WO2016194694A1 - Glass for covering semiconductor elements - Google Patents

Glass for covering semiconductor elements Download PDF

Info

Publication number
WO2016194694A1
WO2016194694A1 PCT/JP2016/065244 JP2016065244W WO2016194694A1 WO 2016194694 A1 WO2016194694 A1 WO 2016194694A1 JP 2016065244 W JP2016065244 W JP 2016065244W WO 2016194694 A1 WO2016194694 A1 WO 2016194694A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
semiconductor element
coating
sio
thermal expansion
Prior art date
Application number
PCT/JP2016/065244
Other languages
French (fr)
Japanese (ja)
Inventor
欣克 西川
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201680032074.0A priority Critical patent/CN107635939A/en
Publication of WO2016194694A1 publication Critical patent/WO2016194694A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions

Definitions

  • the present invention relates to glass used for coating a semiconductor element including a PN junction.
  • a semiconductor element such as a silicon diode or a transistor is covered with glass on the surface including the PN junction of the semiconductor element from the viewpoint of preventing contamination by outside air.
  • the surface of the semiconductor element can be stabilized and deterioration of characteristics over time can be suppressed.
  • Characteristics required for semiconductor element coating glass include (1) that it can be coated at a low temperature (for example, 900 ° C. or less) to prevent deterioration of the characteristics of the semiconductor element, and (2) alkali components that adversely affect the surface of the semiconductor element. For example, it does not contain impurities.
  • glass for covering semiconductor elements zinc-based glass such as ZnO—B 2 O 3 —SiO 2 , PbO—SiO 2 —Al 2 O 3 or PbO—SiO 2 —Al 2 O 3 —B 2 is used.
  • Lead glass such as O 3 system is known, but lead system such as PbO—SiO 2 —Al 2 O 3 system and PbO—SiO 2 —Al 2 O 3 —B 2 O 3 system from the viewpoint of workability. Glass is the mainstream (see, for example, Patent Documents 1 to 4).
  • the zinc-based glass such as the ZnO—B 2 O 3 —SiO 2 system described above also contains a small amount of a lead component, and there is a concern in terms of the environment. Then, lead-free of various materials is advancing (for example, refer patent document 5).
  • the glass for covering semiconductor elements has a coefficient of thermal expansion of the semiconductor element (specifically, the semiconductor element is configured so as not to cause problems such as warpage of the semiconductor element due to the difference in coefficient of thermal expansion with the semiconductor element. To be compatible with a substrate such as a silicon wafer).
  • the conventional glass for coating semiconductor elements is a case where the coefficient of thermal expansion is matched with the coefficient of thermal expansion of the semiconductor element, if the glass is actually applied to the semiconductor element and baked, the warp of the semiconductor element will occur. May be larger.
  • an object of the present invention is to provide a glass for coating a semiconductor element capable of suppressing warpage of the semiconductor element when the semiconductor element is coated.
  • the glass for coating a semiconductor element of the present invention has, as a glass composition, ZnO 52 to 68%, B 2 O 3 5 to 30%, SiO 2 12.5 to 25% (however, 12.5% is included). Not containing), Al 2 O 3 0-3% (but not 3%), and RO 0-6% (R is at least one selected from Mg, Ca, Sr and Ba), and Further, it is characterized by containing substantially no alkali metal component or lead component.
  • the warp of the semiconductor element may increase. This is considered to be due to abnormal expansion of the glass at high temperature (specifically, above the glass transition point).
  • the abnormal expansion under high temperature is caused by the Al 2 O 3 component contained in the glass. Therefore, in the glass for covering a semiconductor element of the present invention, by reducing the content of Al 2 O 3 to 3% or less as much as possible, it is possible to reduce the abnormal expansion and suppress the warp of the semiconductor element. It was.
  • the glass for semiconductor element coating of this invention does not contain an alkali metal component substantially, it can suppress the bad influence with respect to the surface of a semiconductor element. Moreover, since the lead component is not substantially contained, the load on the environment is small.
  • substantially does not contain means that the corresponding component is not intentionally added as a glass component, and does not mean that impurities inevitably mixed are completely excluded. Objectively, it means that the content of the relevant components including impurities is less than 0.1% by mass.
  • the glass for covering a semiconductor element of the present invention further contains Ta 2 O 5 0 to 5%, MnO 2 0 to 5%, Nb 2 O 5 0 to 5%, and CeO 2 0 to 3% by mass%. It is preferable to do.
  • the glass for covering a semiconductor element of the present invention preferably has a thermal expansion coefficient of 20 to 60 ⁇ 10 ⁇ 7 / ° C. in a temperature range of 30 to 300 ° C.
  • the thermal expansion coefficient can be adapted to the semiconductor element. As a result, it is possible to suppress problems such as warpage of the semiconductor element due to the difference in thermal expansion coefficient and generation of cracks in the glass for covering the semiconductor element.
  • the semiconductor element coating glass powder of the present invention is characterized by comprising the above semiconductor element coating glass.
  • the surface of the semiconductor element can be easily coated.
  • the semiconductor element coating material of the present invention comprises 100 parts by mass of the above semiconductor element coating glass powder and at least one inorganic powder selected from ZnO, ⁇ ZnO ⁇ B 2 O 3 and 2ZnO ⁇ SiO 2. It contains 5 parts by mass.
  • the present invention it is possible to provide a glass for covering a semiconductor element that can suppress warping of the semiconductor element when the semiconductor element is covered.
  • the glass for covering a semiconductor element of the present invention has, as a glass composition, ZnO 52 to 68%, B 2 O 3 5 to 30%, SiO 2 12.5 to 25% (however, 12.5% is not included). ), Al 2 O 3 0 to 3% (excluding 3%), and RO 0 to 6% (R is at least one selected from Mg, Ca, Sr and Ba), and an alkali It is characterized by containing substantially no metal component or lead component.
  • R is at least one selected from Mg, Ca, Sr and Ba
  • an alkali It is characterized by containing substantially no metal component or lead component.
  • ZnO is a component that stabilizes glass.
  • the content of ZnO is preferably 52 to 68%, particularly preferably 57 to 64%.
  • melting will become strong, and it will become difficult to obtain a homogeneous glass.
  • there is too much content of ZnO there exists a tendency for acid resistance to fall.
  • B 2 O 3 is a glass network-forming component and a component that improves fluidity.
  • the content of B 2 O 3 is preferably 5 to 30%, particularly preferably 15 to 25%. If the content of B 2 O 3 is too small, fluidity crystallinity becomes strong is impaired, uniform coating on the semiconductor device surface tends to become difficult. On the other hand, when the content of B 2 O 3 is too large, or the thermal expansion coefficient increases, the chemical durability tends to decrease.
