WO2016193230A1 - Secure lighting module comprising luminous laser source - Google Patents

Secure lighting module comprising luminous laser source Download PDF

Info

Publication number
WO2016193230A1
WO2016193230A1 PCT/EP2016/062197 EP2016062197W WO2016193230A1 WO 2016193230 A1 WO2016193230 A1 WO 2016193230A1 EP 2016062197 W EP2016062197 W EP 2016062197W WO 2016193230 A1 WO2016193230 A1 WO 2016193230A1
Authority
WO
WIPO (PCT)
Prior art keywords
rays
lighting module
polarizer
light beam
incoherent
Prior art date
Application number
PCT/EP2016/062197
Other languages
French (fr)
Inventor
Pierre Albou
Kostadin BEEV
Marine Courcier
Vanesa Sanchez
Original Assignee
Valeo Vision
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision filed Critical Valeo Vision
Publication of WO2016193230A1 publication Critical patent/WO2016193230A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V25/00Safety devices structurally associated with lighting devices
    • F21V25/02Safety devices structurally associated with lighting devices coming into action when lighting device is disturbed, dismounted, or broken
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24-F21S41/28
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/70Prevention of harmful light leakage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • F21V13/14Combinations of only three kinds of elements the elements being filters or photoluminescent elements, reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06825Protecting the laser, e.g. during switch-on/off, detection of malfunctioning or degradation

Definitions

  • the invention relates to the field of lighting and light signaling, in particular for a motor vehicle. More particularly, the invention relates to the field of lighting and light signaling with light sources of the laser type, that is to say producing coherent and monochromatic beams.
  • a photoluminescent device comprising phosphor may be disposed directly after the laser diode so as to convert the monochromatic and coherent laser light to incoherent white light.
  • the function of the photoluminescent device is necessary to avoid the propagation of a coherent and monochromatic beam potentially dangerous, especially for the eyes of people around the lighting module. This is particularly true for laser diodes emitting in the visible range at a wavelength between 360 nm and 480 nm, more particularly in the blue field.
  • Blue-ray semiconductor lasers are generally based on gallium (III) nitride (GaN, violet color) or gallium indium nitride.
  • the published patent document US 201 1/0157865 A1 discloses a lighting module for a motor vehicle, the module comprising light sources of the laser diode type emitting light of wavelength of 405 nm.
  • a photoluminescent phosphor device is provided. This document addresses the issue of safety for users in case of failure of the photoluminescent device. It proposes as a solution the presence of a filtering and diffusing device after the photoluminescent device, capable of reducing the coherence and intensity of the 405 nm wavelength beam in the event of failure of the photoluminescent phosphor device. This device is however disadvantageous from an optical performance point of view.
  • the published patent document WO 2013/094221 A1 also discloses a lighting module for a motor vehicle, the module comprising light sources of the laser type. More specifically, the module comprises one or more laser diodes producing an ultraviolet (UV, 360 to 425 nm) beam and one or more laser diodes producing a blue beam (425 to 470 nm).
  • a device photoluminescent comprising a first material capable of absorbing the beam of the UV laser diodes and a second material capable of absorbing the beam of the blue laser diodes is provided. The first material then emits light in the field of red, green, blue, orange and yellow while the second material emits in the field of red, green, orange or yellow.
  • This teaching combines photoluminescence with additive color mixing to produce white light.
  • the technical solution of this teaching is however binding in particular because it requires the presence of several laser sources of different colors.
  • the use of a UV laser source is detrimental in itself insofar as its conversion in the photoluminescent device is subject to greater Stokes displacement.
  • Stokes displacement is the difference, in wavelength or frequency, between the peak position of the absorption spectrum and that of the peak of the luminescence spectrum of the same electron transition at the level of the photoluminescent material.
  • the object of the present invention is to provide a lighting module overcoming at least one drawback of the state of the art mentioned above. More specifically, the invention aims to provide a lighting module having a light source of the laser type and which is safe and efficient.
  • the invention relates to a lighting module, in particular for a motor vehicle, comprising: a light source of the laser type capable of emitting a coherent light beam in a given direction and monochromatic of a wavelength ⁇ ; a photoluminescent device capable of converting the beam coherent and monochromatic luminous in an incoherent light beam; remarkable in that it further comprises a dichroic reflector configured to reflect the rays of the wavelength ⁇ of the light beam from the photoluminescent device.
  • the coherent and monochromatic light beam emitted by the light source is then reflected by the dichroic reflector, advantageously towards a direction other than the beam output direction coming from the dichroic module. 'lighting.
  • the coherent monochromatic beam emitted by the laser-type light source is not emitted outside the module, the safety of the users is ensured.
  • the module further comprises an absorption device able to absorb the rays reflected by the dichroic reflector.
  • the dichroic reflector is configured to transmit the rays of wavelengths different from ⁇ of the incoherent light beam.
  • the transmitted rays will therefore have no wavelength component ⁇ . As it is the one corresponding to blue-violet, the resulting beam will be yellow-green tinted white.
  • a photoluminescent device which advantageously comprises fluorescent elements in order to generate a luminous line with a wavelength different from ⁇ , will advantageously be chosen. greater than ⁇ and bringing a blue component or near blue to the beam. This light emitted by the fluorescent elements is non-coherent and therefore not assimilated to coherent light of the laser type.
  • These fluorescent elements may be included in an additional layer of coating of the photoluminescent device. For example, we can use fluorescein, which re-emits with an emission peak at 521 nm, so a cyan color.
  • the module further comprises a polarizer of the rays reflected by the dichroic reflector, said polarizer polarizing said rays in a direction perpendicular to the polarization direction of the coherent and monochromatic light beam when it meets said polarizer, to block said beam in case of failure of the photoluminescent device.
  • the polarizer is thus disposed in the optical path of the rays reflected by the dichroic reflector.
  • the coherent and monochromatic light beam emitted by the light source is then reflected by the dichroic reflector towards the polarizer whose polarization direction is perpendicular to the polarization direction of said beam when it meets said polarizer.
  • the polarization direction of the polarizer is perpendicular to the polarization direction of the beam from the light source and meeting the photoluminescent device.
  • the dichroic reflector is configured to transmit the rays of wavelengths different from ⁇ of the incoherent light beam.
  • the module is configured so that the rays polarized by the polarizer propagate at least substantially parallel to the rays transmitted by the dichroic reflector.
  • the polarizer is a reflection polarizer, the polarized rays being reflected by the polarizer so as to propagate at least substantially parallel to the rays transmitted by the dichroic reflector.
  • the module further comprises an absorption device able to absorb the rays passing through the reflection polarizer.
  • the module comprises an optical device capable of recombining the polarized rays by the polarizer with the incoherent rays transmitted by the dichroic mirror.
  • the dichroic mirror is a first dichroic mirror
  • the optical device comprising a second dichroic mirror transmitting the rays transmitted by the first dichroic mirror, and reflecting the polarized rays by the polarizer so as to recombine with said transmitted rays.
  • the optical device further comprises a mirror and preferably a polarization inverter of the half-wave blade type.
  • the polarization inverter may be disposed between the polarizer and the mirror in question.
  • the mirror is configured to reflect the rays coming from the polarizer, and preferably passing through the polarization inverter, to the second dichroic mirror.
  • the optical device is a first optical device, the module comprising a second optical device capable of deflecting the polarized polarized rays recombined with the incoherent rays to form a lighting beam.
  • the second optical device comprises a lens, preferably biconvex.
  • the incoherent rays transmitted by the dichroic mirror and the rays polarized by the polarizer form two lighting beams combining remotely from the lighting module.
  • a lens-type optical device may be optically disposed between the photoluminescent device and the dichroic mirror.
  • the wavelength ⁇ is included in the visible spectrum, preferably between 405 nm and 500 nm, more preferably between 425 nm and 470 nm.
  • the photoluminescent device comprises phosphorescent grains and scattering grains.
  • the measurements of the invention are interesting in particular that they provide by optical means a safety device with regard to the light of the laser sources used. These optical means have the advantage of being permanently functional and do not require any electrical or electronic control means likely to fail. The reliability level of the secure lighting module is therefore quite high.
