WO2016194696A1 - Sputtering target and sputtering deposition method using same - Google Patents

Sputtering target and sputtering deposition method using same Download PDF

Info

Publication number
WO2016194696A1
WO2016194696A1 PCT/JP2016/065249 JP2016065249W WO2016194696A1 WO 2016194696 A1 WO2016194696 A1 WO 2016194696A1 JP 2016065249 W JP2016065249 W JP 2016065249W WO 2016194696 A1 WO2016194696 A1 WO 2016194696A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering
film
target
sputtering target
plate
Prior art date
Application number
PCT/JP2016/065249
Other languages
French (fr)
Japanese (ja)
Inventor
寛人 渡邉
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201680031021.7A priority Critical patent/CN107614746B/en
Priority to KR1020177037175A priority patent/KR20180014007A/en
Publication of WO2016194696A1 publication Critical patent/WO2016194696A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Definitions

  • the present invention relates to a target used for magnetron sputtering in which sputtering is performed by forming a magnetic field on the surface of the target, and a sputtering film forming method using the target.
  • “Touch panel” can be broadly divided into “resistance type” and “capacitance type”, and “resistance type” touch panel is for detecting X coordinate (or Y coordinate) formed on a transparent substrate made of resin film. And an electrode sheet for Y-coordinate (or X-coordinate) detection formed on a glass substrate with an insulator spacer interposed therebetween so that both electrode sheets face each other. Yes. And by pressing with a pen etc. from the surface of a transparent substrate according to a screen display, both electrode sheets will contact electrically, and, thereby, the X coordinate and Y coordinate of the said press position can be detected now.
  • the “capacitance-type touch panel” is a laminated body composed of an electrode sheet for X-coordinate (or Y-coordinate) detection and an electrode sheet for Y-coordinate (or X-coordinate) detection that face each other across an insulating sheet. It has a structure in which an insulator such as glass is arranged on the top, and when a finger is brought close to the surface of the insulator according to the screen display, the capacitance of the X coordinate detection electrode and the Y coordinate detection electrode in the vicinity changes. Therefore, the X coordinate and Y coordinate of the position of the finger can be detected. Both the above-mentioned “resistive type” and “capacitance type” touch panels can recognize coordinates each time a pen or the like is moved. Yes.
  • a transparent conductive film such as ITO (indium oxide-tin oxide) has been widely used as described in Patent Document 1.
  • ITO indium oxide-tin oxide
  • This transparent conductive film has the advantage that almost no circuit pattern such as an electrode is visually recognized because of its excellent transparency in the visible wavelength region.
  • the electrical resistance value is higher than that of a thin metal wire, the touch panel is enlarged and the response speed is high. It has a disadvantage that is not suitable for conversion.
  • Patent Document 2 and Patent Document 3 and the like a metal thin wire (metal film) having a mesh structure suitable for increasing the size of a touch panel and increasing the response speed due to its low electric resistance value has recently been developed. It has begun to be used as the touch panel becomes larger.
  • metal thin wires (metal films) have high reflectivity in the visible wavelength region, even if they are processed into a fine mesh structure, circuit patterns may be visible under high-intensity illumination, reducing product value. Have the disadvantages.
  • Patent Document 4 In order to make use of the characteristics of a metal fine wire (metal film) having a low electric resistance by reducing the high reflectance of the metal fine wire (metal film) visually recognized from the transparent substrate side, it is described in Patent Document 4 or Patent Document 5.
  • a reactive sputtering film formation layer also referred to as a blackening film
  • a transparent substrate made of a resin film In order to make use of the characteristics of a metal fine wire (metal film) having a low electric resistance by reducing the high reflectance of the metal fine wire (metal film) visually recognized from the transparent substrate side, it is described in Patent Document 4 or Patent Document 5.
  • a reactive sputtering film formation layer also referred to as a blackening film
  • a blackening film made of a metal oxide
  • the reactive sputtering film-forming layer made of metal oxide is usually reactive sputtering using a metal target (metal material) in a reactive gas atmosphere containing oxygen from the viewpoint of improving the film-forming efficiency of the metal oxide.
  • a metal target metal material
  • a reactive gas atmosphere containing oxygen from the viewpoint of improving the film-forming efficiency of the metal oxide.
  • an insulating film (oxide film) deposited in a non-erosion region on the target surface of the metal target causes arcing, and particles generated by this arcing are generated.
  • a circuit pattern such as an electrode by adhering to the surface of a long resin film
  • a disconnection failure or a short failure may occur.
  • the amount of the insulating film deposited in the non-erosion region increases, the insulating film easily peels off, and abnormal insulation may occur when the peeled insulating film enters the discharge space.
  • the present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a sputtering target capable of reducing generation of particles due to arcing or abnormal discharge.
  • the inventor forms a groove in the non-erosion region located in the center of the target surface of the metal target, and periodically replaces the plate-like member detachably fitted in the groove to insulate the non-erosion region.
  • the amount of deposited film can be suppressed to a certain amount or less, and it has been found that the amount of particles adhering to the surface of a long resin film can be reduced by suppressing the occurrence of arcing and abnormal discharge, and the present invention is completed. It came to do.
  • the sputtering target provided by the present invention is a sputtering target used for magnetron sputtering, and a plate-like member is detachably fitted in a non-erosion region at the center of the target surface of the sputtering target. It is characterized by.
  • the present invention it is possible to easily remove particle deposits caused by reactive sputtering film deposition attached to the non-erosion region at the center of the target surface of the sputtering target.
  • membrane on the surface of a resin film it can prevent that defects, such as a defect by abnormal discharge resulting from the said particle deposit, and adhesion of a particle, arise.
  • a sputtering web coater 10 capable of continuous film formation by a reactive sputtering method as shown in FIG. 1 will be described.
  • the sputtering web coater 10 shown in FIG. 1 is preferably used when a film forming process is continuously and efficiently performed on the surface of the long resin film F conveyed in a vacuum chamber 11 by a roll-to-roll method.
  • the vacuum chamber 11 incorporates various vacuum devices (not shown) such as a dry pump, a turbo molecular pump, and a cryocoil.
  • various vacuum devices such as a dry pump, a turbo molecular pump, and a cryocoil.
  • the pressure can be adjusted to about 0.1 to 10 Pa by introducing a sputtering gas.
  • a known gas such as argon is used as the sputtering gas, and a gas such as oxygen is further added depending on the purpose.
  • the shape and material of the vacuum chamber 11 are not particularly limited as long as they can withstand such a reduced pressure state, and various types can be used.
  • the unwinding roll 12 and the winding roll 24 which respectively unwind and wind the long resin film F conveyed by roll-to-roll, and the various which demarcate the conveyance path
  • the can roll 16 located substantially in the center of the roll-to-roll conveyance path is driven to rotate by a motor and circulates a coolant whose temperature is controlled outside the vacuum chamber 11 inside.
  • the long resin film F to be subjected to a film forming process with a heat load can be wound around the outer peripheral surface and cooled.
  • the space where the can roll 16 is provided is separated from the space where a roll group other than the can roll 16 is provided by the partition plate 11a.
  • the roll group that defines the transport path from the unwinding roll 12 to the can roll 16 includes a free roll 13 that guides the long resin film F, a tension sensor roll 14 that measures the tension of the long resin film F, and a motor.
  • the pre-drive feed roll 15 is arranged in this order.
  • the roll group that demarcates the conveyance path from the can roll 16 to the take-up roll 24 is a motor driven post feed roll 21 that adjusts the peripheral speed of the can roll 16 and the tension of the long resin film F.
  • the tension sensor roll 22 that performs the measurement and the free roll 23 that guides the long resin film F are arranged in this order.
  • the long resin film F is unwound from the unwinding roll 12 and taken up by the take-up roll 24 by the rotation of the can roll 16 and the front feed roll 15 and the rear feed roll 21 that rotate in conjunction with the rotation. It has become. At that time, the tension balance of the long resin film F is maintained by torque control using a powder clutch or the like of the unwinding roll 12 and the winding roll 24. Further, the peripheral speeds of the front feed roll 15 and the rear feed roll 21 can be adjusted with respect to the peripheral speed of the can roll 16, whereby the long resin film F is adhered to the outer peripheral surface of the can roll 16. It becomes possible to make it.
  • Magnetron sputtering cathodes 17, 18, 19 and 20 as film forming means are provided in this order.
  • Each of these magnetron sputtering cathodes 17 to 20 has gas release pipes 25, 26, 27, 28, 29, 30, 31, which discharge reactive gas, to the front part and the rear part in the conveying direction of the long resin film F. 32 is installed.
  • the magnetron sputtering cathode 40 shown in FIG. 2 has a structure in which a magnetic circuit 42 is housed in a housing 41 including a substantially rectangular parallelepiped housing 41a and a rectangular housing cover 41b covering the opening.
  • the magnetic circuit 42 includes a magnet 42a and a yoke 42b that supports the magnet 42a from the back side.
  • the housing cover 41 b has a cooling plate 43 superimposed on a surface opposite to the surface facing the magnetic circuit 42.
  • a cooling water passage 44 through which a coolant such as cooling water passes is formed on the surface of the housing cover 41b that faces the cooling plate 43.
  • the housing 41a and the housing cover 41b, and the housing cover 41b and the cooling plate 43 are sealed with a sealing material such as an O-ring.
  • the sputtering target 45 of one specific example of the present invention is provided on the surface opposite to the surface facing the housing cover 41b.
  • the periphery of the sputtering target 45 is provided with a step, and the sputtering target 45 is fixed to the cooling plate 43 by a clamp 46 that engages with the step.
  • an earth shield 47 is provided so as to wrap all of the sputtering target 45, the casing 41, the cooling plate 43, and the clamp 46, and the bottom of the housing 41 a is interposed via an insulating plate 48.
  • the lever is fixed to the ground shield 47. That is, the housing 41 and the sputtering target 45 that store the magnetic circuit 42 are electrically insulated from the earth shield 47.
  • the magnetron sputtering cathode 40 having such a structure is disposed in the vacuum chamber 11 with the target surface of the sputtering target 45 facing the long resin film F that is a film formation target.
  • the vacuum chamber 11 is evacuated and then Ar gas is introduced as a process gas.
  • Ar gas is ionized by electrons emitted from the sputtering target 45, and the ionized Ar gas collides with the target surface of the sputtering target 45 to knock out the target material.
  • a thin film is formed by depositing the target material on the surface of the long resin film F, which is a film formation target.
  • a poloidal magnetic field is generated on the target surface side of the sputtering target 45, and a voltage of minus several hundred volts is normally applied to the sputtering target 45, while the ground shield 47 in the peripheral portion is kept at the ground potential. Due to this potential difference, an orthogonal electromagnetic field is generated on the target surface side of the sputtering target 45. Secondary electrons emitted from the target surface of the sputtering target 45 move while drawing a cycloid orbit in a direction perpendicular to the orthogonal electromagnetic field on the target surface of the sputtering target 45. During this time, electrons that have collided with Ar gas and have lost a part of their energy make a trochoidal motion in the orthogonal electromagnetic field and drift and move in the poloidal magnetic field.
  • Electrons that move while drawing a trochoidal orbit by a magnetic circuit and an electric field in the sputtering cathode 40 are concentrated at a portion where the magnetic lines of force are parallel to the target surface of the sputtering target 45, that is, a portion where the magnetic lines of force and the electric field are orthogonal.
  • the collision of electrons and Ar gas frequently occurs due to the concentration of electrons, so that the target material is knocked out by the ionized Ar gas.
  • erosion occurs in a region excluding the central portion and the outer peripheral portion of the target surface of the sputtering target 45, and the central portion and the outer peripheral portion of the target surface become non-erosion regions.
  • the knocked-out target material coats the long resin film F, which is the film formation object, and also adheres to the non-erosion region of the sputtering target 45, and the particle deposit A and become.
  • the particle deposit A is oxidized by a substance constituting the target by the reactive gas. Since it becomes an oxide or a nitride, it is deposited in the form of a deposit that is not easily eroded by Ar ions generated by plasma.
  • the particle deposit A thus deposited peels off from the sputtering target 45 during the sputtering film formation, adheres to the long resin film F that is the film formation object, or causes arc discharge.
  • a disconnection failure or a short failure occurs when a circuit pattern such as an electrode is formed.
  • the sputtering target 45 of one specific example of the present invention is provided with a groove 45a in a non-erosion region located at the center of the target surface, and the groove 45a has a plate shape.
  • a member 49 is detachably fitted. Thereby, the particle deposit A attached to the non-erosion region of the sputtering target 45 during magnetron sputtering can be easily removed by removing the plate-like member 49.
  • the sputtering target according to the present invention since there is no adhesion of particles or the like on the surface of the long resin film that is the film formation surface, it is possible to form a homogeneous sputtering film that does not include foreign substances. Note that it is difficult to remove only the particle deposits in the non-erosion portion at the center of the sputtering target without using the plate-like member according to the present invention. In some cases, the sputtering target may be contaminated.
  • the non-erosion region also exists in the outer peripheral portion of the sputtering target as described above, it is conceivable to provide a member having the same function as the plate-like member provided in the central portion in the outer peripheral portion.
  • a rectangular frame-shaped cover member can be used to easily cover the sputtering without hindering the sputtering, thereby providing a plate-like member provided in the above-described non-erosion region of the central portion. The same function is obtained.
  • the cover member is preferably detachably provided on the clamp 46 or the like by a coupling means such as a screw.
  • the surface of the plate-like member 49 on the target surface side is substantially the same height as the target surface before erosion of the sputtering target 45 (shown by a one-dot chain line in FIG. 2) when fitted into the groove 45a of the sputtering target 45. Alternatively, it is preferably in a position recessed from the target surface before erosion. In other words, the surface of the plate-like member 49 on the target surface side preferably protrudes from the flat target surface before erosion of the sputtering target 45 and is not convex. If the plate-like member 49 protrudes from the target surface before erosion of the sputtering target 45, the electric field changes and abnormal discharge such as arc discharge occurs, or sputtering of the plate-like member 49 occurs.
  • the composition of the film that is promoted and formed on the long resin film F may deviate from the desired composition, which is not desirable.
  • the plate member 49 is preferably made of the same material as the sputtering target 45.
  • the plate-like member 49 may be constituted by a part of metal constituting the alloy composition of the sputtering target 45.
  • the plate-like member 49 is made of the same material as the sputtering target 45, or when the sputtering target 45 is an alloy, the same metal as a part of the metal constituting them is used, so that the plate-like member 49 is plate-like. Even if the member 49 is sputtered, the film formed on the surface of the long resin film F can be prevented from being contaminated by the plate-like member 49 during the film formation.
  • the plate-like member 49 may be attached to the sputtering target by a known attachment means such as a screw.
  • the surface of the plate-like member 49 on the target surface side preferably has a 10-point average roughness Rz of 10 ⁇ m or more and 500 ⁇ m or less, more preferably Rz 20 to 100 ⁇ m.
  • Rz the surface roughness of the plate-like member 49
  • the anchor effect is reduced and the particle deposits are easily detached.
  • the surface roughness Rz exceeds 500 ⁇ m, abnormal discharge tends to occur at the top of the rough surface of the plate-like member 49 depending on the voltage applied to the sputtering cathode.
  • abnormal discharge may occur when 500 V is applied to the sputtering cathode.
  • the surface roughness of the plate-like member 49 can be adjusted by shot blasting or thermal spraying.
  • a laminate film obtained by performing reactive sputtering using the film forming apparatus provided with the sputtering target of one specific example of the present invention described above, and an electrode substrate film obtained by patterning the laminate film Will be described.
  • a second laminated film in which a reactive sputtering film-forming layer, a second metal layer, and a third reactive sputtering film-forming layer are laminated can be produced.
  • the first laminate film includes a transparent substrate 50 made of a resin film, and a dry film forming method (dry method) on both surfaces of the transparent substrate 50.
  • the film-forming apparatus provided with the sputtering target of the above-mentioned one specific example of this invention for film-forming of this reactive sputtering film-forming layer 51 can be used suitably.
  • the metal layer 52 may be formed by only a dry film formation method (dry plating method) as shown in FIG. 4, or a dry film formation method (dry plating method) as shown in FIG. You may form combining a wet film-forming method (wet plating method).
  • the laminate film shown in FIG. 5 has a transparent substrate 50 made of a resin film, and a reactivity of 15 to 30 nm thick formed on both surfaces of the transparent substrate 50 by a dry film forming method (dry plating method).
  • a metal layer 53 formed by a plating method a dry film forming method
  • the second laminated film in FIG. 6 is obtained by further forming a second reactive sputtering film-forming layer on the metal layer of the first laminated film shown in FIG. Specifically, a transparent substrate 60 made of a resin film, and a reactive sputtering film forming layer 61 having a film thickness of 15 to 30 nm formed on both surfaces of the transparent substrate 60 by a dry film forming method (dry plating method); A metal layer 62 formed by a dry film formation method (dry plating method) on the reactive sputtering film formation layer 61 and a film formed by a wet film formation method (wet plating method) on the metal layer 62. The metal layer 63 and a second reactive sputtering film layer 64 having a film thickness of 15 to 30 nm formed on the metal layer 63 by a dry film forming method (dry plating method).
  • the reactive sputtering film forming layer 61 and the second reactive sputtering film forming layer 64 are formed on both surfaces of the metal layer in which the metal layer 62 and the metal layer 63 are integrated. ing.
  • the reason for this is that when an electrode substrate film produced using the laminate film is incorporated in a touch panel, a circuit pattern having a mesh structure composed of metal laminated thin wires can be reflected and cannot be seen.
  • an electrode substrate is formed using a first laminate film obtained by forming a reactive sputtering film-forming layer on one side of a transparent substrate made of a resin film and forming a metal layer on the reactive sputtering film-forming layer. Even when a film is produced, it is possible to prevent the circuit pattern from being visually recognized from the transparent substrate.
  • reactive sputtering is performed as described above is that, when an oxide target is applied for the purpose of forming a reactive sputtering film-forming layer made of a metal oxide, the film-forming speed becomes slow and is not suitable for mass production. is there. For this reason, a reactive film formation method such as reactive sputtering in which a Ni-based metal target (metal material) capable of high-speed film formation is introduced while a reactive gas containing oxygen is controlled is employed.
  • a method of controlling the reactive gas (1) a method of releasing a reactive gas at a constant flow rate, (2) a method of releasing a reactive gas so as to maintain a constant pressure, and (3) an impedance of a sputtering cathode.
  • Four methods are known: a method of releasing a reactive gas so that the plasma is constant (impedance control), and a method of (4) releasing a reactive gas so that the plasma intensity of sputtering is constant (plasma emission control). It has been.
  • the reactive gas that becomes the sputtering atmosphere is obtained by introducing oxygen into argon. It is done.
  • oxygen content of the reactive gas depends on the type of film deposition equipment and metal target (metal material), and is set as appropriate in consideration of optical characteristics such as reflectivity in the reactive sputtering film deposition layer and etchability with an etchant. In general, it is preferably 15% by volume or less.
  • the reactive sputtering film-forming layer is a metal composed of Ni alone or a Ni-based alloy to which one or more elements selected from Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, and Cu are added. It is formed by a reactive film formation method using a reactive gas containing a material and oxygen.
  • the Ni-based alloy is preferably a Ni—Cu alloy.
  • examples of the reactive film forming method include ion beam sputtering, vacuum deposition, ion plating, CVD, and the like, in addition to magnetron sputtering using the sputtering target of the present invention described above.
  • the optical constants (refractive index, extinction coefficient) at each wavelength of the reactive sputtering layer are greatly influenced by the degree of reaction, that is, the degree of oxidation, and are determined only by a metal material made of a Ni-based alloy. is not.
  • the constituent material (metal material) of the metal layer is not particularly limited as long as it is a metal having a low electrical resistance value, and is selected from, for example, Cu alone, Ti, Al, V, W, Ta, Si, Cr, or Ag.
  • a Cu-based alloy to which one or more elements are added, an Ag-based alloy, or an Ag-based alloy to which one or more elements selected from Ti, Al, V, W, Ta, Si, Cr, and Cu are added.
  • Cu alone is desirable from the viewpoint of processability and resistance value of the circuit pattern.
  • the thickness of the metal layer depends on the electrical characteristics and is not determined from optical elements, but is usually set to a thickness at which transmitted light cannot be measured.
  • the material of the resin film applied to the laminate film is not particularly limited, and specific examples thereof include polyethylene terephthalate (PET), polyethersulfone (PES), polyarylate (PAR), and polycarbonate (PC).
  • a single resin film selected from polyolefin (PO), triacetyl cellulose (TAC) and norbornene resin materials, or a single resin film selected from the above resin materials and an acrylic organic covering one or both sides of the single resin film A complex with a membrane may be mentioned.
  • norbornene resin materials representative examples include ZEONOR (trade name) manufactured by Nippon Zeon Co., Ltd. and Arton (trade name) manufactured by JSR Corporation.
  • ZEONOR trade name
  • the electrode substrate film produced using the laminated body film concerning this invention is used for a "touch panel" etc., what is excellent in the transparency in a visible wavelength region among the said resin films is desirable.
  • the electrode substrate film can be produced by patterning the first or second laminated film as described above and wiring the laminated thin line having a line width of 20 ⁇ m or less, for example.
  • a method for obtaining a sensor panel made of a metal mesh from the above-described second laminate film will be described.
  • a sensor panel made of a metal mesh is referred to as an electrode substrate film.
  • an electrode substrate film as shown in FIG. 7 can be obtained by etching the laminated film of the laminate film shown in FIG.
  • the electrode substrate film shown in FIG. 7 has a circuit pattern having a mesh structure composed of a transparent substrate 70 made of a resin film and metal laminated thin wires provided on both surfaces of the transparent substrate 70.
  • the first reactive sputtering deposition layer 71, the second metal layers 72 and 73, and the second reactivity of the third layer are counted from the transparent substrate 70 side.
  • a sputtering film-forming layer 74 is
  • the wiring process from the laminate film to the electrode substrate film can be performed by a known subtractive method.
  • a photoresist film is formed on the laminate film surface of the laminate film, exposed and developed so that the photoresist film remains at the location where the wiring pattern is to be formed, and there is a photoresist film on the laminate film surface.
  • the laminated film at the portion not to be removed is removed by chemical etching.
  • an etching solution for chemical etching an aqueous solution of ferric chloride or an aqueous solution of cupric chloride can be used.
  • the laminated film (reactive sputtering film forming layer and metal layer) constituting the laminated film is etched with an etchant such as a cupric chloride aqueous solution or a ferric chloride aqueous solution. It is preferable to have a characteristic that is easily processed. Moreover, it is preferable that circuit patterns, such as an electrode processed by etching, have a characteristic that is difficult to be visually recognized under high luminance illumination.
  • the electrode substrate film according to the present invention can be used for a touch panel by forming the electrode (wiring) pattern of the electrode substrate film thus formed into a stripe shape or a lattice shape for a touch panel. At that time, the metal thin wire processed into the electrode (wiring) pattern maintains the laminated structure of the laminated film, so that the circuit such as the electrode provided on the transparent substrate even under high luminance illumination.
  • the pattern can be provided as an electrode substrate film that is extremely difficult to be visually recognized.
  • Example 4 A laminate film as shown in FIG. 4 was produced using a film forming apparatus (sputtering web coater) as shown in FIG. A stainless steel roll having a diameter of 600 mm and a width of 750 mm was used for the can roll 16, and the outer peripheral surface was subjected to hard chrome plating.
  • the front feed roll 15 and the rear feed roll 21 were stainless steel rolls having a diameter of 150 mm and a width of 750 mm, and the outer peripheral surfaces thereof were subjected to hard chrome plating.
  • Gas discharge pipes 25, 26, 27, 28, 29, 30, 31, and 32 were installed on the upstream side and downstream side of each magnetron sputtering cathode 17, 18, 19, and 20, respectively.
  • the magnetron sputtering cathodes 17 and 18 were Ni—Cu targets for reactive sputtering film formation layers. As shown in FIG. 3, a groove extending in the longitudinal direction of the cathode is formed in the central portion of the target surface of the Ni—Cu target so that the surface roughness on the surface of the target surface is sufficient. A Cu plate-like member blasted to have a point average roughness Rz of 50 ⁇ m was fitted into this groove. The surface on the target surface side of the plate-like member and the target surface of the Ni—Cu target were set to the same height. On the other hand, an ordinary Cu target for a metal layer was attached to the magnetron sputtering cathodes 19 and 20.
  • the long resin film F constituting the transparent substrate was a PET film having a width of 600 mm and a length of 1200 m, and the can roll 16 was controlled to be cooled to 0 ° C.
  • the vacuum chamber 11 was evacuated to 5 Pa using a plurality of dry pumps, and further evacuated to 1 ⁇ 10 ⁇ 4 Pa using a plurality of turbo molecular pumps and cryocoils.
  • argon gas was introduced at 300 sccm from the gas release pipes 29, 30, 31, and 32, and a Cu film thickness of 80 nm was obtained for the cathodes 19 and 20. As shown, film formation was performed with power control.
  • a mixed gas obtained by mixing 280 sccm of argon gas and 15 sccm of oxygen gas is introduced from the gas release pipes 25, 26, 27, and 28.
  • Film formation was performed under power control around an applied voltage of 500 V so that a Cu oxide film thickness of 30 nm was obtained. Then, a total of 12 lots of laminate films were produced while replacing the plate-like member at the center with a new one every 3 lots.
  • adhesion of particles of 10 ⁇ m or more was confirmed on the obtained laminate film by an image inspection apparatus based on image analysis of a computer, 53 particles / lot on average were confirmed.
  • Example 2 A total of 12 lots of laminate films were produced in the same manner as in Example 1 except that the surface roughness of the plate member made of Cu was 10 ⁇ m in terms of the ten-point average roughness Rz. Adhesion of particles of 10 ⁇ m or more in the obtained laminate film was confirmed by the same method as in Example 1, and an average of 61 particles / lot was confirmed.
  • Example 3 A total of 12 lots of laminate films were produced in the same manner as in Example 1 except that the surface roughness of the plate member made of Cu was 20 ⁇ m in terms of the ten-point average roughness Rz. When adhesion of particles of 10 ⁇ m or more in the obtained laminate film was confirmed by the same method as in Example 1, particles of 55 particles / lot on average were confirmed.
  • Example 4 A total of 12 lots of laminate films were prepared in the same manner as in Example 1 except that the surface roughness of the plate member made of Cu was 200 ⁇ m in terms of the ten-point average roughness Rz. When adhesion of particles of 10 ⁇ m or more on the obtained laminate film was confirmed by the same method as in Example 1, particles of an average of 58 particles / lot were confirmed.
  • Example 5 A total of 12 lots of laminate films were produced in the same manner as in Example 1 except that the surface roughness of the plate member made of Cu was 450 ⁇ m in terms of the ten-point average roughness Rz. When adhesion of particles of 10 ⁇ m or more on the obtained laminate film was confirmed by the same method as in Example 1, particles of an average of 58 particles / lot were confirmed.
  • Example 6 A total of 12 lots of laminate films were produced in the same manner as in Example 1 except that the surface roughness of the plate member made of Cu was changed to a 10-point average roughness Rz of 5 ⁇ m. When adhesion of particles of 10 ⁇ m or more in the obtained laminate film was confirmed by the same method as in Example 1, particles of 130 particles / lot on average were confirmed.
  • Example 1 A total of 12 laminate films were prepared in the same manner as in Example 1 except that the conventional target was used as the Ni—Cu target for the reactive sputtering film formation layer. The adhesion of particles of 10 ⁇ m or more in the obtained laminate film was confirmed by the same method as in Example 1, and an average of 370 particles / lot was confirmed.
  • the number of particles of 10 ⁇ m or more is small. Specifically, if it is 150 pieces / lot or less, practical problems are less likely to occur, but 100 pieces / lot or less are more desirable. As described above, in Examples 1 to 6 using the sputtering target according to the present invention, the number of particles of 10 ⁇ m or more could be suppressed to 150 particles / lot or less. On the other hand, in Comparative Example 1 using a conventional sputtering target, the number of particles of 10 ⁇ m or more, which is twice or more than 150 / lot, was generated.
  • a Particle deposit F Long resin film 10 Sputtering web coater 11 Vacuum chamber 11a Partition plate 12 Unwinding roll 13 Free roll 14 Tension sensor roll 15 Front feed roll 16 Can roll 17, 18, 19, 20 Magnetron sputtering cathode 21 Rear feed Roll 22 Tension sensor roll 23 Free roll 24 Winding roll 25, 26, 27, 28, 29, 30, 31, 32 Gas release pipe 40 Magnetron sputtering cathode 41 Housing 41a Housing 41b Housing cover 42 Magnetic circuit 42a Magnet 42b York 43 Cooling plate 44 Cooling water channel 45 Sputtering target 45a Groove 46 Clamp 47 Ground shield 48 Insulating plate 49 Plate member 50 Resin Irumu (transparent substrate) 51 Reactive sputtering layer 52 Metal layer (copper layer) formed by dry deposition method 53 Metal layer (copper layer) formed by wet film formation method 60 Resin film (transparent substrate) 61 Reactive sputtering deposition layer 62 Metal layer (copper layer) formed by dry deposition method 63 Metal layer (copper layer) formed by wet film formation method 64

