the s-PSU fiber membrane with deionized water. In this example, the re-golden liquid was used as the acidification reforming solution. 1 psnh concentration of about 25% of sulfuric acid water-soluble electrospinning operation parameters such as _ wei film continued acidification. This example used * clothing i shown: 13 201011963 —~—------ Table 1 potential ——— _____j 20 kV working distance ^ flow rate 20 cm 〇 · 5 ml / hr degree 23 ° C mesh humidity 5 1 % RH ^------- Figure 1 and Figure 3 show the psu fiber membrane substrate of this example ❹ and SU fiber membrane substrate 102, a scanning electron miterograph (bribet) photograph. It can be found from Fig. 2 that the fiber bundles of the electrospun fibers in the psu film substrate are interlaced to form a network structure. The fiber membrane substrate is made into a porous molding material, and the diameter of the fiber bundle is about 100 8000 nm. The sulfonated S-Psu fiber membrane substrate 102' is still a porous membrane material. (1.3.2) Example 2: Preparation of an acidic nanofiber membrane substrate • This example utilizes electrospinning technology and will have The acid-based polymer material is made into an acidic nanofiber membrane 1〇2. In this example, a sulfonated poly(ether ether ketcme), s_pEEK polymer material is used to make the s_PEEK fiber membrane 102''. 'The preparation method is as follows: (a) About 1 g of PEEK (purchased from p〇iyscience Co.) is added to about 5 g of a concentration of about 96% H2SO4 solution, and heated and stirred at about 50 ° C. 24 hours to sulfonate PEEK;

201011963 π (b)將蒸餾水以約1 : ϊ (v/v)之比例加入步驟(a) 所得之溶液中,以使溶液中產生懸浮之固體粒子; (C)以減壓過遽法處理步驟⑴所得之溶液,以過 濾出懸浮之固體粒子; (d)以蒸館水清洗上述固體粒子,以除去固體粒子表 面殘餘之硫酸,接著於約⑽。C真空下加熱約2小時,以 知到乾燥之s-PeEK ; (e )將步驟U )之S_PEEK溶於二曱基乙醯胺(⑴制邮 一ide,DMAc)巾,以配製成重量百分濃度 紡絲溶液; (f)利用步驟(e、裕θ +雨_ )所仟之電紡絲溶液進行電紡絲, 以4到s-PEEK纖維膜基材。 為了確認本實例中,S_PEEK魏化之 在進行步驟(e)夕針_ r , t , 額外進行了 s-PEEK的元素分析201011963 π (b) The distilled water is added to the solution obtained in the step (a) at a ratio of about 1: ϊ (v/v) to cause suspended solid particles in the solution; (C) the treatment step under reduced pressure. (1) The resulting solution is filtered to remove suspended solid particles; (d) The solid particles are washed with steaming water to remove residual sulfuric acid on the surface of the solid particles, followed by about (10). C is heated under vacuum for about 2 hours to know the dried s-PeEK; (e) S_PEEK of step U) is dissolved in dimercaptoacetamide ((1) 邮一ide, DMAc) towel to make a weight Percent concentration spinning solution; (f) Electrospinning using an electrospinning solution of the step (e, yu θ + rain _) to a 4 to s-PEEK fiber membrane substrate. In order to confirm the S_PEEK Weihua in this example, the elemental analysis of s-PEEK was performed in step (e) _ _ r , t

(dement analysis),以得到 s pEEK 分比,並計算每一 PEEK單 疋素的重量百 果如下表平均績酸根含量,其結 士: ^ 述$素分析係、利用習知技術所進行, 本說明曰中為求簡潔’不再詳计 下: Μβ。酸化比例之計算方式如 酸化比例 X 100% =(酸根莫耳數/ 高分子材料單體莫耳數)(dement analysis), to obtain the s pEEK ratio, and calculate the weight per singularity of each PEEK monoterpene as shown in the following table, the average score of the acid score, the conclusion: ^ The analysis of the prime, using the prior art, this Explain that in order to be concise, it is no longer detailed: Μβ. The acidification ratio is calculated as the acidification ratio X 100% = (acid radicals / polymer monomer moles)

15 20101196315 201011963

在本實例中,以重量百分濃度約96%之HJO4溶液作 為酸化改質液,將pEEK高分子材料續酸化,而後進行電 ' 本實例所用之電紡絲操作參數如下表3所示;In the present example, about 96% by weight of HJO4 solution is used as the acidification upgrading solution, the pEEK polymer material is acidified, and then the electric spinning operation parameters used in the present example are shown in Table 3 below;

液流量 操作環境相對溼度 0.5 ml/hrLiquid flow Operating environment relative humidity 0.5 ml/hr

