WO2016194038A1 - Twin roll-type vertical casting device and twin roll-type vertical casting method - Google Patents

Twin roll-type vertical casting device and twin roll-type vertical casting method Download PDF

Info

Publication number
WO2016194038A1
WO2016194038A1 PCT/JP2015/065531 JP2015065531W WO2016194038A1 WO 2016194038 A1 WO2016194038 A1 WO 2016194038A1 JP 2015065531 W JP2015065531 W JP 2015065531W WO 2016194038 A1 WO2016194038 A1 WO 2016194038A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
pair
casting
flow rate
temperature
Prior art date
Application number
PCT/JP2015/065531
Other languages
French (fr)
Japanese (ja)
Inventor
俊介 太田
大塚 真司
志賀 英俊
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2015/065531 priority Critical patent/WO2016194038A1/en
Publication of WO2016194038A1 publication Critical patent/WO2016194038A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars

Definitions

  • the present invention relates to a twin roll type vertical casting apparatus and a twin roll type vertical casting method.
  • Patent Document 1 As a twin roll type vertical casting apparatus capable of collecting a sheet with stable plate thickness and quality at a high speed without being affected by the state of the molten liquid level, a pair of main weirs and An extension of a pair of horizontal weirs is known (Patent Document 1).
  • the problem to be solved by the present invention is to provide a twin roll type vertical casting apparatus and a twin roll type vertical casting method capable of maintaining the uniformity of the plate thickness and the finished quality of the surface and the inner surface at a predetermined value or more. .
  • the present invention detects the position of the melt level poured into the melt nozzle, and controls the rotational speed of the pair of casting rolls according to the detected position of the melt level. Resolve.
  • FIG. 1 is a side view showing an embodiment of a twin roll type vertical casting apparatus according to the present invention. It is a top view of FIG.
  • FIG. 2 is an exploded perspective view of FIG. 1. It is sectional drawing of the principal part of FIG. It is a graph which shows the 1st example of the control map memorize
  • the molten aluminum-based material is cold-rolled at a cooling rate of, for example, 1000 ° C./second or more, although not particularly limited, and has a predetermined thickness t and a predetermined width W.
  • a casting apparatus for producing a sheet 2 having a predetermined length L Increasing the cooling rate has the advantage that even if impurities are contained, it does not grow greatly and the productivity is high.
  • the aluminum-based material used as a casting raw material is not particularly limited, but includes, for example, aluminum, an aluminum-silicon alloy, an aluminum-silicon-magnesium alloy, and other aluminum alloys.
  • the melting point or liquidus temperature of these aluminum-based materials is approximately 580 to 670 ° C.
  • the twin roll type vertical casting apparatus 1 of the present embodiment is disposed above a pair of casting rolls 11 and 12 that are opposed to each other with a predetermined roll gap 13 and the roll gap 13 of the pair of casting rolls 11 and 12.
  • the molten metal nozzle 14 that receives the molten metal 5 of the aluminum-based material and the molten metal 5 that passes through the roll gap 13 from the molten metal nozzle 14 estimate the reaction force that pushes the roll gap 13 against the elastic bias.
  • a reaction force estimator 15 and a control unit that controls the amount of heat received per unit time that the pair of casting rolls 11 and 12 receive from the molten metal 5 that passes through the roll gap 13 according to the reaction force estimated by the reaction force estimator 15. 16.
  • the pair of casting rolls 11 and 12 are mounted on the gantry 4, and one casting roll 11 is provided so as to rotate around the rotation shaft 111, and the other casting roll 12 rotates in parallel with the rotation shaft 111. It is provided so as to rotate around the shaft 121.
  • the position of one casting roll 11 in this embodiment is fixed with respect to the gantry 4, and the other casting roll 12 moves toward and away from the one casting roll 11 in the horizontal direction via the slide rail 41. It is possible.
  • the other casting roll 12 is elastically urged by an elastic body 122 such as a spring or a fluid pressure cylinder in a direction toward the one casting roll 11.
  • the pair of casting rolls 11 and 12 are connected to the rotational drive motor 112 via a transmission mechanism such as a pulley and a belt so as to rotate at the same peripheral speed. Since the outer diameters of the casting rolls 11 and 12 of the present embodiment are equal, a force that pushes the molten metal 5 downward in the opposite direction, that is, in the roll gap 13, acts by one rotational drive motor 112. Rotates at equal circumferential speed. In the example shown in FIGS. 1 and 4, one casting roll 11 rotates counterclockwise, and the other casting roll 12 rotates clockwise. Note that the rotation speed of the rotation drive motor 112 is controlled by an inverter device 116 that makes the rotation speed of the output shaft variable, and the inverter device 116 is controlled by a control command from the control unit 16. It will be described later.
  • the outer diameters of the pair of casting rolls 11 and 12 are made equal, they can be rotated at the same peripheral speed by one rotary drive motor 112 without providing a speed change mechanism. Further, if the outer diameters of the pair of casting rolls 11 and 12 are made equal and the centers of main dam plates 141 and 142 of the molten metal nozzle 14 described later are made coincident with the center of the roll gap 13, the molten metal 5 at the lower end of the molten metal nozzle 14 is obtained. Since the areas of the contact surfaces 113 and 123 between the casting rolls 11 and 12 are equal, the cooling rate on the front and back of the cast sheet is uniform.
  • the pair of casting rolls 11 and 12 of the present invention may have different outer diameters as long as the peripheral speed is equal.
  • the center position of the main dam plates 141, 142 of the molten metal nozzle 14 is rolled. What is necessary is just to shift
  • the pair of casting rolls 11 and 12 has hollow cylindrical bodies 114 and 124 fixed to hubs (not shown) fixed to both ends of the rotating shafts 111 and 121, respectively, and copper having good thermal conductivity on the surfaces thereof. It is comprised by fixing metal layers (metal plate) 115,125, such as.
  • a circulation system 171 through which a heat medium, which will be described later, circulates is provided in a part or all of the interiors of the hollow cylindrical bodies 114 and 124, and at least the metal layers 115 and 125 on the back surface of the contact surfaces 113 and 123 with the molten metal 5.
  • a spray nozzle is provided so that the heat medium comes into contact, or a part or the whole of the hollow cylinders 114 and 124 is used as a flow path for the heat medium.
  • Each of the pair of casting rolls 11 and 12 of this embodiment includes a temperature controller 17 that adjusts the temperature of the contact surfaces 113 and 123 of the casting roll with which at least the molten metal 5 contacts, the details of which will be described later.
  • the molten metal nozzle 14 of the present embodiment is disposed so as to be opposed to the pair of main dam plates 141 and 142 disposed in parallel to the rotation shafts 111 and 121 of the pair of casting rolls 11 and 12 and orthogonal to the rotation shafts 111 and 121. And a pair of side dam plates 143 and 144 in close contact with both end faces of the pair of main dam plates 141 and 142. That is, the molten metal nozzle 14 of the present embodiment is a rectangular cylinder having four side surfaces, each having an upper surface and a lower surface opened.
  • the pair of main dam plates 141 and 142 and the pair of side dam plates 143 and 144 are made of a ceramic plate material having heat resistance that can withstand the melting point or liquidus temperature of the aluminum-based material, and the surface (at least the main dam plate). And a heat insulating material layer having equivalent heat resistance is formed on the inner surface surrounded by the side dam plate. And the lower end of a pair of main dam plates 141 and 142 is provided in contact with the surface of a pair of above-mentioned casting rolls 11 and 12 or a slight crevice. Further, as shown in the plan view of FIG.
  • the pair of side dam plates 143 and 144 are pressed elastic bodies 145 on the side edges of the pair of main dam plates 141 and 142 and the both side surfaces of the pair of casting rolls 11 and 12. , 146. That is, the length in the width direction of the main dam plates 141 and 142 is formed to be substantially equal to the length in the width direction of the casting rolls 11 and 12, and the pair of side dam plates 143 and 144 is formed of the pair of main dam plates 141 and 142. And a pair of casting rolls 11 and 12.
  • the molten metal 5 is contained in a space surrounded by the pair of main dam plates 141 and 142, the pair of side dam plates 143 and 144, and the vicinity of the roll gap 13 of the pair of casting rolls 11 and 12 (contact surfaces 113 and 123). Will be accepted.
  • a tensile elastic body 147 is provided so as to maintain contact with the contact surface 123 of the other casting roll 12 or a slight gap.
  • the position of the main dam plate 142 provided in contact with the contact surface 113 of one casting roll 11 or with a slight gap is fixed with respect to the gantry 4 although not shown.
  • a ladle (ladder) 18 is provided above the molten metal nozzle 14, and a ladle moving mechanism (not shown) such as a hoist crane for injecting the molten metal 5 accommodated in the ladle 18 into the molten metal nozzle 14 is provided. It has been.
  • the solid raw material of the aluminum-based material is melted in a separate melting furnace while being put in the ladle 18, the ladle 18 is moved to the vicinity of the molten metal nozzle 14 by a ladle moving mechanism, and the ladle 18 is tilted to melt the molten metal. 5 is injected into the melt nozzle 14.
  • a guide plate 6 for guiding the aluminum sheet 2 that has passed through the roll gap 13 and is in a solid state in a substantially horizontal direction, and a guide roller 7 and a winding are provided downstream thereof.
  • a take-up machine 3 is provided. The aluminum sheet 2 that has passed through the roll gap 13 and is in a solid state is guided in the horizontal direction by the guide plate 6, and then wound in a roll shape by the winder 3 while sliding on the upper surface of the guide roller 7.
  • FIG. 4 is a cross-sectional view showing a main part of casting surrounded by the molten metal nozzle 14 and the pair of casting rolls 11 and 12 of the twin roll type vertical casting apparatus 1 of the present embodiment, and the twin roll type of the present embodiment.
  • the injection speed (injection volume per unit time) of the molten metal 5 into the molten metal nozzle 14 is the casting speed (per unit time) of the aluminum sheet 2 that passes through the roll gap 13 and enters the solid phase state. Set to a speed greater than the casting volume.
  • the molten metal 5 injected into the molten metal nozzle 14 is a pair of casting rolls 11, from a point P 1 intersecting with the central horizontal line of the roll gap 13 to a point P 2 provided in contact with the main weir plates 141, 142 or with a slight gap.
  • the molten metal 5 is cooled and begins to solidify.
  • the molten metal 5 is denoted by reference numeral 51
  • the solid-liquid molten metal 52 is denoted by reference numeral 52
  • the solid molten metal ie, the aluminum sheet 2
  • the twin roll type vertical casting apparatus 1 of the present embodiment is a cold rolling casting method in which the cooling rate of the molten metal 5 is, for example, 1000 ° C./second or more, and a pair of casting rolls 11 according to the cooling rate of the molten metal 5. , 12 are set.
  • a predetermined amount of molten metal 5 is injected into the molten metal nozzle 14 by a so-called batch method, and an aluminum sheet having a predetermined thickness t, a predetermined width W, and a predetermined length L. 2
  • the weight of the molten metal 5 injected into the molten metal nozzle 14 acts as gravity on the roll gap 13 during casting. That is, when the level of the molten metal 5 injected into the molten metal nozzle 14 is high (when the molten metal weight is large), the reaction force for expanding the roll gap 13 against the elastic bias of the elastic body 122 increases. . Thereby, the roll gap 13 becomes large.
  • the reaction force that the molten metal 5 passing through the roll gap 13 tries to push and expand the roll gap 13 against the elastic bias of the elastic body 122 is estimated.
  • the amount of heat received per unit time that the pair of casting rolls 11 and 12 receive from the molten metal 5 that passes through the roll gap 13 is controlled according to the reaction force estimated by the reaction force estimator 15.
  • the control unit 16 controls the amount of heat received per unit time to be smaller as the estimated reaction force is larger, and controls the amount of heat received per unit time to be larger as the estimated reaction force is smaller.
  • the reaction force estimator 15 correlates the reaction force acting on the roll gap 13 with the temperature of the molten metal 5 and the position of the liquid surface of the molten metal 5, and thus the molten metal received by the molten metal nozzle 14. 5 and a position detector 152 for detecting the position of the liquid level of the molten metal 5 received by the molten metal nozzle 14.
  • the temperature detector 151 is composed of a thermocouple or the like, and the detected temperature data of the molten metal 5 is read into the control unit 16 as a detection signal at predetermined time intervals.
  • the position detector 152 is configured by a laser displacement sensor or the like, and the detected position data of the melt surface is read into the control unit 16 as a detection signal at predetermined time intervals.
  • a casting roll displacement detector 153 that measures the horizontal displacement of the other casting roll 12 may be used as the reaction force estimator 15.
  • control unit 16 includes a pair of casting rolls 11 and 12 according to the temperature of the molten metal 5 detected by the temperature detector 151 and the position detector 152 and the position of the liquid level of the molten metal 5.
  • the amount of heat received per unit time received from the molten metal 5 passing through the gap 13 is controlled, as a control of the amount of heat received per unit time, the peripheral speed of the pair of casting rolls 11 and 12 is controlled, and instead of this. Or in addition to this, controlling the temperature of the contact surfaces 113, 123 of the pair of casting rolls 11, 12 is included.
  • FIG. 5A is a graph showing a first example of a control map stored in the control unit 16, and shows a control relationship of the peripheral speed of the casting rolls 11 and 12 with respect to the temperature of the molten metal 5 and the position of the liquid surface of the molten metal 5. It is.
