WO2016192510A1 - 一种信道接入方法、站点和系统 - Google Patents

一种信道接入方法、站点和系统 Download PDF

Info

Publication number
WO2016192510A1
WO2016192510A1 PCT/CN2016/081323 CN2016081323W WO2016192510A1 WO 2016192510 A1 WO2016192510 A1 WO 2016192510A1 CN 2016081323 W CN2016081323 W CN 2016081323W WO 2016192510 A1 WO2016192510 A1 WO 2016192510A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
radio frame
channel
frame
transmission
Prior art date
Application number
PCT/CN2016/081323
Other languages
English (en)
French (fr)
Other versions
WO2016192510A9 (zh
Inventor
杨丹
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/579,706 priority Critical patent/US20180220454A1/en
Priority to EP16802433.9A priority patent/EP3306999A4/en
Publication of WO2016192510A1 publication Critical patent/WO2016192510A1/zh
Publication of WO2016192510A9 publication Critical patent/WO2016192510A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to, but is not limited to, the field of communications, and in particular, to a channel access method, a station, and a system.
  • WLANs wireless local area networks
  • IEEE802.11 working group of the Institute of Electrical and Electronics Engineers has defined a series of WLAN technology standards such as 802.11a, 802.11b, 802.11g, and 802.11n. It mainly defines the physical layer (PHY, Physical Layer) and media access control (MAC, Media Access Control) layer specification. Subsequent other task groups have emerged to develop specifications that involve 802.11 technology improvements. For example, the High Efficiency WLAN (HEW) task group focuses on how to enable WLAN networks to achieve more efficient data transmission in dense network scenarios.
  • PHY Physical Layer
  • MAC Media Access Control
  • the basic architecture of a WLAN refers to a basic service set (BSS) composed of a station (STA, Station), and the BSS includes an access point station (AP) and multiple associated with the AP.
  • BSS basic service set
  • AP access point station
  • Non-AP station. 802.11 defines two basic access modes for wireless channels: a contention-based access method, that is, a Distributed Coordination Function (DCF); and a scheduling-based access method, that is, a point coordination function (PCF, Point). Coordination Function).
  • DCF Distributed Coordination Function
  • PCF Point
  • Coordination Function a point coordination function
  • EDCA Enhanced Distributed Coordination Access
  • HCCA Hybrid Coordination function Controlled channel Access
  • the DCF is a basic channel access mode that utilizes a carrier sense multiple access mechanism with collision avoidance (CSMA/CA, CSMA with Collision Avoidance) to enable multiple STAs to share a wireless channel.
  • EDCA is an enhanced channel access mode.
  • AC access categories
  • AC_BK background access category
  • AC_BE best effort service access category
  • AC_VI video access category
  • AC_VO voice access category
  • the STA obtains a TXOP through the channel access procedure.
  • One TXOP refers to a bounded period in which the STA can transmit a specific communication category.
  • the STA can continue to transmit data frames or control frames according to the AC. , or manage frames, or receive response frames.
  • the precondition is that the duration of these frame sequences does not exceed the TXOP upper limit set for the AC.
  • the network allocation vector NAV, Network Allocation Vector
  • the related art also allows the STA to use the CF-End (Contention Free End) frame to truncate the TXOP such that the TXOP ends prematurely. At the end of the current TXOP, the channel will be opened again for all STAs to contend for access.
  • CF-End Contention Free End
  • the STAs are very densely distributed, resulting in fierce channel competition.
  • the transmission opportunities available to each site are reduced, and the reduction of transmission opportunities may result in more buffered data waiting for the site.
  • the typical service application of the HEW is a video service.
  • the downlink data is more than the uplink data.
  • the AP needs to trigger uplink multi-user transmission or downlink multi-user transmission, so the AP needs more. Transmission opportunity.
  • the related art can increase the priority of the AP access channel by configuring the AP with a high priority channel access parameter, it is theoretically possible to increase the chance of the AP acquiring the TXOP. But in any case, the AP still needs to contend for the channel, so it cannot reduce the competition overhead.
  • An embodiment of the present invention provides a channel access method, where the method includes:
  • the second station receives the first radio frame that is sent by the first station in the first transmission time period, and the first radio frame carries signaling to notify the second station that the first station releases the first transmission time period;
  • the second station receives the first radio frame sent by the first station, performs channel detection in a preset time interval, and transmits a second radio frame on a subset of the channel set whose channel detection result is idle.
  • the method further includes: after the second radio frame is sent, the second station has a fixed or predefined interframe interval in the second transmission time period, and is not greater than the first The bandwidth used by the two radio frames is for wireless frame transmission.
  • the end time of the second transmission period does not exceed the end time of the first transmission period.
  • the second transmission time period is determined according to an access category of the data radio frame in the second transmission time period.
  • the second station has a control frame interaction with the first station.
  • the method further includes:
  • the second station When the destination receiver of the first radio frame is not the second station and does not need a response frame, the second station performs channel detection within a preset time interval after receiving the first radio frame, and The second radio frame is transmitted on a subset of the set of channels detected to be idle.
  • the method further includes:
  • the second station When the destination receiver of the first radio frame is not the second station and needs a response frame, the second station performs channel detection within a preset time interval after receiving the response frame, and detects that it is idle. A second radio frame is transmitted on a subset of the set of channels.
  • the method further includes:
  • the second station When the destination receiver of the first radio frame is the second station and needs a response frame, the second station performs channel detection in a preset time interval before transmitting the response frame, and detects the channel that is idle. A reply response frame is transmitted on the subset of the set, and the second radio frame is transmitted on the subset of the idle channel set after a preset time interval after the response frame.
  • the method further includes:
  • the second station When the destination recipient of the first radio frame is the second station and a response frame is required, The second station performs channel idle detection within a preset time interval after transmitting the response frame, and transmits the second radio frame on a subset of the set of channels detected to be idle.
  • the method further includes:
  • the second station When the destination receiver of the first radio frame is the second station and does not need a response frame, the second station performs channel idle detection within a preset time interval after receiving the first radio frame, and The second radio frame is transmitted on a subset of the set of channels that are detected to be idle.
  • the embodiment of the invention further provides a channel access method, the method comprising:
  • the first station sends a first radio frame to the second station in the first transmission time period, where the first radio frame carries signaling to notify the second station that the first station releases the first transmission time period.
  • the first transmission time period is a transmission opportunity acquired by the first station by using a contention access channel, or the first transmission time period is a transmission time pre-allocated to the first station.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which are implemented when the computer executable instructions are executed.
  • the embodiment of the invention further provides a first site, including:
  • a first radio frame obtaining module configured to: obtain a first radio frame sent to the second station;
  • the first radio frame sending module is configured to: send a first radio frame to the second station in the first transmission time period, where the first radio frame carries signaling to notify the second station that the first station releases the first transmission period.
  • the first transmission time period is a transmission opportunity acquired by the first station by using a contention access channel, or the first transmission time period is a transmission time pre-allocated to the first station.
  • the embodiment of the invention further provides a second site, including:
  • the first radio frame receiving module is configured to: receive a first radio frame sent by the first station in the first transmission time period, where the first radio frame carries signaling to notify the second station that the first station releases the first a transmission time period;
  • the second radio frame sending module is configured to: receive the first radio frame sent by the first station, perform channel detection in a preset time interval, and select a subset of the channel set that is idle in the channel detection result Sending a second radio frame on.
  • the second site further includes:
  • a wireless frame transmission module configured to: after transmitting the second radio frame, at a fixed or predefined interframe interval in a second transmission time period, and not greater than a bandwidth used by the second radio frame Perform wireless frame transmission.
  • the end time of the second transmission period does not exceed the end time of the first transmission period.
  • the second transmission time period is determined according to an access category of the data radio frame in the second transmission time period.
  • the second radio frame sending module is further configured to perform a control frame interaction with the first station between the second radio frame and the first radio frame.
  • the second radio frame sending module is further configured to: after the destination party of the first radio frame is not the second station and does not need a response frame, after receiving the first radio frame Channel detection is performed within a preset time interval and the second radio frame is transmitted on a subset of the set of channels detected to be idle.
  • the second radio frame sending module is further configured to: when the destination receiver of the first radio frame is not the second station and needs a response frame, preset time interval after receiving the response frame Channel detection is performed internally and a second radio frame is transmitted on a subset of the set of channels detected to be idle.
  • the second radio frame sending module is further configured to: when the destination receiver of the first radio frame is the second station and needs a response frame, within a preset time interval before sending the response frame Channel detection is performed and a response frame is returned on a subset of channels that are detected to be idle, and a second radio frame is transmitted on a subset of the idle channels after a predetermined time interval.
  • the second radio frame sending module is further configured to: after the destination receiver of the first radio frame is the second station and needs a response frame, after sending the response frame, and sending the first Channel detection is performed within a preset time interval before the radio frame, and the second radio frame is transmitted on a subset of the channels in which the idle channel is detected.
  • the second radio frame sending module is further configured to: when the destination receiver of the first radio frame is the second station and does not need a response frame, after receiving the first radio frame, and Performing channel detection within a preset time interval before transmitting the second radio frame, detecting a sub-channel of the idle channel The second radio frame is transmitted on the set.
  • the embodiment of the invention further provides a channel access system, the system comprising:
  • a first station configured to: send a first radio frame to the second station in the first transmission time period, where the first radio frame carries signaling to notify the second station that the first station releases the first transmission time period;
  • the second station is configured to: receive the first radio frame sent by the first station, perform channel detection in a preset time interval, and send the second radio frame on a subset of the channel set whose channel detection result is idle.
  • the second station is further configured to: after transmitting the second radio frame, at a fixed or predefined interframe interval in the second transmission period, and not greater than the second radio
  • the bandwidth used by the frame is for wireless frame transmission.
  • a channel access method, a station, and a system are provided by the embodiment of the present invention.
  • the second station After receiving the first radio frame sent by the first station in the first transmission time period, the second station performs channel detection in a preset time interval. And transmitting a second radio frame on a subset of the channel set with the channel detection result idle; then at a fixed or predefined interframe interval in the second transmission time period, and not greater than the second radio frame used Bandwidth for wireless frame transmission.
  • the second station may obtain the second transmission time period on the detected idle channel after the first station releases the first transmission time period, so that the second station The channel competitiveness is greatly improved, thereby improving the channel access rate of the second station.
  • FIG. 1 is a schematic flowchart of a channel access method according to Embodiment 1 of the present invention.
  • FIG. 2 is a basic topology diagram of a BSS according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a channel access method according to Embodiment 4 of the present invention.
  • FIG. 4 is a schematic diagram of a channel access method according to Embodiment 5 of the present invention.
  • FIG. 5 is a schematic diagram of a channel access method according to Embodiment 6 of the present invention.
  • FIG. 6 is a schematic diagram of a channel access method according to Embodiment 7 of the present invention.
  • FIG. 7 is a schematic diagram of a channel access method according to Embodiment 8 of the present invention.
  • FIG. 8 is a schematic diagram of a channel access method according to Embodiment 9 of the present invention.
  • FIG. 9 is a schematic diagram of a channel access method according to Embodiment 10 of the present invention.
  • FIG. 10 is a schematic diagram of a channel access method according to Embodiment 11 of the present invention.
  • FIG. 11 is a schematic diagram of a channel access method according to Embodiment 12 of the present invention.
  • FIG. 12 is a schematic diagram of a channel access method according to Embodiment 14 of the present invention.
  • FIG. 13 is a schematic structural diagram of a channel access system according to Embodiment 15 of the present invention.
  • a first embodiment of the present invention provides a channel access method. As shown in FIG. 1, the method includes:
  • Step 101 The second station receives a first radio frame that is sent by the first station in the first transmission time period, where the first radio frame carries signaling to notify the second station that the first station releases the first transmission time period.
  • Step 102 The second station receives the first radio frame sent by the first station, performs channel detection in a preset time interval, and sends a second radio frame on a subset of the channel set whose channel detection result is idle.
  • step 103 may be further included, after the second station transmits the second radio frame, at a fixed or predefined interframe interval in the second transmission period, and is not greater than The bandwidth used by the second radio frame performs radio frame transmission.
  • the destination receiver of the first radio frame sent by the first station may be the second station, or may not be the second station.