  • SiO 2 is a glass network forming component and has an effect of reducing the thermal expansion coefficient. It also has the effect of increasing chemical durability such as acid resistance.
  • the SiO 2 content is preferably 12.5 to 25% (excluding 12.5%), 13 to 24%, and particularly preferably 14 to 22%. When the content of SiO 2 is too small, there tends to be inferior in chemical durability. In addition, the coefficient of thermal expansion becomes large, and matching with a semiconductor element tends to be difficult. On the other hand, if the content of SiO 2 is too large, the crystallinity becomes strong, the fluidity is impaired, and uniform coating on the surface of the semiconductor element tends to be difficult.
  • Al 2 O 3 has an effect of stabilizing the glass, but on the other hand, it is a component that causes abnormal expansion of the glass at a high temperature (specifically, at or above the glass transition point).
  • the content of Al 2 O 3 is preferably 0 to 3% (excluding 3%), 0 to 2.5%, 0 to 2%, particularly preferably 0 to 1%.
  • the content of Al 2 O 3 is too large, coating the glass of the present invention to a semiconductor device, the warp of the semiconductor device tends to be large after sintering.
  • RO is at least one selected from Mg, Ca, Sr and Ba
  • the RO content is preferably 0 to 6%, 0 to 3%, particularly preferably 0 to 1%, and most preferably not substantially contained.
  • the glass for covering a semiconductor element of the present invention does not substantially contain an alkali metal component (such as Li 2 O, Na 2 O and K 2 O) that adversely affects the surface of the semiconductor element. Moreover, it does not substantially contain lead components (PbO or the like) that are environmentally hazardous substances.
  • an alkali metal component such as Li 2 O, Na 2 O and K 2 O
  • lead components PbO or the like
  • the glass for covering a semiconductor element of the present invention can further contain Ta 2 O 5, MnO 2 , Nb 2 O 5 or CeO 2 .
  • the inclusion of these components has the effect of reducing leakage current when the semiconductor element surface is coated.
  • the contents of Ta 2 O 5 , MnO 2 and Nb 2 O 5 are each preferably 0 to 5%, particularly preferably 0.1 to 3%. When there is too much content of these components, there exists a tendency for a meltability to fall.
  • the CeO 2 content is preferably 0 to 3%, particularly preferably 0.1 to 2%. When the content of CeO 2 is too large, crystallinity becomes too strong, the fluidity at the time of the semiconductor device covering tends to decrease.
  • the glass for coating a semiconductor element of the present invention is preferably in the form of a powder (glass powder for coating a semiconductor element). Accordingly, the surface of the semiconductor element can be easily coated using, for example, a paste method or an electrophoretic coating method.
  • the average particle diameter D 50 of the glass powder is 25 ⁇ m or less, and particularly preferably 15 ⁇ m or less.
  • the lower limit of the average particle diameter D 50 of the glass powder is not particularly limited, in practice it is 0.1 ⁇ m or more.
  • the semiconductor element coating material of the present invention comprises the above-described semiconductor element coating glass powder.
  • the semiconductor element coating material of the present invention contains at least one inorganic powder selected from ZnO, ⁇ ZnO ⁇ B 2 O 3 and 2ZnO ⁇ SiO 2 as a nucleating agent with respect to the glass powder for coating a semiconductor element. Do it. By adding these inorganic powders, low-expansion crystals are likely to precipitate during firing. As a result, it is possible to easily adjust to a desired thermal expansion coefficient.
  • the content of the inorganic powder is preferably 0.01 to 5 parts by mass, particularly 0.1 to 3 parts by mass with respect to 100 parts by mass of the semiconductor element coating glass powder. If the content of the inorganic powder is too small, the amount of precipitated crystals at the time of firing is small, and it tends to be difficult to achieve a desired thermal expansion coefficient. On the other hand, when the content of the inorganic powder is too large, the amount of precipitated crystals at the time of firing becomes too large, fluidity is impaired, and the semiconductor element surface tends to be difficult to coat.
  • the average particle diameter D 50 of the inorganic powder is 5 ⁇ m or less, and particularly preferably 3 ⁇ m or less.
  • the lower limit of the average particle diameter D 50 of the inorganic powder is not particularly limited, but realistically is 0.1 ⁇ m or more.
  • the thermal expansion coefficient (30 to 300 ° C.) of the semiconductor element coating glass (or semiconductor element coating material) of the present invention is, for example, 20 ⁇ 10 ⁇ 7 to 60 ⁇ 10 ⁇ 7 depending on the thermal expansion coefficient of the semiconductor element. / ° C, 30 ⁇ 10 ⁇ 7 to 50 ⁇ 10 ⁇ 7 / ° C., 30 ⁇ 10 ⁇ 7 to 45 ⁇ 10 ⁇ 7 / ° C., and further within the range of 31 ⁇ 10 ⁇ 7 to 40 ⁇ 10 ⁇ 7 / ° C. Adjusted.
  • the glass for covering a semiconductor element of the present invention is prepared, for example, by mixing raw material powders of each oxide component into a batch, melting at about 1500 ° C. for about 1 hour to form a glass, and then forming, if necessary. It can be obtained by pulverization and classification.
  • Table 1 shows Examples 1 to 4 and Comparative Examples 1 and 2 of the present invention.
  • each sample was produced as follows. First, raw material powders were prepared so as to have the glass composition shown in the table, and batchwise melted at 1500 ° C. for 1 hour to be vitrified. Subsequently, after forming the molten glass into a film and then pulverized by a ball mill, and classified with a 350 mesh sieve, the mean particle diameter D 50 was obtained glass powder 12 [mu] m. Thereafter, the inorganic powder described in the table was added to the obtained glass powder to obtain a semiconductor element coating material. In addition, the addition amount of inorganic powder was shown with the quantity with respect to 100 mass parts of glass powder. With respect to the obtained semiconductor element coating material, the thermal expansion coefficient was measured in a temperature range of 30 to 300 ° C. using a thermal expansion measuring device (dilatometer). The results are shown in Table 1.
  • the semiconductor element coating material was dispersed in an organic solvent, adhered to the surface of a 3-inch silicon wafer by electrophoresis, and baked at 700 to 800 ° C. to form a sintered layer having a thickness of 15 ⁇ m. Some warpage was confirmed on the silicon wafer after the formation of the sintered layer. The magnitude of warpage was evaluated as follows.
  • the silicon wafer after the sintered layer was formed was placed on a flat plate with the convex surface on the lower side.
  • the orientation flat part of the silicon wafer was pressed onto the flat plate, the distance between the end opposite to the orientation flat part and the flat plate was measured and evaluated as the magnitude of warpage.
  • the semiconductor element coating materials of Examples 1 to 4 had a low thermal expansion coefficient of 32 ⁇ 10 ⁇ 7 to 36 ⁇ 10 ⁇ 7 / ° C. and a small warp of 250 ⁇ m or less.
  • the warpage of the silicon wafer was as large as 500 ⁇ m or more.

