WO2016194669A1 - Method for discharging residue in powder processing devices and system for discharging residue in powder processing devices - Google Patents

Method for discharging residue in powder processing devices and system for discharging residue in powder processing devices Download PDF

Info

Publication number
WO2016194669A1
WO2016194669A1 PCT/JP2016/065126 JP2016065126W WO2016194669A1 WO 2016194669 A1 WO2016194669 A1 WO 2016194669A1 JP 2016065126 W JP2016065126 W JP 2016065126W WO 2016194669 A1 WO2016194669 A1 WO 2016194669A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
casing
dry ice
shaft
discharge
Prior art date
Application number
PCT/JP2016/065126
Other languages
French (fr)
Japanese (ja)
Inventor
久継 高島
章二 酒井
Original Assignee
株式会社奈良機械製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社奈良機械製作所 filed Critical 株式会社奈良機械製作所
Priority to JP2017521820A priority Critical patent/JP6215509B2/en
Publication of WO2016194669A1 publication Critical patent/WO2016194669A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71805Feed mechanisms characterised by the means for feeding the components to the mixer using valves, gates, orifices or openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/18Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by rotating helical blades or other rotary conveyors which may be heated moving materials in stationary chambers, e.g. troughs
    • F26B17/20Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by rotating helical blades or other rotary conveyors which may be heated moving materials in stationary chambers, e.g. troughs the axis of rotation being horizontal or slightly inclined