  • the first radio frame may parse the first radio frame to obtain signaling carried therein;
  • the second station may parse the physical frame header of the first radio frame to obtain For notifying the first site of the second site to release Signaling of the first transmission time period, and parsing to the signaling is used to notify the second station.
  • the end time of the second transmission time period may not exceed the end time of the first transmission time period, or the second transmission time period may be based on data radio frames in the second transmission time period.
  • the access category is determined.
  • the second station and the first station may have control frame interaction. For example, when the first radio frame requires a response frame, the second station may reply to the response frame after receiving the first line frame and before the second station transmits the second radio frame.
  • the second station may be pre-received after receiving the first radio frame.
  • the channel detection is performed within a time interval and the second radio frame is transmitted on a subset of the set of channels detected to be idle.
  • the second station may perform the preset time interval after receiving the response frame. Channel detection and transmitting a second radio frame on a subset of the set of channels detected to be idle.
  • the second station may perform channel in a preset time interval before sending the response frame. Detecting, and replying to the response frame on a subset of the set of channels detected as idle, transmitting a second radio frame on the subset of the idle set of channels after a predetermined time interval following the response frame.
  • the second station may perform channel in a preset time interval after sending the response frame. Idle detection and transmitting the second radio frame on a subset of the set of channels detected as idle.
  • the second station may be preset time after receiving the first radio frame.
  • Channel idle detection is performed within the interval and the second radio frame is transmitted on a subset of the set of channels that are detected to be idle.
  • the end time of the second transmission time period obtained by the second station may exceed the end time of the first transmission time period; the time upper limit value of the second transmission time period may be determined by the second station according to the data to be sent.
  • the upper limit of the transmission opportunity time corresponding to the access category is set.
  • the second station may set the upper limit of the transmission opportunity time corresponding to the access category of the data to be sent to the upper limit of the second transmission time period; or, the remaining of the first transmission time period may be
  • the duration is set to the time limit of the second transmission time period; the remaining duration of the first transmission time period herein may refer to the time when the first station completes data transmission in the first transmission time period and ends at the end of the first transmission time period.
  • the time start of the second transmission time period obtained by the second station may be before the end of the first transmission time period.
  • the time start point may be that the data transmission is completed from the first station in the first transmission time period.
  • the second station may send buffered data to the corresponding site before the set second transmission time period upper limit value arrives; that is, the second site may be in the set Within the time range of the two transmission time periods, the self buffered data is transmitted to any other one or more sites, where one or more sites may or may not include the first site.
  • the cost of the second station competing channel can be greatly reduced in this way, because any one of the first stations can notify the second station to obtain the second transmission opportunity after obtaining the first transmission opportunity, so that The channel access rate of the second station is greatly increased; after the first station obtains the first transmission time period, the second station may be notified to obtain the second transmission time period, and after the second station obtains the second transmission time period, the second station may obtain the second transmission time period.
  • a station starts at a data transmission end time in a first transmission time period, and occupies a channel to perform data communication in a second transmission time period; a time length of the second transmission time period may be corresponding to the second station according to an AC
  • the upper limit of the transmission time is determined. Therefore, the end time of the second transmission time period is not limited, and may be the same as the end time of the first transmission time period, or may be before or after the end time of the first transmission time period;
  • the first station may or may not transmit data during the first transmission time period; for the case of not transmitting data, the first station only utilizes its own capability in the EDCA contention channel access process. Competing for the second station to a transmission time period; or directly transferring the transmission time period pre-allocated for itself to the second station that needs to send data; for the case of transmitting data, it is equivalent to the first station utilizing its own capabilities for both itself and The other second sites compete for a data transmission time respectively; or share the transmission time period obtained by itself with the second site.
  • the second transmission opportunity obtained by the second station can be regarded as an inheritance of the first transmission time period obtained by the first station, and after inheritance, the length of the second transmission time period can be set as needed. .
  • Embodiment 2 of the present invention provides a channel access method, which is applicable to a first station, where the method includes: the first station sends a first radio frame to a second station in a first transmission time period. And the first radio frame carrying signaling is used to notify the second station that the first station releases the first transmission time period.
  • the first transmission time period obtained by the first station may be a transmission opportunity obtained when the first station contends for the access channel through the EDCA mechanism; or may be a transmission time obtained by the first station through the non-competitive manner, for example, And when the first station is a non-access point station, a transmission time that may be pre-allocated by the access point station for the non-access point station;
  • the obtaining, by the first station, the first transmission time period may include: the first station is in After detecting that the media is idle, it delays one AIFS, and then delays a random backoff period, and successfully obtains the first transmission time period after performing a frame exchange.
  • the third embodiment of the present invention provides a channel access method, which can be applied to a second site, and the method includes:
  • the second station receives the first radio frame that is sent by the first station in the first transmission time period, and the first radio frame carries signaling to notify the second station that the first station releases the first transmission time period;
  • the second station receives the first radio frame sent by the first station, performs channel detection in a preset time interval, and transmits a second radio frame on a subset of the channel set whose channel detection result is idle.
  • the method may further include: after the second radio frame is sent, the second station is at a fixed or predefined interframe interval in the second transmission time period, and The wireless frame transmission is performed at a bandwidth not greater than that used by the second radio frame.
  • the end time of the second transmission time period may not exceed the end time of the first transmission time period, or the second transmission time period may be based on data radio frames in the second transmission time period.
  • the access category is determined.
  • the second station and the first station may also have control frame interaction.
  • the second station may be pre-received after receiving the first radio frame. Assume Channel detection is performed during the time interval and the second radio frame is transmitted on a subset of the set of channels detected to be idle.
  • the second station may perform the preset time interval after receiving the response frame. Channel detection and transmitting a second radio frame on a subset of the set of channels detected to be idle.
  • the second station may perform channel in a preset time interval before sending the response frame. Detecting, and replying to the response frame on a subset of the set of channels detected as idle, transmitting a second radio frame on the subset of the idle set of channels after a predetermined time interval following the response frame.
  • the second station may perform channel in a preset time interval after sending the response frame. Idle detection and transmitting the second radio frame on a subset of the set of channels detected as idle.
  • the second station may be preset time after receiving the first radio frame.
  • Channel idle detection is performed within the interval and the second radio frame is transmitted on a subset of the set of channels that are detected to be idle.
  • the channel access method of the embodiment of the present invention is further elaborated in conjunction with the topology in the specific scenario.
  • a BSS including an access point AP and stations STA1, STA2, and STA3, and a topology diagram of the BSS is shown in FIG. 2.
  • STA1 contends the access channel on the channel 1 through the EDCA mechanism. Specifically, after detecting that the media is idle on the channel 1, the STA1 may delay one AIFS, delay a random backoff period, and send the packet to the AP.
  • RTS Request To Send
  • RTS successfully acquires the first transmission time period T1 after successfully receiving the CTS (Clear To Send) of the AP reply, and then STA1 can start transmitting data.
  • STA1 may send a data frame to the AP on channel 1, and the more data field of the data frame may be set to 0 for indicating to the AP that the STA1 itself released the first transmission time period, and the data
  • the frame's response policy (Ack Policy) field can be set to normal response; AP
  • the channel detection may be started when the data frame is received. If both channel 1 and channel 2 are idle in the short inter-frame space (SIFS, Short Inter-Frame Space), the AP may repeat on channel 1 and channel 2.
  • a BSS including an access point AP and stations STA1, STA2, and STA3, and a topology diagram of the BSS is shown in FIG. 2.
  • STA1 contends for accessing the channel through the EDCA mechanism on channel 1. Specifically, after detecting that the medium is idle on channel 1, STA1 may delay one AIFS, delay a random backoff period, and send to the AP. The RTS successfully acquires the first transmission time period T1 after successfully receiving the CTS that the AP replies, and then the STA1 can start to send data.
  • STA1 may send a data frame to the AP on channel 1, and the more data field of the data frame may be set to 0, for indicating to the AP that the STA1 itself releases the first transmission time period, and the response strategy of the data frame (
  • the Ack Policy field can be set to a normal response; if the AP detects that both channel 1 and channel 2 are idle in the point coordination function frame interval (PIFS, PCF Inter-Frame Space) before replying to the ACK, the AP can reply on channel 1.
  • ACK, and the duration information carried in the ACK can be set to T2, T2 ⁇ the remaining duration of T1, and the AP can use Channel 1 and Channel 2 to transmit data frames to STA2 and STA3 in T2.
  • a BSS including an access point AP and stations STA1, STA2, and STA3, and a topology diagram of the BSS is shown in FIG. 2.
  • STA1 contends for accessing the channel through the EDCA mechanism on channel 1. Specifically, after detecting that the medium is idle on channel 1, STA1 may delay one AIFS, delay a random backoff period, and send to the AP. The RTS successfully acquires the first transmission time period T1 after successfully receiving the CTS that the AP replies, and then the STA1 can start to send data.
  • the STA1 may send a data frame to the AP on the channel 1, the Ack Policy field of the trigger frame may be set as a normal response, and the data frame may carry indication information for indicating to the AP that the STA1 itself released the first a transmission time period; the AP can start when the data frame is received Perform channel detection. If both channel 1 and channel 2 are detected to be idle in SIFS, the AP may reply ACK on channel 1 and channel 2. After replying to SIFS after ACK, AP sends a downlink to STA2 on channel 1 and channel 2.
  • a data frame, the access category of the data frame may be AC_VO, the duration information carried in the data frame may be equal to T2, T2 is the upper limit of the transmission opportunity corresponding to AC_VO, and the AP may use channel 1 and channel 2 to STA2 in T2.
  • a BSS including an access point AP and stations STA1, STA2, and STA3, and a topology diagram of the BSS is shown in FIG. 2.
  • STA1 contends for the access channel on the channel 1 through the EDCA mechanism. Specifically, after detecting that the medium is idle on the channel 1, the STA1 may delay one AIFS, delay a random backoff period, and send the packet to the AP. The RTS successfully acquires the first transmission time period T1 after successfully receiving the CTS that the AP replies, and then the STA1 can start to send data.
  • the STA1 can send a data frame to the AP on the channel 1, and the Ack Policy field of the data frame can be set as a normal response, and the STA1 can send the clear transmission control frame CTS to the AP after receiving the ACK of the reply by the AP.
  • the more data field in the frame may be set to 0, for indicating to the AP that the STA1 itself releases the first transmission time period, and the AP may start channel detection when the CTS is received, if the channel 1 is detected within the PIFS interval.
  • channel 2 is idle, the AP can send a radio frame on channel 1 and channel 2.
  • the access category of the radio frame can be AC_VI
  • the duration information field of the radio frame can be set to T2
  • T2 is the transmission corresponding to AC_VI.
  • the radio frame can be used to trigger the uplink multi-user transmission
  • STA2 and STA3 can use the channel 1 and the channel 2 to transmit the uplink multi-user data in the T2
  • the AP can use the channel 1 and the channel 2 in the T2.
  • a BSS including an access point AP and stations STA1, STA2, and STA3, and a topology diagram of the BSS is shown in FIG. 2.
  • STA1 contends for accessing the channel through the EDCA mechanism on channel 1. Specifically, after detecting that the medium is idle on channel 1, STA1 may delay one AIFS, delay a random backoff period, and send to the AP. The RTS successfully acquires the first transmission time period T1 after successfully receiving the CTS that the AP replies, and then the STA1 can start to send data.
  • the STA1 may send a data frame to the AP on channel 1, the Ack Policy field of the data frame may be set to a normal response, and the data frame may carry indication information (such as the newTX (new transmission) field is set to 1) Instructing the AP to release the first transmission time period by itself, after receiving the data frame, the AP may reply an ACK and start channel detection if channel 1, channel 2, and channel 3 are detected within the PIFS interval. If the AP is idle, the AP can send a radio frame on channel 1, channel 2, and channel 3.
  • the access category of the radio frame can be AC_VI.
  • the duration information field of the radio frame can be set to T2, and T2 is the transmission opportunity corresponding to AC_VI.
  • the upper limit value, the radio frame may be used to trigger uplink multi-user transmission, and instruct STA1, STA2, and STA3 to transmit uplink multi-user data to the AP using channel 1, channel 2, and channel 3 in T2, and the AP may use the channel in T2. 1.
  • Channel 2 and channel 3 perform downlink data transmission.
  • a BSS including an access point AP and stations STA1, STA2, and STA3, and a topology diagram of the BSS is shown in FIG. 2.