Abstract

Provided is a glass for covering semiconductor elements, which is capable of suppressing warp of a semiconductor element if the semiconductor element is covered thereby. A glass for covering semiconductor elements, which is characterized by having a glass composition that contains, in mass%, 52-68% of ZnO, 5-30% of B2O3, 12.5-25% of SiO2 (excluding 12.5%), 0-3% of Al2O3 (excluding 3%) and 0-6% of RO (wherein R represents at least one element selected from among Mg, Ca, Sr and Ba) and does not substantially contain an alkali metal component and a lead component.

Description

半導体素子被覆用ガラスGlass for semiconductor element coating
 本発明はP-N接合を含む半導体素子の被覆用として用いられるガラスに関するものである。 The present invention relates to glass used for coating a semiconductor element including a PN junction.
 一般に、シリコンダイオードやトランジスタ等の半導体素子は、外気による汚染を防止する観点から半導体素子のP-N接合部を含む表面がガラスにより被覆される。これにより半導体素子表面の安定化を図り、経時的な特性劣化を抑制することができる。 Generally, a semiconductor element such as a silicon diode or a transistor is covered with glass on the surface including the PN junction of the semiconductor element from the viewpoint of preventing contamination by outside air. As a result, the surface of the semiconductor element can be stabilized and deterioration of characteristics over time can be suppressed.
 半導体素子被覆用ガラスに要求される特性として、(1)半導体素子の特性劣化を防止するため、低温(例えば900℃以下)で被覆できること、(2)半導体素子表面に悪影響を与えるアルカリ成分等の不純物を含まないこと等が挙げられる。 Characteristics required for semiconductor element coating glass include (1) that it can be coated at a low temperature (for example, 900 ° C. or less) to prevent deterioration of the characteristics of the semiconductor element, and (2) alkali components that adversely affect the surface of the semiconductor element. For example, it does not contain impurities.
 従来、半導体素子被覆用ガラスとしては、ZnO-B-SiO系等の亜鉛系ガラスや、PbO-SiO-Al系あるいはPbO-SiO-Al-B系等の鉛系ガラスが知られているが、作業性の観点からPbO-SiO-Al系およびPbO-SiO-Al-B系等の鉛系ガラスが主流となっている(例えば、特許文献1~4参照)。 Conventionally, as glass for covering semiconductor elements, zinc-based glass such as ZnO—B 2 O 3 —SiO 2 , PbO—SiO 2 —Al 2 O 3 or PbO—SiO 2 —Al 2 O 3 —B 2 is used. Lead glass such as O 3 system is known, but lead system such as PbO—SiO 2 —Al 2 O 3 system and PbO—SiO 2 —Al 2 O 3 —B 2 O 3 system from the viewpoint of workability. Glass is the mainstream (see, for example, Patent Documents 1 to 4).
 しかしながら、PbO等の鉛成分は環境に対して有害な成分であることから、近年、電気および電子機器での使用が規制されつつある。既述のZnO-B-SiO系等の亜鉛系ガラスも、少量の鉛成分を含有しており環境の面での懸念がある。そこで、各種材料の無鉛化が進んでいる(例えば、特許文献5参照)。 However, since lead components such as PbO are harmful to the environment, their use in electric and electronic devices is being regulated in recent years. The zinc-based glass such as the ZnO—B 2 O 3 —SiO 2 system described above also contains a small amount of a lead component, and there is a concern in terms of the environment. Then, lead-free of various materials is advancing (for example, refer patent document 5).
特公平1-49653号公報Japanese Examined Patent Publication No. 1-49653 特開昭50-129181号公報JP 50-129181 A 特開昭48-43275号公報JP-A-48-43275 特開2008-162881号公報JP 2008-162881 A 特開2012-051761号公報JP 2012-051761 A
 半導体素子被覆用ガラスは、半導体素子との熱膨張係数差が原因となって、半導体素子の反り等の不具合が発生しないように、熱膨張係数を半導体素子(具体的には、半導体素子を構成するシリコンウェハ等の基板)と適合させる必要がある。しかしながら、従来の半導体素子被覆用ガラスは、その熱膨張係数を半導体素子の熱膨張係数と適合させた場合であっても、実際にガラスを半導体素子に塗布して焼成すると、半導体素子の反りが大きくなる場合がある。 The glass for covering semiconductor elements has a coefficient of thermal expansion of the semiconductor element (specifically, the semiconductor element is configured so as not to cause problems such as warpage of the semiconductor element due to the difference in coefficient of thermal expansion with the semiconductor element. To be compatible with a substrate such as a silicon wafer). However, even if the conventional glass for coating semiconductor elements is a case where the coefficient of thermal expansion is matched with the coefficient of thermal expansion of the semiconductor element, if the glass is actually applied to the semiconductor element and baked, the warp of the semiconductor element will occur. May be larger.
 以上に鑑み、本発明は、半導体素子に被覆した場合に、半導体素子の反りを抑制することが可能な半導体素子被覆用ガラスを提供することを目的とする。 In view of the above, an object of the present invention is to provide a glass for coating a semiconductor element capable of suppressing warpage of the semiconductor element when the semiconductor element is coated.
 本発明者は、鋭意検討した結果、特定の組成を有するZnO-B-SiO系ガラスにより前記課題を解決できることを見出し、本発明として提案するものである。 As a result of intensive studies, the present inventors have found that the above problems can be solved by using a ZnO—B 2 O 3 —SiO 2 based glass having a specific composition, and propose the present invention.
 即ち、本発明の半導体素子被覆用ガラスは、ガラス組成として、質量%で、ZnO 52~68%、B 5~30%、SiO 12.5~25%(ただし12.5%を含まない)、Al 0~3%(ただし3%を含まない)、及びRO 0~6%(RはMg、Ca、Sr及びBaから選択される少なくとも1種)を含有し、かつ、アルカリ金属成分、鉛成分を実質的に含有しないことを特徴とする。 That is, the glass for coating a semiconductor element of the present invention has, as a glass composition, ZnO 52 to 68%, B 2 O 3 5 to 30%, SiO 2 12.5 to 25% (however, 12.5% is included). Not containing), Al 2 O 3 0-3% (but not 3%), and RO 0-6% (R is at least one selected from Mg, Ca, Sr and Ba), and Further, it is characterized by containing substantially no alkali metal component or lead component.