  • the measurements of the invention make it possible to obtain at the output of the lighting module a white light, relatively neutral, without marked colorimetric drift.
  • FIG. 1 is a block diagram of a lighting module according to a first example of a second variant embodiment of the invention:
  • FIG. 2 is a block diagram of a lighting module according to a second example of a second embodiment of the invention.
  • FIG. 1 schematically illustrates the architecture of a lighting module according to a first embodiment of a second embodiment of the invention.
  • This figure also serves as a support for a first embodiment of the invention comprising a dichroic filter but without polarizer, so for all the elements located upstream of the polarizer, in the ray propagation direction.
  • the module 2 comprises a light source of the laser diode type 4, more particularly a laser diode 4 with linear polarization or linear polarization, namely that the direction of the electric field is constant over time and propagation.
  • it may be one or more laser diodes producing a blue beam with a wavelength ⁇ between 425 and 470 nm.
  • the laser diode or diodes then produce a polarized light beam 5.
  • the dot surrounded by a circle shown on the path of the beam 5 expresses that the polarization direction is perpendicular to the plane of the drawing.
  • the module 2 may comprise a mirror 6 in the form of a micro electromechanical system or else MEMS (acronym for "micro-electro-mechanical System”).
  • the unpolarized character is represented by the concurrent arrows on the path of the beam.
  • Photoluminescence is a process by which a substance absorbs photons and then re-emits photons.
  • Phosphorescent materials for example cerium-doped YAGs constitute a category of photoluminescent materials that are particularly suitable for converting a coherent beam into an incoherent beam. This state of affairs is well known in itself to those skilled in the art.
  • the beam 5 1 of white light is then partially reflected by a first dichroic mirror 10, that is to say a mirror whose transmission and reflection properties strongly depend on the wavelength.
  • the dichroic mirror 10 is configured to reflect any frequency rays close to or equal to the frequency ⁇ of the coherent beam 5 emitted by the laser source or sources 4. It is then configured to transmit the rays of other frequencies. . This means that as long as the photoluminescent device is functioning correctly, because of the Stokes displacement, the white light encountering the dichroic mirror contains no or little frequency ⁇ and is thus wholly or mainly transmitted along the main beam 5 2 .
  • Stokes displacement is the difference, in wavelength or frequency, between the peak position of the absorption spectrum and that of the peak of the luminescence spectrum of the same electron transition at the level of the photoluminescent material.
  • the wavelength of the emitted light is greater than that of the excitatory light.
  • a reflection polarizer 14 is arranged to reflect the beam 5 3 in a polarized beam 4 in a direction perpendicular to the direction of polarization of the beam 5 emitted by the laser source or sources 4. This polarization direction is represented by the vertical arrow on beam 5 4 .
  • the reflection polarizers or beam separation separate the incident beam into two beams of different polarizations. These polarizations can be rectilinear and perpendicular to each other. They absorb very little light, which makes it an advantage over absorption polarisers.
  • Such a polarizer may consist in particular of a series of glass plates oriented at the Brewster angle relative to the beam, this angle being about 57 ° for the glass.
  • the polarization rays perpendicular to that of the beam 4 pass through the polarizer 14 and can then be absorbed by an absorption device.
  • This direction of polarization is illustrated by the dot surrounded by a circle on the broken line in the extension of the course 5 3 .
  • a half-wave plate 16 is disposed to receive the beam 4 to cause 90 ° rotation of the polarization direction of the beam.
  • This change of orientation is illustrated by the dot surrounded by a circle to the right of the half-wave plate as opposed to the arrow to the left of said blade.
  • a half-wave plate is a particular type of delay plate, that is, an optical instrument for changing the polarization state of the light.
  • the half-wave plates are parallel-sided blades made of a birefringent material which make it possible to introduce a phase retardation of the light of ⁇ / 2 between the two birefringence axes called slow axis and fast axis.
  • a mirror 18 is disposed so as to reflect the outgoing beam 5 of 5 of the half-wave plate 16 into a beam 5 6 shall propagating towards a second dichroic mirror 12.
  • the latter is configured so that its face receiving the beam 5 6 is able to reflect said beam of wavelength ⁇ .
  • the face in question can indeed undergo a dichroic treatment to reflect the wavelength rays ⁇ .
  • Such treatments are well known to those skilled in the art.
  • the beam 2 of white light transmitted by the first dichroic mirror 10 is transmitted by the second dichroic mirror 12 to which is added the beam 6 of wavelength ⁇ reflected by said second mirror to form a beam 7 of white light. secured.
  • the beam 57 is indeed secure in that in case of failure of the photoluminescent device 8, the monochromatic coherent light of wavelength ⁇ emitted by the laser source 4, potentially dangerous, will then be totally reflected by the first dichroic mirror 10.
  • This beam 5 3 will then have a direction of polarization identical to that of the beam 5 coming out of the light source or sources 4.
  • the polarization direction of the reflection polarizer 14 is perpendicular to the direction of polarization of the beam 5 3 . All of this light will then be transmitted by the polarizer to be possibly absorbed by an absorption device (not shown). In other words, the reflection polarizer 14 will not reflect any light since the light incident thereto has a direction of polarization perpendicular to its direction of reflection. No coherent and monochromatic light will then be transmitted in the lighting direction of the module.
  • part of the light emitted by the device may possibly have wavelengths close to the wavelength ⁇ .
  • These incoherent rays will then be reflected by the first dichroic mirror 10 to form the secondary beam 5 3 . Only the components of the incoherent rays aligned with the polarization direction of the reflection polarizer 14 will be reflected to form the beam 5 4 .
  • the luminescent and diffusing grain dosage of the photoluminescent device will advantageously be adapted so that the light emitted by it will contain a larger proportion of blue to compensate for the loss of blue component subsequently generated. by the polarizer and thus obtain a light beam emitted whose white color remains relatively neutral: indeed, without this compensation, the light from the lighting module will be white tinted yellow-green.
  • An optical device such as a lens 20, may be disposed at the front of the module to form a suitable illumination beam.
  • Other optical devices that a lens are conceivable.
  • FIG. 2 schematically illustrates the architecture of a lighting module according to a second embodiment of a second variant embodiment of the invention.
  • the reference numerals of the first embodiment are used in the second embodiment for identical or corresponding elements, these numbers however being increased by 100 in order to clearly distinguish the two embodiments.
  • the module 102 comprises a light source of the laser diode type 104 comprising one or more laser diodes producing a blue beam with a wavelength ⁇ between 425 and 470 nm.
  • the laser diode or diodes then produce a polarized light beam 105.
  • the dot surrounded by a circle shown on the path of the beam 105 expresses that the direction of polarization is perpendicular to the plane of the drawing.
  • the beam 105 meets a photoluminescent device 108 comprising phosphorus in order to convert the polarized and monochromatic beam into a non-polarized and non-coherent beam 105 1 , in this case a beam of white light .
  • the unpolarized character is represented by the concurrent arrows on the path of the beam.
  • the module 102 also comprises an optical device such as a lens 120, so as to deflect the light rays in order to form a suitable light beam including a lighting function.
  • the optical device 120 is disposed directly after the photoluminescent device 108.
  • the module 102 comprises a dichroic mirror 1 10 configured to reflect any frequency rays close to or equal to the frequency ⁇ of the coherent beam 105 emitted by the laser source or sources 104. It is configured to transmit the rays of other frequencies.
  • the white light encountering the dichroic mirror contains little or no frequency ⁇ and is thus wholly or mainly transmitted along the main beam 105 2 .
  • part of the beam may then comprise coherent rays of frequency ⁇ , these rays being potentially dangerous for the environment of the lighting module.
  • These rays will then be reflected by the dichroic mirror 1 10 into a secondary beam 105 3 .
  • This beam 105 3 will then be potentially randomly polarized according to the degree of deterioration of the photoluminescent device 8.
  • a reflection polarizer 11 is arranged to reflect the beam 105 3 in a beam 105 4 polarized in a direction perpendicular to the direction of polarization of the beam 105 emitted by the laser source (s) 104. This polarization direction is represented by the vertical arrow on the beam 105 4 .
  • the secondary beam 105 4 is then added to the main beam 105 2 away from the module, that is to say in the lighting zone of the beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

