WO2016194097A1 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
WO2016194097A1
WO2016194097A1 PCT/JP2015/065722 JP2015065722W WO2016194097A1 WO 2016194097 A1 WO2016194097 A1 WO 2016194097A1 JP 2015065722 W JP2015065722 W JP 2015065722W WO 2016194097 A1 WO2016194097 A1 WO 2016194097A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
switching element
mounting surface
housing
resistor
Prior art date
Application number
PCT/JP2015/065722
Other languages
French (fr)
Japanese (ja)
Inventor
英俊 北中
良介 中川
宏和 高林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/065722 priority Critical patent/WO2016194097A1/en
Priority to JP2017521357A priority patent/JPWO2016194097A1/en
Publication of WO2016194097A1 publication Critical patent/WO2016194097A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • This invention relates to a power converter.
  • An electric power converter that supplies electric power to a main motor or an air conditioner that drives the vehicle is provided on the roof or under the floor of the electric railway vehicle.
  • the power conversion device includes a capacitor to which a DC voltage is applied, and converts the DC voltage applied to the capacitor into a desired AC voltage or DC voltage by performing a switching operation of the semiconductor element, and outputs the converted AC voltage. Since a voltage of several hundred volts to several thousand volts is applied to the capacitor, it is necessary to discharge the capacitor during maintenance and inspection of the power converter.
  • the power converter disclosed in Patent Document 1 is provided with a discharge switch and a discharge resistor for discharging a capacitor.
  • the capacitor In the method of discharging the capacitor by turning on the discharge switch when the power converter is stopped, the capacitor may not be discharged because the user forgets to turn on the discharge switch. In order to reliably discharge the capacitor, there are a method of automatically turning on the discharge switch when the power converter is stopped, or a method of always discharging the capacitor by providing a discharge resistor in parallel with the capacitor.
  • the method of automatically turning on the discharge switch requires a mechanism for automatically turning on the discharge switch, which complicates the configuration of the power conversion device.
  • the amount of heat generated by the discharge resistor becomes as large as several hundred W.
  • the discharge resistor needs to be provided and dissipated at a portion in contact with the outside air. Therefore, the discharge resistance is required to have a structure that can withstand wind and rain and a higher insulation performance.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to improve the safety of the power conversion device with a simpler configuration and to suppress the temperature rise inside the housing.
  • a power conversion device of the present invention includes a capacitor, a discharge resistor, and a power conversion unit inside a housing.
  • the power converter includes a cooling unit that constitutes a part of the outer surface of the housing.
  • a voltage is applied to the capacitor from an external power source.
  • the discharge resistor is connected in parallel with the capacitor to form a discharge circuit that always discharges the capacitor.
  • the power converter uses the voltage applied to the capacitor as the input voltage, converts the input voltage by the switching operation of the switching element, and outputs the converted voltage.
  • a cooling part is comprised by the member which is connected to each of a discharge resistance and a switching element in the insulated state, and has thermal conductivity more than a threshold value.
  • the safety of the power conversion device is improved with a simpler configuration by providing a cooling unit that constitutes a part of the outer surface of the housing and is connected to the discharge resistor and the switching element in an insulated state. It is possible to suppress the temperature rise inside the housing.
  • FIG. 1 is a block diagram showing a configuration example of a power conversion device according to an embodiment of the present invention.
  • the power conversion device 1 converts a capacitor 11 to which a voltage is applied from an external power source, a discharge resistor 12 that forms a discharge circuit that constantly discharges the capacitor 11, and a voltage applied to the capacitor 11 by a switching operation of a switching element.
  • a power conversion unit 13 for outputting.
  • the power conversion unit 13 is an inverter circuit, and includes switching elements 14a, 14b, 14c, 14d, 14e, and 14f.
  • the switching element 14 is a general term for the switching elements 14a, 14b, 14c, 14d, 14e, and 14f.
  • the configuration of the power conversion unit 13 is not limited to the example in FIG. 1, and the power conversion unit 13 may be a chopper circuit or a DC (Direct Current) -DC converter.
  • the switching element 14 is, for example, an IGBT (Insulated Gate Bipolar Transistor).
  • the switching element 14 is connected to the capacitor 11 and the output conductor.
  • the switching elements 14a and 14b connected in series, the switching elements 14c and 14d connected in series, and the switching elements 14e and 14f connected in series are connected in parallel to the capacitor 11, respectively.
  • Switching elements 14a and 14b are connected to a U-phase conductor, switching elements 14c and 14d are connected to a V-phase conductor, and switching elements 14e and 14f are connected to a W-phase conductor.
  • the on / off of the switching element 14 is switched by a control signal output from the control unit 15, and three-phase AC power is output to the electric motor 2.
  • the control unit 15 includes a processor including a CPU (Central Processing Unit) and an internal memory, and a memory including a RAM (Random Access Memory) and a flash memory.
  • the control unit 15 executes a control program stored in the memory, and controls the switching element.
  • the current from the capacitor 11 always flows through the discharge resistor 12, and the capacitor 11 is always discharged regardless of whether the power converter 1 is operating or stopped. By always discharging the capacitor 11, the safety of the power conversion device 1 is improved.
  • the capacitor 11, the discharge resistor 12, and the switching element 14 are provided inside the casing of the power conversion device 1.
  • the discharge resistor 12 and the switching element 14 are attached to a cooling unit described later, and heat generated in the discharge resistor 12 and the switching element 14 is radiated from the cooling unit to the outside of the housing 10.
  • FIG. 2 is a block diagram showing an example of mounting the power conversion device according to the embodiment on an electric railway vehicle.
  • the power acquired by the current collector 4 such as a pantograph from the overhead line 3 is supplied to the power converter 1 via the contactor 5 and the input reactor 6.
  • the control unit 15 may control the switching between opening and closing of the contactor 5.
