WO2016192626A1 - 三维快速成型设备和成型方法 - Google Patents
三维快速成型设备和成型方法 Download PDFInfo
- Publication number
- WO2016192626A1 WO2016192626A1 PCT/CN2016/084291 CN2016084291W WO2016192626A1 WO 2016192626 A1 WO2016192626 A1 WO 2016192626A1 CN 2016084291 W CN2016084291 W CN 2016084291W WO 2016192626 A1 WO2016192626 A1 WO 2016192626A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- developer
- thin layer
- heating
- rapid prototyping
- dimensional
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/22—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
- G03G15/221—Machines other than electrographic copiers, e.g. electrophotographic cameras, electrostatic typewriters
- G03G15/224—Machines for forming tactile or three dimensional images by electrographic means, e.g. braille, 3d printing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/40—Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
Definitions
- the present invention relates to a three-dimensional rapid prototyping apparatus and a molding method, and more particularly to a three-dimensional rapid prototyping apparatus and a molding method for applying an electron imaging principle to an additive manufacturing method.
- the present invention is based on the Chinese Patent Application No. CN201510298825.0, filed on Jun. 3, 2015, the content of which is hereby incorporated by reference.
- Three-dimensional (3D) rapid prototyping also known as additive manufacturing, is based on the principle of printing or laying a continuous layer of material to create a three-dimensional object.
- a three-dimensional rapid prototyping or three-dimensional printer works by converting a three-dimensional computer model of an object and producing a series of cross-section slices, and then printing each slice, one on top of the other, to produce the final three-dimensional object.
- the three-dimensional rapid prototyping method mainly includes three types: stereolithography or light curing (SLA), layered solid manufacturing (Laminated Object manufacturing, LOM), Selective laser sintering (SLS), Fused deposition (Fused) Deposition modeling, FDM).
- SLA stereolithography or light curing
- LOM layered solid manufacturing
- SLS Selective laser sintering
- Fused Fused deposition
- FDM Deposition modeling
- some suspended areas need to be supported by the supporting material as a suspended part.
- a material that can be cured after spraying such as wax
- the process is complicated, and The process of separation after molding is very complicated.
- the FDM scheme is used for the printing of the supporting material, since the three-dimensional object and its supporting structure are all printed by the printing head, the accuracy of the printed three-dimensional object and the supporting structure is not high due to the limitation of the size of the printing nozzle, and the supporting structure Adhesion occurs easily between the contact surface of the molded structure, and the contact surface of the molded object is easily damaged when the support structure is removed.
- the electrophotographic image forming technology images a developer on a medium such as paper by a developing unit.
- the main components of the developing unit include a photosensitive drum, a charging roller, a laser scanner, a developing roller and a waste toner blade, a charging roller, and a powder bin. And waste toner bins.
- the structure of the components of the electrophotographic imaging technology and the working principle between them can be referred to the Chinese inventions with application numbers CN201110220048.X, CN201410222958.5, CN201310137076.4, CN201010237520.6, CN201410182632.4, CN201110248333.2, CN200910266892.9.
- Patent application and Chinese utility model patents with patent numbers CN200720059274.3 and CN200820046406.3.
- a Chinese invention patent application with the application number CN201410568730.1 discloses a developer, a three-dimensional printer and a three-dimensional printing method.
- a three-dimensional printing rapid prototyping device namely a three-dimensional printer, has a first photosensitive drum, a second photosensitive drum, a printing substrate, a transfer belt and a light source, and a printing table Located below the transfer belt in the vertical direction.
- the three-dimensional rapid prototyping apparatus utilizes an electrophotographic image forming technique in an existing laser printer to generate a first developer image on a first photosensitive drum, and the first developer image is transferred from a transfer belt to a printing table and cured by light. Forming a solid layer; generating a second developer image on the second photosensitive drum, the second developer image being transferred by the transfer belt to a region on the printing table outside the solid layer.
- the above steps are repeated, and the solid layer printed layer by layer constitutes a three-dimensional object, and the second developer image constitutes a powder accumulation body to form a support structure of the three-dimensional object.
- the photocurable developer is used as a molding material
- the non-light-curable developer is used as a supporting material
- electrophotographic imaging technology is used to print a thin thickness of each layer of the three-dimensional object and the supporting structure, thereby improving the accuracy of three-dimensional printing.
- the above solution is formed by curing a UV-curable developer to form a plurality of thin layers, it is difficult to ensure that the surface of each of the formed thin layers is smooth and flat, thereby failing to provide a good reference for the subsequently printed thin layer.
- the temperature of the printing platform is room temperature. When the upper surface of the thin layer is cured and heated, the lower surface of the first thin layer, that is, the temperature of the contact surface of the first thin layer and the printing platform is lower, which is easy to cause Warpage or shrinkage effects, resulting in reduced print accuracy.
- a first object of the present invention is to provide a three-dimensional rapid prototyping apparatus.
- a second object of the present invention is to provide a three-dimensional rapid prototyping method.
- the three-dimensional rapid prototyping apparatus comprises a first developing assembly, the first developing assembly includes a first developer, the first developer is a UV light curing developer; the second developing assembly includes a second developer; and the endless transfer belt Receiving a first developer and a second developer; a charge generating device for generating a charge to the endless transfer belt; and a printing platform for receiving the first developer and the second developer on the endless transfer belt to form a thin layer
- the UV light curing light source is used to illuminate the thin layer to cure the first developer; the heating device preheats the printing platform; and the heating flattening device heats and flattens the thin layer.
- the softening temperature of the second developer is higher than the softening temperature of the first developer; the heating temperature of the heating flattening device is higher than the softening temperature of the first developer but lower than the softening temperature of the second developer.
- the heating device is disposed on the printing platform, and the heating device is a heating plate having a plurality of independently operating heating regions.