The invention relates to a lighting module (2), in particular for a motor vehicle, comprising a laser light source (4) capable of emitting a coherent monochromatic light beam in a given direction at a wavelength λ, and a photoluminescent device (8) able to convert the coherent monochromatic light beam into an incoherent light beam. The module further comprises a dichroic reflector (10) configured to reflect the rays of wavelength λ of the light beam coming from the photoluminescent device (8). According to one variant, the module further comprises a polariser (14) of the rays reflected by the dichroic reflector (10), said polariser polarising said rays in a direction perpendicular to the direction of polarisation of the coherent monochromatic light beam when it encounters said polariser, in such a way as to block said beam in the event of failure of the photoluminescent device.

Description

MODULE D'ECLAIRAGE SECURISE AVEC SOURCE LUMINEUSE LASER  SECURED LIGHTING MODULE WITH LASER LIGHT SOURCE
L'invention a trait au domaine de l'éclairage et de la signalisation lumineuse, notamment pour véhicule automobile. Plus particulièrement, l'invention a trait au domaine de l'éclairage et de la signalisation lumineuse avec des sources lumineuses du type laser, c'est-à-dire produisant des faisceaux cohérents et monochromatiques. The invention relates to the field of lighting and light signaling, in particular for a motor vehicle. More particularly, the invention relates to the field of lighting and light signaling with light sources of the laser type, that is to say producing coherent and monochromatic beams.
Des sources lumineuses du type diode laser sont maintenant envisagées pour des modules d'éclairage, notamment pour des projecteurs de véhicule automobile. Un dispositif photoluminescent comprenant du phosphore peut être disposé directement après la diode laser de manière à convertir la lumière monochromatique et cohérente du laser en lumière blanche incohérente. La fonction du dispositif photoluminescent est nécessaire pour éviter la propagation d'un faisceau cohérent et monochromatique potentiellement dangereux, notamment pour les yeux des personnes aux alentours du module d'éclairage. Ceci est particulièrement vrai pour les diodes laser émettant dans le domaine visible, à une longueur d'onde comprise entre 360 nm et 480 nm, plus particulièrement dans le domaine du bleu. Les lasers à semi-conducteurs à rayons bleus sont généralement à base de gallium (III) nitrure (GaN; couleur violette) ou de nitrure de gallium indium. Light sources of the laser diode type are now envisaged for lighting modules, in particular for motor vehicle headlamps. A photoluminescent device comprising phosphor may be disposed directly after the laser diode so as to convert the monochromatic and coherent laser light to incoherent white light. The function of the photoluminescent device is necessary to avoid the propagation of a coherent and monochromatic beam potentially dangerous, especially for the eyes of people around the lighting module. This is particularly true for laser diodes emitting in the visible range at a wavelength between 360 nm and 480 nm, more particularly in the blue field. Blue-ray semiconductor lasers are generally based on gallium (III) nitride (GaN, violet color) or gallium indium nitride.
Le document de brevet publié US 201 1/0157865 A1 divulgue un module d'éclairage pour véhicule automobile, le module comprenant des sources lumineuses du type diode laser émettant une lumière de longueur d'onde de 405 nm. Un dispositif photoluminescent au phosphore est prévu. Ce document aborde la problématique de la sécurité pour les usagers en cas de défaillance du dispositif photoluminescent. Il propose comme solution la présence d'un dispositif filtrant et diffusant après le dispositif photoluminescent, apte à diminuer la cohérence et l'intensité du faisceau de longueur d'onde de 405 nm en cas de défaillance du dispositif photoluminescent au phosphore. Ce dispositif est cependant pénalisant d'un point de vue rendement optique. The published patent document US 201 1/0157865 A1 discloses a lighting module for a motor vehicle, the module comprising light sources of the laser diode type emitting light of wavelength of 405 nm. A photoluminescent phosphor device is provided. This document addresses the issue of safety for users in case of failure of the photoluminescent device. It proposes as a solution the presence of a filtering and diffusing device after the photoluminescent device, capable of reducing the coherence and intensity of the 405 nm wavelength beam in the event of failure of the photoluminescent phosphor device. This device is however disadvantageous from an optical performance point of view.
Le document de brevet publié WO 2013/094221 A1 divulgue également un module d'éclairage pour véhicule automobile, le module comprenant des sources lumineuses du type laser. Plus précisément, le module comprend une ou plusieurs diodes laser produisant un faisceau ultraviolet (UV, 360 à 425 nm) et une ou plusieurs diodes laser produisant un faisceau bleu (425 à 470 nm). Un dispositif photoluminescent comprenant une première matière apte à absorber le faisceau des diodes laser UV et une deuxième matière apte à absorber le faisceau des diodes laser bleues est prévu. La première matière émet alors de la lumière dans le domaine du rouge, vert, bleu, orange et jaune alors que la deuxième matière émet dans le domaine du rouge, vert, orange ou jaune. La combinaison des faisceaux de lumière émis par ces première et deuxième matières produit de la lumière qui est perçue comme lumière blanche. Cette lumière blanche est alors pauvre en bleu et par conséquent davantage sûre. Cet enseignement combine la photoluminescence avec le mélange de couleurs additives pour produire de la lumière blanche. La solution technique de cet enseignement est cependant contraignante notamment en ce qu'elle requiert la présence de plusieurs sources laser de couleurs différentes. De plus, l'utilisation d'une source laser UV est pénalisante en soi dans la mesure où sa conversion dans le dispositif photoluminescent est sujette à un plus grand déplacement de Stokes. Le déplacement de Stokes est la différence, en longueur d'onde ou en fréquence, entre la position du pic du spectre d'absorption et celle du pic du spectre de luminescence de la même transition électronique au niveau de la matière photoluminescente. Lors de la collision inélastique entre une molécule et un photon, une radiation de longueur d'onde supérieure à celle qui a permis l'excitation est émise. La longueur d'onde de la lumière émise est plus grande et donc d'énergie plus petite que celle de la lumière excitatrice. La molécule conserve ainsi un excédent d'énergie qui peut être à l'origine d'un échauffement de la matière. Aussi, les photons UV endommagent les polymères transparents ou non transparents et limitent très sérieusement l'utilisation de matières plastiques, tant pour les lentilles que pour la structure du système, ce qui est pénalisant pour le poids et le coût du système. The published patent document WO 2013/094221 A1 also discloses a lighting module for a motor vehicle, the module comprising light sources of the laser type. More specifically, the module comprises one or more laser diodes producing an ultraviolet (UV, 360 to 425 nm) beam and one or more laser diodes producing a blue beam (425 to 470 nm). A device photoluminescent comprising a first material capable of absorbing the beam of the UV laser diodes and a second material capable of absorbing the beam of the blue laser diodes is provided. The first material then emits light in the field of red, green, blue, orange and yellow while the second material emits in the field of red, green, orange or yellow. The combination of light beams emitted by these first and second materials produces light that is perceived as white light. This white light is then poor in blue and therefore safer. This teaching combines photoluminescence with additive color mixing to produce white light. The technical solution of this teaching is however binding in particular because it requires the presence of several laser sources of different colors. In addition, the use of a UV laser source is detrimental in itself insofar as its conversion in the photoluminescent device is subject to greater Stokes displacement. Stokes displacement is the difference, in wavelength or frequency, between the peak position of the absorption spectrum and that of the peak of the luminescence spectrum of the same electron transition at the level of the photoluminescent material. During the inelastic collision between a molecule and a photon, a radiation of wavelength greater than that which allowed the excitation is emitted. The wavelength of the emitted light is greater and therefore of smaller energy than that of the excitatory light. The molecule thus conserves an excess of energy which can be at the origin of a heating of the matter. Also, UV photons damage transparent or non-transparent polymers and severely limit the use of plastics, both for lenses and the structure of the system, which is penalizing for the weight and cost of the system.
L'objectif de la présente invention est de proposer un module d'éclairage palliant au moins un inconvénient de l'état de la technique susmentionné. Plus précisément, l'invention a pour objectif de proposer un module d'éclairage ayant une source lumineuse du type laser et qui soit sûr et performant. L'invention a pour objet un module d'éclairage, notamment pour véhicule automobile, comprenant : une source lumineuse du type laser apte à émettre un faisceau lumineux cohérent suivant une direction donnée et monochromatique d'une longueur d'onde λ ; un dispositif photoluminescent apte à convertir le faisceau lumineux cohérent et monochromatique en un faisceau lumineux incohérent ; remarquable en ce qu'il comprend, en outre, un réflecteur dichroïque configuré pour réfléchir les rayons de la longueur d'onde λ du faisceau lumineux provenant du dispositif photoluminescent. Dans cette première variante de réalisation, en cas de défaillance du dispositif photoluminescent, le faisceau lumineux cohérent et monochromatique émis par la source lumineuse est alors réfléchi par le réflecteur dichroïque, avantageusement vers une direction autre que la direction de sortie du faisceau issu du module d'éclairage. Ainsi, le faisceau cohérent monochromatique émis par la source de lumière de type laser n'est pas émis hors du module, la sécurité des usagers est assurée. The object of the present invention is to provide a lighting module overcoming at least one drawback of the state of the art mentioned above. More specifically, the invention aims to provide a lighting module having a light source of the laser type and which is safe and efficient. The invention relates to a lighting module, in particular for a motor vehicle, comprising: a light source of the laser type capable of emitting a coherent light beam in a given direction and monochromatic of a wavelength λ; a photoluminescent device capable of converting the beam coherent and monochromatic luminous in an incoherent light beam; remarkable in that it further comprises a dichroic reflector configured to reflect the rays of the wavelength λ of the light beam from the photoluminescent device. In this first variant embodiment, in the event of a failure of the photoluminescent device, the coherent and monochromatic light beam emitted by the light source is then reflected by the dichroic reflector, advantageously towards a direction other than the beam output direction coming from the dichroic module. 'lighting. Thus, the coherent monochromatic beam emitted by the laser-type light source is not emitted outside the module, the safety of the users is ensured.
Selon un mode avantageux de l'invention, le module comprend, en outre, un dispositif d'absorption apte à absorber les rayons réfléchis par le réflecteur dichroïque. Selon un mode avantageux de l'invention, le réflecteur dichroïque est configuré pour transmettre les rayons de longueurs d'onde différentes de λ du faisceau lumineux incohérent. According to an advantageous embodiment of the invention, the module further comprises an absorption device able to absorb the rays reflected by the dichroic reflector. According to an advantageous embodiment of the invention, the dichroic reflector is configured to transmit the rays of wavelengths different from λ of the incoherent light beam.