  • FIG. 3 is a view of the cooling unit according to the embodiment as viewed from the inside of the housing.
  • the cooling unit 21 is configured by a member having a thermal conductivity equal to or higher than a threshold value, and configures a part of the outer surface of the housing 10.
  • the threshold value can be arbitrarily determined according to the heat dissipation characteristics required for the cooling unit 21.
  • the cooling unit 21 is formed using, for example, aluminum or copper.
  • the cooling unit 21 is connected to the discharge resistor 12 and the switching element 14 in an insulated state.
  • the cooling unit 21 has an element mounting surface to be described later on which the discharge resistor 12 and the switching element 14 are mounted on the inner surface of the housing 10.
  • each of the discharge resistor 12 and the switching element 14 and the cooling unit 21 are thermally connected, the heat generated in each of the discharge resistor 12 and the switching element 14 is transmitted to the cooling unit 21, and power is transmitted from the cooling unit 21. Heat is radiated to the outside of the housing 10 of the conversion device 1.
  • the arrangement of the discharge resistor 12 and the switching element 14 on the cooling unit 21 is not limited to the example of FIG. 3 and is arbitrary.
  • FIG. 4 is a cross-sectional view of the cooling unit according to the embodiment. 4 is a cross-sectional view taken along the line AA in FIG.
  • the cooling unit 21 includes fins 21 a that extend from a portion constituting a part of the outer surface of the housing 10 toward the outside of the housing 10.
  • the cooling unit 21 is not limited to the fins 21 a, and has an arbitrary shape that enhances the discharge performance of the cooling unit 21 in a portion constituting a part of the outer surface of the housing 10.
  • the cooling unit 21 has an element mounting surface 21 b on the inner surface of the housing 10. Discharge resistor 12 and switching element 14 are each attached to element attachment surface 21b.
  • FIG. 5 is a cross-sectional view of the cooling unit according to the embodiment.
  • FIG. 5 is a partial sectional view taken along line BB in FIG.
  • the discharge resistor 12 includes a base member 121 in contact with the element mounting surface 21b, an insulating member 122 provided on the base member 121, and a resistor 123.
  • the insulating member 122 and the resistor 123 are provided inside the case 124.
  • Terminals 125 and 126 are provided on the outer surface of the case 124 parallel to the element mounting surface 21b. Although not shown, the terminals 125 and 126 are electrically connected to the resistor 123, respectively.
  • the base member 121 and the insulating member 122 constitute a base part.
  • the base member 121 is made of, for example, a copper plate or an aluminum plate.
  • the insulating member 122 insulates the resistor 123 having a high voltage from the cooling unit 21 at the ground potential.
  • the conductivity of the insulating member 122 is set to a value sufficiently small so that the resistor 123 and the cooling unit 21 can be regarded as being insulated.
  • the base member 121 may be formed of an insulating member. In that case, the insulating member 122 may not be provided.
  • the base member 121 is fixed to the element mounting surface 21b by fastening members 22a and 22b extending in a direction orthogonal to the element mounting surface 21b.
  • the conductors 127 and 128 connected to the capacitor 11 are fixed to the terminals 125 and 126 by fastening members 22c and 22d extending in a direction orthogonal to the element mounting surface 21b.
  • FIG. 6 is a cross-sectional view of the cooling unit according to the embodiment. 6 is a partial cross-sectional view taken along the line CC of FIG. Since the structures of the switching elements 14 are the same, the switching element 14a will be described.
  • the switching element 14a includes a base member 141 in contact with the element mounting surface 21b, an insulating member 142 provided on the base member 141, and a semiconductor chip 143.
  • the insulating member 142 and the semiconductor chip 143 are provided inside the case 144.
  • Terminals 145 and 146 are provided on the outer surface of the case 144 parallel to the element mounting surface 21b. Although not shown, the terminals 145 and 146 are electrically connected to the semiconductor chip 143, respectively.
  • the base member 141 and the insulating member 142 constitute a base part.
  • the base member 141 is made of, for example, a copper plate or an aluminum plate.
  • the insulating member 142 insulates the semiconductor chip 143 that is at a high voltage from the cooling unit 21 that is at the ground potential.
  • the conductivity of the insulating member 142 is set to a value that is sufficiently small so that the semiconductor chip 143 and the cooling unit 21 can be regarded as being insulated.
  • the base member 141 is fixed to the element mounting surface 21b by fastening members 23a and 23b extending in a direction orthogonal to the element mounting surface 21b.
  • the conductor 147 connected to the positive electrode of the capacitor 11 is fixed to the terminal 145 by a fastening member 23c extending in a direction orthogonal to the element mounting surface 21b.
  • the output conductor 148 of the power conversion unit 13 is fixed to the terminal 146 by a fastening member 23d extending in a direction orthogonal to the element mounting surface 21b.
  • the configuration can be simplified. It is possible to improve the safety of the power conversion device 1 and suppress the temperature rise inside the housing.
  • each of the discharge resistor 12 and the switching element 14 By making the mounting structure of each of the discharge resistor 12 and the switching element 14 to the cooling part 21 and the mounting structure of the conductor and each of the discharge resistor 12 and the switching element 14 substantially the same, the manufacturing process of the power conversion device 1 Unification, labor saving, and simplification of the structure of the power conversion device 1 are possible. Since the discharge resistor 12 is provided inside the housing 10, it is not necessary to have a waterproof structure or the like, and the structure of the discharge resistor 12 can be simplified.
  • the power conversion unit can be appropriately changed according to the load device connected to the power conversion device 1.
  • the structure can be simplified. Moreover, by exchanging in units of power conversion units, it is not necessary to remove the discharge resistor 12 and the switching element 14 from the cooling unit 21 during maintenance inspection.
  • the power conversion device 1 of the present embodiment it is possible to improve the safety of the power conversion device with a simpler configuration and to suppress the temperature rise inside the housing.
  • Embodiment of this invention is not restricted to the above-mentioned embodiment,
  • the power converter device 1 is not restricted to the power converter device mounted in an electric railway vehicle.