  • STA1 contends for the access channel through the EDCA mechanism on channel 1. Specifically, after detecting that the medium is idle on channel 1, STA1 may delay one AIFS, delay a random backoff period, and send to the AP. The RTS successfully acquires the first transmission time period T1 after successfully receiving the CTS that the AP replies, and then the STA1 can start to send data.
  • STA1 may send a data frame to the AP on channel 1, the Ack Policy field of the data frame may be set to a normal response, and the newTX field of the data frame may be set to 1 for indicating to the AP that the STA1 itself
  • the first transmission time period is released, and the AP may perform channel detection in the SIFS before replying to the ACK. If it is detected that channel 1, channel 2, and channel 3 are idle, the AP may reply with an ACK, and the physical frame header in the ACK is
  • the uplink multi-user transmission triggering information may be carried.
  • the triggering information indicates that STA1, STA2, and STA3 perform uplink multi-user transmission.
  • the AP can use channel 1, channel 2 and channel 3 for downlink data transmission in T2.
  • a BSS including an access point AP and stations STA1, STA2, and STA3, and a topology diagram of the BSS is shown in FIG. 2.
  • STA1 contends for accessing the channel through the EDCA mechanism on channel 1. Specifically, after detecting that the medium is idle on channel 1, STA1 may delay one AIFS, delay a random backoff period, and send to the AP. The RTS successfully acquires the first transmission time period T1 after successfully receiving the CTS that the AP replies, and then the STA1 can start to send data.
  • STA1 may send a data frame to the AP on channel 1, the Ack Policy field of the data frame may be set to a normal response, and the data frame may carry indication information (such as the newTX field is set to 1) for indicating to the AP.
  • the STA1 releases the first transmission time period by itself, and the AP can reply with an ACK and start channel detection. If it is detected that both channel 1 and channel 2 are idle within the PIFS interval, the AP can send on channel 1 and channel 2.
  • the data frame, and the duration information carried by the data frame can be set to T2, T2 is equal to the upper limit of the transmission opportunity corresponding to the access category of the data frame, and a new transmission time period T2 can be started, and the AP is at T2.
  • Channel 1 and channel 2 can be used for data transmission to STA1, STA2, and STA3.
  • a BSS including an access point AP and stations STA1, STA2, and STA3, and a topology diagram of the BSS is shown in FIG. 2.
  • STA1 contends for accessing the channel through the EDCA mechanism on channel 1. Specifically, after detecting that the medium is idle on channel 1, STA1 may delay one AIFS, delay a random backoff period, and send to the AP. The RTS successfully acquires the first transmission time period T1 after successfully receiving the CTS that the AP replies, and then the STA1 can start to send data.
  • STA1 may send a data frame to the AP on channel 1, the response policy (AckPolicy) field of the data frame may be set to no response, and the data frame may carry indication information (such as the newTX field is set to 1) for indicating to the AP.
  • STA1 releases the first transmission time period by itself; the AP can start channel detection when receiving the data frame. If channel 1, channel 2 and channel 3 are both idle during the PIFS interval, the AP can be on channel 1.
  • the RTS for bandwidth negotiation is sent to the STA3 in a repeated format.
  • the duration information carried by the RTS can be set to T2, and the remaining duration of T2 ⁇ T1 is detected if the STA3 detects the PIFS interval before replying to the CTS.
  • STA3 can reply CTS in repeated format on channel 1 and channel 2. After receiving the CTS, the AP can send data to STA3 on channel 1 and channel 2.
  • a BSS including an access point AP and stations STA1, STA2, and STA3, and a topology diagram of the BSS is shown in FIG. 2.
  • STA1 contends for the access channel on the channel 1 through the EDCA mechanism. Specifically, after detecting that the medium is idle on the channel 1, the STA1 may delay one AIFS, delay a random backoff period, and send the packet to the AP. The RTS successfully acquires the first transmission time period T1 after successfully receiving the CTS that the AP replies, and then the STA1 can start to send data.
  • the STA1 may send a data frame to the AP on channel 1, the Ack Policy field of the data frame may be set to be unresponsive, and the data frame may carry indication information (such as the newTX field is set to 1) for indicating to the AP.
  • the STA1 releases the first transmission time period by itself; the AP may start channel detection when receiving the data frame, and if the channel 1, channel 2, and channel 3 are both idle during the PIFS interval, the AP may be in channel 1.
  • the RTS for bandwidth negotiation is sent to the STA1 in a repeated format, and the STA1 can perform channel detection in the PIFS interval before replying to the CTS, and reply the CTS on the channel available to itself.
  • the AP may send the RTS for bandwidth negotiation to the STA2 in a repeated format.
  • the STA2 may perform channel detection within the PIFS interval before replying to the CTS, and reply the CTS on the channel available to itself.
  • the AP may send a downlink multi-user transmission frame to the STA1 and the STA2 according to the CTS information replied by the STA1 and the STA2 on the channel 1, the channel 2, and the channel 3.
  • the duration information field of the frame may be set to correspond to the access category of the sent data.
  • the upper limit value of the transmission opportunity is allocated, and the uplink channel resource is allocated, and STA1 and STA2 can send uplink multi-user data to the AP on the allocated channel resource.
  • a BSS including an access point AP and stations STA1, STA2, and STA3, and a topology diagram of the BSS is shown in FIG. 2.
  • the STA1 contends the access channel on the channel 1 through the EDCA mechanism. Specifically, after detecting that the media is idle on the channel 1, the STA1 may delay one AIFS, delay a random backoff period, and send the RTS to the AP. After receiving the CTS replied by the AP, the first transmission time period T1 is successfully obtained, and then the STA1 can start to send data.
  • the STA1 may send a radio frame to the AP on the channel 1, and the physical frame header of the radio frame may carry indication information for indicating to the STA2 that the STA1 itself releases the first transmission time period, and the STA2 receives the radio frame and The signal can be started when decoding the indication information in the physical frame header.
  • Channel detection if channel 1, channel 2 and channel 3 are both idle during the PIFS interval, STA2 can send uplink data frames to the AP on channel 1, channel 2 and channel 3.
  • a BSS including an access point AP and stations STA1, STA2, and STA3, and a topology diagram of the BSS is shown in FIG. 2.
  • STA1 contends for the access channel through the EDCA mechanism on channel 1 and channel 2. Specifically, after detecting that the media is idle on channel 1 and channel 2, STA1 may delay one AIFS and then delay a random backoff. During the time period, the RTS is sent to the AP, and after successfully receiving the CTS that the AP replies, the first transmission time period T1 is successfully obtained, and then the STA1 can start to send data.
  • STA1 may send a data frame to the AP on channel 1 and channel 2.
  • the newTX field of the data frame may be set to 1 to indicate that the STA1 itself releases the first transmission time period, and the response strategy of the data frame (Ack)
  • the policy field can be set as a normal response; the AP can start channel detection when the data frame is received. If the channel 1 is idle in the SIFS, the AP can reply with a bearer uplink multi-user transmission information on channel 1.
  • ACK including the channel resource allocation information of STA2 and STA3, the duration information carried in the ACK may be equal to T2, and the remaining duration of T2>T1, after the PIFS interval, STA2 and STA3 may send uplink multi-user transmission information on channel 1. After that, the AP can use channel 1 for downlink data transmission in T2.
  • the embodiment of the present invention further provides a channel access system, as shown in FIG. 13, the system includes:
  • the first station 10 is configured to: send a first radio frame to the second station in the first transmission time period, where the first radio frame carries signaling to notify the second station that the first station releases the first transmission time period ;
  • the second station 20 is configured to: receive the first radio frame sent by the first station, perform channel detection in a preset time interval, and send the second radio frame on a subset of the channel set whose channel detection result is idle.
  • the second station 20 may be further configured to: after transmitting the second radio frame, at a fixed or predefined interframe interval in the second transmission period, and not greater than The bandwidth used by the second radio frame is used for radio frame transmission.
  • the first site 10 can include:
  • the first radio frame obtaining module 11 is configured to: obtain a first radio frame sent to the second station;
  • the first radio frame sending module 12 is configured to: send a first radio frame to the second station in the first transmission time period, where the first radio frame carries signaling to notify the second station that the first station releases the first Transmission time period.
  • the first transmission time period may be a transmission opportunity acquired by the first station through a contention access channel, or the first transmission time period is a transmission time pre-allocated to the first station.
  • the second site 20 can include:
  • the first radio frame receiving module 21 is configured to: receive a first radio frame sent by the first station in the first transmission time period, where the first radio frame carries signaling to notify the second station that the first station is released First transmission time period;
  • the second radio frame sending module 22 is configured to: receive the first radio frame sent by the first station, perform channel detection in a preset time interval, and send the second on the subset of the channel set whose channel detection result is idle.
  • the wireless frame transmission module 23 is configured to: after transmitting the second radio frame, at a fixed or predefined interframe interval in the second transmission period, and not greater than the second radio frame used. Bandwidth for wireless frame transmission.
  • the end time of the second transmission time period may not exceed the end time of the first transmission time period, or the second transmission time period may be based on data radio frames in the second transmission time period.
  • the access category is determined.
  • the second radio frame sending module 22 is further configured to perform a control frame interaction with the first station between the second radio frame and the first radio frame. .
  • the second radio frame sending module 22 may be further configured to: when the destination receiver of the first radio frame is not the second station and does not need a response frame, receive the Channel detection is performed within a preset time interval after a radio frame, and the second radio frame is transmitted on a subset of the set of channels detected as idle.
  • the second radio frame sending module 22 may be further configured to: When the destination receiver of the first radio frame is not the second station and needs a response frame, channel detection is performed within a preset time interval after receiving the response frame, and is sent on a subset of the channel set detected as idle. Second wireless frame.
  • the second radio frame sending module 22 may be further configured to: before the destination receiver of the first radio frame is the second station and needs a response frame, before sending the response frame.
  • the channel detection is performed within a preset time interval, and the response frame is returned on a subset of the channels in which the idle channel is detected, and the second radio frame is transmitted on the subset of the idle channels after the preset time interval.
  • the second radio frame sending module 22 may be further configured to: after the destination receiver of the first radio frame is the second station and needs a response frame, after sending the response frame And performing channel detection within a preset time interval before transmitting the first radio frame, and transmitting the second radio frame on a subset of channels that are detected to be idle.
  • the second radio frame sending module 22 may be further configured to: when the destination receiver of the first radio frame is the second station and does not need a response frame, After a radio frame, channel detection is performed within a preset time interval before the second radio frame is transmitted, and the second radio frame is transmitted on a subset of the channels in which the idle channel is detected.
  • the second station after receiving the first radio frame sent by the first station in the first transmission time period, the second station performs channel detection in a preset time interval, and the channel detection result is idle.
  • the second radio frame is transmitted on a subset of the set of channels; then at a fixed or predefined interframe space during the second transmission time period, and the radio frame transmission is performed at a bandwidth no greater than that used by the second radio frame.
  • the second station may obtain the second transmission time period on the detected idle channel after the first station releases the first transmission time period, so that the second station The channel competitiveness is greatly improved, thereby improving the channel access rate of the second station.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which are implemented when the computer executable instructions are executed.
  • embodiments of the invention may be provided as a method, system, or computer program product.
  • embodiments of the invention may take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware.
  • embodiments of the invention may employ computer usable storage media (including but not limited to) in one or more of the computer usable program code embodied therein.
  • a form of computer program product embodied on disk storage and optical storage, etc.).
  • each flow and/or block of flowcharts and/or block diagrams of methods, apparatus (systems) and computer program products may be implemented by computer program instructions, and in flowcharts and/or block diagrams. a combination of processes and/or boxes.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for generating settings by instructions executed by a processor of a computer or other programmable data processing device Means for implementing the functions specified in a block or blocks of a flow or a flow and/or a block diagram of a flow chart.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus may implement the functions specified in one or more blocks of the flowchart or in a flow or block of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions may provide steps for implementing the functions specified in one or more blocks of the flowchart or in a block or blocks of the flowchart.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • a channel access method, a station, and a system are provided by the embodiment of the present invention.
  • the second station After receiving the first radio frame sent by the first station in the first transmission time period, the second station performs channel detection in a preset time interval. And transmitting a second radio frame on a subset of the channel set with the channel detection result idle; then at a fixed or predefined interframe interval in the second transmission time period, and not greater than the second radio frame used Bandwidth for wireless frame transmission.
  • the second station may obtain the second transmission time period on the detected idle channel after the first station releases the first transmission time period, so that the second station The channel competitiveness is greatly improved, thereby improving the channel access rate of the second station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信道接入方法包括:第二站点接收第一站点在第一传输时间段内发送的第一无线帧,所述第一无线帧携带信令用于通知第二站点所述第一站点释放第一传输时间段;所述第二站点接收到第一站点发送的第一无线帧,在预设时间间隔内进行信道检测,在信道检测结果为空闲的信道集合的子集上发送第二无线帧。