- the charge generating device includes a first charge generator for controlling movement of the first developer and a second charge generator for controlling movement of the second developer.
- the heating temperature of the heating device is set at 50 ° C to 90 ° C.
- the three-dimensional rapid prototyping method comprises the following steps: first, obtaining molding data of each layer after layering of a three-dimensional object slice; forming a first thin layer by developing the first developer; and using UV light for the first thin layer Irradiating, causing the first developer to solidify; then, forming a subsequent thin layer by development, irradiating the subsequent thin layer with UV light, thereby causing the first developer on the subsequent thin layer to be cured; before the UV light irradiation, A thin layer is preheated; the first and subsequent thin layers are heated and flattened prior to UV light irradiation.
- the first thin layer further includes a second developer produced by development, and the second developer does not change under irradiation of UV light.
- the subsequent thin layer further includes a second developer produced by development, and the second developer does not solidify under irradiation of UV light.
- the softening temperature of the second developer is higher than the softening temperature of the first developer.
- the transfer of the first developer and the second developer is controlled by the mutual attraction of the opposite charges or the mutual exclusion of the same charges.
- the first developer which is cured by UV light is used as a molding material
- the second developer of ordinary carbon powder is selected as a supporting material, thereby improving the precision of the three-dimensional printing object, and the supporting material is very easy to be removed after the three-dimensional object is formed.
- the UV light curing process consumes higher energy and correspondingly prolongs the curing time, and the preheating action of the heating device and the heating and flattening process make the first development
- the temperature of the agent quickly reaches a certain temperature, and the heating means produces a heating method that is easier than UV light, so this solution can reduce energy consumption and shorten the time of UV light curing; by flattening each thin layer, Allowing the thin layer to provide a good planar support when accepting the next thin layer of developer and avoiding the occurrence of warpage effects; pre-heat treatment of the printing platform reduces the developer of the first thin layer due to heat Uniform warpage and shrinkage effects.
- the heating plate can provide different heating temperatures in different areas of the printing platform, for example, setting different heating temperatures for the areas of the supporting material and the molding material, thereby reducing energy consumption.
- the UV photocuring process needs to consume higher energy and correspondingly prolong the curing time.
- the three-dimensional rapid prototyping method of the present invention rapidly reaches the temperature of the first developer by the preheating action of the heating device and the heating flattening process.
- the heating device produces a heating method that is easier than UV light, and it can be seen that this solution can reduce energy consumption and shorten the time of UV light curing.
- the second developer can be used as a support material for the three-dimensional model, which improves the accuracy of the three-dimensional printed object, and the support structure is easily removed after the three-dimensional object is formed without causing damage to the surface of the molded structure.
- Figure 1 is a structural view showing a first embodiment of a three-dimensional rapid prototyping apparatus of the present invention.
- Figure 2 is a first state view of the first embodiment of the three-dimensional rapid prototyping apparatus of the present invention acting on a printing platform.
- Figure 3 is a second state view of the first embodiment of the three-dimensional rapid prototyping apparatus of the present invention acting on a printing platform.
- Figure 4 is a flow chart showing a molding method of the first embodiment of the three-dimensional rapid prototyping apparatus of the present invention.
- Figure 5 is a schematic cross-sectional view showing the formation of a first thin layer of an embodiment of the three-dimensional rapid prototyping apparatus of the present invention.
- Figure 6 is a schematic cross-sectional view showing another embodiment of the three-dimensional rapid prototyping apparatus of the present invention forming another first thin layer.
- Figure 7 is a schematic illustration of an embodiment of a three-dimensional rapid prototyping apparatus of the present invention for printing an I-shaped three-dimensional object.
- Figure 8 is a schematic view showing the stacking of the support material and the molding material of the I-shaped three-dimensional object of Figure 7.
- Figure 9 is a schematic illustration of another manner of stacking the support material and molding material of the I-shaped three-dimensional object of Figure 7.
- the three-dimensional rapid prototyping apparatus of the present embodiment includes a first developing assembly 10, a second developing assembly 20, an endless transfer belt 30, a UV curing light source 40, a heating flattening device 50, a heating device 60, and printing. Platform 70.
- the first developing assembly 10 includes a toner hopper 12 accommodating the first developer 11, a developing roller 13, a charging roller 14, a photosensitive drum 15, a cleaning blade 16, and a waste toner hopper 17.
- the first developer 11 is a UV-curable developer, and the first developer 11 forms a unitary structure by blocking between the particles under irradiation of UV light.
- the second developing unit 20 also includes a powder magazine for accommodating the second developer 21, the other members being the same as the first developing unit 10, and the second developer 21 is a normal developing toner which does not change under the irradiation of UV light, that is, No blocking occurs between the particles of the second developer 21.
- the softening temperature of the second developer 21 is higher than the softening temperature of the first developer 11.
- the first developing assembly 10 and the second developing assembly 20 are disposed at the same horizontal position, and the lower position thereof is provided with an endless transfer belt 30, and the endless transfer belt 30 can be rotated in a ring shape under the driving of the motor, and the rotation can be smooth Turn clockwise or counterclockwise.
- the endless transfer belt 30 is for receiving the first developer 11 and the second developer 21.
- the first position of the endless transfer belt 30 is provided with a first charge generator 32, and the second position is provided with a second charge generator 34.
- the first charge generator 32 is capable of generating a positive or negative charge
- the second charge generator 34 is also capable of generating a positive or negative charge
- the first charge generator 32 and the second charge generator 34 are capable of operating independently, respectively.
- a printing platform 70 for receiving the first developer 11 and the second developer 21 on the endless transfer belt 30 is disposed at a position below the endless transfer belt 30.