Les rayons transmis n'auront donc pas de composante de longueur d'onde λ. Comme il s'agit de celle correspondant au bleu-violet, le faisceau résultant sera donc blanc teinté jaune-vert. The transmitted rays will therefore have no wavelength component λ. As it is the one corresponding to blue-violet, the resulting beam will be yellow-green tinted white.
Afin de compenser cette dérive colorimétrique du faisceau issu du module due à l'utilisation du filtre dichroïque, on choisira avantageusement un dispositif photoluminescent qui comporte en outre des éléments fluorescents afin de générer une raie lumineuse avec une longueur d'onde différente de λ, généralement supérieure à λ et amenant une composante bleue ou proche du bleu au faisceau. Cette lumière émise par les éléments fluorescents est non cohérente donc non assimilée à de la lumière cohérente du type laser. Ces éléments fluorescents pourront être compris dans une couche supplémentaire de revêtement du dispositif photoluminescent. Par exemple, on pourra utiliser de la fluorescéine, qui réémet avec un pic d'émission à 521 nm, donc une couleur cyan. Selon une deuxième variante de réalisation, le module comprend en outre un polariseur des rayons réfléchis par le réflecteur dichroïque, ledit polariseur polarisant lesdits rayons suivant une direction perpendiculaire à la direction de polarisation du faisceau lumineux cohérent et monochromatique lorsqu'il rencontre ledit polariseur, de manière à bloquer ledit faisceau en cas de défaillance du dispositif photoluminescent. In order to compensate for this colorimetric drift of the beam coming from the module due to the use of the dichroic filter, a photoluminescent device which advantageously comprises fluorescent elements in order to generate a luminous line with a wavelength different from λ, will advantageously be chosen. greater than λ and bringing a blue component or near blue to the beam. This light emitted by the fluorescent elements is non-coherent and therefore not assimilated to coherent light of the laser type. These fluorescent elements may be included in an additional layer of coating of the photoluminescent device. For example, we can use fluorescein, which re-emits with an emission peak at 521 nm, so a cyan color. According to a second variant embodiment, the module further comprises a polarizer of the rays reflected by the dichroic reflector, said polarizer polarizing said rays in a direction perpendicular to the polarization direction of the coherent and monochromatic light beam when it meets said polarizer, to block said beam in case of failure of the photoluminescent device.
Le polariseur est ainsi disposé dans le chemin optique des rayons réfléchis par le réflecteur dichroïque. En cas de défaillance du dispositif photoluminescent, le faisceau lumineux cohérent et monochromatique émis par la source lumineuse est alors réfléchi par le réflecteur dichroïque vers le polariseur dont la direction de polarisation est perpendiculaire à la direction de polarisation dudit faisceau lorsqu'il rencontre ledit polariseur. En l'absence de dispositif faisant pivoter la direction de polarisation, entre la source lumineuse et le polariseur, la direction de polarisation du polariseur est perpendiculaire à la direction de polarisation du faisceau provenant de la source lumineuse et rencontrant le dispositif photoluminescent. The polarizer is thus disposed in the optical path of the rays reflected by the dichroic reflector. In the event of failure of the photoluminescent device, the coherent and monochromatic light beam emitted by the light source is then reflected by the dichroic reflector towards the polarizer whose polarization direction is perpendicular to the polarization direction of said beam when it meets said polarizer. In the absence of a device that rotates the polarization direction between the light source and the polarizer, the polarization direction of the polarizer is perpendicular to the polarization direction of the beam from the light source and meeting the photoluminescent device.
Selon un mode avantageux de l'invention, le réflecteur dichroïque est configuré pour transmettre les rayons de longueurs d'onde différentes de λ du faisceau lumineux incohérent. According to an advantageous embodiment of the invention, the dichroic reflector is configured to transmit the rays of wavelengths different from λ of the incoherent light beam.
Selon un mode avantageux de l'invention, le module est configuré pour que les rayons polarisés par le polariseur se propagent au moins essentiellement parallèlement aux rayons transmis par le réflecteur dichroïque. According to an advantageous embodiment of the invention, the module is configured so that the rays polarized by the polarizer propagate at least substantially parallel to the rays transmitted by the dichroic reflector.
Selon un mode avantageux de l'invention, le polariseur est un polariseur à réflexion, les rayons polarisés étant réfléchis par le polariseur de manière à se propager au moins essentiellement parallèlement aux rayons transmis par le réflecteur dichroïque. According to an advantageous embodiment of the invention, the polarizer is a reflection polarizer, the polarized rays being reflected by the polarizer so as to propagate at least substantially parallel to the rays transmitted by the dichroic reflector.
Selon un mode avantageux de l'invention, le module comprend, en outre, un dispositif d'absorption apte à absorber les rayons traversant le polariseur à réflexion. According to an advantageous embodiment of the invention, the module further comprises an absorption device able to absorb the rays passing through the reflection polarizer.
Selon un mode avantageux de l'invention, le module comprend un dispositif optique apte à recombiner les rayons polarisés par le polariseur avec les rayons incohérents transmis par le miroir dichroïque. Selon un mode avantageux de l'invention, le miroir dichroïque est un premier miroir dichroïque, le dispositif optique comprenant un deuxième miroir dichroïque transmettant les rayons transmis par le premier miroir dichroïque, et réfléchissant les rayons polarisés par le polariseur de manière à se recombiner avec lesdits rayons transmis. According to an advantageous embodiment of the invention, the module comprises an optical device capable of recombining the polarized rays by the polarizer with the incoherent rays transmitted by the dichroic mirror. According to an advantageous embodiment of the invention, the dichroic mirror is a first dichroic mirror, the optical device comprising a second dichroic mirror transmitting the rays transmitted by the first dichroic mirror, and reflecting the polarized rays by the polarizer so as to recombine with said transmitted rays.
Selon un mode avantageux de l'invention, le dispositif optique comprend, en outre, un miroir et préférentiellement un inverseur de polarisation du type lame demi-onde. L'inverseur de polarisation peut être disposé entre le polariseur et le miroir en question. Le miroir est configuré pour réfléchir les rayons provenant du polariseur, et préférentiellement traversant l'inverseur de polarisation, vers le deuxième miroir dichroïque. According to an advantageous embodiment of the invention, the optical device further comprises a mirror and preferably a polarization inverter of the half-wave blade type. The polarization inverter may be disposed between the polarizer and the mirror in question. The mirror is configured to reflect the rays coming from the polarizer, and preferably passing through the polarization inverter, to the second dichroic mirror.
Selon un mode avantageux de l'invention, le dispositif optique est un premier dispositif optique, le module comprenant un deuxième dispositif optique apte à dévier les rayons polarisés par le polariseur recombinés avec les rayons incohérents en vue de former un faisceau d'éclairage. According to an advantageous embodiment of the invention, the optical device is a first optical device, the module comprising a second optical device capable of deflecting the polarized polarized rays recombined with the incoherent rays to form a lighting beam.
Selon un mode avantageux de l'invention, le deuxième dispositif optique comprend une lentille, préférentiellement biconvexe. According to an advantageous embodiment of the invention, the second optical device comprises a lens, preferably biconvex.
Selon un mode avantageux de l'invention, les rayons incohérents transmis par le miroir dichroïque et les rayons polarisés par le polariseur forment deux faisceaux d'éclairage se combinant à distance du module d'éclairage. Dans ce cas, il n'y pas de deuxième miroir dichroïque. Un dispositif optique du type lentille peut être disposé optiquement entre le dispositif photoluminescent et le miroir dichroïque. According to an advantageous embodiment of the invention, the incoherent rays transmitted by the dichroic mirror and the rays polarized by the polarizer form two lighting beams combining remotely from the lighting module. In this case, there is no second dichroic mirror. A lens-type optical device may be optically disposed between the photoluminescent device and the dichroic mirror.
Selon un mode avantageux de l'invention commun à toutes les variantes, la longueur d'onde λ est comprise dans le spectre visible, préférentiellement comprise entre 405 nm à 500 nm, plus préférentiellement entre 425 nm et 470 nm. According to an advantageous embodiment of the invention common to all the variants, the wavelength λ is included in the visible spectrum, preferably between 405 nm and 500 nm, more preferably between 425 nm and 470 nm.
Selon un mode avantageux de l'invention commun à toutes les variantes, le dispositif photoluminescent comprend des grains phosphorescents et des grains diffusants. According to an advantageous embodiment of the invention common to all the variants, the photoluminescent device comprises phosphorescent grains and scattering grains.
Les mesures de l'invention sont intéressantes notamment en ce qu'elles procurent par des moyens optiques un dispositif de sécurité quant à la lumière de la ou des sources laser utilisées. Ces moyens optiques présentent l'avantage d'être fonctionnels en permanence et de ne requérir aucuns moyens de contrôle électrique ou électronique susceptibles de présenter des défaillances. Le niveau de fiabilité du module d'éclairage sécurisé est par conséquent assez élevé. En outre, les mesures de l'invention permettent d'obtenir en sortie du module d'éclairage une lumière blanche, relativement neutre, sans dérive colorimétrique marquée. The measurements of the invention are interesting in particular that they provide by optical means a safety device with regard to the light of the laser sources used. These optical means have the advantage of being permanently functional and do not require any electrical or electronic control means likely to fail. The reliability level of the secure lighting module is therefore quite high. In addition, the measurements of the invention make it possible to obtain at the output of the lighting module a white light, relatively neutral, without marked colorimetric drift.
D'autres caractéristiques et avantages de la présente invention seront mieux compris à l'aide de la description et des dessins parmi lesquels : - La figure 1 est un schéma de principe d'un module d'éclairage selon un premier exemple d'une deuxième variante de réalisation de l'invention : Other features and advantages of the present invention will be better understood with the help of the description and the drawings, among which: FIG. 1 is a block diagram of a lighting module according to a first example of a second variant embodiment of the invention:
- La figure 2 est un schéma de principe d'un module d'éclairage selon un deuxième exemple d'une deuxième variante de réalisation de l'invention.  - Figure 2 is a block diagram of a lighting module according to a second example of a second embodiment of the invention.
