WO2016194439A1 - Drive control device for vehicle - Google Patents

Drive control device for vehicle Download PDF

Info

Publication number
WO2016194439A1
WO2016194439A1 PCT/JP2016/058551 JP2016058551W WO2016194439A1 WO 2016194439 A1 WO2016194439 A1 WO 2016194439A1 JP 2016058551 W JP2016058551 W JP 2016058551W WO 2016194439 A1 WO2016194439 A1 WO 2016194439A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
threshold
deceleration
signal
traffic light
Prior art date
Application number
PCT/JP2016/058551
Other languages
French (fr)
Japanese (ja)
Inventor
俊和 阿式
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Publication of WO2016194439A1 publication Critical patent/WO2016194439A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/44Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating braking action or preparation for braking, e.g. by detection of the foot approaching the brake pedal
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a vehicle operation control device including a brake lamp.
  • a vehicle equipped with a motor is known.
  • a technique called regenerative braking is used.
  • a regenerative brake is a brake that generates power with a motor using the rotation of a tire, charges a storage battery mounted on the vehicle, converts it to electric power during acceleration, and at the same time demonstrates its function as a brake by friction between the tire and the road surface. It is.
  • a brake lamp control device a device that lights a brake lamp when a control torque value to be output to an electric motor is larger on a regeneration side than a predetermined reference regenerative torque value is known (the following, patent Reference 1).
  • This signal information includes a signal cycle for changing the lamp color (for example, blue, yellow, red) of each traffic signal and information on the distance to each traffic signal for a plurality of traffic signals in the section.
  • the color of the light passing through the traffic light is determined from the position, the distance to the traffic light, the travel speed, and the signal cycle. For example, if the light color is determined to be red, the vehicle travel speed is increased to pass in blue. In addition, navigation is performed to the driver so as to reduce the traveling speed.
  • the driver can visually recognize the light color of the traffic light, if the light color of the traffic light is other than red, that is, if it is blue or yellow, the driver of the following vehicle will It is difficult to expect the preceding vehicle to decelerate, the collision avoidance operation is delayed, and the possibility of a collision with the following vehicle increases.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a vehicle operation control device capable of preventing a collision with a following vehicle.
  • the vehicle operation control device of the present invention includes a brake lamp, and a control unit that calculates deceleration when decelerating and turns on the brake lamp when the calculated deceleration is equal to or greater than a first threshold.
  • the vehicle operation control device includes an acquisition unit that acquires signal information including signal cycle information related to a cycle of lighting time of each light color of the traffic light and signal position information related to a distance from the vehicle to the traffic light.
  • the control unit cannot pass the traffic signal within the time when the traffic light ahead is blue based on the travel speed detection means for detecting the travel speed of the vehicle, the travel speed, and the signal information.
  • the first threshold is set to the first threshold.
  • Threshold change means for changing to a second threshold smaller than the first threshold.
  • the vehicle operation control device configured as described above, when it is determined that the front traffic light cannot pass through the traffic light within the time when the front traffic light is blue based on the traveling speed and the signal information, The threshold for lighting the lamp can be changed from the first threshold to the second threshold ( ⁇ first threshold). For this reason, when deceleration control using signal information is performed, the vehicle appropriately controls on / off of the brake lamp according to the light color of the traffic light, so that the light color of the front signal is blue. Even if it exists, it becomes possible to light a brake lamp at an early stage, and a collision with the following vehicle can be effectively prevented.
  • control unit includes a management unit that manages a threshold value according to the traveling speed and a distance to the traffic light, and the control unit is configured to manage the second threshold value based on the threshold value managed by the management unit. You may make it change.
  • the vehicle can turn on the brake lamp at a more appropriate timing according to the traveling speed and the distance to the traffic light. Thereby, it becomes possible to further enhance the prevention effect with respect to the following vehicle.
  • the second threshold value may be set smaller as the traveling speed of the vehicle increases.
  • the higher the vehicle traveling speed the higher the possibility that the following vehicle will follow the vehicle traveling speed. In such a case, when the preceding vehicle suddenly loosens the accelerator, the possibility of a collision increases. For this reason, if the 2nd threshold value with which a brake lamp lights is made smaller, it will become possible to notify the following vehicle of the speed reduction of a preceding vehicle at an early stage, and the collision risk will be reduced.
  • the second threshold value may be set smaller as the distance to the traffic light is shorter.
  • the traffic light ahead is blue (changes red after a short time) and the vehicle is approaching the traffic light, the vehicle usually does not slow down trying to pass the traffic light during the green light without slowing down. Continue running. In such a case, when the preceding vehicle suddenly loosens the accelerator and decelerates, the possibility of collision with the following vehicle increases. For this reason, if the 2nd threshold value with which a brake lamp lights is made smaller, it will become possible to notify the following vehicle of the speed reduction of a preceding vehicle at an early stage, and the collision risk will be reduced.
  • FIG. 1 is a diagram illustrating an example of one section of a road on which a vehicle travels according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of signal cycle information according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of signal position information according to the embodiment.
  • FIG. 4 is a perspective view when the vehicle according to the embodiment is viewed from the rear side.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of the vehicle according to the embodiment.
  • FIG. 6 is a flowchart showing an example of brake lamp control according to the embodiment.
  • FIG. 7 is a schematic diagram for explaining the operation according to the embodiment.
  • FIG. 8 is an image diagram for explaining the control of the embodiment.
  • FIG. 1 is a diagram illustrating an example of one section of a road on which a vehicle travels according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of signal cycle information according to the embodiment.
  • FIG. 3 is a
  • FIG. 9 is a diagram illustrating an example of a range in which the second threshold value according to the embodiment is employed and an example of a management unit.
  • FIG. 10 is a diagram illustrating an example of a specific relationship between the distance to the traffic light, the traveling speed, the first threshold value, and the second threshold value according to the embodiment.
  • FIG. 1 is a diagram illustrating an example of one section of a road R on which the vehicle 1 travels.
  • the vehicle 1 travels on the road R toward the right side in the figure.
  • a road-to-vehicle communication device R1 is provided on the road R.
  • the road-to-vehicle communication device R1 is disposed on a member R3 that is bridged on the upper side of the pillars R2a and R2b that are erected on both sides of the road R, respectively.
  • the road-to-vehicle communication device R1 includes a communicable communication unit (not shown) and a sensing unit (not shown) that senses the vehicle.
  • the road-to-vehicle communication device R1 senses the vehicle 1 and transmits signal information to the vehicle 1 when the vehicle 1 passes below.
  • the road-vehicle communication device R1 is, for example, an advanced optical beacon.
  • the advanced optical beacon is a device that has both a bidirectional communication function with a road-to-vehicle communication unit (on-vehicle device) of a traveling vehicle and a vehicle sensing function, using near-infrared technology.
  • one section is set.
  • One section is a section from the position where the road-to-vehicle communication device R1 is arranged to the position where the traffic light S5 is installed.
  • traffic lights S1 to S5 are installed.
  • the positions of the traffic lights S1 to S5 are the positions P1 to P5, respectively.
  • the road-vehicle communication apparatus R1, the traffic lights S1, and the traffic lights S1 to The distances between the traffic lights up to S5 are X1 to X5, respectively.
  • each of the traffic lights S1 to S5 is provided with a signal display part S11 to a signal display part S51 on the side facing the traveling direction of the vehicle 1.
  • the signal display units S11 to S51 are provided with blue, yellow, and red signals, respectively, and the lamp color changes in a predetermined cycle.
  • the signal information described above includes signal cycle information related to the cycle of the lamp color time of signals of the traffic lights S1 to S5 (traffic lights in one section), and the distance from the vehicle to the traffic light (more specifically, in the present embodiment) Includes the road-to-vehicle communication device R1 and the traffic light S1, and the distance between each of the traffic lights S1 to S5) signal position information.
  • FIG. 2 is a diagram illustrating an example of the signal cycle information T1 of the traffic lights S1 to S5.
  • each of the traffic lights S1 to S5 will be described in the case where the lamp color changes in the same cycle, but the lamp colors in different cycles for each signal of the traffic lights S1 to S5. May be changed.
  • the lamp color is set so that blue emits light for a time Tb, yellow for a time Ty, and red for a time Tr, and a reference time T0 is set.
  • the reference time T0 is, for example, a predetermined time specified by standard time. Therefore, the signal cycle information T1 is configured such that the lamp colors of the signal display unit S11 to the signal display unit S51 change from the reference time T0 as blue ⁇ yellow ⁇ red ⁇ blue.
  • FIG. 3 is a diagram illustrating an example of the signal position information T2 for one section.
  • the position of the road-to-vehicle communication device R1 is set to the reference position P0, and the positions of the traffic lights S1 to S5 are set to the positions P1 to P5, respectively.
  • the distance between the road-to-vehicle communication device R1 and the traffic signal S1 is a distance X1
  • the distances between the traffic signals in the traffic signals S1 to S5 are distances X2, X3, X4, and X5, respectively.
  • the signal information (signal cycle information (reference: FIG. 2) and signal position information (reference: FIG. 3)) of one section described with reference to FIG. 1 is set.
  • FIG. 4 is a perspective view when the vehicle 1 is viewed from the rear side. As shown in FIG. 4, the vehicle 1 has ramp portions 2a and 2b and rear wheels 6a and 6b on both sides of the upper portion of the back door. The ramps 2a and 2b notify the pedestrian and the driver of the following vehicle of the traveling operation of the vehicle 1 when the vehicle 1 is traveling.
  • Brake lamps 3a and 3b, direction command lamps 4a and 4b, and reverse lamps 5a and 5b are provided in order from the upper side in each of the lamp portions 2a and 2b.
  • the brake lamps 3a and 3b are lamps that notify the driver of the following vehicle that the vehicle 1 is decelerating, for example, when the traveling vehicle 1 decelerates.
  • the direction command lamps 4a and 4b are lamps for informing the pedestrian and the driver of the following vehicle of the right turn or the left turn when the vehicle 1 makes a right turn or a left turn.
  • the reverse ramps 5a and 5b are lamps that notify the pedestrian and the driver of the following vehicle that the vehicle 1 is moving backward when the driver moves the vehicle 1 backward. Since the present invention relates to lighting / extinguishing control of the brake lamps 3a, 3b, the lighting / extinguishing control of the brake lamps 3a, 3b will be described in detail below.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of the vehicle 1 according to the embodiment of the present invention.
  • the vehicle 1 includes a road-to-vehicle communication unit (acquisition unit) 10, an engine ECU (control unit) 11, a vehicle speed sensor 12, an accelerator position sensor 13, a motor drive unit 14, a motor 15, a rear wheel 6a, 6b, a notification unit 16, a brake lamp control unit 17, and lamp units 2a and 2b.
  • the engine ECU 11 includes a memory 23 having a first threshold setting unit 21 and a second threshold setting unit 22, and a clock unit 24.
  • the lamp portions 2a and 2b include brake lamps 3a and 3b.
  • the lamp units 2a and 2b have the direction command lamps 4a and 4b and the reverse lamps 5a and 5b as described above, but are not directly related to the present invention. Omitted. Further, the vehicle operation control device of the present invention is configured including brake lamps 3a and 3b, a road-to-vehicle communication unit 10, and an engine EUC11.
  • the road-vehicle communication unit 10 communicates with the road-vehicle communication device R1 described above.
  • the road-to-vehicle communication unit 10 receives signal information transmitted by the road-to-vehicle communication device R1 when the vehicle 1 passes below the road-to-vehicle communication device R1.
  • the road-to-vehicle communication unit 10 transmits the received signal information to the engine ECU 11.
  • the engine ECU 11 controls each device in the vehicle 1.
  • brake lamp lighting / extinguishing control related to lighting / extinguishing of the brake lamps 3a, 3b executed by the engine ECU 11 will be described in detail. Details of the brake lamp on / off control will be described later.
  • the memory 23 is a storage unit that stores predetermined settings and the like, and includes, for example, the first threshold setting unit 21 and the second threshold setting unit 22 described above.
  • the first threshold value setting unit 21 is set with a first threshold value for turning on the brake lamps 3a and 3b.
  • the first threshold is, for example, 20 km / s.
  • a second threshold for turning on the brake lamps 3a and 3b is set in the same manner as the first threshold.
  • the second threshold value and the first threshold value are in a relationship in which the second threshold value is smaller than the first threshold value, and when the brake lamp lighting / extinguishing control is executed, the first threshold value or the second threshold value is Alternatively selected.
  • the second threshold is, for example, 5 km / s.
  • the clock unit 24 measures time using, for example, standard time.
  • the engine ECU 11 uses the time counted by the clock unit 24 and the reference time T0 included in the signal cycle information T1 to accurately determine the lighting time cycle of each lamp color of each of the traffic lights S1 to S5. It becomes possible to judge.
  • the vehicle speed sensor 12 is provided in the vicinity of the rotation shafts of the rear wheels 6a and 6b, and is a rotation sensor that detects the rotation of the rotation shaft.
  • the vehicle speed sensor 12 outputs the acquired rotational speed information of the rotating shaft to the engine ECU 11.
  • the accelerator position sensor (APS) 13 is a sensor that detects the opening of the accelerator pedal when an accelerator pedal (not shown) is depressed by the driver.
  • the accelerator position sensor 13 outputs information indicating the detected opening of the accelerator pedal to the engine ECU 11.
  • the motor drive unit 14 controls the drive of the motor 15 based on a command from the engine ECU 11.
  • the motor drive unit 14 converts the electric power supplied from the battery power source (not shown) to the motor 15 based on a command received from the engine ECU 11 and causes the vehicle 1 to travel. More specifically, when driving the motor 15, the motor drive unit 14 switches the DC voltage of the battery power source to a predetermined frequency and a predetermined level by switching a plurality of switch elements in accordance with a command from the engine ECU 11. Convert to voltage and output. This output is applied to a winding (not shown) of the motor 15. This application activates the motor 15.
  • the motor drive unit 14 regenerates travel energy by the motor 15 to realize a feeling equivalent to engine braking, and regenerates a battery power source (not shown) based on the regenerated travel energy. Execute control.
  • the motor 15 is actuated by application to the winding described above, and rotates a rotating shaft (not shown) provided with the rear wheels 6a and 6b. As a result, the rear wheels 6a and 6b rotate to cause the vehicle 1 to travel.
  • reporting part 16 is provided with the display part (illustration omitted) which displays a message etc. with respect to a driver, and the output part (illustration omitted) which outputs an audio
  • the display and output to the notification unit 16 are performed based on a command from the engine ECU 11.
  • the content displayed on the notification unit 16 is, for example, a message regarding the traveling speed for the driver.
  • reporting part 16 is a sound which urges attention and alerting with respect to a driver. For example, the driver is notified by sound (or voice) that the message is displayed on the notification unit 16 and that the brake lamps 3a and 3b are lit (the engine brake is operating).
  • the brake lamp control unit 17 performs control to turn on / off the brake lamps 3a and 3b based on a command from the engine ECU 11. For example, a switch is provided between each brake lamp 3a, 3b and the brake lamp control unit 17, and the brake lamp control unit 17 switches the switch when receiving an instruction from the engine ECU 11 to turn on each brake lamp 3a, 3b. When a command to turn off the brake lamps 3a and 3b is received from the engine ECU 11, the switch is turned off. As a result, the brake lamps 3a and 3b are turned on / off.
  • FIG. 6 is a flowchart illustrating an example of brake lamp lighting / extinguishing control executed by the engine ECU 11.
  • the engine ECU 11 determines whether or not the road-to-vehicle communication device R1 has been detected when the vehicle 1 is traveling (ST101). This determination is based on whether or not the communication is performed because the communication is performed between the road-vehicle communication device R1 and the road-vehicle communication unit 10 when the vehicle 1 is detected by the road-vehicle communication device R1, for example. You can judge.
  • ST101 determines that road-to-vehicle communication device R1 has not been detected (ST101: NO)
  • the process returns to the process of step ST101.
  • the engine ECU 11 determines that the road-to-vehicle communication device R1 has been detected (ST101: YES)
  • the engine ECU 11 receives signal information from the road-to-vehicle communication device R1 via the road-to-vehicle communication unit 10 (see: FIG. 2 and FIG. 2). 3) is acquired (ST102).
  • the engine ECU 11 detects the travel speed of the vehicle 1 (ST103: travel speed detection means).
  • the engine ECU 11 detects the traveling speed of the vehicle 1 based on the rotational speed information of the rotating shaft input from the vehicle speed sensor 12.
  • the engine ECU 11 determines the color of the signal when the next traffic signal passes based on the signal information (ST104). This will be described in more detail.
  • the current position of the vehicle 1 is, for example, the reference position P0
  • the next traffic light that the vehicle 1 passes through is the traffic light S1 at the position P1 (see FIG. 1).
  • the engine ECU 11 determines the vehicle at the current traveling speed based on the traveling speed of the vehicle 1 detected in step ST103, the distance X1 from the reference position P0 to the position P1, and the lighting time cycle of each lamp color. When 1 reaches the distance X1, it is determined what color the signal of the traffic light S1 is.
  • the engine ECU 11 notifies the notification unit 16 of a message regarding the traveling speed.
  • the engine ECU 11 determines whether or not deceleration by the regenerative brake is necessary to reduce the traveling speed by a predetermined speed, in other words, the traffic signal ahead passes through the traffic signal within the time when the traffic light is blue due to the deceleration by the regenerative brake. It is determined whether or not it is possible (ST106). At this time, the engine ECU 11 confirms that the accelerator opening input from the accelerator position sensor 13 is 0 (that is, the accelerator pedal is not depressed) or the like. As a result, it is possible to prevent regenerative brake control from being performed against the driver's intention.
  • the engine ECU 11 Based on the signal information acquired in step ST102 and the travel speed detected in step ST103, the deceleration at the time of deceleration is detected (ST107: deceleration detection means).
  • the engine ECU 11 determines whether the deceleration is smaller than the first threshold value (ST108). When it is determined that the deceleration is smaller than the first threshold value (ST108: YES), the engine ECU 11 changes the threshold value for turning on the brake lamps 3a and 3b from the first threshold value to the second threshold value (ST109: threshold value change). means). If it is determined that the deceleration is not smaller than the first threshold (ST108: NO), the process returns to step ST106.
  • step ST106 When it is determined in step ST106 that deceleration by regenerative braking is not necessary (ST106: NO), or when the process of changing from the first threshold value to the second threshold value (ST109) ends, the engine ECU 11 performs step Based on the signal information acquired in ST102 and the travel speed detected in step ST103, the deceleration at the time of deceleration is detected (ST110).
  • the engine ECU 11 determines whether or not the detected deceleration is smaller than a threshold value (ST111).
  • the threshold value at this time is the second threshold value ( ⁇ first threshold value) when the process of step ST109 is executed, and is the first threshold value when the process of step ST109 is not executed. .
  • the engine ECU 11 determines whether or not the second threshold is set (ST112). The engine ECU 11 makes a determination based on which of the first threshold value and the second threshold value set in the memory 23 is adopted as the threshold value.
  • the engine ECU 11 determines whether or not the light color of the signal of the next traffic light is currently blue (ST113). This determination is performed in the same manner as the process of determining the lamp color in step ST104.
  • step ST114 If it is determined that the signal color of the current next traffic light is blue (ST113: YES), the engine ECU 11 turns on the brake lamps 3a and 3b (ST114). Specifically, the engine ECU 11 outputs a command to the brake lamp control unit 17 to turn on the switch. Accordingly, the brake lamps 3a and 3b are turned on when the brake lamp control unit 17 turns on the switch.
  • the threshold value ST111: NO
  • the current signal color of the next traffic light is a color other than blue, that is, red or yellow
  • the engine ECU 11 determines whether or not it has passed the traffic light (ST115).
  • the engine ECU 11 calculates a movement distance from the reference position P0 or the traffic signal that has passed the previous time based on the rotational speed information input from the vehicle speed sensor 12, and the calculated distance and the distance included in the signal position information T2 ( Based on the distances corresponding to X1 to X5, it is determined whether or not the signal has passed.
  • step ST115 If it is determined that the vehicle has not passed the traffic light (ST115: NO), the process returns to the process of calculating the deceleration in step ST108. Then, the above-described steps ST110 to ST115 are repeated.
  • the engine ECU 11 turns off the brake lamps 3a and 3b (ST116). Specifically, the engine ECU 11 outputs a command to the brake lamp control unit 17 to turn off the switch. Accordingly, the brake lamp control unit 17 turns off the switch, so that the brake lamps 3a and 3b are turned off.
  • the engine ECU 11 changes the threshold value for turning on the brake lamps 3a and 3b from the second threshold value to the first threshold value (ST117). More specifically, the engine ECU 11 sets the threshold value for turning on the brake lamps 3 a and 3 b from the second threshold value set in the second threshold value setting unit 22 to the first threshold value setting unit 21. Change to If the first threshold is set as the threshold, the process of step ST117 is passed.
  • the engine ECU 11 ends this process.
  • a new road-to-vehicle communication device is arranged at the end of the section, in order to acquire signal information from this road-to-vehicle communication device when passing under the new road-to-vehicle communication device, the signal information Based on this, the above-described steps ST101 to ST118 are repeated for the new section.
  • FIG. 7 is a schematic diagram for explaining an example of the action.
  • the signal lamp color surface of the traffic light S ⁇ b> 1 is changed from the facing surface in the traveling direction of the vehicle 1 to the position facing the upper side of the drawing for easy explanation.
  • the threshold values for turning on the brake lamps 3a and 3b will be described in the case where the first threshold value is 20 km / s and the second threshold value is 5 km / s.
  • FIG. 7A shows the time when the vehicle 1 is traveling on the road R toward the traffic light S1 and is located at the reference position P0 where signal information is acquired. At this time, the signal color of the traffic light S1 is blue.
  • FIG. 7 (b) shows a state in which the vehicle 1 predicts (calculates) the lamp color when the traffic signal S1 arrives, and at this time, the lamp color of the signal of the traffic signal S1 indicates red.
  • FIG. 7 (c) shows a conventional lighting start position of the brake lamps 3a and 3b.
  • the threshold value for turning on the brake lamps 3a and 3b is only the first threshold value (20 km / s).
  • the brake lamps 3a and 3b are turned on when the deceleration of the vehicle 7 reaches 20 km / s.
  • the front traffic light S1 is blue, so the vehicle travels at a higher speed.
  • the brake lamps 3a and 3b are turned on only when the vehicle turns red immediately before decelerating greatly. As a result, useless acceleration occurs and the engine load is likely to increase.
  • FIG. 7 (d) shows the lighting start positions of the brake lamps 3a and 3b in the embodiment of the present invention.
  • the threshold value for starting the brake lamp lighting is set to the second threshold value (5 km / s).
  • the signal color of the current traffic light S1 is blue. Accordingly, as shown in (d), since the brake lamps 3a and 3b are turned on when the deceleration reaches the second threshold value (5 km / s), the first threshold value (20 km / s) is set.
  • the brake lamps 3a and 3b can be turned on earlier than the conventional case.
  • the vehicle 1 can turn on the brake lamps 3a and 3b early.
  • FIG. 8 is an image diagram for explaining the present invention.
  • FIG. 8A is an image diagram of lighting control of the brake lamps 3a and 3b in the conventional control (without using signal information)
  • FIG. 8B is a diagram of the brake lamps 3a and 3b in the embodiment of the present invention. It is an image figure of lighting control (with utilization of signal information).
  • the vehicle 1 When the engine ECU 11 determines that the traffic light in front is blue, but changes to red in a short time, the vehicle 1 is decelerated and the excess acceleration is suppressed. At this time, according to the control of the prior art shown in FIG. 8A, if the deceleration is small, the brake lamps 3a and 3b are not lit. However, since the light color of the traffic light in front is blue, the following vehicle travels without reducing the speed, so that there is a possibility of a collision.
  • the threshold value for turning on the brake lamps 3a and 3b in the above-described situation can be changed from the first threshold value to the second threshold value. Even if the deceleration is small, the brake lamps 3a and 3b can be turned on early. Specifically, in the situation described above, when the current deceleration is 10 km / s, the brake lamps 3a and 3b are not lit in the conventional technique (see: FIG. 8A), but the present invention. Then, since the lighting threshold value of the brake lamps 3a and 3b has been changed to the second threshold value (5 km / s), the brake lamps 3a and 3b can be turned on (see: FIG. 8B). Thus, the engine ECU 11 can easily avoid a collision with the following vehicle.
  • the threshold value for turning on the brake lamps 3a and 3b is changed from the first threshold value to the second threshold value ( ⁇ first threshold value). Can be changed.
  • the vehicle 1 can appropriately control turning on / off of the brake lamps 3a and 3b according to the color of the traffic light, and the driver of the following vehicle Does not realize that the preceding vehicle is decelerating, and can prevent a situation in which the preceding vehicle and the following vehicle collide.
  • the signal color of the next traffic light is blue
  • the brake lamps 3a and 3b are turned on, the engine ECU 11 can turn on the brake lamps 3a and 3b in a situation where it is difficult for the driver of the following vehicle to decelerate the preceding vehicle.
  • the next traffic light is red
  • the driver of the following vehicle is likely to assume that the preceding vehicle is decelerating. In such a situation, the brake lamps 3a and 3b are not turned on. The lighting control of the extra brake lamps 3a and 3b can be avoided.
  • the vehicular driving control device can improve fuel efficiency by avoiding excessive acceleration of the vehicle 1, and can effectively suppress a collision with the following vehicle.
  • the second threshold value set in the second threshold value setting unit 22 is a constant value.
  • the present invention is not limited to this.
  • the second threshold value may be changed according to the traveling speed of the vehicle 1 and the distance from the position of the vehicle 1 to the next traffic light.
  • FIG. 9 is a diagram illustrating an example of a range in which the second threshold is employed and an example of a second threshold map (management unit). Note that the second threshold map is provided in the memory 23 in the engine ECU 11, for example.
  • the vertical axis indicates the deceleration of the vehicle 1
  • the horizontal axis indicates the distance from the position of the traffic signal to the next traffic signal.
  • the second threshold value is 500 m from the position of a predetermined traffic light (intersection), for example, 30 m (lower limit of the range in which assistance using signal information is performed) (support using signal information is performed). It is adopted up to the position of the upper limit of the range. In other words, the first threshold value is adopted at a place exceeding 500 m from the position of the traffic light.
  • the second threshold value is changed based on the second threshold map. More specifically, as shown in FIG. 9, the second threshold is a map that is set to be smaller as the traveling speed of the vehicle 1 is larger, and is set to be smaller as the distance to the traffic light is shorter.
  • FIG. 10 shows an example W1 that specifically shows the relationship between the traveling speed of the vehicle 1, the first threshold value, and the second threshold value when the distance to the traffic light is 200 m, 100 m, and 50 m. Show.
  • the vehicle 1 turns on the brake lamps 3a and 3b at a more appropriate timing according to the traveling speed and the distance to the next traffic light. It becomes possible to light up. Thereby, it becomes possible to further enhance the prevention effect with respect to the following vehicle.
  • the second threshold value is set to be smaller as the traveling speed of the vehicle 1 is larger.
  • the second threshold is set smaller as the distance to the traffic light is shorter.
  • the vehicle 1 When the traffic light ahead is blue (slightly turns red afterwards) and the vehicle 1 is approaching a predetermined traffic light, the vehicle 1 usually tries to pass the traffic light during the green light without slowing down. Continue running without slowing down. In such a case, when the vehicle 1 suddenly loosens the accelerator and decelerates, the possibility of collision with the following vehicle increases. Therefore, if the second threshold value at which the brake lamps 3a and 3b are turned on is made smaller, it is possible to notify the subsequent vehicle of the speed reduction of the vehicle 1 at an early stage, thereby reducing the risk of collision. it can.
  • the control for turning on the brake lamps 3a and 3b when the vehicle 1 decelerates using the regenerative brake and the deceleration becomes smaller than the second threshold has been described. It is not limited to. For example, when the threshold value for turning on the brake lamps 3a and 3b is changed from the first threshold value to the second threshold value (see step ST109), the brake lamps 3a and 3b are turned on before the deceleration exceeds the second threshold value. You may make it light.
  • a prediction time map is provided in the memory 23 for predicting the time from when the threshold is changed to the second threshold until the deceleration becomes equal to or greater than the second threshold, and the deceleration is based on the prediction time map.
  • a time (first time) that is greater than or equal to the second threshold may be predicted, and the brake lamps 3a and 3b may be lit from a predetermined time (second time) before the predicted time. At this time, for example, it is desirable to blink the brake lamps 3a and 3b between the second time and the first time. In this way, by changing the display method of the brake lamps 3a and 3b before and after the deceleration becomes equal to or greater than the second threshold value, the driver of the following vehicle is alerted before the deceleration of the vehicle 1 increases. It becomes possible.
  • the said embodiment demonstrated the case where the brake lamps 3a and 3b were lighted in the vehicle 1 at the time of deceleration control using a regenerative brake, it is not restricted to this.
  • the vehicle 1 is a so-called hybrid vehicle
  • the present invention can be applied to a case where a regenerative brake and an engine brake are used in combination.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, you may delete some components from all the components shown by embodiment mentioned above. Furthermore, you may combine the structure of different embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Traffic Control Systems (AREA)