 既述の通り、ガラスと半導体素子の熱膨張係数を適合させた場合であっても、実際にガラスを半導体素子に塗布して焼成すると、半導体素子の反りが大きくなる場合がある。これは高温下(具体的にはガラス転移点以上)でのガラスの異常膨張が原因であると考えられる。本発明者が検討した結果、高温下での異常膨張は、ガラス中に含まれるAl成分に起因することを突き止めた。そこで、本発明の半導体素子被覆用ガラスでは、Alの含有量を3%以下と極力低減することで、上記の異常膨張を低減し、半導体素子の反りを抑制することが可能となった。 As described above, even when the coefficients of thermal expansion of the glass and the semiconductor element are adapted, when the glass is actually applied to the semiconductor element and baked, the warp of the semiconductor element may increase. This is considered to be due to abnormal expansion of the glass at high temperature (specifically, above the glass transition point). As a result of investigation by the present inventor, it has been found that the abnormal expansion under high temperature is caused by the Al 2 O 3 component contained in the glass. Therefore, in the glass for covering a semiconductor element of the present invention, by reducing the content of Al 2 O 3 to 3% or less as much as possible, it is possible to reduce the abnormal expansion and suppress the warp of the semiconductor element. It was.
 なお、本発明の半導体素子被覆用ガラスは、アルカリ金属成分を実質的に含有しないため、半導体素子表面に対する悪影響を抑制できる。また、鉛成分を実質的に含有しないため、環境への負荷が小さい。ここで、「実質的に含有しない」とは、ガラス成分として該当成分を意図的に添加しないことを意味し、不可避的に混入する不純物まで完全に排除することを意味するものではない。客観的には、不純物を含めた該当成分の含有量が0.1質量%未満であることを意味する。 In addition, since the glass for semiconductor element coating of this invention does not contain an alkali metal component substantially, it can suppress the bad influence with respect to the surface of a semiconductor element. Moreover, since the lead component is not substantially contained, the load on the environment is small. Here, “substantially does not contain” means that the corresponding component is not intentionally added as a glass component, and does not mean that impurities inevitably mixed are completely excluded. Objectively, it means that the content of the relevant components including impurities is less than 0.1% by mass.
 本発明の半導体素子被覆用ガラスは、さらに、質量%で、Ta 0~5%、MnO 0~5%、Nb 0~5%、及びCeO 0~3%を含有することが好ましい。 The glass for covering a semiconductor element of the present invention further contains Ta 2 O 5 0 to 5%, MnO 2 0 to 5%, Nb 2 O 5 0 to 5%, and CeO 2 0 to 3% by mass%. It is preferable to do.
 本発明の半導体素子被覆用ガラスは、30~300℃の温度範囲における熱膨張係数が20~60×10-7/℃であることが好ましい。 The glass for covering a semiconductor element of the present invention preferably has a thermal expansion coefficient of 20 to 60 × 10 −7 / ° C. in a temperature range of 30 to 300 ° C.
 上記構成によれば、半導体素子との熱膨張係数の適合を図ることが可能となる。結果として、熱膨張係数差に起因する半導体素子の反りや半導体素子被覆用ガラスにおけるクラックの発生等の不具合を抑制することができる。 According to the above configuration, the thermal expansion coefficient can be adapted to the semiconductor element. As a result, it is possible to suppress problems such as warpage of the semiconductor element due to the difference in thermal expansion coefficient and generation of cracks in the glass for covering the semiconductor element.
 本発明の半導体素子被覆用ガラス粉末は、上記の半導体素子被覆用ガラスからなることを特徴とする。 The semiconductor element coating glass powder of the present invention is characterized by comprising the above semiconductor element coating glass.
 本発明の半導体素子被覆用ガラス粉末を用いることにより、半導体素子表面への被覆を容易に行うことができる。 By using the glass powder for coating a semiconductor element of the present invention, the surface of the semiconductor element can be easily coated.
 本発明の半導体素子被覆用材料は、上記の半導体素子被覆用ガラス粉末100質量部と、ZnO、αZnO・B及び2ZnO・SiOから選択される少なくとも1種の無機粉末0.01~5質量部を含有することを特徴とする。 The semiconductor element coating material of the present invention comprises 100 parts by mass of the above semiconductor element coating glass powder and at least one inorganic powder selected from ZnO, αZnO · B 2 O 3 and 2ZnO · SiO 2. It contains 5 parts by mass.
 上記構成によれば、ガラス中における結晶析出を促進させ、低熱膨張化を図ることが可能となる。それにより、半導体素子との熱膨張係数の整合を図りやすくなる。 According to the above configuration, it is possible to promote crystal precipitation in glass and achieve low thermal expansion. This facilitates matching of the thermal expansion coefficient with the semiconductor element.
 本発明によれば、半導体素子に被覆した場合に、半導体素子の反りを抑制することが可能な半導体素子被覆用ガラスを提供することができる。 According to the present invention, it is possible to provide a glass for covering a semiconductor element that can suppress warping of the semiconductor element when the semiconductor element is covered.
 本発明の半導体素子被覆用ガラスは、ガラス組成として、質量%で、ZnO 52~68%、B 5~30%、SiO 12.5~25%(ただし12.5%を含まない)、Al 0~3%(ただし3%を含まない)、及びRO 0~6%(RはMg、Ca、Sr及びBaから選択される少なくとも1種)を含有し、かつ、アルカリ金属成分、鉛成分を実質的に含有しないことを特徴とする。各成分の含有量をこのように規定した理由を以下に説明する。なお、以下の各成分の含有量の説明において、特に断りのない限り「%」は「質量%」を意味する。 The glass for covering a semiconductor element of the present invention has, as a glass composition, ZnO 52 to 68%, B 2 O 3 5 to 30%, SiO 2 12.5 to 25% (however, 12.5% is not included). ), Al 2 O 3 0 to 3% (excluding 3%), and RO 0 to 6% (R is at least one selected from Mg, Ca, Sr and Ba), and an alkali It is characterized by containing substantially no metal component or lead component. The reason why the content of each component is defined in this way will be described below. In the description of the content of each component below, “%” means “% by mass” unless otherwise specified.
 ZnOはガラスを安定化する成分である。ZnOの含有量は52~68%、特に57~64%であることが好ましい。ZnOの含有量が少なすぎると、溶融時の失透性が強くなり、均質なガラスが得られにくくなる。一方、ZnOの含有量が多すぎると、耐酸性が低下する傾向がある。 ZnO is a component that stabilizes glass. The content of ZnO is preferably 52 to 68%, particularly preferably 57 to 64%. When there is too little content of ZnO, the devitrification at the time of a fusion | melting will become strong, and it will become difficult to obtain a homogeneous glass. On the other hand, when there is too much content of ZnO, there exists a tendency for acid resistance to fall.