48 % RH 第4圖顯示根據本實例之s_pEEK纖維膜基材1〇2,,之 SEM照片。由第4圖可以發現,s_pEEK纖維膜基材1〇2” • 巾電纺纖維之纖維束交錯形成網狀之結構,且纖維束之直 徑為約 100-8000 nm。 (1·3·3)將實例i及實例2製備之酸性奈米纖維腺基材製 成酸性奈米纖維/鹼性高分子之複合質子交換膜 接著,利用PBI分別補強上文實例1所製備之s_PSU 纖維骐基材102以及實例2所製備之s-peek纖雉勝基材 102’’’以製成s_PSU/PBI酸性奈米纖維/鹼性高分子之複合 201011963 • 質子父換膜以及s_PEEK/pBI酸性奈米纖維/驗性高分子之 複合質子交換膜,其製備方法如下: (a) 製備重量百分比約3%之pBl/DMAc溶液,以作 為鹼性樹脂溶液; (b) 以步驟(a)之PBI/DMAc溶液塗佈喷灑於酸性 奈米纖維膜基材上,以製備酸性奈米纖維/鹼性高分子之複 合質子交換膜; (c) 將步驟(b)之酸性奈米纖維/鹼性高分子之複合 參 質子父換膜置入約120 C真空烘箱中供烤約5小時,以除 去殘餘之DMAc溶劑;以及 (d) 將步驟(c)之酸性奈米纖維/鹼性高分子之複合 質子交換膜置於酸液(重量激度約85%之填酸溶液)中浸 潰約24小時,以使酸性分子充滿於酸性奈米纖維/鹼性高 分子之複合質子交換膜中之孔隙。 · 第5圖顯示根據本實施例之s_pSU/pBI酸性奈米纖維/ 鹼性高分子之複合質子交換膜之SEM照片。比較第3圖及 φ 第5圖的SEM照片可以發現,第3圖的S_psu纖維膜基材 102’呈現網狀纖維狀,具有非常多的孔洞,而第5圖中的 s-PSU/PBI酸性奈米纖維/驗性高分子之複合質子交換膜則 幾乎看不到任何孔隙。由此即可證明根據本實施例將 PBI/DMAc溶液塗佈噴灑於第3圖之後,pBI溶液中之分子 可有效地附著於s-PSU纖維膜基材102,上,這是因為ΡΒΪ . 上之-ΝΗ基及s-PSU上之_s〇3H基之間的親和作用所造成 的。下表4列出了本實施例之s-Psu/PBI酸性奈米纖維/驗 性高分子之複合質子交換膜之成分以及膜厚。 17 201011963 表4 成分 (g) s-PSU 0.356 PBI 0.688 H3PO4 0.650 膜厚(μπι) 38.348% RH Fig. 4 shows an SEM photograph of the s_pEEK fiber membrane substrate 1〇2 according to the present example. It can be found from Fig. 4 that the s_pEEK fiber membrane substrate 1〇2” • the fiber bundles of the towel electrospun fibers are interlaced to form a network structure, and the diameter of the fiber bundle is about 100-8000 nm. (1·3·3) The acidic nanofiber gland substrate prepared in Example i and Example 2 was made into a composite proton exchange membrane of acidic nanofiber/basic polymer. Next, the s_PSU fiber 骐 substrate 102 prepared in Example 1 above was reinforced by PBI. And the s-peek fiber substrate 102'' prepared in Example 2 to make a composite of s_PSU/PBI acid nanofiber/alkaline polymer 201011963 • Proton parent exchange film and s_PEEK/pBI acid nano fiber/ The composite proton exchange membrane of the testable polymer is prepared as follows: (a) preparing a pBl/DMAc solution of about 3% by weight as an alkaline resin solution; (b) a PBI/DMAc solution of the step (a) Coating and spraying on the acidic nanofiber membrane substrate to prepare a composite proton exchange membrane of acidic nanofiber/basic polymer; (c) acid nanofiber/basic polymer of step (b) The composite plasto sub-family was placed in a vacuum oven of about 120 C for about 5 hours to remove Removing the residual DMAc solvent; and (d) impregnating the composite proton exchange membrane of the acidic nanofiber/basic polymer of step (c) in an acid solution (about 85% by weight acid solution) 24 hours, so that the acidic molecules are filled in the pores in the composite proton exchange membrane of the acidic nanofiber/basic polymer. Fig. 5 shows the s_pSU/pBI acid nanofiber/alkaline polymer according to the present embodiment. SEM photograph of the composite proton exchange membrane. Comparing the SEM photographs of Fig. 3 and Fig. 5, it can be found that the S_psu fiber membrane substrate 102' of Fig. 3 has a reticular fiber shape with many pores, and Fig. 5 In the composite proton exchange membrane of s-PSU/PBI acid nanofiber/inspective polymer, almost no pores were observed. It can be proved that the PBI/DMAc solution was sprayed on the third diagram according to the present example. Thereafter, the molecules in the pBI solution are effectively attached to the s-PSU fiber membrane substrate 102, because of the affinity between the sulfonium-based group and the ss3H group on the s-PSU. The following table 4 lists the s-Psu/PBI acid nanofiber/inspective polymer of this example. Composite proton exchange membrane composition and the film thickness. 17 201 011 963 Table 4 component (g) s-PSU 0.356 PBI 0.688 H3PO4 0.650 film thickness (μπι) 38.3

第6圖顯示根據本實施例之s-PEEK/Ppi酸性奈米纖維 /驗性高分子之複合質子交換膜之SEM照片。比較第4圖及 第ό圖的SEM照片可以發現,第4圖的s-PEEK纖維膜基 材102”呈現網狀纖維狀,具有非常多的孔洞,而第6圖中 的s-PEEK/PBI酸性奈米纖維/鹼性高分子之複合質子交換 膜則幾乎看不到任何孔隙。因此本實施例與第5圖所示實 施例類似’可藉著ΡΒΙ上之_贿基及s_pEEK上之_s〇3H基 間的親和作用’使彳于PBI溶液可有效地附著於WEEK纖維 膜基材102”上。下表5列山7丄《i» 衣歹】出了本實施例之s-PEEK/PBI酸 性奈米纖維/驗性高分子之^ 複合質子交換膜之成分以及膜 厚0Fig. 6 is a SEM photograph showing a composite proton exchange membrane of s-PEEK/Ppi acid nanofiber/inspective polymer according to this example. Comparing the SEM photographs of Fig. 4 and Fig. 4, it can be found that the s-PEEK fiber membrane substrate 102" of Fig. 4 has a reticular fiber shape with many pores, and the s-PEEK/PBI in Fig. 6 The composite proton exchange membrane of acidic nanofiber/alkaline polymer can hardly see any pores. Therefore, this embodiment is similar to the embodiment shown in Fig. 5, which can be based on the _ bribe and s_pEEK. The affinity between the s〇3H groups is such that the PBI solution can be effectively attached to the WEEK fiber membrane substrate 102". Table 5 below shows the composition of the composite proton exchange membrane of the s-PEEK/PBI acid nanofiber/inspective polymer of this example and the film thickness of 0.