Abstract

Provided is a drive control device for a vehicle, which is capable of preventing a collision with a following vehicle. This drive control device for a vehicle is equipped with: a brake lamp; a control unit that calculates the degree of deceleration during deceleration and turns the brake lamp on when the calculated degree of deceleration becomes a first threshold or more; and an acquisition unit that acquires signal information including signal cycle information relating to the lighting time cycle of each of the lamp colors of a traffic light and signal position information relating to the distance from the vehicle to the traffic light. The control unit comprises: a travel speed detection means for detecting the travel speed of the vehicle; a deceleration detection means for detecting the degree of deceleration during deceleration if it is determined that the vehicle cannot pass through the traffic light while the traffic light ahead is green on the basis of the travel speed and the signal information; and a threshold change means for changing the first threshold to a second threshold, which is smaller than the first threshold, if the deceleration detected by the deceleration detection means is smaller than the first threshold.

Description

車両用運転制御装置Vehicle operation control device
 本発明は、ブレーキランプを備える車両用運転制御装置に関する。 The present invention relates to a vehicle operation control device including a brake lamp.
 モータを備えた車両が知られている。この種の車両においては、回生ブレーキという技術が用いられる。回生ブレーキとは、タイヤの回転を使いモータで電力を発生させ、車両に搭載した蓄電池を充電し、加速時の電力に変換すると同時にタイヤと走行路面との摩擦によりブレーキとしての機能を発揮するブレーキである。 A vehicle equipped with a motor is known. In this type of vehicle, a technique called regenerative braking is used. A regenerative brake is a brake that generates power with a motor using the rotation of a tire, charges a storage battery mounted on the vehicle, converts it to electric power during acceleration, and at the same time demonstrates its function as a brake by friction between the tire and the road surface. It is.
 また、ブレーキランプ制御装置として、電動機に出力させる制御トルク値が予め定められた基準回生トルク値よりも回生側に大きい値である場合にブレーキランプを点灯させるものが知られている(下記、特許文献1参照)。 Further, as a brake lamp control device, a device that lights a brake lamp when a control torque value to be output to an electric motor is larger on a regeneration side than a predetermined reference regenerative torque value is known (the following, patent Reference 1).
特開2014-76715号公報JP 2014-76715 A
 特許文献1に記載の技術では、先行車両が減速走行をしても制御トルク値が基準回生トルク値よりも回生側に大きい値となるまでブレーキランプが点灯しない。これでは、減速しているにも関わらずブレーキランプが点灯しないため、後行車両のドライバは先行車両が減速していることに気付かず、先行車両と後行車両とが衝突するという事態も生じ得る。 In the technique described in Patent Document 1, even if the preceding vehicle decelerates, the brake lamp does not light until the control torque value becomes larger than the reference regenerative torque value on the regenerative side. In this case, since the brake lamp does not light even though the vehicle is decelerating, the driver of the following vehicle does not notice that the preceding vehicle is decelerating, and a situation may occur where the preceding vehicle and the following vehicle collide. obtain.
 また、近年、例えば走行路面上に設置される通信装置から信号情報を受信し、信号情報を利用して車両の走行制御をアシストする技術が開発されている。この信号情報には、区間内の複数の信号機について、各信号機の灯色(例えば、青色、黄色、赤色)を変更する信号サイクル、各信号機までの距離の情報が含まれており、通信装置の位置、信号機までの距離、走行速度、信号サイクルから信号機通過時の灯色が判定され、例えば、灯色が赤色であると判定されれば、青色で通過するために車両の走行速度を速めるように、又は走行速を遅くするようにドライバにナビゲーションが行われる。 Also, in recent years, a technology has been developed that receives signal information from, for example, a communication device installed on the traveling road surface and assists vehicle travel control using the signal information. This signal information includes a signal cycle for changing the lamp color (for example, blue, yellow, red) of each traffic signal and information on the distance to each traffic signal for a plurality of traffic signals in the section. The color of the light passing through the traffic light is determined from the position, the distance to the traffic light, the travel speed, and the signal cycle. For example, if the light color is determined to be red, the vehicle travel speed is increased to pass in blue. In addition, navigation is performed to the driver so as to reduce the traveling speed.
 このように信号情報を利用する場合において、信号機の灯色をドライバが視認できるときは、信号機の灯色が赤色以外である場合、つまり、青色や黄色の場合は、後行車両のドライバは、先行車両が減速することを予期することが難しく、衝突回避の動作が遅くなり、より後行車両との衝突の可能性が高まる。 When using the signal information in this way, when the driver can visually recognize the light color of the traffic light, if the light color of the traffic light is other than red, that is, if it is blue or yellow, the driver of the following vehicle will It is difficult to expect the preceding vehicle to decelerate, the collision avoidance operation is delayed, and the possibility of a collision with the following vehicle increases.
 本発明は、上記事情に鑑みてなされたものであり、後行車両との衝突を防止することができる車両用運転制御装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a vehicle operation control device capable of preventing a collision with a following vehicle.
 本発明の車両用運転制御装置は、ブレーキランプと、減速時に減速度を算出し、算出した減速度が第1の閾値以上になったときに前記ブレーキランプを点灯する制御部と、を備える。また、車両用運転制御装置は、信号機の各灯色の各々の点灯時間のサイクルに関する信号サイクル情報、及び車両から信号機までの距離に関する信号位置情報を含む信号情報を取得する取得部を備える。さらに、前記制御部は、車両の走行速度を検出する走行速度検出手段と、前記走行速度、及び前記信号情報に基づいて、前方の信号機が青色である時間内に当該信号機を通過することができないと判断された場合における減速時の減速度を検出する減速度検出手段と、前記減速度検出手段で検出した減速度が前記第1の閾値よりも小さい場合に、前記第1の閾値を前記第1の閾値より小さい第2の閾値に変更する閾値変更手段と、を有する。 The vehicle operation control device of the present invention includes a brake lamp, and a control unit that calculates deceleration when decelerating and turns on the brake lamp when the calculated deceleration is equal to or greater than a first threshold. In addition, the vehicle operation control device includes an acquisition unit that acquires signal information including signal cycle information related to a cycle of lighting time of each light color of the traffic light and signal position information related to a distance from the vehicle to the traffic light. Furthermore, the control unit cannot pass the traffic signal within the time when the traffic light ahead is blue based on the travel speed detection means for detecting the travel speed of the vehicle, the travel speed, and the signal information. And when the deceleration detected by the deceleration detecting means is smaller than the first threshold, the first threshold is set to the first threshold. Threshold change means for changing to a second threshold smaller than the first threshold.
 このように構成された車両用運転制御装置によると、走行速度、及び信号情報に基づいて、前方の信号機が青色である時間内に当該信号機を通過することができないと判断された際に、ブレーキランプを点灯させる閾値を第1の閾値から第2の閾値(<第1の閾値)に変更することができる。このため、車両は、信号情報を利用した減速制御が行われるときに、信号機の灯色に応じてブレーキランプの点灯/消灯を適切に制御することにより、たとえ前方の信号の灯色が青色であったとしても早期にブレーキランプを点灯させることが可能となり、後行車両との衝突を効果的に防止することができる。 According to the vehicle operation control device configured as described above, when it is determined that the front traffic light cannot pass through the traffic light within the time when the front traffic light is blue based on the traveling speed and the signal information, The threshold for lighting the lamp can be changed from the first threshold to the second threshold (<first threshold). For this reason, when deceleration control using signal information is performed, the vehicle appropriately controls on / off of the brake lamp according to the light color of the traffic light, so that the light color of the front signal is blue. Even if it exists, it becomes possible to light a brake lamp at an early stage, and a collision with the following vehicle can be effectively prevented.
 さらに、前記制御部は、前記走行速度、及び前記信号機までの距離に応じた閾値を管理する管理部を備え、前記制御部は、前記第2の閾値を前記管理部の管理する閾値に基づいて変更するようにしても良い。 Furthermore, the control unit includes a management unit that manages a threshold value according to the traveling speed and a distance to the traffic light, and the control unit is configured to manage the second threshold value based on the threshold value managed by the management unit. You may make it change.
 このように構成すると、車両は、走行速度、及び前記信号機までの距離に応じてより適切なタイミングでブレーキランプを点灯することが可能になる。これにより、後行車両との防止効果をさらに高めることが可能になる。 With this configuration, the vehicle can turn on the brake lamp at a more appropriate timing according to the traveling speed and the distance to the traffic light. Thereby, it becomes possible to further enhance the prevention effect with respect to the following vehicle.
 また、前記第2閾値は、前記車両の走行速度が大きいほど小さく設定されるようにしても良い。通常、車両の走行速度が大きいほど、これに追従して後続車両の走行速度も大きい可能性が高く、こうした場合に先行車両が急にアクセルを緩めた際には衝突する可能性が高くなる。このため、ブレーキランプが点灯する第2の閾値をより小さくしておけば、先行車両の速度低減を早期に後続車両に通知することが可能となり、衝突危険性の低減が図られる。 Further, the second threshold value may be set smaller as the traveling speed of the vehicle increases. In general, the higher the vehicle traveling speed, the higher the possibility that the following vehicle will follow the vehicle traveling speed. In such a case, when the preceding vehicle suddenly loosens the accelerator, the possibility of a collision increases. For this reason, if the 2nd threshold value with which a brake lamp lights is made smaller, it will become possible to notify the following vehicle of the speed reduction of a preceding vehicle at an early stage, and the collision risk will be reduced.
 さらに、第2閾値は、信号機までの距離が短いほど小さく設定されるようにしても良い。前方の信号機が青色(あと僅かで赤色に変わる)であって、車両が信号機に接近している状態では、通常、車両は速度を緩めることなく青信号の間に信号機を通過しようとして減速することなく走行を続ける。こうした場合に先行車両が急にアクセルを緩めて減速した際には後続車両と衝突する可能性が高くなる。このため、ブレーキランプが点灯する第2の閾値をより小さくしておけば、先行車両の速度低減を早期に後続車両に通知することが可能となり、衝突危険性の低減が図られる。 Furthermore, the second threshold value may be set smaller as the distance to the traffic light is shorter. When the traffic light ahead is blue (changes red after a short time) and the vehicle is approaching the traffic light, the vehicle usually does not slow down trying to pass the traffic light during the green light without slowing down. Continue running. In such a case, when the preceding vehicle suddenly loosens the accelerator and decelerates, the possibility of collision with the following vehicle increases. For this reason, if the 2nd threshold value with which a brake lamp lights is made smaller, it will become possible to notify the following vehicle of the speed reduction of a preceding vehicle at an early stage, and the collision risk will be reduced.
 本発明によれば、後行車両との衝突を防止することができる車両用運転制御装置を提供することができる。 According to the present invention, it is possible to provide a vehicle operation control device that can prevent a collision with a following vehicle.
図1は、本発明の実施形態に係る車両が走行する道路の1区間の一例を示す図である。FIG. 1 is a diagram illustrating an example of one section of a road on which a vehicle travels according to an embodiment of the present invention. 図2は、同実施形態に係る信号サイクル情報の一例を示す図である。FIG. 2 is a diagram illustrating an example of signal cycle information according to the embodiment. 図3は、同実施形態に係る信号位置情報の一例を示す図である。FIG. 3 is a diagram illustrating an example of signal position information according to the embodiment. 図4は、同実施形態に係る車両を後ろ側から見たときの斜視図である。FIG. 4 is a perspective view when the vehicle according to the embodiment is viewed from the rear side. 図5は、同実施形態に係る車両の概略構成の一例を示す図である。FIG. 5 is a diagram illustrating an example of a schematic configuration of the vehicle according to the embodiment. 図6は、同実施形態に係るブレーキランプ制御の一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of brake lamp control according to the embodiment. 図7は、同実施形態に係る作用を説明するための模式図である。FIG. 7 is a schematic diagram for explaining the operation according to the embodiment. 図8は、同実施形態の制御を説明するためのイメージ図である。FIG. 8 is an image diagram for explaining the control of the embodiment. 図9は、同実施形態に係る第2の閾値を採用する範囲の一例及び管理部の一例を示す図である。FIG. 9 is a diagram illustrating an example of a range in which the second threshold value according to the embodiment is employed and an example of a management unit. 図10は、同実施形態に係る信号機までの距離と、走行速度と、第1の閾値と、第2の閾値との関係を具体的に示した一例を示す図である。FIG. 10 is a diagram illustrating an example of a specific relationship between the distance to the traffic light, the traveling speed, the first threshold value, and the second threshold value according to the embodiment.
 以下、本発明の実施の形態について図面を参照しながら説明する。 
 図1は、車両1が走行する道路Rの1区間の一例を示す図である。 