La figure 1 illustre de manière schématique l'architecture d'un module d'éclairage selon un premier mode de réalisation d'une deuxième variante de réalisation de l'invention. Cette figure sert également de support pour une première variante de réalisation de l'invention comportant un filtre dichroïque mais sans polariseur, donc pour tous les éléments situés en amont du polariseur, dans le sens de propagation des rayons. Le module 2 comprend une source lumineuse du type diode laser 4, plus particulièrement une diode laser 4 à polarisation rectiligne ou polarisation linéaire, à savoir que la direction du champ électrique est constante au cours du temps et de la propagation. En l'occurrence, il peut s'agir d'une ou plusieurs diodes laser produisant un faisceau bleu d'une longueur d'onde λ comprise entre 425 et 470 nm. La ou les diodes laser produisent alors un faisceau lumineux polarisé 5. Le point entouré d'un cercle représenté sur le parcours du faisceau 5 exprime que la direction de polarisation est perpendiculaire au plan du dessin. Figure 1 schematically illustrates the architecture of a lighting module according to a first embodiment of a second embodiment of the invention. This figure also serves as a support for a first embodiment of the invention comprising a dichroic filter but without polarizer, so for all the elements located upstream of the polarizer, in the ray propagation direction. The module 2 comprises a light source of the laser diode type 4, more particularly a laser diode 4 with linear polarization or linear polarization, namely that the direction of the electric field is constant over time and propagation. In this case, it may be one or more laser diodes producing a blue beam with a wavelength λ between 425 and 470 nm. The laser diode or diodes then produce a polarized light beam 5. The dot surrounded by a circle shown on the path of the beam 5 expresses that the polarization direction is perpendicular to the plane of the drawing.
Le module 2 peut comprendre un miroir 6 sous forme de système micro électromécanique ou encore MEMS (acronyme pour « micro-electro-mechanical System »). Le faisceau 5, préférentiellement réfléchi par le miroir 6, rencontre alors un dispositif photoluminescent 8 comprenant des matériaux phosphorescents en vue de convertir le faisceau polarisé et monochromatique en un faisceau 51 non polarisé et incohérent, en l'occurrence un faisceau de lumière blanche. Le caractère non polarisé est représenté par les flèches concourantes sur le parcours du faisceau. La photoluminescence est un processus par lequel une substance absorbe des photons puis réémet des photons. Les matériaux phosphorescents (par exemple des YAG dopés au Cérium) constituent une catégorie de matériaux photoluminescents particulièrement adaptés à la conversion d'un faisceau cohérent en faisceau incohérent. Cet état de fait est bien connu en soi de l'Homme de métier. The module 2 may comprise a mirror 6 in the form of a micro electromechanical system or else MEMS (acronym for "micro-electro-mechanical System"). The beam 5, preferably reflected by the mirror 6, then encounters a photoluminescent device 8 comprising phosphorescent materials in order to convert the polarized and monochromatic beam into a non-polarized and incoherent beam 1 , in this case a white light beam. The unpolarized character is represented by the concurrent arrows on the path of the beam. Photoluminescence is a process by which a substance absorbs photons and then re-emits photons. Phosphorescent materials (for example cerium-doped YAGs) constitute a category of photoluminescent materials that are particularly suitable for converting a coherent beam into an incoherent beam. This state of affairs is well known in itself to those skilled in the art.
Le faisceau 51 de lumière blanche est alors réfléchi partiellement par un premier miroir dichroïque 10, c'est-à-dire un miroir dont les propriétés de transmission et de réflexion dépendent fortement de la longueur d'onde. En l'occurrence, le miroir dichroïque 10 est configuré pour réfléchir les éventuels rayons de fréquences proches ou égales à la fréquence λ du faisceau 5 cohérent émis par la ou les sources laser 4. Il est alors configuré pour transmettre les rayons d'autres fréquences. Cela signifie que tant que le dispositif photoluminescent fonctionne correctement, en raison du déplacement de Stokes, la lumière blanche rencontrant le miroir dichroïque ne contient pas ou peu de fréquence λ et est ainsi totalement ou majoritairement transmise suivant le faisceau principal 52. Le déplacement de Stokes est la différence, en longueur d'onde ou en fréquence, entre la position du pic du spectre d'absorption et celle du pic du spectre de luminescence de la même transition électronique au niveau de la matière photoluminescente. La longueur d'onde de la lumière émise est plus grande que celle de la lumière excitatrice. En cas de défaillance du dispositif photoluminescent, comme par exemple en cas de détachement d'une partie de la matière photoluminescente du support du dispositif, une partie, voire la totalité, du faisceau peut alors comprendre des rayons cohérents de fréquence λ, ces rayons étant potentiellement dangereux pour l'environnement du module d'éclairage. Ces rayons seront alors réfléchis par le miroir dichroïque 10 en un faisceau 53. Ce faisceau 53 sera alors potentiellement polarisé comme la source en fonction du degré de détérioration du dispositif photoluminescent 8. Un polariseur à réflexion 14 est disposé de manière à réfléchir le faisceau 53 en un faisceau 54 polarisé selon une direction perpendiculaire à la direction de polarisation du faisceau 5 émis par la ou les sources laser 4. Cette direction de polarisation est représentée par la flèche verticale sur le faisceau 54. Les polariseurs à réflexion ou séparation de faisceau séparent le faisceau incident en deux faisceaux de polarisations différentes. Ces polarisations peuvent être rectilignes et perpendiculaires entre elles. Ils absorbent très peu la lumière, ce qui en fait un avantage par rapport aux polariseurs par absorption. Un tel polariseur peut notamment consister en une série de lames de verres orientées à l'angle de Brewster par rapport au faisceau, cet angle valant environ 57° pour le verre. Les rayons de polarisation perpendiculaire à celle du faisceau 54 traversent le polariseur 14 et peuvent ensuite être absorbés par un dispositif d'absorption. Cette direction de polarisation est illustrée par le point entouré d'un cercle sur le tracé en trait interrompu dans le prolongement du parcours 53. Une lame demi-onde 16 est disposée de manière à recevoir le faisceau 54 en vue de provoquer une rotation de 90° de la direction de polarisation du faisceau. Ce changement d'orientation est illustré par le point entouré d'un cercle à droite de la lame demi-onde par opposition à la flèche à gauche de ladite lame. Une lame demi- onde est un type particulier de lame à retard, c'est-à-dire un instrument d'optique permettant de modifier l'état de polarisation de la lumière. Les lames demi-onde sont des lames à faces parallèles fabriquées dans un matériau biréfringent qui permettent d'introduire un retard de phase de la lumière de λ/2 entre les deux axes de biréfringence dits axe lent et axe rapide. The beam 5 1 of white light is then partially reflected by a first dichroic mirror 10, that is to say a mirror whose transmission and reflection properties strongly depend on the wavelength. In this case, the dichroic mirror 10 is configured to reflect any frequency rays close to or equal to the frequency λ of the coherent beam 5 emitted by the laser source or sources 4. It is then configured to transmit the rays of other frequencies. . This means that as long as the photoluminescent device is functioning correctly, because of the Stokes displacement, the white light encountering the dichroic mirror contains no or little frequency λ and is thus wholly or mainly transmitted along the main beam 5 2 . Stokes displacement is the difference, in wavelength or frequency, between the peak position of the absorption spectrum and that of the peak of the luminescence spectrum of the same electron transition at the level of the photoluminescent material. The wavelength of the emitted light is greater than that of the excitatory light. In the event of failure of the photoluminescent device, such as, for example, in the case of detachment of a portion of the photoluminescent material from the support of the device, part or even all of the beam may then comprise coherent rays of frequency λ, these rays being potentially hazardous to the environment of the lighting module. These rays will then be reflected by the dichroic mirror 10 into a beam 5 3 . This beam 3 will then be potentially polarized as the source as a function of the degree of deterioration of the photoluminescent device 8. A reflection polarizer 14 is arranged to reflect the beam 5 3 in a polarized beam 4 in a direction perpendicular to the direction of polarization of the beam 5 emitted by the laser source or sources 4. This polarization direction is represented by the vertical arrow on beam 5 4 . The reflection polarizers or beam separation separate the incident beam into two beams of different polarizations. These polarizations can be rectilinear and perpendicular to each other. They absorb very little light, which makes it an advantage over absorption polarisers. Such a polarizer may consist in particular of a series of glass plates oriented at the Brewster angle relative to the beam, this angle being about 57 ° for the glass. The polarization rays perpendicular to that of the beam 4 pass through the polarizer 14 and can then be absorbed by an absorption device. This direction of polarization is illustrated by the dot surrounded by a circle on the broken line in the extension of the course 5 3 . A half-wave plate 16 is disposed to receive the beam 4 to cause 90 ° rotation of the polarization direction of the beam. This change of orientation is illustrated by the dot surrounded by a circle to the right of the half-wave plate as opposed to the arrow to the left of said blade. A half-wave plate is a particular type of delay plate, that is, an optical instrument for changing the polarization state of the light. The half-wave plates are parallel-sided blades made of a birefringent material which make it possible to introduce a phase retardation of the light of λ / 2 between the two birefringence axes called slow axis and fast axis.
Un miroir 18 est disposé de manière à réfléchir le faisceau 55 sortant de la lame demi-onde 16 en un faisceau 56 se propageant vers un deuxième miroir dichroïque 12. Ce dernier est configuré de manière à ce que sa face recevant le faisceau 56 soit apte à réfléchir ledit faisceau de longueur d'onde λ. La face en question peut en effet subir un traitement dichroïque pour réfléchir les rayons de longueur d'onde λ. De tels traitements sont bien connus de l'homme de métier. Le faisceau 52 de lumière blanche transmis par le premier miroir dichroïque 10 est transmis par le deuxième miroir dichroïque 12 auquel s'additionne le faisceau 56 de longueur d'onde λ réfléchi par ledit deuxième miroir pour former un faisceau 57 de lumière blanche sécurisé. Le faisceau 57 est en effet sécurisé en ce qu'en cas de défaillance du dispositif photoluminescent 8, la lumière cohérente monochromatique de longueur d'onde λ émise par la source laser 4, potentiellement dangereuse, sera alors réfléchie totalement par le premier miroir dichroïque 10. Ce faisceau 53 présentera alors une direction de polarisation identique à celle du faisceau 5 sortant de la ou des sources lumineuses 4. La direction de polarisation du polariseur à réflexion 14 est perpendiculaire à la direction de polarisation du faisceau 53. La totalité de cette lumière sera alors transmise par le polariseur pour être éventuellement absorbée par un dispositif d'absorption (non représenté). En d'autres termes, le polariseur à réflexion 14 ne va réfléchir aucune lumière compte tenu que la lumière qui lui est incidente présente une direction de polarisation perpendiculaire à sa direction de réflexion. Aucune lumière cohérente et monochromatique ne sera alors transmise dans la direction d'éclairage du module. A mirror 18 is disposed so as to reflect the outgoing beam 5 of 5 of the half-wave plate 16 into a beam 5 6 shall propagating towards a second dichroic mirror 12. The latter is configured so that its face receiving the beam 5 6 is able to reflect said beam of wavelength λ. The face in question can indeed undergo a dichroic treatment to reflect the wavelength rays λ. Such treatments are well known to those skilled in the art. The beam 2 of white light transmitted by the first dichroic mirror 10 is transmitted by the second dichroic mirror 12 to which is added the beam 6 of wavelength λ reflected by said second mirror to form a beam 7 of white light. secured. The beam 57 is indeed secure in that in case of failure of the photoluminescent device 8, the monochromatic coherent light of wavelength λ emitted by the laser source 4, potentially dangerous, will then be totally reflected by the first dichroic mirror 10. This beam 5 3 will then have a direction of polarization identical to that of the beam 5 coming out of the light source or sources 4. The polarization direction of the reflection polarizer 14 is perpendicular to the direction of polarization of the beam 5 3 . All of this light will then be transmitted by the polarizer to be possibly absorbed by an absorption device (not shown). In other words, the reflection polarizer 14 will not reflect any light since the light incident thereto has a direction of polarization perpendicular to its direction of reflection. No coherent and monochromatic light will then be transmitted in the lighting direction of the module.