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Provided is a sputtering target capable of reducing generation of particles resulting from abnormal discharge and arcing. This sputtering target is used for magnetron sputtering, and a plate-like member is detachably fitted in a non-erosion region located at the central portion of a target surface of the sputtering target. When the sputtering target is fitted in, the surface of the plate-like member on the target surface side is preferably almost flush with the target surface before the sputtering target is eroded or is preferably disposed at a position recessed from the target surface.

Description

スパッタリングターゲット及びこれを用いたスパッタリング成膜方法Sputtering target and sputtering film forming method using the same
 本発明は、ターゲットの表面に磁場を形成してスパッタリングを行なうマグネトロンスパッタリングに使用するターゲット及び該ターゲットを用いたスパッタリング成膜方法に関する。 The present invention relates to a target used for magnetron sputtering in which sputtering is performed by forming a magnetic field on the surface of the target, and a sputtering film forming method using the target.
 携帯電話、携帯電子文書機器、自動販売機、カーナビゲーション等に搭載されるフラットパネルディスプレイ(FPD)には、指やペンの先を表示画面に接触させて入力を行う「タッチパネル」の採用が普及している。「タッチパネル」は大きく分けて「抵抗型」と「静電容量型」があり、「抵抗型」のタッチパネルは、樹脂フィルムから成る透明基板上に成膜されたX座標(またはY座標)検知用の電極シートと、ガラス基板上に成膜されたY座標(またはX座標)検知用の電極シートとを、絶縁体スペーサーを挟んでこれら両電極シートが対向するように重ね合わせた構造になっている。そして、画面表示に従って透明基板の表面からペン等で押圧することで両電極シートが電気的に接触し、これにより当該押圧位置のX座標及びY座標が検知できるようになっている。 For flat panel displays (FPD) installed in mobile phones, portable electronic document devices, vending machines, car navigation systems, etc., the adoption of “touch panels” that allow input by bringing the tip of a finger or pen into contact with the display screen has become widespread is doing. “Touch panel” can be broadly divided into “resistance type” and “capacitance type”, and “resistance type” touch panel is for detecting X coordinate (or Y coordinate) formed on a transparent substrate made of resin film. And an electrode sheet for Y-coordinate (or X-coordinate) detection formed on a glass substrate with an insulator spacer interposed therebetween so that both electrode sheets face each other. Yes. And by pressing with a pen etc. from the surface of a transparent substrate according to a screen display, both electrode sheets will contact electrically, and, thereby, the X coordinate and Y coordinate of the said press position can be detected now.
 他方、「静電容量型のタッチパネル」は、絶縁シートを挟んで対向するX座標(またはY座標)検知用の電極シートと、Y座標(またはX座標)検知用の電極シートとからなる積層体の上にガラス等の絶縁体が配置された構造になっており、画面表示に従って絶縁体の表面に指を近づけたときにその近傍のX座標検知電極及びY座標検知電極の電気容量が変化するため、当該指の位置のX座標及びY座標が検知できるようになっている。上記した「抵抗型」及び「静電容量型」のタッチパネルはいずれもペン等を移動させればその都度座標を認識することができるので、文字等の入力を行うことが可能な仕組みとなっている。 On the other hand, the “capacitance-type touch panel” is a laminated body composed of an electrode sheet for X-coordinate (or Y-coordinate) detection and an electrode sheet for Y-coordinate (or X-coordinate) detection that face each other across an insulating sheet. It has a structure in which an insulator such as glass is arranged on the top, and when a finger is brought close to the surface of the insulator according to the screen display, the capacitance of the X coordinate detection electrode and the Y coordinate detection electrode in the vicinity changes. Therefore, the X coordinate and Y coordinate of the position of the finger can be detected. Both the above-mentioned “resistive type” and “capacitance type” touch panels can recognize coordinates each time a pen or the like is moved. Yes.
 上記した電極シートを構成する導電性材料として、特許文献1に記載のように従来からITO(酸化インジウム-酸化錫)等の透明導電膜が広く用いられている。この透明導電膜は、可視波長領域における透過性に優れるため電極等の回路パターンが殆ど視認されない利点を有するが、金属製の細線よりは電気抵抗値が高いためタッチパネルの大型化や応答速度の高速化には不向きな欠点を有する。 As the conductive material constituting the electrode sheet, a transparent conductive film such as ITO (indium oxide-tin oxide) has been widely used as described in Patent Document 1. This transparent conductive film has the advantage that almost no circuit pattern such as an electrode is visually recognized because of its excellent transparency in the visible wavelength region. However, since the electrical resistance value is higher than that of a thin metal wire, the touch panel is enlarged and the response speed is high. It has a disadvantage that is not suitable for conversion.
 そこで、特許文献2や特許文献3等に開示されているように、電気抵抗値が低いためタッチパネルの大型化や応答速度の高速化に適したメッシュ構造の金属製細線(金属膜)が近年のタッチパネルの大型化に伴って使用され始めている。しかし、金属製細線(金属膜)は可視波長領域における反射率が高いため、例え微細なメッシュ構造に加工したとしても高輝度照明下において回路パターンが視認されることがあり、製品価値を低下させてしまう欠点を有する。 Therefore, as disclosed in Patent Document 2 and Patent Document 3 and the like, a metal thin wire (metal film) having a mesh structure suitable for increasing the size of a touch panel and increasing the response speed due to its low electric resistance value has recently been developed. It has begun to be used as the touch panel becomes larger. However, since metal thin wires (metal films) have high reflectivity in the visible wavelength region, even if they are processed into a fine mesh structure, circuit patterns may be visible under high-intensity illumination, reducing product value. Have the disadvantages.
 この透明基板側から視認される金属製細線(金属膜)の高い反射率を低減させて電気抵抗値の低い金属製細線(金属膜)の特性を生かすため、特許文献4や特許文献5に記載のように、樹脂フィルムから成る透明基板と金属製細線(金属膜)との間に金属酸化物から成る反応性スパッタリング成膜層(黒化膜とも称される)を介在させる技術が提案されている。 In order to make use of the characteristics of a metal fine wire (metal film) having a low electric resistance by reducing the high reflectance of the metal fine wire (metal film) visually recognized from the transparent substrate side, it is described in Patent Document 4 or Patent Document 5. As described above, a technique has been proposed in which a reactive sputtering film formation layer (also referred to as a blackening film) made of a metal oxide is interposed between a transparent substrate made of a resin film and a thin metal wire (metal film). Yes.
特開2003-151358号公報JP 2003-151358 A 特開2011-018194号公報JP 2011-018194 A 特開2013-069261号公報JP 2013-0669261 A 特開2014-142462号公報JP 2014-142462 A 特開2013-225276号公報JP 2013-225276 A
 金属酸化物から成る上記反応性スパッタリング成膜層は、金属酸化物の成膜効率を図る観点から、通常、酸素を含む反応性ガス雰囲気下で金属ターゲット(金属材)を用いた反応性スパッタリング等により長尺状樹脂フィルム面に連続的に成膜することが行われている。そして、この反応性スパッタリング成膜層上に更に銅等の金属ターゲット(金属材)を用いたスパッタリング等により金属層を連続的に成膜することで電極基板フィルムの作製に使用される積層体フィルムの作製を行っている。 The reactive sputtering film-forming layer made of metal oxide is usually reactive sputtering using a metal target (metal material) in a reactive gas atmosphere containing oxygen from the viewpoint of improving the film-forming efficiency of the metal oxide. Thus, continuous film formation is performed on the surface of the long resin film. And the laminated film used for preparation of an electrode substrate film by forming a metal layer continuously on this reactive sputtering film-forming layer by sputtering etc. using metal targets (metal materials), such as copper further Is being made.
 しかし、酸素を含む反応性ガスによる反応性スパッタリングを長時間実施すると、上記金属ターゲットのターゲット面における非エロージョン領域に堆積した絶縁膜(酸化膜)がアーキングの誘因となり、このアーキングにより発生したパーティクルが長尺樹脂フィルムの表面に付着して電極等の回路パターンを形成する際に断線不良やショート不良を発生させることがあった。また、非エロージョン領域に堆積した絶縁膜の堆積量が増加すると絶縁膜が剥離しやすくなり、この剥離した絶縁膜が放電空間に侵入することで異常放電が発生することがあった。この異常放電により発生したパーティクルも長尺樹脂フィルムの表面に付着すると電極等の回路パターンを形成する際に断線不良やショート不良の原因となる。本発明は上記した従来の問題点に鑑みてなされたものであり、アーキングや異常放電によるパーティクルの発生を低減することが可能なスパッタリングターゲットを提供することを目的としている。 However, when reactive sputtering with a reactive gas containing oxygen is performed for a long time, an insulating film (oxide film) deposited in a non-erosion region on the target surface of the metal target causes arcing, and particles generated by this arcing are generated. When forming a circuit pattern such as an electrode by adhering to the surface of a long resin film, a disconnection failure or a short failure may occur. Further, when the amount of the insulating film deposited in the non-erosion region increases, the insulating film easily peels off, and abnormal insulation may occur when the peeled insulating film enters the discharge space. If particles generated by this abnormal discharge also adhere to the surface of the long resin film, it may cause disconnection failure or short circuit failure when forming a circuit pattern such as an electrode. The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a sputtering target capable of reducing generation of particles due to arcing or abnormal discharge.
 本発明者は、金属ターゲットのターゲット面の中央部に位置する非エロージョン領域に溝を形成し、この溝に着脱自在に嵌め込んだプレート状部材を定期的に交換することで該非エロージョン領域における絶縁膜の堆積量をある一定量以下に抑えることができ、これによりアーキングや異常放電の発生を抑えて長尺樹脂フィルムの表面に付着するパーティクルの量を低減し得ることを見出し、本発明を完成するに至った。すなわち、本発明が提供するスパッタリングターゲットは、マグネトロンスパッタリングに使用されるスパッタリングターゲットであって、該スパッタリングターゲットのターゲット面の中央部の非エロージョン領域に、板状部材が着脱自在に嵌め込まれていることを特徴としている。 The inventor forms a groove in the non-erosion region located in the center of the target surface of the metal target, and periodically replaces the plate-like member detachably fitted in the groove to insulate the non-erosion region. The amount of deposited film can be suppressed to a certain amount or less, and it has been found that the amount of particles adhering to the surface of a long resin film can be reduced by suppressing the occurrence of arcing and abnormal discharge, and the present invention is completed. It came to do. That is, the sputtering target provided by the present invention is a sputtering target used for magnetron sputtering, and a plate-like member is detachably fitted in a non-erosion region at the center of the target surface of the sputtering target. It is characterized by.
 本発明によれば、スパッタリングターゲットのターゲット面の中央部の非エロージョン領域に付着した反応性スパッタリング成膜によるパーティクル堆積物を容易に除去することができる。これにより、樹脂フィルムの表面に反応性スパッタリング膜を成膜する際に上記パーティクル堆積物に起因する異常放電による欠陥やパーティクルの付着等の欠陥が生じるのを防ぐことができる。 According to the present invention, it is possible to easily remove particle deposits caused by reactive sputtering film deposition attached to the non-erosion region at the center of the target surface of the sputtering target. Thereby, when forming a reactive sputtering film | membrane on the surface of a resin film, it can prevent that defects, such as a defect by abnormal discharge resulting from the said particle deposit, and adhesion of a particle, arise.
本発明のスパッタリングターゲットを備えたマグネトロンスパッタリングカソードを用いた成膜装置の模式的な正面図である。It is a typical front view of the film-forming apparatus using the magnetron sputtering cathode provided with the sputtering target of this invention. 本発明の一具体例のスパッタリングターゲットを備えたマグネトロンスパッタリングカソードの縦断面図である。It is a longitudinal cross-sectional view of the magnetron sputtering cathode provided with the sputtering target of one specific example of this invention. 本発明のスパッタリングターゲットの一具体例の斜視図である。It is a perspective view of one specific example of the sputtering target of this invention. 本発明のスパッタリングターゲットを備えたマグネトロンスパッタリングカソードを用いた成膜装置によって作製可能な第1の積層体フィルムの模式的略断面図である。It is a typical schematic sectional drawing of the 1st laminated body film which can be produced with the film-forming apparatus using the magnetron sputtering cathode provided with the sputtering target of this invention. 本発明のスパッタリングターゲットを備えたマグネトロンスパッタリングカソードを用いた成膜装置によって作製可能な第1の積層体フィルムの変更例の模式的略断面図である。It is a typical schematic sectional view of the example of a change of the 1st laminated body film which can be produced with the film-forming apparatus using the magnetron sputtering cathode provided with the sputtering target of the present invention. 本発明のスパッタリングターゲットを備えたマグネトロンスパッタリングカソードを用いた成膜装置によって作製可能な第2の積層体フィルムの模式的略断面図である。It is a typical schematic sectional drawing of the 2nd laminated body film which can be produced with the film-forming apparatus using the magnetron sputtering cathode provided with the sputtering target of this invention. 本発明のスパッタリングターゲットを備えたマグネトロンスパッタリングカソードを用いた成膜装置によって作製した第2の積層体フィルムをパターニング加工して得た電極基板フィルムの模式的略断面図である。It is a typical schematic sectional drawing of the electrode substrate film obtained by patterning the 2nd laminated body film produced with the film-forming apparatus using the magnetron sputtering cathode provided with the sputtering target of this invention.