  • the relationship between the position of the liquid level and the peripheral speed of the casting rolls 11 and 12 is collected in advance using the actual machine of the twin roll type vertical casting apparatus 1 or collected using a computer simulation or the like. Since the data is stored in the control unit 16, the profile of the control line shown in FIG. 5A shows an example.
  • control map shown in FIG. 5A shows the relationship between the position of the liquid surface of the molten metal 5 and the peripheral speed of the casting rolls 11 and 12 with respect to the temperature of the molten metal 5.
  • the temperature of the molten metal 5 is set at 5 deg intervals.
  • the peripheral speed may be obtained using interpolation processing or the like.
  • control map shown in FIG. 5A shows the relationship between the position of the molten metal 5 and the peripheral speed of the casting rolls 11 and 12 with respect to the temperature of the molten metal 5.
  • FIG. 5B is an example of a control map for controlling the peripheral speeds of the casting rolls 11 and 12 only according to the position of the liquid surface of the molten metal 5
  • FIG. 5C shows the casting roll 11 according to only the temperature of the molten metal 5.
  • 12 is an example of a control map for controlling the peripheral speed.
  • FIG. 6 shows that the position of the liquid level of the molten metal 5 detected by the position detector 152 is read into the control unit 16, and the peripheral speed of the casting rolls 11 and 12 is controlled by the control unit 16 when the temperature of the molten metal 5 is constant. It is a graph which shows the Example which measured the displacement of the roll gap 13 at the time of controlling. The dotted line in the figure shows, as a comparative example, the displacement of the roll gap 13 when the peripheral speed of the casting rolls 11 and 12 is controlled to be constant regardless of the position of the liquid level of the molten metal.
  • the casting rolls 11 and 12 are compared as in the comparative example.
  • the peripheral speed is maintained at the predetermined value V 0
  • the roll gap 13 becomes significantly smaller than the predetermined value G 0 as indicated by the dotted line in the comparative example.
  • the control unit 16 controls the peripheral speed of the casting rolls 11 and 12 to be smaller than the predetermined value V 0 as the position of the liquid level of the molten metal 5 is lowered from the predetermined value H 0. Therefore, the roll gap 13 is not more significantly smaller predetermined value G 0.
  • the peripheral speed of the casting rolls 11 and 12 is set to the predetermined value as in the comparative example.
  • the roll gap 13 becomes significantly larger than the predetermined value G 0 as indicated by the dotted line in the comparative example.
  • the control unit 16 controls the peripheral speed of the casting rolls 11 and 12 to be larger than the predetermined value V 0 as the position of the liquid level of the molten metal 5 increases from the predetermined value H 0. Therefore, the roll gap 13 is not significantly greater than the predetermined value G 0.
  • the peripheral speeds of the casting rolls 11 and 12 are set as in the comparative example.
  • the roll gap 13 becomes significantly smaller than the predetermined value G 0 as indicated by the dotted line in the comparative example.
  • the control unit 16 controls the peripheral speed of the casting rolls 11 and 12 to be larger than the predetermined value V 0 as the temperature of the molten metal 5 decreases from the predetermined value t 0 , the roll gap 13 should more significantly smaller predetermined value G 0.
  • the control unit 16 controls the peripheral speed of the casting rolls 11 and 12 to be smaller than the predetermined value V 0 as the temperature of the molten metal 5 increases from the predetermined value t 0. gap 13 must not significantly greater than the predetermined value G 0.
  • the molten metal 5 passing through the roll gap 13 counteracts the elastic force of the elastic body 122 and pushes the roll gap 13 apart.
  • the temperature detector 151 that detects the temperature of the molten metal 5 and / or the position detector 152 that detects the position of the liquid surface of the molten metal 5.
  • the amount of heat received by the pair of casting rolls 11, 12, specifically the peripheral speed of the pair of casting rolls 11, 12, is controlled, so that the amount of heat received at the contact surfaces 113, 123 of the pair of casting rolls 11, 12 is varied.
  • the uniformity of the plate thickness t and the finished quality of the surface and the inner surface can be maintained at a certain value or more.
  • the control unit 16 includes the pair of casting rolls 11 and 12 according to the temperature of the molten metal 5 detected by the temperature detector 151 and the position detector 152 and the position of the liquid level of the molten metal 5.
  • the amount of heat received per unit time received from the molten metal 5 passing through the roll gap 13 is controlled.
  • a pair of casting rolls 11 and 12 are controlled.
  • controlling the temperature of the contact surfaces 113 and 123 of the pair of casting rolls 11 and 12 is included.
  • Each of the pair of casting rolls 11 and 12 of the present embodiment includes a temperature controller 17 that adjusts the temperature of the contact surfaces 113 and 123 of the casting roll that at least the molten metal 5 contacts, and the temperature controller 17 includes at least a contact.
  • a heat medium circulation system 171 that heats or cools the surfaces 113 and 123, a flow rate regulator 172 that regulates the flow rate of the heat medium, and a medium temperature regulator 173 that regulates the temperature of the heat medium.
  • the heat medium may be in contact with at least the back surfaces of the contact surfaces 113 and 123 of the pair of casting rolls 11 and 12, but is configured to circulate part or all of the inside of the hollow cylindrical bodies 114 and 124 as described above. May be.
  • the heat medium contacts at least the back surfaces of the contact surfaces 113 and 123 of the pair of casting rolls 11 and 12, and heats or cools the temperatures of the contact surfaces 113 and 123. It may be cooling water.
  • the medium temperature controller 173 includes a heater, a cooler, a heat exchanger, or the like that heats or cools the returned heat medium by circulating through the pair of casting rolls 11 and 12, and cools when the heat medium is a refrigerant. Or a heat exchanger for heating.
  • the flow controller 172 includes a flow control valve. The flow rate regulator 172 and the medium temperature regulator 173 are controlled by a control signal from the control unit 16.
  • the temperature controller 17 controls the heating of at least the contact surfaces 113 and 123, thereby receiving per unit time.
  • the amount of heat received is controlled to be smaller, and the amount of heat received per unit time is controlled to be larger by controlling the cooling of at least the contact surfaces 113 and 123 by the temperature controller 17 as the estimated reaction force is smaller.
  • the heat medium is a refrigerant (cooling water)
  • the higher the temperature of the molten metal 5 detected by the temperature detector 151 the more the flow rate of the cooling water is controlled by the flow rate regulator 172, so The amount of heat is largely controlled, and the lower the temperature of the molten metal 5, the smaller the amount of heat received per unit time is controlled by controlling the flow rate of the cooling water less by the flow rate controller 172, and the molten metal 5 detected by the position detector 152.
  • the amount of heat received per unit time is greatly controlled by controlling a large amount of.
  • the molten metal 5 passing through the roll gap 13 counteracts the elastic force of the elastic body 122 and pushes the roll gap 13 apart.
  • the temperature detector 151 that detects the temperature of the molten metal 5 and / or the position detector 152 that detects the position of the liquid surface of the molten metal 5.
  • the amount of heat received by the pair of casting rolls 11, 12, specifically, the temperature of the contact surfaces 113, 123 of the pair of casting rolls 11, 12 is controlled by heating or cooling.
  • Variations in the amount of heat received on the surfaces 113 and 123 are reduced, fluctuations in the solidification rate of the molten metal are reduced, and as a result, the roll gap 13 is stabilized. Thereby, the uniformity of the plate thickness t and the finished quality of the surface and the inner surface can be maintained at a certain value or more.
  • controlling the amount of heat received according to the reaction force estimator 15 described above is not only in the middle of casting, but also in the initial casting stage and the final casting stage in batch casting such as the twin-roll vertical casting apparatus 1 of the present embodiment. The effect is also demonstrated.
  • molten metal 5 is injected from the ladle 18 to the molten metal nozzle 14 at a predetermined flow rate (flow rate per unit time), but the liquid level of the molten metal 5 reaches a predetermined position after the injection starts. Until then, the liquid level of the molten metal 5 gradually rises. Therefore, if the amount of heat received by the pair of casting rolls 11 and 12 from the molten metal is kept constant, specifically, the peripheral speed of the pair of casting rolls 11 and 12 is increased. If it is made constant, the roll gap 13 is also initially narrow and gradually widens as the liquid level of the molten metal 5 rises as shown in the comparative example in the left diagram of FIG. For this reason, the thickness t of the aluminum sheet 2 at the initial casting becomes thinner than the target thickness, and cannot be used for the intended purpose and must be discarded.
  • the peripheral speed of the pair of casting rolls 11 and 12 is controlled gradually and greatly according to the position of the liquid surface of the molten metal 5, in other words, If the peripheral speed of the pair of casting rolls 11 and 12 at the initial stage of casting is set small and controlled so as to gradually increase from here, the time until the roll gap 13 is stabilized at a predetermined value is shortened. The disposal length is shortened.
  • the position of the liquid level of the molten metal 5 may be detected by the position detector 152, but the volume of the molten metal nozzle 14 and the flow rate at the time of pouring from the ladle 18 to the molten metal nozzle 14 are known.
  • the peripheral speeds of the pair of casting rolls 11 and 12 may be controlled based on the time from the start of pouring.
  • the temperature detector 151 controls the temperature of the molten metal 5. You may detect and control the circumferential speed of a pair of casting rolls 11 and 12 using the detected molten metal temperature and the control map shown to FIG. 5A. Even in the initial stage of casting, the peripheral speed of the pair of casting rolls 11 and 12 is controlled to be lower as the detected temperature of the molten metal is higher, and the peripheral speed of the pair of casting rolls 11 and 12 is controlled to be higher as the temperature of the molten metal is lower. .
  • the contact surface of the pair of casting rolls 11 and 12 may be controlled to be heated or cooled by using the temperature controller 17. That is, since the reaction force estimated by the reaction force estimator 15 including the temperature detector 151 and the position detector 152 is relatively small in the initial stage of casting, at least the contact surfaces 113 and 123 are controlled to be cooled by the temperature controller 17. This greatly controls the amount of heat received per unit time.
  • the heat medium is a refrigerant (cooling water)
  • the amount of heat received per unit time is largely controlled by controlling the flow rate of the cooling water by the flow rate regulator 172 at the initial stage of casting.
  • the amount of heat received by the pair of casting rolls 11 and 12 between the molten metal is constant.
  • the roll gap 13 is gradually narrowed as the liquid level of the molten metal 5 is lowered as shown in the comparative example in the left diagram of FIG. For this reason, the thickness t of the aluminum sheet 2 at the end of casting becomes thinner than the target thickness and cannot be used for the intended purpose and must be discarded.
  • the peripheral speed of the pair of casting rolls 11 and 12 is controlled to be gradually reduced as the liquid level position of the molten metal 5 is lowered, The time during which the roll gap 13 maintains the predetermined value becomes longer, and the discarded length of the aluminum sheet 2 becomes shorter.
  • the position of the liquid surface of the molten metal 5 may be detected by the position detector 152, but the volume of the molten metal nozzle 14 and the flow rate of the molten metal discharged from the molten metal nozzle 14 are known.
  • the time from when the position of the liquid level starts to drop from a predetermined height until the molten metal runs out can be calculated. Therefore, instead of the position detector 152, the peripheral speeds of the pair of casting rolls 11 and 12 may be controlled based on the time from the start of the descent of the position of the liquid level of the molten metal 5.
  • the temperature detector 151 controls the temperature of the molten metal 5. You may detect and control the circumferential speed of a pair of casting rolls 11 and 12 using the detected molten metal temperature and the control map shown to FIG. 5A. Even at the end of casting, the higher the detected molten metal temperature, the smaller the peripheral speed of the pair of casting rolls 11, 12, and the lower the molten metal temperature, the larger the peripheral speed of the pair of casting rolls 11, 12 are controlled. .
  • the contact surface of the pair of casting rolls 11 and 12 may be controlled to be heated or cooled by using the temperature controller 17. That is, since the reaction force estimated by the reaction force estimator 15 including the temperature detector 151 and the position detector 152 is relatively small at the end of casting, at least the contact surfaces 113 and 123 are controlled to be cooled by the temperature controller 17. This greatly controls the amount of heat received per unit time.
  • the heat medium is a refrigerant (cooling water)
  • the amount of heat received per unit time is largely controlled by controlling the flow rate of the cooling water by the flow rate regulator 172 at the initial stage of casting.
  • Casting roll displacement detector 16 Control unit 17 ... Temperature controller 171 ... Circulation system 172 ... Flow controller 173 ... Medium temperature controller 18 ... Ladle (Ladle) DESCRIPTION OF SYMBOLS 2 ... Aluminum sheet 3 ... Winding machine 4 ... Base 41 ... Slide rail 5 ... Molten metal 51 ... Molten metal 51 ... Molten metal coexisting with solid-liquid 53 ... Molten metal (sheet) 6 ... Guide plate 7 ... Guide roller