Definitions

  • the present invention relates to a method for discharging a residue from a powder processing apparatus.
  • the powder processing apparatus which processes in a casing for the purpose of drying etc. is proposed.
  • the powder in the casing is sequentially moved toward the discharge port and discharged by the pushing force of the powder input from the supply port.
  • the powder remains at least in the gap between the inner peripheral surface of the casing 1 and the outermost peripheral raceway surface of the scraping plate 16 of the rotating body 15.
  • the powder having a larger angle of repose (evaluation method on the fluidity of the powder) remains in a mountain shape between the adjacent rotary bodies 15. Specifically, after the supply of the powder is stopped, the effective volume of the casing 1 is 15 even if the rotating body 15 is rotated for a long time or the powder having good fluidity such as the powder of synthetic resin.
  • an object of the present invention is to provide a method and a discharge system for discharging powder remaining in the casing after the powder processing is completed in the powder processing apparatus.
  • a residue discharge method includes a casing, a supply port provided at an upper portion of one end portion of the casing, and a discharge port provided at a lower portion of the other end portion of the casing. Is a residue discharge method in a powder processing apparatus in which the powder in the casing is pushed toward the discharge port and moves toward the discharge port. A powder charging stop step for stopping charging, and a sublimable solid particle charging step for charging sublimable solid particles that sublime at room temperature and normal pressure from the supply port after the powder charging stop step.
  • the powder remaining in the casing can be pushed out and discharged by sublimable solid particles.
  • the sublimable solid particles exfoliate the adhered powder in the casing by volume expansion during sublimation, and then the sublimable solid particles are naturally discharged together with the powder from the casing, so that the residual powder in the casing is discharged. In addition, a cleaning effect in the casing can be obtained. Since the sublimable solid particles and powder discharged are vaporized at room temperature and normal pressure, the sublimable solid particles do not need to be separated from the residual powder, and the residual powder can be used as a processed product as it is.
  • the powder processing apparatus has a dam plate for damming the powder moving toward the discharge port in the casing, and an opening for discharging the powder in the casing at a lower portion of the dam plate,
  • the opening is in a closed state during powder processing, and the opening is in an open state after the powder charging stop step and until the sublimable solid particle charging step. , Closed during the sublimable solid particle charging step.
  • the heat exchanger further includes a shaft that is pivotally mounted on the casing and on which a plurality of rotating bodies are arranged, the rotating body is hollow, a heat exchange medium passes through the inside, and the powder inside the casing is heated or cooled.
  • the powder charging stop step and the sublimable solid particle charging step are performed in a state where the heat exchange medium is continuously supplied to the rotating body via the shaft.
  • the shaft is formed of a metal having a body-centered cubic lattice.
  • the sublimable solid particles are dry ice particles.
  • the powder in the casing is discharged, the sublimable solid particles remaining after the powder discharge, and the post-sublimation This gas can be effectively discharged from the casing.
  • the residue discharge system includes a casing, a shaft that is pivotally mounted on the casing and on which a plurality of rotating bodies are disposed, a supply port provided at an upper portion of one end of the casing, and the other of the casing.
  • a powder processing device that has a discharge port provided at the lower part of the end, processes the powder charged from the supply port in the casing, and discharges the powder from the discharge port; and sublimates at room temperature and normal pressure
  • the powder processing apparatus is configured to move the powder in the casing toward the discharge port by the pushing force of the powder input from the supply port.
  • the sublimable solid particles are introduced from the inlet.
  • the sublimable solid particles are dry ice particles having an average particle size of 3 to 10 mm.
  • the dry ice particles have a cylindrical shape having a cross-sectional diameter of 5 mm or less and a length of 20 mm or less.
  • a method of efficiently discharging powder remaining in a casing in a short time using the plug flow property (also referred to as piston flow property) of powder. And discharge system can be provided.
  • FIG. 2 is a sectional view taken along line AA in FIG. 1.
  • FIG. 2 is a sectional view taken along line BB in FIG. It is sectional drawing which shows the circumference
  • a powder having poor fluidity remains in the powder processing apparatus.
  • the prior art shows a state in which powder having good fluidity remains in the powder processing apparatus.
  • the residue discharge system of the powder processing apparatus including the stirring-type drying apparatus in the present embodiment includes a casing 1, a first support base 2a, a second support base 2b, a jacket 3, a heat exchange medium distribution pipe 4, and a heat exchange medium discharge.
  • Pipe 5 hollow shaft 6, front bearing 7, rear bearing 8, gear 9, sprocket 10, first rotary joint 11a, second rotary joint 11b, heat exchange medium supply pipe 12, heat exchange medium discharge pipe 14 , Rotating body 15, scraping plate 16, cover 17, supply port 18, powder distribution pipe 19, quantitative supply device 20, weir plate (overflow gate) 21, discharge plate (underflow gate) 22, discharge port 23, fastening Tool 24, discharge plate opening / closing shaft 25, front carrier gas inlet 26, rear carrier gas inlet 27, carrier gas outlet 28, exhaust pipe 29, powder separator 30, exhaust Blower 31, dry ice particle buffer tank 32, dry ice particle supply pipe 33, first shaft support (support) 34, second shaft support (support) 35, bearing 36, handle 37, rotary valve 38, heat exchange medium A circulation path 39 and a notch (opening) 40 are
  • FIG. 1 shows a portion where these members are present so that the structure around the rotating body 15 and the scraping plate 16 that cannot be seen from the outside, and the structure around the dam plate 21 and the discharge plate 22 can be seen. A part of the casing 1 is cut away to show the inner structure.
  • the casing 1 extends in a substantially horizontal direction, has a substantially U-shaped cross section, and forms a substantially W-shaped arc shape at the bottom.
  • a jacket 3 forming an exchange medium circulation path 39 is provided.
  • the casing 1 is supported by a first support 2a and a second support 2b.
  • the first support 2a and the second support 2b support the casing 1 in a horizontal state or in a state where the first support 2a and the second support 2b are inclined so that the second support 2b side (discharge port 23 side) is lowered.
  • the 1st support stand 2a side is made into the front part of an apparatus
  • the 2nd support stand 2b side is made into the rear part of an apparatus.
  • the heat exchange medium distribution pipe 4 is provided at the front end of the jacket 3 for the inlet of the heat exchange medium passing through the heat exchange medium circulation path 39.
  • the heat exchange medium discharge pipe 5 is provided at the rear end of the jacket 3 for the outlet of the heat exchange medium passing through the heat exchange medium circulation path 39.
  • a gear 9 is provided at each front portion of the shaft 6, and both the gears 9 are meshed so as to rotate in opposite directions.
  • a sprocket 10 is provided on one side of the shaft 6 and connected to a motor (not shown) via a chain (not shown) hung on the sprocket 10.
  • each shaft 6 is connected to the heat exchange medium supply pipe 12 through the first rotary joint 11a.
  • the rear end of each shaft 6 is connected to the heat exchange medium discharge pipe 14 via the second rotary joint 11b.
  • Each of the shafts 6 is provided with a plurality of rotating bodies 15 at regular intervals.
  • a hollow fan-shaped heat exchanger is used as the rotating body 15.
  • the rotating body 15 is formed in a wedge shape so that the front end in the rotation direction is narrow, and a scraping plate 16 is provided at a wide rear end. Then, two such rotating bodies 15 are arranged as a set, and the two rotating bodies 15 are arranged so as to have a point-symmetrical positional relationship around the shaft 6 as shown in FIG. Further, the two rotating bodies 15 are arranged so that the front end of one rotating body 15 faces the rear end of the other rotating body 15 and at a certain interval, that is, with a gap provided. .
  • the scraping plate 16 scrapes the powder in the same direction as the rotation direction.
  • the rotating body 15 provided on the shaft 6 is not limited to a hollow fan blade shape, and may be a hollow disk shape without a gap. Further, the rotating body 15 may be arranged so that there are one or three or more gap portions.
  • the two shafts 6 are preferably disposed in the casing 1 with their phases shifted so that the gap between the pair of rotating bodies 15 is shifted by approximately 90 degrees.
  • the rotating body 15 is provided at the same position in the axial direction (arranged so that the front rotating body 15 and the rear rotating body 15 overlap each other when viewed from the axial direction).
  • a configuration may be adopted in which rotating bodies 15 adjacent to each other in the front-rear direction (axial direction) on one axis are arranged in a spiral manner in the axial direction with a phase shifted by a constant angle.
  • the shaft 6 is provided with two communicating holes for each rotating body 15 so that the shaft 6 and the rotating body 15 communicate with each other. Then, the heat exchange medium supplied to the heat exchange medium supply pipe 12 enters the shaft 6 via the first rotary joint 11a, and then enters the rotating body 15 via one communication hole, and passes through the other communication hole. To the shaft 6 and discharged from the heat exchange medium discharge pipe 14 via the second rotary joint 11b. When the heat exchange medium passes, the shaft 6 and the rotating body 15 function as a heat exchanger that heats, dries, and cools the powder in the casing 1.
  • the form in which two shafts 6 are provided has been described.
  • the number of shafts 6 is not limited to two, and may be one or three or more.
  • a cover 17 is provided on the upper portion of the casing 1.
  • a treatment powder supply port 18 is provided at the front end of the cover 17.
  • the supply port 18 is connected to a powder quantitative supply device 20 via a powder distribution pipe 19.
  • a dam plate 21 is provided for retaining a certain amount of treated powder in the casing 1 (damming). A part of the lower part of the dam plate 21 is cut out, and the cutout part (opening part) 40 is movable for discharging the powder in the casing 1 during natural discharge processing, which will be described later.
  • a discharge plate 22 of the type is provided.
  • a discharge port 23 is provided at the rear end of the casing 1 (downstream of the dam plate 21), the processed powder that has passed over the dam plate 21 and the powder discharged from the open opening 40 are discharged out of the casing 1.
  • a discharge port 23 is provided at the rear end of the casing 1 (downstream of the dam plate 21).
  • the discharge plate 22 is fixed to the discharge plate opening / closing shaft 25 by a fastener 24 so as to be rotatable (see FIGS. 3 to 5).
  • the discharge plate opening / closing shaft 25 is supported by a first shaft support member 34, a second shaft support member 35, and a bearing 36, and a handle 37 is provided at the tip thereof.
  • the discharge plate 22 rotates about the discharge plate opening / closing shaft 25 as a fulcrum, thereby opening and closing the opening 40.
  • a front carrier gas inlet 26 is provided at the front end of the cover 17, and a rear carrier gas inlet 27 is provided at the rear end of the cover 17.
  • the front carrier gas inlet 26 and the rear carrier gas inlet 27 are provided with carrier gas (air, non-volatile) for discharging volatile components (water vapor, organic solvent, etc.) evaporated from the treated powder in the casing 1 to the outside of the system. Active gas etc.) are introduced.
  • the carrier gas is discharged from a carrier gas discharge port 28 provided in the vicinity of the intermediate portion of the cover 17.
  • the carrier gas discharge port 28 is connected to an exhaust blower 31 via an exhaust pipe 29 and a powder separator 30 such as a cyclone.
  • the dry ice particle buffer tank 32 is provided upstream of the powder quantitative supply device 20.
  • the dry ice particles are discharged from the residual powder in the casing 1, the rotary ice 38, the dry ice particle supply pipe 33, The powder is supplied into the casing 1 via a powder quantitative supply device 20.
  • the dry ice particle buffer tank 32 is connected to a dry ice generator (not shown), and the dry ice particles produced by the dry ice generator are continuously supplied to the dry ice particle buffer tank 32.
  • the purchased dry ice particles may be put into the dry ice particle buffer tank 32 all at once.
  • the operator supplies a heat exchange medium such as warm water, water vapor, and heat transfer oil heated to a predetermined temperature to the heat exchange medium circulation path 39 and the shaft 6.
  • a heat exchange medium such as warm water, water vapor, and heat transfer oil heated to a predetermined temperature
  • the heat exchange medium is water vapor
  • the water vapor supplied to the heat exchange medium circulation path 39 heats the casing 1, and then the water vapor becomes a condensate and is discharged from the heat exchange medium discharge pipe 5.
  • the steam supplied to the shaft 6 heats the shaft 6 and the rotator 15 and then becomes a condensate and is discharged from the heat exchange medium discharge pipe 14.
  • the operator drives the motor to rotate the two shafts 6 at a constant rotational speed.
  • the opening 40 is kept closed.
  • the operator After the temperatures of the heat exchange medium circulation path 39 and the rotating body 15 become constant, the operator operates the powder quantitative supply device 20 to continuously supply the processed powder into the casing 1.
  • the treated powder supplied into the casing 1 is pressed by the powder supplied from the quantitative supply device 20, that is, the treated powder supplied later, the pressure due to the filling height at the supply port 18, and as required.
  • the inside of the casing 1 gradually moves to the side of the dam plate 21 through the portion and the gap between the inner peripheral surface of the casing 1 and the rotating body 15.
  • the powder is stirred by the rotation of the rotating body 15 and heated by the rotating body 15 and the casing 1.
  • the powder charged at the start of operation that is, the pre-filled powder reaches the end of the casing 1, that is, the end, it is blocked by the dam plate 21, so that the powder layer in the casing 1 gradually increases.
  • the powder layer in the casing 1 gradually increases.
  • the powder is discharged from the upper end of the dam plate 21 through the discharge port 23.
  • Volatile components evaporated from the powder heated by the rotator 15 or the casing 1 are supplied from the front carrier gas inlet 26 and the rear carrier gas inlet 27 and pass through the powder upper layer of the casing 1.
  • the exhaust gas is discharged from the carrier gas outlet 28 through the exhaust pipe 29, the powder separator 30, and the exhaust blower 31.
  • the fine powder discharged along with the carrier gas is separated from the carrier gas by the powder separator 30 and collected.
  • powder is discharged without using dry ice particles (natural discharge).
  • the operator stops supplying powder to the quantitative supply device 20 or supplying powder from the quantitative supply device 20, and after continuing the drying process for a while, rotates the discharge plate opening / closing shaft 25 using the handle 37. Then, the opening 40 is opened (powder charging stop step).
  • the powder in the casing 1 is subjected to thrust in a direction parallel to the shaft 6 (rear direction) due to the pressure depending on the filling height, the inclination of the casing 1 provided as necessary, the rotation of the shaft 6 and the like, and continues.
  • the casing 1 moves toward the opening 40 and is discharged from the opening 40 through the discharge port 23 to the outside of the apparatus.
  • all the powder in the casing 1 cannot be discharged and varies depending on the physical properties of the treated powder, but in the case of a powder with poor fluidity, the powder shown in FIG. Even in the case of a body, as shown in FIG. 8, the gap between the inner peripheral surface of the casing 1 and the outermost track surface of the scraping plate 16 of the rotating body 15, or the rotating body 15 adjacent to the rotating body 15 in the front-rear direction. In between, powder remains.
  • dry powder is discharged using dry ice particles.
  • the operator rotates the discharge plate opening / closing shaft 25 using the handle 37 and closes the opening 40 again.
  • the supply of the heat exchange medium is continued during the powder charging stop step and the dry ice charging step described later.
  • the casing 1 and the shaft 6 are cooled by dry ice particles, and the casing 1 and the shaft 6 are made of body-centered cubic lattice such as carbon steel (atomic atoms at the center and apex of the cube). If the heat exchange medium is stopped during both steps, the sliding of the shaft 6 and the rotary joint 11 may occur. The main reason is that there is a risk that the sliding portion of the rotary joint 11 is damaged because the shaft 6 rotates in a state where the moving surface is dry.
  • the worker can close the jacket 3, the shaft 6 and the rotating body when the opening 40 is closed.
  • the supply of the heat exchange medium to 15 may be stopped.
  • the shaft 6 and the rotating body 15 is cooled by dry ice and solidifies (becomes ice), the volume expansion causes the jacket 3 and
  • this operation (the operation of discharging the residue by stopping the supply of the heat exchange medium to the rotary joint 11 during the dry ice charging step) is performed. ) Is preferably performed in a short time.
  • the operator operates the rotary valve 38 to put the dry ice particles in the dry ice particle buffer tank 32 into the fixed amount supply device 20 through the dry ice particle supply pipe 33, and the fixed amount supply device. 20 is activated (dry ice charging step). At this time, the operator confirms in advance that no powder remains in the quantitative supply device 20.
  • the dry ice particles charged into the fixed amount supply device 20 are supplied into the casing 1 from the supply port 18 through the powder distribution pipe 19.
  • the dry ice particles previously supplied into the casing 1 were provided as required by the pushing force by the dry ice particles introduced later, the pressure at the filling height at the supply port 18, and the like, as with the powder. Due to the inclination of the casing 1, the rotation of the shaft 6, etc., the thrust in the direction parallel to the shaft 6 (rear direction) is received, and the inside of the casing 1 gradually moves toward the weir plate 21.
  • the powder that has been widely dispersed and remained on the inner peripheral surface (bottom surface) of the casing 1 is pushed by the dry ice particles and gradually gathers on the side of the dam plate 21.
  • the adhered powder peels off from the respective surfaces due to the volume expansion during the sublimation of the dry ice particles in contact with the powder. And it moves to the weir plate 21 side with dry ice particles.
  • the plug flow property also referred to as piston flow property
  • the mixing of the treated powder that has entered first and the dry ice particles that have entered later is as much as possible. It can be suppressed.
  • the operator stops the supply of dry ice particles to the quantitative supply device 20 or the operation of the quantitative supply device 20. If the supply of the heat exchange medium to the jacket 3, the shaft 6, and the rotating body 15 is stopped in the dry ice charging step, the supply of the heat exchange medium is resumed to promote sublimation of the dry ice particles. Is preferred.
  • the dry ice particles remaining in the casing 1 are sublimated and become carbon dioxide, and are discharged out of the system through the exhaust pipe 29 from the carrier gas discharge port 28 by the suction port 23 and the suction force of the exhaust blower 31.
  • the operator stops the supply of the heat exchange medium to the heat exchange medium circulation path 39 and the shaft 6 and also stops the rotation of the two shafts 6.
  • the powder remaining in the casing 1 can be pushed out and discharged by dry ice particles.
  • the dry ice particles peel off the powder adhering to the surface of the casing 1, the shaft 6, and the rotating body 15 by volume expansion during sublimation, and then the dry ice particles are naturally discharged together with the powder from the casing 1. Therefore, the inside of the casing 1 can be cleaned together with the discharge of the residual powder in the casing 1.
  • the residual powder can be handled as a product.
  • the powder in the casing 1 is controlled by controlling the opening / closing of the discharge plate 22 (opening control of the opening) and the on / off control of the exhaust blower 31 in the powder charging stop step and the dry ice charging step after the drying process. Dry ice particles remaining after body discharge, powder discharge, and carbon dioxide after sublimation can be effectively discharged from the casing 1.
  • the dry ice particles used in this embodiment preferably have an average particle diameter of 3 to 10 mm, more preferably a cylindrical shape having a cross-sectional diameter of 5 mm or less and a length of 20 mm or less.
  • the structure in which the heat exchange medium for heat exchange passes inside the jacket 3 and the like has been described, but the sublimation of the dry ice particles is possible without a heating mechanism.
  • the form using dry ice particles as the sublimable solid particles that are granular and sublimate (phase transition from solid to gas) at room temperature and normal pressure has been described.
  • other particulate sublimable substances may be used.
  • the form to be used may be used.
  • ABS resin Acrylonitrile Butadiene Styrene Copolymerized Synthetic Resin
  • water vapor as a heat exchange medium is supplied to the heat exchange medium circulation path 39, the shaft 6 and the rotating body 15, and then the shaft 6 is rotated at a rotation speed of 30 min ⁇ 1 so that the temperature in the casing 1 becomes 120 ° C. I waited for you.
  • ABS resin particles were quantitatively supplied into the casing 1 to perform a drying process. After the introduction of the ABS resin particles was completed, the drying process was performed for a while and then the opening 40 was opened. The ABS resin particles were naturally discharged for about 15 minutes until the ABS resin particles became about 30% of the volume in the casing 1. .
  • the opening 40 was closed, and dry ice particles were continuously charged at a supply rate of 90 kg / Hr so that the residence time in the casing 1 was 20 minutes, and the amount of ABS resin particles discharged every 2 minutes was measured. .
  • the supply of dry ice particles was stopped and the dry ice particles were sublimated 30 minutes after the start of the introduction of the dry ice particles (1.5 times the residence time of the dry ice particles in the casing 1). Thereafter, the rotation of the shaft 6 was stopped, ABS resin particles remaining in the casing 1 were collected, and the amount thereof was measured.
  • the amount of ABS resin particles remaining in the casing 1 was an extremely small amount of 1% of the effective volume in the casing 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

Provided is a method to discharge power remaining inside a casing of a powder processing device. The present invention is a method for discharging residue in a powder processing device that comprises a casing, a supply port provided on top at one end of the casing, and a discharge port provided on the bottom at the other end of the casing and that moves powder in the casing toward the discharge port by the powder being pushed by powder introduced from the supply port, wherein the method comprises a powder introduction stop step to stop the introduction of powder from the supply port after the powder processing completes, and a sublimable solid particle introduction step to introduce sublimable solid particles that sublimate at normal temperature and pressure from the supply port.