 先ず、本発明のスパッタリングターゲットを備えたマグネトロンスパッタリングカソードが用いられる成膜装置の一具体例として、図1に示すような反応性スパッタリング法による連続成膜が可能なスパッタリングウェブコータ10について説明する。この図1に示すスパッタリングウェブコータ10は、真空チャンバー11内においてロールツーロール方式で搬送される長尺樹脂フィルムFの表面に連続的に効率よく成膜処理を施す場合に好適に用いられる。 First, as a specific example of a film forming apparatus using a magnetron sputtering cathode provided with the sputtering target of the present invention, a sputtering web coater 10 capable of continuous film formation by a reactive sputtering method as shown in FIG. 1 will be described. The sputtering web coater 10 shown in FIG. 1 is preferably used when a film forming process is continuously and efficiently performed on the surface of the long resin film F conveyed in a vacuum chamber 11 by a roll-to-roll method.
 具体的に説明すると、真空チャンバー11には、ドライポンプ、ターボ分子ポンプ、クライオコイル等の種々の真空装置(図示せず)が組み込まれており、スパッタリング成膜の際にこれら真空装置により真空チャンバー11内を到達圧力10-4Pa程度まで減圧を行った後、スパッタリングガスの導入により0.1~10Pa程度に圧力調整できるようになっている。スパッタリングガスにはアルゴン等公知のガスが使用され、目的に応じて更に酸素等のガスが添加される。真空チャンバー11の形状や材質は、このような減圧状態に耐え得るものであれば特に限定はなく種々のものを使用することができる。 More specifically, the vacuum chamber 11 incorporates various vacuum devices (not shown) such as a dry pump, a turbo molecular pump, and a cryocoil. After the pressure inside 11 is reduced to an ultimate pressure of about 10 −4 Pa, the pressure can be adjusted to about 0.1 to 10 Pa by introducing a sputtering gas. A known gas such as argon is used as the sputtering gas, and a gas such as oxygen is further added depending on the purpose. The shape and material of the vacuum chamber 11 are not particularly limited as long as they can withstand such a reduced pressure state, and various types can be used.
 この真空チャンバー11内に、ロールツーロールで搬送される長尺樹脂フィルムFの巻出し及び巻取りをそれぞれ行う巻出ロール12および巻取ロール24、並びに該ロールツーロールの搬送経路を画定する各種ロール群が配置されている。上記各種ロール群のうち、ロールツーロールの搬送経路の略中央部に位置するキャンロール16は、モータで回転駆動され且つ内部に真空チャンバー11の外部で温調された冷媒が循環しており、これにより熱負荷のかかる成膜処理が施される長尺樹脂フィルムFを外周面に巻き付けて冷却できるようになっている。なお、キャンロール16が設けられている空間は、キャンロール16以外のロール群が設けられている空間から仕切板11aで隔離されている。 In this vacuum chamber 11, the unwinding roll 12 and the winding roll 24 which respectively unwind and wind the long resin film F conveyed by roll-to-roll, and the various which demarcate the conveyance path | route of this roll-to-roll Roll groups are arranged. Among the above-mentioned various roll groups, the can roll 16 located substantially in the center of the roll-to-roll conveyance path is driven to rotate by a motor and circulates a coolant whose temperature is controlled outside the vacuum chamber 11 inside. As a result, the long resin film F to be subjected to a film forming process with a heat load can be wound around the outer peripheral surface and cooled. The space where the can roll 16 is provided is separated from the space where a roll group other than the can roll 16 is provided by the partition plate 11a.
 巻出ロール12からキャンロール16までの搬送経路を画定するロール群には、長尺樹脂フィルムFを案内するフリーロール13、長尺樹脂フィルムFの張力の測定を行う張力センサロール14、及びモータ駆動の前フィードロール15がこの順で配置されている。キャンロール16から巻取ロール24までの搬送経路を画定するロール群も、上記と同様に、キャンロール16の周速度に対する調整が行われるモータ駆動の後フィードロール21、長尺樹脂フィルムFの張力の測定を行う張力センサロール22、および長尺樹脂フィルムFを案内するフリーロール23がこの順に配置されている。 The roll group that defines the transport path from the unwinding roll 12 to the can roll 16 includes a free roll 13 that guides the long resin film F, a tension sensor roll 14 that measures the tension of the long resin film F, and a motor. The pre-drive feed roll 15 is arranged in this order. Similarly to the above, the roll group that demarcates the conveyance path from the can roll 16 to the take-up roll 24 is a motor driven post feed roll 21 that adjusts the peripheral speed of the can roll 16 and the tension of the long resin film F. The tension sensor roll 22 that performs the measurement and the free roll 23 that guides the long resin film F are arranged in this order.
 上記したキャンロール16の回転とこれに連動して回転する前フィードロール15および後フィードロール21により、長尺樹脂フィルムFは巻出ロール12から巻き出されて巻取ロール24で巻き取られるようになっている。その際、長尺樹脂フィルムFの張力バランスは、巻出ロール12および巻取ロール24のパウダークラッチ等によるトルク制御によって保たれる。また、前フィードロール15および後フィードロール21の周速度は、それぞれキャンロール16の周速度に対して調整できるようになっており、これによりキャンロール16の外周面に長尺樹脂フィルムFを密着させることが可能になる。 The long resin film F is unwound from the unwinding roll 12 and taken up by the take-up roll 24 by the rotation of the can roll 16 and the front feed roll 15 and the rear feed roll 21 that rotate in conjunction with the rotation. It has become. At that time, the tension balance of the long resin film F is maintained by torque control using a powder clutch or the like of the unwinding roll 12 and the winding roll 24. Further, the peripheral speeds of the front feed roll 15 and the rear feed roll 21 can be adjusted with respect to the peripheral speed of the can roll 16, whereby the long resin film F is adhered to the outer peripheral surface of the can roll 16. It becomes possible to make it.
 キャンロール16の外周面に対向する位置には、キャンロール16の外周面上に画定される搬送経路(すなわち、キャンロール16の外周面の内、長尺樹脂フィルムFが巻き付けられる領域)に沿って成膜手段としてのマグネトロンスパッタリングカソード17、18、19および20がこの順に設けられている。これらマグネトロンスパッタリングカソード17~20の各々は、長尺樹脂フィルムFの搬送方向における前方部分及び後方部分に、反応性ガスを放出するガス放出パイプ25、26、27、28、29、30、31、32が設置されている。 At a position facing the outer peripheral surface of the can roll 16, along a conveyance path defined on the outer peripheral surface of the can roll 16 (that is, an area in which the long resin film F is wound around the outer peripheral surface of the can roll 16). Magnetron sputtering cathodes 17, 18, 19 and 20 as film forming means are provided in this order. Each of these magnetron sputtering cathodes 17 to 20 has gas release pipes 25, 26, 27, 28, 29, 30, 31, which discharge reactive gas, to the front part and the rear part in the conveying direction of the long resin film F. 32 is installed.
 次に、上記したマグネトロンスパッタリングカソード17、18、19および20について図2の縦断面図を参照しながら詳細に説明する。この図2に示すマグネトロンスパッタリングカソード40は、略直方体形状のハウジング41aと、その開口部を覆う矩形のハウジングカバー41bとからなる筐体41内に磁気回路42が格納された構造になっている。磁気回路42は、磁石42aとこれを裏側から支持するヨーク42bとで構成される。ハウジングカバー41bは、その磁気回路42と対向する面とは反対側の面に冷却板43が重ね合わされている。また、ハウジングカバー41bにおいて冷却板43と対向する面には冷却水などの冷媒が通過する冷却水路44が形成されている。なお、ハウジング41aとハウジングカバー41bとの間、およびハウジングカバー41bと冷却板43との間はOリングなどのシール材によってシールされている。 Next, the magnetron sputtering cathodes 17, 18, 19 and 20 will be described in detail with reference to the longitudinal sectional view of FIG. The magnetron sputtering cathode 40 shown in FIG. 2 has a structure in which a magnetic circuit 42 is housed in a housing 41 including a substantially rectangular parallelepiped housing 41a and a rectangular housing cover 41b covering the opening. The magnetic circuit 42 includes a magnet 42a and a yoke 42b that supports the magnet 42a from the back side. The housing cover 41 b has a cooling plate 43 superimposed on a surface opposite to the surface facing the magnetic circuit 42. A cooling water passage 44 through which a coolant such as cooling water passes is formed on the surface of the housing cover 41b that faces the cooling plate 43. The housing 41a and the housing cover 41b, and the housing cover 41b and the cooling plate 43 are sealed with a sealing material such as an O-ring.
 この冷却板43において、ハウジングカバー41bに対向する面とは反対側の面に本発明の一具体例のスパッタリングターゲット45が設けられている。スパッタリングターゲット45の周縁部は段差が設けられており、この段差部に係合するクランプ46によってスパッタリングターゲット45は冷却板43に固着されている。スパッタリングターゲット45のターゲット面を除いてこれらスパッタリングターゲット45、筐体41、冷却板43、およびクランプ46の全体を包み込むようにアースシールド47が設けられており、ハウジング41aの底部は絶縁板48を介してこのアースシールド47に固着されている。すなわち、磁気回路42を格納する筐体41及びスパッタリングターゲット45は、アースシールド47に対して電気的に絶縁されている。 In this cooling plate 43, the sputtering target 45 of one specific example of the present invention is provided on the surface opposite to the surface facing the housing cover 41b. The periphery of the sputtering target 45 is provided with a step, and the sputtering target 45 is fixed to the cooling plate 43 by a clamp 46 that engages with the step. Except for the target surface of the sputtering target 45, an earth shield 47 is provided so as to wrap all of the sputtering target 45, the casing 41, the cooling plate 43, and the clamp 46, and the bottom of the housing 41 a is interposed via an insulating plate 48. The lever is fixed to the ground shield 47. That is, the housing 41 and the sputtering target 45 that store the magnetic circuit 42 are electrically insulated from the earth shield 47.
 かかる構造のマグネトロンスパッタリングカソード40は、前述したように真空チャンバー11内にスパッタリングターゲット45のターゲット面を被成膜物である長尺樹脂フィルムFに対向させて配置されている。スパッタリング成膜の際には、真空チャンバー11内を真空にしてからプロセスガスとしてArガスを導入する。この状態でスパッタリングターゲット45に電圧を印加すると、スパッタリングターゲット45から放出された電子によりArガスがイオン化し、このイオン化されたArガスがスパッタリングターゲット45のターゲット面に衝突してターゲット物質がたたき出され、このターゲット物質が被成膜物である長尺樹脂フィルムFの表面に堆積することにより薄膜が形成される。 As described above, the magnetron sputtering cathode 40 having such a structure is disposed in the vacuum chamber 11 with the target surface of the sputtering target 45 facing the long resin film F that is a film formation target. At the time of sputtering film formation, the vacuum chamber 11 is evacuated and then Ar gas is introduced as a process gas. When a voltage is applied to the sputtering target 45 in this state, the Ar gas is ionized by electrons emitted from the sputtering target 45, and the ionized Ar gas collides with the target surface of the sputtering target 45 to knock out the target material. A thin film is formed by depositing the target material on the surface of the long resin film F, which is a film formation target.
 その際、スパッタリングターゲット45のターゲット面側ではポロイダル磁場が発生し、また、スパッタリングターゲット45には通常マイナス数百ボルトの電圧が印加される一方でその周辺部のアースシールド47はアース電位に保たれており、この電位差によりスパッタリングターゲット45のターゲット面側には直交電磁場が生ずる。スパッタリングターゲット45のターゲット面から放出された二次電子は、スパッタリングターゲット45のターゲット面上の直交電磁場に垂直な方向にサイクロイド軌道を描きながら運動する。この間にArガスと衝突してエネルギーの一部を失った電子は直交電磁場中をトロコイド運動し、ポロイダル磁場の中をドリフトして移動する。 At that time, a poloidal magnetic field is generated on the target surface side of the sputtering target 45, and a voltage of minus several hundred volts is normally applied to the sputtering target 45, while the ground shield 47 in the peripheral portion is kept at the ground potential. Due to this potential difference, an orthogonal electromagnetic field is generated on the target surface side of the sputtering target 45. Secondary electrons emitted from the target surface of the sputtering target 45 move while drawing a cycloid orbit in a direction perpendicular to the orthogonal electromagnetic field on the target surface of the sputtering target 45. During this time, electrons that have collided with Ar gas and have lost a part of their energy make a trochoidal motion in the orthogonal electromagnetic field and drift and move in the poloidal magnetic field.
 この間に電子は再度Arガスと衝突し、Ar+e→Ar+2eで示されるように、α作用によりArイオンと電子を生成する。生成したArイオンは、シース領域に拡散すると負に印加されたスパッタリングターゲット45に向かって急激に加速される。数百eVの運動エネルギーを持ったArイオンがスパッタリングターゲット45に衝突すると、スパッタリングターゲット45はそのターゲット面がスパッタリングされてスパッタリング粒子を放出すると共にγ作用により二次電子を放出する。以上の現象がなだれ状に発生することによって、プラズマが維持される。 During this time, the electrons collide with Ar gas again, and as shown by Ar + e → Ar + + 2e , Ar ions and electrons are generated by the α action. The produced Ar ions are rapidly accelerated toward the negatively applied sputtering target 45 when diffused into the sheath region. When Ar ions having a kinetic energy of several hundreds of eV collide with the sputtering target 45, the target surface is sputtered to emit sputtered particles and emit secondary electrons by γ action. When the above phenomenon occurs in an avalanche state, plasma is maintained.
 スパッタリングカソード40内の磁気回路と電場によりトロコイド軌道を描きながら移動する電子は、磁力線がスパッタリングターゲット45のターゲット面と平行となる部分、即ち、磁力線と電場が直行する箇所に集中する。電子の集中により、電子とArガスの衝突が頻発するので、イオン化されたArガスによるターゲット物質のたたき出しが集中する。その結果、図2に示すようにスパッタリングターゲット45のターゲット面の中央部と外周部を除いた領域にエロージョン(浸食)が発生し、該ターゲット面の中央部と外周部は非エロージョン領域となる。 Electrons that move while drawing a trochoidal orbit by a magnetic circuit and an electric field in the sputtering cathode 40 are concentrated at a portion where the magnetic lines of force are parallel to the target surface of the sputtering target 45, that is, a portion where the magnetic lines of force and the electric field are orthogonal. The collision of electrons and Ar gas frequently occurs due to the concentration of electrons, so that the target material is knocked out by the ionized Ar gas. As a result, as shown in FIG. 2, erosion (erosion) occurs in a region excluding the central portion and the outer peripheral portion of the target surface of the sputtering target 45, and the central portion and the outer peripheral portion of the target surface become non-erosion regions.