 図1に示すように、車両1は、道路R上を図示右側に向かって走行する。道路R上には、路車間通信装置R1が設けられている。路車間通信装置R1は、道路Rの両側にそれぞれ立設される柱R2a,柱R2bの上側で架け渡される部材R3に配置される。路車間通信装置R1は、通信可能な通信部(図示省略)及び車両を感知する感知部(図示省略)を備えている。したがって、路車間通信装置R1は、下側を車両1が通過するときに、車両1を感知して、車両1に対して信号情報を送信する。路車間通信装置R1は、例えば、高度化光ビーコンである。高度化光ビーコンは、近赤外線技術を応用した、走行車両の路車間通信部(車載装置)との双方向通信機能と、車両感知機能を併せ持つ装置である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating an example of one section of a road R on which the vehicle 1 travels.
As shown in FIG. 1, the vehicle 1 travels on the road R toward the right side in the figure. A road-to-vehicle communication device R1 is provided on the road R. The road-to-vehicle communication device R1 is disposed on a member R3 that is bridged on the upper side of the pillars R2a and R2b that are erected on both sides of the road R, respectively. The road-to-vehicle communication device R1 includes a communicable communication unit (not shown) and a sensing unit (not shown) that senses the vehicle. Therefore, the road-to-vehicle communication device R1 senses the vehicle 1 and transmits signal information to the vehicle 1 when the vehicle 1 passes below. The road-vehicle communication device R1 is, for example, an advanced optical beacon. The advanced optical beacon is a device that has both a bidirectional communication function with a road-to-vehicle communication unit (on-vehicle device) of a traveling vehicle and a vehicle sensing function, using near-infrared technology.
 また、道路Rにおいて、1区間が設定されている。1区間は、路車間通信装置R1が配置されている位置から信号機S5が設置されている位置までの区間である。この1区間内には、信号機S1から信号機S5が設置されている。路車間通信装置R1が設置されている位置を基準位置P0とすると、各信号機S1~信号機S5の位置は、それぞれ位置P1~位置P5であり、路車間通信装置R1と信号機S1、信号機S1から信号機S5までの各信号機間の距離は、それぞれX1からX5である。また、信号機S1から信号機S5には、それぞれ車両1の進行方向との対抗面に信号表示部S11~信号表示部S51が設けられている。信号表示部S11~信号表示部S51には、それぞれ、青色、黄色、赤色の信号が設けられており、所定のサイクルで灯色が変化する。 Also, on the road R, one section is set. One section is a section from the position where the road-to-vehicle communication device R1 is arranged to the position where the traffic light S5 is installed. Within this one section, traffic lights S1 to S5 are installed. Assuming that the position where the road-to-vehicle communication device R1 is installed is the reference position P0, the positions of the traffic lights S1 to S5 are the positions P1 to P5, respectively. The road-vehicle communication apparatus R1, the traffic lights S1, and the traffic lights S1 to The distances between the traffic lights up to S5 are X1 to X5, respectively. Further, each of the traffic lights S1 to S5 is provided with a signal display part S11 to a signal display part S51 on the side facing the traveling direction of the vehicle 1. The signal display units S11 to S51 are provided with blue, yellow, and red signals, respectively, and the lamp color changes in a predetermined cycle.
 既述の信号情報には、信号機S1~信号機S5(1区間内の信号機)の信号の灯色時間のサイクルに関する信号サイクル情報、及び車両から信号機までの距離(より詳細には、本実施形態においては、路車間通信装置R1と信号機S1、並びに各信号機S1~信号機S5間の距離)信号位置情報が含まれる。 The signal information described above includes signal cycle information related to the cycle of the lamp color time of signals of the traffic lights S1 to S5 (traffic lights in one section), and the distance from the vehicle to the traffic light (more specifically, in the present embodiment) Includes the road-to-vehicle communication device R1 and the traffic light S1, and the distance between each of the traffic lights S1 to S5) signal position information.
 この1区間の信号サイクル情報について図2を参照して説明する。図2は、信号機S1~信号機S5の信号サイクル情報T1の一例を示す図である。なお、本実施形態では、説明を簡略化するために各信号機S1~信号機S5は同じサイクルで灯色が変化する場合で説明するが、信号機S1~信号機S5の信号毎に、異なるサイクルで灯色が変化するようにしても良い。 The signal cycle information of this one section will be described with reference to FIG. FIG. 2 is a diagram illustrating an example of the signal cycle information T1 of the traffic lights S1 to S5. In this embodiment, in order to simplify the description, each of the traffic lights S1 to S5 will be described in the case where the lamp color changes in the same cycle, but the lamp colors in different cycles for each signal of the traffic lights S1 to S5. May be changed.
 図2に示すように、信号サイクル情報T1において、灯色は、青色が時間Tb、黄色が時間Ty、赤色が時間Trだけ発光するように設定されており、さらに基準時間T0が設定されている。基準時間T0は、例えば、標準時間で特定される所定の時刻である。したがって、信号サイクル情報T1は、基準時間T0から青色→黄色→赤色→青色…のように信号表示部S11~信号表示部S51の灯色が変化するように構成されている。 As shown in FIG. 2, in the signal cycle information T1, the lamp color is set so that blue emits light for a time Tb, yellow for a time Ty, and red for a time Tr, and a reference time T0 is set. . The reference time T0 is, for example, a predetermined time specified by standard time. Therefore, the signal cycle information T1 is configured such that the lamp colors of the signal display unit S11 to the signal display unit S51 change from the reference time T0 as blue → yellow → red → blue.
 次に、信号位置情報について図3を参照して説明する。図3は、1区間の信号位置情報T2の一例を示す図である。 Next, the signal position information will be described with reference to FIG. FIG. 3 is a diagram illustrating an example of the signal position information T2 for one section.
 図3に示すように、信号位置情報T2において、路車間通信装置R1の位置が基準位置P0であり、信号機S1~信号機S5の位置が位置P1~位置P5となるようにそれぞれ設定されている。また、路車間通信装置R1と信号機S1との距離は距離X1であり、信号機S1~信号機S5における各信号機間の距離は、それぞれ、距離X2、X3、X4、X5である。 
 以上のように、図1を参照して既述した1区間の信号情報(信号サイクル情報(参照:図2)及び信号位置情報(参照:図3))が設定されている。
As shown in FIG. 3, in the signal position information T2, the position of the road-to-vehicle communication device R1 is set to the reference position P0, and the positions of the traffic lights S1 to S5 are set to the positions P1 to P5, respectively. Further, the distance between the road-to-vehicle communication device R1 and the traffic signal S1 is a distance X1, and the distances between the traffic signals in the traffic signals S1 to S5 are distances X2, X3, X4, and X5, respectively.
As described above, the signal information (signal cycle information (reference: FIG. 2) and signal position information (reference: FIG. 3)) of one section described with reference to FIG. 1 is set.
 次に、車両1について図4及び図5を参照して説明する。 Next, the vehicle 1 will be described with reference to FIGS.
 図4は、車両1を後ろ側から見たときの斜視図である。 
 図4に示すように、車両1は、バックドア上部の両側にランプ部2a,2b、及び後輪6a,6bを有している。ランプ部2a,2bは、車両1の走行時等に、車両1の後方に位置する歩行者や後行車両のドライバに対して車両1の走行動作を報知する。
FIG. 4 is a perspective view when the vehicle 1 is viewed from the rear side.
As shown in FIG. 4, the vehicle 1 has ramp portions 2a and 2b and rear wheels 6a and 6b on both sides of the upper portion of the back door. The ramps 2a and 2b notify the pedestrian and the driver of the following vehicle of the traveling operation of the vehicle 1 when the vehicle 1 is traveling.
 各ランプ部2a,2bには、ブレーキランプ3a,3b、方向指令ランプ4a,4b及び後退ランプ5a,5bが上側から順に設けられている。 Brake lamps 3a and 3b, direction command lamps 4a and 4b, and reverse lamps 5a and 5b are provided in order from the upper side in each of the lamp portions 2a and 2b.
 ブレーキランプ3a,3bは、例えば、走行中の車両1が減速を行う場合に、後行車両のドライバに対して、減速することを報知するランプである。方向指令ランプ4a,4bは、車両1が右折、又は左折する場合に、後方に位置する歩行者や後行車両のドライバに対して右折、又は左折を報知するランプである。後退ランプ5a,5bは、ドライバが車両1を後退させるときに、車両1の後方に位置する歩行者や後行車両のドライバに対して後進することを報知するランプである。なお、本発明は、ブレーキランプ3a,3bの点灯/消灯制御に係るものであるため、以下では、ブレーキランプ3a,3bの点灯/消灯制御に関して詳細に説明する。 The brake lamps 3a and 3b are lamps that notify the driver of the following vehicle that the vehicle 1 is decelerating, for example, when the traveling vehicle 1 decelerates. The direction command lamps 4a and 4b are lamps for informing the pedestrian and the driver of the following vehicle of the right turn or the left turn when the vehicle 1 makes a right turn or a left turn. The reverse ramps 5a and 5b are lamps that notify the pedestrian and the driver of the following vehicle that the vehicle 1 is moving backward when the driver moves the vehicle 1 backward. Since the present invention relates to lighting / extinguishing control of the brake lamps 3a, 3b, the lighting / extinguishing control of the brake lamps 3a, 3b will be described in detail below.
 図5は、本発明の実施形態に係る車両1の概略構成の一例を示す図である。 
 図5に示すように、車両1は、路車間通信部(取得部)10、エンジンECU(制御部)11、車速センサ12、アクセルポジションセンサ13、モータ駆動部14、モータ15、後輪6a,6b、報知部16、ブレーキランプ制御部17、及びランプ部2a,2bを備えている。また、エンジンECU11は、第1の閾値設定部21、及び第2の閾値設定部22を有するメモリ23、並びに時計部24を備えている。ランプ部2a,2bは、ブレーキランプ3a,3bを含んでいる。なお、ランプ部2a,2bは、既述のように方向指令ランプ4a,4b、及び後退ランプ5a,5bを有しているが、本発明と直接関係がないため、図5における図示及び説明を省略している。また、ブレーキランプ3a,3bと、路車間通信部10と、エンジンEUC11とを含み本発明の車両用運転制御装置が構成される。
FIG. 5 is a diagram illustrating an example of a schematic configuration of the vehicle 1 according to the embodiment of the present invention.
As shown in FIG. 5, the vehicle 1 includes a road-to-vehicle communication unit (acquisition unit) 10, an engine ECU (control unit) 11, a vehicle speed sensor 12, an accelerator position sensor 13, a motor drive unit 14, a motor 15, a rear wheel 6a, 6b, a notification unit 16, a brake lamp control unit 17, and lamp units 2a and 2b. Further, the engine ECU 11 includes a memory 23 having a first threshold setting unit 21 and a second threshold setting unit 22, and a clock unit 24. The lamp portions 2a and 2b include brake lamps 3a and 3b. The lamp units 2a and 2b have the direction command lamps 4a and 4b and the reverse lamps 5a and 5b as described above, but are not directly related to the present invention. Omitted. Further, the vehicle operation control device of the present invention is configured including brake lamps 3a and 3b, a road-to-vehicle communication unit 10, and an engine EUC11.
 路車間通信部10は、既述の路車間通信装置R1と通信を行う。例えば、路車間通信部10は、車両1が路車間通信装置R1の下側を通過する際に、路車間通信装置R1が送信する信号情報を受信する。また、路車間通信部10は、受信した信号情報をエンジンECU11へ送信する。 The road-vehicle communication unit 10 communicates with the road-vehicle communication device R1 described above. For example, the road-to-vehicle communication unit 10 receives signal information transmitted by the road-to-vehicle communication device R1 when the vehicle 1 passes below the road-to-vehicle communication device R1. The road-to-vehicle communication unit 10 transmits the received signal information to the engine ECU 11.
 エンジンECU11は、車両1内の各装置を制御する。本実施形態では、エンジンECU11が実行するブレーキランプ3a,3bの点灯/消灯に係るブレーキランプ点灯/消灯制御について詳細に説明する。ブレーキランプ点灯/消灯制御についての詳細は後述する。 The engine ECU 11 controls each device in the vehicle 1. In the present embodiment, brake lamp lighting / extinguishing control related to lighting / extinguishing of the brake lamps 3a, 3b executed by the engine ECU 11 will be described in detail. Details of the brake lamp on / off control will be described later.
 メモリ23は所定の設定等を記憶する記憶部であり、例えば、既述の第1の閾値設定部21及び第2の閾値設定部22を有している。 The memory 23 is a storage unit that stores predetermined settings and the like, and includes, for example, the first threshold setting unit 21 and the second threshold setting unit 22 described above.
 第1の閾値設定部21には、ブレーキランプ3a,3bを点灯させる第1の閾値が設定される。第1の閾値は、例えば、20km/sである。 The first threshold value setting unit 21 is set with a first threshold value for turning on the brake lamps 3a and 3b. The first threshold is, for example, 20 km / s.
 第2の閾値設定部22には、第1の閾値と同様に、ブレーキランプ3a,3bを点灯させる第2の閾値が設定される。第2の閾値と、第1の閾値とは、第2の閾値が第1の閾値より小さい関係にあり、ブレーキランプ点灯/消灯制御が実行されるときに第1の閾値又は第2の閾値が択一的に選択される。第2の閾値は、例えば、5km/sである。 In the second threshold setting unit 22, a second threshold for turning on the brake lamps 3a and 3b is set in the same manner as the first threshold. The second threshold value and the first threshold value are in a relationship in which the second threshold value is smaller than the first threshold value, and when the brake lamp lighting / extinguishing control is executed, the first threshold value or the second threshold value is Alternatively selected. The second threshold is, for example, 5 km / s.
 時計部24は、例えば、標準時間を用いて時間を計時する。エンジンECU11は、この時計部24で計時する時間と、信号サイクル情報T1に含まれる基準時間T0とを利用することによって、各信号機S1~信号機S5の各灯色の各々の点灯時間のサイクルを正確に判断することが可能になる。 The clock unit 24 measures time using, for example, standard time. The engine ECU 11 uses the time counted by the clock unit 24 and the reference time T0 included in the signal cycle information T1 to accurately determine the lighting time cycle of each lamp color of each of the traffic lights S1 to S5. It becomes possible to judge.
 車速センサ12は、後輪6a,6bの回転軸の近傍に設けられており、回転軸の回転を検出する回転センサである。車速センサ12は、取得した回転軸の回転速度情報をエンジンECU11に出力する。 The vehicle speed sensor 12 is provided in the vicinity of the rotation shafts of the rear wheels 6a and 6b, and is a rotation sensor that detects the rotation of the rotation shaft. The vehicle speed sensor 12 outputs the acquired rotational speed information of the rotating shaft to the engine ECU 11.