Description

粉体処理装置の残留物排出方法、及び粉体処理装置の残留物排出システムResidue discharging method of powder processing apparatus and residue discharging system of powder processing apparatus
 本発明は、粉体処理装置の残留物排出方法などに関する。 The present invention relates to a method for discharging a residue from a powder processing apparatus.
 従来、特許文献1のように、乾燥目的などで、ケーシング内で処理を行う粉体処理装置が提案されている。
 当該粉体処理装置では、供給口から投入される粉体の押し出す力により、ケーシング内の粉体が順次排出口の方に移動し、排出される。
Conventionally, like patent document 1, the powder processing apparatus which processes in a casing for the purpose of drying etc. is proposed.
In the powder processing apparatus, the powder in the casing is sequentially moved toward the discharge port and discharged by the pushing force of the powder input from the supply port.
特開2004-150641号公報JP 2004-150641 A
 しかし、処理後に供給口から粉体の供給を停止すると、押し出し効果が減少し、ケーシング内に粉体が残留する問題があった。
 図7や図8に示すように、少なくともケーシング1の内周面と回転体15の掻き上げ板16の最外周軌道面との空隙部分に粉体が残留する。粉体の物性によっても異なるが、安息角(粉体の流動性に関する評価法)が大きな粉体ほど隣り合う回転体15の間に山状に残留する。
 具体的には、粉体の供給を停止した後、回転体15を長時間回転させても、合成樹脂の粉体のように流動性の良い粉体の場合でも、ケーシング1の有効容積の15%程度の粉体が残り、小麦粉のように流動性の悪い粉体の場合には、ケーシング1の有効容積の30%以上も残ってしまう。
 このように残留した粉体は、粉体処理装置の種類や構造、大きさによっても異なるが、点検口やカバーを外し、特に大きな装置の場合はその内部に作業員が入って掃き出したり吸引したりして排出し、取り切れない粉体は水等で洗い落とし、その後外した点検口やカバーを取り付け、装置内を乾燥して、次の処理に備えていた。
 その結果、次の処理までに時間を要して生産性が悪いばかりでなく、廃棄物が多量に発生し、また大規模な排水処理装置を必要とするなどの問題もあった。
However, when the supply of the powder from the supply port is stopped after the processing, the extrusion effect is reduced, and there is a problem that the powder remains in the casing.
As shown in FIGS. 7 and 8, the powder remains at least in the gap between the inner peripheral surface of the casing 1 and the outermost peripheral raceway surface of the scraping plate 16 of the rotating body 15. Although it depends on the physical properties of the powder, the powder having a larger angle of repose (evaluation method on the fluidity of the powder) remains in a mountain shape between the adjacent rotary bodies 15.
Specifically, after the supply of the powder is stopped, the effective volume of the casing 1 is 15 even if the rotating body 15 is rotated for a long time or the powder having good fluidity such as the powder of synthetic resin. In the case of powder having poor fluidity such as wheat flour, 30% or more of the effective volume of the casing 1 remains.
The powder that remains in this way depends on the type, structure, and size of the powder processing device, but the inspection port and cover are removed. The powder that was discharged and was not removed was washed off with water, and then the inspection port and cover that were removed were attached, and the inside of the device was dried to prepare for the next treatment.
As a result, there is a problem that not only the productivity is poor due to the time required for the next treatment, but also a large amount of waste is generated and a large-scale wastewater treatment device is required.
 したがって本発明の目的は、粉体処理装置において、粉体処理の終了後にケーシング内に残留する粉体を排出する方法や排出システムを提供することである。 Therefore, an object of the present invention is to provide a method and a discharge system for discharging powder remaining in the casing after the powder processing is completed in the powder processing apparatus.
 本発明に係る残留物排出方法は、ケーシングと、ケーシングの一方の端部の上部に設けられた供給口と、ケーシングの他方の端部の下部に設けられた排出口とを有し、供給口から投入される粉体に押し出されて、ケーシング内の粉体が排出口の方に移動する粉体処理装置における残留物排出方法であって、粉体処理の終了後に、供給口から粉体の投入を停止する粉体投入停止ステップと、粉体投入停止ステップの後に、供給口から常温常圧で昇華する昇華性固体粒子を投入する昇華性固体粒子投入ステップとを備える。 A residue discharge method according to the present invention includes a casing, a supply port provided at an upper portion of one end portion of the casing, and a discharge port provided at a lower portion of the other end portion of the casing. Is a residue discharge method in a powder processing apparatus in which the powder in the casing is pushed toward the discharge port and moves toward the discharge port. A powder charging stop step for stopping charging, and a sublimable solid particle charging step for charging sublimable solid particles that sublime at room temperature and normal pressure from the supply port after the powder charging stop step.
 昇華性固体粒子により、ケーシング内に残留していた粉体を押し出して排出させることが出来る。 The powder remaining in the casing can be pushed out and discharged by sublimable solid particles.
 昇華性固体粒子は、昇華時の体積膨張によりケーシング内の付着粉体を剥離させ、その後、昇華性固体粒子は粉体とともに自然にケーシング内から排出されるため、ケーシング内の残留粉体の排出とともに、ケーシング内の洗浄効果も得ることが出来る。排出された昇華性固体粒子と粉体の混合品は、常温常圧で昇華性固体粒子が気化するため、残留粉体との分離が不要であり、残留粉体はそのまま処理製品として扱える。 The sublimable solid particles exfoliate the adhered powder in the casing by volume expansion during sublimation, and then the sublimable solid particles are naturally discharged together with the powder from the casing, so that the residual powder in the casing is discharged. In addition, a cleaning effect in the casing can be obtained. Since the sublimable solid particles and powder discharged are vaporized at room temperature and normal pressure, the sublimable solid particles do not need to be separated from the residual powder, and the residual powder can be used as a processed product as it is.
 好ましくは、粉体処理装置は、ケーシング内に、排出口の方に移動する粉体を堰き止める堰板と、堰板の下部にケーシング内の粉体を排出させるための開口部を有し、開口部は、粉体処理の間、閉じた状態にされ、開口部は、粉体投入停止ステップの後であって、昇華性固体粒子投入ステップまでの間、開いた状態にされ、開口部は、昇華性固体粒子投入ステップの間、閉じた状態にされる。 Preferably, the powder processing apparatus has a dam plate for damming the powder moving toward the discharge port in the casing, and an opening for discharging the powder in the casing at a lower portion of the dam plate, The opening is in a closed state during powder processing, and the opening is in an open state after the powder charging stop step and until the sublimable solid particle charging step. , Closed during the sublimable solid particle charging step.
 また、好ましくは、ケーシングに軸架され、複数の回転体が配置されるシャフトを更に備え、回転体は中空で、内部に熱交換媒体が通り、ケーシング内部の粉体を加熱又は冷却する熱交換器として機能するものであり、シャフトを介した回転体への熱交換媒体の供給を続けた状態で、粉体投入停止ステップと昇華性個体粒子投入ステップが行われる。 Preferably, the heat exchanger further includes a shaft that is pivotally mounted on the casing and on which a plurality of rotating bodies are arranged, the rotating body is hollow, a heat exchange medium passes through the inside, and the powder inside the casing is heated or cooled. The powder charging stop step and the sublimable solid particle charging step are performed in a state where the heat exchange medium is continuously supplied to the rotating body via the shaft.
 さらに好ましくは、シャフトは体心立方格子の金属で形成される。 More preferably, the shaft is formed of a metal having a body-centered cubic lattice.
 また、好ましくは、昇華性固体粒子はドライアイス粒子である。 Also preferably, the sublimable solid particles are dry ice particles.
 粉体処理後の粉体投入停止ステップや昇華性固体投入ステップにおいて、開口部の開口制御を行うことにより、ケーシング内の粉体の排出や、粉体排出後に残留する昇華性固体粒子及び昇華後の気体を効果的にケーシング内から排出することが出来る。 By controlling the opening of the opening in the powder charging stop step and sublimable solid charging step after powder processing, the powder in the casing is discharged, the sublimable solid particles remaining after the powder discharge, and the post-sublimation This gas can be effectively discharged from the casing.
 本発明に係る残留物排出システムは、ケーシングと、ケーシングに軸架され且つ複数の回転体が配置されるシャフトと、ケーシングの一方の端部の上部に設けられた供給口と、ケーシングの他方の端部の下部に設けられた排出口とを有し、ケーシング内で供給口から投入された粉体の処理を行い、排出口から粉体を排出させる粉体処理装置と、常温常圧で昇華する昇華性固体粒子とを備え、粉体処理装置は、供給口から投入される粉体の押出力により、ケーシング内の粉体が排出口の方に移動せしめられるものであり、処理の終了後に、投入口から昇華性固体粒子が投入される。 The residue discharge system according to the present invention includes a casing, a shaft that is pivotally mounted on the casing and on which a plurality of rotating bodies are disposed, a supply port provided at an upper portion of one end of the casing, and the other of the casing. A powder processing device that has a discharge port provided at the lower part of the end, processes the powder charged from the supply port in the casing, and discharges the powder from the discharge port; and sublimates at room temperature and normal pressure The powder processing apparatus is configured to move the powder in the casing toward the discharge port by the pushing force of the powder input from the supply port. The sublimable solid particles are introduced from the inlet.
 好ましくは、昇華性固体粒子は平均粒子径が3~10mmのドライアイス粒子である。 Preferably, the sublimable solid particles are dry ice particles having an average particle size of 3 to 10 mm.
 さらに好ましくは、ドライアイス粒子は、断面径が5mm以下で長さが20mm以下の円柱形状を有する。 More preferably, the dry ice particles have a cylindrical shape having a cross-sectional diameter of 5 mm or less and a length of 20 mm or less.
 以上のように本発明によれば、粉体処理装置において、粉体のプラグフロー性(ピストンフロー性ともいう)を利用して、ケーシング内に残留する粉体を短時間で効率よく排出する方法や排出システムを提供することができる。 As described above, according to the present invention, in a powder processing apparatus, a method of efficiently discharging powder remaining in a casing in a short time using the plug flow property (also referred to as piston flow property) of powder. And discharge system can be provided.