 Bはガラスの網目形成成分であり、かつ、流動性を高める成分である。Bの含有量は5~30%、特に15~25%であることが好ましい。Bの含有量が少なすぎると、結晶性が強くなって流動性が損なわれ、半導体素子表面への均一な被覆が困難になる傾向がある。一方、Bの含有量が多すぎると、熱膨張係数が大きくなったり、化学耐久性が低下する傾向がある。 B 2 O 3 is a glass network-forming component and a component that improves fluidity. The content of B 2 O 3 is preferably 5 to 30%, particularly preferably 15 to 25%. If the content of B 2 O 3 is too small, fluidity crystallinity becomes strong is impaired, uniform coating on the semiconductor device surface tends to become difficult. On the other hand, when the content of B 2 O 3 is too large, or the thermal expansion coefficient increases, the chemical durability tends to decrease.
 SiOはガラスの網目形成成分であり、熱膨張係数を低下させる効果がある。また、耐酸性等の化学耐久性を高める効果もある。SiOの含有量は12.5~25%(ただし12.5%を含まない)、13~24%、特に14~22%であることが好ましい。SiOの含有量が少なすぎると、化学耐久性に劣る傾向がある。また、熱膨張係数が大きくなって、半導体素子との整合が困難になる傾向がある。一方、SiOの含有量が多すぎると、結晶性が強くなって流動性が損なわれ、半導体素子表面への均一な被覆が困難になる傾向がある。 SiO 2 is a glass network forming component and has an effect of reducing the thermal expansion coefficient. It also has the effect of increasing chemical durability such as acid resistance. The SiO 2 content is preferably 12.5 to 25% (excluding 12.5%), 13 to 24%, and particularly preferably 14 to 22%. When the content of SiO 2 is too small, there tends to be inferior in chemical durability. In addition, the coefficient of thermal expansion becomes large, and matching with a semiconductor element tends to be difficult. On the other hand, if the content of SiO 2 is too large, the crystallinity becomes strong, the fluidity is impaired, and uniform coating on the surface of the semiconductor element tends to be difficult.
 Alはガラスを安定化する効果があるが、一方で高温下(具体的にはガラス転移点以上)でのガラスの異常膨張の原因となる成分である。Alの含有量は0~3%(ただし3%を含まない)、0~2.5%、0~2%、特に0~1%であることが好ましい。Alの含有量が多すぎると、本発明のガラスを半導体素子へ塗布、焼成後に半導体素子の反りが大きくなる傾向がある。 Al 2 O 3 has an effect of stabilizing the glass, but on the other hand, it is a component that causes abnormal expansion of the glass at a high temperature (specifically, at or above the glass transition point). The content of Al 2 O 3 is preferably 0 to 3% (excluding 3%), 0 to 2.5%, 0 to 2%, particularly preferably 0 to 1%. When the content of Al 2 O 3 is too large, coating the glass of the present invention to a semiconductor device, the warp of the semiconductor device tends to be large after sintering.
 RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種)は、溶解性を向上させる効果があるが、その含有量が多すぎると、熱膨張係数が大きくなる傾向がある。その結果、半導体素子に塗布した場合に反りやクラックが発生しやすくなる。従って、ROの含入量は0~6%、0~3%、特に0~1%であることが好ましく、実質的に含有しないことが最も好ましい。 RO (R is at least one selected from Mg, Ca, Sr and Ba) has an effect of improving solubility, but if its content is too large, the thermal expansion coefficient tends to increase. As a result, warping and cracking are likely to occur when applied to a semiconductor element. Accordingly, the RO content is preferably 0 to 6%, 0 to 3%, particularly preferably 0 to 1%, and most preferably not substantially contained.
 本発明の半導体素子被覆用ガラスは、半導体素子表面に悪影響を与えるアルカリ金属成分(LiO、NaO及びKO等)を実質的に含有しない。また、環境負荷物質である鉛成分(PbO等)を実質的に含有しない。 The glass for covering a semiconductor element of the present invention does not substantially contain an alkali metal component (such as Li 2 O, Na 2 O and K 2 O) that adversely affects the surface of the semiconductor element. Moreover, it does not substantially contain lead components (PbO or the like) that are environmentally hazardous substances.
 本発明の半導体素子被覆用ガラスは、さらにTa5、MnO、NbまたはCeOを含有することができる。これらの成分を含有させることで、半導体素子表面に被覆した際に、漏れ電流を低下させる効果がある。 The glass for covering a semiconductor element of the present invention can further contain Ta 2 O 5, MnO 2 , Nb 2 O 5 or CeO 2 . The inclusion of these components has the effect of reducing leakage current when the semiconductor element surface is coated.
 Ta、MnO及びNbの含有量は、各々0~5%、特に各々0.1~3%であることが好ましい。これらの成分の含有量が多すぎると、溶融性が低下する傾向がある。また、CeOの含有量は0~3%、特に0.1~2%であることが好ましい。CeOの含有量が多すぎると、結晶性が強くなりすぎて、半導体素子被覆時に流動性が低下する傾向がある。 The contents of Ta 2 O 5 , MnO 2 and Nb 2 O 5 are each preferably 0 to 5%, particularly preferably 0.1 to 3%. When there is too much content of these components, there exists a tendency for a meltability to fall. The CeO 2 content is preferably 0 to 3%, particularly preferably 0.1 to 2%. When the content of CeO 2 is too large, crystallinity becomes too strong, the fluidity at the time of the semiconductor device covering tends to decrease.
 本発明の半導体素子被覆用ガラスは粉末状(半導体素子被覆用ガラス粉末)であることが好ましい。これにより、例えばペースト法や電気泳動塗布法等を用いて半導体素子表面の被覆を容易に行うことができる。この場合、ガラス粉末の平均粒子径D50は25μm以下、特に15μm以下であることが好ましい。ガラス粉末の平均粒子径D50が大きすぎると、ペースト化が困難になる傾向がある。また、電気泳動塗布も困難になる。なお、ガラス粉末の平均粒子径D50の下限は特に限定されないが、現実的には0.1μm以上である。 The glass for coating a semiconductor element of the present invention is preferably in the form of a powder (glass powder for coating a semiconductor element). Accordingly, the surface of the semiconductor element can be easily coated using, for example, a paste method or an electrophoretic coating method. In this case, the average particle diameter D 50 of the glass powder is 25μm or less, and particularly preferably 15μm or less. When the average particle diameter D 50 of the glass powder is too large, there is a tendency that paste becomes difficult. Also, electrophoretic coating becomes difficult. The lower limit of the average particle diameter D 50 of the glass powder is not particularly limited, in practice it is 0.1μm or more.
 本発明の半導体素子被覆用材料は、上記の半導体素子被覆用ガラス粉末を含んでなるものである。例えば、本発明の半導体素子被覆用材料は、半導体素子被覆用ガラス粉末に対し、ZnO、αZnO・B及び2ZnO・SiOから選択される少なくとも1種の無機粉末を核形成剤として含有してなる。これらの無機粉末を添加することにより、焼成時に低膨張結晶が析出しやすくなる。結果として、所望の熱膨張係数に容易に調整することが可能となる。 The semiconductor element coating material of the present invention comprises the above-described semiconductor element coating glass powder. For example, the semiconductor element coating material of the present invention contains at least one inorganic powder selected from ZnO, αZnO · B 2 O 3 and 2ZnO · SiO 2 as a nucleating agent with respect to the glass powder for coating a semiconductor element. Do it. By adding these inorganic powders, low-expansion crystals are likely to precipitate during firing. As a result, it is possible to easily adjust to a desired thermal expansion coefficient.