⑴膜電極組及其製傷方法與單電池測試 此處進一步闈明膜 Assembly, MEA)之製備方 電極組(Membrane Electrode 法。本方法利用上述實例1之 18 201011963 s-PSU/PBI酸性奈米纖維/驗性高分子之複合質子交換膜以 及實例2之s-PEEK/PBI酸性奈米纖維/鹼性高分子之複合 質子交換膜來製備臈電極組,並利用上述膜電極組進行單 電池測試。第7圖繪示根據本實施例之膜電極組2〇〇的示 意圖’膜電極組200包含陽極2〇1、陰極202以及質子交換 膜203。陽極201包含碳布205與觸媒層206 ;陰極202包 含碳布207與觸媒層208。質子交換膜203介於陽極2〇1 以及陰極202之間,且分別和觸媒層2〇6以及觸媒層2〇8 相接觸。 (2.1)膜電極組之製備方法 在本實施例中,分別製備膜電極組丨(實驗組)、膜電 極組2 (實驗組)以及膜電極組3 (對照組),上述三種膜 電極組所用之質子交換膜如下表6所示: __ 表6 膜電極組 ----—_ 質子交換膜 膜電極組1 s-PSU/PBI酸性奈米纖 (實驗組) 維/驗性高分子之複合 質子交換膜(實你丨1、 膜電極組2 --- \ 只 iy_i 1 I s-PEEK/PBI酸性奈米 (實驗組) 纖維/驗性向分子之複 _合質子交換1(眚你1 膜電極組3 PBI質子交換膜 (對照組) (習知) 19 201011963 . λ中’對照組所用之PBI質子交換膜係利用習知方法所製 備,其厚度為約92 μιη,這是因為PBI質子交換膜受限於 其本身之機械強度,必須具有較大之膜厚才能提供質子交 換膜足夠的支揮力。 上述膜電極組之製備方法如下: (a) 將重量百分濃度約2%之pBI/DMAc溶液(其中 PBI與LiCl之重量比為約丨:n加入pt/c (其中pt重量 百分比約為40%,購自E_TEKC〇)觸媒中,將pt/c與pBi • 之重量比調整為約3.5 : 1,並以超音波振盡5小時,以得 到觸媒漿料; (b) 將步驟(a)製作之觸媒漿料均勻塗佈於碳布(購 自E-TekCo.,型號:HT25〇〇_w)上,反覆塗至預定的pt 塗佈量以形成觸媒層,其中作為陽極之碳布上^的塗佈量 為約0.5 mg/cm,作為陰極之碳布上pt的塗佈量為約〇.5 mg/cm2 ; (c )將步驟(b )之陽極碳布以及陰極碳布分別置於 ® 約120 C下加熱約30分鐘,以便將溶劑揮發,再以蒸餾水 次潰上述碳布電極,以清除電極中的UC1 ; (d )將酸性奈米纖維/鹼性高分子之複合質子交換膜 或質子父換膜置於步驟(c)之陽極碳布以及陰極碳布之 間,利用熱壓機以約140〇c、約5〇 kg/cm2之壓力壓合約5 分鐘’以得到個別膜電極組; , (e)將步驟(d)之膜電極組置於重量濃度約10%之 . 磷酸溶液中浸潰約24小時,以增加觸媒層之質子傳導度, 取出後於室溫下保存。 20 201011963 (2.2)單電池測試 接著,分別進行上述膜電極組丨、膜電極組2以及膜電 極組3之單電池測試。在本實施例中,上述膜電極組之活 性面積為約5x5 cm2。測試前於約〗6〇〇c下以約2〇〇 mA/cm2 之定電流將膜電極組活化,連續進行8小時。接著,利用 南溫單電池測試系統(CHm〇 Fuel ceu Testing system FC 5100 series )進行測試。測試參數如下表7所示: 表7 溫度 160°C 壓力 1 atm 氧氣流速 300 ml/min 氫氣流速 300 ml/min(1) Membrane electrode group and its damage method and single cell test. Further, a preparation electrode group (Membrane Electrode method) of the membrane assembly (MEA) is used. The method utilizes the above example 1 of 18 201011963 s-PSU/PBI acidic nanometer. A composite proton exchange membrane of fiber/inspective polymer and a composite proton exchange membrane of s-PEEK/PBI acidic nanofiber/alkaline polymer of Example 2 were used to prepare a ruthenium electrode group, and the above-mentioned membrane electrode group was used for single cell test. Figure 7 is a schematic view of a membrane electrode assembly 2 according to the present embodiment. The membrane electrode assembly 200 comprises an anode 2, a cathode 202 and a proton exchange membrane 203. The anode 201 comprises a carbon cloth 205 and a catalyst layer 206; The cathode 202 includes a carbon cloth 207 and a catalyst layer 208. The proton exchange membrane 203 is interposed between the anode 2〇1 and the cathode 202, and is in contact with the catalyst layer 2〇6 and the catalyst layer 2〇8, respectively. Membrane electrode group preparation method In the present embodiment, a membrane electrode group 实验 (experimental group), a membrane electrode group 2 (experimental group), and a membrane electrode group 3 (control group) were separately prepared, and proton exchange was performed for the above three membrane electrode groups. The membrane is shown in Table 6 below: __ Table 6 Membrane Electrode-----_ Proton exchange membrane electrode group 1 s-PSU/PBI acid nanofiber (experimental group) Dimensional/inspective polymer composite proton exchange membrane (real 丨 1, membrane electrode group 2 --- \ Only iy_i 1 I s-PEEK/PBI acid nano (experimental group) Fiber/inspective to molecular complex _ proton exchange 1 (眚 you 1 membrane electrode group 3 PBI proton exchange membrane (control group) Known) 19 201011963 . The PBI proton exchange membrane used in the control group of λ is prepared by a conventional method and has a thickness of about 92 μηη because the PBI proton exchange membrane is limited by its own mechanical strength and must have a comparative A large film thickness can provide sufficient support for the proton exchange membrane. The above membrane electrode assembly is prepared as follows: (a) A pBI/DMAc solution having a weight percent concentration of about 2% (wherein the weight ratio of PBI to LiCl is about丨:n Add pt/c (where pt is about 40% by weight, purchased from E_TEKC〇). In the catalyst, adjust the weight ratio of pt/c to pBi • to about 3.5:1 and excite it by ultrasonic 5 Hour to obtain the catalyst slurry; (b) uniformly apply the catalyst slurry prepared in the step (a) to the carbon cloth (purchased from ET ekCo., model: HT25〇〇_w), overcoating to a predetermined pt coating amount to form a catalyst layer, wherein the coating amount of the carbon cloth as an anode is about 0.5 mg/cm as a cathode The coating amount of pt on the carbon cloth is about 〇5 mg/cm2; (c) the anode carbon cloth of step (b) and the cathode carbon cloth are respectively placed at a temperature of about 120 C for about 30 minutes to volatilize the solvent. And then blasting the carbon cloth electrode with distilled water to remove UC1 in the electrode; (d) placing the acidic nanofiber/basic polymer composite proton exchange membrane or proton parent membrane on the anode carbon of step (c) Between the cloth and the cathode carbon cloth, press a contract with a hot press at a pressure of about 140 〇c and about 5 〇 kg/cm 2 for 5 minutes to obtain an individual membrane electrode assembly; (e) the membrane electrode of the step (d) The group was placed in a phosphoric acid solution for about 24 hours at a weight concentration of about 10% to increase the proton conductivity of the catalyst layer, and then stored at room temperature after removal. 20 201011963 (2.2) Single cell test Next, the cell tests of the above-described membrane electrode assembly 膜, membrane electrode group 2, and membrane electrode group 3 were carried out separately. In the present embodiment, the membrane electrode group has an active area of about 5 x 5 cm2. The membrane electrode assembly was activated at a constant current of about 2 mA/cm 2 at about 6 〇〇 c for about 8 hours before the test. Next, the test was carried out using a CHm〇 Fuel ceu Testing system FC 5100 series. The test parameters are shown in Table 7 below: Table 7 Temperature 160 °C Pressure 1 atm Oxygen flow rate 300 ml/min Hydrogen flow rate 300 ml/min