本実施形態における粉体処理装置の一部破断全体構成図である。It is a partially broken whole block diagram of the powder processing apparatus in this embodiment. 図1のA-A線断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 1. 図1のB-B線断面図である。FIG. 2 is a sectional view taken along line BB in FIG. 排出板の周囲を示す断面図で、排出板が閉じられた状態を示すものである。It is sectional drawing which shows the circumference | surroundings of a discharge plate, and shows the state by which the discharge plate was closed. 排出板の周囲を示す断面図で、排出板が開けられた状態を示すものである。It is sectional drawing which shows the circumference | surroundings of a discharge plate, and shows the state by which the discharge plate was opened. 本実施形態で使用されるドライアイス粒子の斜視図である。It is a perspective view of the dry ice particle used in this embodiment. 従来技術において、粉体処理装置内に流動性が悪い粉体が残留する状態を示すものである。In the prior art, a powder having poor fluidity remains in the powder processing apparatus. 従来技術において、粉体処理装置内に流動性が良い粉体が残留する状態を示すものである。The prior art shows a state in which powder having good fluidity remains in the powder processing apparatus.
 以下、本実施形態について、図を用いて説明する。 Hereinafter, this embodiment will be described with reference to the drawings.
 本実施形態における攪拌型乾燥装置を含む粉体処理装置の残留物排出システムは、ケーシング1、第1支持台2a、第2支持台2b、ジャケット3、熱交換媒体配給管4、熱交換媒体排出管5、中空のシャフト6、前部の軸受7、後部の軸受8、ギヤー9、スプロケット10、第1ロータリージョイント11a、第2ロータリージョイント11b、熱交換媒体供給管12、熱交換媒体排出管14、回転体15、掻き上げ板16、カバー17、供給口18、粉体配給管19、定量供給装置20、堰板(オーバーフローゲート)21、排出板(アンダーフローゲート)22、排出口23、留め具24、排出板開閉軸25、前部キャリアガス導入口26、後部キャリアガス導入口27、キャリアガス排出口28、排気管29、粉末分離器30、排気ブロワー31、ドライアイス粒子バッファータンク32、ドライアイス粒子供給管33、第1軸支え具(サポート)34、第2軸支え具(サポート)35、軸受36、ハンドル37、ロータリーバルブ38、熱交換媒体循環路39、切欠き部(開口部)40を備える(図1~図6参照)。 The residue discharge system of the powder processing apparatus including the stirring-type drying apparatus in the present embodiment includes a casing 1, a first support base 2a, a second support base 2b, a jacket 3, a heat exchange medium distribution pipe 4, and a heat exchange medium discharge. Pipe 5, hollow shaft 6, front bearing 7, rear bearing 8, gear 9, sprocket 10, first rotary joint 11a, second rotary joint 11b, heat exchange medium supply pipe 12, heat exchange medium discharge pipe 14 , Rotating body 15, scraping plate 16, cover 17, supply port 18, powder distribution pipe 19, quantitative supply device 20, weir plate (overflow gate) 21, discharge plate (underflow gate) 22, discharge port 23, fastening Tool 24, discharge plate opening / closing shaft 25, front carrier gas inlet 26, rear carrier gas inlet 27, carrier gas outlet 28, exhaust pipe 29, powder separator 30, exhaust Blower 31, dry ice particle buffer tank 32, dry ice particle supply pipe 33, first shaft support (support) 34, second shaft support (support) 35, bearing 36, handle 37, rotary valve 38, heat exchange medium A circulation path 39 and a notch (opening) 40 are provided (see FIGS. 1 to 6).
 なお、図1は、外部からは見えない構造の回転体15や掻き上げ板16の周囲、及び、堰板21や排出板22の周囲の構造が見えるように、これらの部材がある部分については、ケーシング1の一部を切り欠いてその内側の構造を示している。 FIG. 1 shows a portion where these members are present so that the structure around the rotating body 15 and the scraping plate 16 that cannot be seen from the outside, and the structure around the dam plate 21 and the discharge plate 22 can be seen. A part of the casing 1 is cut away to show the inner structure.
 ケーシング1は、略水平方向に伸び、断面が略U字状に形成され、底部が略W字状の円弧形を成し、ケーシング1の底面域及び側面域には、これらを覆って熱交換媒体循環路39を形成するジャケット3が設けられている。 The casing 1 extends in a substantially horizontal direction, has a substantially U-shaped cross section, and forms a substantially W-shaped arc shape at the bottom. A jacket 3 forming an exchange medium circulation path 39 is provided.
 ケーシング1は、第1支持台2aと第2支持台2bによって支えられている。
 第1支持台2aと第2支持台2bは、水平な状態、又は、第2支持台2b側(排出口23側)が低くなるように傾斜させた状態でケーシング1を支える。
 本実施形態では、第1支持台2a側を装置の前部、第2支持台2b側を装置の後部とする。
The casing 1 is supported by a first support 2a and a second support 2b.
The first support 2a and the second support 2b support the casing 1 in a horizontal state or in a state where the first support 2a and the second support 2b are inclined so that the second support 2b side (discharge port 23 side) is lowered.
In this embodiment, the 1st support stand 2a side is made into the front part of an apparatus, and the 2nd support stand 2b side is made into the rear part of an apparatus.
 熱交換媒体配給管4は、熱交換媒体循環路39内を通る熱交換媒体の入口用に、ジャケット3の前側端部に設けられる。 The heat exchange medium distribution pipe 4 is provided at the front end of the jacket 3 for the inlet of the heat exchange medium passing through the heat exchange medium circulation path 39.
 熱交換媒体排出管5は、熱交換媒体循環路39内を通る熱交換媒体の出口用に、ジャケット3の後側端部に設けられる。 The heat exchange medium discharge pipe 5 is provided at the rear end of the jacket 3 for the outlet of the heat exchange medium passing through the heat exchange medium circulation path 39.
 ケーシング1の内部には、長手方向に2本のシャフト6が並列に貫通し、ケーシング1の前部に設けられた軸受7と後部に設けられた軸受8によって回転可能な状態で保持(軸架)される。 Inside the casing 1, two shafts 6 penetrate in parallel in the longitudinal direction and are held in a rotatable state by a bearing 7 provided at the front part of the casing 1 and a bearing 8 provided at the rear part (shaft rack) )
 シャフト6のそれぞれの前部にはギヤー9が設けられ、両ギヤー9は、互いに逆方向に回転するように噛み合わされる。 A gear 9 is provided at each front portion of the shaft 6, and both the gears 9 are meshed so as to rotate in opposite directions.
 シャフト6の一方には、スプロケット10が設けられ、スプロケット10に掛けられたチェーン(不図示)を介して、モーター(不図示)に連結される。 A sprocket 10 is provided on one side of the shaft 6 and connected to a motor (not shown) via a chain (not shown) hung on the sprocket 10.
 シャフト6それぞれの前側の端部は、第1ロータリージョイント11aを介して、熱交換媒体供給管12に連結される。
 シャフト6それぞれの後側の端部は、第2ロータリージョイント11bを介して、熱交換媒体排出管14に連結される。
The front end of each shaft 6 is connected to the heat exchange medium supply pipe 12 through the first rotary joint 11a.
The rear end of each shaft 6 is connected to the heat exchange medium discharge pipe 14 via the second rotary joint 11b.
 シャフト6のそれぞれには、複数の回転体15が一定の間隔で設けられる。
 本実施形態では、当該回転体15として、中空の扇形羽根形状の熱交換器が用いられる。
Each of the shafts 6 is provided with a plurality of rotating bodies 15 at regular intervals.
In this embodiment, a hollow fan-shaped heat exchanger is used as the rotating body 15.
 回転体15は、回転方向の先端が狭くなるようなくさび状に形成され、幅広い後端には掻き上げ板16が設けられる。そして、かかる回転体15を2個一組として、図2に示すように、2つの回転体15がシャフト6を中心とした点対称の位置関係になるように配置される。また、1つの回転体15の先端が他方の回転体15の後端と対向するように、且つ一定の間隔を空けて、すなわち間隙が設けられた状態で、2つの回転体15が配置される。
 掻き上げ板16は、粉体を回転方向と同じ方向に掻き上げる。
 なお、シャフト6に設けられる回転体15は、中空扇形羽根形状に限らず、間隙部のない中空円板形状であってもよい。
 また、間隙部が1つ又は3つ以上になるように回転体15が配置されてもよい。
The rotating body 15 is formed in a wedge shape so that the front end in the rotation direction is narrow, and a scraping plate 16 is provided at a wide rear end. Then, two such rotating bodies 15 are arranged as a set, and the two rotating bodies 15 are arranged so as to have a point-symmetrical positional relationship around the shaft 6 as shown in FIG. Further, the two rotating bodies 15 are arranged so that the front end of one rotating body 15 faces the rear end of the other rotating body 15 and at a certain interval, that is, with a gap provided. .
The scraping plate 16 scrapes the powder in the same direction as the rotation direction.
The rotating body 15 provided on the shaft 6 is not limited to a hollow fan blade shape, and may be a hollow disk shape without a gap.
Further, the rotating body 15 may be arranged so that there are one or three or more gap portions.
 2つのシャフト6は、図2に示すように、2個一組の回転体15の間隙が略90度ずれるように、位相をずらして、ケーシング1に配設されるのが望ましい。
 なお、図2に示すように、回転体15は軸方向同位置に設けられている(軸方向から見て前方の回転体15と後方の回転体15とが重なり合う位置関係に配置される)が、1つの軸における前後方向(軸方向)に隣り合う回転体15が一定角度で位相をずらして、軸方向に螺旋状に連続配置される形態であってもよい。
As shown in FIG. 2, the two shafts 6 are preferably disposed in the casing 1 with their phases shifted so that the gap between the pair of rotating bodies 15 is shifted by approximately 90 degrees.
As shown in FIG. 2, the rotating body 15 is provided at the same position in the axial direction (arranged so that the front rotating body 15 and the rear rotating body 15 overlap each other when viewed from the axial direction). A configuration may be adopted in which rotating bodies 15 adjacent to each other in the front-rear direction (axial direction) on one axis are arranged in a spiral manner in the axial direction with a phase shifted by a constant angle.
 シャフト6と回転体15が連通するように、シャフト6には各々の回転体15に対して2個ずつ連通孔が設けられている。
 そして、熱交換媒体供給管12に供給された熱交換媒体は、第1ロータリージョイント11aを介して、シャフト6に入り、その後一方の連通孔を介して回転体15に入り、他方の連通孔を介してシャフト6に戻り、第2ロータリージョイント11bを介して、熱交換媒体排出管14から排出される。
 熱交換媒体が通ることにより、シャフト6や回転体15は、ケーシング1内の粉体を加熱、乾燥、冷却等する熱交換器として機能する。
The shaft 6 is provided with two communicating holes for each rotating body 15 so that the shaft 6 and the rotating body 15 communicate with each other.
Then, the heat exchange medium supplied to the heat exchange medium supply pipe 12 enters the shaft 6 via the first rotary joint 11a, and then enters the rotating body 15 via one communication hole, and passes through the other communication hole. To the shaft 6 and discharged from the heat exchange medium discharge pipe 14 via the second rotary joint 11b.