Description

一种信道接入方法、站点和系统 技术领域
本申请涉及但不限于通信领域,尤其涉及一种信道接入方法、站点和系统。
背景技术
当前,在无线网络领域,无线局域网(WLAN,Wireless Local Area Networks)快速发展,全球对WLAN覆盖需求日益增长。电气和电子工程师协会工业规范IEEE802.11工作组先后定义了802.11a、802.11b、802.11g、802.11n等一系列WLAN技术标准,主要制定物理层(PHY,Physical Layer)和媒体访问控制(MAC,Media Access Control)层规范。随后陆续出现了其他任务组,致力于发展涉及802.11技术改进的规范,例如,高效局域网(HEW,High Efficiency WLAN)任务组主要研究密集布网场景下如何使WLAN网络实现数据的更高效传输。
WLAN的基本架构指一个由站点(STA,Station)组成的基本服务集(BSS,Basic Service Set),所述BSS包含一个接入点站点(AP,Access Point station)以及与AP相关联的多个非AP站点(non-AP Station)。802.11定义了两种基本的无线信道的接入方式:基于竞争的接入方式、即分布式协调功能(DCF,Distributed Coordination Function);以及基于调度的接入方式、即点协调功能(PCF,Point Coordination Function)。在这两种基本接入方式的基础上,考虑业务流的服务质量(QoS,Quality of Service)需求,又提出了两种信道接入方式:增强型分布式协调访问功能(EDCA,Enhanced Distributed Channel Access)和混合协调功能控制信道访问功能(HCCA,Hybrid Coordination function Controlled channel Access)。
DCF是基本的信道接入模式,利用带有冲突避免的载波侦听多路访问机制(CSMA/CA,CSMA with Collision Avoidance)使多个STA共享无线信道。EDCA是增强型信道接入模式,基于CSMA/CA机制,EDCA中定义了4种接入类别(AC,Access Categories),分别为背景接入类别(AC_BK,AC  Background)、尽力服务接入类别(AC_BE,AC Best Effort)、视频接入类别(AC_VI,AC Video)和语音接入类别(AC_VO,AC Voice),每个AC定义了一组特定的参数,这些参数在统计上规定了不同AC对信道接入的优先级别。EDCA竞争信道接入的过程为:当信道变为空闲状态后首先等待一个固定时长,称为仲裁帧间隔(AIFS,Arbitration Inter-Frame Space),然后等待一个随机回退时段,之后获得一个传输机会(TXOP,Transmission Opportunity)。
在EDCA和HCCA方式下,STA通过信道接入过程获得一个TXOP,一个TXOP指的是STA可以传输特定通信类别的有界时段,一旦获得TXOP,该STA可以根据AC继续传输数据帧、或控制帧、或管理帧、或接收响应帧。前提条件是这些帧序列的时长不超过为该AC所设置的TXOP上限。在TXOP起始时刻,其他旁听STA的网络分配矢量(NAV,Network Allocation Vector)会被设置,在该时间内,旁听STA不会发送数据。另外,相关技术还允许STA使用无竞争终止(CF-End,Contention Free End)帧来截断所述TXOP,使得该TXOP提前结束。当前TXOP结束时,信道会再次开放,供所有STA竞争接入。
在HEW的典型场景中,STA分布非常密集,从而导致信道竞争激烈,每一个站点能获取到的传输机会随之减少,而传输机会的减少导致站点可能存在较多的缓冲数据待发。例如,HEW的典型业务应用为视频业务,通常下行数据要比上行数据多;再例如,在某些场景下,AP需要触发上行多用户传输或者是进行下行多用户传输,因此AP需要更多的传输机会。虽然相关技术可以通过为AP配置高优先级的信道接入参数来提高AP接入信道的优先级,从而理论上能够增加AP获取TXOP的机会。但无论如何,AP仍然需要竞争信道,因此无法减小竞争开销。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种信道接入方法,所述方法包括:
第二站点接收第一站点在第一传输时间段内发送的第一无线帧,所述第一无线帧携带信令用于通知第二站点所述第一站点释放第一传输时间段;
所述第二站点接收到第一站点发送的第一无线帧,在预设时间间隔内进行信道检测,在信道检测结果为空闲的信道集合的子集上发送第二无线帧。
可选地,所述方法还包括:所述第二站点在发送完所述第二无线帧后,在第二传输时间段内以固定或预定义的帧间间隔,并且以不大于所述第二无线帧所使用的带宽进行无线帧传输。
可选地,所述第二传输时间段的结束时间不超过所述第一传输时间段的结束时间。
可选地,所述第二传输时间段依据所述第二传输时间段内的数据无线帧的接入类别确定。
可选地,在所述第二无线帧与第一无线帧之间,所述第二站点与第一站点有控制帧的交互。
可选地,所述方法还包括:
当所述第一无线帧的目的接收方不是所述第二站点且不需要响应帧时,所述第二站点在接收到所述第一无线帧后的预设时间间隔内进行信道检测,并在检测为空闲的信道集合的子集上发送所述第二无线帧。
可选地,所述方法还包括:
当所述第一无线帧的目的接收方不是所述第二站点且需要响应帧时,所述第二站点在收到响应帧之后的预设时间间隔内进行信道检测,并在检测为空闲的信道集合的子集上发送第二无线帧。
可选地,所述方法还包括:
当所述第一无线帧的目的接收方为所述第二站点且需要响应帧时,所述第二站点在发送响应帧之前的预设时间间隔内进行信道检测,并在检测为空闲的信道集合的子集上回复响应帧,在所述响应帧后的预设的时间间隔后在所述空闲的信道集合的子集上发送第二无线帧。
可选地,所述方法还包括:
当所述第一无线帧的目的接收方为所述第二站点且需要响应帧时,所述 第二站点在发送响应帧之后的预设时间间隔内进行信道空闲检测,并在检测为空闲的信道集合的子集上发送所述第二无线帧。
可选地,所述方法还包括:
当所述第一无线帧的目的接收方为第二站点且不需要响应帧时,所述第二站点在收到所述第一无线帧后的预设时间间隔内进行信道空闲检测,并在检测到空闲的信道的集合的子集上发送所述第二无线帧。
本发明实施例还提供了一种信道接入方法,所述方法包括:
第一站点在第一传输时间段内向第二站点发送第一无线帧,所述第一无线帧携带信令用于通知第二站点所述第一站点释放第一传输时间段。
可选地,所述第一传输时间段为所述第一站点通过竞争接入信道获取到的传输机会,或者所述第一传输时间段为预分配给所述第一站点的一段传输时间。
本发明实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述信道接入方法。
本发明实施例还提供了一种第一站点,包括:
第一无线帧获得模块,设置为:获得向第二站点发送的第一无线帧;
第一无线帧发送模块,设置为:在第一传输时间段内向第二站点发送第一无线帧,所述第一无线帧携带信令用于通知第二站点所述第一站点释放第一传输时间段。
可选地,所述第一传输时间段为所述第一站点通过竞争接入信道获取到的传输机会,或者所述第一传输时间段为预分配给所述第一站点的一段传输时间。
本发明实施例还提供了一种第二站点,包括:
第一无线帧接收模块,设置为:接收第一站点在第一传输时间段内发送的第一无线帧,所述第一无线帧携带信令用于通知第二站点所述第一站点释放第一传输时间段;
第二无线帧发送模块,设置为:接收到第一站点发送的第一无线帧,在预设时间间隔内进行信道检测,并在信道检测结果为空闲的信道集合的子集 上发送第二无线帧。
可选地,所述第二站点还包括:
无线帧传输模块,设置为:在发送完所述第二无线帧后,在第二传输时间段内以固定或预定义的帧间间隔,并且以不大于所述第二无线帧所使用的带宽进行无线帧传输。
可选地,所述第二传输时间段的结束时间不超过所述第一传输时间段的结束时间。
可选地,所述第二传输时间段依据所述第二传输时间段内的数据无线帧的接入类别确定。
可选地,所述第二无线帧发送模块还设置为:在所述第二无线帧与第一无线帧之间,与第一站点进行控制帧的交互。
可选地,所述第二无线帧发送模块还设置为:在所述第一无线帧的目的接收方不是所述第二站点且不需要响应帧时,在接收到所述第一无线帧后的预设时间间隔内进行信道检测,并在检测为空闲的信道集合的子集上发送所述第二无线帧。
可选地,所述第二无线帧发送模块还设置为:在所述第一无线帧的目的接收方不是所述第二站点且需要响应帧时,在收到响应帧之后的预设时间间隔内进行信道检测,并在检测为空闲的信道集合的子集上发送第二无线帧。
可选地,所述第二无线帧发送模块还设置为:当所述第一无线帧的目的接收方为所述第二站点且需要响应帧时,在发送响应帧之前的预设时间间隔内进行信道检测,并在检测到空闲的信道的子集上回复响应帧,在预设的时间间隔后在所述空闲的信道的子集上发送第二无线帧。
可选地,所述第二无线帧发送模块还设置为:当所述第一无线帧的目的接收方为所述第二站点且需要响应帧时,在发送响应帧之后,且在发送第一无线帧之前的预设时间间隔内进行信道检测,在检测到空闲的信道的子集上发送所述第二无线帧。
可选地,所述第二无线帧发送模块还设置为:当所述第一无线帧的目的接收方为第二站点且不需要响应帧时,在收到所述第一无线帧后,且在发送第二无线帧之前的预设时间间隔内进行信道检测,在检测到空闲的信道的子 集上发送所述第二无线帧。
本发明实施例还提供了一种信道接入系统,所述系统包括:
第一站点,设置为:在第一传输时间段内向第二站点发送第一无线帧,所述第一无线帧携带信令用于通知第二站点所述第一站点释放第一传输时间段;