第8圖闡明在16〇°c下膜電極組1之電位對電流密度曲 線(圖中以空心圓點表示)以及功率密度對電流密度曲線 φ (圖中以實心圓點表示)。第9圖闡明在160°C下膜電極組 2之電位對電流密度曲線(圖中以空心圓點表示)以及功率 密度對電流密度曲線(圖中以空心方塊表示)。第1 〇圖闡 明在160°c下對照組膜電極組3之電位對電流密度曲線(圖 中以空心圓點表示)以及功率密度對電流密度曲線(圖中 以空心方塊表示)。 . 由第8圖可以發現,在上述測定條件下,膜電極組1 (s-PSU/PBI膜電極組)的最大功率密度可達約mo 21 201011963 mW/cm最大電流密度為約_婦/^,Figure 8 illustrates the potential vs. current density curve (indicated by open circles in the figure) and the power density versus current density curve φ (indicated by solid dots in the figure) at 16 °C. Fig. 9 illustrates the potential vs. current density curve (indicated by open circles in the figure) and the power density versus current density curve (indicated by open squares in the figure) of the membrane electrode group 2 at 160 °C. The first graph illustrates the potential vs. current density curve (indicated by open circles in the figure) and the power density versus current density curve (indicated by open squares in the figure) of the control membrane electrode group 3 at 160 °C. It can be found from Fig. 8 that under the above measurement conditions, the maximum power density of the membrane electrode group 1 (s-PSU/PBI membrane electrode group) can reach about mo 21 201011963 mW/cm, and the maximum current density is about _ women/^ ,

約2〇。識m2時輸出之電位可達…V。相較之;J 見第10圖’膜電極組3 (習知ΡΒΙ膜電極組)的最大輸出 功率密度為約90 mw/cm2 ’最大電流密度為約谓 mW/cm2’且在電流密度約2〇〇调⑽、輸出之電位可達 約0.37 V。也就是說,獏電極組J不論是最大功率密度或 最大電流密度’皆優於膜電極組3。此外,同樣在理想電流About 2 baht. When the m2 is recognized, the potential of the output can reach ...V. In contrast, J sees Fig. 10, the maximum output power density of the membrane electrode group 3 (the conventional membrane electrode group) is about 90 mw/cm2 'the maximum current density is about mW/cm2' and the current density is about 2 〇〇 (10), the output potential can reach about 0.37 V. That is to say, the electrode group J is superior to the membrane electrode group 3 regardless of the maximum power density or the maximum current density. In addition, the same in the ideal current