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

Provided is a twin roll-type vertical casting device comprising: a pair of casting rolls (11, 12) that are arranged opposite each other with a predetermined roll gap (13) therebetween, that rotate at the same circumferential speed as one another around parallel rotational axes (111, 121), and that are elastically biased toward a direction in which said casting rolls (11, 12) approach one another; and a molten metal nozzle (14) that is arranged above the roll gap of the pair of casting rolls and that receives a molten metal of an aluminum material, said molten metal nozzle (14) comprising a pair of main barrier plates (141, 142) arranged opposite each other in a direction parallel to the rotational axes and a pair of side barrier plates (143, 144) that are arranged opposite each other in a direction orthogonal to the rotational axes and that are in close contact with both end surfaces of the pair of main barrier plates. When producing a sheet (2) from the aluminum material by pouring the molten metal from the molten metal nozzle (14) into the roll gap, a fixed amount of the molten metal of the aluminum material is poured into the molten metal nozzle, the position of the liquid surface of the molten metal poured into the molten metal nozzle is detected, and the rotational speed of the pair of casting rolls is controlled in accordance with the detected position of the liquid surface of the molten metal.

Description

双ロール式縦型鋳造装置及び双ロール式縦型鋳造方法Twin roll type vertical casting apparatus and twin roll type vertical casting method
 本発明は、双ロール式縦型鋳造装置及び双ロール式縦型鋳造方法に関するものである。 The present invention relates to a twin roll type vertical casting apparatus and a twin roll type vertical casting method.
 溶湯液面の状態に左右されずに板厚と品質が安定したシートを高速度で採取することができる双ロール式縦型鋳造装置として、一対の水冷回転ロールの上方に、一対の主堰及び一対の横堰を延設したものが知られている(特許文献1)。 As a twin roll type vertical casting apparatus capable of collecting a sheet with stable plate thickness and quality at a high speed without being affected by the state of the molten liquid level, a pair of main weirs and An extension of a pair of horizontal weirs is known (Patent Document 1).
特許第4873626号公報Japanese Patent No. 4873626
 しかしながら、この種の双ロール式縦型鋳造装置は、大量生産時において、溶湯の温度及び溶湯の液面高さ又は溶湯ヘッド圧は目標設定値から変動し易い。溶湯の温度や液面高さが変動するとロールギャップが不安定となり、その結果、得られるシート材の板厚が不均一になったり、仕上がり品質が低下したりする。 However, in this type of twin roll type vertical casting apparatus, during mass production, the temperature of the molten metal and the height of the molten metal or the molten metal head pressure are likely to vary from the target set value. When the temperature of the molten metal and the liquid level are fluctuated, the roll gap becomes unstable. As a result, the plate thickness of the obtained sheet material becomes non-uniform, and the finished quality decreases.
 本発明が解決しようとする課題は、板厚の均一性並びに表面及び内面の仕上がり品質を一定値以上に維持できる双ロール式縦型鋳造装置及び双ロール式縦型鋳造方法を提供することである。 The problem to be solved by the present invention is to provide a twin roll type vertical casting apparatus and a twin roll type vertical casting method capable of maintaining the uniformity of the plate thickness and the finished quality of the surface and the inner surface at a predetermined value or more. .
 本発明は、溶湯ノズルに注湯された溶湯の液面の位置を検出し、この検出された溶湯の液面の位置に応じて、一対の鋳造ロールの回転速度を制御することによって上記課題を解決する。 The present invention detects the position of the melt level poured into the melt nozzle, and controls the rotational speed of the pair of casting rolls according to the detected position of the melt level. Resolve.
 溶湯ノズルに注湯された溶湯の液面の位置が低いほど、ロールギャップを通過する溶湯の当該ロールギャップを押し広げようとする反力が小さく、溶湯ノズルに注湯された溶湯の液面の位置が高いほど、ロールギャップを通過する溶湯の当該ロールギャップを押し広げようとする反力が大きい。このため、本発明においては、溶湯の液面の位置に応じて一対の鋳造ロールの回転速度を制御するので、ロールギャップ近傍における溶湯の凝固が促進又は抑制され、これによりロールギャップの縮小又は拡大が抑制される。この結果、ロールギャップが安定し、得られるアルミニウム系シート材の板厚の均一性並びに表面及び内面の仕上がり品質を一定値以上に維持することができる。 The lower the position of the liquid level of the melt poured into the melt nozzle, the smaller the reaction force that pushes the roll gap of the melt passing through the roll gap, and the level of the melt level poured into the melt nozzle is smaller. The higher the position, the greater the reaction force that pushes the roll gap of the molten metal passing through the roll gap. For this reason, in the present invention, since the rotational speed of the pair of casting rolls is controlled according to the position of the liquid level of the molten metal, solidification of the molten metal in the vicinity of the roll gap is promoted or suppressed, thereby reducing or expanding the roll gap. Is suppressed. As a result, the roll gap is stabilized, and the thickness uniformity of the obtained aluminum-based sheet material and the finished quality of the surface and the inner surface can be maintained at a certain value or more.
本発明に係る双ロール式縦型鋳造装置の一実施の形態を示す側面図である。1 is a side view showing an embodiment of a twin roll type vertical casting apparatus according to the present invention. 図1の平面図である。It is a top view of FIG. 図1の分解斜視図である。FIG. 2 is an exploded perspective view of FIG. 1. 図1の主要部分の断面図である。It is sectional drawing of the principal part of FIG. 図1の制御ユニットに記憶される制御マップの第1例を示すグラフである。It is a graph which shows the 1st example of the control map memorize | stored in the control unit of FIG. 図1の制御ユニットに記憶される制御マップの第2例を示すグラフである。It is a graph which shows the 2nd example of the control map memorize | stored in the control unit of FIG. 図1の制御ユニットに記憶される制御マップの第3例を示すグラフである。It is a graph which shows the 3rd example of the control map memorize | stored in the control unit of FIG. ロールギャップ、鋳造ロールの周速度及び溶湯の液面の位置の経時変化を測定した実施例及び比較例を示すグラフである。It is a graph which shows the Example and comparative example which measured the time-dependent change of the roll gap, the peripheral speed of a casting roll, and the position of the liquid level of a molten metal. ロールギャップ、鋳造ロールの周速度及び溶湯の温度の経時変化を測定した実施例及び比較例を示すグラフである。It is a graph which shows the Example and comparative example which measured the time-dependent change of the roll gap, the peripheral speed of a casting roll, and the temperature of a molten metal. 鋳造初期におけるロールギャップ、鋳造ロールの周速度及び溶湯の液面の位置の経時変化を測定した実施例及び比較例を示すグラフである。It is a graph which shows the Example and comparative example which measured the time-dependent change of the roll gap in the initial stage of casting, the peripheral speed of a casting roll, and the position of the liquid level of a molten metal. 鋳造終期におけるロールギャップ、鋳造ロールの周速度及び溶湯の液面の位置の経時変化を測定した実施例及び比較例を示すグラフである。It is a graph which shows the Example and comparative example which measured the time-dependent change of the roll gap in the casting last stage, the peripheral speed of a casting roll, and the position of the liquid level of a molten metal.
 以下、本発明の一実施の形態を図面に基づいて説明する。本実施形態の双ロール式縦型鋳造装置1は、溶解されたアルミニウム系材料を、特に限定はされないが例えば1000℃/秒以上の冷却速度で冷間圧延し、所定厚さt、所定幅W及び所定長Lのシート2に製造するための鋳造装置である。冷却速度を大きくすることで不純物が含まれていても大きく成長せず、また生産性も高いという利点がある。鋳造原料となるアルミニウム系材料としては、特に限定されないが例えば、アルミニウムのほか、アルミニウム・シリコン合金、アルミニウム・シリコン・マグネシウム合金その他のアルミニウム合金が含まれる。これらアルミニウム系材料の融点又は液相温度は、概ね580~670℃である。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the twin roll type vertical casting apparatus 1 of the present embodiment, the molten aluminum-based material is cold-rolled at a cooling rate of, for example, 1000 ° C./second or more, although not particularly limited, and has a predetermined thickness t and a predetermined width W. And a casting apparatus for producing a sheet 2 having a predetermined length L. Increasing the cooling rate has the advantage that even if impurities are contained, it does not grow greatly and the productivity is high. The aluminum-based material used as a casting raw material is not particularly limited, but includes, for example, aluminum, an aluminum-silicon alloy, an aluminum-silicon-magnesium alloy, and other aluminum alloys. The melting point or liquidus temperature of these aluminum-based materials is approximately 580 to 670 ° C.
 本実施形態の双ロール式縦型鋳造装置1は、所定のロールギャップ13をもって対向配置された一対の鋳造ロール11,12と、当該一対の鋳造ロール11,12のロールギャップ13の上方に配置され、アルミニウム系材料の溶湯5を受容する溶湯ノズル14と、溶湯ノズル14からロールギャップ13を通過する溶湯5が、弾性付勢に反して当該ロールギャップ13を押し広げようとする反力を推定する反力推定器15と、反力推定器15により推定された反力に応じて一対の鋳造ロール11,12がロールギャップ13を通過する溶湯5から受ける単位時間当たりの受熱量を制御する制御ユニット16と、を備える。 The twin roll type vertical casting apparatus 1 of the present embodiment is disposed above a pair of casting rolls 11 and 12 that are opposed to each other with a predetermined roll gap 13 and the roll gap 13 of the pair of casting rolls 11 and 12. The molten metal nozzle 14 that receives the molten metal 5 of the aluminum-based material and the molten metal 5 that passes through the roll gap 13 from the molten metal nozzle 14 estimate the reaction force that pushes the roll gap 13 against the elastic bias. A reaction force estimator 15 and a control unit that controls the amount of heat received per unit time that the pair of casting rolls 11 and 12 receive from the molten metal 5 that passes through the roll gap 13 according to the reaction force estimated by the reaction force estimator 15. 16.
 一対の鋳造ロール11,12は、架台4に搭載され、一方の鋳造ロール11は、回転軸111を中心にして回転するように設けられ、他方の鋳造ロール12は、回転軸111に平行な回転軸121を中心にして回転するように設けられている。本実施形態における一方の鋳造ロール11は、架台4に対して位置が固定され、他方の鋳造ロール12は、スライドレール41を介して一方の鋳造ロール11に対して水平方向に接近及び離反移動が可能とされている。当該他方の鋳造ロール12は、一方の鋳造ロール11に向かう方向にばね又は流体圧シリンダなどの弾性体122により弾性付勢されているが、最も接近した際のロールギャップ13は、目的とするシート2の板厚tに応じたゼロを超える所定値、特に限定されないが例えば、0.5~3mmに設定されている。なお、一対の鋳造ロール11,12の両者を、架台4に対して互いに接近及び離反移動が可能に構成してもよい。 The pair of casting rolls 11 and 12 are mounted on the gantry 4, and one casting roll 11 is provided so as to rotate around the rotation shaft 111, and the other casting roll 12 rotates in parallel with the rotation shaft 111. It is provided so as to rotate around the shaft 121. The position of one casting roll 11 in this embodiment is fixed with respect to the gantry 4, and the other casting roll 12 moves toward and away from the one casting roll 11 in the horizontal direction via the slide rail 41. It is possible. The other casting roll 12 is elastically urged by an elastic body 122 such as a spring or a fluid pressure cylinder in a direction toward the one casting roll 11. A predetermined value exceeding zero corresponding to the plate thickness t of 2, for example, 0.5 to 3 mm, although not particularly limited. Note that both of the pair of casting rolls 11 and 12 may be configured to be able to move toward and away from the gantry 4.
 一対の鋳造ロール11,12は、互いに等しい周速度で回転するように、プーリ及びベルトなどの伝達機構を介して回転駆動モータ112に接続されている。本実施形態の鋳造ロール11,12は、外径が等しくされているので、一つの回転駆動モータ112により互いに逆方向、すなわちロールギャップ13において溶湯5を鉛直下方向へ押し下げる力が作用するように等しい周速度で回転する。図1及び図4に示す例においては、一方の鋳造ロール11は反時計方向に回転し、他方の鋳造ロール12は時計方向に回転する。なお、回転駆動モータ112は、出力軸の回転速度を可変とするインバータ装置116により回転速度が制御され、当該インバータ装置116は制御ユニット16からの制御指令により制御されるが、その制御内容については後述する。 The pair of casting rolls 11 and 12 are connected to the rotational drive motor 112 via a transmission mechanism such as a pulley and a belt so as to rotate at the same peripheral speed. Since the outer diameters of the casting rolls 11 and 12 of the present embodiment are equal, a force that pushes the molten metal 5 downward in the opposite direction, that is, in the roll gap 13, acts by one rotational drive motor 112. Rotates at equal circumferential speed. In the example shown in FIGS. 1 and 4, one casting roll 11 rotates counterclockwise, and the other casting roll 12 rotates clockwise. Note that the rotation speed of the rotation drive motor 112 is controlled by an inverter device 116 that makes the rotation speed of the output shaft variable, and the inverter device 116 is controlled by a control command from the control unit 16. It will be described later.
 ちなみに、一対の鋳造ロール11,12の外径を等しくすれば、変速機構を設けることなく一つの回転駆動モータ112により等しい周速度で回転させることができる。また、一対の鋳造ロール11,12の外径を等しくし、後述する溶湯ノズル14の主堰板141,142の中心をロールギャップ13の中心に一致させれば、溶湯ノズル14の下端の溶湯5と鋳造ロール11,12との接触面113,123の面積が等しくなるので、鋳造されるシートの表裏における冷却速度が均等になる。ただし、本発明の一対の鋳造ロール11,12は、周速度が等しければ異なる外径であってもよい。この場合に、溶湯ノズル14の下端の溶湯5と鋳造ロール11,12との接触面113,123の面積を等しくするためには、溶湯ノズル14の主堰板141,142の中心の位置をロールギャップ13の中心に対してどちらかにずらせばよい。 Incidentally, if the outer diameters of the pair of casting rolls 11 and 12 are made equal, they can be rotated at the same peripheral speed by one rotary drive motor 112 without providing a speed change mechanism. Further, if the outer diameters of the pair of casting rolls 11 and 12 are made equal and the centers of main dam plates 141 and 142 of the molten metal nozzle 14 described later are made coincident with the center of the roll gap 13, the molten metal 5 at the lower end of the molten metal nozzle 14 is obtained. Since the areas of the contact surfaces 113 and 123 between the casting rolls 11 and 12 are equal, the cooling rate on the front and back of the cast sheet is uniform. However, the pair of casting rolls 11 and 12 of the present invention may have different outer diameters as long as the peripheral speed is equal. In this case, in order to equalize the areas of the contact surfaces 113, 123 between the molten metal 5 at the lower end of the molten metal nozzle 14 and the casting rolls 11, 12, the center position of the main dam plates 141, 142 of the molten metal nozzle 14 is rolled. What is necessary is just to shift | deviate with respect to the center of the gap 13.
 一対の鋳造ロール11,12は、回転軸111,121の両端部にそれぞれ固定されたハブ(不図示)に中空状筒体114,124をそれぞれ固定し、その表面に熱伝導性が良好な銅などの金属層(金属板)115,125を固定することにより構成されている。中空状筒体114,124の内部の一部又は全部には、後述する熱媒体が循環する循環系統171が設けられ、少なくとも溶湯5との接触面113,123の裏面の金属層115,125に熱媒体が接触するように、スプレーノズルが設けられたり、あるいは中空状筒体114,124の内部の一部又は全体が熱媒体の流路とされている。本実施形態の一対の鋳造ロール11,12のそれぞれは、少なくとも溶湯5が接触する鋳造ロールの接触面113,123の温度を調節する温度調節器17を含むが、その詳細は後述する。 The pair of casting rolls 11 and 12 has hollow cylindrical bodies 114 and 124 fixed to hubs (not shown) fixed to both ends of the rotating shafts 111 and 121, respectively, and copper having good thermal conductivity on the surfaces thereof. It is comprised by fixing metal layers (metal plate) 115,125, such as. A circulation system 171 through which a heat medium, which will be described later, circulates is provided in a part or all of the interiors of the hollow cylindrical bodies 114 and 124, and at least the metal layers 115 and 125 on the back surface of the contact surfaces 113 and 123 with the molten metal 5. A spray nozzle is provided so that the heat medium comes into contact, or a part or the whole of the hollow cylinders 114 and 124 is used as a flow path for the heat medium. Each of the pair of casting rolls 11 and 12 of this embodiment includes a temperature controller 17 that adjusts the temperature of the contact surfaces 113 and 123 of the casting roll with which at least the molten metal 5 contacts, the details of which will be described later.
 本実施形態の溶湯ノズル14は、一対の鋳造ロール11,12の回転軸111,121と平行に対向配置された一対の主堰板141,142と、回転軸111,121と直交して対向配置されるとともに一対の主堰板141,142の両端面に密接された一対の側堰板143,144とを含んで構成されている。すなわち、本実施形態の溶湯ノズル14は、4つの側面を有し、上面と下面がそれぞれ開口した矩形筒体とされている。 The molten metal nozzle 14 of the present embodiment is disposed so as to be opposed to the pair of main dam plates 141 and 142 disposed in parallel to the rotation shafts 111 and 121 of the pair of casting rolls 11 and 12 and orthogonal to the rotation shafts 111 and 121. And a pair of side dam plates 143 and 144 in close contact with both end faces of the pair of main dam plates 141 and 142. That is, the molten metal nozzle 14 of the present embodiment is a rectangular cylinder having four side surfaces, each having an upper surface and a lower surface opened.