 上記したスパッタリング成膜の場合、たたき出されたターゲット物質は、被成膜物である長尺樹脂フィルムFを被覆するほか、かかるスパッタリングターゲット45の非エロージョン領域にも付着し、パーティクル堆積物Aとなる。特に、スパッタリング成膜雰囲気中に酸素ガスや窒素ガスなどの反応性ガスを供給しながらスパッタリング成膜を行う反応性スパッタリングでは、パーティクル堆積物Aは、当該反応性ガスによってターゲットを構成する物質の酸化物や窒化物になるので、プラズマで生じたArイオンで侵食されにくい堆積物の状態で堆積する。このようにして堆積したパーティクル堆積物Aは、スパッタリング成膜中にスパッタリングターゲット45から剥離し、被成膜物である長尺樹脂フィルムFに付着したり、アーク放電の原因となる。そして、アーキングや異常放電により発生したパーティクルが長尺樹脂フィルムFに付着すると、電極等の回路パターンを形成する際に断線不良やショート不良を生じさせる。 In the case of the above-described sputtering film formation, the knocked-out target material coats the long resin film F, which is the film formation object, and also adheres to the non-erosion region of the sputtering target 45, and the particle deposit A and Become. In particular, in reactive sputtering in which sputtering film formation is performed while supplying a reactive gas such as oxygen gas or nitrogen gas in the sputtering film formation atmosphere, the particle deposit A is oxidized by a substance constituting the target by the reactive gas. Since it becomes an oxide or a nitride, it is deposited in the form of a deposit that is not easily eroded by Ar ions generated by plasma. The particle deposit A thus deposited peels off from the sputtering target 45 during the sputtering film formation, adheres to the long resin film F that is the film formation object, or causes arc discharge. When particles generated by arcing or abnormal discharge adhere to the long resin film F, a disconnection failure or a short failure occurs when a circuit pattern such as an electrode is formed.
 そこで、本発明の一具体例のスパッタリングターゲット45は、図2および図3に示すように、ターゲット面の中央部に位置する非エロージョン領域に溝45aが設けられており、この溝45aに板状部材49が着脱自在に嵌め込まれている。これにより、マグネトロンスパッタリングの際にスパッタリングターゲット45の非エロージョン領域に付着したパーティクル堆積物Aを板状部材49を取り外すことで容易に除去することができる。 Therefore, as shown in FIGS. 2 and 3, the sputtering target 45 of one specific example of the present invention is provided with a groove 45a in a non-erosion region located at the center of the target surface, and the groove 45a has a plate shape. A member 49 is detachably fitted. Thereby, the particle deposit A attached to the non-erosion region of the sputtering target 45 during magnetron sputtering can be easily removed by removing the plate-like member 49.
 すなわち、非エロージョン部分に堆積した絶縁膜によるアーキングや剥離による異常放電が頻発する前に新しい板状部材49に交換することで、長尺樹脂フィルムFに付着するパーティクル量の増加を抑制することが可能となる。このように、本発明に係るスパッタリングターゲットを用いると、被成膜面である長尺樹脂フィルムの表面にパーティクル等の付着がないので、異物などが含まれない均質なスパッタリング膜を成膜できる。なお、本発明に係る板状部材を用いずに、スパッタリングターゲットの中央部の非エロージョン部分のパーティクル堆積物のみを除去することは困難であり、無理に除去しようとすると、パーティクル堆積物を除去する際にスパッタリングターゲットを汚染する恐れがある。 That is, it is possible to suppress an increase in the amount of particles adhering to the long resin film F by replacing with a new plate-like member 49 before abnormal discharge due to arcing or peeling due to the insulating film deposited on the non-erosion portion frequently occurs. It becomes possible. As described above, when the sputtering target according to the present invention is used, since there is no adhesion of particles or the like on the surface of the long resin film that is the film formation surface, it is possible to form a homogeneous sputtering film that does not include foreign substances. Note that it is difficult to remove only the particle deposits in the non-erosion portion at the center of the sputtering target without using the plate-like member according to the present invention. In some cases, the sputtering target may be contaminated.
 非エロージョン領域は、前述したようにスパッタリングターゲットの外周部にも存在するので、中央部に設けた板状部材と同様の機能を有する部材を当該外周部に設けることも考えられる。しかし、スパッタリングターゲットの外周部であれば、例えば矩形枠形状のカバー部材を用いることでスパッタリングを阻害することなく容易に覆うことができ、これにより上記した中央部の非エロージョン領域に設ける板状部材と同様の機能が得られる。カバー部材は、クランプ46等にネジ等の結合手段で着脱自在に設けるのが好ましい。これにより、スパッタリングターゲットには中央部にのみ板状部材を設けるだけでよいのでスパッタリングターゲットの加工コストを抑えることができる。なお、スパッタリングターゲットの外周部にカバー部材を設けずに中央部にのみ板状部材を設けるだけでも、スパッタリング膜のパーティクル等の不具合が激減することを確認している。 Since the non-erosion region also exists in the outer peripheral portion of the sputtering target as described above, it is conceivable to provide a member having the same function as the plate-like member provided in the central portion in the outer peripheral portion. However, if it is the outer peripheral portion of the sputtering target, for example, a rectangular frame-shaped cover member can be used to easily cover the sputtering without hindering the sputtering, thereby providing a plate-like member provided in the above-described non-erosion region of the central portion. The same function is obtained. The cover member is preferably detachably provided on the clamp 46 or the like by a coupling means such as a screw. Thereby, since it is only necessary to provide the sputtering target with a plate-like member only in the center portion, the processing cost of the sputtering target can be suppressed. In addition, it has been confirmed that defects such as particles of the sputtering film are drastically reduced even by providing a plate-like member only in the central portion without providing a cover member on the outer peripheral portion of the sputtering target.
 板状部材49のターゲット面側の表面は、スパッタリングターゲット45の溝45aに嵌め込んだ時にスパッタリングターゲット45のエロ―ジョン前のターゲット面(図2の一点鎖線で示す)とほぼ同じ高さであるか、あるいはエロ―ジョン前のターゲット面より凹んだ位置にあるのが好ましい。換言すれば、板状部材49のターゲット面側の表面は、スパッタリングターゲット45のエロ―ジョン前の平坦なターゲット面より突出して凸状になっていないのが好ましい。板状部材49がスパッタリングターゲット45のエロ―ジョン前のターゲット面から凸状に突出していると、電場の状態が変化してアーク放電などの異常放電が発生したり、板状部材49のスパッタリングが促進され、長尺樹脂フィルムF上に成膜される膜の組成が所望の組成からずれることがあり、望ましくない。 The surface of the plate-like member 49 on the target surface side is substantially the same height as the target surface before erosion of the sputtering target 45 (shown by a one-dot chain line in FIG. 2) when fitted into the groove 45a of the sputtering target 45. Alternatively, it is preferably in a position recessed from the target surface before erosion. In other words, the surface of the plate-like member 49 on the target surface side preferably protrudes from the flat target surface before erosion of the sputtering target 45 and is not convex. If the plate-like member 49 protrudes from the target surface before erosion of the sputtering target 45, the electric field changes and abnormal discharge such as arc discharge occurs, or sputtering of the plate-like member 49 occurs. The composition of the film that is promoted and formed on the long resin film F may deviate from the desired composition, which is not desirable.
 板状部材49は、スパッタリングターゲット45と同じ材料とすることが望ましい。スパッタリングターゲット45の材質が合金の場合は、当該スパッタリングターゲット45の合金組成を構成する一部の金属で板状部材49を構成してもよい。このように板状部材49の材質をスパッタリングターゲット45と同じ材質にしたり、スパッタリングターゲット45が合金の場合はそれらを構成する金属の一部の金属と同じものを用いたりすることで、仮に板状部材49がスパッタリングされることがあっても、長尺樹脂フィルムFの表面に成膜される膜が成膜中に板状部材49により汚染されることを防ぐことができる。なお、板状部材49は、ねじ等公知の取り付け手段でスパッタリングターゲットに取り付けてもよい。 The plate member 49 is preferably made of the same material as the sputtering target 45. In the case where the material of the sputtering target 45 is an alloy, the plate-like member 49 may be constituted by a part of metal constituting the alloy composition of the sputtering target 45. In this way, the plate-like member 49 is made of the same material as the sputtering target 45, or when the sputtering target 45 is an alloy, the same metal as a part of the metal constituting them is used, so that the plate-like member 49 is plate-like. Even if the member 49 is sputtered, the film formed on the surface of the long resin film F can be prevented from being contaminated by the plate-like member 49 during the film formation. The plate-like member 49 may be attached to the sputtering target by a known attachment means such as a screw.
 板状部材49のターゲット面側の表面は、表面粗さが十点平均粗さRzで10μm以上500μm以下であることが好ましく、Rz20~100μmがより好ましい。板状部材49の上記表面粗さRzが10μm未満ではアンカー効果が低減し、パーティクル堆積物が脱離しやすくなる。一方、上記表面粗さRzが500μmを超えると、スパッタリングカソードへの印加電圧によっては板状部材49の表面の粗面の頂点で異常放電が発生しやすくなる。例えば、スパッタリングカソードの構造やスパッタリング装置の構造にもよるが、板状部材49の上記表面粗さRzが750μmの場合、スパッタリングカソードに500V印可すると異常放電することがある。なお、板状部材49の表面粗さは、ショットブラストあるいは溶射によって調整することができる。 The surface of the plate-like member 49 on the target surface side preferably has a 10-point average roughness Rz of 10 μm or more and 500 μm or less, more preferably Rz 20 to 100 μm. When the surface roughness Rz of the plate-like member 49 is less than 10 μm, the anchor effect is reduced and the particle deposits are easily detached. On the other hand, when the surface roughness Rz exceeds 500 μm, abnormal discharge tends to occur at the top of the rough surface of the plate-like member 49 depending on the voltage applied to the sputtering cathode. For example, although depending on the structure of the sputtering cathode and the structure of the sputtering apparatus, when the surface roughness Rz of the plate-like member 49 is 750 μm, abnormal discharge may occur when 500 V is applied to the sputtering cathode. The surface roughness of the plate-like member 49 can be adjusted by shot blasting or thermal spraying.
 次に、上記した本発明の一具体例のスパッタリングターゲットを備えた成膜装置を用いて反応性スパッタリングを行うことにより得られる積層体フィルムおよび該積層体フィルムをパターニングすることで得られる電極基板フィルムについて説明する。上記した本発明の一具体例のスパッタリングターゲットを備えた成膜装置によって、後述するように樹脂フィルムからなる透明基板の少なくとも一方の面に、透明基板側から数えて第1層目の反応性スパッタリング成膜層と、第2層目の金属層とが積層された第1の積層体フィルムや、樹脂フィルムからなる透明基板の少なくとも一方の面に、透明基板側から数えて第1層目の反応性スパッタリング成膜層と、第2層目の金属層と、第3層目の第2反応性スパッタリング成膜層とが積層された第2の積層体フィルムを作製することができる。 Next, a laminate film obtained by performing reactive sputtering using the film forming apparatus provided with the sputtering target of one specific example of the present invention described above, and an electrode substrate film obtained by patterning the laminate film Will be described. Reactive sputtering of the first layer, counted from the transparent substrate side, on at least one surface of the transparent substrate made of a resin film, as will be described later, by the film forming apparatus provided with the sputtering target of one specific example of the present invention described above. The reaction of the first layer counted from the transparent substrate side on at least one surface of the first laminate film in which the film formation layer and the second metal layer are laminated or the transparent substrate made of the resin film A second laminated film in which a reactive sputtering film-forming layer, a second metal layer, and a third reactive sputtering film-forming layer are laminated can be produced.
 先ず第1の積層体フィルムについて説明すると、例えば図4に示すように、この第1の積層体フィルムは、樹脂フィルムからなる透明基板50と、該透明基板50の両面に乾式成膜法(乾式めっき法)により成膜された反応性スパッタリング成膜層51と、この反応性スパッタリング成膜層51の上に乾式成膜法(乾式めっき法)により成膜された金属層52とで構成されている。そして、この反応性スパッタリング成膜層51の成膜に上記した本発明の一具体例のスパッタリングターゲットを備えた成膜装置を好適に用いることができる。上記金属層52の成膜は、図4に示すように乾式成膜法(乾式めっき法)のみで成膜してもよいし、図5に示すように乾式成膜法(乾式めっき法)と湿式成膜法(湿式めっき法)を組み合わせて形成してもよい。 First, the first laminate film will be described. For example, as shown in FIG. 4, the first laminate film includes a transparent substrate 50 made of a resin film, and a dry film forming method (dry method) on both surfaces of the transparent substrate 50. A reactive sputtering film formation layer 51 formed by a plating method) and a metal layer 52 formed by a dry film formation method (dry plating method) on the reactive sputtering film formation layer 51. Yes. And the film-forming apparatus provided with the sputtering target of the above-mentioned one specific example of this invention for film-forming of this reactive sputtering film-forming layer 51 can be used suitably. The metal layer 52 may be formed by only a dry film formation method (dry plating method) as shown in FIG. 4, or a dry film formation method (dry plating method) as shown in FIG. You may form combining a wet film-forming method (wet plating method).