❹ 密度20GmW/em2下,膜電極組〗可提供的電位也高於膜電 極組3。 同樣地,在第9圖令,膜電極組2 (s-PEEK/PBI膜雷 :=最二,度可達約—cm2,最大電流密度 為約780 mW/cm,且在電流密度約2〇〇讀/(^2 電位可達約0·4 V。與第1〇圖之膜電極組3相較之出 電極組2不論是最大功率密度或最大電流密度,皆優於膜 電極組3。此外’同樣在理想電流密度2〇〇mW/cm2下,、膜 電極組2可提供的電位也高於膜電極組3。 、 由本發明上述實施例及相關測試可知,根據本發明之 原理和精神所製備之酸性奈米纖維/鹼性高分子之複合質 子父換媒相較於以單-高分子材料如PBI製成之質子交換 膜而言,不但膜厚顯著較小,且發電功率亦顯著較高。此 外,欲製備具有酸性官能基之質子交換膜時,不論是直接 利用酸性高分子進行電紡絲,或是先將高分子進行電纺絲 後再行酸化,皆可得到具有理想膜厚以及發電功率之酸性 奈米纖維/鹼性高分子之複合質子交換膜。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何熟習此技藝者,在不脫離本發明之精神和範 22 201011963 圍内田可作各種之更動與潤飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 一第1圖_根據本發明具體實施例之酸性奈㈣維/驗 性南分子之複合質子交換膜100之剖面示意圖; ❿ 帛2圖顯示根據本發明-實施例之PSU纖維膜基材之 SEM照片; 第3圖顯示將第2圖之PSU纖維膜基材酸化所得之 s-PSU纖維膜基材之SEM照片; 第4圖顯示根據本發明—實施例之s_pE£K纖維膜基材 之SEM照片; 第5囷顯示以帛3 ®之s_PSU纖維膜基材製成之 s-PSU/PBI酸性奈米纖維/驗性高分子之複合質子交換膜之 赢 SEM照片; 、 、、 第6圖顯示以第4圖之s-pEEK纖維膜基材製成之 s-PEEK/PBI酸性奈米纖維/驗性高分子之複合質子交換膜 之SEM照片; ' 第7圖繪不根據本發明實施例之膜電極組的示意圖; 第8圖闡明以第5圖之s-psu㈣酸性奈米纖維/驗性 . 冑分子之複合質子交換膜製成之s_psu/pBI膜電極組之電 位對電流密度曲冑(圖中以空心圓點表示)以及功率密度 對電流後度曲線(圖中以空心方塊表示); 23 201011963 ^ 第9圖闡明以第6圖之s-PEEK/PBI酸性奈米纖維/鹼 性高分子之複合質子交換膜製成之s_pEEK/Pm膜電極組之 電位對電流密.度曲線(圖中以空心圓點表示)以及功率密 度對電流密度曲線(圖中以空心方塊表示);以及 第10圖閣明PBI膜電極組(對照組)之電位對電流密 度曲線(圖中以空心圓點表示)以及功率密度對電流密度 曲線(圖中以空心方塊表示)。 【主要元件符號說明】 100:酸性奈米纖維/鹼性高分200 子之複合質子交換膜 201 102 :酸性奈米纖維臈基材2〇2 102’ : s-PSU纖維膜基材 2〇3 102’’ : s-PEEK纖維膜基材2〇5 104:纖維束 ΖΌό 106 :驗性樹脂 參 膜電極組 .陽極 陰極 質子交換膜 207 :碳布 208 :觸媒層 ❹ 24膜 At a density of 20 GmW/em2, the membrane electrode group can provide a higher potential than the membrane electrode group 3. Similarly, in the 9th order, the membrane electrode group 2 (s-PEEK/PBI membrane Ray: = the second, the degree can be about - cm2, the maximum current density is about 780 mW / cm, and the current density is about 2 〇 The reading / (^2 potential can reach about 0. 4 V. Compared with the membrane electrode group 3 of the first drawing, the electrode group 2 is superior to the membrane electrode group 3 regardless of the maximum power density or the maximum current density. In addition, also at the ideal current density of 2 〇〇 mW/cm 2 , the membrane electrode group 2 can also provide a higher potential than the membrane electrode group 3. According to the above-described embodiments and related tests of the present invention, according to the principle and spirit of the present invention Compared with a proton exchange membrane made of a single-polymer material such as PBI, the prepared composite nanoproton/alkaline polymer has a significantly smaller film thickness and a remarkable power generation power. In addition, when preparing a proton exchange membrane having an acidic functional group, whether it is electrospinning directly using an acidic polymer, or electrophoresis of the polymer and then acidification, an ideal membrane can be obtained. Composite protons of acid nanofibers/alkaline polymers with thick and power generation The present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention, and any person skilled in the art can make various changes and retouchings without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS [0009] The above and other objects, features, advantages and embodiments of the present invention will become more apparent. The detailed description is as follows: a first drawing - a schematic cross-sectional view of a composite proton exchange membrane 100 of an acid naphthene/inspective southern molecule according to an embodiment of the present invention; and a diagram showing a PSU fiber according to the present invention - an embodiment SEM photograph of the film substrate; Fig. 3 shows an SEM photograph of the s-PSU fiber membrane substrate obtained by acidifying the PSU fiber membrane substrate of Fig. 2; Fig. 4 shows the s_pE£K fiber according to the present invention - an embodiment SEM photograph of the film substrate; Section 5 shows the SEM image of the composite proton exchange membrane of s-PSU/PBI acid nanofiber/initial polymer made of 帛3® s_PSU fiber membrane substrate; , Figure 6 shows SEM photograph of a composite proton exchange membrane of s-PEEK/PBI acid nanofiber/initial polymer prepared from the s-pEEK fiber membrane substrate of Fig. 4; 'Fig. 7 is not according to an embodiment of the present invention Schematic diagram of the membrane electrode group; Figure 8 illustrates the potential versus current density curve of the s_psu/pBI membrane electrode set made of the composite proton exchange membrane of s-psu(d) acid nanofiber/analytic. The figure shows the power density versus current curve (shown as a hollow square in the figure); 23 201011963 ^ Figure 9 illustrates the s-PEEK/PBI acid nanofiber/alkaline high in Figure 6. The potential of the s_pEEK/Pm membrane electrode group made of the composite proton exchange membrane of the molecule is shown by the current density curve (indicated by a hollow dot in the figure) and the power density versus current density curve (indicated by a hollow square in the figure); 10 Tugeming PBI membrane electrode group (control group) potential vs. current density curve (indicated by open circles in the figure) and power density versus current density curve (indicated by open squares in the figure). [Explanation of main component symbols] 100: Acidic nanofiber/basic high score 200 composite proton exchange membrane 201 102: Acid nanofiber 臈 substrate 2〇2 102' : s-PSU fiber membrane substrate 2〇3 102'' : s-PEEK fiber membrane substrate 2〇5 104: fiber bundle ΖΌό 106: intrinsic resin reference electrode group. anode cathode proton exchange membrane 207: carbon cloth 208: catalyst layer ❹ 24

Claims (1)