 一対の主堰板141,142及び一対の側堰板143,144は、アルミニウム系材料の融点又は液相温度に耐え得る耐熱性を有するセラミックス製板材を基材とし、その表面(少なくとも主堰板と側堰板とで囲まれる内面)に、同等の耐熱性を有する断熱材層が形成されてなる。そして、一対の主堰板141,142の下端が、上述した一対の鋳造ロール11,12の表面に接触又は僅かな隙間をあけて設けられている。また、一対の側堰板143,144は、図2の平面図に示すように、一対の主堰板141,142の側縁と一対の鋳造ロール11,12の両側面に、押圧弾性体145,146を介して当接する。すなわち、主堰板141,142の幅方向の長さは鋳造ロール11,12の幅方向の長さとほぼ等しく形成され、一対の側堰板143,144は、これら一対の主堰板141,142と一対の鋳造ロール11,12とに押圧されている。これにより、一対の主堰板141,142、一対の側堰板143,144及び一対の鋳造ロール11,12のロールギャップ13の近傍(接触面113,123)とで囲まれた空間に溶湯5が受容されることになる。 The pair of main dam plates 141 and 142 and the pair of side dam plates 143 and 144 are made of a ceramic plate material having heat resistance that can withstand the melting point or liquidus temperature of the aluminum-based material, and the surface (at least the main dam plate). And a heat insulating material layer having equivalent heat resistance is formed on the inner surface surrounded by the side dam plate. And the lower end of a pair of main dam plates 141 and 142 is provided in contact with the surface of a pair of above-mentioned casting rolls 11 and 12 or a slight crevice. Further, as shown in the plan view of FIG. 2, the pair of side dam plates 143 and 144 are pressed elastic bodies 145 on the side edges of the pair of main dam plates 141 and 142 and the both side surfaces of the pair of casting rolls 11 and 12. , 146. That is, the length in the width direction of the main dam plates 141 and 142 is formed to be substantially equal to the length in the width direction of the casting rolls 11 and 12, and the pair of side dam plates 143 and 144 is formed of the pair of main dam plates 141 and 142. And a pair of casting rolls 11 and 12. Thus, the molten metal 5 is contained in a space surrounded by the pair of main dam plates 141 and 142, the pair of side dam plates 143 and 144, and the vicinity of the roll gap 13 of the pair of casting rolls 11 and 12 (contact surfaces 113 and 123). Will be accepted.
 なお、他方の鋳造ロール12の接触面123に接触又は僅かな隙間をあけて設けられる主堰板141には、当該他方の鋳造ロール12が架台4に対して水平方向に移動する際においても、他方の鋳造ロール12の接触面123との接触又は僅かな隙間を維持するように引張り弾性体147が設けられている。これに対して、一方の鋳造ロール11の接触面113に接触又は僅かな隙間をあけて設けられる主堰板142は、図示はしないが架台4に対して位置が固定されている。 In addition, when the other casting roll 12 moves in the horizontal direction with respect to the gantry 4 on the main weir plate 141 provided in contact with the contact surface 123 of the other casting roll 12 or with a slight gap, A tensile elastic body 147 is provided so as to maintain contact with the contact surface 123 of the other casting roll 12 or a slight gap. On the other hand, the position of the main dam plate 142 provided in contact with the contact surface 113 of one casting roll 11 or with a slight gap is fixed with respect to the gantry 4 although not shown.
 溶湯ノズル14の上方には、レードル(取鍋)18が設けられ、当該レードル18に収容された溶湯5を溶湯ノズル14に注入するための、ホイストクレーンなどのレードル移動機構(不図示)が設けられている。アルミニウム系材料の固形原材料は、レードル18に投入された状態で別途の溶解炉にて溶解され、このレードル18をレードル移動機構により溶湯ノズル14の近傍に移動し、当該レードル18を傾けることで溶湯5を溶湯ノズル14に注入する。 A ladle (ladder) 18 is provided above the molten metal nozzle 14, and a ladle moving mechanism (not shown) such as a hoist crane for injecting the molten metal 5 accommodated in the ladle 18 into the molten metal nozzle 14 is provided. It has been. The solid raw material of the aluminum-based material is melted in a separate melting furnace while being put in the ladle 18, the ladle 18 is moved to the vicinity of the molten metal nozzle 14 by a ladle moving mechanism, and the ladle 18 is tilted to melt the molten metal. 5 is injected into the melt nozzle 14.
 一対の鋳造ロール11,12の下方には、ロールギャップ13を通過して固相状態となったアルミニウムシート2を略水平方向に案内するガイド板6が設けられ、その下流にガイドローラ7と巻取機3が設けられている。ロールギャップ13を通過して固相状態となったアルミニウムシート2は、ガイド板6により水平方向に案内されたのちガイドローラ7の上面を滑りつつ巻取機3によってロール状に巻き取られる。 Below the pair of casting rolls 11 and 12, there is provided a guide plate 6 for guiding the aluminum sheet 2 that has passed through the roll gap 13 and is in a solid state in a substantially horizontal direction, and a guide roller 7 and a winding are provided downstream thereof. A take-up machine 3 is provided. The aluminum sheet 2 that has passed through the roll gap 13 and is in a solid state is guided in the horizontal direction by the guide plate 6, and then wound in a roll shape by the winder 3 while sliding on the upper surface of the guide roller 7.
 図4は、本実施形態の双ロール式縦型鋳造装置1の溶湯ノズル14及び一対の鋳造ロール11,12で囲まれた鋳造の主要部分を示す断面図であり、本実施形態の双ロール式縦型鋳造装置1においては、レードル18から溶湯ノズル14へ溶湯5を注入すると同時又は若干のタイムラグをもって、一対の鋳造ロール11,12の回転を開始する。この溶湯注入初期段階において、溶湯ノズル14への溶湯5の注入速度(単位時間当たりの注入容積)は、ロールギャップ13を通過して固相状態となるアルミニウムシート2の鋳造速度(単位時間当たりの鋳造容積)よりも大きい速度に設定する。 FIG. 4 is a cross-sectional view showing a main part of casting surrounded by the molten metal nozzle 14 and the pair of casting rolls 11 and 12 of the twin roll type vertical casting apparatus 1 of the present embodiment, and the twin roll type of the present embodiment. In the vertical casting apparatus 1, when the molten metal 5 is injected from the ladle 18 into the molten metal nozzle 14, rotation of the pair of casting rolls 11 and 12 is started simultaneously or with a slight time lag. In this initial stage of molten metal injection, the injection speed (injection volume per unit time) of the molten metal 5 into the molten metal nozzle 14 is the casting speed (per unit time) of the aluminum sheet 2 that passes through the roll gap 13 and enters the solid phase state. Set to a speed greater than the casting volume.
 溶湯ノズル14に注入された溶湯5は、ロールギャップ13の中心水平線と交わる点P1から主堰板141,142に接触又は僅かな隙間をあけて設けられる点P2までの、一対の鋳造ロール11,12の接触面113,123と接触することで、溶湯5は冷却され、凝固し始める。図4において溶湯5のうち液相状態の溶湯を符号51、固液共存の溶湯を符号52、固相の溶湯(すなわちアルミニウムシート2)を符号53で示す。 The molten metal 5 injected into the molten metal nozzle 14 is a pair of casting rolls 11, from a point P 1 intersecting with the central horizontal line of the roll gap 13 to a point P 2 provided in contact with the main weir plates 141, 142 or with a slight gap. By making contact with the 12 contact surfaces 113, 123, the molten metal 5 is cooled and begins to solidify. In FIG. 4, the molten metal 5 is denoted by reference numeral 51, the solid-liquid molten metal 52 is denoted by reference numeral 52, and the solid molten metal (ie, the aluminum sheet 2) is denoted by reference numeral 53.
 本実施形態の双ロール式縦型鋳造装置1は、溶湯5の冷却速度が例えば1000℃/秒以上となる冷間圧延鋳造法であり、この溶湯5の冷却速度に応じて一対の鋳造ロール11,12の周速度が設定される。 The twin roll type vertical casting apparatus 1 of the present embodiment is a cold rolling casting method in which the cooling rate of the molten metal 5 is, for example, 1000 ° C./second or more, and a pair of casting rolls 11 according to the cooling rate of the molten metal 5. , 12 are set.
 ここで、液相の溶湯51が接触面113,123と接触する際の温度が高いと、凝固速度が遅くなり、図4に示す液相の溶湯51及び固液共存の溶湯52の存在領域が、同図において下方にずれることになる。このため、ロールギャップ13を通過する溶湯のうち液相の溶湯51が全体に占める割合が増加し、固相の溶湯53が全体に占める割合が減少するので、弾性体122の弾性付勢に反して当該ロールギャップ13を押し広げようとする反力が減少する。これにより、ロールギャップ13は小さくなる。 Here, if the temperature at which the liquid-phase molten metal 51 comes into contact with the contact surfaces 113 and 123 is high, the solidification rate becomes slow, and the existence region of the liquid-phase molten metal 51 and the solid-liquid coexisting molten metal 52 shown in FIG. In this figure, it is shifted downward. For this reason, the ratio of the liquid-phase molten metal 51 to the whole of the molten metal passing through the roll gap 13 increases and the ratio of the solid-phase molten metal 53 to the whole decreases, which is contrary to the elastic bias of the elastic body 122. As a result, the reaction force to push the roll gap 13 is reduced. Thereby, the roll gap 13 becomes small.
 逆に、液相の溶湯51が接触面113,123と接触する際の温度が低いと、凝固速度が早くなり、図4に示す液相の溶湯51及び固液共存の溶湯52の存在領域が、同図において上方にずれることになる。このため、ロールギャップ13を通過する溶湯のうち固相の溶湯53が全体に占める割合が増加し、液相の溶湯51が全体に占める割合が減少するので、弾性体122の弾性付勢に反して当該ロールギャップ13を押し広げようとする反力が増加する。これにより、ロールギャップ13は大きくなる。 On the contrary, if the temperature at which the liquid-phase molten metal 51 comes into contact with the contact surfaces 113 and 123 is low, the solidification rate increases, and the region where the liquid-phase molten metal 51 and the solid-liquid coexisting molten metal 52 shown in FIG. In this figure, it will be displaced upward. For this reason, the proportion of the molten metal 53 passing through the roll gap 13 is increased, and the proportion of the liquid molten metal 51 is decreased, which is contrary to the elastic bias of the elastic body 122. As a result, the reaction force that pushes and widens the roll gap 13 increases. Thereby, the roll gap 13 becomes large.
 このように、溶湯ノズル14に注入された溶湯5の温度が変動すると、ロールギャップ13の寸法が変動し、その結果、得られるアルミニウムシート2の板厚tが不均一となる。 Thus, when the temperature of the molten metal 5 injected into the molten metal nozzle 14 varies, the dimension of the roll gap 13 varies, and as a result, the thickness t of the obtained aluminum sheet 2 becomes non-uniform.
 また、本実施形態の双ロール式縦型鋳造装置1においては、いわゆるバッチ方式により所定量の溶湯5を溶湯ノズル14に注入し、所定厚さt、所定幅W及び所定長さLのアルミニウムシート2を得るが、溶湯ノズル14に注入された溶湯5の重量が、鋳造中にロールギャップ13に重力として作用する。すなわち、溶湯ノズル14に注入された溶湯5の液面が高いと(溶湯重量が大きいと)、弾性体122の弾性付勢に反して当該ロールギャップ13を押し広げようとする反力が増加する。これにより、ロールギャップ13は大きくなる。 Further, in the twin roll type vertical casting apparatus 1 of the present embodiment, a predetermined amount of molten metal 5 is injected into the molten metal nozzle 14 by a so-called batch method, and an aluminum sheet having a predetermined thickness t, a predetermined width W, and a predetermined length L. 2, the weight of the molten metal 5 injected into the molten metal nozzle 14 acts as gravity on the roll gap 13 during casting. That is, when the level of the molten metal 5 injected into the molten metal nozzle 14 is high (when the molten metal weight is large), the reaction force for expanding the roll gap 13 against the elastic bias of the elastic body 122 increases. . Thereby, the roll gap 13 becomes large.
 また、溶湯ノズル14に注入された溶湯5の液面が高いと(溶湯重量が大きいと)、溶湯5と接触面113,123との密着度が大きくなり、溶湯5の凝固効率が高くなる。このため、図4に示す液相の溶湯51及び固液共存の溶湯52の存在領域が、同図において上方にずれることになり、ロールギャップ13を通過する溶湯のうち固相の溶湯53が全体に占める割合が増加し、液相の溶湯51が全体に示す割合が減少する。このため、弾性体122の弾性付勢に反して当該ロールギャップ13を押し広げようとする反力が増加する。これによっても、ロールギャップ13は大きくなるといえる。 In addition, when the liquid level of the molten metal 5 injected into the molten metal nozzle 14 is high (the molten metal weight is large), the degree of adhesion between the molten metal 5 and the contact surfaces 113 and 123 increases, and the solidification efficiency of the molten metal 5 increases. For this reason, the existence region of the melt 51 in the liquid phase and the melt 52 coexisting with the solid and liquid shown in FIG. 4 is shifted upward in the drawing, and the solid melt 53 out of the melt passing through the roll gap 13 is entirely formed. The ratio of the liquid phase molten metal 51 to the whole decreases. For this reason, the reaction force that pushes and widens the roll gap 13 against the elastic bias of the elastic body 122 increases. Also by this, it can be said that the roll gap 13 becomes large.
 逆に、溶湯ノズル14に注入された溶湯5の液面が低いと(溶湯重量が小さいと)、弾性体122の弾性付勢に反して当該ロールギャップ13を押し広げようとする反力が減少する。これにより、ロールギャップ13は小さくなる。また、溶湯ノズル14に注入された溶湯5の液面が低いと(溶湯重量が小さいと)、溶湯5と接触面113,123との密着度が小さくなり、溶湯5の凝固効率が低くなる。このため、図4に示す液相の溶湯51及び固液共存の溶湯52の存在領域が、同図において下方にずれることになり、ロールギャップ13を通過する溶湯のうち液相の溶湯51が全体に占める割合が増加し、固相の溶湯53が全体に占める割合が減少する。このため、弾性体122の弾性付勢に反して当該ロールギャップ13を押し広げようとする反力が減少する。これによっても、ロールギャップ13は小さくなるといえる。 On the contrary, when the liquid level of the molten metal 5 injected into the molten metal nozzle 14 is low (when the molten metal weight is small), the reaction force for expanding the roll gap 13 against the elastic bias of the elastic body 122 decreases. To do. Thereby, the roll gap 13 becomes small. Moreover, if the liquid level of the molten metal 5 injected into the molten metal nozzle 14 is low (the molten metal weight is small), the degree of adhesion between the molten metal 5 and the contact surfaces 113 and 123 decreases, and the solidification efficiency of the molten metal 5 decreases. For this reason, the existence region of the melt 51 in the liquid phase and the melt 52 coexisting with the solid and liquid shown in FIG. 4 is shifted downward in the same figure, and the melt 51 in the liquid phase out of the melt passing through the roll gap 13 is entirely. The proportion of the solid-phase molten metal 53 increases, and the proportion of the solid phase molten metal 53 decreases. For this reason, the reaction force that pushes and widens the roll gap 13 against the elastic bias of the elastic body 122 decreases. This also makes the roll gap 13 smaller.
 このように、溶湯ノズル14に注入された溶湯5の液面の位置が変動すると、ロールギャップ13の寸法が変動し、その結果、得られるアルミニウムシート2の板厚tが不均一となる。 Thus, when the position of the liquid level of the molten metal 5 injected into the molten metal nozzle 14 varies, the dimension of the roll gap 13 varies, and as a result, the thickness t of the obtained aluminum sheet 2 becomes non-uniform.
 そこで、本実施形態の双ロール式縦型鋳造装置1では、ロールギャップ13を通過する溶湯5が、弾性体122の弾性付勢に反して当該ロールギャップ13を押し広げようとする反力を推定する反力推定器15と、この反力推定器15により推定された反力に応じて一対の鋳造ロール11,12がロールギャップ13を通過する溶湯5から受ける単位時間当たりの受熱量を制御する制御ユニット16と、を備え、制御ユニット16は、推定された反力が大きいほど単位時間当たりの受熱量を小さく制御し、推定された反力が小さいほど単位時間当たりの受熱量を大きく制御する。 Therefore, in the twin roll type vertical casting apparatus 1 of the present embodiment, the reaction force that the molten metal 5 passing through the roll gap 13 tries to push and expand the roll gap 13 against the elastic bias of the elastic body 122 is estimated. And the amount of heat received per unit time that the pair of casting rolls 11 and 12 receive from the molten metal 5 that passes through the roll gap 13 is controlled according to the reaction force estimated by the reaction force estimator 15. The control unit 16 controls the amount of heat received per unit time to be smaller as the estimated reaction force is larger, and controls the amount of heat received per unit time to be larger as the estimated reaction force is smaller. .
 本実施形態に係る反力推定器15は、上述したとおりロールギャップ13に作用する反力は溶湯5の温度と溶湯5の液面の位置に相関することから、溶湯ノズル14に受容された溶湯5の温度を検出する温度検出器151と、溶湯ノズル14に受容された溶湯5の液面の位置を検出する位置検出器152とを含んで構成される。温度検出器151は、熱電対などで構成され、検出された溶湯5の温度のデータは検出信号として所定時間間隔で制御ユニット16へ読み込まれる。また、位置検出器152は、レーザ式変位センサなどで構成され、検出された溶湯の液面の位置データは検出信号として所定時間間隔で制御ユニット16へ読み込まれる。ちなみに、反力推定器15として、温度検出器151及び位置検出器152に代えて、他方の鋳造ロール12の水平方向の変位を測定する鋳造ロール変位検出器153を用いてもよい。 As described above, the reaction force estimator 15 according to the present embodiment correlates the reaction force acting on the roll gap 13 with the temperature of the molten metal 5 and the position of the liquid surface of the molten metal 5, and thus the molten metal received by the molten metal nozzle 14. 5 and a position detector 152 for detecting the position of the liquid level of the molten metal 5 received by the molten metal nozzle 14. The temperature detector 151 is composed of a thermocouple or the like, and the detected temperature data of the molten metal 5 is read into the control unit 16 as a detection signal at predetermined time intervals. The position detector 152 is configured by a laser displacement sensor or the like, and the detected position data of the melt surface is read into the control unit 16 as a detection signal at predetermined time intervals. Incidentally, instead of the temperature detector 151 and the position detector 152, a casting roll displacement detector 153 that measures the horizontal displacement of the other casting roll 12 may be used as the reaction force estimator 15.
 一方、制御ユニット16は、上述した温度検出器151と位置検出器152とからそれぞれ検出された溶湯5の温度と溶湯5の液面の位置とに応じて、一対の鋳造ロール11,12がロールギャップ13を通過する溶湯5から受ける単位時間当たりの受熱量を制御するが、当該単位時間当たりの受熱量の制御として、一対の鋳造ロール11,12の周速度を制御することと、これに代えて又はこれに加えて、一対の鋳造ロール11,12の接触面113,123の温度を制御することが含まれる。 On the other hand, the control unit 16 includes a pair of casting rolls 11 and 12 according to the temperature of the molten metal 5 detected by the temperature detector 151 and the position detector 152 and the position of the liquid level of the molten metal 5. Although the amount of heat received per unit time received from the molten metal 5 passing through the gap 13 is controlled, as a control of the amount of heat received per unit time, the peripheral speed of the pair of casting rolls 11 and 12 is controlled, and instead of this. Or in addition to this, controlling the temperature of the contact surfaces 113, 123 of the pair of casting rolls 11, 12 is included.