 すなわち、この図5に示す積層体フィルムは、樹脂フィルムからなる透明基板50と、該透明基板50の両面に乾式成膜法(乾式めっき法)により成膜された膜厚15~30nmの反応性スパッタリング成膜層51と、該反応性スパッタリング成膜層51の上に乾式成膜法(乾式めっき法)により成膜された金属層52と、該金属層52の上に湿式成膜法(湿式めっき法)により成膜された金属層53とで構成される。 That is, the laminate film shown in FIG. 5 has a transparent substrate 50 made of a resin film, and a reactivity of 15 to 30 nm thick formed on both surfaces of the transparent substrate 50 by a dry film forming method (dry plating method). A sputtering film formation layer 51, a metal layer 52 formed on the reactive sputtering film formation layer 51 by a dry film formation method (dry plating method), and a wet film formation method (wet process) on the metal layer 52 And a metal layer 53 formed by a plating method.
 次に、図6を参照しながら第2の積層体フィルムについて説明する。この図6の第2の積層体フィルムは、図5に示した第1の積層体フィルムの金属層上に更に第2反応性スパッタリング成膜層を成膜したものである。具体的には、樹脂フィルムからなる透明基板60と、該透明基板60の両面に乾式成膜法(乾式めっき法)により成膜された膜厚15~30nmの反応性スパッタリング成膜層61と、該反応性スパッタリング成膜層61上に乾式成膜法(乾式めっき法)により成膜された金属層62と、該金属層62の上に湿式成膜法(湿式めっき法)により成膜された金属層63と、該金属層63の上に乾式成膜法(乾式めっき法)により成膜された膜厚15~30nmの第2反応性スパッタリング成膜層64とで構成される。 Next, the second laminate film will be described with reference to FIG. The second laminated film in FIG. 6 is obtained by further forming a second reactive sputtering film-forming layer on the metal layer of the first laminated film shown in FIG. Specifically, a transparent substrate 60 made of a resin film, and a reactive sputtering film forming layer 61 having a film thickness of 15 to 30 nm formed on both surfaces of the transparent substrate 60 by a dry film forming method (dry plating method); A metal layer 62 formed by a dry film formation method (dry plating method) on the reactive sputtering film formation layer 61 and a film formed by a wet film formation method (wet plating method) on the metal layer 62. The metal layer 63 and a second reactive sputtering film layer 64 having a film thickness of 15 to 30 nm formed on the metal layer 63 by a dry film forming method (dry plating method).
 上記した図6に示す第2の積層体フィルムでは、金属層62および金属層63を一体とする金属層の両面に反応性スパッタリング成膜層61と第2反応性スパッタリング成膜層64を形成している。その理由は、該積層体フィルムを用いて作製された電極基板フィルムをタッチパネルに組み込んだときに金属製積層細線からなるメッシュ構造の回路パターンが反射して見えないようにできるからである。なお、樹脂フィルムからなる透明基板の片面に反応性スパッタリング成膜層を形成し、該反応性スパッタリング成膜層上に金属層を形成することで得られる第1の積層体フィルムを用いて電極基板フィルムを作製した場合にも、該透明基板からの上記回路パターンの視認を防止することが可能である。 In the second laminate film shown in FIG. 6 described above, the reactive sputtering film forming layer 61 and the second reactive sputtering film forming layer 64 are formed on both surfaces of the metal layer in which the metal layer 62 and the metal layer 63 are integrated. ing. The reason for this is that when an electrode substrate film produced using the laminate film is incorporated in a touch panel, a circuit pattern having a mesh structure composed of metal laminated thin wires can be reflected and cannot be seen. In addition, an electrode substrate is formed using a first laminate film obtained by forming a reactive sputtering film-forming layer on one side of a transparent substrate made of a resin film and forming a metal layer on the reactive sputtering film-forming layer. Even when a film is produced, it is possible to prevent the circuit pattern from being visually recognized from the transparent substrate.
 上記したように反応性スパッタリングを行う理由は、金属酸化物から成る反応性スパッタリング成膜層を成膜する目的で酸化物ターゲットを適用した場合、成膜速度が遅くなって量産に適さないからである。このため、高速成膜が可能なNi系の金属ターゲット(金属材)を用い、かつ、酸素を含む反応性ガスを制御しながら導入する反応性スパッタリング等の反応成膜法が採られている。なお、反応性ガスを制御する方法としては、(1)一定流量の反応性ガスを放出する方法、(2)一定圧力を保つように反応性ガスを放出する方法、(3)スパッタリングカソードのインピーダンスが一定になるように反応性ガスを放出する(インピーダンス制御)方法、および(4)スパッタリングのプラズマ強度が一定になるように反応性ガスを放出する(プラズマエミッション制御)方法の4つの方法が知られている。 The reason why reactive sputtering is performed as described above is that, when an oxide target is applied for the purpose of forming a reactive sputtering film-forming layer made of a metal oxide, the film-forming speed becomes slow and is not suitable for mass production. is there. For this reason, a reactive film formation method such as reactive sputtering in which a Ni-based metal target (metal material) capable of high-speed film formation is introduced while a reactive gas containing oxygen is controlled is employed. As a method of controlling the reactive gas, (1) a method of releasing a reactive gas at a constant flow rate, (2) a method of releasing a reactive gas so as to maintain a constant pressure, and (3) an impedance of a sputtering cathode. Four methods are known: a method of releasing a reactive gas so that the plasma is constant (impedance control), and a method of (4) releasing a reactive gas so that the plasma intensity of sputtering is constant (plasma emission control). It has been.
 上記したように、成膜装置に反応性ガスを導入する反応性スパッタリング法により反応性スパッタリング成膜層を成膜する場合は、スパッタリング雰囲気となる反応性ガスはアルゴンに酸素を導入することで得られる。このように酸素を導入することで、Ni系の金属ターゲット(金属材)を用いた反応性スパッタリング等によりNiO膜(完全に酸化しているのではない)等とすることができる。反応性ガスの酸素含有量は、成膜装置や金属ターゲット(金属材)の種類に依存し、反応性スパッタリング成膜層における反射率等の光学特性やエッチング液によるエッチング性を考慮して適宜設定すればよく、一般的には15体積%以下が望ましい。 As described above, when the reactive sputtering film is formed by the reactive sputtering method in which the reactive gas is introduced into the film forming apparatus, the reactive gas that becomes the sputtering atmosphere is obtained by introducing oxygen into argon. It is done. By introducing oxygen in this manner, a NiO film (not completely oxidized) or the like can be formed by reactive sputtering using a Ni-based metal target (metal material). The oxygen content of the reactive gas depends on the type of film deposition equipment and metal target (metal material), and is set as appropriate in consideration of optical characteristics such as reflectivity in the reactive sputtering film deposition layer and etchability with an etchant. In general, it is preferably 15% by volume or less.
 反応性スパッタリング成膜層は、Ni単体、または、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれる1種以上の元素が添加されたNi系合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成される。なお、上記Ni系合金としては、Ni-Cu合金が好ましい。また、反応性スパッタリング成膜層を構成する金属酸化物の酸化が進み過ぎると反応性スパッタリング成膜層が透明になってしまうため、黒化膜になる程度の酸化レベルに設定することを要する。 The reactive sputtering film-forming layer is a metal composed of Ni alone or a Ni-based alloy to which one or more elements selected from Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, and Cu are added. It is formed by a reactive film formation method using a reactive gas containing a material and oxygen. The Ni-based alloy is preferably a Ni—Cu alloy. Moreover, since the reactive sputtering film-forming layer becomes transparent when the oxidation of the metal oxide constituting the reactive sputtering film-forming layer proceeds excessively, it is necessary to set the oxidation level to such a level that it becomes a blackened film.
 なお、上記反応成膜法には上記した本発明のスパッタリングターゲットを用いたマグネトロンスパッタのほか、イオンビームスパッタ、真空蒸着、イオンプレーティング、CVD等を挙げることができる。また、反応性スパッタリング成膜層の各波長における光学定数(屈折率、消衰係数)は、反応の度合い、すなわち、酸化度に大きく影響され、Ni系合金から成る金属材だけで決定されるものではない。 Note that examples of the reactive film forming method include ion beam sputtering, vacuum deposition, ion plating, CVD, and the like, in addition to magnetron sputtering using the sputtering target of the present invention described above. In addition, the optical constants (refractive index, extinction coefficient) at each wavelength of the reactive sputtering layer are greatly influenced by the degree of reaction, that is, the degree of oxidation, and are determined only by a metal material made of a Ni-based alloy. is not.
 上記金属層の構成材料(金属材)としては電気抵抗値が低い金属であれば特に限定されず、例えばCu単体、若しくは、Ti、Al、V、W、Ta、Si、Cr、Agより選ばれる1種以上の元素が添加されたCu系合金、またはAg単体、若しくは、Ti、Al、V、W、Ta、Si、Cr、Cuより選ばれる1種以上の元素が添加されたAg系合金が挙げられ、特に、Cu単体が回路パターンの加工性や抵抗値の観点から望ましい。また、金属層の膜厚は電気特性に依存するものであり、光学的な要素から決定されるものではないが、通常、透過光が測定不能なレベルの膜厚に設定される。 The constituent material (metal material) of the metal layer is not particularly limited as long as it is a metal having a low electrical resistance value, and is selected from, for example, Cu alone, Ti, Al, V, W, Ta, Si, Cr, or Ag. A Cu-based alloy to which one or more elements are added, an Ag-based alloy, or an Ag-based alloy to which one or more elements selected from Ti, Al, V, W, Ta, Si, Cr, and Cu are added. In particular, Cu alone is desirable from the viewpoint of processability and resistance value of the circuit pattern. The thickness of the metal layer depends on the electrical characteristics and is not determined from optical elements, but is usually set to a thickness at which transmitted light cannot be measured.
 上記積層体フィルムに適用される樹脂フィルムの材質としては特に限定されることはなく、その具体例として、ポリエチレンテレフタレート(PET)、ポリエーテルスルフォン(PES)、ポリアリレート(PAR)、ポリカーボネート(PC)、ポリオレフィン(PO)、トリアセチルセルロース(TAC)およびノルボルネンの樹脂材料から選択された樹脂フィルムの単体、あるいは、上記樹脂材料から選択された樹脂フィルム単体とこの単体の片面または両面を覆うアクリル系有機膜との複合体が挙げられる。特に、ノルボルネン樹脂材料については、代表的なものとして日本ゼオン社のゼオノア(商品名)やJSR社のアートン(商品名)等が挙げられる。なお、本発明に係る積層体フィルムを用いて作製される電極基板フィルムは「タッチパネル」等に使用されるため、上記樹脂フィルムの中でも可視波長領域での透明性に優れるものが望ましい。 The material of the resin film applied to the laminate film is not particularly limited, and specific examples thereof include polyethylene terephthalate (PET), polyethersulfone (PES), polyarylate (PAR), and polycarbonate (PC). A single resin film selected from polyolefin (PO), triacetyl cellulose (TAC) and norbornene resin materials, or a single resin film selected from the above resin materials and an acrylic organic covering one or both sides of the single resin film A complex with a membrane may be mentioned. In particular, as for norbornene resin materials, representative examples include ZEONOR (trade name) manufactured by Nippon Zeon Co., Ltd. and Arton (trade name) manufactured by JSR Corporation. In addition, since the electrode substrate film produced using the laminated body film concerning this invention is used for a "touch panel" etc., what is excellent in the transparency in a visible wavelength region among the said resin films is desirable.
 上記したような第1または第2の積層体フィルムをパターニング処理して例えば線幅が20μm以下の積層細線に配線加工することで電極基板フィルムを作製することができる。例えば上記した第2の積層体フィルムから金属製のメッシュとしたセンサパネルを得る方法について説明する。なお、以下の説明では、金属製のメッシュとしたセンサパネルを電極基板フィルムと称する。具体的には、図6に示す積層体フィルムの積層膜をエッチング処理して図7に示すような電極基板フィルムを得ることができる。 The electrode substrate film can be produced by patterning the first or second laminated film as described above and wiring the laminated thin line having a line width of 20 μm or less, for example. For example, a method for obtaining a sensor panel made of a metal mesh from the above-described second laminate film will be described. In the following description, a sensor panel made of a metal mesh is referred to as an electrode substrate film. Specifically, an electrode substrate film as shown in FIG. 7 can be obtained by etching the laminated film of the laminate film shown in FIG.
 図7に示す電極基板フィルムは、樹脂フィルムから成る透明基板70と、該透明基板70の両面に設けられた金属製の積層細線から成るメッシュ構造の回路パターンを有し、上記金属製の積層細線が、線幅20μm以下でかつ透明基板70側から数えて第1層目の反応性スパッタリング成膜層71と、第2層目の金属層72、73と、第3層目の第2反応性スパッタリング成膜層74とで構成されている。 The electrode substrate film shown in FIG. 7 has a circuit pattern having a mesh structure composed of a transparent substrate 70 made of a resin film and metal laminated thin wires provided on both surfaces of the transparent substrate 70. However, the first reactive sputtering deposition layer 71, the second metal layers 72 and 73, and the second reactivity of the third layer are counted from the transparent substrate 70 side. And a sputtering film-forming layer 74.
 積層体フィルムから電極基板フィルムに配線加工するには、公知のサブトラクティブ法により加工が可能である。サブトラクティブ法は、積層体フィルムの積層膜表面にフォトレジスト膜を形成し、配線パターンを形成したい箇所にフォトレジスト膜が残るように露光および現像し、更に上記積層膜表面にフォトレジスト膜が存在しない箇所の積層膜を化学エッチングにより除去する。化学エッチングのエッチング液としては、塩化第二鉄水溶液や塩化第二銅水溶液を用いることができる。 The wiring process from the laminate film to the electrode substrate film can be performed by a known subtractive method. In the subtractive method, a photoresist film is formed on the laminate film surface of the laminate film, exposed and developed so that the photoresist film remains at the location where the wiring pattern is to be formed, and there is a photoresist film on the laminate film surface. The laminated film at the portion not to be removed is removed by chemical etching. As an etching solution for chemical etching, an aqueous solution of ferric chloride or an aqueous solution of cupric chloride can be used.