 上記無機粉末の含有量は、半導体素子被覆用ガラス粉末100質量部に対して0.01~5質量部、特に0.1~3質量部であることが好ましい。無機粉末の含有量が少なすぎると、焼成時の析出結晶量が少なく、所望の熱膨張係数を達成することが困難となる傾向がある。一方、無機粉末の含有量が多すぎると、焼成時の析出結晶量が多くなりすぎて流動性が損なわれ、半導体素子表面の被覆が困難となる傾向がある。 The content of the inorganic powder is preferably 0.01 to 5 parts by mass, particularly 0.1 to 3 parts by mass with respect to 100 parts by mass of the semiconductor element coating glass powder. If the content of the inorganic powder is too small, the amount of precipitated crystals at the time of firing is small, and it tends to be difficult to achieve a desired thermal expansion coefficient. On the other hand, when the content of the inorganic powder is too large, the amount of precipitated crystals at the time of firing becomes too large, fluidity is impaired, and the semiconductor element surface tends to be difficult to coat.
 なお、上記無機粉末の粒子径が小さいほど、析出結晶の粒子径が小さくなり機械的強度が大きくなる傾向がある。したがって、無機粉末の平均粒子径D50は5μm以下、特に3μm以下であることが好ましい。無機粉末の平均粒子径D50の下限は特に限定されないが、現実的には0.1μm以上である。 Note that the smaller the particle size of the inorganic powder, the smaller the particle size of the precipitated crystals and the higher the mechanical strength. Therefore, the average particle diameter D 50 of the inorganic powder is 5μm or less, and particularly preferably 3μm or less. The lower limit of the average particle diameter D 50 of the inorganic powder is not particularly limited, but realistically is 0.1μm or more.
 本発明の半導体素子被覆用ガラス(または半導体素子被覆用材料)の熱膨張係数(30~300℃)は、半導体素子の熱膨張係数に応じて、例えば20×10-7~60×10-7/℃、30×10-7~50×10-7/℃、30×10-7~45×10-7/℃、さらには31×10-7~40×10-7/℃の範囲で適宜調整される。 The thermal expansion coefficient (30 to 300 ° C.) of the semiconductor element coating glass (or semiconductor element coating material) of the present invention is, for example, 20 × 10 −7 to 60 × 10 −7 depending on the thermal expansion coefficient of the semiconductor element. / ° C, 30 × 10 −7 to 50 × 10 −7 / ° C., 30 × 10 −7 to 45 × 10 −7 / ° C., and further within the range of 31 × 10 −7 to 40 × 10 −7 / ° C. Adjusted.
 本発明の半導体素子被覆用ガラスは、例えば、各酸化物成分の原料粉末を調合してバッチとし、1500℃程度で約1時間溶融してガラス化した後、成形し、その後、必要に応じて粉砕、分級することによって得ることができる。 The glass for covering a semiconductor element of the present invention is prepared, for example, by mixing raw material powders of each oxide component into a batch, melting at about 1500 ° C. for about 1 hour to form a glass, and then forming, if necessary. It can be obtained by pulverization and classification.
 以下、実施例に基づいて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.
 表1は本発明の実施例1~4および比較例1、2を示している。 Table 1 shows Examples 1 to 4 and Comparative Examples 1 and 2 of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各試料は以下のようにして作製した。まず表中のガラス組成となるように原料粉末を調合してバッチとし、1500℃で1時間溶融してガラス化した。続いて、溶融ガラスをフィルム状に成形した後、ボールミルにて粉砕し、350メッシュの篩を用いて分級し、平均粒子径D50が12μmのガラス粉末を得た。その後、得られたガラス粉末に対し、表に記載の無機粉末を添加して半導体素子被覆用材料を得た。なお、無機粉末の添加量は、ガラス粉末100質量部に対する量で示した。得られた半導体素子被覆用材料について、熱膨張係数を熱膨張測定装置(ディラトメーター)を用いて30~300℃の温度範囲にて測定した。結果を表1に示す。 Each sample was produced as follows. First, raw material powders were prepared so as to have the glass composition shown in the table, and batchwise melted at 1500 ° C. for 1 hour to be vitrified. Subsequently, after forming the molten glass into a film and then pulverized by a ball mill, and classified with a 350 mesh sieve, the mean particle diameter D 50 was obtained glass powder 12 [mu] m. Thereafter, the inorganic powder described in the table was added to the obtained glass powder to obtain a semiconductor element coating material. In addition, the addition amount of inorganic powder was shown with the quantity with respect to 100 mass parts of glass powder. With respect to the obtained semiconductor element coating material, the thermal expansion coefficient was measured in a temperature range of 30 to 300 ° C. using a thermal expansion measuring device (dilatometer). The results are shown in Table 1.
 半導体素子被覆用材料を有機溶媒中に分散し、電気泳動によって3インチシリコンウェハ表面に付着させ、700~800℃で焼成することにより、膜厚15μmの焼結層を形成した。焼結層形成後のシリコンウェハには若干の反りが確認された。反りの大きさを以下のようにして評価した。 The semiconductor element coating material was dispersed in an organic solvent, adhered to the surface of a 3-inch silicon wafer by electrophoresis, and baked at 700 to 800 ° C. to form a sintered layer having a thickness of 15 μm. Some warpage was confirmed on the silicon wafer after the formation of the sintered layer. The magnitude of warpage was evaluated as follows.
 焼結層形成後のシリコンウェハを、平板上に凸面が下側になるように載置した。シリコンウェハのオリフラ部を平板上に押さえつけた際、オリフラ部と反対側の端部と平板との距離を測定し、反りの大きさとして評価した。 The silicon wafer after the sintered layer was formed was placed on a flat plate with the convex surface on the lower side. When the orientation flat part of the silicon wafer was pressed onto the flat plate, the distance between the end opposite to the orientation flat part and the flat plate was measured and evaluated as the magnitude of warpage.
 表1から明らかなように、実施例1~4の半導体素子被覆用材料は、熱膨張係数が32×10-7~36×10-7/℃と低く、かつ反りが250μm以下と小さかった。一方、比較例1、2の半導体素子被覆用材料は、シリコンウェハの反りが500μm以上と大きかった。 As is apparent from Table 1, the semiconductor element coating materials of Examples 1 to 4 had a low thermal expansion coefficient of 32 × 10 −7 to 36 × 10 −7 / ° C. and a small warp of 250 μm or less. On the other hand, in the semiconductor element coating materials of Comparative Examples 1 and 2, the warpage of the silicon wafer was as large as 500 μm or more.