 一対の鋳造ロール11,12の周速度を制御することで、単位時間当たりの受熱量を制御する場合は、制御ユニット16からインバータ装置116に制御信号を出力すればよいが、そのための制御マップが制御ユニット16に記憶されている。図5Aは、制御ユニット16に記憶される制御マップの第1例を示すグラフであり、溶湯5の温度及び溶湯5の液面の位置に対する鋳造ロール11,12の周速度の制御関係を示すものである。 When the amount of heat received per unit time is controlled by controlling the peripheral speeds of the pair of casting rolls 11 and 12, a control signal may be output from the control unit 16 to the inverter device 116. It is stored in the control unit 16. FIG. 5A is a graph showing a first example of a control map stored in the control unit 16, and shows a control relationship of the peripheral speed of the casting rolls 11 and 12 with respect to the temperature of the molten metal 5 and the position of the liquid surface of the molten metal 5. It is.
 上述したとおり、溶湯ノズル14に受容された溶湯5の液面の位置が高い(溶湯重量が大きい)とロールギャップ13は大きくなり、液面の位置が低い(溶湯重量が小さい)とロールギャップ13は小さくなる。このため、位置検出器152により検出された溶湯ノズル14の溶湯5の液面の位置が高い場合には、ロールギャップ13を小さくするために鋳造ロール11,12の周速度を大きく制御し、逆に位置検出器152により検出された溶湯ノズル14の溶湯5の液面の位置が低い場合には、ロールギャップ13を大きくするために鋳造ロール11,12の周速度を小さく制御する。図5Aに示すグラフにおいて液面の位置と鋳造ロールの周速度の関係が右上がりの線になっていることがこれを表している。ただし、液面の位置と鋳造ロール11,12の周速度との関係は、予め双ロール式縦型鋳造装置1の実機を用いてデータを収集するか、コンピュータシミュレーションなどを用いて収集し、そのデータを制御ユニット16に記憶するので、図5Aに示す制御線のプロファイルは一例を示すものである。 As described above, when the position of the liquid surface of the molten metal 5 received by the molten metal nozzle 14 is high (the molten metal weight is large), the roll gap 13 becomes large, and when the liquid surface position is low (the molten metal weight is small), the roll gap 13 is increased. Becomes smaller. For this reason, when the position of the liquid level of the molten metal 5 of the molten metal nozzle 14 detected by the position detector 152 is high, the peripheral speed of the casting rolls 11 and 12 is largely controlled to reduce the roll gap 13, and the reverse When the position of the melt surface 5 of the melt nozzle 14 detected by the position detector 152 is low, the peripheral speed of the casting rolls 11 and 12 is controlled to be small in order to increase the roll gap 13. In the graph shown in FIG. 5A, this indicates that the relationship between the position of the liquid level and the peripheral speed of the casting roll is a line rising to the right. However, the relationship between the position of the liquid level and the peripheral speed of the casting rolls 11 and 12 is collected in advance using the actual machine of the twin roll type vertical casting apparatus 1 or collected using a computer simulation or the like. Since the data is stored in the control unit 16, the profile of the control line shown in FIG. 5A shows an example.
 また上述したとおり、溶湯ノズル14に受容された溶湯5の温度が高いとロールギャップ13は小さくなり、溶湯5の温度が低いとロールギャップ13は大きくなる。このため、温度検出器151により検出された溶湯ノズル14の溶湯5の温度が高い場合には、ロールギャップ13を大きくするために鋳造ロール11,12の周速度を小さく制御し、逆に温度検出器151により検出された溶湯ノズル14の溶湯5の温度が低い場合には、ロールギャップ13を小さくするために鋳造ロール11,12の周速度を大きく制御する。図5Aに示すグラフにおいて、溶湯5の温度が低いほど鋳造ロールの周速度が高くなることがこれを表している。 As described above, when the temperature of the molten metal 5 received by the molten metal nozzle 14 is high, the roll gap 13 becomes small, and when the temperature of the molten metal 5 is low, the roll gap 13 becomes large. For this reason, when the temperature of the molten metal 5 of the molten metal nozzle 14 detected by the temperature detector 151 is high, the peripheral speed of the casting rolls 11 and 12 is controlled to be small in order to increase the roll gap 13, and the temperature is detected conversely. When the temperature of the molten metal 5 of the molten metal nozzle 14 detected by the vessel 151 is low, the peripheral speed of the casting rolls 11 and 12 is largely controlled in order to reduce the roll gap 13. In the graph shown in FIG. 5A, this indicates that the lower the temperature of the molten metal 5, the higher the peripheral speed of the casting roll.
 ちなみに、図5Aに示す制御マップは、溶湯5の液面の位置及び溶湯5の温度に対する鋳造ロール11,12の周速度の関係を示すものであり、たとえば溶湯5の温度を5deg間隔にした場合の液面の位置に対する周速度を示すが、温度検出器151により検出された温度が当該5deg間隔の中間にあたる場合(線上にない場合)は、内挿処理などを用いて周速度を求めればよい。 Incidentally, the control map shown in FIG. 5A shows the relationship between the position of the liquid surface of the molten metal 5 and the peripheral speed of the casting rolls 11 and 12 with respect to the temperature of the molten metal 5. For example, when the temperature of the molten metal 5 is set at 5 deg intervals. In the case where the temperature detected by the temperature detector 151 is in the middle of the 5 deg interval (when not on the line), the peripheral speed may be obtained using interpolation processing or the like. .
 また、図5Aに示す制御マップは、溶湯5の液面の位置及び溶湯5の温度に対する鋳造ロール11,12の周速度の関係を示すものであり、溶湯5の液面の位置と溶湯5の温度の両者に応じて鋳造ロール11,12の周速度を制御する例であるが、溶湯5の液面の位置又は溶湯5の温度のいずれか一方に応じて鋳造ロール11,12の周速度を制御してもよい。図5Bは、溶湯5の液面の位置のみに応じて鋳造ロール11,12の周速度を制御する場合の制御マップの一例であり、図5Cは、溶湯5の温度のみに応じて鋳造ロール11,12の周速度を制御する場合の制御マップの一例である。 Moreover, the control map shown in FIG. 5A shows the relationship between the position of the molten metal 5 and the peripheral speed of the casting rolls 11 and 12 with respect to the temperature of the molten metal 5. Although it is an example which controls the circumferential speed of the casting rolls 11 and 12 according to both of temperature, the circumferential speed of the casting rolls 11 and 12 according to either one of the position of the liquid level of the molten metal 5 or the temperature of the molten metal 5 is demonstrated. You may control. FIG. 5B is an example of a control map for controlling the peripheral speeds of the casting rolls 11 and 12 only according to the position of the liquid surface of the molten metal 5, and FIG. 5C shows the casting roll 11 according to only the temperature of the molten metal 5. , 12 is an example of a control map for controlling the peripheral speed.
 図6は、位置検出器152により検出された溶湯5の液面の位置を制御ユニット16に読み込み、溶湯5の温度を一定とした場合に、制御ユニット16により鋳造ロール11,12の周速度を制御した際のロールギャップ13の変位を測定した実施例を示すグラフである。同図の点線は、溶湯の液面の位置に依らず鋳造ロール11,12の周速度を一定に制御した場合のロールギャップ13の変位を比較例として示したものである。 FIG. 6 shows that the position of the liquid level of the molten metal 5 detected by the position detector 152 is read into the control unit 16, and the peripheral speed of the casting rolls 11 and 12 is controlled by the control unit 16 when the temperature of the molten metal 5 is constant. It is a graph which shows the Example which measured the displacement of the roll gap 13 at the time of controlling. The dotted line in the figure shows, as a comparative example, the displacement of the roll gap 13 when the peripheral speed of the casting rolls 11 and 12 is controlled to be constant regardless of the position of the liquid level of the molten metal.
 図6に示すように、鋳造を開始してからの時間T1~T2において、溶湯5の液面の位置が所定値Hから低くなった場合に、比較例のように鋳造ロール11,12の周速度を所定値Vに維持すると、ロールギャップ13は、比較例の点線で示すように所定値Gより大幅に小さくなる。これに対して、実施例においては、溶湯5の液面の位置が所定値Hから低くなるのに応じて制御ユニット16が鋳造ロール11,12の周速度を所定値Vより小さく制御するため、ロールギャップ13は所定値Gより大幅に小さくはならない。 As shown in FIG. 6, when the position of the liquid surface of the molten metal 5 becomes lower than a predetermined value H 0 during the time T1 to T2 after the start of casting, the casting rolls 11 and 12 are compared as in the comparative example. When the peripheral speed is maintained at the predetermined value V 0 , the roll gap 13 becomes significantly smaller than the predetermined value G 0 as indicated by the dotted line in the comparative example. On the other hand, in the embodiment, the control unit 16 controls the peripheral speed of the casting rolls 11 and 12 to be smaller than the predetermined value V 0 as the position of the liquid level of the molten metal 5 is lowered from the predetermined value H 0. Therefore, the roll gap 13 is not more significantly smaller predetermined value G 0.
 また、鋳造を開始してからの時間T2~T3において、溶湯5の液面の位置が所定値Hから高くなった場合に、比較例のように鋳造ロール11,12の周速度を所定値Vに維持すると、ロールギャップ13は、比較例の点線で示すように、所定値Gより大幅に大きくなる。これに対して、実施例においては、溶湯5の液面の位置が所定値Hから高くなるのに応じて制御ユニット16が鋳造ロール11,12の周速度を所定値Vより大きく制御するため、ロールギャップ13は所定値Gより大幅に大きくはならない。 Further, when the position of the liquid surface of the molten metal 5 is increased from the predetermined value H 0 during the time T2 to T3 after the start of casting, the peripheral speed of the casting rolls 11 and 12 is set to the predetermined value as in the comparative example. When maintained at V 0 , the roll gap 13 becomes significantly larger than the predetermined value G 0 as indicated by the dotted line in the comparative example. On the other hand, in the embodiment, the control unit 16 controls the peripheral speed of the casting rolls 11 and 12 to be larger than the predetermined value V 0 as the position of the liquid level of the molten metal 5 increases from the predetermined value H 0. Therefore, the roll gap 13 is not significantly greater than the predetermined value G 0.
 図7は、温度検出器151により検出された溶湯5の温度を制御ユニット16に読み込み、溶湯5の液面の位置は一定とした場合に、制御ユニット16により鋳造ロール11,12の周速度を制御した際のロールギャップ13の変位を測定した実施例を示すグラフである。同図の点線は、溶湯の温度に依らず鋳造ロール11,12の周速度を一定に制御した場合のロールギャップ13の変位を比較例として示したものである。 7 shows that the temperature of the molten metal 5 detected by the temperature detector 151 is read into the control unit 16, and the peripheral speed of the casting rolls 11 and 12 is controlled by the control unit 16 when the position of the liquid surface of the molten metal 5 is constant. It is a graph which shows the Example which measured the displacement of the roll gap 13 at the time of controlling. The dotted line in the figure shows the displacement of the roll gap 13 as a comparative example when the peripheral speed of the casting rolls 11 and 12 is controlled to be constant regardless of the temperature of the molten metal.
 図7に示すように、鋳造を開始してからの時間T1~T2において、溶湯5の温度が所定値tから低くなった場合に、比較例のように鋳造ロール11,12の周速度を所定値Vに維持すると、ロールギャップ13は、比較例の点線で示すように、所定値Gより大幅に小さくなる。これに対して、実施例においては、溶湯5の温度が所定値tから低くなるのに応じて制御ユニット16が鋳造ロール11,12の周速度を所定値Vより大きく制御するため、ロールギャップ13は所定値Gより大幅に小さくはならない。 As shown in FIG. 7, when the temperature of the molten metal 5 is lowered from a predetermined value t 0 during the time T1 to T2 after the start of casting, the peripheral speeds of the casting rolls 11 and 12 are set as in the comparative example. When maintained at the predetermined value V 0 , the roll gap 13 becomes significantly smaller than the predetermined value G 0 as indicated by the dotted line in the comparative example. On the other hand, in the embodiment, since the control unit 16 controls the peripheral speed of the casting rolls 11 and 12 to be larger than the predetermined value V 0 as the temperature of the molten metal 5 decreases from the predetermined value t 0 , the roll gap 13 should more significantly smaller predetermined value G 0.
 また、鋳造を開始してからの時間T2~T3において、溶湯5の温度が所定値tから高くなった場合に、比較例のように鋳造ロール11,12の周速度を所定値Vに維持すると、ロールギャップ13は、比較例の点線で示すように、所定値Gより大幅に大きくなる。これに対して、実施例においては、溶湯5の温度が所定値tから高くなるのに応じて制御ユニット16が鋳造ロール11,12の周速度を所定値Vより小さく制御するため、ロールギャップ13は所定値Gより大幅に大きくはならない。 Further, at time T2 ~ T3 from the start of casting, when the temperature of the molten metal 5 is higher from the predetermined value t 0, a predetermined value V 0 of the peripheral speed of the casting rolls 11, 12 as in Comparative Example keeping the roll gap 13, as shown by the dotted line of the comparative example, it becomes significantly greater than the predetermined value G 0. On the other hand, in the embodiment, the control unit 16 controls the peripheral speed of the casting rolls 11 and 12 to be smaller than the predetermined value V 0 as the temperature of the molten metal 5 increases from the predetermined value t 0. gap 13 must not significantly greater than the predetermined value G 0.
 以上のとおり、本実施形態の双ロール式縦型鋳造装置1において、ロールギャップ13を通過する溶湯5が、弾性体122の弾性付勢に反して当該ロールギャップ13を押し広げようとする反力を推定する反力推定器15、具体的には、溶湯5の温度を検出する温度検出器151及び/又は溶湯5の液面の位置を検出する位置検出器152により推定された反力に応じて、一対の鋳造ロール11,12の受熱量、具体的には一対の鋳造ロール11,12の周速度を制御するので、一対の鋳造ロール11,12の接触面113,123における受熱量の変動が小さくなり、溶湯の凝固速度の変動が小さくなり、その結果、ロールギャップ13が安定する。これにより、板厚tの均一性並びに表面及び内面の仕上がり品質を一定値以上に維持することができる。 As described above, in the twin roll type vertical casting apparatus 1 according to the present embodiment, the molten metal 5 passing through the roll gap 13 counteracts the elastic force of the elastic body 122 and pushes the roll gap 13 apart. According to the reaction force estimated by the reaction force estimator 15, specifically, the temperature detector 151 that detects the temperature of the molten metal 5 and / or the position detector 152 that detects the position of the liquid surface of the molten metal 5. Thus, the amount of heat received by the pair of casting rolls 11, 12, specifically the peripheral speed of the pair of casting rolls 11, 12, is controlled, so that the amount of heat received at the contact surfaces 113, 123 of the pair of casting rolls 11, 12 is varied. And the fluctuation of the solidification rate of the molten metal is reduced, and as a result, the roll gap 13 is stabilized. Thereby, the uniformity of the plate thickness t and the finished quality of the surface and the inner surface can be maintained at a certain value or more.
 既述したとおり、制御ユニット16は、温度検出器151と位置検出器152とからそれぞれ検出された溶湯5の温度と溶湯5の液面の位置とに応じて、一対の鋳造ロール11,12がロールギャップ13を通過する溶湯5から受ける単位時間当たりの受熱量を制御するが、当該単位時間当たりの受熱量の制御として、図5A~図7に示すように、一対の鋳造ロール11,12の周速度を制御すること以外に、一対の鋳造ロール11,12の接触面113,123の温度を制御することが含まれる。以下に、一対の鋳造ロール11,12の接触面113,123の温度を制御することにより、一対の鋳造ロール11,12がロールギャップ13を通過する溶湯5から受ける単位時間当たりの受熱量を制御する例を説明する。なお、この制御は、上述した鋳造ロール11,12の周速度の制御に代えて、又はこれに加えて実行することができる。 As described above, the control unit 16 includes the pair of casting rolls 11 and 12 according to the temperature of the molten metal 5 detected by the temperature detector 151 and the position detector 152 and the position of the liquid level of the molten metal 5. The amount of heat received per unit time received from the molten metal 5 passing through the roll gap 13 is controlled. As shown in FIG. 5A to FIG. 7, as a control of the amount of heat received per unit time, a pair of casting rolls 11 and 12 are controlled. In addition to controlling the peripheral speed, controlling the temperature of the contact surfaces 113 and 123 of the pair of casting rolls 11 and 12 is included. Below, by controlling the temperature of the contact surfaces 113, 123 of the pair of casting rolls 11, 12, the amount of heat received per unit time received by the pair of casting rolls 11, 12 from the molten metal 5 passing through the roll gap 13 is controlled. An example will be described. This control can be executed instead of or in addition to the control of the peripheral speed of the casting rolls 11 and 12 described above.
 本実施形態の一対の鋳造ロール11,12のそれぞれは、少なくとも溶湯5が接触する鋳造ロールの接触面113,123の温度を調節する温度調節器17を含み、当該温度調節器17は、少なくとも接触面113,123を加熱又は冷却する熱媒体の循環系統171と、当該熱媒体の流量を調節する流量調節器172と、熱媒体の温度を調節する媒体温度調節器173と、を含んで構成されている。熱媒体は、一対の鋳造ロール11,12の少なくとも接触面113,123の裏面に接触すればよいが、上述したとおり中空状筒体114,124の内部の一部または全部を循環させるように構成してもよい。また熱媒体は、一対の鋳造ロール11,12の少なくとも接触面113,123の裏面に接触し、当該接触面113,123の温度を加熱又は冷却するものであるが、冷却のみを行う冷媒、たとえば冷却水であってもよい。 Each of the pair of casting rolls 11 and 12 of the present embodiment includes a temperature controller 17 that adjusts the temperature of the contact surfaces 113 and 123 of the casting roll that at least the molten metal 5 contacts, and the temperature controller 17 includes at least a contact. A heat medium circulation system 171 that heats or cools the surfaces 113 and 123, a flow rate regulator 172 that regulates the flow rate of the heat medium, and a medium temperature regulator 173 that regulates the temperature of the heat medium. ing. The heat medium may be in contact with at least the back surfaces of the contact surfaces 113 and 123 of the pair of casting rolls 11 and 12, but is configured to circulate part or all of the inside of the hollow cylindrical bodies 114 and 124 as described above. May be. The heat medium contacts at least the back surfaces of the contact surfaces 113 and 123 of the pair of casting rolls 11 and 12, and heats or cools the temperatures of the contact surfaces 113 and 123. It may be cooling water.