- the printing platform 70 is capable of relative movement in the vertical direction with respect to the endless transfer belt 30 by the control unit of the three-dimensional printing apparatus.
- the printing platform 70 and the endless transfer belt 30 are spaced apart by a distance which is at least greater than the thickness of a thin layer formed by the first developer 11 and the second developer 21, each time a thin film is completed.
- the printing platform 70 is separated from the endless transfer belt 30 by a thickness of a thin layer until the printing of the entire three-dimensional object is completed, and the separation distance is preferably 1.2 times to 1.5 times the thickness of the thin layer.
- a heating device 60 is provided on the printing platform 70, and the heating device 60 preheats the printing platform 70.
- the heating device 60 can be a heated plate structure having a plurality of independently operating heating zones.
- a support cavity 73 may be added to the printing platform, and the second developer 21 as a support material is in contact with the inner surface of the support cavity 73 at the end of the printing platform 70, and the support cavity 73 can support the support material.
- the UV light curing light source 40 is used to illuminate the thin layer such that the first developer 11 is cured.
- the heating and flattening device 50 heats and flattens each of the thin layers, and the heating and flattening device 50 is a cylinder having both a heating function and a flattening of the first thin layer.
- the heating and flattening solution on the one hand avoids the warping effect of the three-dimensional object and on the other hand provides a good planar basis for the accumulation of the next thin layer of developer.
- the UV light curing source 40 and the heating flattening device 50 form an integral structure that is movable relative to the printing platform 70 in a horizontal direction under the control of the control unit. As shown in FIG.
- the heating device 60 has preheated the first thin layer 71, and then the heating flattening device 50 is pressed on the first thin layer 71.
- heating it can be carried out in two ways.
- the first way is that the heating and flattening device 50 is slowly advanced, and when the first developer 11 reaches a softening temperature or higher, UV curing is performed.
- the second way is that the heating and flattening device 50 repeatedly heats, presses and solidifies on the first thin layer 71, that is, the heating and flattening device 50 moves multiple times between the two ends of the printing platform 70 until the first one is completed.
- the curing of the thin layer 71 such a solution can make the plane of the thin layer more flat.
- the heating device 60 on the printing platform 70 loses the heating effect on the thin layer 72, and the heating flattening device 50 heats and presses the thin layer 72. Flat processing.
- step S1 is performed to obtain molding data of each layer of the three-dimensional object to be printed, and the obtaining of the molding data can be performed by computer modeling and layering the three-dimensional object.
- the molding data can be obtained, and the molding data of the three-dimensional object can be directly imported into the three-dimensional rapid prototyping device through an external insertion device such as a memory card, or the molding data can be obtained by wireless transmission.
- step S2 is performed to obtain a first thin layer, that is, the first developer 11 in the powder container 12 is sequentially transferred to the endless transfer belt 30 by the first developing unit 10 through the developing roller 13 and the photosensitive drum 15.
- An electrical charge different from the first developer 11 is generated by the first charge generator 32, so that the first developer 11 is closely adsorbed on the outer surface of the endless transfer belt 30.
- the second developer 21 is transferred to the endless transfer belt 30 by the second developing unit 20, and a charge electrically different from the second developer 21 is generated by the second charge generator 34, so that the second developer 21 is tight
- the ground is adsorbed on the outer surface of the endless transfer belt 30.
- a first thin layer of a three-dimensional object is formed.
- the endless transfer belt 30 is rotated, the first thin layer moves above the printing platform 70, at which time the first charge generator 32 produces the same electrical properties as the first developer 11, and the first development is made according to the repulsion principle.
- the agent 11 is transferred from the endless transfer belt 30 to the printing stage 70, and the second charge generator 34 produces the same electrical properties as the second developer 21, so that the second developer 21 is also transferred to the printing platform 70.
- the first thin layer is transferred from the endless transfer belt 30 onto the printing platform 70.
- the printing platform 70 is preheated by a heating device 60 that can be before or after the first thin layer is transferred to the printing platform 70.
- step S3 is performed to heat, flatten, and irradiate the first thin layer so that the first developer 11 is solidified.
- step S4 is performed, and the next thin layer is formed by the development principle, the next thin layer includes the first developer 11, and may optionally include the second developer 21 because the second developer 21 is a supporting material, If the three-dimensional object does not require a supporting material in some thin layers, it is not necessary to carry out the deposition of the second developer 21.
- step S5 is performed, and the thin layer formed in step S4 is irradiated with UV light, so that the first developer 11 on the thin layer is cured.
- the molding process is judged. If the molding of the three-dimensional object is not completed, the process returns to step S4 to form the next thin layer, and if the result of the determination shows that the three-dimensional object is formed, the printing process is completed.
- the operator can manually remove the three-dimensional object. Since the supporting material is still in a powder state, the supporting material is easily separated from the three-dimensional object, and the supporting material is easily recycled, thereby reducing cost and protecting the environment.
- the present invention is not limited to the above embodiments.
- the cross section of the thin layer 80 may be rectangular, and as shown in FIG. As shown in Figure 6, the section 90 can be circular.
- the area in which the first developer is formed may be a regular pattern 81 such as a triangle or an irregular pattern 91.
- the first thin layer only needs to deposit the first developer as a molding material without stacking the second development as a supporting material. Agent.
- both the first developer as a molding material and the second developer as a supporting material are deposited in each of the thin layers.
- the cross section of the support material 95 may form a rectangular structure.
- the cross section of the support material 96 may also form a trapezoidal structure, and the support material of the trapezoidal structure can prevent the three-dimensional object from collapsing during the molding process, thereby Avoid printing failures caused by the loss of support from 3D objects.
- the color of the first developer may be red or yellow or blue or black or purple or green.