 このような電極基板フィルムの作製工程の観点から、積層体フィルムを構成する積層膜(反応性スパッタリング成膜層と金属層)は塩化第二銅水溶液や塩化第二鉄水溶液等のエッチング液によりエッチングされ易い特性を有するのが好ましい。また、エッチング加工された電極等の回路パターンは高輝度照明下において視認され難い特性を有することが好ましい。 From the viewpoint of the production process of such an electrode substrate film, the laminated film (reactive sputtering film forming layer and metal layer) constituting the laminated film is etched with an etchant such as a cupric chloride aqueous solution or a ferric chloride aqueous solution. It is preferable to have a characteristic that is easily processed. Moreover, it is preferable that circuit patterns, such as an electrode processed by etching, have a characteristic that is difficult to be visually recognized under high luminance illumination.
 このようにして形成する電極基板フィルムの電極(配線)パターンをタッチパネル用のストライプ状若しくは格子状とすることで、本発明に係る電極基板フィルムをタッチパネルに用いることができる。その際、電極(配線)パターンに配線加工された金属製の積層細線は、積層体フィルムの積層構造を維持していることから、高輝度照明下においても透明基板に設けられた電極等の回路パターンが極めて視認され難い電極基板フィルムとして提供することができる。 The electrode substrate film according to the present invention can be used for a touch panel by forming the electrode (wiring) pattern of the electrode substrate film thus formed into a stripe shape or a lattice shape for a touch panel. At that time, the metal thin wire processed into the electrode (wiring) pattern maintains the laminated structure of the laminated film, so that the circuit such as the electrode provided on the transparent substrate even under high luminance illumination. The pattern can be provided as an electrode substrate film that is extremely difficult to be visually recognized.
 以下、本発明の実施例について比較例を挙げて具体的に説明するが、本発明は以下の実施例により限定されるものではない。
[実施例]
 図1に示すような成膜装置(スパッタリングウェブコータ)を用いて図4に示すような積層体フィルムを作製した。キャンロール16には、直径600mm、幅750mmのステンレス製のロールを使用し、その外周面にはハードクロムめっきを施した。前フィードロール15および後フィードロール21は直径150mm、幅750mmのステンレス製のロールを使用し、その外周面にはハードクロムめっきを施した。
Examples of the present invention will be specifically described below with reference to comparative examples, but the present invention is not limited to the following examples.
[Example]
A laminate film as shown in FIG. 4 was produced using a film forming apparatus (sputtering web coater) as shown in FIG. A stainless steel roll having a diameter of 600 mm and a width of 750 mm was used for the can roll 16, and the outer peripheral surface was subjected to hard chrome plating. The front feed roll 15 and the rear feed roll 21 were stainless steel rolls having a diameter of 150 mm and a width of 750 mm, and the outer peripheral surfaces thereof were subjected to hard chrome plating.
 各マグネトロンスパッタリングカソード17、18、19、20の上流側と下流側にガス放出パイプ25、26、27、28、29、30、31、32を設置した。マグネトロンスパッタリングカソード17、18には反応性スパッタリング成膜層用のNi-Cuターゲットを用いた。このNi-Cuターゲットのターゲット面の中央部の非エロージョン領域となる部分に、図3に示すようにカソードの長手方向に延在する溝を形成し、ターゲット面側の表面の表面粗さが十点平均粗さRzで50μmとなるようにブラスト処理したCu製の板状部材をこの溝に嵌め込んだ。なお、板状部材のターゲット面側の表面とNi-Cuターゲットのターゲット面は同じ高さにした。一方、マグネトロンスパッタリングカソード19と20には通常の金属層用のCuターゲットを取り付けた。 Gas discharge pipes 25, 26, 27, 28, 29, 30, 31, and 32 were installed on the upstream side and downstream side of each magnetron sputtering cathode 17, 18, 19, and 20, respectively. The magnetron sputtering cathodes 17 and 18 were Ni—Cu targets for reactive sputtering film formation layers. As shown in FIG. 3, a groove extending in the longitudinal direction of the cathode is formed in the central portion of the target surface of the Ni—Cu target so that the surface roughness on the surface of the target surface is sufficient. A Cu plate-like member blasted to have a point average roughness Rz of 50 μm was fitted into this groove. The surface on the target surface side of the plate-like member and the target surface of the Ni—Cu target were set to the same height. On the other hand, an ordinary Cu target for a metal layer was attached to the magnetron sputtering cathodes 19 and 20.
 透明基板を構成する長尺樹脂フィルムFには幅600mmで長さ1200mのPETフィルムを用い、キャンロール16は0℃に冷却制御した。この状態で真空チャンバー11を複数台のドライポンプにより5Paまで排気した後、更に、複数台のターボ分子ポンプとクライオコイルを用いて1×10-4Paまで排気した。そして、搬送速度2m/分で長尺樹脂フィルムFを搬送させながら、ガス放出パイプ29、30、31、32から300sccmでアルゴンガスを導入し、カソード19と20については、Cu膜厚80nmが得られるように電力制御で成膜を行った。 The long resin film F constituting the transparent substrate was a PET film having a width of 600 mm and a length of 1200 m, and the can roll 16 was controlled to be cooled to 0 ° C. In this state, the vacuum chamber 11 was evacuated to 5 Pa using a plurality of dry pumps, and further evacuated to 1 × 10 −4 Pa using a plurality of turbo molecular pumps and cryocoils. Then, while transporting the long resin film F at a transport speed of 2 m / min, argon gas was introduced at 300 sccm from the gas release pipes 29, 30, 31, and 32, and a Cu film thickness of 80 nm was obtained for the cathodes 19 and 20. As shown, film formation was performed with power control.
 一方、反応性スパッタリング成膜層を形成すべくガス放出パイプ25、26、27、28からはアルゴンガス280sccmと酸素ガス15sccmとを混合した混合ガスを導入し、カソード17と18については、Ni-Cu酸化膜厚30nmが得られるように印加電圧500V付近での電力制御で成膜を行った。そして、3ロット毎に中央部の板状部材を新品に交換しながら、合計12ロットの積層体フィルムを作製した。得られた積層体フィルムをコンピューターの画像解析による画像検査装置で10μm以上のパーティクルの付着を確認したところ、平均53個/ロットのパーティクルが確認された。 On the other hand, in order to form a reactive sputtering film-forming layer, a mixed gas obtained by mixing 280 sccm of argon gas and 15 sccm of oxygen gas is introduced from the gas release pipes 25, 26, 27, and 28. Film formation was performed under power control around an applied voltage of 500 V so that a Cu oxide film thickness of 30 nm was obtained. Then, a total of 12 lots of laminate films were produced while replacing the plate-like member at the center with a new one every 3 lots. When adhesion of particles of 10 μm or more was confirmed on the obtained laminate film by an image inspection apparatus based on image analysis of a computer, 53 particles / lot on average were confirmed.
 [実施例2]
 Cu製の板状部材の表面粗さを十点平均粗さRzで10μmとした以外は実施例1と同様にして合計12ロットの積層体フィルムを作製した。得られた積層体フィルムにおける10μm以上のパーティクルの付着について実施例1と同様の方法で確認したところ、平均61個/ロットのパーティクルが確認された。
[Example 2]
A total of 12 lots of laminate films were produced in the same manner as in Example 1 except that the surface roughness of the plate member made of Cu was 10 μm in terms of the ten-point average roughness Rz. Adhesion of particles of 10 μm or more in the obtained laminate film was confirmed by the same method as in Example 1, and an average of 61 particles / lot was confirmed.
 [実施例3]
 Cu製の板状部材の表面粗さを十点平均粗さRzで20μmとした以外は実施例1と同様にして合計12ロットの積層体フィルムを作製した。得られた積層体フィルムにおける10μm以上のパーティクルの付着について実施例1と同様の方法で確認したところ、平均55個/ロットのパーティクルが確認された。
[Example 3]
A total of 12 lots of laminate films were produced in the same manner as in Example 1 except that the surface roughness of the plate member made of Cu was 20 μm in terms of the ten-point average roughness Rz. When adhesion of particles of 10 μm or more in the obtained laminate film was confirmed by the same method as in Example 1, particles of 55 particles / lot on average were confirmed.
 [実施例4]
 Cu製の板状部材の表面粗さを十点平均粗さRzで200μmとした以外は実施例1と同様にして合計12ロットの積層体フィルムを作製した。得られた積層体フィルムにおける10μm以上のパーティクルの付着について実施例1と同様の方法で確認したところ、平均58個/ロットのパーティクルが確認された。
[Example 4]
A total of 12 lots of laminate films were prepared in the same manner as in Example 1 except that the surface roughness of the plate member made of Cu was 200 μm in terms of the ten-point average roughness Rz. When adhesion of particles of 10 μm or more on the obtained laminate film was confirmed by the same method as in Example 1, particles of an average of 58 particles / lot were confirmed.
 [実施例5]
 Cu製の板状部材の表面粗さを十点平均粗さRzで450μmとした以外は実施例1と同様にして合計12ロットの積層体フィルムを作製した。得られた積層体フィルムにおける10μm以上のパーティクルの付着について実施例1と同様の方法で確認したところ、平均58個/ロットのパーティクルが確認された。
[Example 5]
A total of 12 lots of laminate films were produced in the same manner as in Example 1 except that the surface roughness of the plate member made of Cu was 450 μm in terms of the ten-point average roughness Rz. When adhesion of particles of 10 μm or more on the obtained laminate film was confirmed by the same method as in Example 1, particles of an average of 58 particles / lot were confirmed.
 [実施例6]
 Cu製の板状部材の表面粗さを十点平均粗さRz5μmとした以外は実施例1と同様にして合計12ロットの積層体フィルムを作製した。得られた積層体フィルムにおける10μm以上のパーティクルの付着について実施例1と同様の方法で確認したところ、平均130個/ロットのパーティクルが確認された。
[Example 6]
A total of 12 lots of laminate films were produced in the same manner as in Example 1 except that the surface roughness of the plate member made of Cu was changed to a 10-point average roughness Rz of 5 μm. When adhesion of particles of 10 μm or more in the obtained laminate film was confirmed by the same method as in Example 1, particles of 130 particles / lot on average were confirmed.
 [比較例1]
 反応性スパッタリング成膜層用のNi-Cuターゲットに従来のターゲットを用いたこと以外は実施例1と同様にして合計12ロットの積層体フィルムを作製した。得られた積層体フィルムにおける10μm以上のパーティクルの付着について実施例1と同様の方法で確認したところ、平均370個/ロットのパーティクルが確認された。
[Comparative Example 1]
A total of 12 laminate films were prepared in the same manner as in Example 1 except that the conventional target was used as the Ni—Cu target for the reactive sputtering film formation layer. The adhesion of particles of 10 μm or more in the obtained laminate film was confirmed by the same method as in Example 1, and an average of 370 particles / lot was confirmed.
 1ロット1200mの積層体フィルムでは、10μm以上のパーティクル数は少ない方が望ましく、具体的には150個/ロット以下ならば実用上問題が発生しにくいが、100個/ロット以下がより望ましい。上記の通り、本発明に係るスパッタリングターゲットを用いた実施例1~6では、10μm以上のパーティクル数を150個/ロット以下に抑えることができた。一方、従来のスパッタリングターゲットを用いた比較例1では、150個/ロットよりも2倍以上多い10μm以上のパーティクル数が生じていた。 In a laminate film of 1 lot of 1200 m, it is desirable that the number of particles of 10 μm or more is small. Specifically, if it is 150 pieces / lot or less, practical problems are less likely to occur, but 100 pieces / lot or less are more desirable. As described above, in Examples 1 to 6 using the sputtering target according to the present invention, the number of particles of 10 μm or more could be suppressed to 150 particles / lot or less. On the other hand, in Comparative Example 1 using a conventional sputtering target, the number of particles of 10 μm or more, which is twice or more than 150 / lot, was generated.
 A   パーティクル堆積物
 F   長尺樹脂フィルム
 10  スパッタリングウェブコータ
 11  真空チャンバー
 11a 仕切板
 12  巻出ロール
 13  フリーロール
 14  張力センサロール
 15  前フィードロール
 16  キャンロール
 17、18、19、20 マグネトロンスパッタリングカソード
 21  後フィードロール
 22  張力センサロール
 23  フリーロール
 24  巻取ロール
 25、26、27、28、29、30、31、32 ガス放出パイプ
 40  マグネトロンスパッタリングカソード
 41  筐体
 41a ハウジング
 41b ハウジングカバー
 42  磁気回路
 42a 磁石
 42b ヨーク
 43  冷却板
 44  冷却水路
 45  スパッタリングターゲット
 45a 溝
 46  クランプ
 47  アースシールド
 48  絶縁板
 49  板状部材
 50  樹脂フィルム(透明基板)
 51  反応性スパッタリング成膜層
 52  乾式成膜法で形成された金属層(銅層)
 53  湿式成膜法で形成された金属層(銅層)
 60  樹脂フィルム(透明基板)
 61  反応性スパッタリング成膜層
 62  乾式成膜法で形成された金属層(銅層)
 63  湿式成膜法で形成された金属層(銅層)
 64  第2反応性スパッタリング成膜層
 70  樹脂フィルム(透明基板)
 71  反応性スパッタリング成膜層
 72  乾式成膜法で形成された金属層(銅層)
 73  湿式成膜法で形成された金属層(銅層)
 74  第2反応性スパッタリング成膜層
A Particle deposit F Long resin film 10 Sputtering web coater 11 Vacuum chamber 11a Partition plate 12 Unwinding roll 13 Free roll 14 Tension sensor roll 15 Front feed roll 16 Can roll 17, 18, 19, 20 Magnetron sputtering cathode 21 Rear feed Roll 22 Tension sensor roll 23 Free roll 24 Winding roll 25, 26, 27, 28, 29, 30, 31, 32 Gas release pipe 40 Magnetron sputtering cathode 41 Housing 41a Housing 41b Housing cover 42 Magnetic circuit 42a Magnet 42b York 43 Cooling plate 44 Cooling water channel 45 Sputtering target 45a Groove 46 Clamp 47 Ground shield 48 Insulating plate 49 Plate member 50 Resin Irumu (transparent substrate)
51 Reactive sputtering layer 52 Metal layer (copper layer) formed by dry deposition method
53 Metal layer (copper layer) formed by wet film formation method
60 Resin film (transparent substrate)
61 Reactive sputtering deposition layer 62 Metal layer (copper layer) formed by dry deposition method
63 Metal layer (copper layer) formed by wet film formation method
64 Second reactive sputtering film-forming layer 70 Resin film (transparent substrate)
71 Reactive sputtering film-forming layer 72 Metal layer (copper layer) formed by dry film-forming method
73 Metal layer (copper layer) formed by wet film formation method
74 Second reactive sputtering layer