 媒体温度調節器173は、一対の鋳造ロール11,12を循環して帰還した熱媒体を加熱又は冷却する加熱器、冷却器又は熱交換器などから構成され、熱媒体が冷媒である場合は冷却器又は加熱用熱交換器などから構成される。また流量調節器172は、流量調節弁などから構成される。これら流量調節器172及び媒体温度調節器173は、制御ユニット16からの制御信号により制御される。 The medium temperature controller 173 includes a heater, a cooler, a heat exchanger, or the like that heats or cools the returned heat medium by circulating through the pair of casting rolls 11 and 12, and cools when the heat medium is a refrigerant. Or a heat exchanger for heating. The flow controller 172 includes a flow control valve. The flow rate regulator 172 and the medium temperature regulator 173 are controlled by a control signal from the control unit 16.
 そして、温度検出器151及び位置検出器152を含む反力推定器15により推定された反力が大きいほど、温度調節器17により少なくとも接触面113,123を加熱制御することで単位時間当たりの受熱量を小さく制御し、推定された反力が小さいほど、温度調節器17により少なくとも接触面113,123を冷却制御することで単位時間当たりの受熱量を大きく制御する。また、熱媒体が冷媒(冷却水)である場合は、温度検出器151により検出された溶湯5の温度が高いほど流量調節器172により冷却水の流量を多く制御することで単位時間当たりの受熱量を大きく制御し、溶湯5の温度が低いほど流量調節器172により冷却水の流量を少なく制御することで単位時間当たりの受熱量を小さく制御するとともに、位置検出器152により検出された溶湯5の液面の位置が高いほど流量調節器172により冷却水の流量を少なく制御することで単位時間当たりの受熱量を小さく制御し、液面の位置が低いほど流量調節器172により冷却水の流量を多く制御することで単位時間当たりの受熱量を大きく制御する。 Then, as the reaction force estimated by the reaction force estimator 15 including the temperature detector 151 and the position detector 152 increases, the temperature controller 17 controls the heating of at least the contact surfaces 113 and 123, thereby receiving per unit time. The amount of heat received is controlled to be smaller, and the amount of heat received per unit time is controlled to be larger by controlling the cooling of at least the contact surfaces 113 and 123 by the temperature controller 17 as the estimated reaction force is smaller. Further, when the heat medium is a refrigerant (cooling water), the higher the temperature of the molten metal 5 detected by the temperature detector 151, the more the flow rate of the cooling water is controlled by the flow rate regulator 172, so The amount of heat is largely controlled, and the lower the temperature of the molten metal 5, the smaller the amount of heat received per unit time is controlled by controlling the flow rate of the cooling water less by the flow rate controller 172, and the molten metal 5 detected by the position detector 152. The higher the liquid level position is, the smaller the amount of heat received per unit time is controlled by controlling the flow rate of the cooling water less by the flow rate regulator 172. The amount of heat received per unit time is greatly controlled by controlling a large amount of.
 反力推定器15により推定された反力が大きいほど、ロールギャップ13における溶湯の凝固速度が早いので、温度調節器17により少なくとも接触面113,123を加熱制御することで凝固速度を遅く抑制する。また、反力推定器15により推定された反力が小さいほど、ロールギャップ13における溶湯の凝固速度が遅いので、温度調節器17により少なくとも接触面113,123を冷却制御することで凝固速度を早く抑制する。 The larger the reaction force estimated by the reaction force estimator 15 is, the faster the solidification rate of the molten metal in the roll gap 13 is. Therefore, the temperature controller 17 controls the heating of at least the contact surfaces 113 and 123 to suppress the solidification rate slowly. . Further, the smaller the reaction force estimated by the reaction force estimator 15 is, the slower the solidification rate of the molten metal in the roll gap 13 is. Therefore, the temperature controller 17 controls the cooling of at least the contact surfaces 113 and 123 to increase the solidification rate. Suppress.
 以上のとおり、本実施形態の双ロール式縦型鋳造装置1において、ロールギャップ13を通過する溶湯5が、弾性体122の弾性付勢に反して当該ロールギャップ13を押し広げようとする反力を推定する反力推定器15、具体的には、溶湯5の温度を検出する温度検出器151及び/又は溶湯5の液面の位置を検出する位置検出器152により推定された反力に応じて、一対の鋳造ロール11,12の受熱量、具体的には一対の鋳造ロール11,12の接触面113,123の温度を加熱制御又は冷却制御するので、一対の鋳造ロール11,12の接触面113,123における受熱量の変動が小さくなり、溶湯の凝固速度の変動が小さくなり、その結果、ロールギャップ13が安定する。これにより、板厚tの均一性並びに表面及び内面の仕上がり品質を一定値以上に維持することができる。 As described above, in the twin roll type vertical casting apparatus 1 according to the present embodiment, the molten metal 5 passing through the roll gap 13 counteracts the elastic force of the elastic body 122 and pushes the roll gap 13 apart. According to the reaction force estimated by the reaction force estimator 15, specifically, the temperature detector 151 that detects the temperature of the molten metal 5 and / or the position detector 152 that detects the position of the liquid surface of the molten metal 5. Thus, the amount of heat received by the pair of casting rolls 11, 12, specifically, the temperature of the contact surfaces 113, 123 of the pair of casting rolls 11, 12 is controlled by heating or cooling. Variations in the amount of heat received on the surfaces 113 and 123 are reduced, fluctuations in the solidification rate of the molten metal are reduced, and as a result, the roll gap 13 is stabilized. Thereby, the uniformity of the plate thickness t and the finished quality of the surface and the inner surface can be maintained at a certain value or more.
 なお、上述した反力推定器15に応じて受熱量を制御することは、鋳造途中のみならず、本実施形態の双ロール式縦型鋳造装置1のようなバッチ式鋳造における鋳造初期及び鋳造終期においてもその効果を発揮する。 Note that controlling the amount of heat received according to the reaction force estimator 15 described above is not only in the middle of casting, but also in the initial casting stage and the final casting stage in batch casting such as the twin-roll vertical casting apparatus 1 of the present embodiment. The effect is also demonstrated.
 すなわち、鋳造初期においては、レードル18から溶湯ノズル14に一定量の溶湯5が所定の流速(単位時間当たりの流量)で注入されるが、注入し始めてから溶湯5の液面が所定位置に達するまでは、溶湯5の液面は徐々に上昇するため、この間の一対の鋳造ロール11,12が溶湯から受ける受熱量を一定にすると、具体的には一対の鋳造ロール11,12の周速度を一定にすると、図8の左図の比較例に示すとおりロールギャップ13も、初期は狭く溶湯5の液面の上昇に応じて徐々に広くなる。このため、鋳造初期のアルミニウムシート2の板厚tは目標板厚より薄くなり、所期の目的には使用できず廃棄しなければならない。 That is, at the initial stage of casting, a certain amount of molten metal 5 is injected from the ladle 18 to the molten metal nozzle 14 at a predetermined flow rate (flow rate per unit time), but the liquid level of the molten metal 5 reaches a predetermined position after the injection starts. Until then, the liquid level of the molten metal 5 gradually rises. Therefore, if the amount of heat received by the pair of casting rolls 11 and 12 from the molten metal is kept constant, specifically, the peripheral speed of the pair of casting rolls 11 and 12 is increased. If it is made constant, the roll gap 13 is also initially narrow and gradually widens as the liquid level of the molten metal 5 rises as shown in the comparative example in the left diagram of FIG. For this reason, the thickness t of the aluminum sheet 2 at the initial casting becomes thinner than the target thickness, and cannot be used for the intended purpose and must be discarded.
 これに対して、図8の右図の実施例に示すように、溶湯5の液面の位置に応じて一対の鋳造ロール11,12の周速度を徐々に大きく制御すれば、換言すれば、鋳造初期における一対の鋳造ロール11,12の周速度を小さく設定し、ここから徐々に大きくなるように制御すれば、ロールギャップ13が所定値に安定するまでの時間が短縮され、アルミニウムシート2の廃棄長さが短くなる。この場合に、溶湯5の液面の位置は、位置検出器152により検出してもよいが、溶湯ノズル14の容積と、レードル18から溶湯ノズル14へ注湯される際の流速が既知であるから、注湯し始めてから液面の位置が所定の高さに達するまでの時間は演算できる。したがって、位置検出器152に代えて注湯開始からの時間に基づいて一対の鋳造ロール11,12の周速度を制御してもよい。 On the other hand, as shown in the example of the right figure of FIG. 8, if the peripheral speed of the pair of casting rolls 11 and 12 is controlled gradually and greatly according to the position of the liquid surface of the molten metal 5, in other words, If the peripheral speed of the pair of casting rolls 11 and 12 at the initial stage of casting is set small and controlled so as to gradually increase from here, the time until the roll gap 13 is stabilized at a predetermined value is shortened. The disposal length is shortened. In this case, the position of the liquid level of the molten metal 5 may be detected by the position detector 152, but the volume of the molten metal nozzle 14 and the flow rate at the time of pouring from the ladle 18 to the molten metal nozzle 14 are known. Thus, the time from the start of pouring until the position of the liquid level reaches a predetermined height can be calculated. Therefore, instead of the position detector 152, the peripheral speeds of the pair of casting rolls 11 and 12 may be controlled based on the time from the start of pouring.
 また、この溶湯5の液面の位置又は鋳造開始からの時間による、鋳造初期における一対の鋳造ロール11,12の周速度を小さく制御することに加えて、溶湯5の温度を温度検出器151で検出し、検出された溶湯温度と、図5Aに示す制御マップとを用いて一対の鋳造ロール11,12の周速度を制御してもよい。この鋳造初期においても、検出された溶湯の温度が高いほど一対の鋳造ロール11,12の周速度を小さく制御し、溶湯の温度が低いほど一対の鋳造ロール11,12の周速度を大きく制御する。 Further, in addition to controlling the peripheral speed of the pair of casting rolls 11 and 12 at the initial stage of casting according to the position of the liquid surface of the molten metal 5 or the time from the start of casting, the temperature detector 151 controls the temperature of the molten metal 5. You may detect and control the circumferential speed of a pair of casting rolls 11 and 12 using the detected molten metal temperature and the control map shown to FIG. 5A. Even in the initial stage of casting, the peripheral speed of the pair of casting rolls 11 and 12 is controlled to be lower as the detected temperature of the molten metal is higher, and the peripheral speed of the pair of casting rolls 11 and 12 is controlled to be higher as the temperature of the molten metal is lower. .
 さらにこれに加えて、温度調節器17を用いて一対の鋳造ロール11,12の接触面を加熱又は冷却制御してもよい。すなわち、鋳造初期においては温度検出器151及び位置検出器152を含む反力推定器15により推定された反力が相対的に小さいので、温度調節器17により少なくとも接触面113,123を冷却制御することで単位時間当たりの受熱量を大きく制御する。また、熱媒体が冷媒(冷却水)である場合は、鋳造初期において、流量調節器172により冷却水の流量を多く制御することで単位時間当たりの受熱量を大きく制御する。 In addition to this, the contact surface of the pair of casting rolls 11 and 12 may be controlled to be heated or cooled by using the temperature controller 17. That is, since the reaction force estimated by the reaction force estimator 15 including the temperature detector 151 and the position detector 152 is relatively small in the initial stage of casting, at least the contact surfaces 113 and 123 are controlled to be cooled by the temperature controller 17. This greatly controls the amount of heat received per unit time. When the heat medium is a refrigerant (cooling water), the amount of heat received per unit time is largely controlled by controlling the flow rate of the cooling water by the flow rate regulator 172 at the initial stage of casting.
 同様に、鋳造終期においては、溶湯ノズル14に注入された溶湯5の液面が所定位置から徐々に下降するため、この間の一対の鋳造ロール11,12が溶湯から受ける受熱量を一定にすると、具体的には一対の鋳造ロール11,12の周速度を一定にすると、図9の左図の比較例に示すとおりロールギャップ13も溶湯5の液面の下降に応じて徐々に狭くなる。このため、鋳造終期のアルミニウムシート2の板厚tは目標板厚より薄くなり、所期の目的には使用できず廃棄しなければならない。 Similarly, at the end of casting, since the liquid level of the molten metal 5 injected into the molten metal nozzle 14 gradually falls from a predetermined position, the amount of heat received by the pair of casting rolls 11 and 12 between the molten metal is constant. Specifically, when the peripheral speeds of the pair of casting rolls 11 and 12 are made constant, the roll gap 13 is gradually narrowed as the liquid level of the molten metal 5 is lowered as shown in the comparative example in the left diagram of FIG. For this reason, the thickness t of the aluminum sheet 2 at the end of casting becomes thinner than the target thickness and cannot be used for the intended purpose and must be discarded.
 これに対して、図9の右図の実施例に示すように、溶湯5の液面の位置が下降するのに応じて一対の鋳造ロール11,12の周速度を徐々に小さく制御すれば、ロールギャップ13が所定値を維持する時間が長くなり、アルミニウムシート2の廃棄長さが短くなる。この場合に、溶湯5の液面の位置は、位置検出器152により検出してもよいが、溶湯ノズル14の容積と、溶湯ノズル14から吐出される溶湯の流速が既知であるから、溶湯の液面の位置が所定の高さから下降し始めてから溶湯がなくなるまでの時間は演算できる。したがって、位置検出器152に代えて溶湯5の液面の位置の下降開始からの時間に基づいて一対の鋳造ロール11,12の周速度を制御してもよい。 On the other hand, as shown in the example of the right diagram of FIG. 9, if the peripheral speed of the pair of casting rolls 11 and 12 is controlled to be gradually reduced as the liquid level position of the molten metal 5 is lowered, The time during which the roll gap 13 maintains the predetermined value becomes longer, and the discarded length of the aluminum sheet 2 becomes shorter. In this case, the position of the liquid surface of the molten metal 5 may be detected by the position detector 152, but the volume of the molten metal nozzle 14 and the flow rate of the molten metal discharged from the molten metal nozzle 14 are known. The time from when the position of the liquid level starts to drop from a predetermined height until the molten metal runs out can be calculated. Therefore, instead of the position detector 152, the peripheral speeds of the pair of casting rolls 11 and 12 may be controlled based on the time from the start of the descent of the position of the liquid level of the molten metal 5.
 また、この溶湯5の液面の位置又は下降開始からの時間による、鋳造終期における一対の鋳造ロール11,12の周速度を小さく制御することに加えて、溶湯5の温度を温度検出器151で検出し、検出された溶湯温度と、図5Aに示す制御マップとを用いて一対の鋳造ロール11,12の周速度を制御してもよい。この鋳造終期においても、検出された溶湯の温度が高いほど一対の鋳造ロール11,12の周速度を小さく制御し、溶湯の温度が低いほど一対の鋳造ロール11,12の周速度を大きく制御する。 Further, in addition to controlling the peripheral speed of the pair of casting rolls 11 and 12 at the end of casting depending on the position of the liquid surface of the molten metal 5 or the time from the start of descending, the temperature detector 151 controls the temperature of the molten metal 5. You may detect and control the circumferential speed of a pair of casting rolls 11 and 12 using the detected molten metal temperature and the control map shown to FIG. 5A. Even at the end of casting, the higher the detected molten metal temperature, the smaller the peripheral speed of the pair of casting rolls 11, 12, and the lower the molten metal temperature, the larger the peripheral speed of the pair of casting rolls 11, 12 are controlled. .
 さらにこれに加えて、温度調節器17を用いて一対の鋳造ロール11,12の接触面を加熱又は冷却制御してもよい。すなわち、鋳造終期においては温度検出器151及び位置検出器152を含む反力推定器15により推定された反力が相対的に小さいので、温度調節器17により少なくとも接触面113,123を冷却制御することで単位時間当たりの受熱量を大きく制御する。また、熱媒体が冷媒(冷却水)である場合は、鋳造初期において、流量調節器172により冷却水の流量を多く制御することで単位時間当たりの受熱量を大きく制御する。 In addition to this, the contact surface of the pair of casting rolls 11 and 12 may be controlled to be heated or cooled by using the temperature controller 17. That is, since the reaction force estimated by the reaction force estimator 15 including the temperature detector 151 and the position detector 152 is relatively small at the end of casting, at least the contact surfaces 113 and 123 are controlled to be cooled by the temperature controller 17. This greatly controls the amount of heat received per unit time. When the heat medium is a refrigerant (cooling water), the amount of heat received per unit time is largely controlled by controlling the flow rate of the cooling water by the flow rate regulator 172 at the initial stage of casting.
1…双ロール式縦型鋳造装置
 11…鋳造ロール
  111…回転軸
  112…回転駆動モータ
  113…溶湯との接触面
  114…中空状筒体
  115…金属層
 12…鋳造ロール
  121…回転軸
  122…弾性体
  123…溶湯との接触面
  124…中空状筒体
  125…金属層
 13…ロールギャップ
 14…溶湯ノズル
  141,142…主堰板
  143,144…側堰板
  145,146…押圧弾性体
  147…引張り弾性体
 15…反力推定器
  151…温度検出器
  152…位置検出器
  153…鋳造ロール変位検出器
 16…制御ユニット
 17…温度調節器
  171…循環系統
  172…流量調節器
  173…媒体温度調節器
 18…レードル(取鍋)
2…アルミニウムシート
3…巻取機
4…架台
 41…スライドレール
5…溶湯
 51…液相の溶湯
 52…固液共存の溶湯
 53…固相の溶湯(シート)
6…ガイド板
7…ガイドローラ
DESCRIPTION OF SYMBOLS 1 ... Twin roll type vertical casting apparatus 11 ... Casting roll 111 ... Rotating shaft 112 ... Rotation drive motor 113 ... Contact surface with molten metal 114 ... Hollow cylinder 115 ... Metal layer 12 ... Casting roll 121 ... Rotating shaft 122 ... Elasticity Body 123 ... Contact surface with molten metal 124 ... Hollow cylindrical body 125 ... Metal layer 13 ... Roll gap 14 ... Melt nozzle 141, 142 ... Main weir plate 143, 144 ... Side weir plate 145, 146 ... Pressing elastic body 147 ... Tensile Elastic body 15 ... Reaction force estimator 151 ... Temperature detector 152 ... Position detector 153 ... Casting roll displacement detector 16 ... Control unit 17 ... Temperature controller 171 ... Circulation system 172 ... Flow controller 173 ... Medium temperature controller 18 ... Ladle (Ladle)
DESCRIPTION OF SYMBOLS 2 ... Aluminum sheet 3 ... Winding machine 4 ... Base 41 ... Slide rail 5 ... Molten metal 51 ... Molten metal 51 ... Molten metal coexisting with solid-liquid 53 ... Molten metal (sheet)
6 ... Guide plate 7 ... Guide roller