- the method of obtaining the first developer may be carried out by incorporating a photoinitiator and a photosensitizer in the production process of a common developer, the photoinitiator may be benzoin and a derivative thereof, and the photosensitizer may be benzophenone or thioxanthene.
- the three-dimensional rapid prototyping device can also be equipped with a position sensing device, which can sense whether the position of each thin layer is at a preset position, and then transmit the sensed signal to the control unit of the three-dimensional rapid prototyping device, where After the position of a thin layer on the printing platform is deviated, the position of the thin layer transferred to the printing platform needs to be adjusted accordingly, thereby improving the forming precision of the three-dimensional object.
- the above designs are also within the scope of the claims of the present invention.
- the three-dimensional rapid prototyping device of the present invention is used for three-dimensional rapid prototyping printing, and the supporting material on the molding device is easily removed, and the surface of the three-dimensional object is not damaged, thereby reducing energy consumption and shortening the time of UV curing. And reducing the warpage and shrinkage effects of the developer of the first thin layer due to uneven heating.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
Abstract
一种三维快速成型设备和成型方法,该三维快速成型设备包括第一显影组件(10),第一显影组件(10)包括第一显影剂(11),第一显影剂(11)为UV光固化显影剂;第二显影组件(20)包括第二显影剂(21);环形转印带(30)用于承接第一显影剂(11)和第二显影剂(21);电荷生成装置能使环形转印带(30)产生电荷;打印平台(70)用于承接环形转印带(30)上的第一显影剂(11)和第二显影剂(21),从而形成薄层;UV光固化光源(40)用于照射薄层,使得第一显影剂(11)发生固化;加热装置(60)对打印平台(70)进行预热;加热压平装置(50)对薄层进行加热和压平处理。
Description
本发明涉及三维快速成型设备和成型方法,具体地说,是涉及一种把电子成像原理应用到增材制造方法的三维快速成型设备和成型方法。本发明是基于申请号为CN201510298825.0、申请日为2015年6月3日的中国发明专利申请,该申请的内容引入本文作为参考。
三维(3D)快速成型,也被称为增材制造,基本原理是通过打印或铺设连续的材料层来产生三维物体。三维快速成型备或三维打印机通过转换物体的三维计算机模型并产生一系列截面切片来工作,然后,打印每个切片,一个在另一个的顶部上,从而产生最终的三维物体。
三维快速成型的方法主要包括的类型为:立体平板印刷或光固化(Stereolithography,SLA)、分层实体制造(Laminated
object manufacturing, LOM)、选择性激光烧结(Selective laser sintering, SLS)、熔融沉积成型(Fused
deposition modeling, FDM)。
三维成型过程中一些悬空的地方需要用支撑材料作为悬空部分的支撑,例如可以选用喷射后可固化的材料如蜡等,这种方案会导致三维快速成型设备需要准备不同的材料,过程复杂,且成型后分离的过程非常复杂。另外,当采用FDM方案进行支撑材料打印时,由于三维物体及其支撑结构均采用打印头进行打印,由于受限于打印喷嘴的尺寸,打印出的三维物体及支撑结构的精度不高,支撑结构与成型结构的接触面之间容易发生粘连作用,当去除支撑结构后也容易造成成型物体的接触面发生损坏。
电子照相成像技术是通过显影组件把显影剂在介质如纸上成像,显影组件主要部件包括感光鼓、充电棍、激光扫描器、显影棍和废粉刮片、充电辊,另外还可以包括粉仓和废粉仓。电子照相成像技术的部件的结构和它们之间的工作原理可参考申请号为CN201110220048.X、CN201410222958.5、CN201310137076.4、CN201010237520.6、CN201410182632.4、CN201110248333.2、CN200910266892.9的中国发明专利申请以及专利号为CN200720059274.3、CN200820046406.3的中国实用新型专利。鉴于电子照相成像技术的发展已经相对成熟,并且其在平面介质上的成像效果非常优异,因此现有技术中逐渐出现了一些方案而把这项技术应用到三维快速成型中。例如,申请号为CN201410568730.1的中国发明专利申请就公开了一种显影剂、三维打印机和三维打印方法。