Claims (6)

  1.  マグネトロンスパッタリングに使用されるスパッタリングターゲットであって、該スパッタリングターゲットのターゲット面の中央部に位置する非エロージョン領域に、板状部材が着脱自在に嵌め込まれていることを特徴とするスパッタリングターゲット。 A sputtering target used for magnetron sputtering, wherein a plate-like member is detachably fitted in a non-erosion region located at the center of the target surface of the sputtering target.
  2.  前記板状部材のターゲット面側の表面は、前記スパッタリングターゲットに嵌め込んだ時に該スパッタリングターゲットのエロ―ジョン前のターゲット面とほぼ同じ高さであるか、または該ターゲット面より凹んだ位置に配されることを特徴とする、請求項1に記載のスパッタリングターゲット。 The surface of the plate-like member on the target surface side is approximately the same height as the target surface before erosion of the sputtering target when fitted into the sputtering target, or is disposed at a position recessed from the target surface. The sputtering target according to claim 1, wherein:
  3.  前記板状部材のターゲット面側の表面粗さが、十点平均粗さRzにおいて10μm以上500μm以下であることを特徴とする、請求項1または2に記載のスパッタリングターゲット。 3. The sputtering target according to claim 1, wherein the surface roughness of the plate-like member on the target surface side is 10 μm or more and 500 μm or less at a 10-point average roughness Rz.
  4.  前記板状部材のターゲット面側の表面が、ショットブラストまたは溶射により粗面化処理されていることを特徴とする、請求項3に記載のスパッタリングターゲット。 The sputtering target according to claim 3, wherein the surface of the plate-like member on the target surface side is roughened by shot blasting or thermal spraying.
  5.  反応性ガスが供給される雰囲気下において、請求項1から4のいずれか1項に記載のスパッタリングターゲットが装着されたスパッタリングカソードを用いて反応性スパッタリング成膜を行うことを特徴とするスパッタリング成膜方法。 Sputtering film formation characterized by performing reactive sputtering film formation using a sputtering cathode equipped with the sputtering target according to any one of claims 1 to 4 in an atmosphere to which a reactive gas is supplied. Method.
  6.  前記反応性ガスが、酸素、窒素、及びスチームのうちのいずれか1つであることを特徴とする、請求項5に記載のスパッタリング成膜方法。 6. The sputtering film forming method according to claim 5, wherein the reactive gas is any one of oxygen, nitrogen, and steam.
PCT/JP2016/065249 2015-05-29 2016-05-24 Sputtering target and sputtering deposition method using same WO2016194696A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680031021.7A CN107614746B (en) 2015-05-29 2016-05-24 Sputtering target and sputtering film formation method using same
KR1020177037175A KR20180014007A (en) 2015-05-29 2016-05-24 Sputtering target and sputtering film forming method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-110620 2015-05-29
JP2015110620A JP6716863B2 (en) 2015-05-29 2015-05-29 Sputtering target and sputtering film forming method using the same