 アクセルポジションセンサ(APS)13は、ドライバによりアクセルペダル(図示省略)が踏み込まれたときに、アクセルペダルの開度を検出するセンサである。アクセルポジションセンサ13は、検出したアクセルペダルの開度を示す情報をエンジンECU11に出力する。 The accelerator position sensor (APS) 13 is a sensor that detects the opening of the accelerator pedal when an accelerator pedal (not shown) is depressed by the driver. The accelerator position sensor 13 outputs information indicating the detected opening of the accelerator pedal to the engine ECU 11.
 モータ駆動部14は、エンジンECU11からの指令に基づいてモータ15の駆動を制御する。モータ駆動部14は、エンジンECU11から受け取る指令に基づいて、バッテリ電源(図示省略)からモータ15に供給する電力を変換させて車両1を走行させる。より詳細には、モータ駆動部14は、モータ15を駆動する場合は、バッテリ電源の直流電圧を、エンジンECU11からの指令に応じて複数のスイッチ素子をスイッチすることにより所定周波数および所定レベルの交流電圧に変換し、出力する。この出力がモータ15の巻線(図示省略)に印加される。この印加により、モータ15が作動する。 The motor drive unit 14 controls the drive of the motor 15 based on a command from the engine ECU 11. The motor drive unit 14 converts the electric power supplied from the battery power source (not shown) to the motor 15 based on a command received from the engine ECU 11 and causes the vehicle 1 to travel. More specifically, when driving the motor 15, the motor drive unit 14 switches the DC voltage of the battery power source to a predetermined frequency and a predetermined level by switching a plurality of switch elements in accordance with a command from the engine ECU 11. Convert to voltage and output. This output is applied to a winding (not shown) of the motor 15. This application activates the motor 15.
 また、モータ駆動部14は、車両1の減速時には、モータ15で走行エネルギーを回生してエンジンブレーキ相当のフィーリングを実現すると共に回生した走行エネルギーに基づいてバッテリ電源(図示省略)を充電する回生制御を実行する。 Further, when the vehicle 1 decelerates, the motor drive unit 14 regenerates travel energy by the motor 15 to realize a feeling equivalent to engine braking, and regenerates a battery power source (not shown) based on the regenerated travel energy. Execute control.
 モータ15は、既述の巻線に対する印加によって作動し、後輪6a,6bが設けられた回転軸(図示省略)を回転させる。これにより、後輪6a,6bが回転して車両1を走行させる。 The motor 15 is actuated by application to the winding described above, and rotates a rotating shaft (not shown) provided with the rear wheels 6a and 6b. As a result, the rear wheels 6a and 6b rotate to cause the vehicle 1 to travel.
 報知部16は、ドライバに対して、メッセージ等を表示する表示部(図示省略)と音声を出力する出力部(図示省略)とを備えている。報知部16への表示及び出力は、エンジンECU11の指令に基づいて行われる。報知部16に表示される内容は、例えば、ドライバに対する走行速度に関するメッセージである。また、報知部16から出力される内容は、ドライバに対する注意・喚起を促す音である。例えば、メッセージが報知部16に表示されたことやブレーキランプ3a,3bが点灯したこと(エンジンブレーキ作動中であること)を音(又は音声)によりドライバに報知する。 The alerting | reporting part 16 is provided with the display part (illustration omitted) which displays a message etc. with respect to a driver, and the output part (illustration omitted) which outputs an audio | voice. The display and output to the notification unit 16 are performed based on a command from the engine ECU 11. The content displayed on the notification unit 16 is, for example, a message regarding the traveling speed for the driver. Moreover, the content output from the alerting | reporting part 16 is a sound which urges attention and alerting with respect to a driver. For example, the driver is notified by sound (or voice) that the message is displayed on the notification unit 16 and that the brake lamps 3a and 3b are lit (the engine brake is operating).
 ブレーキランプ制御部17は、エンジンECU11の指令に基づいて、ブレーキランプ3a,3bを点灯/消灯する制御を行う。例えば、各ブレーキランプ3a,3bとブレーキランプ制御部17との間にスイッチをそれぞれ設け、ブレーキランプ制御部17は、各ブレーキランプ3a,3bを点灯させる指令をエンジンECU11から受け取ったときはスイッチをONにし、各ブレーキランプ3a,3bを消灯させる指令をエンジンECU11から受け取ったときはスイッチをOFFにする。これにより、ブレーキランプ3a,3bの点灯/消灯が行われる。 The brake lamp control unit 17 performs control to turn on / off the brake lamps 3a and 3b based on a command from the engine ECU 11. For example, a switch is provided between each brake lamp 3a, 3b and the brake lamp control unit 17, and the brake lamp control unit 17 switches the switch when receiving an instruction from the engine ECU 11 to turn on each brake lamp 3a, 3b. When a command to turn off the brake lamps 3a and 3b is received from the engine ECU 11, the switch is turned off. As a result, the brake lamps 3a and 3b are turned on / off.
 次に、エンジンECU11が減速時にブレーキランプ3a,3bを点灯/消灯させるブレーキランプ点灯/消灯制御の一例については図6を参照して詳細に説明する。図6は、エンジンECU11が実行するブレーキランプ点灯/消灯制御の一例を示すフローチャートである。 Next, an example of brake lamp on / off control in which the engine ECU 11 turns on / off the brake lamps 3a, 3b during deceleration will be described in detail with reference to FIG. FIG. 6 is a flowchart illustrating an example of brake lamp lighting / extinguishing control executed by the engine ECU 11.
 図6に示すように、エンジンECU11は、車両1が走行しているときに、路車間通信装置R1を検出したか否かを判断する(ST101)。この判断は、例えば、路車間通信装置R1により車両1が感知されたときに、路車間通信装置R1と路車間通信部10とで通信が行われるので、該通信が行われたか否かに基づいて判断すれば良い。エンジンECU11が路車間通信装置R1を検出していないと判断した場合(ST101:NO)、処理はステップST101の処理に戻る。 As shown in FIG. 6, the engine ECU 11 determines whether or not the road-to-vehicle communication device R1 has been detected when the vehicle 1 is traveling (ST101). This determination is based on whether or not the communication is performed because the communication is performed between the road-vehicle communication device R1 and the road-vehicle communication unit 10 when the vehicle 1 is detected by the road-vehicle communication device R1, for example. You can judge. When engine ECU 11 determines that road-to-vehicle communication device R1 has not been detected (ST101: NO), the process returns to the process of step ST101.
 一方、エンジンECU11が路車間通信装置R1を検出したと判断した場合(ST101:YES)、エンジンECU11は、路車間通信部10を介して路車間通信装置R1から信号情報(参照:図2,図3)を取得する(ST102)。 On the other hand, when the engine ECU 11 determines that the road-to-vehicle communication device R1 has been detected (ST101: YES), the engine ECU 11 receives signal information from the road-to-vehicle communication device R1 via the road-to-vehicle communication unit 10 (see: FIG. 2 and FIG. 2). 3) is acquired (ST102).
 次に、エンジンECU11は、車両1の走行速度を検出する(ST103:走行速度検出手段)。本実施形態においては、エンジンECU11は、車速センサ12から入力される回転軸の回転速度情報に基づいて車両1の走行速度を検出する。 Next, the engine ECU 11 detects the travel speed of the vehicle 1 (ST103: travel speed detection means). In the present embodiment, the engine ECU 11 detects the traveling speed of the vehicle 1 based on the rotational speed information of the rotating shaft input from the vehicle speed sensor 12.
 次に、エンジンECU11は、信号情報に基づいて、次の信号機通過時の信号の灯色を判断する(ST104)。より詳細に説明する。車両1の現在の位置が、例えば、基準位置P0である場合、車両1が通過する次の信号機は位置P1の信号機S1である(参照:図1)。このとき、エンジンECU11は、ステップST103で検出した車両1の走行速度、基準位置P0から位置P1までの距離X1、及び各灯色の各々の点灯時間のサイクルに基づいて、現在の走行速度で車両1が距離X1に到達したときに、信号機S1の信号が何色であるかを判断する。 Next, the engine ECU 11 determines the color of the signal when the next traffic signal passes based on the signal information (ST104). This will be described in more detail. When the current position of the vehicle 1 is, for example, the reference position P0, the next traffic light that the vehicle 1 passes through is the traffic light S1 at the position P1 (see FIG. 1). At this time, the engine ECU 11 determines the vehicle at the current traveling speed based on the traveling speed of the vehicle 1 detected in step ST103, the distance X1 from the reference position P0 to the position P1, and the lighting time cycle of each lamp color. When 1 reaches the distance X1, it is determined what color the signal of the traffic light S1 is.
 次に、エンジンECU11は、走行速度に関するメッセージを報知部16に報知する。 Next, the engine ECU 11 notifies the notification unit 16 of a message regarding the traveling speed.
 次に、エンジンECU11は、走行速度を所定速度低下させるために回生ブレーキによる減速が必要か否か、言い換えれば、回生ブレーキによる減速によって前方の信号機が青色である時間内に当該信号機を通過することができるか否かを判断する(ST106)。なお、このとき、エンジンECU11は、アクセルポジションセンサ13から入力されるアクセル開度が0(つまり、アクセルペダルが踏み込まれていない)こと等を確認する。これにより、ドライバの意図に反した回生ブレーキ制御が行われることを防止することができる。 Next, the engine ECU 11 determines whether or not deceleration by the regenerative brake is necessary to reduce the traveling speed by a predetermined speed, in other words, the traffic signal ahead passes through the traffic signal within the time when the traffic light is blue due to the deceleration by the regenerative brake. It is determined whether or not it is possible (ST106). At this time, the engine ECU 11 confirms that the accelerator opening input from the accelerator position sensor 13 is 0 (that is, the accelerator pedal is not depressed) or the like. As a result, it is possible to prevent regenerative brake control from being performed against the driver's intention.
 回生ブレーキが必要であると判断した場合、言い換えれば、回生ブレーキによる減速によって前方の信号機が青色である時間内に当該信号機を通過することができないと判断した場合(ST106:YES)、エンジンECU11は、ステップST102で取得する信号情報、及びステップST103で検出する走行速度に基づいて減速時の減速度を検出する(ST107:減速度検出手段)。 When it is determined that the regenerative brake is necessary, in other words, when it is determined that the traffic signal ahead cannot pass through the blue traffic light by the deceleration by the regenerative brake (ST106: YES), the engine ECU 11 Based on the signal information acquired in step ST102 and the travel speed detected in step ST103, the deceleration at the time of deceleration is detected (ST107: deceleration detection means).
 次に、エンジンECU11は、減速度が第1の閾値より小さいか否かを判断する(ST108)。減速度が第1の閾値より小さいと判断した場合(ST108:YES)、エンジンECU11は、ブレーキランプ3a,3bを点灯させる閾値を第1の閾値から第2の閾値に変更する(ST109:閾値変更手段)。なお、減速度が第1の閾値より小さくないと判断した場合(ST108:NO)、処理は、ステップST106に戻る。 Next, the engine ECU 11 determines whether the deceleration is smaller than the first threshold value (ST108). When it is determined that the deceleration is smaller than the first threshold value (ST108: YES), the engine ECU 11 changes the threshold value for turning on the brake lamps 3a and 3b from the first threshold value to the second threshold value (ST109: threshold value change). means). If it is determined that the deceleration is not smaller than the first threshold (ST108: NO), the process returns to step ST106.
 また、ステップST106において、回生ブレーキによる減速が必要でないと判断した場合(ST106:NO)、又は第1の閾値から第2の閾値に変更する処理(ST109)が終了した場合、エンジンECU11は、ステップST102で取得する信号情報、及びステップST103で検出する走行速度に基づいて減速時の減速度を検出する(ST110)。 When it is determined in step ST106 that deceleration by regenerative braking is not necessary (ST106: NO), or when the process of changing from the first threshold value to the second threshold value (ST109) ends, the engine ECU 11 performs step Based on the signal information acquired in ST102 and the travel speed detected in step ST103, the deceleration at the time of deceleration is detected (ST110).
 次に、エンジンECU11は、検出した減速度が閾値より小さいか否かを判断する(ST111)。このときの閾値は、ステップST109の処理が実行されている場合は、第2の閾値(<第1の閾値)であり、ステップST109の処理が実行されていない場合は、第1の閾値である。 Next, the engine ECU 11 determines whether or not the detected deceleration is smaller than a threshold value (ST111). The threshold value at this time is the second threshold value (<first threshold value) when the process of step ST109 is executed, and is the first threshold value when the process of step ST109 is not executed. .
 閾値より小さいと判断した場合(ST111:YES)、エンジンECU11は、第2の閾値が設定されているか否かを判断する(ST112)。エンジンECU11は、メモリ23設定されている第1の閾値、第2の閾値のいずれを閾値として採用しているかに基づいて判断する。 If it is determined that it is smaller than the threshold (ST111: YES), the engine ECU 11 determines whether or not the second threshold is set (ST112). The engine ECU 11 makes a determination based on which of the first threshold value and the second threshold value set in the memory 23 is adopted as the threshold value.
 第2の閾値が設定されていると判断した場合(ST112:YES)、エンジンECU11は、次の信号機の信号の灯色が、現在青色であるか否かを判断する(ST113)。この判断は、ステップST104の灯色を判断する処理と同様に行われる。 If it is determined that the second threshold value is set (ST112: YES), the engine ECU 11 determines whether or not the light color of the signal of the next traffic light is currently blue (ST113). This determination is performed in the same manner as the process of determining the lamp color in step ST104.
 現在の次の信号機の信号の灯色が青色であると判断した場合(ST113:YES)、エンジンECU11は、ブレーキランプ3a,3bを点灯させる(ST114)。具体的には、エンジンECU11は、ブレーキランプ制御部17に対して、スイッチをONするように指令を出力する。これにより、ブレーキランプ制御部17がスイッチをONすることにより、ブレーキランプ3a,3bが点灯する。なお、閾値より小さくないと判断した場合(ST111:NO)、又は、現在の次の信号機の信号の灯色が青色以外の色である、つまり、赤色又は黄色である場合は(ST113:NO)、ステップST114の処理は実行されない。つまり、エンジンECU11は、ブレーキランプ3a,3bの点灯を行わずに、次のステップST115の処理を実行する。 If it is determined that the signal color of the current next traffic light is blue (ST113: YES), the engine ECU 11 turns on the brake lamps 3a and 3b (ST114). Specifically, the engine ECU 11 outputs a command to the brake lamp control unit 17 to turn on the switch. Accordingly, the brake lamps 3a and 3b are turned on when the brake lamp control unit 17 turns on the switch. When it is determined that the signal is not smaller than the threshold value (ST111: NO), or when the current signal color of the next traffic light is a color other than blue, that is, red or yellow (ST113: NO). The process of step ST114 is not executed. That is, the engine ECU 11 executes the process of the next step ST115 without turning on the brake lamps 3a and 3b.