Claims (5)

  1.  ガラス組成として、質量%で、ZnO 52~68%、B 5~30%、SiO 12.5~25%(ただし12.5%を含まない)、Al 0~3%(ただし3%を含まない)、及びRO 0~6%(RはMg、Ca、Sr及びBaから選択される少なくとも1種)を含有し、かつ、アルカリ金属成分、鉛成分を実質的に含有しないことを特徴とする半導体素子被覆用ガラス。 As a glass composition, ZnO 52 to 68%, B 2 O 3 5 to 30%, SiO 2 12.5 to 25% (excluding 12.5%), Al 2 O 3 0 to 3% by mass% (However, 3% is not included), and RO 0-6% (R is at least one selected from Mg, Ca, Sr and Ba), and substantially contains an alkali metal component and a lead component A glass for covering semiconductor elements, characterized by not.
  2.  さらに、質量%で、Ta 0~5%、MnO 0~5%、Nb 0~5%、及びCeO 0~3%を含有することを特徴とする請求項1に記載の半導体素子被覆用ガラス。 Furthermore, it contains Ta 2 O 5 0 to 5%, MnO 2 0 to 5%, Nb 2 O 5 0 to 5%, and CeO 2 0 to 3% by mass. The glass for semiconductor element coating of description.
  3.  30~300℃の温度範囲における熱膨張係数が20~60×10-7/℃であることを特徴とする請求項1または2に記載の半導体素子被覆用ガラス。 3. The glass for coating a semiconductor element according to claim 1, wherein a coefficient of thermal expansion in a temperature range of 30 to 300 ° C. is 20 to 60 × 10 −7 / ° C.
  4.  請求項1~3のいずれか一項に記載の半導体素子被覆用ガラスからなることを特徴とする半導体素子被覆用ガラス粉末。 A semiconductor element coating glass powder comprising the semiconductor element coating glass according to any one of claims 1 to 3.
  5.  請求項4に記載の半導体素子被覆用ガラス粉末100質量部と、ZnO、αZnO・B及び2ZnO・SiOから選択される少なくとも1種の無機粉末0.01~5質量部を含有することを特徴とする半導体素子被覆用材料。 100 parts by mass of the glass powder for coating a semiconductor element according to claim 4, and 0.01 to 5 parts by mass of at least one inorganic powder selected from ZnO, αZnO · B 2 O 3 and 2ZnO · SiO 2 A material for covering a semiconductor element.
PCT/JP2016/065244 2015-06-01 2016-05-24 Glass for covering semiconductor elements WO2016194694A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680032074.0A CN107635939A (en) 2015-06-01 2016-05-24 Semiconductor element covering glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-111115 2015-06-01
JP2015111115A JP6852961B2 (en) 2015-06-01 2015-06-01 Glass for coating semiconductor devices