在申请号为CN201320350051.8的中国实用新型专利中公布了一种三维打印快速成型设备,即三维打印机,其具有第一感光鼓、第二感光鼓、承印台、转印带及光源,承印台位于转印带沿铅垂方向的下方。该三维快速成型设备利用现有激光打印机中的电子照相成像技术,在第一感光鼓土生成第一显影剂图像,第一显影剂图像由转印带转印至承印台上并经光照而固化成固体层;在第二感光鼓土生成第二显影剂图像,第二显影剂图像由转印带转印至承印台上位于固体层之外的区域。重复上述步骤,逐层打印出的固体层组成三维物体,第二显影剂图像组成粉末堆积体,形成三维物体的支撑结构。
由于采用可光照固化的显影剂为成型材料,不可光照固化的显影剂为支撑材料,并采用电子照相成像技术,使打印出每层三维物体与支撑结构的厚度很薄,提高三维打印的精度。但是,上述方案由于采用了UV光固化显影剂经固化后形成多个薄层,这样就难以保证形成的每个薄层的表面为光滑平面,从而无法为后续打印的薄层提供良好的参考基准面,另外打印平台的温度为室温温度,当对薄层的上面进行固化加热时,第一薄层的下表面,即第一薄层与打印平台的接触面的温度较低,这样就容易造成翘曲或收缩效应,从而造成打印精度降低。
本发明的第一目的是提供一种三维快速成型设备。
本发明的第二目的是提供一种三维快速成型方法。
本发明提供的三维快速成型设备包括第一显影组件,第一显影组件包括第一显影剂,第一显影剂为UV光固化显影剂;第二显影组件包括第二显影剂;环形转印带用于承接第一显影剂和第二显影剂;电荷生成装置用于向环形转印带产生电荷;打印平台用于承接环形转印带上的第一显影剂和第二显影剂,从而形成薄层;UV光固化光源用于照射薄层,使得第一显影剂固化;加热装置对打印平台进行预热;加热压平装置对薄层进行加热和压平处理。
优选的,第二显影剂的软化温度高于第一显影剂的软化温度;加热压平装置的加热温度高于第一显影剂的软化温度但低于第二显影剂的软化温度。
优选的,加热装置设置在打印平台上,加热装置为加热板,加热板具有多个独立工作的加热区域。
优选的,电荷生成装置包括第一电荷生成器和第二电荷生成器;第一电荷生成器用于控制第一显影剂的移动,第二电荷生成器用于控制第二显影剂的移动。
优选的,加热装置的加热温度设定在50℃至90℃。
本发明提供的三维快速成型方法包括以下步骤:首先,获得三维物体切片分层后的每一层的成型数据;通过显影使得第一显影剂形成第一薄层;对第一薄层用UV光照射,使得第一显影剂固化;然后,再通过显影形成后续薄层,对后续薄层用UV光照射,从而使得后续薄层上的第一显影剂发生固化;在UV光照射之前,对第一薄层进行预热;在UV光照射之前,对第一薄层和后续薄层进行加热和压平处理。
优选的,第一薄层还包括由显影产生的第二显影剂,在UV光照射下,第二显影剂不发生变化。并且,后续薄层还包括由显影产生的第二显影剂,在UV光照射下,第二显影剂不发生固化。
优选的,第二显影剂的软化温度高于第一显影剂的软化温度。并且,通过异性电荷相互吸引或通过同性电荷相互排斥而控制第一显影剂和第二显影剂的转移。
本发明通过UV光固化的第一显影剂作为成型材料,而选取普通碳粉的第二显影剂作为支撑材料,这样就提高了三维打印物体的精度,并且在三维物体成型后支撑材料非常容易去除,不会对三维物体的成型结构的表面造成损伤;通常,UV光固化过程需要消耗较高的能量,并且相应延长了固化时间,而加热装置的预热作用以及加热压平过程使得第一显影剂的温度快速达到一定温度,加热装置的产生的加热方式比UV光更加容易,因此这种方案能够降低能量消耗,并且缩短UV光固化的时间;通过对每一薄层的压平处理,能够使得薄层在接受下一薄层的显影剂时提供了一个良好的平面支撑,并且避免了翘曲效应的产生;对打印平台的预热处理,降低了第一薄层的显影剂由于受热不均匀造成的翘曲和收缩效应。
并且,把第一显影剂的温度加热至软化点以上,这样在UV光固化过程中能够降低能量消耗,缩短固化时间,并且保持第二显影剂不发生软化,这样的方案还能够避免第二显影剂的颗粒之间发生粘连作用,而粘连作用会使得支撑材料与成型材料的分离变得困难。
此外,针对不同的打印材料,加热板可以在打印平台的不同区域提供不同的加热温度,例如,对支撑材料和成型材料的区域设定不同的加热温度,从而降低能量消耗。
另外,通过电荷吸引或排斥的原理实现显影剂在不同部件之间的位置转移,方便可靠,简单易行。
通常,UV光固化过程需要消耗较高的能量,并且相应延长了固化时间,本发明的三维快速成型方法通过加热装置的预热作用以及加热压平过程使得第一显影剂的温度快速达到一定温度,加热装置的产生的加热方式比UV光更加容易,可见这种方案能够降低能量消耗,并且缩短UV光固化的时间。
并且,第二显影剂可以作为立体模型的支撑材料,这样就提高了三维打印物体的精度,并且在三维物体成型后支撑结构非常容易去除,不会对成型结构的表面造成损伤。
图1是本发明三维快速成型设备的第一实施例结构图。
图2是本发明三维快速成型设备的第一实施例加热压平装置在打印平台上作用的第一状态图。
图3是本发明三维快速成型设备的第一实施例加热压平装置在打印平台上作用的第二状态图。
图4是本发明三维快速成型设备的第一实施例成型方法的流程图。
图5是本发明三维快速成型设备的实施例形成第一薄层的截面示意图。
图6是本发明三维快速成型设备的实施例形成另一种第一薄层的截面示意图。
图7是本发明三维快速成型设备的实施例打印一种工字形三维物体的示意图。
图8是图7中工字形三维物体的支撑材料和成型材料的堆积示意图。
图9是图7中工字形三维物体的支撑材料和成型材料的另一种堆积方式的示意图。
以下结合附图及实施例对本发明作进一步说明。
如图1所示,本实施例的三维快速成型设备包括第一显影组件10,第二显影组件20、环形转印带30、UV光固化光源40、加热压平装置50、加热装置60以及打印平台70。
第一显影组件10包括容纳第一显影剂11的粉仓12、显影辊13、充电辊14、感光鼓15、清洁刮刀16和废粉仓17。第一显影剂11为UV光固化显影剂,第一显影剂11在UV光的照射下其颗粒的之间发生粘连作用而形成一个整体结构。第二显影组件20也包括容纳第二显影剂21粉仓,其它部件与第一显影组件10相同,第二显影剂21为普通的显影碳粉,其在UV光的照射下不发生变化,即第二显影剂21的颗粒之间不会发生粘连作用。其中,第二显影剂21的软化温度高于第一显影剂11的软化温度。
第一显影组件10和第二显影组件20设置在同一水平位置,它们的下方位置设置有环形转印带30,环形转印带30在电机的带动下能够环形地转动,这种转动可以是顺时针或者逆时针方向转动。环形转印带30用于承接第一显影剂11和第二显影剂21。
环形转印带30的第一位置设置了第一电荷生成器32,在第二位置设置第二电荷生成器34。第一电荷生成器32能够产生正电荷或负电荷,第二电荷生成器34也能够产生正电荷或负电荷,且第一电荷生成器32与第二电荷生成器34能够分别独立工作。