Abstract

A cooling part (21) comprises a member having a heat conductivity equal to or greater than a threshold value, and constitutes a part of the outer surface of a casing (10) of a power converter. A discharge resistor (12), which is connected in parallel to a capacitor and which continuously discharges the capacitor, and switching elements (14a, 14b) provided to a power conversion unit, are connected to the cooling part (21) so as to be insulated from the cooling part (21). The discharge resistor (12) and the switching elements (14a, 14b) are attached to an element attachment surface (21b) provided on the surface of the cooling part (21) toward the inner side of the casing (10).

Description

電力変換装置Power converter
 この発明は、電力変換装置に関する。 This invention relates to a power converter.
 電気鉄道車両の屋根上または床下には、車両を駆動する主電動機または空調機器などに電力を供給する電力変換装置が設けられる。電力変換装置は、直流電圧が印加されるコンデンサを有し、コンデンサに印加される直流電圧を半導体素子のスイッチング動作を行うことで所望の交流電圧または直流電圧に変換して出力する。コンデンサには、数百Vから数千Vの電圧が印加されるため、電力変換装置の保守点検時にはコンデンサを放電させる必要がある。特許文献1に開示される電力変換装置には、コンデンサを放電させるための、放電スイッチおよび放電抵抗が設けられる。 An electric power converter that supplies electric power to a main motor or an air conditioner that drives the vehicle is provided on the roof or under the floor of the electric railway vehicle. The power conversion device includes a capacitor to which a DC voltage is applied, and converts the DC voltage applied to the capacitor into a desired AC voltage or DC voltage by performing a switching operation of the semiconductor element, and outputs the converted AC voltage. Since a voltage of several hundred volts to several thousand volts is applied to the capacitor, it is necessary to discharge the capacitor during maintenance and inspection of the power converter. The power converter disclosed in Patent Document 1 is provided with a discharge switch and a discharge resistor for discharging a capacitor.
 電力変換装置の停止時に放電スイッチをオンにして、コンデンサを放電させる方式においては、放電スイッチをオンにすることを忘れてしまったためにコンデンサが放電されないということが起こり得る。コンデンサを確実に放電させるために、電力変換装置の停止時に放電スイッチを自動的にオンにする方法またはコンデンサに並列に放電抵抗を設けて常時コンデンサを放電する方法がある。 In the method of discharging the capacitor by turning on the discharge switch when the power converter is stopped, the capacitor may not be discharged because the user forgets to turn on the discharge switch. In order to reliably discharge the capacitor, there are a method of automatically turning on the discharge switch when the power converter is stopped, or a method of always discharging the capacitor by providing a discharge resistor in parallel with the capacitor.
特開2012-231627号公報JP 2012-231627 A
 放電スイッチを自動的にオンにする方法では、放電スイッチを自動的にオンにする機構が必要となるため、電力変換装置の構成が複雑になる。常時コンデンサを放電する方法では、放電抵抗に常時電流が流れるため、放電抵抗の発熱量が数百Wと大きくなる。放電抵抗の発熱による温度上昇の影響を低減するため、放電抵抗は、外気と接する部位に設けて放熱させる必要がある。そのため放電抵抗には、風雨に耐えうる構造、および、より高い絶縁性能が求められる。またコンデンサが設けられる筐体内部と、放電抵抗が設けられる筐体外部との間をケーブルなどの導体で接続する必要があり、導体の配設および導体が筐体を貫通する箇所に防水構造を設けること、が必要となるため、電力変換装置の構造が複雑であるという課題がある。 The method of automatically turning on the discharge switch requires a mechanism for automatically turning on the discharge switch, which complicates the configuration of the power conversion device. In the method of constantly discharging the capacitor, since a current always flows through the discharge resistor, the amount of heat generated by the discharge resistor becomes as large as several hundred W. In order to reduce the influence of the temperature rise due to the heat generated by the discharge resistor, the discharge resistor needs to be provided and dissipated at a portion in contact with the outside air. Therefore, the discharge resistance is required to have a structure that can withstand wind and rain and a higher insulation performance. In addition, it is necessary to connect the inside of the housing in which the capacitor is provided and the outside of the housing in which the discharge resistance is provided with a conductor such as a cable, and a waterproof structure is provided at the location where the conductor is disposed and where the conductor penetrates the housing. Therefore, there is a problem that the structure of the power conversion device is complicated.
 本発明は、上述の事情に鑑みてなされたものであり、より簡易な構成で電力変換装置の安全性を向上させ、筐体内部の温度上昇を抑制することを目的とする。 The present invention has been made in view of the above-described circumstances, and an object thereof is to improve the safety of the power conversion device with a simpler configuration and to suppress the temperature rise inside the housing.
 上記目的を達成するために、本発明の電力変換装置は、筐体の内部にコンデンサと、放電抵抗と、電力変換部を備える。また電力変換装置は、筐体の外面の一部を構成する冷却部を備える。コンデンサには、外部電源から電圧が印加される。放電抵抗は、コンデンサに並列に接続され、コンデンサを常時放電する放電回路を形成する。電力変換部は、コンデンサに印加された電圧を入力電圧とし、スイッチング素子のスイッチング動作によって、入力電圧を変換して出力する。冷却部は、放電抵抗およびスイッチング素子のそれぞれに、絶縁された状態で接続し、熱伝導率が閾値以上である部材で構成される。 In order to achieve the above object, a power conversion device of the present invention includes a capacitor, a discharge resistor, and a power conversion unit inside a housing. The power converter includes a cooling unit that constitutes a part of the outer surface of the housing. A voltage is applied to the capacitor from an external power source. The discharge resistor is connected in parallel with the capacitor to form a discharge circuit that always discharges the capacitor. The power converter uses the voltage applied to the capacitor as the input voltage, converts the input voltage by the switching operation of the switching element, and outputs the converted voltage. A cooling part is comprised by the member which is connected to each of a discharge resistance and a switching element in the insulated state, and has thermal conductivity more than a threshold value.