201011963 十、申請專利範圍: h一種複合質子交換膜之製備方法,包含: (a) 製備一酸性纖維膜基材; (b) 製備一鹼性樹脂溶液,將重量百分濃度約〇 1% 至、力3 0 /。之一鹼性高分子聚合物溶於二曱基乙醯胺溶劑 中; (c )使該鹼性樹脂溶液與該酸性纖維膜基材接觸,其 中該酸性纖維膜基材具有多重孔隙以容納該鹼性樹脂溶 液’以使得該驗性高分子聚合物之鹼性官能基可和該酸性 纖維膜基材之酸性官能基結合而得到該複合質子交換膜; 以及 (d)移除該複合質子交換膜中殘餘之二甲基乙醯胺溶 劑。 2·如請求項1所述之複合質子交換膜之製備方法,更 包含將該複合質子交換膜浸潰於一酸液中,使該複合質子 交換膜之孔隙中充滿酸性分子。 3. 如明求項2所述之複合質子交換膜之製備方法,其 中該酸液為硫酸、鹽酸、磷酸、硝酸或硼酸。 4. 如凊求項1所述之複合質子交換膜之製備方法,其 中該驗性高分子聚合物為聚亞醯胺、聚葡萄胺糖、聚苯^ 咪唑聚亞胺、聚苯胺、聚醯胺、聚乙烯醇、其摻合物或其 25 201011963 , 改質衍生聚合物。 5. 如請求項1所述之複合質子交換膜之製備方法,其 中該鹼性官能基可為一級胺基團、二級胺基團、三級胺基 團或-OH基團。 6. 如請求項1所述之複合質子交換膜之製備方法,其 中步驟(c)係將該鹼性樹脂溶液塗佈、噴灑、浸潰 '網印、 〇 旋轉塗佈或刮刀塗佈於該酸性纖維膜基材上。 7·如請求項1所述之複合質子交換膜之製備方法,其 中步驟(d)係將該複合質子交換膜置於約120°C真空供箱 中洪烤約5小時。 8. 如請求項1所述之複合質子交換膜之製備方法,其 中步驟(a)包含: ❿ 〇)配製一電紡絲溶液,將重量百分濃度@ 6%至約 5〇%之一高分子聚合物溶於二甲基乙醯胺中; ⑺將步驟⑴之該電紡絲溶液進行電紡絲,以得 到一纖維膜基材;以及 ⑴以重量濃百分濃度約5%至約99%之一酸化改質 液浸潰步驟(2)之該纖維膜基材,浸潰時間為約〇 5小時 , 至約24小時,以得到該酸性纖維膜基材。 9. 如請求項8所述之複合質子交換獏之製備方法,其 26 201011963 中該尚分子聚合物為聚芳醚醚酿j、聚醚砜、聚苯酚磷氮化 物、聚苯乙烯、其摻合物或其改質衍生聚合物。 ίο.如請求項8所述之複合質子交換膜之製備方法, 其中該酉义化改質液中之酸含有績酸根、竣酸根或麟酸根。 11·如請求項8所述之複合質子交換膜之製備方法, ,、中該酸化改質液為重量濃度約25%之硫酸水溶液。 12.如請求項“斤述之複合質子交換膜之製備方法, 其中步驟(a)包含:: ⑴將一向分子聚合物加入重量漠百分濃度約州至 勺州,酸化改質液中,以得到一酸化高分子聚合物, 其中該高分子聚合物和職化改質液之重量 約1 : 100 ; 主 ⑺將蒸館水以約1:】之體積比加人步驟 =:液1使其“生該酸化高分子聚合物的複數: 浮粒:;)過濾步驟⑺之該酸化改質液,以得到該些懸 (4)以蒸館水清洗步驟(3) 之,以得到複數個乾燥粒子; —I錄子並乾操 將步驟(4)之該些乾㈣子溶於 中,以配製成重量百分濃度約5%至約5〇 —甲基乙酿胺 (6)將步驟m 電纺絲溶液; 步驟⑺之該電纺絲溶液進行電纺絲 27 寸 201011963 到該酸性纖維骐基材。 秦 13. 如請求項12所述之複合質子交換膜之製備方 法’其中該高分子聚合物為聚芳醚醚酮、聚醚砜、聚苯酚 填氮化物、聚苯乙烯、其摻合物或其改質衍生聚合物。 14. 如請求項12所述之複合質子交換膜之製備方 法’其中該酸化改質液中之酸含有磺酸根、羧酸根或磷酸 ▲ 根。 15. 如請求項12所述之複合質子交換膜之製備方 法’其中s亥酸化兩分子聚合物為續酸化聚芳醚醚酮、績酸 化聚硬、磺酸化聚笨酚磷氮化物、磺酸化聚苯乙烯、其 摻合物或其改質衍生聚合物。 16. 如請求項12所述之複合質子交換膜之製備方 φ 法’其中該酸化改質液為重量濃度約96%之硫酸水溶液, 且進行步驟(1 )時於約50。(:下加熱攪拌約24小時。 17. —種複合質子交換膜,可用於質子交換膜燃料電 池,包含: 複數個鹼性樹脂可用於質子交換;以及 一酸性纖維膜基材,其中該酸性纖維膜基材之複數個 參 纖維束交錯形成具有多重孔隙之網狀結構,以容納該些鹼 ’ 性樹脂,其中該些鹼性樹脂之鹼性官能基和該酸性纖維膜 28 201011963 基材之酸性官能基結合。 約 18.如請求項17所述之複合質子交換膜,其厚度為 5 μηι 至約 70 μίϋ。 19. 如請求項17所述之複合質子交換膜,其厚度為約 25 μηι 至約 40 μη!。 20. 如請求項17所述之複合質子交換膜,其中該酸性 纖維膜基材之材料為聚芳醚醚酮、聚醚砜、聚苯酚磷氮化 物、聚苯乙烯、其摻合物或其改質衍生聚合物。 21. 如請求項17所述之複合質子交換膜,其中該酸性 官能基為磺酸根、碳酸根或磷酸根。 22. 如凊求項17所述之複合質子交換膜,其中該些驗 性樹脂之材料為聚亞醯胺、聚葡萄胺糖、聚苯並咪唑聚亞 胺、聚笨胺、聚醯胺、聚乙烯醇、其摻合物或其改質衍生 聚合物。 23.如請求項17所述之複合質子交換膜,其中該鹼性 官能基為一級胺基團、二級胺基團、三級胺基團或-ΟΗ基 團。 24. —種膜電極組,包含 29 201011963 一電極組’包含一陽極與—陰極;以及 一種如請求項17所述之複合質子交換膜,介於該陽極 以及該陰極之間。 25.如請求項24所述之膜電極組,其中該陽極包含一 碳布以及位於其上之一觸媒材料。 26·如請求項24所述之膜電極組,其中該陰極包含— φ 碳布以及位於其上之一觸媒材料。 11'如請求項25或26所述之膜電極組,其中該觸媒 材料含有翻。 28.如請求項25或26所述之膜電極組’其中該觸媒 材料含有鉑以及碳。 30201011963 X. Patent application scope: h Preparation method of a composite proton exchange membrane, comprising: (a) preparing an acidic fiber membrane substrate; (b) preparing an alkaline resin solution, and adding about 1% by weight to , force 3 0 /. One of the basic high molecular polymers is dissolved in the dimercaptoacetamide solvent; (c) contacting the basic resin solution with the acidic fibrous film substrate, wherein the acidic fibrous film substrate has multiple pores to accommodate the The alkaline resin solution 'is obtained by combining the basic functional group of the green polymer with the acidic functional group of the acidic fiber membrane substrate; and (d) removing the composite proton exchange Residual dimethylacetamide solvent in the membrane. The method for preparing a composite proton exchange membrane according to claim 1, further comprising impregnating the composite proton exchange membrane with an acid solution to fill the pores of the composite proton exchange membrane with acidic molecules. 3. The method for producing a composite proton exchange membrane according to claim 2, wherein the acid solution is sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid or boric acid. 4. The method for preparing a composite proton exchange membrane according to claim 1, wherein the polymerizable polymer is polyamidamine, polyglucamine, polyphenylimide, imidazole, polyaniline, polyfluorene Amines, polyvinyl alcohols, blends thereof or 25 201011963, modified derived polymers. 5. The method of preparing a composite proton exchange membrane according to claim 1, wherein the basic functional group is a primary amine group, a secondary amine group, a tertiary amine group or an -OH group. 6. The method for preparing a composite proton exchange membrane according to claim 1, wherein the step (c) is: coating, spraying, dipping the screen printing, dipping coating or doctor blade coating on the alkaline resin solution. On an acidic fiber membrane substrate. 7. The method of preparing a composite proton exchange membrane according to claim 1, wherein the step (d) is to immerse the composite proton exchange membrane in a vacuum supply tank at about 120 ° C for about 5 hours. 8. The method for preparing a composite proton exchange membrane according to claim 1, wherein the step (a) comprises: ❿ 〇) preparing an electrospinning solution having a weight percentage of @ 6% to about 5% by weight. The molecular polymer is dissolved in dimethylacetamide; (7) electrospinning the electrospinning solution of step (1) to obtain a fiber membrane substrate; and (1) from about 5% to about 99 by weight concentration One of the acid film-modified medium is impregnated with the fiber membrane substrate of the step (2), and the impregnation time is about 5 hours to about 24 hours to obtain the acidic fiber membrane substrate. 