在环形转印带30的下方位置设置有打印平台70,打印平台70用于承接环形转印带30上的第一显影剂11和第二显影剂21。在三维打印设备的控制单元的作用下,打印平台70能够相对于环形转印带30发生竖直方向的相对运动。打印预备阶段,打印平台70与环形转印带30之间具有一定间隔距离,这个间隔距离应该至少大于第一显影剂11和第二显影剂21形成的一个薄层的厚度,每当完成一个薄层的打印后,打印平台70相对于环形转印带30远离一个薄层的厚度,直到完成整个三维物体的打印,间隔距离优选为薄层厚度的1.2倍至1.5倍。
在打印平台70上设置了一个加热装置60,加热装置60对打印平台70进行预热。加热装置60可以是加热板结构,加热板具有多个独立工作的加热区域。在打印平台上可以增加支撑腔73,作为支撑材料的第二显影剂21在打印平台70的端部与支撑腔73的内表面接触,支撑腔73能够对支撑材料起到支撑作用。
UV光固化光源40用于照射薄层,使得第一显影剂11发生固化。加热压平装置50对每一个薄层进行加热和压平处理,加热压平装置50为一个圆柱体,圆柱体既有加热功能也具有压平第一薄层的作用。加热和压平的方案一方面能够避免三维物体的翘曲效应,另一方面还可以为下一薄层显影剂的堆积提供良好的平面基础。UV光固化光源40与加热压平装置50形成一个整体结构,在控制单元的控制下其能够沿水平方向相对于打印平台70运动。如图2所示,当打印平台70上形成第一薄层71后,加热装置60已经对第一薄层71进行了预热过程,然后加热压平装置50在第一薄层71上进行按压和加热,其可以采用两种方式,第一种方式是加热压平装置50缓慢前行,当第一显影剂11达到软化温度以上时,再进行UV光固化。第二种方式是加热压平装置50在第一薄层71上反复加热、按压、固化,也就是加热压平装置50在打印平台70的两个端部之间多次运动,直到完成第一薄层71的固化,这种方案能够使得薄层的平面更趋平整。如图3所示,当多个薄层堆积到一定厚度后,打印平台70上的加热装置60就失去了对薄层72的加热效果,加热压平装置50对薄层72仍然进行加热和压平处理。
进行三维成型操作时,如图4所示,首先,执行步骤S1,得到需要打印的三维物体的每一层的成型数据,成型数据的获得可以通过计算机对三维物体进行建模、分层切片而得到成型数据,也可以通过外部插入设备如存储卡而直接把三维物体的成型数据导入到三维快速成型设备中,或者通过无线传输方式获得成型数据。
然后,执行步骤S2,得到第一薄层,即通过第一显影组件10把粉仓12内的第一显影剂11依次通过显影辊13、感光鼓15而转移到环形转印带30上。通过第一电荷生成器32产生与第一显影剂11相异的电性的电荷,从而使得第一显影剂11紧密地吸附在环形转印带30的外表面。通过第二显影组件20把第二显影剂21转移到环形转印带30上,通过第二电荷生成器34产生与第二显影剂21电性相异的电荷,从而使得第二显影剂21紧密地吸附在环形转印带30的外表面。第一显影剂11和第二显影剂21由感光鼓转移到环形转印带30上后,形成三维物体的第一薄层。当环形转印带30发生转动后,第一薄层运动到打印平台70的上方,此时第一电荷生成器32产生与第一显影剂11相同的电性,根据排斥原理而使得第一显影剂11由环形转印带30转移到打印平台70上,第二电荷生成器34产生与第二显影剂21相同的电性,从而使得第二显影剂21也转移到打印平台70上。由此,第一薄层由环形转印带30转移到打印平台70上。通过加热装置60对打印平台70进行预热,预热可以在第一薄层转移到打印平台70之前或者之后。
接着,执行步骤S3,对第一薄层进行加热、压平和UV光照射,使得第一显影剂11发生固化。
然后,执行步骤S4,再通过显影原理形成下一薄层,下一薄层包括了第一显影剂11,并且可以选择性地包括第二显影剂21,因为第二显影剂21为支撑材料,如果三维物体在某些薄层不需要支撑材料,就不需要进行第二显影剂21的堆积。
接着,执行步骤S5,对步骤S4形成的薄层用UV光照射,从而使得薄层上的第一显影剂11发生固化。
然后,对成型过程进行判断,如果三维物体的成型未完成,则返回步骤S4而进行下一薄层的成型,如果判断结果显示三维物体成型完毕,则完成打印过程。
在完成打印过程后,操作人员可以手动取下三维物体,由于支撑材料仍然为粉末状态,因此支撑材料非常容易与三维物体分离,支撑材料容易回收,从而降低成本、保护环境。
最后需要说明的是,本发明不限于上述的实施方式,在其它实施例中,在三维成型物体的其中一个薄层中,如图5所示,薄层80的截面可以为矩形,而如图6所示,截面90可以为圆形。第一显影剂形成的区域可以是三角形等规则图案81,也可以是不规则图案91。如图7所示,当打印工字形三维物体92时,在进行底部区域93的打印时,第一薄层只需要堆积第一显影剂作为成型材料,而不需要堆积作为支撑材料的第二显影剂。当打印过程进入中部区域94时,每一薄层中既要堆积作为成型材料的第一显影剂,也需要堆积作为支撑材料的第二显影剂。如图8所示,支撑材料95的截面可以形成矩形结构,如图9所示,支撑材料96的截面也可以形成梯形结构,梯形结构的支撑材料能够防止三维物体在成型过程中发生坍塌,从而避免三维物体失去支撑效果造成打印失败。第一显影剂的颜色可以为红色或黄色或蓝色或黑色或紫色或绿色。
得到第一显影剂的方法可以通过在普通显影剂的制造过程中掺入光引发剂和光敏剂,光引发剂可以是安息香以及其衍生物,光敏剂可以是二苯甲酮、硫杂蒽醌。三维快速成型设备还可以安装有位置感应装置,位置感应装置能够感应到每一个薄层的位置是否在预设的位置,然后把感应到的信号传输到三维快速成型设备的控制单元,当其中的一个薄层在打印平台上的位置发生偏差之后,就需要相应调节薄层转移到打印平台上的位置,从而提高三维物体的成型精度。上述这些设计也在本发明的权利要求保护范围之内。
应用本发明的三维快速成型设备进行三维快速成型打印,成型设备上的支撑材料非常容易去除,不会对三维物体的成型结构的表面造成损伤,从而能够降低能量消耗,缩短UV光固化的时间,并且降低第一薄层的显影剂由于受热不均匀造成的翘曲和收缩效应。
Claims (10)
- 三维快速成型设备, 包括:第一显影组件,包括第一显影剂,所述第一显影剂为UV光固化显影剂;第二显影组件,包括第二显影剂;环形转印带,用于承接所述第一显影剂和所述第二显影剂;电荷生成装置,用于向所述环形转印带产生电荷;打印平台,用于承接所述环形转印带上的所述第一显影剂和所述第二显影剂,从而形成薄层;UV光固化光源,用于照射所述薄层,使得所述第一显影剂固化;其特征在于:加热装置,对所述打印平台进行预热;加热压平装置,对所述薄层进行加热和压平处理。
- 根据权利要求1所述的三维快速成型设备,其特征在于:所述第二显影剂的软化温度高于所述第一显影剂的软化温度;所述加热压平装置的加热温度高于所述第一显影剂的软化温度但低于所述第二显影剂的软化温度。
- 根据权利要求1所述的三维快速成型设备,其特征在于:所述加热装置设置在所述打印平台上,所述加热装置为加热板,所述加热板具有多个独立工作的加热区域。