 本発明によれば、放電抵抗とスイッチング素子に絶縁された状態で接続する、筐体の外面の一部を構成する冷却部を設けることで、より簡易な構成で電力変換装置の安全性を向上させ、筐体内部の温度上昇を抑制することが可能となる。 According to the present invention, the safety of the power conversion device is improved with a simpler configuration by providing a cooling unit that constitutes a part of the outer surface of the housing and is connected to the discharge resistor and the switching element in an insulated state. It is possible to suppress the temperature rise inside the housing.
本発明の実施の形態に係る電力変換装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the power converter device which concerns on embodiment of this invention. 実施の形態に係る電力変換装置の電気鉄道車両への搭載例を示すブロック図である。It is a block diagram which shows the example of mounting to the electric railway vehicle of the power converter device which concerns on embodiment. 実施の形態に係る冷却部を筐体内部側から見た図である。It is the figure which looked at the cooling part which concerns on embodiment from the housing inside side. 実施の形態に係る冷却部の断面図である。It is sectional drawing of the cooling part which concerns on embodiment. 実施の形態に係る冷却部の断面図である。It is sectional drawing of the cooling part which concerns on embodiment. 実施の形態に係る冷却部の断面図である。It is sectional drawing of the cooling part which concerns on embodiment.
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent parts are denoted by the same reference numerals.
 図1は、本発明の実施の形態に係る電力変換装置の構成例を示すブロック図である。電力変換装置1は、外部電源から電圧が印加されるコンデンサ11と、コンデンサ11を常時放電する放電回路を形成する放電抵抗12と、スイッチング素子のスイッチング動作によってコンデンサ11に印加された電圧を変換して出力する電力変換部13とを備える。図1の例では、電力変換部13はインバータ回路であり、スイッチング素子14a,14b,14c,14d,14e,14fを備える。ここでスイッチング素子14は、スイッチング素子14a,14b,14c,14d,14e,14fの総称である。電力変換部13の構成は図1の例に限られず、電力変換部13は、チョッパ回路またはDC(Direct Current:直流)-DCコンバータでもよい。 FIG. 1 is a block diagram showing a configuration example of a power conversion device according to an embodiment of the present invention. The power conversion device 1 converts a capacitor 11 to which a voltage is applied from an external power source, a discharge resistor 12 that forms a discharge circuit that constantly discharges the capacitor 11, and a voltage applied to the capacitor 11 by a switching operation of a switching element. And a power conversion unit 13 for outputting. In the example of FIG. 1, the power conversion unit 13 is an inverter circuit, and includes switching elements 14a, 14b, 14c, 14d, 14e, and 14f. Here, the switching element 14 is a general term for the switching elements 14a, 14b, 14c, 14d, 14e, and 14f. The configuration of the power conversion unit 13 is not limited to the example in FIG. 1, and the power conversion unit 13 may be a chopper circuit or a DC (Direct Current) -DC converter.
 スイッチング素子14は、例えばIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)である。スイッチング素子14は、コンデンサ11および出力用導体にそれぞれ接続される。直列に接続されたスイッチング素子14a,14bと、直列に接続されたスイッチング素子14c,14dと、直列に接続されたスイッチング素子14e,14fとはそれぞれ、コンデンサ11に並列に接続される。スイッチング素子14a,14bはU相導体に接続され、スイッチング素子14c,14dはV相導体に接続され、スイッチング素子14e,14fはW相導体に接続される。 The switching element 14 is, for example, an IGBT (Insulated Gate Bipolar Transistor). The switching element 14 is connected to the capacitor 11 and the output conductor. The switching elements 14a and 14b connected in series, the switching elements 14c and 14d connected in series, and the switching elements 14e and 14f connected in series are connected in parallel to the capacitor 11, respectively. Switching elements 14a and 14b are connected to a U-phase conductor, switching elements 14c and 14d are connected to a V-phase conductor, and switching elements 14e and 14f are connected to a W-phase conductor.
 制御部15が出力する制御信号によってスイッチング素子14のオンオフが切り替えられ、三相交流電力が電動機2に出力される。制御部15は、CPU(Central Processing Unit)および内部メモリなどから構成されるプロセッサ、およびRAM(Random Access Memory)およびフラッシュメモリなどから構成されるメモリを備える。制御部15は、メモリに記憶されている制御プログラムを実行し、スイッチング素子の制御などを行う。 The on / off of the switching element 14 is switched by a control signal output from the control unit 15, and three-phase AC power is output to the electric motor 2. The control unit 15 includes a processor including a CPU (Central Processing Unit) and an internal memory, and a memory including a RAM (Random Access Memory) and a flash memory. The control unit 15 executes a control program stored in the memory, and controls the switching element.
 放電抵抗12には、コンデンサ11からの電流が常時流れ、電力変換装置1が動作中であるか停止中であるかによらず、コンデンサ11は常時放電される。コンデンサ11を常時放電することで、電力変換装置1の安全性が向上する。 The current from the capacitor 11 always flows through the discharge resistor 12, and the capacitor 11 is always discharged regardless of whether the power converter 1 is operating or stopped. By always discharging the capacitor 11, the safety of the power conversion device 1 is improved.
 コンデンサ11、放電抵抗12、およびスイッチング素子14は、電力変換装置1の筐体の内部に設けられる。放電抵抗12およびスイッチング素子14は後述する冷却部に取り付けられ、放電抵抗12およびスイッチング素子14において発生した熱は、冷却部から筐体10の外部に放熱される。 The capacitor 11, the discharge resistor 12, and the switching element 14 are provided inside the casing of the power conversion device 1. The discharge resistor 12 and the switching element 14 are attached to a cooling unit described later, and heat generated in the discharge resistor 12 and the switching element 14 is radiated from the cooling unit to the outside of the housing 10.
 図2は、実施の形態に係る電力変換装置の電気鉄道車両への搭載例を示すブロック図である。電力変換装置1を電気鉄道車両に搭載した場合には、架線3からパンタグラフなどの集電装置4によって取得された電力が、接触器5および入力リアクトル6を介して電力変換装置1に供給される。制御部15が接触器5の投入および開放の切替を制御してもよい。 FIG. 2 is a block diagram showing an example of mounting the power conversion device according to the embodiment on an electric railway vehicle. When the power converter 1 is mounted on an electric railway vehicle, the power acquired by the current collector 4 such as a pantograph from the overhead line 3 is supplied to the power converter 1 via the contactor 5 and the input reactor 6. . The control unit 15 may control the switching between opening and closing of the contactor 5.