第二站点,设置为:接收到第一站点发送的第一无线帧,在预设时间间隔内进行信道检测,并在信道检测结果为空闲的信道集合的子集上发送第二无线帧。
可选地,所述第二站点还设置为:在发送完所述第二无线帧后,在第二传输时间段内以固定或预定义的帧间间隔,并且以不大于所述第二无线帧所使用的带宽进行无线帧传输。
本发明实施例所提供的一种信道接入方法、站点和系统,第二站点接收第一站点在第一传输时间段内发送的第一无线帧后,在预设时间间隔内进行信道检测,并在信道检测结果空闲的信道集合的子集上发送第二无线帧;随后在第二传输时间段内以固定或预定义的帧间间隔,并且以不大于所述第二无线帧所使用的带宽进行无线帧传输。这样,当任何一个第一站点获得第一传输时间段后,第二站点都可以在第一站点释放第一传输时间段后,在检测的空闲信道上获取第二传输时间段,使第二站点的信道竞争能力大大提高,从而提高第二站点的信道接入率。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例一的信道接入方法的流程示意图;
图2为本发明实施例的提供的一种BSS基本拓扑图;
图3为本发明实施例四的信道接入方法的示意图;
图4为本发明实施例五的信道接入方法的示意图;
图5为本发明实施例六的信道接入方法的示意图;
图6为本发明实施例七的信道接入方法的示意图;
图7为本发明实施例八的信道接入方法的示意图;
图8为本发明实施例九的信道接入方法的示意图;
图9为本发明实施例十的信道接入方法的示意图;
图10为本发明实施例十一的信道接入方法的示意图;
图11为本发明实施例十二的信道接入方法的示意图;
图12为本发明实施例十四的信道接入方法的示意图;
图13为本发明实施例十五的信道接入系统的组成结构示意图。
本发明的较佳实施方式
下面结合附图对本发明的实施方式进行描述。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的各种方式可以相互组合。
实施例一
本发明实施例一提供了一种信道接入方法,如图1所示,该方法包括:
步骤101,第二站点接收第一站点在第一传输时间段内发送的第一无线帧,所述第一无线帧携带信令用于通知第二站点所述第一站点释放第一传输时间段。
步骤102,第二站点接收到第一站点发送的第一无线帧,在预设时间间隔内进行信道检测,在信道检测结果为空闲的信道集合的子集上发送第二无线帧。
在另一可选实施方式中,还可包括步骤103,第二站点在发送完所述第二无线帧后,在第二传输时间段内以固定或预定义的帧间间隔,并且以不大于所述第二无线帧所使用的带宽进行无线帧传输。
需要说明的是,所述第一站点发送的第一无线帧的目的接收方可以是所述第二站点,也可以不是所述第二站点。当所述第一无线帧的目的接收方是所述第二站点时,所述第二站点接收到所述第一无线帧后,可以解析所述第一无线帧,获得其中携带的信令;当所述第一无线帧的目的接收方不是所述第二站点时,所述第二站点接收到所述第一无线帧后,可以解析所述第一无线帧的物理帧头,获得其中携带的用于通知所述第二站点所述第一站点释放 第一传输时间段的信令,且解析到所述信令是用于通知所述第二站点的。
其中,所述第二传输时间段的结束时间可以不超过所述第一传输时间段的结束时间,或者,所述第二传输时间段可以依据所述第二传输时间段内的数据无线帧的接入类别确定。
在所述第二无线帧与第一无线帧之间,所述第二站点与第一站点可以有控制帧的交互。例如:当所述第一无线帧需要响应帧时,所述第二站点可以在接收到第一线帧之后,并且在所述第二站点在发送第二无线帧之前回复响应帧。
在一可选实施方式中,当所述第一无线帧的目的接收方不是所述第二站点且不需要响应帧时,所述第二站点可以在接收到所述第一无线帧后的预设时间间隔内进行信道检测,并在检测为空闲的信道集合的子集上发送所述第二无线帧。
在一可选实施方式中,当所述第一无线帧的目的接收方不是所述第二站点且需要响应帧时,所述第二站点可以在收到响应帧之后的预设时间间隔内进行信道检测,并在检测为空闲的信道集合的子集上发送第二无线帧。
在一可选实施方式中,当所述第一无线帧的目的接收方为所述第二站点且需要响应帧时,所述第二站点可以在发送响应帧之前的预设时间间隔内进行信道检测,并在检测为空闲的信道集合的子集上回复响应帧,在所述响应帧后的预设的时间间隔后在所述空闲的信道集合的子集上发送第二无线帧。
在一可选实施方式中,当所述第一无线帧的目的接收方为所述第二站点且需要响应帧时,所述第二站点可以在发送响应帧之后的预设时间间隔内进行信道空闲检测,并在检测为空闲的信道集合的子集上发送所述第二无线帧。
在一可选实施方式中,当所述第一无线帧的目的接收方为第二站点且不需要响应帧时,所述第二站点可以在收到所述第一无线帧后的预设时间间隔内进行信道空闲检测,并在检测到空闲的信道的集合的子集上发送所述第二无线帧。
需要说明的是,第二站点获得的第二传输时间段的结束时间可以超过第一传输时间段的结束时间;第二传输时间段的时间上限取值可以由第二站点根据要发送的数据的接入类别对应的传输机会时间上限取值进行设定。具体 地,第二站点可以将其要发送的数据的接入类别对应的传输机会时间上限取值设定为第二传输时间段的时间上限取值;或者,也可以将第一传输时间段的剩余时长设置为第二传输时间段的时间上限取值;这里的第一传输时间段的剩余时长可以指第一站点在第一传输时间段内完成数据发送时,距离第一传输时间段结束的时间。
这里,所述第二站点获得的第二传输时间段的时间起点可以在第一传输时间段结束之前,具体地,所述时间起点可以是从第一站点在第一传输时间段内数据传输完毕的时间点开始;所述第二站点在设定的第二传输时间段时间上限值到达之前,可以发送缓冲数据到相应的站点;也就是说,所述第二站点可以在设定的第二传输时间段的时间范围内,将自身缓冲数据发送到其他任何一个或多个站点,这里的一个或多个站点可以包括或不包括第一站点。
可以看出,通过这种方式能够大大减小第二站点竞争信道的开销,这是因为:任何一个第一站点获得第一传输机会之后都可以通知第二站点获得第二传输机会,这样,可以大大增加第二站点的信道接入率;第一站点获得第一传输时间段后,可以通知第二站点获得第二传输时间段,所述第二站点获得第二传输时间段后,可以从第一站点在第一传输时间段内的数据传输结束时刻开始,在第二传输时间段内占用信道来执行数据通信;第二传输时间段的时间长度可以由所述第二站点根据某个AC对应的传输时间上限决定,因此,第二传输时间段的结束时刻并没有任何限制,可以与第一传输时间段的结束时刻相同,或者,也可以在第一传输时间段的结束时刻之前或者之后;
需要说明的是,所述第一站点在第一传输时间段内可以传输数据也可以不传输数据;对于不传输数据的情况,相当于第一站点只是在EDCA竞争信道接入过程中利用自身能力为第二站点竞争到一个传输时间段;或者直接将为自身预分配的传输时间段转交给需要发送数据的第二站点;对于传输数据的情况,相当于第一站点利用自身能力同时为自身和其它第二站点分别竞争到了一段数据传输时间;或者将自身获得的传输时间段与第二站点共用。这样,第二站点获得的第二传输机会可以看成是对第一站点获得的第一传输时间段的一种继承,并且在继承之后,可以根据需要对第二传输时间段的时间长短进行设置。
实施例二
对应本发明实施例一,本发明实施例二提供了一种信道接入方法,可应用于第一站点,该方法包括:第一站点在第一传输时间段内向第二站点发送第一无线帧,所述第一无线帧携带信令用于通知第二站点所述第一站点释放第一传输时间段。
这里,第一站点获得的第一传输时间段可以是第一站点通过EDCA机制竞争接入信道时获得的一个传输机会;或者,也可以是第一站点通过非竞争方式获得的一段传输时间,例如,当第一站点为非接入点站点时,可以由接入点站点为所述非接入点站点预分配的一段传输时间;
当所述第一站点获得的第一传输时间段是第一站点通过EDCA机制竞争接入信道时获得的一个传输机会时,所述第一站点获得第一传输时间段可包括:第一站点在检测到媒体空闲后,先后延一个AIFS,再后延一个随机回退时段后,在进行一次帧交换后成功获取到第一传输时间段。
实施例三
对应本发明实施例一,本发明实施例三提供了一种信道接入方法,可应用于第二站点,该方法包括:
第二站点接收第一站点在第一传输时间段内发送的第一无线帧,所述第一无线帧携带信令用于通知第二站点所述第一站点释放第一传输时间段;
所述第二站点接收到第一站点发送的第一无线帧,在预设时间间隔内进行信道检测,在信道检测结果为空闲的信道集合的子集上发送第二无线帧。
在另一可选实施方式中,所述方法还可包括:所述第二站点在发送完所述第二无线帧后,在第二传输时间段内以固定或预定义的帧间间隔,并且以不大于所述第二无线帧所使用的带宽进行无线帧传输。
其中,所述第二传输时间段的结束时间可以不超过所述第一传输时间段的结束时间,或者,所述第二传输时间段可以依据所述第二传输时间段内的数据无线帧的接入类别确定。
在所述第二无线帧与第一无线帧之间,所述第二站点与第一站点还可以有控制帧的交互。
在一可选实施方式中,当所述第一无线帧的目的接收方不是所述第二站点且不需要响应帧时,所述第二站点可以在接收到所述第一无线帧后的预设 时间间隔内进行信道检测,并在检测为空闲的信道集合的子集上发送所述第二无线帧。
在一可选实施方式中,当所述第一无线帧的目的接收方不是所述第二站点且需要响应帧时,所述第二站点可以在收到响应帧之后的预设时间间隔内进行信道检测,并在检测为空闲的信道集合的子集上发送第二无线帧。
在一可选实施方式中,当所述第一无线帧的目的接收方为所述第二站点且需要响应帧时,所述第二站点可以在发送响应帧之前的预设时间间隔内进行信道检测,并在检测为空闲的信道集合的子集上回复响应帧,在所述响应帧后的预设的时间间隔后在所述空闲的信道集合的子集上发送第二无线帧。