- 根据权利要求1所述的三维快速成型设备,其特征在于:所述电荷生成装置包括第一电荷生成器和第二电荷生成器;所述第一电荷生成器用于控制所述第一显影剂的移动,所述第二电荷生成器用于控制所述第二显影剂的移动。
- 根据权利要求1至4任一项所述的三维快速成型设备,其特征在于:所述第一显影剂的颜色为红色或黄色或蓝色或黑色或紫色或绿色。
- 三维快速成型方法,包括以下步骤:获取三维物体切片分层后的每一层的成型数据;通过显影使得第一显影剂形成第一薄层;对所述第一薄层用UV光照射,使所述第一显影剂发生固化;显影形成后续薄层,对所述后续薄层用UV光照射,使所述后续薄层上的所述第一显影剂发生固化;其特征在于:在UV光照射之前,对所述第一薄层进行预热;在UV光照射之前,对所述第一薄层和所述后续薄层进行加热和压平处理。
- 根据权利要求6所述的三维快速成型方法,其特征在于:所述第一薄层还包括由显影产生的第二显影剂,在所述UV光照射下,所述第二显影剂不发生固化。
- 根据权利要求6所述的三维快速成型方法,其特征在于:所述后续薄层还包括由显影产生的第二显影剂,在所述UV光照射下,所述第二显影剂不发生固化。
- 根据权利要求8所述的三维快速成型方法,其特征在于:所述第二显影剂的软化温度高于所述第一显影剂的软化温度。
- 根据权利要求7至9任一项所述的三维快速成型方法,其特征在于:通过异性电荷相互吸引或通过同性电荷相互排斥而控制所述第一显影剂和所述第二显影剂的转移。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510298825.0A CN104890241B (zh) | 2015-06-03 | 2015-06-03 | 三维快速成型设备和成型方法 |
CN201510298825.0 | 2015-06-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016192626A1 true WO2016192626A1 (zh) | 2016-12-08 |
Family
ID=54023398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/084291 WO2016192626A1 (zh) | 2015-06-03 | 2016-06-01 | 三维快速成型设备和成型方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104890241B (zh) |
WO (1) | WO2016192626A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017206007A (ja) * | 2016-05-12 | 2017-11-24 | ゼロックス コーポレイションXerox Corporation | アドレス指定可能なuv架橋を使用した静電3dプリンタ |
CN110901057A (zh) * | 2018-12-28 | 2020-03-24 | 源秩科技(上海)有限公司 | 一种光固化3d打印系统 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104890241B (zh) * | 2015-06-03 | 2017-06-06 | 珠海天威飞马打印耗材有限公司 | 三维快速成型设备和成型方法 |
DE102016203556A1 (de) | 2016-03-03 | 2017-09-07 | Eos Gmbh Electro Optical Systems | Verfahren und Vorrichtung zum generativen Herstellen eines dreidimensionalen Objekts |
US10213958B2 (en) | 2016-05-06 | 2019-02-26 | Xerox Corporation | Electrostatic 3-D printing system having acoustic transfer and corotron |
US10201930B2 (en) | 2016-05-06 | 2019-02-12 | Xerox Corporation | Acoustic transfude 3-D printing |
US10099421B2 (en) | 2016-05-12 | 2018-10-16 | Xerox Corporation | 3-D printing using intermediate transfer belt and curable polymers |
WO2017194105A1 (en) * | 2016-05-12 | 2017-11-16 | Hewlett-Packard Development Company L.P. | 3-dimensional printer |
US10195787B2 (en) | 2016-05-12 | 2019-02-05 | Xerox Corporation | Electrostatic 3-D development apparatus using different melting point materials |
CN106015307A (zh) * | 2016-05-13 | 2016-10-12 | 北京斯帝欧科技有限公司 | 合页和用于制造该合页的方法 |
CN109571958B (zh) * | 2017-06-07 | 2020-10-27 | 广州趣科信息科技有限公司 | 3d打印机 |
CN109333999B (zh) * | 2018-11-20 | 2023-12-29 | 青岛科技大学 | 一种热固性聚合物增材制造装置及方法 |
CN113021892A (zh) * | 2019-12-24 | 2021-06-25 | 源秩科技(上海)有限公司 | 一种光固化打印系统和方法 |
CN114311648A (zh) * | 2022-01-20 | 2022-04-12 | 广州黑格智造信息科技有限公司 | 一种三维物件的制造方法及耗材组件 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103331911A (zh) * | 2013-06-18 | 2013-10-02 | 珠海天威飞马打印耗材有限公司 | 三维打印快速成型设备及三维实体物成型方法 |
CN103640218A (zh) * | 2013-12-04 | 2014-03-19 | 北京太尔时代科技有限公司 | 一种3d打印机工作平台 |
CN104298084A (zh) * | 2014-10-22 | 2015-01-21 | 珠海天威飞马打印耗材有限公司 | 显影剂、三维打印机及三维打印方法 |