 図3は、実施の形態に係る冷却部を筐体内部側から見た図である。図3においては、導体などは省略した。冷却部21は、熱伝導率が閾値以上である部材で構成され、筐体10の外面の一部を構成する。閾値は、冷却部21に求められる放熱特性に応じて任意に定めることができる。冷却部21は、例えば、アルミニウムまたは銅などを用いて形成される。冷却部21は、放電抵抗12およびスイッチング素子14のそれぞれに、絶縁された状態で接続する。冷却部21は、筐体10の内部側の面に、放電抵抗12およびスイッチング素子14とが取り付けられる後述する素子取付面を有する。放電抵抗12およびスイッチング素子14のそれぞれと冷却部21とは熱的に接続されているため、放電抵抗12およびスイッチング素子14のそれぞれにおいて発生した熱は、冷却部21に伝わり、冷却部21から電力変換装置1の筐体10の外部に放熱される。冷却部21上での放電抵抗12およびスイッチング素子14の配置の仕方は図3の例に限られず、任意である。 FIG. 3 is a view of the cooling unit according to the embodiment as viewed from the inside of the housing. In FIG. 3, conductors and the like are omitted. The cooling unit 21 is configured by a member having a thermal conductivity equal to or higher than a threshold value, and configures a part of the outer surface of the housing 10. The threshold value can be arbitrarily determined according to the heat dissipation characteristics required for the cooling unit 21. The cooling unit 21 is formed using, for example, aluminum or copper. The cooling unit 21 is connected to the discharge resistor 12 and the switching element 14 in an insulated state. The cooling unit 21 has an element mounting surface to be described later on which the discharge resistor 12 and the switching element 14 are mounted on the inner surface of the housing 10. Since each of the discharge resistor 12 and the switching element 14 and the cooling unit 21 are thermally connected, the heat generated in each of the discharge resistor 12 and the switching element 14 is transmitted to the cooling unit 21, and power is transmitted from the cooling unit 21. Heat is radiated to the outside of the housing 10 of the conversion device 1. The arrangement of the discharge resistor 12 and the switching element 14 on the cooling unit 21 is not limited to the example of FIG. 3 and is arbitrary.
 図4は、実施の形態に係る冷却部の断面図である。図4は、図3のA-A線における断面図である。冷却部21は、筐体10の外面の一部を構成する部分から筐体10の外部に向かって延びるフィン21aを有する。冷却部21は、フィン21aに限られず、冷却部21の放電性能を高める任意の形状を筐体10の外面の一部を構成する部分に有する。冷却部21は、筐体10の内部側の面に素子取付面21bを有する。放電抵抗12およびスイッチング素子14はそれぞれ、素子取付面21bに取り付けられる。 FIG. 4 is a cross-sectional view of the cooling unit according to the embodiment. 4 is a cross-sectional view taken along the line AA in FIG. The cooling unit 21 includes fins 21 a that extend from a portion constituting a part of the outer surface of the housing 10 toward the outside of the housing 10. The cooling unit 21 is not limited to the fins 21 a, and has an arbitrary shape that enhances the discharge performance of the cooling unit 21 in a portion constituting a part of the outer surface of the housing 10. The cooling unit 21 has an element mounting surface 21 b on the inner surface of the housing 10. Discharge resistor 12 and switching element 14 are each attached to element attachment surface 21b.
 図5は、実施の形態に係る冷却部の断面図である。図5は、図3のB-B線における部分断面図である。放電抵抗12は、素子取付面21bに接するベース部材121と、ベース部材121上に設けられる絶縁部材122と、抵抗体123を有する。絶縁部材122と抵抗体123はケース124の内部に設けられる。素子取付面21bに平行なケース124の外面に端子125,126が設けられる。図示しないが、端子125,126はそれぞれ、抵抗体123に電気的に接続されている。 FIG. 5 is a cross-sectional view of the cooling unit according to the embodiment. FIG. 5 is a partial sectional view taken along line BB in FIG. The discharge resistor 12 includes a base member 121 in contact with the element mounting surface 21b, an insulating member 122 provided on the base member 121, and a resistor 123. The insulating member 122 and the resistor 123 are provided inside the case 124. Terminals 125 and 126 are provided on the outer surface of the case 124 parallel to the element mounting surface 21b. Although not shown, the terminals 125 and 126 are electrically connected to the resistor 123, respectively.
 ベース部材121と絶縁部材122とがベース部を構成する。ベース部材121は、例えば銅板またはアルミ板などで構成される。絶縁部材122は、高電圧となる抵抗体123と接地電位にある冷却部21とを絶縁する。絶縁部材122の導電率は、抵抗体123と冷却部21が絶縁されているとみなせる程度に十分に小さい値とする。またベース部材121を、絶縁性を有する部材で構成してもよい。その場合には、絶縁部材122を設けなくてもよい。 The base member 121 and the insulating member 122 constitute a base part. The base member 121 is made of, for example, a copper plate or an aluminum plate. The insulating member 122 insulates the resistor 123 having a high voltage from the cooling unit 21 at the ground potential. The conductivity of the insulating member 122 is set to a value sufficiently small so that the resistor 123 and the cooling unit 21 can be regarded as being insulated. Further, the base member 121 may be formed of an insulating member. In that case, the insulating member 122 may not be provided.
 ベース部材121は、素子取付面21bに直交する方向に延びる締結部材22a,22bによって素子取付面21bに固定される。またコンデンサ11に接続される導体127,128は、素子取付面21bに直交する方向に延びる締結部材22c,22dによって端子125,126に固定される。 The base member 121 is fixed to the element mounting surface 21b by fastening members 22a and 22b extending in a direction orthogonal to the element mounting surface 21b. The conductors 127 and 128 connected to the capacitor 11 are fixed to the terminals 125 and 126 by fastening members 22c and 22d extending in a direction orthogonal to the element mounting surface 21b.