在一可选实施方式中,当所述第一无线帧的目的接收方为所述第二站点且需要响应帧时,所述第二站点可以在发送响应帧之后的预设时间间隔内进行信道空闲检测,并在检测为空闲的信道集合的子集上发送所述第二无线帧。
在一可选实施方式中,当所述第一无线帧的目的接收方为第二站点且不需要响应帧时,所述第二站点可以在收到所述第一无线帧后的预设时间间隔内进行信道空闲检测,并在检测到空闲的信道的集合的子集上发送所述第二无线帧。
下面再结合具体场景下的拓扑结构进一步详细阐述本发明实施例的信道接入方法。
实施例四
在密集场景下的无线通信系统中有BSS,其中包括接入点AP以及站点STA1、STA2和STA3,该BSS的拓扑结构图如图2所示。
参见图3,STA1在信道1上通过EDCA机制竞争接入信道,具体地,STA1在信道1上检测到媒体空闲后,可以先后延一个AIFS,再后延一个随机回退时段,并向AP发送RTS(Request To Send,请求发送),在成功收到AP回复的CTS(Clear To Send,清除发送)后成功获取到第一传输时间段T1,然后STA1可以开始发送数据。
STA1可以在信道1上向AP发送数据帧,并且该数据帧的more data(更多数据)域可以设置为0,用于向AP指示所述STA1自己释放了第一传输时间段,并且此数据帧的响应策略(Ack Policy)域可以设置为普通响应;AP 可以在收到该数据帧时开始进行信道检测,如果短帧间间隔(SIFS,Short Inter-Frame Space)内检测到信道1和信道2都空闲,则AP可以在信道1和信道2上以重复格式回复确认(ACK,Acknowledgement),该ACK中携带的时长信息可以等于T2,T2=T1的剩余时长,AP在T2内可以使用信道1和信道2向STA2和STA3进行数据帧传输。
实施例五
在密集场景下的无线通信系统中有BSS,其中包括接入点AP以及站点STA1、STA2和STA3,该BSS的拓扑结构图如图2所示。
参见图4,STA1在信道1上通过EDCA机制竞争接入信道,具体地,STA1在信道1上检测到媒体空闲后,可以先后延一个AIFS,再后延一个随机回退时段,并向AP发送RTS,在成功收到AP回复的CTS后成功获取到第一传输时间段T1,然后STA1可以开始发送数据。
STA1可以在信道1上向AP发送数据帧,并且该数据帧的more data域可以设置为0,用于向AP指示所述STA1自己释放了第一传输时间段,并且此数据帧的响应策略(Ack Policy)域可以设置为普通响应;如果AP在回复ACK前的点协调功能帧间隔(PIFS,PCF Inter-Frame Space)内检测到信道1和信道2都空闲,则AP可以在信道1上回复ACK,且ACK中携带的时长信息可以设置为T2,T2<T1的剩余时长,AP在T2内可以使用信道1和信道2向STA2和STA3进行数据帧传输。
实施例六
在密集场景下的无线通信系统中有BSS,其中包括接入点AP以及站点STA1、STA2和STA3,该BSS的拓扑结构图如图2所示。
参见图5,STA1在信道1上通过EDCA机制竞争接入信道,具体地,STA1在信道1上检测到媒体空闲后,可以先后延一个AIFS,再后延一个随机回退时段,并向AP发送RTS,在成功收到AP回复的CTS后成功获取到第一传输时间段T1,然后STA1可以开始发送数据。
STA1可以在信道1上向AP发送一个数据帧,该触发帧的响应策略(Ack Policy)域可以设置为普通响应,并且该数据帧可以携带指示信息用于向AP指示所述STA1自己释放了第一传输时间段;AP可以在收到该数据帧时开始 进行信道检测,如果SIFS内检测到信道1和信道2都空闲,则AP可以在信道1和信道2回复ACK,在回复ACK之后的SIFS后,AP在信道1和信道2上向STA2发送一个下行数据帧,该数据帧的接入类别可以为AC_VO,该数据帧中携带的时长信息可以等于T2,T2为AC_VO对应的传输机会上限值,AP在T2内可以使用信道1和信道2向STA2和STA3进行数据帧传输。
实施例七
在密集场景下的无线通信系统中有BSS,其中包括接入点AP以及站点STA1、STA2和STA3,该BSS的拓扑结构图如图2所示。
参见图6,STA1在信道1上通过EDCA机制竞争接入信道,具体地,STA1在信道1上检测到媒体空闲后,可以先后延一个AIFS,再后延一个随机回退时段,并向AP发送RTS,在成功收到AP回复的CTS后成功获取到第一传输时间段T1,然后STA1可以开始发送数据。
STA1可以在信道1上向AP发送数据帧,并且此数据帧的响应策略(Ack Policy)域可以设置为普通响应,STA1可以在收到AP在回复的ACK后向AP发送清除发送控制帧CTS,该帧中的more data域可以设置为0,用于向AP指示所述STA1自己释放了第一传输时间段,AP可以在收到CTS时开始进行信道检测,如果在PIFS间隔内检测到信道1和信道2都为空闲,则AP可以在信道1和信道2上发送无线帧,该无线帧的接入类别可以为AC_VI,该无线帧的时长信息域可以设置为T2,T2为AC_VI对应的传输机会上限值,该无线帧可以用于触发上行多用户传输,STA2和STA3可以在T2内使用信道1和信道2向AP发送上行多用户数据,AP在T2内可以使用信道1和信道2进行下行数据传输。
实施例八
在密集场景下的无线通信系统中有BSS,其中包括接入点AP以及站点STA1、STA2和STA3,该BSS的拓扑结构图如图2所示。
参见图7,STA1在信道1上通过EDCA机制竞争接入信道,具体地,STA1在信道1上检测到媒体空闲后,可以先后延一个AIFS,再后延一个随机回退时段,并向AP发送RTS,在成功收到AP回复的CTS后成功获取到第一传输时间段T1,然后STA1可以开始发送数据。
STA1可以在信道1上向AP发送数据帧,该数据帧的响应策略(Ack Policy)域可以设置为普通响应,并且该数据帧可以携带指示信息(如newTX(新发送)域设置为1)用于向AP指示所述STA1自己释放了第一传输时间段,AP收到该数据帧后,可以回复一个ACK,并开始进行信道检测,如果在PIFS间隔内检测到信道1、信道2和信道3都空闲,则AP可以在信道1、信道2和信道3上发送无线帧,该无线帧的接入类别可以为AC_VI,该无线帧的时长信息域可以设置为T2,T2为AC_VI对应的传输机会上限值,该无线帧可以用于触发上行多用户传输,并指示STA1、STA2和STA3在T2内使用信道1、信道2和信道3向AP发送上行多用户数据,AP在T2内可以使用信道1、信道2和信道3进行下行数据传输。
实施例九
在密集场景下的无线通信系统中有BSS,其中包括接入点AP以及站点STA1、STA2和STA3,该BSS的拓扑结构图如图2所示。
参见图8,STA1在信道1上通过EDCA机制竞争接入信道,具体地,STA1在信道1上检测到媒体空闲后,可以先后延一个AIFS,再后延一个随机回退时段,并向AP发送RTS,在成功收到AP回复的CTS后成功获取到第一传输时间段T1,然后STA1可以开始发送数据。
STA1可以在信道1上向AP发送数据帧,该数据帧的响应策略(Ack Policy)域可以设置为普通响应,并且该数据帧的newTX域可以设置为1,用于向AP指示所述STA1自己释放了第一传输时间段,AP可以在回复ACK之前的SIFS内进行信道检测,如果检测到信道1、信道2和信道3都空闲,则AP可以回复ACK,且该ACK中的物理帧头中可以携带上行多用户传输触发信息,该触发信息指示STA1、STA2和STA3进行上行多用户传输,该ACK所携带的时长信息可以设置为T2,T2=T1的剩余时长,SIFS后,STA1、STA2和STA3可以在信道1、信道2和信道3上发送上行多用户传输帧,AP在T2内可以使用信道1、信道2和信道3进行下行数据传输。
实施例十
在密集场景下的无线通信系统中有BSS,其中包括接入点AP以及站点STA1、STA2和STA3,该BSS的拓扑结构图如图2所示。
参见图9,STA1在信道1上通过EDCA机制竞争接入信道,具体地,STA1在信道1上检测到媒体空闲后,可以先后延一个AIFS,再后延一个随机回退时段,并向AP发送RTS,在成功收到AP回复的CTS后成功获取到第一传输时间段T1,然后STA1可以开始发送数据。
STA1可以在信道1上向AP发送数据帧,该数据帧的响应策略(Ack Policy)域可以设置为普通响应,并且该数据帧可以携带指示信息(如newTX域设置为1)用于向AP指示所述STA1自己释放了第一传输时间段,AP可以回复一个ACK,并开始进行信道检测,如果在PIFS间隔内检测到信道1和信道2都空闲,则AP可以在信道1和信道2上发送数据帧,且该数据帧所携带的时长信息可以设置为T2,T2等于该数据帧的接入类别所对应的传输机会上限值,并同时可以开始一个新的传输时间段T2,AP在T2内可以使用信道1和信道2向STA1、STA2和STA3进行数据传输。
实施例十一
在密集场景下的无线通信系统中有BSS,其中包括接入点AP以及站点STA1、STA2和STA3,该BSS的拓扑结构图如图2所示。
参见图10,STA1在信道1上通过EDCA机制竞争接入信道,具体地,STA1在信道1上检测到媒体空闲后,可以先后延一个AIFS,再后延一个随机回退时段,并向AP发送RTS,在成功收到AP回复的CTS后成功获取到第一传输时间段T1,然后STA1可以开始发送数据。
STA1可以在信道1上向AP发送数据帧,该数据帧的响应策略(AckPolicy)域可以设置为无响应,并且该数据帧可以携带指示信息(如newTX 域设置为1)用于向AP指示所述STA1自己释放了第一传输时间段;AP在收到该数据帧时可以开始进行信道检测,如果在PIFS间隔内检测到信道1、信道2和信道3都空闲,则AP可以在信道1、信道2和信道3上向STA3以重复格式发送用于带宽协商的RTS,该RTS所携带的时长信息可以设置为T2,T2<T1的剩余时长,如果STA3在回复CTS前的PIFS间隔内检测到信道1和信道2空闲,则STA3可以在信道1和信道2上以重复格式回复CTS,AP在收到该CTS后可以在信道1和信道2上向STA3发送数据。