Publications (1)

Publication Number Publication Date
WO2016194694A1 true WO2016194694A1 (en) 2016-12-08

Family

ID=57440877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065244 WO2016194694A1 (en) 2015-06-01 2016-05-24 Glass for covering semiconductor elements

Country Status (4)

Country Link
JP (1) JP6852961B2 (en)
CN (1) CN107635939A (en)
TW (1) TWI693202B (en)
WO (1) WO2016194694A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642519B (en) * 2019-09-25 2022-06-14 湖南利德电子浆料股份有限公司 Encapsulation slurry for aluminum nitride substrate and preparation method and application thereof
DE102020106946A1 (en) 2020-03-13 2021-09-16 Schott Ag Glass for passivating semiconductor components
DE102020008072A1 (en) 2020-03-13 2021-09-30 Schott Ag Glass for passivating semiconductor components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843275A (en) * 1971-10-04 1973-06-22
JPS50129181A (en) * 1974-03-30 1975-10-13
JPS5117027B1 (en) * 1970-06-15 1976-05-29
JPS61242928A (en) * 1985-04-17 1986-10-29 Nippon Electric Glass Co Ltd Semiconductor coating glass

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093177A1 (en) * 2010-01-28 2011-08-04 日本電気硝子株式会社 Glass for semiconductor coating and material for semiconductor coating using the same
US9236318B1 (en) * 2013-03-29 2016-01-12 Shindengen Electric Manufacturing Co., Ltd. Glass composition for protecting semiconductor junction, method of manufacturing semiconductor device and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117027B1 (en) * 1970-06-15 1976-05-29
JPS4843275A (en) * 1971-10-04 1973-06-22
JPS50129181A (en) * 1974-03-30 1975-10-13
JPS61242928A (en) * 1985-04-17 1986-10-29 Nippon Electric Glass Co Ltd Semiconductor coating glass
JPH0149653B2 (en) * 1985-04-17 1989-10-25 Nippon Electric Glass Co

Also Published As

Publication number Publication date
JP2016222498A (en) 2016-12-28
JP6852961B2 (en) 2021-03-31
TWI693202B (en) 2020-05-11
CN107635939A (en) 2018-01-26
TW201704165A (en) 2017-02-01

Similar Documents

Publication Publication Date Title
TWI501933B (en) A semiconductor coated glass, and a semiconductor coated material using the same
TWI615370B (en) Semiconductor component coated glass
WO2016194694A1 (en) Glass for covering semiconductor elements
CN112512983B (en) Glass for coating semiconductor element and material for coating semiconductor using same
JP5565747B2 (en) Semiconductor coating glass and semiconductor coating material using the same
JP5773327B2 (en) Glass for semiconductor coating
JP2012012228A (en) Glass frit, and conductive paste and electronic device using the same
CN112512982B (en) Glass for coating semiconductor element and material for coating semiconductor using same
JP6410089B2 (en) Glass for semiconductor element coating
JP7216323B2 (en) Semiconductor device coating glass and semiconductor coating material using the same
CN112262112B (en) Sealing material
TWI830068B (en) Glass for covering semiconductor elements and semiconductor covering materials using the same
WO2024004711A1 (en) Glass for covering semiconductor element, material for covering semiconductor element, and sintered body for covering semiconductor element
WO2021060001A1 (en) Glass for semiconductor element coating and material for semiconductor coating using same
WO2022264853A1 (en) Semiconductor element coating glass, and semiconductor element coating material using same
JP2022064270A (en) Semiconductor element coating glass and semiconductor element coating material using the same
CN115066404A (en) Glass for coating semiconductor element and material for coating semiconductor using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803129

Country of ref document: EP

Kind code of ref document: A1