 図6は、実施の形態に係る冷却部の断面図である。図6は、図3のC-C線における部分断面図である。スイッチング素子14のそれぞれの構造は同じであるため、スイッチング素子14aについて説明する。スイッチング素子14aは、素子取付面21bに接するベース部材141と、ベース部材141上に設けられる絶縁部材142と、半導体チップ143を有する。絶縁部材142と半導体チップ143はケース144の内部に設けられる。素子取付面21bに平行なケース144の外面に端子145,146が設けられる。図示しないが、端子145,146はそれぞれ、半導体チップ143に電気的に接続されている。 FIG. 6 is a cross-sectional view of the cooling unit according to the embodiment. 6 is a partial cross-sectional view taken along the line CC of FIG. Since the structures of the switching elements 14 are the same, the switching element 14a will be described. The switching element 14a includes a base member 141 in contact with the element mounting surface 21b, an insulating member 142 provided on the base member 141, and a semiconductor chip 143. The insulating member 142 and the semiconductor chip 143 are provided inside the case 144. Terminals 145 and 146 are provided on the outer surface of the case 144 parallel to the element mounting surface 21b. Although not shown, the terminals 145 and 146 are electrically connected to the semiconductor chip 143, respectively.
 ベース部材141と絶縁部材142とがベース部を構成する。ベース部材141は、例えば銅板またはアルミ板などで構成される。絶縁部材142は、高電圧となる半導体チップ143と接地電位にある冷却部21とを絶縁する。絶縁部材142の導電率は、半導体チップ143と冷却部21が絶縁されているとみなせる程度に十分に小さい値とする。またベース部材141を絶縁性を有する部材で構成してもよい。その場合には、絶縁部材142を設けなくてもよい。 The base member 141 and the insulating member 142 constitute a base part. The base member 141 is made of, for example, a copper plate or an aluminum plate. The insulating member 142 insulates the semiconductor chip 143 that is at a high voltage from the cooling unit 21 that is at the ground potential. The conductivity of the insulating member 142 is set to a value that is sufficiently small so that the semiconductor chip 143 and the cooling unit 21 can be regarded as being insulated. Moreover, you may comprise the base member 141 with the member which has insulation. In that case, the insulating member 142 may not be provided.
 ベース部材141は、素子取付面21bに直交する方向に延びる締結部材23a,23bによって素子取付面21bに固定される。またコンデンサ11の正極に接続される導体147は、素子取付面21bに直交する方向に延びる締結部材23cによって端子145に固定される。電力変換部13の出力用導体148は、素子取付面21bに直交する方向に延びる締結部材23dによって端子146に固定される。 The base member 141 is fixed to the element mounting surface 21b by fastening members 23a and 23b extending in a direction orthogonal to the element mounting surface 21b. The conductor 147 connected to the positive electrode of the capacitor 11 is fixed to the terminal 145 by a fastening member 23c extending in a direction orthogonal to the element mounting surface 21b. The output conductor 148 of the power conversion unit 13 is fixed to the terminal 146 by a fastening member 23d extending in a direction orthogonal to the element mounting surface 21b.
 放電抵抗12およびスイッチング素子14を共通の冷却部21に接続して、冷却部21から放電抵抗12およびスイッチング素子14で生じた熱を筐体10の外部に放熱させることで、より簡易な構成で電力変換装置1の安全性を向上させ、筐体内部の温度上昇を抑制することが可能となる。 By connecting the discharge resistor 12 and the switching element 14 to the common cooling unit 21 and dissipating the heat generated in the discharge resistor 12 and the switching element 14 from the cooling unit 21 to the outside of the housing 10, the configuration can be simplified. It is possible to improve the safety of the power conversion device 1 and suppress the temperature rise inside the housing.
 放電抵抗12およびスイッチング素子14のそれぞれの冷却部21への取付構造と、導体と放電抵抗12およびスイッチング素子14のそれぞれとの取付構造がほぼ同じとすることで、電力変換装置1の製造工程の統一化と省力化、および電力変換装置1の構造の簡易化が可能となる。放電抵抗12は筐体10の内部に設けられていることから、防水構造などを有する必要はなく、放電抵抗12の構造を簡易化することが可能となる。 By making the mounting structure of each of the discharge resistor 12 and the switching element 14 to the cooling part 21 and the mounting structure of the conductor and each of the discharge resistor 12 and the switching element 14 substantially the same, the manufacturing process of the power conversion device 1 Unification, labor saving, and simplification of the structure of the power conversion device 1 are possible. Since the discharge resistor 12 is provided inside the housing 10, it is not necessary to have a waterproof structure or the like, and the structure of the discharge resistor 12 can be simplified.
 放電抵抗12および電力変換部13をユニット化して、電力変換ユニットとすることで、電力変換装置1に接続される負荷装置に応じて電力変換ユニットを適宜変更することが可能となり、電力変換装置の構造の簡易化が可能となる。また電力変換ユニットの単位で交換することで、保守点検時に放電抵抗12およびスイッチング素子14の冷却部21からの取り外しなどが不要となる。 By unitizing the discharge resistor 12 and the power conversion unit 13 into a power conversion unit, the power conversion unit can be appropriately changed according to the load device connected to the power conversion device 1. The structure can be simplified. Moreover, by exchanging in units of power conversion units, it is not necessary to remove the discharge resistor 12 and the switching element 14 from the cooling unit 21 during maintenance inspection.
 以上説明したとおり、本実施の形態に係る電力変換装置1によれば、より簡易な構成で電力変換装置の安全性を向上させ、筐体内部の温度上昇を抑制することが可能となる。 As described above, according to the power conversion device 1 of the present embodiment, it is possible to improve the safety of the power conversion device with a simpler configuration and to suppress the temperature rise inside the housing.
 本発明の実施の形態は上述の実施の形態に限られず、電力変換装置1は、電気鉄道車両に搭載される電力変換装置に限られない。 Embodiment of this invention is not restricted to the above-mentioned embodiment, The power converter device 1 is not restricted to the power converter device mounted in an electric railway vehicle.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 1 電力変換装置、2 電動機、3 架線、4 集電装置、5 接触器、6 入力リアクトル、10 筐体、11 コンデンサ、12 放電抵抗、13 電力変換部、14,14a,14b,14c,14d,14e,14f スイッチング素子、15 制御部、21 冷却部、21a フィン、21b 素子取付面、22a,22b,22c,22d,23a,23b,23c,23d 締結部材、121,141 ベース部材、122,142 絶縁部材、123 抵抗体、124,144 ケース、125,126,145,146 端子、127,128,147 導体、143 半導体チップ、148 出力用導体。 1 power converter, 2 electric motor, 3 overhead wire, 4 current collector, 5 contactor, 6 input reactor, 10 housing, 11 capacitor, 12 discharge resistance, 13 power converter, 14, 14a, 14b, 14c, 14d, 14e, 14f switching element, 15 control part, 21 cooling part, 21a fin, 21b element mounting surface, 22a, 22b, 22c, 22d, 23a, 23b, 23c, 23d fastening member, 121, 141 base member, 122, 142 insulation Member, 123 resistor, 124, 144 case, 125, 126, 145, 146 terminal, 127, 128, 147 conductor, 143 semiconductor chip, 148 output conductor.