When the heat exchange medium passes, the shaft 6 and the rotating body 15 function as a heat exchanger that heats, dries, and cools the powder in the casing 1.
 本実施形態では、シャフト6が2本設けられる形態を説明したが、2本に限られるものではなく、1本でも良いし、3本以上で構成される形態であってもよい。 In the present embodiment, the form in which two shafts 6 are provided has been described. However, the number of shafts 6 is not limited to two, and may be one or three or more.
 ケーシング1の上部には、カバー17が設けてある。 A cover 17 is provided on the upper portion of the casing 1.
 カバー17の前端部には、処理粉体の供給口18が設けられる。
 供給口18は、粉体配給管19を介して、粉体の定量供給装置20に連結される。
A treatment powder supply port 18 is provided at the front end of the cover 17.
The supply port 18 is connected to a powder quantitative supply device 20 via a powder distribution pipe 19.
 ケーシング1の後部には、ケーシング1内に一定量の処理粉体を滞留させる(堰き止める)ための堰板21が設けられる。
 堰板21は、下部の一部が、切り欠かれており、当該切欠き部(開口部)40には、後述する自然排出処理などの際にケーシング1内の粉体を排出させるための可動式の排出板22が設けられる。
At the rear part of the casing 1, a dam plate 21 is provided for retaining a certain amount of treated powder in the casing 1 (damming).
A part of the lower part of the dam plate 21 is cut out, and the cutout part (opening part) 40 is movable for discharging the powder in the casing 1 during natural discharge processing, which will be described later. A discharge plate 22 of the type is provided.
 ケーシング1の後端部(堰板21よりも下流)には、堰板21を乗り越えた処理粉体や、開いた状態の開口部40から排出される粉体をケーシング1の外に排出するための排出口23が設けられる。 At the rear end of the casing 1 (downstream of the dam plate 21), the processed powder that has passed over the dam plate 21 and the powder discharged from the open opening 40 are discharged out of the casing 1. A discharge port 23 is provided.
 排出板22は、留め具24によって排出板開閉軸25に回転可能な状態で固定されている(図3~図5参照)。
 排出板開閉軸25は、第1軸支え具34と第2軸支え具35及び軸受36によって支えられ、その先端にはハンドル37が設けられる。
 ハンドル37の回転に連動して、排出板22が排出板開閉軸25を支点にして回動し、開口部40を開閉する。
The discharge plate 22 is fixed to the discharge plate opening / closing shaft 25 by a fastener 24 so as to be rotatable (see FIGS. 3 to 5).
The discharge plate opening / closing shaft 25 is supported by a first shaft support member 34, a second shaft support member 35, and a bearing 36, and a handle 37 is provided at the tip thereof.
In conjunction with the rotation of the handle 37, the discharge plate 22 rotates about the discharge plate opening / closing shaft 25 as a fulcrum, thereby opening and closing the opening 40.
 カバー17の前端部には前部キャリアガス導入口26が設けられ、カバー17の後端部には後部キャリアガス導入口27が設けられる。
 前部キャリアガス導入口26や後部キャリアガス導入口27には、ケーシング1内で処理粉体から蒸発した揮発分(水蒸気、有機溶剤等)を系外に排出するためのキャリアガス(空気、不活性ガスなど)が導入される。
A front carrier gas inlet 26 is provided at the front end of the cover 17, and a rear carrier gas inlet 27 is provided at the rear end of the cover 17.
The front carrier gas inlet 26 and the rear carrier gas inlet 27 are provided with carrier gas (air, non-volatile) for discharging volatile components (water vapor, organic solvent, etc.) evaporated from the treated powder in the casing 1 to the outside of the system. Active gas etc.) are introduced.
 キャリアガスは、カバー17の中間部近傍に設けられたキャリアガス排出口28から排出される。
 キャリアガス排出口28は、排気管29や、サイクロン等の粉末分離器30を介して、排気ブロワー31に接続される。
The carrier gas is discharged from a carrier gas discharge port 28 provided in the vicinity of the intermediate portion of the cover 17.
The carrier gas discharge port 28 is connected to an exhaust blower 31 via an exhaust pipe 29 and a powder separator 30 such as a cyclone.
 ドライアイス粒子バッファータンク32は、粉体の定量供給装置20の上流に設けられ、ドライアイス粒子は、ケーシング1内の残留粉体を排出する際に、ロータリーバルブ38、ドライアイス粒子供給管33、粉体の定量供給装置20を介して、ケーシング1内に供給される。 The dry ice particle buffer tank 32 is provided upstream of the powder quantitative supply device 20. When the dry ice particles are discharged from the residual powder in the casing 1, the rotary ice 38, the dry ice particle supply pipe 33, The powder is supplied into the casing 1 via a powder quantitative supply device 20.
 なお、ドライアイス粒子バッファータンク32には、ドライアイス発生装置(不図示)を連接して、このドライアイス発生装置で製造されるドライアイス粒子を連続的にドライアイス粒子バッファータンク32に供給してもよく、また購入したドライアイス粒子をドライアイス粒子バッファータンク32に一括投入してもよい。 The dry ice particle buffer tank 32 is connected to a dry ice generator (not shown), and the dry ice particles produced by the dry ice generator are continuously supplied to the dry ice particle buffer tank 32. Alternatively, the purchased dry ice particles may be put into the dry ice particle buffer tank 32 all at once.
 次に、この攪拌型乾燥装置を用いた粉体を乾燥する手順(乾燥処理手順)について説明する。 Next, a procedure (drying procedure) for drying powder using this stirring type drying apparatus will be described.
 まず、作業者は、熱交換媒体循環路39及びシャフト6に所定の温度に加熱した温水、水蒸気、熱媒油などの熱交換媒体を供給する。
 熱交換媒体が水蒸気の場合、熱交換媒体循環路39に供給された水蒸気は、ケーシング1を加熱した後、当該水蒸気は凝縮液となって熱交換媒体排出管5から排出される。
 シャフト6に供給された水蒸気は、シャフト6及び回転体15を加熱した後、凝縮液となって熱交換媒体排出管14から排出される。
First, the operator supplies a heat exchange medium such as warm water, water vapor, and heat transfer oil heated to a predetermined temperature to the heat exchange medium circulation path 39 and the shaft 6.
When the heat exchange medium is water vapor, the water vapor supplied to the heat exchange medium circulation path 39 heats the casing 1, and then the water vapor becomes a condensate and is discharged from the heat exchange medium discharge pipe 5.
The steam supplied to the shaft 6 heats the shaft 6 and the rotator 15 and then becomes a condensate and is discharged from the heat exchange medium discharge pipe 14.
 次に、作業者は、モーターを駆動させて、2本のシャフト6を一定の回転数で回転させる。このとき、開口部40は、閉じた状態にしておく。 Next, the operator drives the motor to rotate the two shafts 6 at a constant rotational speed. At this time, the opening 40 is kept closed.
 熱交換媒体循環路39及び回転体15の温度が一定になった後、作業者は、粉体の定量供給装置20を作動させ、ケーシング1内に処理粉体を連続的に供給する。 After the temperatures of the heat exchange medium circulation path 39 and the rotating body 15 become constant, the operator operates the powder quantitative supply device 20 to continuously supply the processed powder into the casing 1.
 ケーシング1内に供給された処理粉体は、定量供給装置20から投入される粉体、すなわち後から供給される処理粉体による押出力や、供給口18における充填高さによる圧力、必要に応じて設けられたケーシング1の傾斜、シャフト6の回転などにより、シャフト6と平行な方向(後部方向)への推力を受け、ある程度の充満度を保ちながら、2個一組の回転体15の間隙部分、及びケーシング1の内周面と回転体15との空隙部分を通って、次第にケーシング1内を堰板21側へ移動する。 The treated powder supplied into the casing 1 is pressed by the powder supplied from the quantitative supply device 20, that is, the treated powder supplied later, the pressure due to the filling height at the supply port 18, and as required. The gap between the pair of rotating bodies 15 while receiving a thrust in a direction parallel to the shaft 6 (rear direction) due to the inclination of the casing 1 provided and the rotation of the shaft 6 and maintaining a certain degree of fullness. The inside of the casing 1 gradually moves to the side of the dam plate 21 through the portion and the gap between the inner peripheral surface of the casing 1 and the rotating body 15.
 ケーシング1内を移動する過程において、粉体は、回転体15の回転によって攪拌され、回転体15やケーシング1によって加熱される。 In the process of moving in the casing 1, the powder is stirred by the rotation of the rotating body 15 and heated by the rotating body 15 and the casing 1.
 運転開始時に投入された粉体、すなわち先入れ粉体がケーシング1の終端、すなわち末端部に到達すると、堰板21によって堰き止められるため、次第にケーシング1内の粉体層が高くなる。
 粉体層の高さが堰板21の上端を超えると、粉体は堰板21の上端から排出口23を通って排出される。
When the powder charged at the start of operation, that is, the pre-filled powder reaches the end of the casing 1, that is, the end, it is blocked by the dam plate 21, so that the powder layer in the casing 1 gradually increases.
When the height of the powder layer exceeds the upper end of the dam plate 21, the powder is discharged from the upper end of the dam plate 21 through the discharge port 23.
 回転体15やケーシング1などにより加熱された粉体から蒸発した揮発分は、前部キャリアガス導入口26と後部キャリアガス導入口27から供給され、ケーシング1の粉体上層部を通過するキャリアガスに同伴されて、キャリアガス排出口28から排気管29、粉末分離器30、排気ブロワー31を介して系外に排出される。
 キャリアガスに同伴されて排出された微細な粉末は、粉末分離器30によってキャリアガスと分離され、回収される。
Volatile components evaporated from the powder heated by the rotator 15 or the casing 1 are supplied from the front carrier gas inlet 26 and the rear carrier gas inlet 27 and pass through the powder upper layer of the casing 1. The exhaust gas is discharged from the carrier gas outlet 28 through the exhaust pipe 29, the powder separator 30, and the exhaust blower 31.
The fine powder discharged along with the carrier gas is separated from the carrier gas by the powder separator 30 and collected.
 次に、処理粉体の乾燥処理後の残留物の排出方法について説明する。 Next, a method for discharging the residue after drying the treated powder will be described.
 まずは、ドライアイス粒子を用いずに、粉体を排出させる(自然排出)。
 作業者が、定量供給装置20への粉体の供給、又は定量供給装置20からの粉体の供給を停止し、しばらく乾燥処理を続けた後ハンドル37を使って排出板開閉軸25を回転させて開口部40を開ける(粉体投入停止ステップ)。
First, powder is discharged without using dry ice particles (natural discharge).
The operator stops supplying powder to the quantitative supply device 20 or supplying powder from the quantitative supply device 20, and after continuing the drying process for a while, rotates the discharge plate opening / closing shaft 25 using the handle 37. Then, the opening 40 is opened (powder charging stop step).