实施例十二
在密集场景下的无线通信系统中有BSS,其中包括接入点AP以及站点STA1、STA2和STA3,该BSS的拓扑结构图如图2所示。
参见图11,STA1在信道1上通过EDCA机制竞争接入信道,具体地,STA1在信道1上检测到媒体空闲后,可以先后延一个AIFS,再后延一个随机回退时段,并向AP发送RTS,在成功收到AP回复的CTS后成功获取到第一传输时间段T1,然后STA1可以开始发送数据。
STA1可以在信道1上向AP发送数据帧,该数据帧的响应策略(Ack Policy)域可以设置为无响应,并且该数据帧可以携带指示信息(如newTX域设置为1)用于向AP指示所述STA1自己释放了第一传输时间段;AP在收到该数据帧时可以开始进行信道检测,如果在PIFS间隔内检测到信道1、信道2和信道3都空闲,则AP可以在信道1、信道2和信道3上向STA1以重复格式发送用于带宽协商的RTS,STA1可以在回复CTS前的PIFS间隔内进行信道检测,并在自己可用的信道上回复CTS。PIFS间隔后,AP可以向STA2以重复格式发送用于带宽协商的RTS,STA2可以在回复CTS前的PIFS间隔内进行信道检测,并在自己可用的信道上回复CTS。AP可以在信道1、信道2和信道3上根据STA1和STA2回复的CTS信息向STA1和STA2发送下行多用户传输帧,该帧的时长信息域可以设置为所发送数据的接入类别所对应的传输机会上限值,并分配上行信道资源,STA1和STA2可以在所分配的信道资源上向AP发送上行多用户数据。
实施例十三
在密集场景下的无线通信系统中有BSS,其中包括接入点AP以及站点STA1、STA2和STA3,该BSS的拓扑结构图如图2所示。
STA1在信道1上通过EDCA机制竞争接入信道,具体地,STA1在信道1上检测到媒体空闲后,可以先后延一个AIFS,再后延一个随机回退时段,并向AP发送RTS,在成功收到AP回复的CTS后成功获取到第一传输时间段T1,然后STA1可以开始发送数据。
STA1可以在信道1上向AP发送无线帧,同时该无线帧的物理帧头中可以携带指示信息用于向STA2指示所述STA1自己释放了第一传输时间段,STA2在接收到该无线帧并解码到物理帧头中的指示信息时可以开始进行信 道检测,如果在PIFS间隔内检测到信道1、信道2和信道3都空闲,则STA2可以在信道1、信道2和信道3上向AP发送上行数据帧。
实施例十四
在密集场景下的无线通信系统中有BSS,其中包括接入点AP以及站点STA1、STA2和STA3,该BSS的拓扑结构图如图2所示。
参见图12,STA1在信道1和信道2上通过EDCA机制竞争接入信道,具体地,STA1在信道1和信道2上检测到媒体空闲后,可以先后延一个AIFS,再后延一个随机回退时段,并向AP发送RTS,在成功收到AP回复的CTS后成功获取到第一传输时间段T1,然后STA1可以开始发送数据。
STA1可以在信道1和信道2上向AP发送数据帧,该数据帧的newTX域可以设置为1,用于指示所述STA1自己释放了第一传输时间段,并且此数据帧的响应策略(Ack Policy)域可以设置为普通响应;AP在收到该数据帧时可以开始进行信道检测,如果SIFS内检测到信道1为空闲,则AP可以在信道1上回复一个携带触发上行多用户传输信息(包含STA2和STA3的信道资源分配信息)的ACK,该ACK中携带的时长信息可以等于T2,且T2>T1的剩余时长,PIFS间隔后,STA2和STA3可以在信道1上发送上行多用户传输信息,之后,AP在T2内可以使用信道1进行下行数据传输。
实施例十五
对应本发明实施例的信道接入方法,本发明实施例还提供了一种信道接入系统,如图13所示,该系统包括:
第一站点10,设置为:在第一传输时间段内向第二站点发送第一无线帧,所述第一无线帧携带信令用于通知第二站点所述第一站点释放第一传输时间段;
第二站点20,设置为:接收到第一站点发送的第一无线帧,在预设时间间隔内进行信道检测,并在信道检测结果为空闲的信道集合的子集上发送第二无线帧。
在一可选实施方式中,第二站点20还可设置为:在发送完所述第二无线帧后,在第二传输时间段内以固定或预定义的帧间间隔,并且以不大于所述第二无线帧所使用的带宽进行无线帧传输。
其中,第一站点10可以包括:
第一无线帧获得模块11,设置为:获得向第二站点发送的第一无线帧;
第一无线帧发送模块12,设置为:在第一传输时间段内向第二站点发送第一无线帧,所述第一无线帧携带信令用于通知第二站点所述第一站点释放第一传输时间段。
这里,所述第一传输时间段可以为所述第一站点通过竞争接入信道获取到的传输机会,或者所述第一传输时间段为预分配给所述第一站点的一段传输时间。
其中,第二站点20可以包括:
第一无线帧接收模块21,设置为:接收第一站点在第一传输时间段内发送的第一无线帧,所述第一无线帧携带信令用于通知第二站点所述第一站点释放第一传输时间段;
第二无线帧发送模块22,设置为:接收到第一站点发送的第一无线帧,在预设时间间隔内进行信道检测,并在信道检测结果为空闲的信道集合的子集上发送第二无线帧;
无线帧传输模块23,设置为:在发送完所述第二无线帧后,在第二传输时间段内以固定或预定义的帧间间隔,并且以不大于所述第二无线帧所使用的带宽进行无线帧传输。
其中,所述第二传输时间段的结束时间可以不超过所述第一传输时间段的结束时间,或者,所述第二传输时间段可以依据所述第二传输时间段内的数据无线帧的接入类别确定。
可选地,所述第二无线帧发送模块22还可设置为:在所述第二无线帧与第一无线帧之间,与第一站点进行控制帧的交互。。
在一可选实施方式中,第二无线帧发送模块22还可设置为:在所述第一无线帧的目的接收方不是所述第二站点且不需要响应帧时,在接收到所述第一无线帧后的预设时间间隔内进行信道检测,并在检测为空闲的信道集合的子集上发送所述第二无线帧。
在一可选实施方式中,所述第二无线帧发送模块22还可设置为:在所述 第一无线帧的目的接收方不是所述第二站点且需要响应帧时,在在收到响应帧之后的预设时间间隔内进行信道检测,并在检测为空闲的信道集合的子集上发送第二无线帧。
在一可选实施方式中,所述第二无线帧发送模块22还可设置为:当所述第一无线帧的目的接收方为所述第二站点且需要响应帧时,在发送响应帧之前的预设时间间隔内进行信道检测,并在检测到空闲的信道的子集上回复响应帧,在预设的时间间隔后在所述空闲的信道的子集上发送第二无线帧。
在一可选实施方式中,所述第二无线帧发送模块22还可设置为:当所述第一无线帧的目的接收方为所述第二站点且需要响应帧时,在发送响应帧之后,且在发送第一无线帧之前的预设时间间隔内进行信道检测,在检测到空闲的信道的子集上发送所述第二无线帧。
在一可选实施方式中,所述第二无线帧发送模块22还可设置为:当所述第一无线帧的目的接收方为第二站点且不需要响应帧时,在收到所述第一无线帧后,且在发送第二无线帧之前的预设时间间隔内进行信道检测,在检测到空闲的信道的子集上发送所述第二无线帧。
综上所述,本发明实施例中,第二站点接收第一站点在第一传输时间段内发送的第一无线帧后,在预设时间间隔内进行信道检测,并在信道检测结果为空闲的信道集合的子集上发送第二无线帧;随后在第二传输时间段内以固定或预定义的帧间间隔,并且以不大于所述第二无线帧所使用的带宽进行无线帧传输。这样,当任何一个第一站点获得第一传输时间段后,第二站点都可以在第一站点释放第一传输时间段后,在检测的空闲信道上获取第二传输时间段,使第二站点的信道竞争能力大大提高,从而提高第二站点的信道接入率。
本发明实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述信道接入方法。
本领域内的技术人员可以明白,本发明实施例可提供为方法、系统、或计算机程序产品。因此,本发明实施例可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于 磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
可以理解,可由计算机程序指令实现根据本发明实施例的方法、设备(系统)和计算机程序产品的流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生设置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置可实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令可提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件、处理器等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。 上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
本领域的普通技术人员可以理解,可以对本申请的技术方案进行修改或者等同替换,而不脱离本申请技术方案的精神和范围。本申请的保护范围以权利要求所定义的范围为准。
工业实用性
本发明实施例所提供的一种信道接入方法、站点和系统,第二站点接收第一站点在第一传输时间段内发送的第一无线帧后,在预设时间间隔内进行信道检测,并在信道检测结果空闲的信道集合的子集上发送第二无线帧;随后在第二传输时间段内以固定或预定义的帧间间隔,并且以不大于所述第二无线帧所使用的带宽进行无线帧传输。这样,当任何一个第一站点获得第一传输时间段后,第二站点都可以在第一站点释放第一传输时间段后,在检测的空闲信道上获取第二传输时间段,使第二站点的信道竞争能力大大提高,从而提高第二站点的信道接入率。