 次に、エンジンECU11は、信号機を通過したか否かを判断する(ST115)。エンジンECU11は、車速センサ12から入力される回転速度情報に基づいて基準位置P0又は前回通過した信号機からの移動距離を算出し、そして、この算出した距離と、信号位置情報T2に含まれる距離(X1~X5の対応する距離)とに基づいて、信号機を通過したか否かを判断する。 Next, the engine ECU 11 determines whether or not it has passed the traffic light (ST115). The engine ECU 11 calculates a movement distance from the reference position P0 or the traffic signal that has passed the previous time based on the rotational speed information input from the vehicle speed sensor 12, and the calculated distance and the distance included in the signal position information T2 ( Based on the distances corresponding to X1 to X5, it is determined whether or not the signal has passed.
 信号機を通過していないと判断した場合(ST115:NO)、処理はステップST108の減速度を算出する処理に戻る。そして、既述のステップST110からST115の処理が繰り返される。 If it is determined that the vehicle has not passed the traffic light (ST115: NO), the process returns to the process of calculating the deceleration in step ST108. Then, the above-described steps ST110 to ST115 are repeated.
 一方、信号機を通過したと判断した場合(ST115:YES)、エンジンECU11はブレーキランプ3a,3bを消灯させる(ST116)。具体的には、エンジンECU11は、ブレーキランプ制御部17に対して、スイッチをOFFするように指令を出力する。これにより、ブレーキランプ制御部17がスイッチをOFFすることによって、ブレーキランプ3a,3bが消灯する。 On the other hand, if it is determined that the signal has passed (ST115: YES), the engine ECU 11 turns off the brake lamps 3a and 3b (ST116). Specifically, the engine ECU 11 outputs a command to the brake lamp control unit 17 to turn off the switch. Accordingly, the brake lamp control unit 17 turns off the switch, so that the brake lamps 3a and 3b are turned off.
 次に、エンジンECU11は、ブレーキランプ3a,3bを点灯させる閾値を第2の閾値から第1の閾値に変更する(ST117)。より詳細には、エンジンECU11は、ブレーキランプ3a,3bを点灯させる閾値を第2の閾値設定部22に設定される第2の閾値から第1の閾値設定部21に設定される第1の閾値に変更する。なお、閾値として第1の閾値が設定されている場合は、ステップST117の処理はパスされる。 Next, the engine ECU 11 changes the threshold value for turning on the brake lamps 3a and 3b from the second threshold value to the first threshold value (ST117). More specifically, the engine ECU 11 sets the threshold value for turning on the brake lamps 3 a and 3 b from the second threshold value set in the second threshold value setting unit 22 to the first threshold value setting unit 21. Change to If the first threshold is set as the threshold, the process of step ST117 is passed.
 次に、エンジンECU11は、区間が終了したか否かを判断する(ST118)。例えば、エンジンECU11は、車速センサ12から入力される回転速度情報に基づいて基準位置P0からの車両1の移動距離を算出し、この算出した距離が区間終了距離(X1+X2+X3+X4+X5)に到達したか否かに基づいて、区間の走行を終了したか否かを判断する。 Next, the engine ECU 11 determines whether or not the section has ended (ST118). For example, the engine ECU 11 calculates the movement distance of the vehicle 1 from the reference position P0 based on the rotational speed information input from the vehicle speed sensor 12, and the calculated distance is the section end distance (X1 + X2 + X3 + X4 +). Based on whether or not X5) is reached, it is determined whether or not traveling in the section has ended.
 エンジンECU11が、区間が終了していないと判断した場合(ST118:NO)、処理はステップST103に戻る。そして、既述のステップST103からST118の処理が繰り返されることにより、次の信号機に対するブレーキランプ点灯/消灯制御が実行される。 If the engine ECU 11 determines that the section has not ended (ST118: NO), the process returns to step ST103. Then, by repeating the above-described steps ST103 to ST118, the brake lamp lighting / extinguishing control for the next traffic light is executed.
 また、区間が終了したと判断した場合(ST118:YES)、エンジンECU11は、この処理を終了する。なお、区間終了位置に新たな路車間通信装置が配置されている場合には、新たな路車間通信装置の下側通過時に、この路車間通信装置から信号情報を取得するため、その信号情報に基づいて、新たな区間に対して、既述のステップST101からST118の処理が繰り返される。 If it is determined that the section has ended (ST118: YES), the engine ECU 11 ends this process. In addition, when a new road-to-vehicle communication device is arranged at the end of the section, in order to acquire signal information from this road-to-vehicle communication device when passing under the new road-to-vehicle communication device, the signal information Based on this, the above-described steps ST101 to ST118 are repeated for the new section.
 次に、本実施形態の作用の一例について説明する。図7は、該作用の一例を説明するための模式図である。なお、図7においては、説明を容易にするため信号機S1の信号灯色面を車両1の進行方向の対向面から紙面上側を向く位置に変更している。また、ブレーキランプ3a,3bを点灯させる閾値について、第1の閾値を20km/s、第2の閾値を5km/sとした場合で説明する。 Next, an example of the operation of this embodiment will be described. FIG. 7 is a schematic diagram for explaining an example of the action. In FIG. 7, the signal lamp color surface of the traffic light S <b> 1 is changed from the facing surface in the traveling direction of the vehicle 1 to the position facing the upper side of the drawing for easy explanation. Further, the threshold values for turning on the brake lamps 3a and 3b will be described in the case where the first threshold value is 20 km / s and the second threshold value is 5 km / s.
 図7(a)は、車両1が信号機S1に向かって道路Rを走行しており、信号情報を取得する基準位置P0に位置しているときを示している。このとき信号機S1の信号の灯色は、青色になっている。 FIG. 7A shows the time when the vehicle 1 is traveling on the road R toward the traffic light S1 and is located at the reference position P0 where signal information is acquired. At this time, the signal color of the traffic light S1 is blue.
 図7(b)は、車両1が信号機S1到達時の灯色を予測(算出)した状態を示しており、このとき、信号機S1の信号の灯色は、赤色を示している。 FIG. 7 (b) shows a state in which the vehicle 1 predicts (calculates) the lamp color when the traffic signal S1 arrives, and at this time, the lamp color of the signal of the traffic signal S1 indicates red.
 このため、信号機S1で停車せずに通過するには、車両1の走行速度を上昇させるか、又は、走行速度を低下させる必要がある。ここでは、車両1の走行速度を低下させることによって、車両1が信号機S1を次のタイミングの青色で通過できる場合を説明する。 Therefore, in order to pass without stopping at the traffic light S1, it is necessary to increase the traveling speed of the vehicle 1 or decrease the traveling speed. Here, the case where the vehicle 1 can pass the traffic light S1 in blue at the next timing by reducing the traveling speed of the vehicle 1 will be described.
 この場合、基準位置P0(図7(a))において、車両1の報知部16に走行速度低下メッセージが報知される。この報知された内容に基づいて、回生ブレーキが作動を開始し、車両1が減速を開始する。 In this case, the traveling speed reduction message is notified to the notification unit 16 of the vehicle 1 at the reference position P0 (FIG. 7A). Based on the notified content, the regenerative brake starts to operate, and the vehicle 1 starts to decelerate.
 図7(c)は、従来における、ブレーキランプ3a,3bの点灯開始位置を示している。従来においては、ブレーキランプ3a,3bを点灯させる閾値が第1の閾値(20km/s)のみである。このため、同(c)に示すように、車両7の減速度が20km/sになったときにブレーキランプ3a,3bが点灯する。この場合、前方の信号機S1が青色であるため速度を上げて走行するが、直前で赤色に変わって大きく減速する場合に初めてブレーキランプ3a,3bが点灯する。その結果、無駄な加速が発生し、エンジン負荷が大きくなる可能性が高い。 FIG. 7 (c) shows a conventional lighting start position of the brake lamps 3a and 3b. Conventionally, the threshold value for turning on the brake lamps 3a and 3b is only the first threshold value (20 km / s). For this reason, as shown in (c), the brake lamps 3a and 3b are turned on when the deceleration of the vehicle 7 reaches 20 km / s. In this case, the front traffic light S1 is blue, so the vehicle travels at a higher speed. However, the brake lamps 3a and 3b are turned on only when the vehicle turns red immediately before decelerating greatly. As a result, useless acceleration occurs and the engine load is likely to increase.
 これに対して、図7(d)は、本発明の実施形態における、ブレーキランプ3a,3bの点灯開始位置を示している。既述したように、信号機S1通過時の信号の灯色が赤色であると判断されたため、ブレーキランプ点灯開始の閾値が第2の閾値(5km/s)に設定されている。さらに、現在の信号機S1の信号の灯色は青色である。したがって、同(d)に示すように、減速度が第2の閾値(5km/s)になったときにブレーキランプ3a,3bが点灯するため、第1の閾値(20km/s)が設定されている場合(従来)よりも早くブレーキランプ3a,3bを点灯させることができる。 On the other hand, FIG. 7 (d) shows the lighting start positions of the brake lamps 3a and 3b in the embodiment of the present invention. As described above, since it is determined that the light color of the signal when passing through the traffic light S1 is red, the threshold value for starting the brake lamp lighting is set to the second threshold value (5 km / s). Further, the signal color of the current traffic light S1 is blue. Accordingly, as shown in (d), since the brake lamps 3a and 3b are turned on when the deceleration reaches the second threshold value (5 km / s), the first threshold value (20 km / s) is set. The brake lamps 3a and 3b can be turned on earlier than the conventional case.
 また、信号機S1の灯色は青色であるため、後行車両8のドライバは、先行車両である車両1の減速を予測することが難しい。このような状況において、車両1は、ブレーキランプ3a,3bを早期に点灯させることができる。 Also, since the light color of the traffic light S1 is blue, it is difficult for the driver of the following vehicle 8 to predict the deceleration of the vehicle 1 that is the preceding vehicle. In such a situation, the vehicle 1 can turn on the brake lamps 3a and 3b early.
 図8は、本発明を説明するためのイメージ図である。図8(a)は、従来技術の制御(信号情報の活用なし)のブレーキランプ3a,3bの点灯制御のイメージ図であり、図8(b)は本発明の実施形態におけるブレーキランプ3a,3bの点灯制御(信号情報の活用あり)のイメージ図である。 FIG. 8 is an image diagram for explaining the present invention. FIG. 8A is an image diagram of lighting control of the brake lamps 3a and 3b in the conventional control (without using signal information), and FIG. 8B is a diagram of the brake lamps 3a and 3b in the embodiment of the present invention. It is an image figure of lighting control (with utilization of signal information).
 エンジンECU11が前方の信号機の灯色は青色だが、わずかな時間で赤色に変化すると判断すると、車両1を減速させ、余分な加速を抑制する。このとき、図8(a)に示す従来技術の制御によると、減速度が小さければ、ブレーキランプ3a,3bは点灯しない。しかし、前方の信号機の灯色が青色なので、後行車両は速度を落とさずに走行するので、衝突の可能性が生じる。 When the engine ECU 11 determines that the traffic light in front is blue, but changes to red in a short time, the vehicle 1 is decelerated and the excess acceleration is suppressed. At this time, according to the control of the prior art shown in FIG. 8A, if the deceleration is small, the brake lamps 3a and 3b are not lit. However, since the light color of the traffic light in front is blue, the following vehicle travels without reducing the speed, so that there is a possibility of a collision.
 これに対して、図8(b)に示す実施形態による制御によると既述の状況でブレーキランプ3a,3bを点灯させる閾値を第1の閾値から第2の閾値に変更することができるため、減速度が小さくても早期にブレーキランプ3a,3bを点灯させることができる。具体的には、既述の状況において、現在の減速度が10km/sである場合に、従来技術であればブレーキランプ3a,3bが点灯しないが(参照:図8(a))、本発明であれば、ブレーキランプ3a,3bの点灯閾値が第2の閾値(5km/s)に変更されているため、ブレーキランプ3a,3bを点灯させることができる(参照:図8(b))。このように、エンジンECU11は、後行車両との衝突を容易に回避することができる。 On the other hand, according to the control according to the embodiment shown in FIG. 8B, the threshold value for turning on the brake lamps 3a and 3b in the above-described situation can be changed from the first threshold value to the second threshold value. Even if the deceleration is small, the brake lamps 3a and 3b can be turned on early. Specifically, in the situation described above, when the current deceleration is 10 km / s, the brake lamps 3a and 3b are not lit in the conventional technique (see: FIG. 8A), but the present invention. Then, since the lighting threshold value of the brake lamps 3a and 3b has been changed to the second threshold value (5 km / s), the brake lamps 3a and 3b can be turned on (see: FIG. 8B). Thus, the engine ECU 11 can easily avoid a collision with the following vehicle.
 以上のように説明した車両1の車両用運転制御装置によると、車速センサ12から入力される回転速度情報から算出される走行速度、及び路車間通信装置R1から取得する信号情報に基づいて、前方の信号機が青色である時間内に当該信号機を通過することができないと判断された際に、ブレーキランプ3a,3bを点灯させる閾値を第1の閾値から第2の閾値(<第1の閾値)に変更することができる。このため、車両1は、信号情報を利用した減速制御が行われるときに、信号機の灯色に応じてブレーキランプ3a,3bの点灯/消灯を適切に制御することができ、後行車両のドライバは先行車両が減速していることに気付かず、先行車両と後行車両とが衝突するという事態を防止することができる。 According to the vehicle driving control device for the vehicle 1 described above, based on the traveling speed calculated from the rotational speed information input from the vehicle speed sensor 12 and the signal information acquired from the road-vehicle communication device R1, When it is determined that the traffic light cannot be passed within the time when the traffic light is blue, the threshold value for turning on the brake lamps 3a and 3b is changed from the first threshold value to the second threshold value (<first threshold value). Can be changed. For this reason, when deceleration control using signal information is performed, the vehicle 1 can appropriately control turning on / off of the brake lamps 3a and 3b according to the color of the traffic light, and the driver of the following vehicle Does not realize that the preceding vehicle is decelerating, and can prevent a situation in which the preceding vehicle and the following vehicle collide.