 ケーシング1内の粉体は、充填高さによる圧力や必要に応じて設けられたケーシング1の傾斜、シャフト6の回転などにより、シャフト6と平行な方向(後部方向)への推力を受け、引き続きケーシング1内を開口部40側へ移動し、開口部40から排出口23を通って装置外に排出される。
 ただし、ケーシング1内のすべての粉体を排出させることは出来ず、処理粉体の物性によっても異なるが、流動性が悪い粉体の場合は図7に示す状態に、きわめて流動性が良い粉体の場合でも図8に示すように、ケーシング1の内周面と回転体15の掻き上げ板16の最外周軌道面との空隙部分や、回転体15と前後方向に隣接する回転体15の間に粉体が残留する。
The powder in the casing 1 is subjected to thrust in a direction parallel to the shaft 6 (rear direction) due to the pressure depending on the filling height, the inclination of the casing 1 provided as necessary, the rotation of the shaft 6 and the like, and continues. The casing 1 moves toward the opening 40 and is discharged from the opening 40 through the discharge port 23 to the outside of the apparatus.
However, all the powder in the casing 1 cannot be discharged and varies depending on the physical properties of the treated powder, but in the case of a powder with poor fluidity, the powder shown in FIG. Even in the case of a body, as shown in FIG. 8, the gap between the inner peripheral surface of the casing 1 and the outermost track surface of the scraping plate 16 of the rotating body 15, or the rotating body 15 adjacent to the rotating body 15 in the front-rear direction. In between, powder remains.
 次に、ドライアイス粒子を使って、残留粉体を排出させる。 Next, dry powder is discharged using dry ice particles.
 上述の自然排出処理により、排出口23から排出される粉体が少なくなった時点で、作業者が、ハンドル37を使って排出板開閉軸25を回転させて、再度開口部40を閉じる。この時、ケーシング1、シャフト6とロータリージョイント11の保護のため、粉体投入停止ステップと後述するドライアイス投入ステップを行う間も、熱交換媒体の供給を継続させたままである方が好ましい。 When the powder discharged from the discharge port 23 is reduced by the natural discharge process described above, the operator rotates the discharge plate opening / closing shaft 25 using the handle 37 and closes the opening 40 again. At this time, in order to protect the casing 1, the shaft 6 and the rotary joint 11, it is preferable that the supply of the heat exchange medium is continued during the powder charging stop step and the dry ice charging step described later.
 両ステップ時に熱交換媒体の供給を停止してしまうと、ケーシング1やシャフト6がドライアイス粒子によって冷やされ、ケーシング1やシャフト6がカーボンスチールなど体心立方格子(立方体の中心と頂点に原子が配置された構造)の金属で形成される場合は、低温脆性によって破損してしまう危険性があること、両ステップ時に熱交換媒体の供給を停止してしまうと、シャフト6とロータリージョイント11の摺動面が乾いた状態でシャフト6が回転するため、当該ロータリージョイント11の摺動部が破損してしまう危険性があることが主な理由である。 If the supply of the heat exchange medium is stopped at both steps, the casing 1 and the shaft 6 are cooled by dry ice particles, and the casing 1 and the shaft 6 are made of body-centered cubic lattice such as carbon steel (atomic atoms at the center and apex of the cube). If the heat exchange medium is stopped during both steps, the sliding of the shaft 6 and the rotary joint 11 may occur. The main reason is that there is a risk that the sliding portion of the rotary joint 11 is damaged because the shaft 6 rotates in a state where the moving surface is dry.
 なお、投入されたドライアイス粒子の昇華量、すなわちドライアイス粒子の使用量を抑えることを優先するのであれば、開口部40を閉じた時点で、作業者は、ジャケット3、シャフト6と回転体15への熱交換媒体の供給を停止させてもよい。その場合は、熱交換媒体循環路39や、シャフト6、回転体15の内部に残っている熱交換媒体がドライアイスにより冷却されて凝固(氷になる)したとき、その体積膨張によってジャケット3やケーシング1、シャフト6や回転体15が変形や破損するのを防止するために、熱交換媒体排出管5、14の出口は開放しておくことが望ましい。また、ロータリージョイント11の摺動部が破損してしまうのを防ぐためにも、この操作(ドライアイス投入ステップ中で、ロータリージョイント11への熱交換媒体の供給を停止して行う残留物の排出操作)は短時間で行うことが好ましい。 If priority is given to suppressing the sublimation amount of the supplied dry ice particles, that is, the use amount of the dry ice particles, the worker can close the jacket 3, the shaft 6 and the rotating body when the opening 40 is closed. The supply of the heat exchange medium to 15 may be stopped. In that case, when the heat exchange medium remaining in the heat exchange medium circulation path 39, the shaft 6 and the rotating body 15 is cooled by dry ice and solidifies (becomes ice), the volume expansion causes the jacket 3 and In order to prevent the casing 1, the shaft 6 and the rotating body 15 from being deformed or damaged, it is desirable that the outlets of the heat exchange medium discharge pipes 5 and 14 be opened. Further, in order to prevent the sliding portion of the rotary joint 11 from being damaged, this operation (the operation of discharging the residue by stopping the supply of the heat exchange medium to the rotary joint 11 during the dry ice charging step) is performed. ) Is preferably performed in a short time.
 次に、作業者は、ロータリーバルブ38を作動させて、ドライアイス粒子バッファータンク32内のドライアイス粒子を、ドライアイス粒子供給管33を介して、定量供給装置20に投入するとともに、定量供給装置20を作動させる(ドライアイス投入ステップ)。このとき、作業者は、事前に定量供給装置20内に粉体が残っていないことを確認しておく。 Next, the operator operates the rotary valve 38 to put the dry ice particles in the dry ice particle buffer tank 32 into the fixed amount supply device 20 through the dry ice particle supply pipe 33, and the fixed amount supply device. 20 is activated (dry ice charging step). At this time, the operator confirms in advance that no powder remains in the quantitative supply device 20.
 定量供給装置20に投入されたドライアイス粒子は、粉体配給管19を介して、供給口18からケーシング1内に供給される。 The dry ice particles charged into the fixed amount supply device 20 are supplied into the casing 1 from the supply port 18 through the powder distribution pipe 19.
 先にケーシング1内に供給されたドライアイス粒子は、粉体と同様に、後から投入されるドライアイス粒子による押出力や、供給口18における充填高さによる圧力、必要に応じて設けられたケーシング1の傾斜、シャフト6の回転などにより、シャフト6と平行な方向(後部方向)への推力を受け、次第にケーシング1内を堰板21側へ移動する。 The dry ice particles previously supplied into the casing 1 were provided as required by the pushing force by the dry ice particles introduced later, the pressure at the filling height at the supply port 18, and the like, as with the powder. Due to the inclination of the casing 1, the rotation of the shaft 6, etc., the thrust in the direction parallel to the shaft 6 (rear direction) is received, and the inside of the casing 1 gradually moves toward the weir plate 21.
 ケーシング1内周面(底面)に広く分散して残留していた粉体は、ドライアイス粒子に押され、次第に堰板21側にまとまってくる。 The powder that has been widely dispersed and remained on the inner peripheral surface (bottom surface) of the casing 1 is pushed by the dry ice particles and gradually gathers on the side of the dam plate 21.
 また、ケーシング1、シャフト6、回転体15の表面に粉体が付着していた場合は、粉体と接触したドライアイス粒子の昇華時の体積膨張により、付着粉体がそれぞれの表面から剥離し、ドライアイス粒子とともに、堰板21側に移動する。 In addition, when the powder adheres to the surface of the casing 1, the shaft 6, and the rotating body 15, the adhered powder peels off from the respective surfaces due to the volume expansion during the sublimation of the dry ice particles in contact with the powder. And it moves to the weir plate 21 side with dry ice particles.
 引き続いてドライアイス粒子を供給することにより、粉体層とドライアイス粒子層が次第に高くなる。 Subsequently, by supplying dry ice particles, the powder layer and the dry ice particle layer gradually increase.
 このとき、回転体15の仕切り効果により、粉体のプラグフロー性(ピストンフロー性ともいう)が維持され、先に入っていた処理粉体と後から入ってきたドライアイス粒子との混合は極力抑えられる。 At this time, the plug flow property (also referred to as piston flow property) of the powder is maintained due to the partitioning effect of the rotating body 15, and the mixing of the treated powder that has entered first and the dry ice particles that have entered later is as much as possible. It can be suppressed.
 粉体層の高さが堰板21の上端を超えると、先ず粉体だけが堰板21の上端から排出口23に排出される。 When the height of the powder layer exceeds the upper end of the dam plate 21, only the powder is first discharged from the upper end of the dam plate 21 to the discharge port 23.
 ドライアイス粒子の投入を続けると、ドライアイス粒子に押し出されて、ケーシング1内に残留していた粉体の殆どは排出されることになる。 When the dry ice particles are continuously charged, most of the powder that is pushed out by the dry ice particles and remains in the casing 1 is discharged.
 時間とともに排出される粉体に混ざるドライアイス粒子の割合が増え、その後粉体とドライアイス粒子との割合が逆転し、最後には殆どがドライアイス粒子になる。 The percentage of dry ice particles mixed in the powder discharged over time increases, then the ratio of powder to dry ice particles is reversed, and finally, most of them become dry ice particles.
 なお、排出された粉体にドライアイス粒子が混ざっていても、ドライアイス粒子は常温でも容易に昇華するので、そのまま放置するだけで処理粉体だけを回収することが出来る。従って、粉体とドライアイス粒子とを分離する工程を別途設ける必要はない。 In addition, even if dry ice particles are mixed in the discharged powder, the dry ice particles easily sublimate even at room temperature, so that only the treated powder can be recovered simply by leaving it as it is. Therefore, it is not necessary to provide a separate process for separating the powder and the dry ice particles.
 次に、作業者が、定量供給装置20へのドライアイス粒子の供給又は、定量供給装置20の運転を停止する。なお、ドライアイス投入ステップで、ジャケット3、シャフト6、回転体15への熱交換媒体の供給を停止していた場合は、ドライアイス粒子の昇華を促すため、熱交換媒体の供給を再開するのが好ましい。 Next, the operator stops the supply of dry ice particles to the quantitative supply device 20 or the operation of the quantitative supply device 20. If the supply of the heat exchange medium to the jacket 3, the shaft 6, and the rotating body 15 is stopped in the dry ice charging step, the supply of the heat exchange medium is resumed to promote sublimation of the dry ice particles. Is preferred.