Claims (22)

  1.  所定のロールギャップをもって対向配置され、互いに平行な回転軸を中心にして等しい周速度で回転するとともに、相対的に接近する方向へ弾性付勢された一対の鋳造ロールの前記ロールギャップに、
     前記回転軸と平行に対向配置された一対の主堰板と、前記回転軸と直交して対向配置されるとともに前記一対の主堰板の両端面に密接された一対の側堰板とを含み、前記一対の鋳造ロールの前記ロールギャップの上方に配置されて、アルミニウム系材料の溶湯を受容する溶湯ノズルから前記溶湯を注湯し、前記アルミニウム系材料をシートに製造する双ロール式縦型鋳造方法であって、
     一定量のアルミニウム系材料の溶湯を前記溶湯ノズルに注湯する工程と、
     前記溶湯ノズルに注湯された溶湯の液面の位置を検出する工程と、
     前記検出された溶湯の液面の位置が低いほど前記一対の鋳造ロールの周速度が小さくなるように制御し、前記液面の位置が高いほど前記一対の鋳造ロールの周速度が大きくなるように制御する周速度制御工程と、を含む双ロール式縦型鋳造方法。
    The roll gaps of a pair of casting rolls that are opposed to each other with a predetermined roll gap, rotate at equal circumferential speeds around rotation axes parallel to each other, and elastically biased in a relatively approaching direction,
    A pair of main dam plates disposed opposite to each other in parallel to the rotation shaft, and a pair of side dam plates disposed opposite to each other perpendicular to the rotation shaft and in close contact with both end surfaces of the pair of main dam plates. The twin-roll type vertical casting that is arranged above the roll gap of the pair of casting rolls and that pours the molten metal from a molten nozzle that receives the molten aluminum-based material to produce the aluminum-based material into a sheet. A method,
    Pouring a certain amount of molten aluminum-based material into the molten metal nozzle,
    Detecting the position of the liquid level of the molten metal poured into the molten metal nozzle;
    The lower the liquid surface position of the detected molten metal, the lower the peripheral speed of the pair of casting rolls, and the higher the liquid surface position, the higher the peripheral speed of the pair of casting rolls. A twin-roll type vertical casting method including a peripheral speed control step for controlling.
  2.  所定のロールギャップをもって対向配置され、互いに平行な回転軸を中心にして等しい周速度で回転するとともに、相対的に接近する方向へ弾性付勢された一対の鋳造ロールの前記ロールギャップに、
     前記回転軸と平行に対向配置された一対の主堰板と、前記回転軸と直交して対向配置されるとともに前記一対の主堰板の両端面に密接された一対の側堰板とを含み、前記一対の鋳造ロールの前記ロールギャップの上方に配置されて、アルミニウム系材料の溶湯を受容する溶湯ノズルから前記溶湯を注湯し、前記アルミニウム系材料をシートに製造する双ロール式縦型鋳造方法であって、
     一定量のアルミニウム系材料の溶湯を前記溶湯ノズルに注湯する工程と、
     前記一定量のアルミニウム系材料の溶湯を前記溶湯ノズルに注湯し始める鋳造開始時から、前記溶湯の液面の位置が所定位置に達するまでの間は、前記一対の鋳造ロールの周速度が相対的に小さくなるように制御する周速度制御工程と、を含む双ロール式縦型鋳造方法。
    The roll gaps of a pair of casting rolls that are opposed to each other with a predetermined roll gap, rotate at equal circumferential speeds around rotation axes parallel to each other, and elastically biased in a relatively approaching direction,
    A pair of main dam plates disposed opposite to each other in parallel to the rotation shaft, and a pair of side dam plates disposed opposite to each other perpendicular to the rotation shaft and in close contact with both end surfaces of the pair of main dam plates. The twin-roll type vertical casting that is arranged above the roll gap of the pair of casting rolls and that pours the molten metal from a molten nozzle that receives the molten aluminum-based material to produce the aluminum-based material into a sheet. A method,
    Pouring a certain amount of molten aluminum-based material into the molten metal nozzle,
    From the start of casting when a certain amount of molten aluminum-based material starts to be poured into the molten metal nozzle, the peripheral speed of the pair of casting rolls is relative to the time the liquid level of the molten metal reaches a predetermined position. And a peripheral speed control step for controlling the speed so as to be smaller.
  3.  前記周速度制御工程は、
     前記溶湯の液面の位置が前記所定位置に達したのちは、当該所定位置を維持するように前記一対の鋳造ロールの周速度を制御する請求項2に記載の双ロール式縦型鋳造方法。
    The peripheral speed control step includes
    The twin-roll type vertical casting method according to claim 2, wherein after the position of the liquid level of the molten metal reaches the predetermined position, the peripheral speed of the pair of casting rolls is controlled so as to maintain the predetermined position.
  4.  所定のロールギャップをもって対向配置され、互いに平行な回転軸を中心にして等しい周速度で回転するとともに、相対的に接近する方向へ弾性付勢された一対の鋳造ロールの前記ロールギャップに、
     前記回転軸と平行に対向配置された一対の主堰板と、前記回転軸と直交して対向配置されるとともに前記一対の主堰板の両端面に密接された一対の側堰板とを含み、前記一対の鋳造ロールの前記ロールギャップの上方に配置されて、アルミニウム系材料の溶湯を受容する溶湯ノズルから前記溶湯を注湯し、前記アルミニウム系材料をシートに製造する双ロール式縦型鋳造方法であって、
     一定量のアルミニウム系材料の溶湯を前記溶湯ノズルに注湯する工程と、
     前記溶湯の液面の位置が所定位置から下降し始める鋳造終了時には、前記一対の鋳造ロールの周速度が相対的に小さくなるように制御する周速度制御工程と、を含む双ロール式縦型鋳造方法。
    The roll gaps of a pair of casting rolls that are opposed to each other with a predetermined roll gap, rotate at equal circumferential speeds around rotation axes parallel to each other, and elastically biased in a relatively approaching direction,
    A pair of main dam plates disposed opposite to each other in parallel to the rotation shaft, and a pair of side dam plates disposed opposite to each other perpendicular to the rotation shaft and in close contact with both end surfaces of the pair of main dam plates. The twin-roll type vertical casting that is arranged above the roll gap of the pair of casting rolls and that pours the molten metal from a molten nozzle that receives the molten aluminum-based material to produce the aluminum-based material into a sheet. A method,
    Pouring a certain amount of molten aluminum-based material into the molten metal nozzle,
    And a peripheral speed control step for controlling the peripheral speed of the pair of casting rolls to be relatively small at the end of casting when the position of the liquid surface of the molten metal starts to descend from a predetermined position. Method.
  5.  前記溶湯ノズルに受容された溶湯の温度を検出する工程をさらに含み、
     前記周速度制御工程は、
     前記検出された溶湯の温度が高いほど前記一対の鋳造ロールの周速度が小さくなるように制御し、前記溶湯の温度が低いほど前記一対の鋳造ロールの周速度が大きくなるように制御する請求項1~4のいずれか一項に記載の双ロール式縦型鋳造方法。
    Detecting the temperature of the molten metal received in the molten metal nozzle,
    The peripheral speed control step includes
    The control is performed such that the peripheral speed of the pair of casting rolls decreases as the detected temperature of the molten metal increases, and the peripheral speed of the pair of casting rolls increases as the temperature of the molten metal decreases. 5. The twin roll type vertical casting method according to any one of 1 to 4.
  6.  前記一対の鋳造ロールのそれぞれは、少なくとも前記溶湯が接触する鋳造ロールの接触面の温度を調節する温度調節器を含み、
     前記検出された液面の位置が高いほど前記温度調節器により少なくとも前記接触面を加熱制御し、前記検出された液面の位置が低いほど前記温度調節器により少なくとも前記接触面を冷却制御する工程を含む請求項1に記載の双ロール式縦型鋳造方法。
    Each of the pair of casting rolls includes a temperature controller that adjusts the temperature of the contact surface of the casting roll that is in contact with at least the molten metal,
    The step of heating and controlling at least the contact surface with the temperature controller as the position of the detected liquid level is higher, and the step of cooling and controlling at least the contact surface with the temperature controller as the position of the detected liquid level is lower. The twin roll type vertical casting method according to claim 1, comprising:
  7.  前記温度調節器は、少なくとも前記接触面を冷却する冷却水の循環系統と、前記冷却水の流量を調節する流量調節器とを含み、
     前記検出された液面の位置が高いほど前記流量調節器により前記冷却水の流量が少なくなるように制御し、前記検出された液面の位置が低いほど前記流量調節器により前記冷却水の流量が多くなるように制御する工程を含む請求項6に記載の双ロール式縦型鋳造方法。
    The temperature regulator includes a cooling water circulation system for cooling at least the contact surface, and a flow rate regulator for regulating the flow rate of the cooling water,
    The flow rate controller controls the flow rate of the cooling water to decrease as the position of the detected liquid level increases, and the flow rate controller controls the flow rate of the cooling water as the position of the detected liquid level decreases. The twin-roll type vertical casting method according to claim 6, comprising a step of controlling so as to increase.
  8.  前記一対の鋳造ロールのそれぞれは、少なくとも前記溶湯が接触する鋳造ロールの接触面の温度を調節する温度調節器を含み、
     前記一定量のアルミニウム系材料の溶湯を前記溶湯ノズルに注湯し始める鋳造開始時から、前記溶湯の液面の位置が所定位置に達するまでの間は、前記温度調節器により少なくとも前記接触面を冷却制御する工程を含む請求項2又は3に記載の双ロール式縦型鋳造方法。
    Each of the pair of casting rolls includes a temperature controller that adjusts the temperature of the contact surface of the casting roll that is in contact with at least the molten metal,
    From the start of casting when a certain amount of molten aluminum material is poured into the melt nozzle until the liquid level of the melt reaches a predetermined position, at least the contact surface is moved by the temperature controller. The twin roll type vertical casting method according to claim 2 or 3, comprising a step of cooling control.
  9.  前記温度調節器は、少なくとも前記接触面を冷却する冷却水の循環系統と、前記冷却水の流量を調節する流量調節器とを含み、
     前記一定量のアルミニウム系材料の溶湯を前記溶湯ノズルに注湯し始める鋳造開始時から、前記溶湯の液面の位置が所定位置に達するまでの間は、前記流量調節器により前記冷却水の流量が多くなるように制御する請求項8に記載の双ロール式縦型鋳造方法。
    The temperature regulator includes a cooling water circulation system for cooling at least the contact surface, and a flow rate regulator for regulating the flow rate of the cooling water,
    The flow rate controller adjusts the flow rate of the cooling water from the start of casting the molten aluminum material of a certain amount to the melt nozzle until the position of the liquid level reaches a predetermined position. The twin-roll type vertical casting method according to claim 8, wherein the control is performed so as to increase the amount.
  10.  前記一対の鋳造ロールのそれぞれは、少なくとも前記溶湯が接触する鋳造ロールの接触面の温度を調節する温度調節器を含み、
     前記溶湯の液面の位置が所定位置から下降し始める鋳造終了時には、前記温度調節器により少なくとも前記接触面を冷却制御する工程を含む請求項4に記載の双ロール式縦型鋳造方法。
    Each of the pair of casting rolls includes a temperature controller that adjusts the temperature of the contact surface of the casting roll that is in contact with at least the molten metal,
    5. The twin-roll vertical casting method according to claim 4, further comprising a step of controlling cooling of at least the contact surface by the temperature controller at the end of casting when the position of the liquid surface of the molten metal starts to descend from a predetermined position.
  11.  前記温度調節器は、少なくとも前記接触面を冷却する冷却水の循環系統と、前記冷却水の流量を調節する流量調節器とを含み、
     前記溶湯の液面の位置が所定位置から下降し始める鋳造終了時には、前記流量調節器により前記冷却水の流量が多くなるように制御する請求項10に記載の双ロール式縦型鋳造方法。
    The temperature regulator includes a cooling water circulation system for cooling at least the contact surface, and a flow rate regulator for regulating the flow rate of the cooling water,
    The twin-roll type vertical casting method according to claim 10, wherein at the end of casting at which the position of the liquid level of the molten metal starts to descend from a predetermined position, the flow rate controller controls the flow rate of the cooling water to be increased.
  12.  アルミニウム系材料をシートに製造する双ロール式縦型鋳造装置であって、
     所定のロールギャップをもって対向配置され、互いに平行な回転軸を中心にして等しい周速度で回転するとともに、相対的に接近する方向へ弾性付勢された一対の鋳造ロールと、
     前記回転軸と平行に対向配置された一対の主堰板と、前記回転軸と直交して対向配置されるとともに前記一対の主堰板の両端面に密接された一対の側堰板とを含み、前記一対の鋳造ロールの前記ロールギャップの上方に配置されて、一定量のアルミニウム系材料の溶湯が注湯される溶湯ノズルと、
     前記溶湯ノズルに一定量のアルミニウム系材料の溶湯を一定流量で注湯するレードルと、
     前記溶湯ノズルに注湯された溶湯の液面の位置を検出する位置検出器と、
     前記検出された溶湯の液面の位置が低いほど前記一対の鋳造ロールの周速度が小さくなるように制御し、前記液面の位置が高いほど前記一対の鋳造ロールの周速度が大きくなるように制御する制御ユニットと、を備える双ロール式縦型鋳造装置。
    A twin roll type vertical casting apparatus for manufacturing aluminum-based material into a sheet,
    A pair of casting rolls arranged opposite each other with a predetermined roll gap, rotating at equal circumferential speeds around rotation axes parallel to each other, and elastically biased in a relatively approaching direction,
    A pair of main dam plates disposed opposite to each other in parallel to the rotation shaft, and a pair of side dam plates disposed opposite to each other perpendicular to the rotation shaft and in close contact with both end surfaces of the pair of main dam plates. A molten metal nozzle that is disposed above the roll gap of the pair of casting rolls and into which a certain amount of molten aluminum-based material is poured,
    A ladle for pouring a fixed amount of molten aluminum material at a constant flow rate into the molten metal nozzle;
    A position detector for detecting the position of the liquid level of the molten metal poured into the molten metal nozzle;
    The lower the liquid surface position of the detected molten metal, the lower the peripheral speed of the pair of casting rolls, and the higher the liquid surface position, the higher the peripheral speed of the pair of casting rolls. A twin-roll vertical casting apparatus comprising a control unit for controlling.
  13.  アルミニウム系材料をシートに製造する双ロール式縦型鋳造装置であって、
     所定のロールギャップをもって対向配置され、互いに平行な回転軸を中心にして等しい周速度で回転するとともに、相対的に接近する方向へ弾性付勢された一対の鋳造ロールと、
     前記回転軸と平行に対向配置された一対の主堰板と、前記回転軸と直交して対向配置されるとともに前記一対の主堰板の両端面に密接された一対の側堰板とを含み、前記一対の鋳造ロールの前記ロールギャップの上方に配置されて、一定量のアルミニウム系材料の溶湯が注湯される溶湯ノズルと、
     前記溶湯ノズルに一定量のアルミニウム系材料の溶湯を一定流量で注湯するレードルと、
     前記レードルに収容された前記一定量のアルミニウム系材料の溶湯を前記溶湯ノズルに注湯し始める鋳造開始時から、前記溶湯の液面の位置が所定位置に達するまでの間は、前記一対の鋳造ロールの周速度が相対的に小さくなるように制御する制御ユニットと、を備える双ロール式縦型鋳造装置。
    A twin roll type vertical casting apparatus for manufacturing aluminum-based material into a sheet,
    A pair of casting rolls arranged opposite each other with a predetermined roll gap, rotating at equal circumferential speeds around rotation axes parallel to each other, and elastically biased in a relatively approaching direction,
    A pair of main dam plates disposed opposite to each other in parallel to the rotation shaft, and a pair of side dam plates disposed opposite to each other perpendicular to the rotation shaft and in close contact with both end surfaces of the pair of main dam plates. A molten metal nozzle that is disposed above the roll gap of the pair of casting rolls and into which a certain amount of molten aluminum-based material is poured,
    A ladle for pouring a fixed amount of molten aluminum material at a constant flow rate into the molten metal nozzle;
    The pair of castings starts from the start of casting the molten aluminum material contained in the ladle to the molten nozzle until the liquid level reaches a predetermined position. A twin roll type vertical casting apparatus comprising: a control unit that controls the peripheral speed of the roll to be relatively small.
  14.  前記制御ユニットは、
     前記溶湯の液面の位置が前記所定位置に達したのちは、当該所定位置を維持するように前記一対の鋳造ロールの周速度を制御する請求項13に記載の双ロール式縦型鋳造装置。
    The control unit is
    The twin-roll type vertical casting apparatus according to claim 13, wherein after the liquid level of the molten metal reaches the predetermined position, the peripheral speed of the pair of casting rolls is controlled so as to maintain the predetermined position.
  15.  アルミニウム系材料をシートに製造する双ロール式縦型鋳造装置であって、
     所定のロールギャップをもって対向配置され、互いに平行な回転軸を中心にして等しい周速度で回転するとともに、相対的に接近する方向へ弾性付勢された一対の鋳造ロールと、
     前記回転軸と平行に対向配置された一対の主堰板と、前記回転軸と直交して対向配置されるとともに前記一対の主堰板の両端面に密接された一対の側堰板とを含み、前記一対の鋳造ロールの前記ロールギャップの上方に配置されて、一定量のアルミニウム系材料の溶湯が注湯される溶湯ノズルと、
     前記溶湯ノズルに一定量のアルミニウム系材料の溶湯を一定流量で注湯するレードルと、
     前記溶湯の液面の位置が所定位置から下降し始める鋳造終了時には、前記一対の鋳造ロールの周速度が相対的に小さくなるように制御する制御ユニットと、を備える双ロール式縦型鋳造装置。
    A twin roll type vertical casting apparatus for manufacturing aluminum-based material into a sheet,
    A pair of casting rolls arranged opposite each other with a predetermined roll gap, rotating at equal circumferential speeds around rotation axes parallel to each other, and elastically biased in a relatively approaching direction,
    A pair of main dam plates disposed opposite to each other in parallel to the rotation shaft, and a pair of side dam plates disposed opposite to each other perpendicular to the rotation shaft and in close contact with both end surfaces of the pair of main dam plates. A molten metal nozzle that is disposed above the roll gap of the pair of casting rolls and into which a certain amount of molten aluminum-based material is poured,
    A ladle for pouring a fixed amount of molten aluminum material at a constant flow rate into the molten metal nozzle;
    And a control unit that controls the peripheral speed of the pair of casting rolls to be relatively small at the end of casting when the position of the liquid level of the molten metal starts to descend from a predetermined position.
  16.  前記溶湯ノズルに受容された溶湯の温度を検出する温度検出器を含み、
     前記制御ユニットは、
      前記温度検出器により検出された溶湯の温度が高いほど前記一対の鋳造ロールの周速度が小さくなるように制御し、前記温度検出器により検出された溶湯の温度が低いほど前記一対の鋳造ロールの周速度が大きくなるように制御する請求項12~15のいずれか一項に記載の双ロール式縦型鋳造装置。
    A temperature detector for detecting the temperature of the molten metal received in the molten metal nozzle;
    The control unit is
    Control is performed such that the peripheral speed of the pair of casting rolls decreases as the temperature of the molten metal detected by the temperature detector increases, and the temperature of the pair of casting rolls decreases as the temperature of the molten metal detected by the temperature detector decreases. The twin roll type vertical casting apparatus according to any one of claims 12 to 15, which is controlled so as to increase a peripheral speed.
  17.  前記一対の鋳造ロールのそれぞれは、少なくとも前記溶湯が接触する鋳造ロールの接触面の温度を調節する温度調節器を含み、
     前記制御ユニットは、
      前記位置検出器により検出された液面の位置が高いほど前記温度調節器により少なくとも前記接触面を加熱制御し、前記位置検出器により検出された液面の位置が低いほど前記温度調節器により少なくとも前記接触面を冷却制御する請求項12に記載の双ロール式縦型鋳造装置。
    Each of the pair of casting rolls includes a temperature controller that adjusts the temperature of the contact surface of the casting roll that is in contact with at least the molten metal,
    The control unit is
    The higher the position of the liquid level detected by the position detector, the more the temperature controller controls the heating of the contact surface, and the lower the position of the liquid level detected by the position detector, the lower the level of the liquid level. The twin roll type vertical casting apparatus according to claim 12, wherein the contact surface is controlled to be cooled.
  18.  前記温度調節器は、少なくとも前記接触面を冷却する冷却水の循環系統と、前記冷却水の流量を調節する流量調節器とを含み、
     前記制御ユニットは、
      前記検出された液面の位置が高いほど前記流量調節器により前記冷却水の流量が少なくなるように制御し、前記検出された液面の位置が低いほど前記流量調節器により前記冷却水の流量が多くなるように制御する請求項17に記載の双ロール式縦型鋳造装置。
    The temperature regulator includes a cooling water circulation system for cooling at least the contact surface, and a flow rate regulator for regulating the flow rate of the cooling water,
    The control unit is
    The flow rate controller controls the flow rate of the cooling water to decrease as the position of the detected liquid level increases, and the flow rate controller controls the flow rate of the cooling water as the position of the detected liquid level decreases. 18. The twin roll type vertical casting apparatus according to claim 17, which is controlled so as to increase.
  19.  前記一対の鋳造ロールのそれぞれは、少なくとも前記溶湯が接触する鋳造ロールの接触面の温度を調節する温度調節器を含み、
     前記制御ユニットは、
      前記一定量のアルミニウム系材料の溶湯を前記溶湯ノズルに注湯し始める鋳造開始時から、前記溶湯の液面の位置が所定位置に達するまでの間は、前記温度調節器により少なくとも前記接触面を冷却制御する請求項13又は14に記載の双ロール式縦型鋳造装置。
    Each of the pair of casting rolls includes a temperature controller that adjusts the temperature of the contact surface of the casting roll that is in contact with at least the molten metal,
    The control unit is
    From the start of casting when a certain amount of molten aluminum material is poured into the melt nozzle until the liquid level of the melt reaches a predetermined position, at least the contact surface is moved by the temperature controller. The twin roll type vertical casting apparatus according to claim 13 or 14, wherein the cooling is controlled.
  20.  前記温度調節器は、少なくとも前記接触面を冷却する冷却水の循環系統と、前記冷却水の流量を調節する流量調節器とを含み、
     前記制御ユニットは、
      前記一定量のアルミニウム系材料の溶湯を前記溶湯ノズルに注湯し始める鋳造開始時から、前記溶湯の液面の位置が所定位置に達するまでの間は、前記流量調節器により前記冷却水の流量が多くなるように制御する請求項19に記載の双ロール式縦型鋳造装置。
    The temperature regulator includes a cooling water circulation system for cooling at least the contact surface, and a flow rate regulator for regulating the flow rate of the cooling water,
    The control unit is
    The flow rate controller adjusts the flow rate of the cooling water from the start of casting the molten aluminum material of a certain amount to the melt nozzle until the position of the liquid level reaches a predetermined position. 20. The twin roll type vertical casting apparatus according to claim 19, which is controlled so as to increase.
  21.  前記一対の鋳造ロールのそれぞれは、少なくとも前記溶湯が接触する鋳造ロールの接触面の温度を調節する温度調節器を含み、
     前記制御ユニットは、
      前記溶湯の液面の位置が所定位置から下降し始める鋳造終了時には、前記温度調節器により少なくとも前記接触面を冷却制御する請求項15に記載の双ロール式縦型鋳造装置。
    Each of the pair of casting rolls includes a temperature controller that adjusts the temperature of the contact surface of the casting roll that is in contact with at least the molten metal,
    The control unit is
    The twin-roll vertical casting apparatus according to claim 15, wherein at least the contact surface is controlled to be cooled by the temperature controller at the end of casting when the position of the liquid surface of the molten metal starts to descend from a predetermined position.
  22.  前記温度調節器は、少なくとも前記接触面を冷却する冷却水の循環系統と、前記冷却水の流量を調節する流量調節器とを含み、
     前記制御ユニットは、
      前記溶湯の液面の位置が所定位置から下降し始める鋳造終了時には、前記流量調節器により前記冷却水の流量が多くなるように制御する請求項21に記載の双ロール式縦型鋳造装置。
    The temperature regulator includes a cooling water circulation system for cooling at least the contact surface, and a flow rate regulator for regulating the flow rate of the cooling water,
    The control unit is
    The twin roll type vertical casting apparatus according to claim 21, wherein at the end of casting at which the liquid level of the molten metal starts to descend from a predetermined position, the flow rate controller controls the flow rate of the cooling water to be increased.
PCT/JP2015/065531 2015-05-29 2015-05-29 Twin roll-type vertical casting device and twin roll-type vertical casting method WO2016194038A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065531 WO2016194038A1 (en) 2015-05-29 2015-05-29 Twin roll-type vertical casting device and twin roll-type vertical casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065531 WO2016194038A1 (en) 2015-05-29 2015-05-29 Twin roll-type vertical casting device and twin roll-type vertical casting method