Publications (1)

Publication Number Publication Date
WO2016194696A1 true WO2016194696A1 (en) 2016-12-08

Family

ID=57441440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065249 WO2016194696A1 (en) 2015-05-29 2016-05-24 Sputtering target and sputtering deposition method using same

Country Status (5)

Country Link
JP (1) JP6716863B2 (en)
KR (1) KR20180014007A (en)
CN (1) CN107614746B (en)
TW (1) TWI689608B (en)
WO (1) WO2016194696A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193964U (en) * 1984-05-31 1985-12-24 ホ−ヤ株式会社 Target of magnetron sputtering device
JPS63105961A (en) * 1986-10-22 1988-05-11 Hitachi Ltd Production of thin magnetic alloy film
JPH01263270A (en) * 1988-04-15 1989-10-19 Sharp Corp Target unit
JP2000319776A (en) * 1999-05-06 2000-11-21 Sti Technology Kk Target for sputtering and production of black matrix for color filter using the same
JP2004052082A (en) * 2002-07-23 2004-02-19 Sumitomo Metal Mining Co Ltd Sputtering target assembly
JP2007107024A (en) * 2005-10-11 2007-04-26 Dainippon Printing Co Ltd Sputtering apparatus, and target plate
JP2014062282A (en) * 2012-09-20 2014-04-10 Ulvac Japan Ltd Target device, sputtering apparatus, and target device manufacturing method
JP2015025170A (en) * 2013-07-26 2015-02-05 大同特殊鋼株式会社 Silicon target

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3912381A1 (en) * 1988-04-15 1989-10-26 Sharp Kk SENSOR UNIT
JP4965479B2 (en) * 2008-02-15 2012-07-04 株式会社アルバック Sputtering target manufacturing method and sputtering target cleaning method
CN202390523U (en) * 2011-12-16 2012-08-22 深圳市创益科技发展有限公司 Combined magnetron sputtering target

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193964U (en) * 1984-05-31 1985-12-24 ホ−ヤ株式会社 Target of magnetron sputtering device
JPS63105961A (en) * 1986-10-22 1988-05-11 Hitachi Ltd Production of thin magnetic alloy film
JPH01263270A (en) * 1988-04-15 1989-10-19 Sharp Corp Target unit
JP2000319776A (en) * 1999-05-06 2000-11-21 Sti Technology Kk Target for sputtering and production of black matrix for color filter using the same
JP2004052082A (en) * 2002-07-23 2004-02-19 Sumitomo Metal Mining Co Ltd Sputtering target assembly
JP2007107024A (en) * 2005-10-11 2007-04-26 Dainippon Printing Co Ltd Sputtering apparatus, and target plate
JP2014062282A (en) * 2012-09-20 2014-04-10 Ulvac Japan Ltd Target device, sputtering apparatus, and target device manufacturing method
JP2015025170A (en) * 2013-07-26 2015-02-05 大同特殊鋼株式会社 Silicon target

Also Published As

Publication number Publication date
KR20180014007A (en) 2018-02-07
JP2016222975A (en) 2016-12-28
JP6716863B2 (en) 2020-07-01
TW201641729A (en) 2016-12-01
TWI689608B (en) 2020-04-01
CN107614746A (en) 2018-01-19
CN107614746B (en) 2020-12-29

Similar Documents

Publication Publication Date Title
KR102598792B1 (en) Reactive sputtering method and method for producing laminate films
JP6597621B2 (en) LAMINATE FILM, ELECTRODE SUBSTRATE FILM, AND METHOD FOR PRODUCING THE SAME
CN107130218B (en) Film forming method and method for manufacturing laminated substrate using the same
TWI676549B (en) Laminate film and electrode substrate film and manufacturing method thereof
JP6249101B2 (en) LAMINATE FILM, ELECTRODE SUBSTRATE FILM, AND METHOD FOR PRODUCING THE SAME
WO2016194696A1 (en) Sputtering target and sputtering deposition method using same
WO2014185403A1 (en) Laminate used for production of electronic component, method for producing laminate, film sensor, touch panel device provided with film sensor, and film forming method for forming concentration gradient metal layer
KR102382393B1 (en) Electrode substrate film and manufacturing method therefor
JP6801497B2 (en) Sputtering film forming equipment and film forming method and manufacturing method of laminated film
JP2008007837A (en) Sputtering film deposition system and sputtering film deposition method
JP6848391B2 (en) Film formation method, laminate film manufacturing method, and sputtering film deposition equipment
JP6225720B2 (en) Laminated transparent conductive substrate, method for producing laminated transparent conductive substrate
JP2021143406A (en) Magnetron sputtering cathode and magnetron sputtering apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177037175

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16803131

Country of ref document: EP

Kind code of ref document: A1