 ケーシング1内に残留していたドライアイス粒子は昇華し、二酸化炭素となって、排出口23や、排気ブロワー31の吸引力によりキャリアガス排出口28から排気管29を介して系外に排出される。 The dry ice particles remaining in the casing 1 are sublimated and become carbon dioxide, and are discharged out of the system through the exhaust pipe 29 from the carrier gas discharge port 28 by the suction port 23 and the suction force of the exhaust blower 31. The
 最後に、ドライアイス粒子の全量昇華を確認した後、作業者が、熱交換媒体循環路39とシャフト6への熱交換媒体の供給を停止するとともに、2本のシャフト6の回転も停止させる。 Finally, after confirming that the total amount of dry ice particles has been sublimated, the operator stops the supply of the heat exchange medium to the heat exchange medium circulation path 39 and the shaft 6 and also stops the rotation of the two shafts 6.
 その後、作業者がハンドル37を回して開口部40を開けることで、空気よりも重い二酸化炭素を効果的にケーシング1内から開口部40を介して排出させることが出来る。
 また、前記と同様に、二酸化炭素を排気管29を介しても排気させることが出来る。
Thereafter, the operator turns the handle 37 to open the opening 40, so that carbon dioxide heavier than air can be effectively discharged from the casing 1 through the opening 40.
Similarly to the above, carbon dioxide can also be exhausted through the exhaust pipe 29.
 本実施形態では、ドライアイス粒子により、ケーシング1内に残留していた粉体を押し出して排出させることが出来る。 In the present embodiment, the powder remaining in the casing 1 can be pushed out and discharged by dry ice particles.
 ドライアイス粒子は、昇華時の体積膨張によりケーシング1、シャフト6、回転体15の表面に付着していた粉体を剥離させ、その後ドライアイス粒子は粉体とともに自然にケーシング1内から排出されるため、ケーシング1内の残留粉体の排出とともに、ケーシング1内の洗浄も行うことが出来る。 The dry ice particles peel off the powder adhering to the surface of the casing 1, the shaft 6, and the rotating body 15 by volume expansion during sublimation, and then the dry ice particles are naturally discharged together with the powder from the casing 1. Therefore, the inside of the casing 1 can be cleaned together with the discharge of the residual powder in the casing 1.
 排出されたドライアイス粒子と粉体の混合品は、常温下でドライアイス粒子が昇華するため、残留粉体はそのまま製品として扱うことが出来る。 混合 Since the dry ice particles and powder mixture are sublimated at room temperature, the residual powder can be handled as a product.
 このように、乾燥処理後の粉体投入停止ステップやドライアイス投入ステップにおいて、排出板22の開閉制御(開口部の開口制御)、排気ブロワー31のオンオフ制御を行うことにより、ケーシング1内の粉体の排出や、粉体排出後に残留するドライアイス粒子及び昇華後の二酸化炭素を効果的にケーシング1内から排出することが出来る。 In this way, the powder in the casing 1 is controlled by controlling the opening / closing of the discharge plate 22 (opening control of the opening) and the on / off control of the exhaust blower 31 in the powder charging stop step and the dry ice charging step after the drying process. Dry ice particles remaining after body discharge, powder discharge, and carbon dioxide after sublimation can be effectively discharged from the casing 1.
 本実施形態で用いるドライアイス粒子は、平均粒子径が3~10mmのものが望ましく、断面径が5mm以下で長さが20mm以下の円柱形状のものがさらに好ましい。 The dry ice particles used in this embodiment preferably have an average particle diameter of 3 to 10 mm, more preferably a cylindrical shape having a cross-sectional diameter of 5 mm or less and a length of 20 mm or less.
 平均粒子径が3mmよりも小さい粉状のドライアイスの場合は、昇華が速すぎる上に、昇華するドライアイス粉体同士及びドライアイス粉体と残留粉体(処理粉体)とが固まってシャフト6を回転させる際に大きな負荷がかかってしまう。一方、平均粒子径が10mmよりも大きいドライアイス粒子の場合は、ドライアイス粒子の隙間に残留粉体が入り込んでしまい、残留粉体を先に押し出すことが出来ず、排出性が悪い。また、ケーシング1の内周面と回転体15の最外周面の間に挟まったドライアイス粒子が粉砕されるため、回転体15の負担が大きくなってしまう。 In the case of powdered dry ice having an average particle diameter of less than 3 mm, the sublimation is too fast and the sublimated dry ice powder and the dry ice powder and the residual powder (treated powder) are solidified. When the 6 is rotated, a large load is applied. On the other hand, in the case of dry ice particles having an average particle diameter larger than 10 mm, the residual powder enters the gaps between the dry ice particles, and the residual powder cannot be pushed out first, resulting in poor dischargeability. Further, since the dry ice particles sandwiched between the inner peripheral surface of the casing 1 and the outermost peripheral surface of the rotating body 15 are crushed, the burden on the rotating body 15 is increased.
 なお、本実施形態では、内部に残留した粉体をドライアイス粒子で排出させる例として、溝型攪拌乾燥装置にドライアイス粒子を投入する形態を説明したが、処理粉体の供給によって装置内の粉体が押し出されて排出される構造を有する他の粉体処理装置であってもよい。これらの粉体処理装置を限定することなく例示すれば、攪拌型混合造粒機(Agitating mixer and granulator)、スクリュー式供給機(Screw feeder)である。 In the present embodiment, as an example of discharging the powder remaining in the interior with dry ice particles, an embodiment in which dry ice particles are introduced into a grooved stirring and drying device has been described. Another powder processing apparatus having a structure in which powder is extruded and discharged may be used. Examples of these powder processing apparatuses are, without limitation, an agitating type mixing granulator (Agitating mixer and granulator) and a screw type feeder (Screw feeder).
 また、本実施形態では、ジャケット3など内部に熱交換用の熱交換媒体が通る構造のものを説明したが、ドライアイス粒子の昇華は、加熱機構が無くても可能である。 Further, in the present embodiment, the structure in which the heat exchange medium for heat exchange passes inside the jacket 3 and the like has been described, but the sublimation of the dry ice particles is possible without a heating mechanism.
 また、本実施形態では、粒状で且つ常温常圧で昇華(固体から気体に相転移)する昇華性固体粒子として、ドライアイス粒子を用いる形態を説明したが、他の粒子状の昇華性物質を用いる形態であってもよい。 In the present embodiment, the form using dry ice particles as the sublimable solid particles that are granular and sublimate (phase transition from solid to gas) at room temperature and normal pressure has been described. However, other particulate sublimable substances may be used. The form to be used may be used.
 次に、本実施形態で示す残留物排出方法を用いた実験について説明する。 Next, an experiment using the residue discharge method shown in this embodiment will be described.
 具体的には、ケーシング1内の有効容積:47リットル、ジャケット3の有効伝熱面積0.5m、回転体15の有効伝熱面積1.0mの溝型攪拌乾燥装置(株式会社奈良機械製作所、商品名:パドルドライヤー、型式:NPD-1.6W-1/2L)において、処理粉体:平均粒子径が0.5mmのABS樹脂(Acrylonitrile Butadiene Styrene 共重合合成樹脂)粒子を、断面径:3mm×長さ:10mmの円柱形状のドライアイス粒子を用いて排出させる実験を行った。 Specifically, an effective volume in the casing 1 of 47 liters, an effective heat transfer area of the jacket 3 of 0.5 m 2 , an effective heat transfer area of the rotating body 15 of 1.0 m 2, a grooved stirring and drying device (Nara Machinery Co., Ltd.) Manufacture, trade name: paddle dryer, model: NPD-1.6W-1 / 2L), treated powder: ABS resin (Acrylonitrile Butadiene Styrene Copolymerized Synthetic Resin) particles with an average particle size of 0.5 mm : 3 mm × length: 10 mm column-shaped dry ice particles were used for the discharge experiment.
 まず、熱交換媒体循環路39やシャフト6や回転体15に熱交換媒体である水蒸気を供給し、次にシャフト6を回転数30min-1で回転させ、ケーシング1内の温度が120℃になるのを待った。 First, water vapor as a heat exchange medium is supplied to the heat exchange medium circulation path 39, the shaft 6 and the rotating body 15, and then the shaft 6 is rotated at a rotation speed of 30 min −1 so that the temperature in the casing 1 becomes 120 ° C. I waited for you.
 その後、ケーシング1内にABS樹脂粒子を定量供給して乾燥処理を行った。
 ABS樹脂粒子の投入を終了した後、しばらく乾燥処理を行ってから開口部40を開けて、ABS樹脂粒子がケーシング1内の容積に対して約30%になるまで約15分間、自然排出させた。
Thereafter, ABS resin particles were quantitatively supplied into the casing 1 to perform a drying process.
After the introduction of the ABS resin particles was completed, the drying process was performed for a while and then the opening 40 was opened. The ABS resin particles were naturally discharged for about 15 minutes until the ABS resin particles became about 30% of the volume in the casing 1. .
 その後、開口部40を閉じ、ドライアイス粒子をケーシング1内の滞留時間が20分となるように90kg/Hrの供給速度で連続投入を行い、2分ごとのABS樹脂粒子の排出量を測定した。ドライアイス粒子の投入開始から30分後(ドライアイス粒子のケーシング1内の滞留時間の1.5倍)にドライアイス粒子の供給を停止し、ドライアイス粒子を昇華させた。その後、シャフト6の回転を停止して、ケーシング1内に残留しているABS樹脂粒子を集めて、その量を測定した。 Thereafter, the opening 40 was closed, and dry ice particles were continuously charged at a supply rate of 90 kg / Hr so that the residence time in the casing 1 was 20 minutes, and the amount of ABS resin particles discharged every 2 minutes was measured. . The supply of dry ice particles was stopped and the dry ice particles were sublimated 30 minutes after the start of the introduction of the dry ice particles (1.5 times the residence time of the dry ice particles in the casing 1). Thereafter, the rotation of the shaft 6 was stopped, ABS resin particles remaining in the casing 1 were collected, and the amount thereof was measured.
 その結果、ケーシング1内に残留していたABS樹脂粒子の量は、ケーシング1内の有効容積の1パーセントと、きわめてわずかな量であった。 As a result, the amount of ABS resin particles remaining in the casing 1 was an extremely small amount of 1% of the effective volume in the casing 1.
 1 ケーシング
 2a、2b 第1支持台、第2支持台
 3 ジャケット
 4 熱交換媒体配給管
 5 熱交換媒体排出管
 6 シャフト
 7 前部の軸受
 8 後部の軸受
 9 ギヤー
 10 スプロケット
 11a、11b 第1ロータリージョイント、第2ロータリージョイント
 12 熱交換媒体供給管
 14 熱交換媒体排出管
 15 回転体
 16 掻き上げ板
 17 カバー
 18 供給口
 19 粉体配給管
 20 定量供給装置
 21 堰板(オーバーフローゲート)
 22 排出板(アンダーフローゲート)
 23 排出口
 24 留め具
 25 排出板開閉軸
 26 前部キャリアガス導入口
 27 後部キャリアガス導入口
 28 キャリアガス排出口
 29 排気管
 30 粉末分離器
 31 排気ブロワー
 32 ドライアイス粒子バッファータンク
 33 ドライアイス粒子供給管
 34 第1軸支え具(サポート)
 35 第2軸支え具(サポート)
 36 軸受
 37 ハンドル
 38 ロータリーバルブ
 39 熱交換媒体循環路
 40 切欠き部(開口部)
 