9. The method for preparing a composite proton exchange enthalpy according to claim 8, wherein the molecular polymer in the group is poly aryl ether ether, polyether sulfone, polyphenol phosphide, polystyrene, or the like thereof. a compound or a modified derivative thereof. </ RTI> The method for preparing a composite proton exchange membrane according to claim 8, wherein the acid in the bismuth modification solution contains chlorpyrifosate, citrate or cinnamate. The method for preparing a composite proton exchange membrane according to claim 8, wherein the acidified modified liquid is an aqueous sulfuric acid solution having a weight concentration of about 25%. 12. The method for preparing a composite proton exchange membrane according to the claim, wherein the step (a) comprises: (1) adding the molecular weight polymer to a concentration of about 100% to the state of the state, to acidify the modified liquid, Obtaining an acidified high molecular polymer, wherein the weight of the high molecular polymer and the chemical conversion solution is about 1:100; the main (7) is added to the steaming water in a volume ratio of about 1:: "The plurality of acidified high molecular polymers are produced: the floating particles:;" the acidified upgrading liquid of the step (7) is filtered to obtain the suspension (4) to be washed in the steaming water to remove the plurality of drying steps (3). Particles; - I recording and dry operation, the dry (four) of step (4) is dissolved in a ratio of about 5% to about 5 〇 - methyl ethyl amide (6). m electrospinning solution; the electrospinning solution of step (7) is electrospun 27 inch 201011963 to the acid fiber raft substrate. Qin 13. The method for preparing a composite proton exchange membrane according to claim 12, wherein the polymer is poly(aryl ether ether ketone), polyether sulfone, polyphenol nitride, polystyrene, a blend thereof or It is modified to derive a polymer. 14. The method of preparing a composite proton exchange membrane according to claim 12, wherein the acid in the acidification modifying solution contains a sulfonate, a carboxylate or a phosphoric acid. 15. The method for preparing a composite proton exchange membrane according to claim 12, wherein the two molecules of the acidified poly(aryl ether ether ketone), the acidified polyhard, the sulfonated polyphenol phenol phosphide, the sulfonation Polystyrene, blends thereof or modified derived polymers thereof. 16. The method of preparing a composite proton exchange membrane according to claim 12, wherein the acidification modifier is an aqueous solution of sulfuric acid having a weight concentration of about 96%, and is about 50 in the step (1). (: heating and stirring for about 24 hours. 17. A composite proton exchange membrane for use in a proton exchange membrane fuel cell comprising: a plurality of basic resins for proton exchange; and an acidic fiber membrane substrate, wherein the acidic fibers The plurality of ginseng fibers of the film substrate are interlaced to form a network structure having multiple pores to accommodate the alkali resin, wherein the basic functional groups of the basic resin and the acidic fiber film 28 201011963 The composite proton exchange membrane of claim 17 having a thickness of from 5 μηι to about 70 μί. 19. The composite proton exchange membrane of claim 17 having a thickness of about 25 μηι to A composite proton exchange membrane according to claim 17, wherein the material of the acidic fiber membrane substrate is poly(aryl ether ether ketone), polyether sulfone, polyphenol phosphorus nitride, polystyrene, or the like. The composite proton exchange membrane of claim 17, wherein the acidic functional group is a sulfonate, carbonate or phosphate. Composite proton exchange membrane, wherein the materials of the test resins are polyamidoamine, polyglucamine, polybenzimidazole polyimine, poly-amine, polyamine, polyvinyl alcohol, blends thereof or The composite proton exchange membrane of claim 17, wherein the basic functional group is a primary amine group, a secondary amine group, a tertiary amine group or a -hydrazine group. 24. A membrane electrode assembly comprising 29 201011963 an electrode group comprising an anode and a cathode; and a composite proton exchange membrane as claimed in claim 17, interposed between the anode and the cathode. The membrane electrode assembly of item 24, wherein the anode comprises a carbon cloth and a catalyst material disposed thereon. The membrane electrode assembly of claim 24, wherein the cathode comprises - φ carbon cloth and is located therein The membrane electrode assembly of claim 25 or 26, wherein the catalyst material comprises a turn. 28. The membrane electrode assembly of claim 25 or 26 wherein the catalyst material Contains platinum and carbon. 30
TW097133472A 2008-09-01 2008-09-01 Acidic nano-fiber/basic polymer used as composite proton exchange membrane and method for manufacturing the same TW201011963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097133472A TW201011963A (en) 2008-09-01 2008-09-01 Acidic nano-fiber/basic polymer used as composite proton exchange membrane and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097133472A TW201011963A (en) 2008-09-01 2008-09-01 Acidic nano-fiber/basic polymer used as composite proton exchange membrane and method for manufacturing the same