Claims (3)

  1.  筐体の内部に、
     外部電源から電圧が印加されるコンデンサと、
     前記コンデンサに並列に接続され、前記コンデンサを常時放電する放電回路を形成する放電抵抗と、
     前記コンデンサに印加された電圧を入力電圧とし、スイッチング素子のスイッチング動作によって、前記入力電圧を変換して出力する電力変換部と、
     を備え、
     前記筐体の外面の一部を構成し、前記放電抵抗および前記スイッチング素子のそれぞれに、絶縁された状態で接続する、熱伝導率が閾値以上である部材で構成された冷却部、
     を備える電力変換装置。
    Inside the housing,
    A capacitor to which voltage is applied from an external power source;
    A discharge resistor connected in parallel to the capacitor and forming a discharge circuit that constantly discharges the capacitor;
    The voltage applied to the capacitor is set as an input voltage, and a power conversion unit that converts and outputs the input voltage by a switching operation of a switching element;
    With
    A part of the outer surface of the housing, connected to each of the discharge resistor and the switching element in an insulated state, a cooling unit composed of a member having a thermal conductivity equal to or higher than a threshold value;
    A power conversion device comprising:
  2.  前記冷却部は、
     前記筐体の外面の一部を構成する部分から前記筐体の外部に向かって延びるフィンと、
     前記筐体の内部側の面に、前記放電抵抗と前記スイッチング素子とが取り付けられる素子取付面と、
     を備える、
     請求項1に記載の電力変換装置。
    The cooling part is
    A fin extending from the portion constituting a part of the outer surface of the housing toward the outside of the housing;
    An element mounting surface on which the discharge resistor and the switching element are mounted on the inner surface of the housing;
    Comprising
    The power conversion device according to claim 1.
  3.  前記放電抵抗は、
     該放電抵抗のケースである第1のケースの内部に設けられる抵抗体と、
     前記抵抗体と前記冷却部とを絶縁する第1のベース部と、
     前記素子取付面に平行な前記第1のケースの外面に設けられ、前記抵抗体と電気的に接続されている第1の端子と、
     を備え、
     前記スイッチング素子は、
     該スイッチング素子のケースである第2のケースの内部に設けられる半導体チップと、
     前記半導体チップと前記冷却部とを絶縁する第2のベース部と、
     前記素子取付面に平行な前記第2のケースの外面に設けられ、前記半導体チップと電気的に接続されている第2の端子と、
     を備え、
     前記第1のベース部および前記第2のベース部はそれぞれ、前記素子取付面と直交する方向に延びる締結部材によって、前記素子取付面に固定され、
     前記コンデンサと前記放電抵抗とを接続する導体は、前記素子取付面と直交する方向に延びる締結部材によって、前記第1の端子に固定され、
     前記コンデンサと前記スイッチング素子とを接続する導体および前記電力変換部の出力用の導体はそれぞれ、前記素子取付面と直交する方向に延びる締結部材によって、前記第2の端子に固定される、
     請求項2に記載の電力変換装置。
    The discharge resistance is
    A resistor provided inside the first case which is the case of the discharge resistance;
    A first base portion that insulates the resistor and the cooling portion;
    A first terminal provided on an outer surface of the first case parallel to the element mounting surface and electrically connected to the resistor;
    With
    The switching element is
    A semiconductor chip provided inside a second case which is a case of the switching element;
    A second base portion that insulates the semiconductor chip from the cooling portion;
    A second terminal provided on an outer surface of the second case parallel to the element mounting surface and electrically connected to the semiconductor chip;
    With
    The first base portion and the second base portion are each fixed to the element mounting surface by a fastening member extending in a direction orthogonal to the element mounting surface,
    A conductor connecting the capacitor and the discharge resistor is fixed to the first terminal by a fastening member extending in a direction orthogonal to the element mounting surface,
    The conductor connecting the capacitor and the switching element and the output conductor of the power converter are each fixed to the second terminal by a fastening member extending in a direction orthogonal to the element mounting surface.
    The power conversion device according to claim 2.
PCT/JP2015/065722 2015-06-01 2015-06-01 Power converter WO2016194097A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/065722 WO2016194097A1 (en) 2015-06-01 2015-06-01 Power converter
JP2017521357A JPWO2016194097A1 (en) 2015-06-01 2015-06-01 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065722 WO2016194097A1 (en) 2015-06-01 2015-06-01 Power converter