DESCRIPTION OF SYMBOLS 1 Casing 2a, 2b 1st support stand, 2nd support stand 3 Jacket 4 Heat exchange medium distribution pipe 5 Heat exchange medium discharge pipe 6 Shaft 7 Front bearing 8 Rear bearing 9 Gear 10 Sprocket 11a, 11b 1st rotary joint , Second rotary joint 12 heat exchange medium supply pipe 14 heat exchange medium discharge pipe 15 rotating body 16 scraping plate 17 cover 18 supply port 19 powder distribution pipe 20 quantitative supply device 21 weir plate (overflow gate)
22 Discharge plate (underflow gate)
23 Discharge port 24 Fastener 25 Discharge plate opening / closing shaft 26 Front carrier gas introduction port 27 Rear carrier gas introduction port 28 Carrier gas discharge port 29 Exhaust pipe 30 Powder separator 31 Exhaust blower 32 Dry ice particle buffer tank 33 Dry ice particle supply Tube 34 1st axis support (support)
35 Second shaft support (support)
36 Bearing 37 Handle 38 Rotary valve 39 Heat exchange medium circulation path 40 Notch (opening)

Claims (8)

  1.  ケーシングと、前記ケーシングの一方の端部の上部に設けられた供給口と、前記ケーシングの他方の端部の下部に設けられた排出口とを有し、前記供給口から投入される粉体に押し出されて、前記ケーシング内の粉体が前記排出口の方に移動する粉体処理装置における残留物排出方法であって、
     粉体処理の終了後に、前記供給口から粉体の投入を停止する粉体投入停止ステップと、
     前記粉体投入停止ステップの後に、前記供給口から常温常圧で昇華する昇華性固体粒子を投入する昇華性固体粒子投入ステップとを備えることを特徴とする残留物排出方法。
    A powder having a casing, a supply port provided at an upper portion of one end portion of the casing, and a discharge port provided at a lower portion of the other end portion of the casing. A residue discharging method in a powder processing apparatus that is extruded and the powder in the casing moves toward the discharge port,
    A powder charging stop step for stopping powder charging from the supply port after the powder processing ends;
    A residue discharging method comprising: a sublimable solid particle charging step of charging sublimable solid particles that sublime at room temperature and normal pressure from the supply port after the powder charging stop step.
  2.  前記粉体処理装置は、前記ケーシング内に、前記排出口の方に移動する粉体を堰き止める堰板と、前記堰板の下部に前記ケーシング内の粉体を排出させるための開口部を有し、
     前記開口部は、前記粉体処理の間、閉じた状態にされ、
     前記開口部は、前記粉体投入停止ステップの後であって、前記昇華性固体粒子投入ステップまでの間、開いた状態にされ、
     前記開口部は、前記昇華性固体粒子投入ステップの間、閉じた状態にされることを特徴とする請求項1に記載の残留物排出方法。
    The powder processing apparatus has a dam plate for damming the powder moving toward the discharge port in the casing, and an opening for discharging the powder in the casing below the dam plate. And
    The opening is closed during the powder processing;
    The opening is opened after the powder charging stop step and until the sublimable solid particle charging step,
    The residue discharge method according to claim 1, wherein the opening is closed during the sublimable solid particle charging step.
  3.  前記ケーシングに軸架され、複数の回転体が配置されるシャフトを更に備え、
     前記回転体は中空で、内部に熱交換媒体が通り、前記ケーシング内部の粉体を加熱又は冷却する熱交換器として機能するものであり、
     前記シャフトを介した前記回転体への前記熱交換媒体の供給を続けた状態で、前記粉体投入停止ステップと前記昇華性個体粒子投入ステップが行われることを特徴とする請求項1に記載の残留物排出方法。
    A shaft that is pivotally mounted on the casing and on which a plurality of rotating bodies are disposed;
    The rotating body is hollow, a heat exchange medium passes therethrough, and functions as a heat exchanger that heats or cools the powder inside the casing,
    2. The powder charging stop step and the sublimable solid particle charging step are performed in a state in which the heat exchange medium is continuously supplied to the rotating body via the shaft. Residue discharge method.
  4.  前記シャフトは体心立方格子の金属で形成されることを特徴とする請求項3に記載の残留物排出方法。 The residue discharging method according to claim 3, wherein the shaft is formed of a metal having a body-centered cubic lattice.
  5.  前記昇華性固体粒子はドライアイス粒子であることを特徴とする請求項1に記載の残留物排出方法。 The residue discharging method according to claim 1, wherein the sublimable solid particles are dry ice particles.
  6.  ケーシングと、前記ケーシングに軸架され且つ複数の回転体が配置されるシャフトと、前記ケーシングの一方の端部の上部に設けられた供給口と、前記ケーシングの他方の端部の下部に設けられた排出口とを有し、前記ケーシング内で前記供給口から投入された粉体の処理を行い、前記排出口から粉体を排出させる粉体処理装置と、
     常温常圧で昇華する昇華性固体粒子とを備え、
     前記粉体処理装置は、前記供給口から投入される粉体の押出力により、前記ケーシング内の粉体が前記排出口の方に移動せしめられるものであり、
     前記処理の終了後に、前記投入口から前記昇華性固体粒子が投入されることを特徴とする粉体処理装置の残留物排出システム。
    A casing, a shaft pivotally mounted on the casing and provided with a plurality of rotating bodies, a supply port provided at an upper portion of one end portion of the casing, and a lower portion of the other end portion of the casing. A powder processing apparatus for processing the powder charged from the supply port in the casing and discharging the powder from the discharge port;
    With sublimable solid particles that sublime at room temperature and normal pressure,
    In the powder processing apparatus, the powder in the casing is moved toward the discharge port by the pushing force of the powder input from the supply port,
    The residue discharge system of a powder processing apparatus, wherein the sublimable solid particles are charged from the charging port after the processing is completed.
  7.  前記昇華性固体粒子は平均粒子径が3~10mmのドライアイス粒子であることを特徴とする請求項6に記載の残留物排出システム。 The residue discharge system according to claim 6, wherein the sublimable solid particles are dry ice particles having an average particle diameter of 3 to 10 mm.
  8.  前記ドライアイス粒子は、断面径が5mm以下で長さが20mm以下の円柱形状を有することを特徴とする請求項7に記載の残留物排出システム。

     
    The residue discharge system according to claim 7, wherein the dry ice particles have a cylindrical shape having a cross-sectional diameter of 5 mm or less and a length of 20 mm or less.

PCT/JP2016/065126 2015-06-03 2016-05-23 Method for discharging residue in powder processing devices and system for discharging residue in powder processing devices WO2016194669A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017521820A JP6215509B2 (en) 2015-06-03 2016-05-23 Residue discharging method of powder processing apparatus and residue discharging system of powder processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-112766 2015-06-03
JP2015112766 2015-06-03

Publications (1)

Publication Number Publication Date
WO2016194669A1 true WO2016194669A1 (en) 2016-12-08

Family

ID=57441613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065126 WO2016194669A1 (en) 2015-06-03 2016-05-23 Method for discharging residue in powder processing devices and system for discharging residue in powder processing devices

Country Status (2)

Country Link
JP (1) JP6215509B2 (en)
WO (1) WO2016194669A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111595134A (en) * 2020-05-30 2020-08-28 徐州蔬客达农业科技有限公司 Grain drier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004150641A (en) * 2002-10-28 2004-05-27 Nara Kikai Seisakusho:Kk Agitation type drying device and drying system for powder/grain material
JP2011161310A (en) * 2010-02-04 2011-08-25 Jgc Corp Container-washing apparatus and container washing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004150641A (en) * 2002-10-28 2004-05-27 Nara Kikai Seisakusho:Kk Agitation type drying device and drying system for powder/grain material
JP2011161310A (en) * 2010-02-04 2011-08-25 Jgc Corp Container-washing apparatus and container washing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111595134A (en) * 2020-05-30 2020-08-28 徐州蔬客达农业科技有限公司 Grain drier

Also Published As

Publication number Publication date
JPWO2016194669A1 (en) 2017-11-09
JP6215509B2 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
TWI596311B (en) Indirect heating rotary dryer
RU2010118462A (en) METHOD AND SPIRAL DEVICE FOR GAS CONTACT WITH SOLID
JP2011527236A (en) Multistage heating zone gasifier
JP6215509B2 (en) Residue discharging method of powder processing apparatus and residue discharging system of powder processing apparatus
JP2023052959A (en) Methods of thermal treatment
US9200844B2 (en) Rotary agitation type heat treatment apparatus
JP4202506B2 (en) Mixing equipment
US7972520B2 (en) Process for operating a centrifuge
JP4724674B2 (en) Continuous dryer
JP3115633B2 (en) Horizontal rotary furnace equipment
JP4560198B2 (en) Adhesive substance heat treatment apparatus and method
JP6398805B2 (en) Continuous cooling device and cooling method for powder
JP3569131B2 (en) Granulation drying equipment
JP7108462B2 (en) Seal structure of rotary shaft in dryer with agitating blade
RU2681328C1 (en) Rotary drum-type furnace
JP2021196063A (en) Stirring device, and vacuum drier
JP6713332B2 (en) Granulation cooling device
JP2014104102A (en) Powder and granular materials sterilizer
JP3257853B2 (en) Horizontal rotary heating device
JP7251817B2 (en) Process of producing nanoparticles
WO2023203974A1 (en) Particulate matter drying method, and method for manufacturing drying device
CN107754369B (en) Desublimation device and tail gas treatment system
RU2388979C1 (en) Rotating furnace for heat treatment of lump-forming product
JP2006017337A (en) Continuous conductive heat transfer dryer with foreign matter discharging mechanism
JPS58150430A (en) Roll type treating apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803104

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521820

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803104

Country of ref document: EP

Kind code of ref document: A1