 また、第1の閾値から第2の閾値(<第1の閾値)に変更し、減速度が第2の閾値より小さくなった後、次の信号機の信号の灯色が青色である場合に、ブレーキランプを3a,3bを点灯するので、後行車両のドライバが先行車両の減速を想定し難い状況において、エンジンECU11は、ブレーキランプ3a,3bを点灯させることができる。また、次の信号機の灯色が赤色を示すときは、後行車両のドライバは、先行車両が減速することを想定し易い状況であり、このような状況ではブレーキランプ3a,3bを点灯しないため、余分なブレーキランプ3a,3bの点灯制御を回避することができる。 In addition, after changing from the first threshold value to the second threshold value (<first threshold value) and the deceleration becomes smaller than the second threshold value, the signal color of the next traffic light is blue, Since the brake lamps 3a and 3b are turned on, the engine ECU 11 can turn on the brake lamps 3a and 3b in a situation where it is difficult for the driver of the following vehicle to decelerate the preceding vehicle. When the next traffic light is red, the driver of the following vehicle is likely to assume that the preceding vehicle is decelerating. In such a situation, the brake lamps 3a and 3b are not turned on. The lighting control of the extra brake lamps 3a and 3b can be avoided.
 さらに、車両用運転制御装置は、車両1の余分な加速を控えて燃費向上を図ることができ、後続車両との衝突も効果的に抑制することができる。 Furthermore, the vehicular driving control device can improve fuel efficiency by avoiding excessive acceleration of the vehicle 1, and can effectively suppress a collision with the following vehicle.
 また、上記実施の形態では、第2の閾値設定部22に設定される第2の閾値が一定の値である場合を説明したがこれに限るものではない。例えば、第2の閾値を、車両1の走行速度、及び車両1の位置から次の信号機までの距離に応じて変更するようにしても良い。 In the above embodiment, the case where the second threshold value set in the second threshold value setting unit 22 is a constant value has been described. However, the present invention is not limited to this. For example, the second threshold value may be changed according to the traveling speed of the vehicle 1 and the distance from the position of the vehicle 1 to the next traffic light.
 図9は第2の閾値を採用する範囲の一例及び第2の閾値マップ(管理部)の一例を示す図である。なお、第2の閾値マップは例えばエンジンECU11内のメモリ23に設けられる。 FIG. 9 is a diagram illustrating an example of a range in which the second threshold is employed and an example of a second threshold map (management unit). Note that the second threshold map is provided in the memory 23 in the engine ECU 11, for example.
 図9においては、縦軸が車両1の減速度、横軸が信号機の位置から次の信号機までの距離を示している。図9に示すように、第2の閾値は、所定の信号機(交差点)の位置から例えば30m(信号情報を利用した支援を行う範囲の下限)の位置から500m(信号情報を利用した支援を行う範囲の上限)の位置まで採用される。つまり、信号機の位置から500mを超えたところでは、第1の閾値が採用される。 In FIG. 9, the vertical axis indicates the deceleration of the vehicle 1, and the horizontal axis indicates the distance from the position of the traffic signal to the next traffic signal. As shown in FIG. 9, the second threshold value is 500 m from the position of a predetermined traffic light (intersection), for example, 30 m (lower limit of the range in which assistance using signal information is performed) (support using signal information is performed). It is adopted up to the position of the upper limit of the range. In other words, the first threshold value is adopted at a place exceeding 500 m from the position of the traffic light.
 また、第2の閾値は、第2の閾値マップに基づいて変化するようになっている。より詳細には、図9に示すように、第2閾値は、車両1の走行速度が大きいほど小さく設定され、信号機までの距離が短いほど小さく設定されるマップになっている。なお、図10は、信号機までの距離が200m、100m、50mである場合における、車両1の走行速度と、第1の閾値と、第2の閾値との関係を具体的に示した一例W1を示している。 In addition, the second threshold value is changed based on the second threshold map. More specifically, as shown in FIG. 9, the second threshold is a map that is set to be smaller as the traveling speed of the vehicle 1 is larger, and is set to be smaller as the distance to the traffic light is shorter. FIG. 10 shows an example W1 that specifically shows the relationship between the traveling speed of the vehicle 1, the first threshold value, and the second threshold value when the distance to the traffic light is 200 m, 100 m, and 50 m. Show.
 この場合、エンジンECU11は、第2の閾値を設定するときに(参照:ステップST109)、走行速度を算出すると共に車両1の位置から次の信号機までの距離を算出し、図9に示す第2の閾値マップから、第2の閾値を決定し、この決定した第2の閾値に基づいてブレーキランプ3a,3bの点灯を制御する。 In this case, when setting the second threshold value (see step ST109), the engine ECU 11 calculates the travel speed and the distance from the position of the vehicle 1 to the next traffic light. The second threshold value is determined from the threshold value map, and lighting of the brake lamps 3a and 3b is controlled based on the determined second threshold value.
 このように第2の閾値を第2の閾値マップに応じて決定する構成にすると、車両1は、走行速度、及び次の信号機までの距離に応じてより適切なタイミングでブレーキランプ3a,3bを点灯することが可能になる。これにより、後行車両との防止効果をさらに高めることが可能になる。 When the second threshold value is determined according to the second threshold map in this way, the vehicle 1 turns on the brake lamps 3a and 3b at a more appropriate timing according to the traveling speed and the distance to the next traffic light. It becomes possible to light up. Thereby, it becomes possible to further enhance the prevention effect with respect to the following vehicle.
 また、第2閾値は、車両1の走行速度が大きいほど小さく設定される。通常、車両1の走行速度が大きいほど、これに追従して後続車両の走行速度も大きい可能性が高く、こうした場合に先行車両が急にアクセルを緩めた際には衝突する可能性が高くなる。このため、ブレーキランプ3a,3bが点灯する第2の閾値をより小さくしておけば、車両1の速度低減を早期に後続車両に通知することが可能となり、衝突危険性の低減を図ることができる。 Further, the second threshold value is set to be smaller as the traveling speed of the vehicle 1 is larger. In general, the higher the traveling speed of the vehicle 1, the higher the possibility that the following vehicle will follow the traveling speed. In such a case, when the preceding vehicle suddenly loosens the accelerator, the possibility of a collision increases. . Therefore, if the second threshold value at which the brake lamps 3a and 3b are turned on is made smaller, it is possible to notify the subsequent vehicle of the speed reduction of the vehicle 1 at an early stage, thereby reducing the risk of collision. it can.
 さらに、第2閾値は、信号機までの距離が短いほど小さく設定される。前方の信号機が青色(あと僅かで赤色に変わる)であって、車両1が所定の信号機に接近している状態では、通常、車両1は速度を緩めることなく青信号の間に信号機を通過しようとして減速することなく走行を続ける。こうした場合に車両1が急にアクセルを緩めて減速した際には後続車両と衝突する可能性が高くなる。このため、ブレーキランプ3a,3bが点灯する第2の閾値をより小さくしておけば、車両1の速度低減を早期に後続車両に通知することが可能となり、衝突危険性の低減を図ることができる。 Furthermore, the second threshold is set smaller as the distance to the traffic light is shorter. When the traffic light ahead is blue (slightly turns red afterwards) and the vehicle 1 is approaching a predetermined traffic light, the vehicle 1 usually tries to pass the traffic light during the green light without slowing down. Continue running without slowing down. In such a case, when the vehicle 1 suddenly loosens the accelerator and decelerates, the possibility of collision with the following vehicle increases. Therefore, if the second threshold value at which the brake lamps 3a and 3b are turned on is made smaller, it is possible to notify the subsequent vehicle of the speed reduction of the vehicle 1 at an early stage, thereby reducing the risk of collision. it can.
 さらに、上記実施の形態では、車両1が回生ブレーキを用いて減速する場合、且つ、減速度が第2の閾値より小さくなったときにブレーキランプ3a,3bを点灯させる制御について説明したが、これに限るものではない。例えば、ブレーキランプ3a,3bを点灯させる閾値を第1の閾値から第2の閾値に変更した場合(参照:ステップST109)、減速度が第2の閾値以上になる前にブレーキランプ3a,3bを点灯させるようにしても良い。 Further, in the above embodiment, the control for turning on the brake lamps 3a and 3b when the vehicle 1 decelerates using the regenerative brake and the deceleration becomes smaller than the second threshold has been described. It is not limited to. For example, when the threshold value for turning on the brake lamps 3a and 3b is changed from the first threshold value to the second threshold value (see step ST109), the brake lamps 3a and 3b are turned on before the deceleration exceeds the second threshold value. You may make it light.
 例えば、メモリ23内に、閾値を第2の閾値に変更した時刻から減速度が第2の閾値以上になるまでの時間を予測する予測時間マップを設け、この予測時間マップに基づいて減速度が第2の閾値以上になる時刻(第1の時刻)を予想し、その予想した時刻より所定時間前(第2の時刻)からブレーキランプ3a,3bを点灯させるようにしても良い。このとき、第2の時刻から第1の時刻までの間は、例えば、ブレーキランプ3a,3bを点滅させることが望ましい。このように、減速度が第2の閾値以上になる前後でブレーキランプ3a,3bの表示方法を変更することにより、後行車両のドライバに車両1の減速度が大きくなる前に注意を喚起することが可能になる。 For example, a prediction time map is provided in the memory 23 for predicting the time from when the threshold is changed to the second threshold until the deceleration becomes equal to or greater than the second threshold, and the deceleration is based on the prediction time map. A time (first time) that is greater than or equal to the second threshold may be predicted, and the brake lamps 3a and 3b may be lit from a predetermined time (second time) before the predicted time. At this time, for example, it is desirable to blink the brake lamps 3a and 3b between the second time and the first time. In this way, by changing the display method of the brake lamps 3a and 3b before and after the deceleration becomes equal to or greater than the second threshold value, the driver of the following vehicle is alerted before the deceleration of the vehicle 1 increases. It becomes possible.
 なお、上記実施の形態では、車両1において、回生ブレーキを用いた減速制御時にブレーキランプ3a,3bを点灯させる場合について説明したがこれに限るものではない。車両1がいわゆるハイブリッド車両である場合には、回生ブレーキとエンジンブレーキを併用した場合についても本発明を適用することが可能である。 In addition, although the said embodiment demonstrated the case where the brake lamps 3a and 3b were lighted in the vehicle 1 at the time of deceleration control using a regenerative brake, it is not restricted to this. In the case where the vehicle 1 is a so-called hybrid vehicle, the present invention can be applied to a case where a regenerative brake and an engine brake are used in combination.
 また、上記実施の形態では、1区間に複数の信号機S1~信号機S5が設けられている場合を説明したが、これに限るものではない。例えば、路車間通信装置R1が各信号機に設けられており、各信号機を通過するごとに次の信号機までの信号情報を受信するように構成しても良い。つまり、1区間が所定の信号機とその次の信号機とになる場合である。このように構成すると、信号機を通過する毎に信号情報を受信することができるため、例えば次の信号機までの距離を算出する場合に、誤差を少なくすることができ、エンジンECU11は、さらに精度の高いブレーキランプ3a,3bの点灯/消灯制御を実行することが可能になる。 In the above embodiment, the case where a plurality of traffic lights S1 to S5 are provided in one section has been described, but the present invention is not limited to this. For example, the road-to-vehicle communication device R1 may be provided in each traffic signal, and may be configured to receive signal information up to the next traffic signal each time it passes through each traffic signal. That is, this is a case where one section becomes a predetermined traffic signal and the next traffic signal. With this configuration, signal information can be received every time the signal passes, so that, for example, when calculating the distance to the next signal, errors can be reduced, and the engine ECU 11 can be more accurate. It becomes possible to execute the lighting / extinguishing control of the high brake lamps 3a and 3b.
 この発明は、上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上述した実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、上述した実施の形態に示される全構成要素から幾つかの構成要素を削除しても良い。さらに、異なる実施形態の構成を組み合わせてもよい。 The present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, you may delete some components from all the components shown by embodiment mentioned above. Furthermore, you may combine the structure of different embodiment.
1,7,8…車両、2a,2b…ランプ部、3a,3b…ブレーキランプ、10…路車間通信部、11…エンジンECU、12…車速センサ、13…アクションポジションセンサ、14…モータ駆動部、15…モータ、16…報知部、17…ブレーキランプ制御部、21…第1の閾値設定部、22…第2の閾値設定部、23…メモリ、24…時計部、R…道路、R1…路車間通信装置、S1~S5…信号機、S11~S51…信号表示部、T1…信号サイクル情報、T2…信号位置情報、T0…基準時間、Tb,Ty,Tr…各色の灯色サイクル時間、P0…基準位置、P1~P5…信号機の位置、X1~X5…次の信号機までの距離 DESCRIPTION OF SYMBOLS 1, 7, 8 ... Vehicle, 2a, 2b ... Lamp part, 3a, 3b ... Brake lamp, 10 ... Road-to-vehicle communication part, 11 ... Engine ECU, 12 ... Vehicle speed sensor, 13 ... Action position sensor, 14 ... Motor drive part , 15 ... motor, 16 ... notification unit, 17 ... brake lamp control unit, 21 ... first threshold setting unit, 22 ... second threshold setting unit, 23 ... memory, 24 ... clock unit, R ... road, R1 ... Road-to-vehicle communication device, S1 to S5 ... traffic light, S11 to S51 ... signal display unit, T1 ... signal cycle information, T2 ... signal position information, T0 ... reference time, Tb, Ty, Tr ... lamp color cycle time of each color, P0 ... Reference position, P1 to P5 ... Signal position, X1 to X5 ... Distance to the next signal