Lorsque le dispositif photoluminescent fonctionne correctement, en fonction de l'importance du déplacement de Stokes provoqué par la matière photoluminescente dudit dispositif, une partie de la lumière émise par le dispositif pourra éventuellement présenter des longueurs d'onde proches de la longueur d'onde λ. Il s'agit d'une partie volontairement diffusée et non convertie grâce au dosage des grains luminescents et de simples grains diffusants dans la matrice du dispositif photoluminescent. Ces rayons incohérents seront alors réfléchis par le premier miroir dichroïque 10 pour former le faisceau secondaire 53. Seules les composantes des rayons incohérents alignées avec la direction de polarisation du polariseur à réflexion 14 seront réfléchies pour former le faisceau 54. En d'autres termes, en considérant une distribution aléatoire et homogène de l'orientation des champs électriques de ces rayons, environ la moitié de la puissance du faisceau va être réfléchie et l'autre moitié va traverser le polariseur à réflexion 14 et être perdue. De fait, dans le cadre de la présente invention, on adaptera avantageusement le dosage des grains luminescents et diffusants du dispositif photoluminescent de sorte que la lumière émise par celui-ci contienne une proportion plus importante de bleu pour compenser la perte en composante bleue engendrée ensuite par le polariseur et obtenir ainsi un faisceau lumineux émis dont la teinte blanche reste relativement neutre : en effet, sans cette compensation, la lumière issue du module d'éclairage sera blanche teintée jaune-vert. A cette fin, on peut notamment réduire la densité des grains luminescents et/ou augmenter la proportion de grains diffusants dans la matrice du dispositif luminescent par rapport aux proportions normalement appliquées pour obtenir une lumière blanche neutre, en l'absence de perte dans les composantes du faisceau. Un dispositif optique, telle qu'une lentille 20, peut être disposé à l'avant du module en vue de former un faisceau d'éclairage adéquat. D'autres dispositifs optiques qu'une lentille sont envisageables. When the photoluminescent device is functioning correctly, depending on the importance of the Stokes displacement caused by the photoluminescent material of said device, part of the light emitted by the device may possibly have wavelengths close to the wavelength λ . This is a deliberately diffused and unconverted part due to the luminescent grain dosage and simple scattering grains in the matrix of the photoluminescent device. These incoherent rays will then be reflected by the first dichroic mirror 10 to form the secondary beam 5 3 . Only the components of the incoherent rays aligned with the polarization direction of the reflection polarizer 14 will be reflected to form the beam 5 4 . In other words, considering a random and homogeneous distribution of the orientation of the electric fields of these rays, about half of the power of the beam will be reflected and the other half will cross the reflection polarizer 14 and be lost . In fact, in the context of the present invention, the luminescent and diffusing grain dosage of the photoluminescent device will advantageously be adapted so that the light emitted by it will contain a larger proportion of blue to compensate for the loss of blue component subsequently generated. by the polarizer and thus obtain a light beam emitted whose white color remains relatively neutral: indeed, without this compensation, the light from the lighting module will be white tinted yellow-green. For this purpose, it is possible to reduce the density luminescent grains and / or increase the proportion of scattering grains in the matrix of the luminescent device relative to the proportions normally applied to obtain a neutral white light, in the absence of loss in the beam components. An optical device, such as a lens 20, may be disposed at the front of the module to form a suitable illumination beam. Other optical devices that a lens are conceivable.
La figure 2 illustre de manière schématique l'architecture d'un module d'éclairage selon un deuxième mode de réalisation d'une deuxième variante de réalisation de l'invention. Les numéros de référence du premier mode de réalisation sont utilisés dans le deuxième mode pour les éléments identiques ou correspondant, ces numéros étant toutefois majorés de 100 afin de bien distinguer les deux modes de réalisation. FIG. 2 schematically illustrates the architecture of a lighting module according to a second embodiment of a second variant embodiment of the invention. The reference numerals of the first embodiment are used in the second embodiment for identical or corresponding elements, these numbers however being increased by 100 in order to clearly distinguish the two embodiments.
Similairement au module du premier mode de réalisation, le module 102 comprend une source lumineuse du type diode laser 104 comprenant une ou plusieurs diodes laser produisant un faisceau bleu d'une longueur d'onde λ comprise entre 425 et 470 nm. La ou les diodes laser produisent alors un faisceau lumineux polarisé 105. Le point entouré d'un cercle représenté sur le parcours du faisceau 105 exprime que la direction de polarisation est perpendiculaire au plan du dessin. Toujours similairement au module du premier mode de réalisation, le faisceau 105 rencontre un dispositif photoluminescent 108 comprenant du phosphore en vue de convertir le faisceau polarisé et monochromatique en un faisceau 1051 non polarisé et non cohérent, en l'occurrence un faisceau de lumière blanche. Le caractère non polarisé est représenté par les flèches concourantes sur le parcours du faisceau. Le module 102 comprend également un dispositif optique tel qu'une lentille 120, de manière à dévier les rayons lumineux en vue de former un faisceau lumineux adéquat notamment à une fonction d'éclairage. A la différence du premier mode de réalisation, le dispositif optique 120 est disposé directement après le dispositif photoluminescent 108. D'autres dispositifs optiques qu'une lentille sont envisageables Similairement au module du premier mode de réalisation, le module 102 comprend un miroir dichroïque 1 10 configuré pour réfléchir les éventuels rayons de fréquence proche ou égale à la fréquence λ du faisceau cohérent 105 émis par la ou les sources laser 104. Il est configuré pour transmettre les rayons d'autres fréquences. Tant que le dispositif photoluminescent fonctionne correctement, en raison du déplacement de Stokes, la lumière blanche rencontrant le miroir dichroïque ne contient pas ou peu de fréquence λ et est ainsi totalement ou majoritairement transmise suivant le faisceau principal 1052. En cas de détérioration du dispositif photoluminescent, une partie du faisceau peut alors comprendre des rayons cohérents de fréquence λ, ces rayons étant potentiellement dangereux pour l'environnement du module d'éclairage. Ces rayons seront alors réfléchis par le miroir dichroïque 1 10 en un faisceau 1053 secondaire. Ce faisceau 1053 sera alors potentiellement polarisé de manière aléatoire en fonction du degré de détérioration du dispositif photoluminescent 8. Un polariseur à réflexion 1 14 est disposé de manière à réfléchir le faisceau 1053 en un faisceau 1054 polarisé selon une direction perpendiculaire à la direction de polarisation du faisceau 105 émis par la ou les sources laser 104. Cette direction de polarisation est représentée par la flèche verticale sur le faisceau 1054. Similarly to the module of the first embodiment, the module 102 comprises a light source of the laser diode type 104 comprising one or more laser diodes producing a blue beam with a wavelength λ between 425 and 470 nm. The laser diode or diodes then produce a polarized light beam 105. The dot surrounded by a circle shown on the path of the beam 105 expresses that the direction of polarization is perpendicular to the plane of the drawing. Still similarly to the module of the first embodiment, the beam 105 meets a photoluminescent device 108 comprising phosphorus in order to convert the polarized and monochromatic beam into a non-polarized and non-coherent beam 105 1 , in this case a beam of white light . The unpolarized character is represented by the concurrent arrows on the path of the beam. The module 102 also comprises an optical device such as a lens 120, so as to deflect the light rays in order to form a suitable light beam including a lighting function. Unlike the first embodiment, the optical device 120 is disposed directly after the photoluminescent device 108. Other optical devices that a lens are conceivable Similarly to the module of the first embodiment, the module 102 comprises a dichroic mirror 1 10 configured to reflect any frequency rays close to or equal to the frequency λ of the coherent beam 105 emitted by the laser source or sources 104. It is configured to transmit the rays of other frequencies. As long as the photoluminescent device is functioning correctly, because of the Stokes displacement, the white light encountering the dichroic mirror contains little or no frequency λ and is thus wholly or mainly transmitted along the main beam 105 2 . In the event of deterioration of the photoluminescent device, part of the beam may then comprise coherent rays of frequency λ, these rays being potentially dangerous for the environment of the lighting module. These rays will then be reflected by the dichroic mirror 1 10 into a secondary beam 105 3 . This beam 105 3 will then be potentially randomly polarized according to the degree of deterioration of the photoluminescent device 8. A reflection polarizer 11 is arranged to reflect the beam 105 3 in a beam 105 4 polarized in a direction perpendicular to the direction of polarization of the beam 105 emitted by the laser source (s) 104. This polarization direction is represented by the vertical arrow on the beam 105 4 .
Les composantes des rayons 1053 qui sont perpendiculaires à l'axe de polarisation du polariseur 1 14 traversent ledit polariseur 1 14 peuvent ensuite être absorbées par un dispositif d'absorption. Cette direction de polarisation est illustrée par le point entouré d'un cercle sur le tracé en trait interrompu. The components of the beams 105 3 which are perpendicular to the polarization axis of the polarizer 1 14 pass through said polarizer 1 14 can then be absorbed by an absorption device. This direction of polarization is illustrated by the dot surrounded by a circle on the broken line.
Le faisceau 1054 secondaire vient alors s'ajouter au faisceau principal 1052 à distance du module, c'est-à-dire dans la zone d'éclairage du faisceau. The secondary beam 105 4 is then added to the main beam 105 2 away from the module, that is to say in the lighting zone of the beam.