CN104890241A (zh) * | 2015-06-03 | 2015-09-09 | 珠海天威飞马打印耗材有限公司 | 三维快速成型设备和成型方法 |
CN204712469U (zh) * | 2015-06-03 | 2015-10-21 | 珠海天威飞马打印耗材有限公司 | 三维快速成型设备 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7329379B2 (en) * | 2003-11-04 | 2008-02-12 | Hewlett-Packard Development Company, Lp. | Method for solid freeform fabrication of a three-dimensional object |
CN102608890A (zh) * | 2012-03-27 | 2012-07-25 | 朱子腾 | 3d激光打印机 |
-
2015
- 2015-06-03 CN CN201510298825.0A patent/CN104890241B/zh active Active
-
2016
- 2016-06-01 WO PCT/CN2016/084291 patent/WO2016192626A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103331911A (zh) * | 2013-06-18 | 2013-10-02 | 珠海天威飞马打印耗材有限公司 | 三维打印快速成型设备及三维实体物成型方法 |
CN103640218A (zh) * | 2013-12-04 | 2014-03-19 | 北京太尔时代科技有限公司 | 一种3d打印机工作平台 |
CN104298084A (zh) * | 2014-10-22 | 2015-01-21 | 珠海天威飞马打印耗材有限公司 | 显影剂、三维打印机及三维打印方法 |
CN104890241A (zh) * | 2015-06-03 | 2015-09-09 | 珠海天威飞马打印耗材有限公司 | 三维快速成型设备和成型方法 |
CN204712469U (zh) * | 2015-06-03 | 2015-10-21 | 珠海天威飞马打印耗材有限公司 | 三维快速成型设备 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017206007A (ja) * | 2016-05-12 | 2017-11-24 | ゼロックス コーポレイションXerox Corporation | アドレス指定可能なuv架橋を使用した静電3dプリンタ |
CN110901057A (zh) * | 2018-12-28 | 2020-03-24 | 源秩科技(上海)有限公司 | 一种光固化3d打印系统 |
Also Published As
Publication number | Publication date |
---|---|
CN104890241A (zh) | 2015-09-09 |
CN104890241B (zh) | 2017-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016192626A1 (zh) | 三维快速成型设备和成型方法 | |
WO2014201909A1 (zh) | 三维打印快速成型设备及三维实体物成型方法 | |
CN105500720B (zh) | 一种适用于多材料多工艺3d打印方法及所用的打印装置 | |
WO2018117351A1 (ko) | Lcd 방식 3d 프린터 | |
CN105729812A (zh) | 三维打印装置及三维物体的成型方法 | |
US20130272746A1 (en) | Electrophotography-based additive manufacturing system with transfer-medium service loops | |
KR102159480B1 (ko) | 레벨링 재료 및 기계식 플래너를 이용하는 정전식 3-d 프린터 | |
CN1700100A (zh) | 光刻器件及方法 | |
WO2008096105A1 (en) | Electrostatic printing method and its use in rapid prototyping | |
JPH10207194A (ja) | 積層造形方法及び積層造形装置 | |
CN107121890A (zh) | 一种纳米压印模板及其制备方法 | |
WO2020166755A1 (ko) | 3d프린터 | |
WO2019103218A1 (ko) | 3d 프린터 | |
US11590695B2 (en) | Photocuring printing system and method | |
TW200932504A (en) | An improved roller embossing apparatus | |
JPH08294742A (ja) | パートおよびサポートを含むプロトタイプの製作装置および方法 | |
JP2005059324A (ja) | 3次元積層造形装置 | |
TW200643527A (en) | Stamper manufacturing system for LCD polyimide printing and manufacture method thereof | |
CN204712469U (zh) | 三维快速成型设备 | |
CN104298084A (zh) | 显影剂、三维打印机及三维打印方法 | |
KR102028599B1 (ko) | 3d 프린트 출력물에 기능성 물질층을 전사하는 방법 | |
KR100940846B1 (ko) | 미세버섯구조 패턴의 형성방법 | |
CN205705325U (zh) | 三维打印装置 | |
CN108508697A (zh) | 转印方法、转印装置以及模具 | |
JP6651716B2 (ja) | モールド成形品の製造方法及びモールド成形品の製造装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16802549 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16802549 Country of ref document: EP Kind code of ref document: A1 |