Claims (4)

  1.  ブレーキランプと、
     減速時に減速度を算出し、算出した減速度が第1の閾値以上になったときに前記ブレーキランプを点灯する制御部と、
    を備える車両用運転制御装置であって、
     信号機の各灯色の各々の点灯時間のサイクルに関する信号サイクル情報、及び車両から信号機までの距離に関する信号位置情報を含む信号情報を取得する取得部を備え、
     前記制御部は、
     車両の走行速度を検出する走行速度検出手段と、
     前記走行速度、及び前記信号情報に基づいて、前方の信号機が青色である時間内に当該信号機を通過することができないと判断された場合における減速時の減速度を検出する減速度検出手段と、
     前記減速度検出手段で検出した減速度が前記第1の閾値よりも小さい場合に、前記第1の閾値を前記第1の閾値より小さい第2の閾値に変更する閾値変更手段と、
    を有することを特徴とする車両用運転制御装置。
    A brake lamp,
    A control unit that calculates deceleration when decelerating and turns on the brake lamp when the calculated deceleration exceeds a first threshold; and
    A vehicle driving control device comprising:
    An acquisition unit that acquires signal cycle information related to a cycle of each lighting time of each lamp color of the traffic light, and signal information including signal position information related to a distance from the vehicle to the traffic light;
    The controller is
    Traveling speed detection means for detecting the traveling speed of the vehicle;
    Deceleration detecting means for detecting deceleration at the time of deceleration when it is determined that the traffic signal ahead cannot pass through the traffic signal within the time when the traffic signal is blue based on the traveling speed and the signal information;
    Threshold changing means for changing the first threshold to a second threshold smaller than the first threshold when the deceleration detected by the deceleration detecting means is smaller than the first threshold;
    A vehicle driving control device comprising:
  2.  前記制御部は、
     前記走行速度、及び前記信号機までの距離に応じた閾値を管理する管理部を備え、
     前記制御部は、前記第2の閾値を前記管理部の管理する閾値に基づいて変更する、
    ことを特徴とする請求項1に記載の車両用運転制御装置。
    The controller is
    A management unit that manages a threshold according to the travel speed and the distance to the traffic light,
    The control unit changes the second threshold based on a threshold managed by the management unit.
    The vehicle operation control device according to claim 1.
  3.  前記第2閾値は、前記車両の走行速度が大きいほど小さく設定されることを特徴とする請求項1又は2に記載の車両用運転制御装置。 The vehicle operation control device according to claim 1 or 2, wherein the second threshold value is set to be smaller as the traveling speed of the vehicle is larger.
  4.  前記第2閾値は、前記信号機までの距離が短いほど小さく設定されることを特徴とする請求項1から3のいずれか一項に記載の車両用運転制御装置。 The vehicle operation control apparatus according to any one of claims 1 to 3, wherein the second threshold value is set to be smaller as the distance to the traffic light is shorter.
PCT/JP2016/058551 2015-05-29 2016-03-17 Drive control device for vehicle WO2016194439A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015109724A JP6237701B2 (en) 2015-05-29 2015-05-29 Vehicle operation control device
JP2015-109724 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016194439A1 true WO2016194439A1 (en) 2016-12-08