Claims

Revendications claims
1 . Module d'éclairage (2 ; 102), notamment pour véhicule automobile, comprenant : 1. Lighting module (2; 102), in particular for a motor vehicle, comprising:
- une source lumineuse (4 ; 104) du type laser apte à émettre un faisceau lumineux (5 ; 105) cohérent suivant une direction donnée et monochromatique d'une longueur d'onde λ ;  a laser light source (4; 104) capable of emitting a coherent light beam (5; 105) in a given monochromatic direction of a wavelength λ;
- un dispositif photoluminescent (8 ; 108) apte à convertir le faisceau lumineux cohérent et monochromatique (5 ; 105) en un faisceau lumineux incohérent (51 ; 1051) ; a photoluminescent device (8; 108) capable of converting the coherent and monochromatic light beam (5; 105) into an incoherent light beam (5 1 ; 105 1 );
caractérisé en ce qu'il comprend, en outre :  characterized in that it further comprises:
- un réflecteur dichroïque (10 ; 1 10) configuré pour réfléchir les rayons de la longueur d'onde λ du faisceau lumineux (51 ; 1051) provenant du dispositif photoluminescent (8 ; 108) . - a dichroic reflector (10; 1 10) configured to reflect the rays of the wavelength λ of the light beam (5 1 ; 105 1 ) from the photoluminescent device (8; 108).
2. Module d'éclairage (2 ; 102) selon 'a revendication 1 , caractérisé en ce qu'il comprend, en outre, un dispositif d'absorption apte à absorber les rayons réfléchis par le réflecteur dichroïque (10 ; 1 10). 2. Lighting module (2; 102) according to claim 1, characterized in that it further comprises an absorption device adapted to absorb the rays reflected by the dichroic reflector (10; 1 10).
3. Module d'éclairage (2 ; 102) selon la revendication 1 ou 2 caractérisé en ce qu'il comprend un polariseur (14 ; 1 14) des rayons réfléchis (53 ; 1053) par le réflecteur dichroïque (10 ; 1 10), ledit polariseur polarisant lesdits rayons suivant une direction perpendiculaire à la direction de polarisation du faisceau lumineux cohérent et monochromatique (5 ; 105) lorsqu'il rencontre ledit polariseur, de manière à bloquer ledit faisceau en cas de défaillance du dispositif photoluminescent (8 ; 108) 3. Lighting module (2; 102) according to claim 1 or 2, characterized in that it comprises a polarizer (14; 1 14) of the reflected rays (5 3 ; 105 3 ) by the dichroic reflector (10; 10), said polarizer polarizing said rays in a direction perpendicular to the polarization direction of the coherent and monochromatic light beam (5; 105) when it encounters said polarizer, so as to block said beam in case of failure of the photoluminescent device (8 108)
4. Module d'éclairage (2 ; 102) selon l'une des revendications précédentes, caractérisé en ce que le réflecteur dichroïque (10 ; 1 10) est configuré pour transmettre les rayons de longueurs d'onde différentes de λ du faisceau lumineux incohérent (51 ; 1051) provenant du dispositif photoluminescent (8 ; 108). 4. Lighting module (2; 102) according to one of the preceding claims, characterized in that the dichroic reflector (10; 1 10) is configured to transmit the rays of wavelengths different from λ of the incoherent light beam. (5 1 ; 105 1 ) from the photoluminescent device (8; 108).
5. Module d'éclairage (2 ; 102) selon la revendication 4, caractérisé en ce qu'il est configuré pour que les rayons polarisés (54 ; 1054) par le polariseur (14 ; 1 14) se propagent au moins essentiellement parallèlement aux rayons (52 ;5. Lighting module (2; 102) according to claim 4, characterized in that it is configured so that the polarized rays (5 4 ; 105 4 ) by the polarizer (14; 1 14) propagate at least essentially parallel to the spokes (5 2 ;
1052) transmis par le réflecteur dichroïque (10, 1 10). 105 2 ) transmitted by the dichroic reflector (10, 1 10).
6. Module d'éclairage (2 ; 102) selon la revendication 5, caractérisé en ce que le polariseur (14 ; 1 14) est un polariseur à réflexion, les rayons polarisés (53 ;6. Lighting module (2; 102) according to claim 5, characterized in that the polarizer (14; 1 14) is a reflection polarizer, the polarized rays (5 3 ;
1053) étant réfléchis par le polariseur (14 ; 1 14) de manière à se propager au moins essentiellement parallèlement aux rayons (52 ; 1052) transmis par le réflecteur dichroïque (10, 1 10). 105 3 ) being reflected by the polarizer (14; 1 14) so as to propagate at least substantially parallel to the rays (5 2 ; 105 2 ) transmitted by the dichroic reflector (10, 1 10).
7. Module d'éclairage (2 ; 102) selon la revendication 6, caractérisé en ce qu'il comprend, en outre, un dispositif d'absorption apte à absorber les rayons traversant le polariseur à réflexion (14 ; 1 14). 7. Lighting module (2; 102) according to claim 6, characterized in that it further comprises an absorption device capable of absorbing the rays passing through the reflection polarizer (14; 1 14).
8. Module d'éclairage (2 ; 102) selon l'une des revendications 4 à 7, caractérisé en ce qu'il comprend un dispositif optique (12, 16, 18 ; 120) apte à recombiner les rayons polarisés (54 ; 1054) par le polariseur (14 ; 1 14) avec les rayons incohérents transmis par le miroir dichroïque (10 ; 1 10). 8. Lighting module (2; 102) according to one of claims 4 to 7, characterized in that it comprises an optical device (12, 16, 18; 120) capable of recombining the polarized rays (5 4 ; 105 4 ) by the polarizer (14; 1 14) with the incoherent rays transmitted by the dichroic mirror (10; 1 10).
9. Module d'éclairage (2) selon la revendication 8, caractérisé en ce que le miroir dichroïque est un premier miroir dichroïque (10), le dispositif optique comprenant un deuxième miroir dichroïque (12) transmettant les rayons (52) transmis par le premier miroir dichroïque (10), et réfléchissant les rayons polarisés (56) par le polariseur (14) de manière à se recombiner avec lesdits rayons incohérents transmis. 9. Lighting module (2) according to claim 8, characterized in that the dichroic mirror is a first dichroic mirror (10), the optical device comprising a second dichroic mirror (12) transmitting the rays (5 2 ) transmitted by the first dichroic mirror (10), and reflecting the polarized rays (5 6 ) by the polarizer (14) so as to recombine with said transmitted incoherent rays.
10. Module d'éclairage (2) selon la revendication 9, caractérisé en ce que le dispositif optique comprend, en outre, un miroir (18) et préférentiellement un inverseur de polarisation (16) du type lame demi-onde. 10. Lighting module (2) according to claim 9, characterized in that the optical device further comprises a mirror (18) and preferably a polarization inverter (16) of the half-wave plate type.
1 1 . Module d'éclairage (2) selon l'une des revendications 8 à 10, caractérisé en ce que le dispositif optique est un premier dispositif optique, le module comprenant un deuxième dispositif optique (20) apte à dévier les rayons polarisés par le polariseur (14) recombinés avec les rayons incohérents (52) en vue de former un faisceau d'éclairage. 1 1. Lighting module (2) according to one of claims 8 to 10, characterized in that the optical device is a first optical device, the module comprising a second optical device (20) adapted to deflect the polarized rays by the polarizer ( 14) recombined with incoherent rays (5 2) in order to form an illumination beam.
12. Module d'éclairage (2) selon la revendication 1 1 , caractérisé en ce que le deuxième dispositif optique comprend une lentille (20), préférentiellement biconvexe. 12. Lighting module (2) according to claim 1 1, characterized in that the second optical device comprises a lens (20), preferably biconvex.
13. Module d'éclairage (102) selon l'une des revendications 4 à 7, caractérisé en ce que les rayons incohérents (1052) transmis par le miroir dichroïque (1 10) et les rayons polarisés (1054) par le polariseur (1 14) forment deux faisceaux d'éclairage se combinant à distance du module d'éclairage. 13. Lighting module (102) according to one of claims 4 to 7, characterized in that the incoherent rays (105 2 ) transmitted by the dichroic mirror (1 10) and the polarized rays (105 4 ) by the polarizer (1 14) form two lighting beams combining remotely from the lighting module.
14. Module d'éclairage (2 ; 102) selon l'une des revendications 1 à 13, caractérisé en ce que la longueur d'onde λ est comprise dans le spectre visible, préférentiellement comprise entre 405 nm à 500 nm, plus préférentiellement entre 425 nm et 470 nm. 14. Lighting module (2; 102) according to one of claims 1 to 13, characterized in that the wavelength λ is within the visible spectrum, preferably between 405 nm to 500 nm, more preferably between 425 nm and 470 nm.
15. Module d'éclairage (2 ; 102) selon l'une des revendications 1 à 14, caractérisé en ce que le dispositif photoluminescent (8 ; 108) comprend des grains phosphorescents et des grains diffusants. 15. Lighting module (2; 102) according to one of claims 1 to 14, characterized in that the photoluminescent device (8; 108) comprises phosphorescent grains and scattering grains.
PCT/EP2016/062197 2015-05-29 2016-05-30 Secure lighting module comprising luminous laser source WO2016193230A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1554904A FR3036775B1 (en) 2015-05-29 2015-05-29 SECURED LIGHTING MODULE WITH LASER LIGHT SOURCE
FR1554904 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016193230A1 true WO2016193230A1 (en) 2016-12-08