Claims (26)

  1. 一种信道接入方法,包括:
    第二站点接收第一站点在第一传输时间段内发送的第一无线帧,所述第一无线帧携带信令用于通知第二站点所述第一站点释放第一传输时间段;
    所述第二站点接收到第一站点发送的第一无线帧,在预设时间间隔内进行信道检测,在信道检测结果为空闲的信道集合的子集上发送第二无线帧。
  2. 根据权利要求1所述的信道接入方法,还包括:
    所述第二站点在发送完所述第二无线帧后,在第二传输时间段内以固定或预定义的帧间间隔,并且以不大于所述第二无线帧所使用的带宽进行无线帧传输。
  3. 根据权利要求2所述的信道接入方法,其中,所述第二传输时间段的结束时间不超过所述第一传输时间段的结束时间。
  4. 根据权利要求2所述的信道接入方法,其中,所述第二传输时间段依据所述第二传输时间段内的数据无线帧的接入类别确定。
  5. 根据权利要求1或2所述的信道接入方法,其中,在所述第二无线帧与第一无线帧之间,所述第二站点与第一站点有控制帧的交互。
  6. 根据权利要求1或2所述的信道接入方法,还包括:
    当所述第一无线帧的目的接收方不是所述第二站点且不需要响应帧时,所述第二站点在接收到所述第一无线帧后的预设时间间隔内进行信道检测,并在检测为空闲的信道集合的子集上发送所述第二无线帧。
  7. 根据权利要求1或2所述的信道接入方法,还包括:
    当所述第一无线帧的目的接收方不是所述第二站点且需要响应帧时,所述第二站点在收到响应帧之后的预设时间间隔内进行信道检测,并在检测为空闲的信道集合的子集上发送第二无线帧。
  8. 根据权利要求1或2所述的信道接入方法,还包括:
    当所述第一无线帧的目的接收方为所述第二站点且需要响应帧时,所述第二站点在发送响应帧之前的预设时间间隔内进行信道检测,并在检测为空闲的信道集合的子集上回复响应帧,在所述响应帧后的预设的时间间隔后在 所述空闲的信道集合的子集上发送第二无线帧。
  9. 根据权利要求1或2所述的信道接入方法,还包括:
    当所述第一无线帧的目的接收方为所述第二站点且需要响应帧时,所述第二站点在发送响应帧之后的预设时间间隔内进行信道空闲检测,并在检测为空闲的信道集合的子集上发送所述第二无线帧。
  10. 根据权利要求1或2所述的信道接入方法,还包括:
    当所述第一无线帧的目的接收方为第二站点且不需要响应帧时,所述第二站点在收到所述第一无线帧后的预设时间间隔内进行信道空闲检测,并在检测到空闲的信道的集合的子集上发送所述第二无线帧。
  11. 一种信道接入方法,包括:
    第一站点在第一传输时间段内向第二站点发送第一无线帧,所述第一无线帧携带信令用于通知第二站点所述第一站点释放第一传输时间段。
  12. 根据权利要求11所述的信道接入方法,其中,所述第一传输时间段为所述第一站点通过竞争接入信道获取到的传输机会,或者所述第一传输时间段为预分配给所述第一站点的一段传输时间。
  13. 一种第一站点,包括:
    第一无线帧获得模块,设置为:获得向第二站点发送的第一无线帧;
    第一无线帧发送模块,设置为:在第一传输时间段内向第二站点发送第一无线帧,所述第一无线帧携带信令用于通知第二站点所述第一站点释放第一传输时间段。
  14. 根据权利要求13所述的第一站点,其中,所述第一传输时间段为所述第一站点通过竞争接入信道获取到的传输机会,或者所述第一传输时间段为预分配给所述第一站点的一段传输时间。
  15. 一种第二站点,包括:
    第一无线帧接收模块,设置为:接收第一站点在第一传输时间段内发送的第一无线帧,所述第一无线帧携带信令用于通知第二站点所述第一站点释放第一传输时间段;
    第二无线帧发送模块,设置为:接收到第一站点发送的第一无线帧,在 预设时间间隔内进行信道检测,并在信道检测结果为空闲的信道集合的子集上发送第二无线帧。
  16. 根据权利要求15所述的第二站点,还包括:
    无线帧传输模块,设置为:在发送完所述第二无线帧后,在第二传输时间段内以固定或预定义的帧间间隔,并且以不大于所述第二无线帧所使用的带宽进行无线帧传输。
  17. 根据权利要求16所述的第二站点,其中,所述第二传输时间段的结束时间不超过所述第一传输时间段的结束时间。
  18. 根据权利要求16所述的第二站点,其中,所述第二传输时间段依据所述第二传输时间段内的数据无线帧的接入类别确定。
  19. 根据权利要求15或16所述的第二站点,所述第二无线帧发送模块还设置为:在所述第二无线帧与第一无线帧之间,与第一站点进行控制帧的交互。
  20. 根据权利要求15或16所述的第二站点,所述第二无线帧发送模块还设置为:在所述第一无线帧的目的接收方不是所述第二站点且不需要响应帧时,在接收到所述第一无线帧后的预设时间间隔内进行信道检测,并在检测为空闲的信道集合的子集上发送所述第二无线帧。
  21. 根据权利要求15或16所述的第二站点,所述第二无线帧发送模块还设置为:在所述第一无线帧的目的接收方不是所述第二站点且需要响应帧时,在收到响应帧之后的预设时间间隔内进行信道检测,并在检测为空闲的信道集合的子集上发送第二无线帧。
  22. 根据权利要求15或16所述的第二站点,所述第二无线帧发送模块还设置为:当所述第一无线帧的目的接收方为所述第二站点且需要响应帧时,在发送响应帧之前的预设时间间隔内进行信道检测,并在检测到空闲的信道的子集上回复响应帧,在预设的时间间隔后在所述空闲的信道的子集上发送第二无线帧。
  23. 根据权利要求15或16所述的第二站点,所述第二无线帧发送模块还设置为:当所述第一无线帧的目的接收方为所述第二站点且需要响应帧时,在发送响应帧之后,且在发送第一无线帧之前的预设时间间隔内进行信道检 测,在检测到空闲的信道的子集上发送所述第二无线帧。
  24. 根据权利要求15或16所述的第二站点,所述第二无线帧发送模块还设置为:当所述第一无线帧的目的接收方为第二站点且不需要响应帧时,在收到所述第一无线帧后,且在发送第二无线帧之前的预设时间间隔内进行信道检测,在检测到空闲的信道的子集上发送所述第二无线帧。
  25. 一种信道接入系统,包括:
    第一站点,设置为:在第一传输时间段内向第二站点发送第一无线帧,所述第一无线帧携带信令用于通知第二站点所述第一站点释放第一传输时间段;
    第二站点,设置为:接收到第一站点发送的第一无线帧,在预设时间间隔内进行信道检测,并在信道检测结果为空闲的信道集合的子集上发送第二无线帧。
  26. 根据权利要求25所述的信道接入系统,所述第二站点还设置为:在发送完所述第二无线帧后,在第二传输时间段内以固定或预定义的帧间间隔,并且以不大于所述第二无线帧所使用的带宽进行无线帧传输。
PCT/CN2016/081323 2015-06-05 2016-05-06 一种信道接入方法、站点和系统 WO2016192510A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/579,706 US20180220454A1 (en) 2015-06-05 2016-05-06 Channel access method, station and system
EP16802433.9A EP3306999A4 (en) 2015-06-05 2016-05-06 Channel access method, station and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510308851.7A CN106304390A (zh) 2015-06-05 2015-06-05 一种信道接入方法、站点和系统
CN201510308851.7 2015-06-05

Publications (2)

Publication Number Publication Date
WO2016192510A1 true WO2016192510A1 (zh) 2016-12-08
WO2016192510A9 WO2016192510A9 (zh) 2017-08-03

Family

ID=57440267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081323 WO2016192510A1 (zh) 2015-06-05 2016-05-06 一种信道接入方法、站点和系统

Country Status (4)

Country Link
US (1) US20180220454A1 (zh)
EP (1) EP3306999A4 (zh)
CN (1) CN106304390A (zh)
WO (1) WO2016192510A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228725A (zh) * 2019-01-11 2021-08-06 索尼集团公司 无线基站和终端设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11612002B2 (en) * 2019-03-28 2023-03-21 Mediatek Singapore Pte. Ltd. System and method for synchronous independent channel access in a wireless network
CN111836392A (zh) * 2019-04-19 2020-10-27 华为技术有限公司 用于传输数据的方法和装置
CN112584543A (zh) * 2019-09-27 2021-03-30 中兴通讯股份有限公司 一种通信链路确定方法、装置、设备及存储介质
CN113543356B (zh) * 2020-04-17 2024-02-09 华为技术有限公司 WiFi通信方法及电子设备
CN112888081B (zh) * 2021-01-08 2022-08-30 西安电子科技大学 基于快速反馈机制的多址接入方法
CN113099544B (zh) * 2021-03-26 2022-08-16 珠海泰芯半导体有限公司 数据传输方法、装置、存储介质及无线节点

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100176929A1 (en) * 2005-06-20 2010-07-15 Mustafa Ozdemir Efficient Protocol for Reverse Direction Data Transmission
CN102843785A (zh) * 2011-06-25 2012-12-26 华为技术有限公司 无线局域网中逆向协议传输的方法及装置
CN104202822A (zh) * 2014-04-30 2014-12-10 中兴通讯股份有限公司 一种信道接入方法、系统以及站点

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070214379A1 (en) * 2006-03-03 2007-09-13 Qualcomm Incorporated Transmission control for wireless communication networks
CA2704447A1 (en) * 2007-11-01 2009-05-07 University Of Iowa Research Foundation Predicting amd with snps within or near c2, factor b, plekha1, htra1, prelp, or loc387715
CN102137453A (zh) * 2010-01-27 2011-07-27 崔伟 无线局域网中基于资源预约的QoS MAC协议
US8917743B2 (en) * 2010-10-06 2014-12-23 Samsung Electronics Co., Ltd. Method and system for enhanced contention avoidance in multi-user multiple-input-multiple-output wireless networks
US9255245B2 (en) * 2012-07-03 2016-02-09 Agilent Technologies, Inc. Sample probes and methods for sampling intracellular material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100176929A1 (en) * 2005-06-20 2010-07-15 Mustafa Ozdemir Efficient Protocol for Reverse Direction Data Transmission
CN102843785A (zh) * 2011-06-25 2012-12-26 华为技术有限公司 无线局域网中逆向协议传输的方法及装置
CN104202822A (zh) * 2014-04-30 2014-12-10 中兴通讯股份有限公司 一种信道接入方法、系统以及站点

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CECCHETTI, G. ET AL.: "Providing Variable TXOP for IEEE 802.11 HCCA Real-Time Networks", 2012 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC, 4 April 2012 (2012-04-04), XP055332608, ISSN: 1525-3511 *
HUANG, JENGJI ET AL.: "Flexible TXOP Assignments for Efficient QoS Scheduling in IEEE 802.11e WLANs", 2008 5TH IFIP INTERNATIONAL CONFERENCE ON WIRELESS AND OPTICAL COMMUNICATIONS NETWORKS (WOCN' 08), 7 May 2008 (2008-05-07), XP031272533, ISSN: 1811-3923 *
See also references of EP3306999A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228725A (zh) * 2019-01-11 2021-08-06 索尼集团公司 无线基站和终端设备

Also Published As

Publication number Publication date
US20180220454A1 (en) 2018-08-02
EP3306999A1 (en) 2018-04-11
WO2016192510A9 (zh) 2017-08-03
CN106304390A (zh) 2017-01-04
EP3306999A4 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
EP3139680B1 (en) Channel access method, system and computer readable storage medium
EP3393145B1 (en) Access method and apparatus
WO2016192510A1 (zh) 一种信道接入方法、站点和系统
CA2943828C (en) Retransmission method at time of sharing transmission opportunity in wireless lan system, and device therefor
US10827527B2 (en) Channel contention method and apparatus
KR101838080B1 (ko) 하향링크용 채널을 지원하는 무선랜 시스템에서 데이터 송수신 방법 및 이를 위한 장치
US20160286499A1 (en) Method for transmitting and receiving interference control signals based on power information, and apparatus therefor
US20160262184A1 (en) Wi-fi compatible dedicated protocol interval announcement
US20160353485A1 (en) Managing medium access for wireless devices
US20150139201A1 (en) Method for transmitting and receiving frame in wireless local area network system and apparatus for the same
US11683732B2 (en) Transmission opportunity control method and apparatus
US20160330726A1 (en) Data transmission method and apparatus
US20180249507A1 (en) Wireless communication system and wireless communication method
JP2018523355A (ja) 効率的なランダムスケジューリング型チャネルアクセス
EP3389312B1 (en) Determination of a transmission opportunity by an access point
WO2017152727A1 (zh) 数据传输方法及装置
US20160227531A1 (en) Method and apparatus for wireless communication
JP5855551B2 (ja) 無線通信システムおよび無線通信方法
KR102328895B1 (ko) 무선랜 시스템에서 프레임 송수신 방법 및 장치
CN117859399A (zh) 受限目标唤醒时间(twt)服务时段中的话务管理
CN116192305A (zh) 一种信道接入方法及通信装置
KR20200051473A (ko) 무선랜에서의 edca 기법을 통한 신호 충돌 회피 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802433

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15579706

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016802433

Country of ref document: EP