Publications (1)

Publication Number Publication Date
TW201011963A true TW201011963A (en) 2010-03-16

Family

ID=44828820

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097133472A TW201011963A (en) 2008-09-01 2008-09-01 Acidic nano-fiber/basic polymer used as composite proton exchange membrane and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TW201011963A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI409983B (en) * 2010-09-27 2013-09-21 Taiwan Textile Res Inst Proton exchange membrane and forming method thereof and fuel cell including the same
JP2018031082A (en) * 2016-08-23 2018-03-01 公立大学法人首都大学東京 Surface modified nanofibers, polymer electrolyte, method for producing polymer electrolyte, membrane electrode conjugate, and solid polymer type fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI409983B (en) * 2010-09-27 2013-09-21 Taiwan Textile Res Inst Proton exchange membrane and forming method thereof and fuel cell including the same
JP2018031082A (en) * 2016-08-23 2018-03-01 公立大学法人首都大学東京 Surface modified nanofibers, polymer electrolyte, method for producing polymer electrolyte, membrane electrode conjugate, and solid polymer type fuel cell
CN109642388A (en) * 2016-08-23 2019-04-16 公立大学法人首都大学东京 Surface finish nano fiber, dielectric film, the manufacturing method of dielectric film, membrane-electrode assembly and polymer electrolyte fuel cell
EP3505677A4 (en) * 2016-08-23 2020-02-26 Tokyo Metropolitan University Surface-modified nanofibers, electrolyte membrane, method for producing electrolyte membrane, membrane electrode assembly and solid polymer fuel cell
CN109642388B (en) * 2016-08-23 2022-07-08 公立大学法人首都大学东京 Surface-modified nanofiber, electrolyte membrane, method for producing electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell

Similar Documents

Publication Publication Date Title
Giancola et al. Composite short side chain PFSA membranes for PEM water electrolysis
US10381672B2 (en) Reinforced composite membrane for fuel cell and membrane-electrode assembly for fuel cell comprising the same
KR101376362B1 (en) Polymer Electrolyte Membrane for Fuel Cell and Method of manufacturing the same
KR101818547B1 (en) Polymer electrolyte membrane, method for manufacturing the same and membraneelectrode assembly comprising the same
JP2013503436A (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP5791732B2 (en) POLYMER ELECTROLYTE AND METHOD FOR PRODUCING THE SAME
KR102098639B1 (en) Polymer electrolyte membrane, method for manufacturing the same and membrane-electrode assembly comprising the same
CN109755613B (en) Three-dimensional framework and sulfonated aromatic polymer composite proton exchange membrane and preparation method thereof
KR20130114187A (en) Porous nano-fiber mats to reinforce proton conducting membranes for pem applications
JP6868685B2 (en) Composite polymer electrolyte membrane
KR20050070033A (en) Heat-resistant film and composite ion-exchange membrane
JP2006019294A (en) Polymer electrolyte membrane for fuel cell, and forming method for the same
JP2017532716A (en) film
JP6999411B2 (en) Composite polyelectrolyte membrane
CN101673831B (en) Composite proton exchange membrane of acidic nanofiber/alkaline high polymer and preparation method thereof
TW201011963A (en) Acidic nano-fiber/basic polymer used as composite proton exchange membrane and method for manufacturing the same
Wang et al. Balancing dimensional stability and performance of proton exchange membrane using hydrophilic nanofibers as the supports
Li et al. Surface-Densified Non-Fluorinated Proton Exchange Membrane Used for Direct Methanol Fuel Cell
JP3791685B2 (en) Composite ion exchange membrane and method for producing the same
JP2005044610A (en) Composite ion-exchange membrane and its manufacturing method
JP7265367B2 (en) polymer electrolyte membrane
KR102125412B1 (en) Method for manufacturing hydrocarbon based reinforced polymer electrolyte membrane for fuel cell and reinforced polymer electrolyte membrane manufactured thereby
JP3978669B2 (en) Ion exchange membrane and method for producing the same
JP2022552560A (en) Polymer electrolyte membrane, manufacturing method thereof, and electrochemical device including the same
JP4228062B2 (en) Porous membrane, composite ion exchange membrane and method for producing the same