Publications (1)

Publication Number Publication Date
WO2016194097A1 true WO2016194097A1 (en) 2016-12-08

Family

ID=57441866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065722 WO2016194097A1 (en) 2015-06-01 2015-06-01 Power converter

Country Status (2)

Country Link
JP (1) JPWO2016194097A1 (en)
WO (1) WO2016194097A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11811351B2 (en) 2019-05-28 2023-11-07 Fanuc Corporation Motor controller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06311760A (en) * 1993-04-15 1994-11-04 Hitachi Ltd Inverter
WO2006103721A1 (en) * 2005-03-25 2006-10-05 Mitsubishi Denki Kabushiki Kaisha Power converter cooling structure
JP2010124523A (en) * 2008-11-17 2010-06-03 Denso Corp Power conversion apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259282A (en) * 2007-04-03 2008-10-23 Toyota Motor Corp Power supply device
JP2011176074A (en) * 2010-02-24 2011-09-08 Sanyo Electric Co Ltd Drive control apparatus and vehicle with the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06311760A (en) * 1993-04-15 1994-11-04 Hitachi Ltd Inverter
WO2006103721A1 (en) * 2005-03-25 2006-10-05 Mitsubishi Denki Kabushiki Kaisha Power converter cooling structure
JP2010124523A (en) * 2008-11-17 2010-06-03 Denso Corp Power conversion apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11811351B2 (en) 2019-05-28 2023-11-07 Fanuc Corporation Motor controller

Also Published As

Publication number Publication date
JPWO2016194097A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
US9474189B2 (en) Inverter device
EP3468025B1 (en) Power conversion device
US10177676B2 (en) Power converter
JP5407275B2 (en) Power converter
JP4892032B2 (en) Power converter
US9960725B2 (en) Electric compressor
KR101541181B1 (en) Inverter and Converter for Electric Vehicle
JP6639320B2 (en) Semiconductor device
JP6457895B2 (en) Capacitor module
JP2015109748A (en) Power conversion device
JP2014036145A (en) Resistance device
JP5787105B2 (en) Power converter
TWI590570B (en) Power conversion device and vehicle control device
JP2007042796A (en) Power semiconductor device and inverter equipment
JP2021523669A (en) Power converters for vehicles, and vehicles
WO2016194097A1 (en) Power converter
JP5218307B2 (en) Power module with cooling device
US20160007507A1 (en) Power Conversion Device
JP4487962B2 (en) Inverter device
CN112313869A (en) Power conversion device
JP6713246B2 (en) Power converter
JP6345344B2 (en) Vehicle control device
US20120002452A1 (en) Compact inverter
JP2015076933A (en) Power conversion device
US11222879B2 (en) Semiconductor module structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521357

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894132

Country of ref document: EP

Kind code of ref document: A1