Family

ID=54186085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/062197 WO2016193230A1 (en) 2015-05-29 2016-05-30 Secure lighting module comprising luminous laser source

Country Status (2)

Country Link
FR (1) FR3036775B1 (en)
WO (1) WO2016193230A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108613110A (en) * 2016-12-22 2018-10-02 深圳市绎立锐光科技开发有限公司 A kind of light-source system, automobile lighting system and control method
WO2022034002A1 (en) * 2020-08-13 2022-02-17 Signify Holding B.V. Eye safe laser lighting system using built in safety

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004477A2 (en) * 2008-07-07 2010-01-14 Koninklijke Philips Electronics N. V. Eye-safe laser-based lighting
US20110063115A1 (en) * 2009-09-15 2011-03-17 Sharp Kabushiki Kaisha Light emitting device, illumination device, and photo sensor
US20110157865A1 (en) * 2009-12-28 2011-06-30 Sharp Kabushiki Kaisha Illumination device
US20120140183A1 (en) * 2010-12-06 2012-06-07 Panasonic Corporation Light source device and projection display apparatus
US20130308332A1 (en) * 2010-08-11 2013-11-21 Schott Ag Laser-based white light source
WO2014016574A1 (en) * 2012-07-23 2014-01-30 Eis Optics Limited Compact light engine
DE102012220472A1 (en) * 2012-11-09 2014-05-15 Automotive Lighting Reutlingen Gmbh Kfz. lighting device
EP2767751A1 (en) * 2013-02-14 2014-08-20 Valeo Vision Secure adaptive lighting system
US20140328044A1 (en) * 2011-11-25 2014-11-06 Osram Gmbh Lighting apparatus with luminophore on a movable carrier

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004477A2 (en) * 2008-07-07 2010-01-14 Koninklijke Philips Electronics N. V. Eye-safe laser-based lighting
US20110063115A1 (en) * 2009-09-15 2011-03-17 Sharp Kabushiki Kaisha Light emitting device, illumination device, and photo sensor
US20110157865A1 (en) * 2009-12-28 2011-06-30 Sharp Kabushiki Kaisha Illumination device
US20130308332A1 (en) * 2010-08-11 2013-11-21 Schott Ag Laser-based white light source
US20120140183A1 (en) * 2010-12-06 2012-06-07 Panasonic Corporation Light source device and projection display apparatus
US20140328044A1 (en) * 2011-11-25 2014-11-06 Osram Gmbh Lighting apparatus with luminophore on a movable carrier
WO2014016574A1 (en) * 2012-07-23 2014-01-30 Eis Optics Limited Compact light engine
DE102012220472A1 (en) * 2012-11-09 2014-05-15 Automotive Lighting Reutlingen Gmbh Kfz. lighting device
EP2767751A1 (en) * 2013-02-14 2014-08-20 Valeo Vision Secure adaptive lighting system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108613110A (en) * 2016-12-22 2018-10-02 深圳市绎立锐光科技开发有限公司 A kind of light-source system, automobile lighting system and control method
WO2022034002A1 (en) * 2020-08-13 2022-02-17 Signify Holding B.V. Eye safe laser lighting system using built in safety
US11920744B2 (en) 2020-08-13 2024-03-05 Signify Holding B.V. Eye safe laser lighting system using built in safety

Also Published As

Publication number Publication date
FR3036775A1 (en) 2016-12-02
FR3036775B1 (en) 2017-06-16

Similar Documents

Publication Publication Date Title
FR3061538A1 (en) LIGHTING DEVICE FOR A VEHICLE COMBINING TWO LIGHT SOURCES
WO2015063097A1 (en) Optical guide suitable for creating two luminous imprints
US20120027043A1 (en) High power multi-chip pump modules with protection filter for 1060nm, and pump modules including the same
WO2016193230A1 (en) Secure lighting module comprising luminous laser source
EP2089943B1 (en) Laser system with picosecond pulse emission
WO2015101725A1 (en) Scanned light beam video projection system and method, automotive vehicle head-up display and adaptive lighting device using such a system
EP3242079A1 (en) Light module comprising a laser element
EP1875567B1 (en) Single-frequency monolithic linear laser device and system comprising same
EP3241709B1 (en) Luminous module comprising a laser element
FR3020147A1 (en) IMAGE GENERATING SYSTEM FOR DISPLAY AND ASSOCIATED DISPLAY FOR MOTOR VEHICLE
EP2828694B1 (en) System for injecting light into a waveguide, waveguide device and assembly for injecting light into a waveguide
WO2023213666A1 (en) Detection and/or communication system for a motor vehicle comprising a module for receiving a light beam
WO2024068697A1 (en) Detecting and/or communicating system for a motor vehicle comprising a module for emitting and a module for receiving a light beam
WO2024068695A1 (en) Detection and/or communication system for a motor vehicle, comprising a module for emitting and a module for receiving a light beam
EP1745531B1 (en) Inclined pump beam radiation emitter
FR3075404A1 (en) IMAGE GENERATING DEVICE AND ASSOCIATED HIGH HEAD DISPLAY
FR3063396A1 (en) SIGNALING DEVICE FOR A MOTOR VEHICLE, AND SIGNALING LIGHT EQUIPPED WITH SUCH A DEVICE
WO2023213665A1 (en) Detection and/or communication system of a motor vehicle, the system comprising a module for receiving a light beam
EP3273283A1 (en) Image generation device, and head-up display comprising such an image generation device
FR3141019A1 (en) Detection and/or communication system for a motor vehicle comprising a module for receiving a light beam
WO2022023652A1 (en) Device and method for transmission inspection of containers having at least one light-emitting diode light source
EP4016050A1 (en) Compact device for characterising a photoluminescent substance
WO2022008310A1 (en) 3d concentrator
EP4264752A1 (en) Device for amplifying a laser beam
FR3015135A1 (en) LASER SOURCE WITH REDUCED RAW WIDTH

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16725865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16725865

Country of ref document: EP

Kind code of ref document: A1