Family

ID=57442370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058551 WO2016194439A1 (en) 2015-05-29 2016-03-17 Drive control device for vehicle

Country Status (2)

Country Link
JP (1) JP6237701B2 (en)
WO (1) WO2016194439A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109697853A (en) * 2019-01-24 2019-04-30 黑河学院 A kind of artificial intelligence system for assisting driving
JP2019144852A (en) * 2018-02-21 2019-08-29 コイト電工株式会社 Optical beacon
CN110789451A (en) * 2018-08-02 2020-02-14 上海汽车集团股份有限公司 Method and system for interaction between vehicle and outside
WO2024012796A1 (en) * 2022-07-13 2024-01-18 Renault S.A.S. Method and system for controlling a hybrid motor vehicle according to traffic lights

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102486148B1 (en) 2018-02-20 2023-01-10 현대자동차주식회사 Vehicle, and control method for the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358935A (en) * 1991-06-03 1992-12-11 Honda Motor Co Ltd Speed reducing lamp driving control circuit
JP2004182148A (en) * 2002-12-05 2004-07-02 Toyota Motor Corp Brake lamp control device for vehicle
JP2006290008A (en) * 2005-04-05 2006-10-26 Ichikoh Ind Ltd Vehicular warning light device
JP2007153061A (en) * 2005-12-02 2007-06-21 Sumitomo Electric Ind Ltd Brake notifying system, brake notifying method and brake notifying processing program
JP2009140327A (en) * 2007-12-07 2009-06-25 Toyota Motor Corp Traveling support device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4066993B2 (en) * 2004-11-15 2008-03-26 住友電気工業株式会社 Safe speed providing method, speed control method, and in-vehicle device
JP4578449B2 (en) * 2006-09-06 2010-11-10 富士重工業株式会社 Preceding vehicle following travel control device
JP6238586B2 (en) * 2013-06-14 2017-11-29 株式会社クボタ Farm work vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358935A (en) * 1991-06-03 1992-12-11 Honda Motor Co Ltd Speed reducing lamp driving control circuit
JP2004182148A (en) * 2002-12-05 2004-07-02 Toyota Motor Corp Brake lamp control device for vehicle
JP2006290008A (en) * 2005-04-05 2006-10-26 Ichikoh Ind Ltd Vehicular warning light device
JP2007153061A (en) * 2005-12-02 2007-06-21 Sumitomo Electric Ind Ltd Brake notifying system, brake notifying method and brake notifying processing program
JP2009140327A (en) * 2007-12-07 2009-06-25 Toyota Motor Corp Traveling support device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019144852A (en) * 2018-02-21 2019-08-29 コイト電工株式会社 Optical beacon
CN110789451A (en) * 2018-08-02 2020-02-14 上海汽车集团股份有限公司 Method and system for interaction between vehicle and outside
CN109697853A (en) * 2019-01-24 2019-04-30 黑河学院 A kind of artificial intelligence system for assisting driving
WO2024012796A1 (en) * 2022-07-13 2024-01-18 Renault S.A.S. Method and system for controlling a hybrid motor vehicle according to traffic lights
FR3137993A1 (en) * 2022-07-13 2024-01-19 Renault S.A.S Method and system for controlling a hybrid motor vehicle based on traffic lights

Also Published As

Publication number Publication date
JP2016222095A (en) 2016-12-28
JP6237701B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
WO2016194439A1 (en) Drive control device for vehicle
JP2009277078A (en) Traffic control system
WO2019043916A1 (en) Vehicle, and control device and control method therefor
CN109849917B (en) Vehicle control method and system and vehicle
JP7435725B2 (en) Driving support device
WO2019073578A1 (en) Vehicle, and control device and control method therefor
JP6363821B2 (en) Idle stop control device
CN110371021B (en) Projection method and system of pedestrian indicating line and vehicle
KR20210075290A (en) Apparatus for controlling a vehicle and method thereof
JP4732371B2 (en) Perimeter monitoring device and perimeter monitoring method
JP2007168504A (en) Impact energy reducing device in rear-end collision of vehicle
JP2016222096A (en) Tracking-travel control apparatus
JP5657410B2 (en) Vehicle travel control device
JP2011022643A (en) Driving support device and driving support method
JP5984379B2 (en) Vehicle control device
JP3162338U (en) Car lighting equipment
JP4586779B2 (en) Driving assistance device
JP2013186684A (en) Traffic light system and signal information reception terminal
US20240010122A1 (en) Information processing apparatus, information processing method, program, and projection apparatus
JP3221891U (en) Communication system that senses and drives a car while driving
WO2020064012A1 (en) Control method and system for vehicles and vehicle
JP6278209B2 (en) Vehicle control device
JP7077974B2 (en) Driving support device
JP2014162366A (en) Vehicular stop lamp lighting control device
JP2019095928A (en) Travel support device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16802878

Country of ref document: EP

Kind code of ref document: A1