Publications (1)

Publication Number Publication Date
WO2016194038A1 true WO2016194038A1 (en) 2016-12-08

Family

ID=57440478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065531 WO2016194038A1 (en) 2015-05-29 2015-05-29 Twin roll-type vertical casting device and twin roll-type vertical casting method

Country Status (1)

Country Link
WO (1) WO2016194038A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049836A (en) * 1983-08-31 1985-03-19 Ishikawajima Harima Heavy Ind Co Ltd Twin roll type continuous casting method
JPS6049835A (en) * 1983-08-31 1985-03-19 Ishikawajima Harima Heavy Ind Co Ltd Twin roll type continuous casting method
JPS6349347A (en) * 1986-08-13 1988-03-02 Ishikawajima Harima Heavy Ind Co Ltd Control method for number of revolution of twin rolls
JPH0252150A (en) * 1988-08-16 1990-02-21 Ishikawajima Harima Heavy Ind Co Ltd Twin roll type continuous casting method
JP2005230837A (en) * 2004-02-18 2005-09-02 Toyota Motor Corp Apparatus and method for producing metallic sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049836A (en) * 1983-08-31 1985-03-19 Ishikawajima Harima Heavy Ind Co Ltd Twin roll type continuous casting method
JPS6049835A (en) * 1983-08-31 1985-03-19 Ishikawajima Harima Heavy Ind Co Ltd Twin roll type continuous casting method
JPS6349347A (en) * 1986-08-13 1988-03-02 Ishikawajima Harima Heavy Ind Co Ltd Control method for number of revolution of twin rolls
JPH0252150A (en) * 1988-08-16 1990-02-21 Ishikawajima Harima Heavy Ind Co Ltd Twin roll type continuous casting method
JP2005230837A (en) * 2004-02-18 2005-09-02 Toyota Motor Corp Apparatus and method for producing metallic sheet

Similar Documents

Publication Publication Date Title
US8602086B2 (en) Apparatus for producing amorphous alloy foil strip and method for producing amorphous alloy foil strip
JP6511968B2 (en) Twin-roll vertical casting apparatus and twin-roll vertical casting method
WO2016194167A1 (en) Twin roll-type vertical casting device and twin roll-type vertical casting method
JP2008213014A (en) Method for controlling shape thickness of strip
JP5335767B2 (en) Aluminum alloy casting method
WO2016194038A1 (en) Twin roll-type vertical casting device and twin roll-type vertical casting method
JP6753160B2 (en) Double roll vertical casting equipment
WO2016194037A1 (en) Twin roll-type vertical casting device and twin roll-type vertical casting method
JP2003501265A (en) Operating method and system for high-speed continuous casting equipment
JP6735157B2 (en) Twin roll vertical casting machine
JP5501898B2 (en) Linear member manufacturing method and linear member manufacturing apparatus
JP4407220B2 (en) Method and apparatus for continuous casting of thin sheet of high thermal conductivity material
JP6759915B2 (en) Double roll casting equipment
EP3672745B1 (en) Dynamically positioned diffuser for metal distribution during a casting operation and associated casting method
JPH0252149A (en) Method for controlling roll correction in twin roll type continuous casting machine
JP6831399B2 (en) Composite rolling extrusion method and equipment for performing it
JP2017047450A (en) Twin roll type vertical casting apparatus
JP6512042B2 (en) Twin roll vertical casting machine
JP2006346685A (en) Apparatus for continuous casting
JP2005230837A (en) Apparatus and method for producing metallic sheet
JPS63171251A (en) Method and apparatus for producing continuously cast metal strip
JP2740507B2 (en) Continuous casting method for metal ribbon
RU2368456C2 (en) Method of continuous casting and rolling of metals
JPS60238001A (en) Continuous production of thin sheet
JP2008043952A (en) Twin roll casting machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP