WO2016190379A1 - 照明装置、表示装置、及びテレビ受信装置 - Google Patents

照明装置、表示装置、及びテレビ受信装置 Download PDF

Info

Publication number
WO2016190379A1
WO2016190379A1 PCT/JP2016/065536 JP2016065536W WO2016190379A1 WO 2016190379 A1 WO2016190379 A1 WO 2016190379A1 JP 2016065536 W JP2016065536 W JP 2016065536W WO 2016190379 A1 WO2016190379 A1 WO 2016190379A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
container
transmittance
low
length direction
Prior art date
Application number
PCT/JP2016/065536
Other languages
English (en)
French (fr)
Inventor
後藤 彰
健太郎 鎌田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016190379A1 publication Critical patent/WO2016190379A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the present invention relates to a lighting device, a display device, and a television receiver.
  • a planar light source that is a backlight described in Patent Document 1 includes an LED capable of emitting blue light, a wavelength converter including a fluorescent material that emits fluorescence when excited by the light emitted from the LED, and the wavelength conversion between the LED and the wavelength converter.
  • the light guide plate is provided through the body and introduces light emitted from the end face by combining light emitted from the LED and light emitted from the fluorescent material and emits the light from the light emission observation surface side.
  • the wavelength converter as described in Patent Document 1 described above converts the wavelength of the light from the LED and makes it incident on the end face of the light guide plate, but makes all the wavelength converted light enter the end face of the light guide plate. This is difficult, and a part thereof may leak out in the length direction of the end face. There is a concern that such leakage light may cause display defects in the liquid crystal display device.
  • the present invention has been completed based on the above circumstances, and an object thereof is to suppress light leakage.
  • the first illumination device includes a light source, at least a part of an outer peripheral end surface, a light incident end surface on which light from the light source is incident, and a pair of plate surfaces that emit light.
  • a wavelength conversion unit arranged to be interposed between the light source plate having a light plate surface and the light source and the light incident end surface to convert the wavelength of light from the light source, and excites light from the light source
  • a phosphor that is used as light
  • a container that extends along the length direction of the light incident end surface and accommodates the phosphor, and seals an end portion of the container in the length direction, than the container.
  • a wavelength conversion unit having a low transmittance part with low light transmittance.
  • the light emitted from the light source is wavelength-converted by the phosphor included in the wavelength conversion unit arranged in a form interposed between the light source and the light incident end surface of the light guide plate. Then, the light is incident on the light incident end surface, propagates through the light guide plate, and then exits from the light exit plate surface. Since the wavelength conversion unit is sealed at its end in the length direction of the container containing the phosphor by a low transmittance part having a light transmittance lower than that of the container, the light existing in the container is It is more difficult to transmit through the low-transmittance part, and the light is less likely to leak out of the container in the length direction. Thereby, occurrence of light leakage is suppressed.
  • the low transmittance portion has a higher light reflectance than the container. In this way, the light existing in the container is reflected by the low transmittance part, so that light is efficiently guided to the light incident end face of the light guide plate and the light transmittance is reduced to suppress light leakage. can do.
  • the low transmittance portion has a higher light absorption rate than the container. If it does in this way, the transmittance
  • the low transmittance part is formed by mixing a metal oxide with a material having translucency.
  • the low transmittance portion is made of a light-transmitting material and has fine irregularities formed on the surface thereof. If it does in this way, the light transmittance can be reduced and light leakage can be suppressed by carrying out irregular reflection of the light which exists in a container by the fine unevenness
  • the low transmittance portion includes a material having translucency, and the material is the same as the material of the container.
  • the adhesion of the low transmittance portion to the edge of the container is good, so that the container has high sealing properties (moisture resistance), and the phosphor is unlikely to deteriorate due to moisture absorption or the like.
  • the container and the low transmittance portion include a glass material. By doing so, the sealing property (moisture resistance) of the container becomes higher, and the phosphor hardly deteriorates due to moisture absorption or the like.
  • the second illumination device includes a light source, a light incident end surface that is at least a part of the outer peripheral end surface and receives light from the light source, and a pair of plate surfaces that emit light.
  • a wavelength conversion unit arranged to be interposed between the light source plate having a light plate surface and the light source and the light incident end surface to convert the wavelength of light from the light source, and excites light from the light source
  • a phosphor that is used as light
  • a container that extends along the length direction of the light incident end surface and accommodates the phosphor, and seals an end portion of the container in the length direction, than the container.
  • a wavelength converter having a low refractive index portion having a low refractive index.
  • the light emitted from the light source is wavelength-converted by the phosphor included in the wavelength conversion unit arranged in a form interposed between the light source and the light incident end surface of the light guide plate. Then, the light is incident on the light incident end surface, propagates through the light guide plate, and then exits from the light exit plate surface.
  • the end in the length direction of the container containing the phosphor is sealed by the low refractive index unit having a refractive index lower than that of the container. It is easy to be totally reflected at the interface with the refractive index portion, so that the light hardly leaks out of the container in the length direction. Thereby, occurrence of light leakage is suppressed.
  • the container may be made of a glass material, and the low refractive index portion may be made of a synthetic resin material. In this way, it is possible to ensure a sufficient difference in refractive index between the two materials while using general-purpose glass materials and synthetic resin materials, which is suitable for reducing the manufacturing cost. It becomes.
  • the following configuration is preferable.
  • a pair of the low transmittance part or the low refractive index part is provided so as to seal both ends of the container in the length direction. This makes it difficult for light existing in the container to leak outward from both ends in the length direction of the container, and thus the occurrence of light leakage is more preferably suppressed.
  • a plurality of the wavelength conversion units are arranged side by side along the length direction, and the low transmittance unit or the low refractive index unit is in the length direction of the plurality of wavelength conversion units. Are selectively provided at a pair of end portions that are not adjacent to each other.
  • the phosphor is a quantum dot phosphor. If it does in this way, while the wavelength conversion efficiency of the light by a wavelength conversion part will become higher, the color purity of the wavelength-converted light will become high.
  • the third illumination device of the present invention includes a light source, a light incident end surface that is at least a part of the outer peripheral end surface and receives light from the light source, and a pair of plate surfaces that emit light.
  • a wavelength conversion unit arranged to be interposed between the light source plate having a light plate surface and the light source and the light incident end surface to convert the wavelength of light from the light source, and excites light from the light source
  • a phosphor that is light
  • a container that extends along the length direction of the light incident end face and accommodates the phosphor, and is in contact with an outer surface or an inner surface of an end of the container in the length direction.
  • a wavelength converter having a low transmittance part which is provided and has a light transmittance lower than that of the container.
  • the light emitted from the light source is wavelength-converted by the phosphor included in the wavelength conversion unit arranged in a form interposed between the light source and the light incident end surface of the light guide plate. Then, the light is incident on the light incident end surface, propagates through the light guide plate, and then exits from the light exit plate surface. Since the wavelength conversion part is provided with a low transmittance part having a light transmittance lower than that of the container in contact with the outer surface or inner surface of the end in the length direction of the container containing the phosphor, the wavelength conversion part is provided in the container. The existing light is less likely to pass through the low transmittance part than the container. This makes it difficult for light existing in the container to leak out from the container to the outside in the longitudinal direction, thereby suppressing light leakage.
  • the low transmittance portion When the low transmittance portion is provided in contact with the outer surface of the end in the length direction of the container, the low transmittance portion can be installed in a state where the phosphor is accommodated in the container. Excellent in convenience.
  • the low transmittance portion when the low transmittance portion is provided in contact with the inner surface of the end portion in the length direction of the container, compared to the case of being provided in contact with the outer surface of the same end portion, It is arranged near the phosphor by the thickness.
  • the low transmittance portion when the low transmittance portion is provided in contact with the outer surface of the end portion in the length direction of the container, the following configuration is preferable.
  • the low transmittance portion has a higher light reflectance than the container. In this way, the light existing in the container is reflected by the low transmittance part, so that light is efficiently guided to the light incident end face of the light guide plate and the light transmittance is reduced to suppress light leakage. can do.
  • the light guide plate includes a reflection member that is disposed in a shape facing the opposite plate surface opposite to the light output plate surface and reflects light, and the low transmittance portion includes the reflection member and Made of the same material.
  • the low transmittance portion has a higher light absorption rate than the container. If it does in this way, the transmittance
  • the low transmittance portion is formed by applying a paint to the end of the container. In this way, the low transmittance part can be installed easily and at low cost.
  • the low transmittance portion is made of a light shielding material.
  • the container is made of a glass material. In this way, the sealing property (moisture resistance) of the container is sufficiently high, and the phosphor is unlikely to deteriorate due to moisture absorption or the like.
  • the container has a bottomed cylindrical shape in which one end portion in the length direction is opened, and a sealing portion that seals the one end portion is provided, and the low transmittance A pair of parts are provided in contact with the other end of the container in the length direction and the outer surfaces of the sealing part.
  • a plurality of the wavelength conversion units are arranged side by side in the length direction, and the low-transmittance units are adjacent to each other among end portions in the length direction of the plurality of wavelength conversion units. It is selectively provided at a pair of ends that do not match. If it does in this way, it will become a thing which is hard to leak light outside from a pair of edge part which is not mutually adjacent among each edge part about the length direction in each container which constitutes a plurality of wavelength conversion parts. Therefore, the occurrence of light leakage is more preferably suppressed.
  • the phosphor is a quantum dot phosphor. If it does in this way, while the wavelength conversion efficiency of the light by a wavelength conversion part will become higher, the color purity of the wavelength-converted light will become high.
  • the low transmittance portion when the low transmittance part is provided in contact with the inner surface of the end part in the length direction of the container, the following configuration is preferable.
  • the low transmittance portion has a higher light reflectance than the container. In this way, the light existing in the container is reflected by the low transmittance part, so that light is efficiently guided to the light incident end face of the light guide plate and the light transmittance is reduced to suppress light leakage. can do.
  • the low transmittance portion has a higher light absorption rate than the container.
  • permeability of light can be reduced by absorbing the light which exists in a container by a low transmittance
  • the container is provided with a sealing portion that is open at an end in the length direction and seals the end, and the low-transmittance portion is made of a synthetic resin material and is sealed. It is provided in contact with the inner surface of the stop.
  • the synthetic resin material constituting the low transmittance part has a high viscosity.
  • the low transmittance portion is formed by mixing a pigment or a dye with the synthetic resin material. If it does in this way, the transmittance
  • the container is made of a glass material. In this way, the sealing property (moisture resistance) of the container is sufficiently high, and the phosphor is unlikely to deteriorate due to moisture absorption or the like.
  • the container has a cylindrical shape in which both end portions in the length direction are opened, and a pair of sealing portions that seal the both end portions are provided. A pair is provided in contact with the inner surfaces of the pair of sealing portions. In this way, the light existing in the container is difficult to leak outward from the pair of sealing parts that respectively seal both ends in the length direction of the container. It is more preferably suppressed.
  • a plurality of the wavelength conversion units are arranged side by side in the length direction, and the low-transmittance units are adjacent to each other among end portions in the length direction of the plurality of wavelength conversion units. It is selectively provided at a pair of ends that do not match.
  • the phosphor is a quantum dot phosphor. If it does in this way, while the wavelength conversion efficiency of the light by a wavelength conversion part will become higher, the color purity of the wavelength-converted light will become high.
  • a display device of the present invention includes any one of the illumination devices described above and a display panel that displays an image using light emitted from the illumination device.
  • Display device According to the display device having such a configuration, it is difficult for light existing in the container of the lighting device to leak outward in the length direction of the container, so that display with excellent display quality can be realized. it can.
  • the television receiver of this invention is a television receiver provided with the said display apparatus. According to such a television receiving apparatus, since the display quality of the display device is excellent, it is possible to realize display of a television image with excellent display quality.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention.
  • the exploded perspective view which shows schematic structure of the liquid crystal display device with which a television receiver is equipped Plan view of chassis, LED substrate and light guide plate constituting backlight device included in liquid crystal display device Sectional drawing which shows the cross-sectional structure which cut
  • the expanded plane sectional view of the backlight apparatus which concerns on Embodiment 2 of this invention.
  • the expanded plane sectional view of the backlight apparatus which concerns on Embodiment 3 of this invention.
  • the expanded plane sectional view of the backlight apparatus which concerns on Embodiment 4 of this invention.
  • the expanded plane sectional view of the backlight apparatus which concerns on Embodiment 5 of this invention.
  • the expanded plane sectional view of the backlight apparatus which concerns on Embodiment 6 of this invention.
  • the expanded sectional side view of the backlight apparatus which concerns on Embodiment 7 of this invention.
  • Front view of holder Rear view of holder Plan sectional drawing of the backlight apparatus which concerns on Embodiment 8 of this invention.
  • Plan sectional drawing of the backlight apparatus which concerns on Embodiment 9 of this invention.
  • Plan sectional drawing of the backlight apparatus which concerns on Embodiment 10 of this invention.
  • the expanded plane sectional view of the backlight apparatus which concerns on Embodiment 11 of this invention.
  • the expanded plane sectional view of the backlight apparatus which concerns on Embodiment 12 of this invention.
  • the expanded plane sectional view of the backlight apparatus which concerns on Embodiment 13 of this invention.
  • the expanded plane sectional view of the backlight apparatus which concerns on Embodiment 14 of this invention.
  • the expanded plane sectional view of the backlight apparatus which concerns on Embodiment 15 of this invention.
  • the expanded plane sectional view of the backlight apparatus which concerns on Embodiment 16 of this invention.
  • the expanded sectional side view of the backlight apparatus which concerns on Embodiment 17 of this invention.
  • the expanded plane sectional view of the backlight apparatus which concerns on Embodiment 18 of this invention.
  • the expanded plane sectional view of the backlight apparatus which concerns on Embodiment 19 of this invention.
  • the expanded plane sectional view of the backlight apparatus which concerns on Embodiment 20 of this invention.
  • FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
  • the backlight device 12 and the liquid crystal display device 10 using the backlight device 12 are illustrated.
  • a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing.
  • the upper side shown in FIGS. 4 and 5 is the front side
  • the lower side is the back side.
  • the television receiver 10TV receives a liquid crystal display device 10, front and back cabinets 10Ca and 10Cb that are accommodated so as to sandwich the liquid crystal display device 10, a power supply 10P, and a television signal.
  • the liquid crystal display device 10 includes a liquid crystal panel 11 that is a display panel that displays an image, and a backlight device (illumination device) 12 that is an external light source that supplies light for display to the liquid crystal panel 11. And these are integrally held by a frame-like bezel 13 or the like.
  • a liquid crystal panel (display panel) 11 constituting the liquid crystal display device 10 has a horizontally long rectangular shape when seen in a plan view, and a pair of glass substrates are bonded to each other with a predetermined gap therebetween.
  • the backlight device 12 includes a chassis 14 having a substantially box shape having a light emitting portion 14 b that opens toward the outside on the front side (the liquid crystal panel 11 side, the light output side), and the light of the chassis 14. And a plurality of optical members (optical sheets) 15 arranged so as to cover the emitting portion 14b.
  • an LED 17 that is a light source
  • an LED substrate 18 on which the LED 17 is mounted a light guide plate 19 that guides light from the LED 17 and guides the light to the optical member 15 (liquid crystal panel 11), and the LED 17.
  • a wavelength converter 20 disposed between the light guide plate 19 and wavelength-converting light from the LED 17, and a frame 16 that holds the light guide plate 19 and the like from the front side and receives the optical member 15 from the back side.
  • the optical member 15 has a horizontally long rectangular shape when viewed in a plane, like the liquid crystal panel 11 and the chassis 14.
  • the optical member 15 covers the light emitting portion 14 b of the chassis 14 and is disposed between the liquid crystal panel 11 and the light guide plate 19. That is, it can be said that the optical member 15 is arranged on the exit side of the light emission path with respect to the LED 17.
  • the optical member 15 has a sheet shape, and a total of three optical members 15 are provided.
  • the optical member 15 includes a microlens sheet 21 that imparts an isotropic condensing function to light, a prism sheet 22 that imparts an anisotropic condensing function to light, and a reflective type that reflects and reflects light.
  • the optical member 15 is laminated from the back side in the order of the microlens sheet 21, the prism sheet 22, and the reflective polarizing sheet 23, and their outer edge portions are with respect to the frame 16. It is on the front side. That is, the microlens sheet 21, the prism sheet 22, and the reflective polarizing sheet 23 that constitute the optical member 15 are arranged on the front side of the light guide plate 19, that is, on the light emitting side, the frame 16 (detailed frame-like portion 16 a described later). Opposite with a minute interval.
  • the LED 17 is a so-called top surface emitting type in which the LED 17 is surface-mounted and the light emitting surface 17a faces away from the LED substrate 18 side.
  • the LED 17 is a blue LED that emits blue monochromatic light. A part of the blue light emitted from the LED 17 is wavelength-converted into green light or red light by a wavelength conversion unit 20 which will be described in detail later.
  • the light emitted from the backlight device 12 is substantially white due to the additive color mixture of the light and red light (secondary light) and the blue light (primary light) of the LED 17.
  • the wavelength conversion unit 20 converts a phosphor (wavelength conversion substance) that converts the wavelength of light (primary light) emitted from the LED 17 into light of another wavelength (secondary light). While being contained, the LED 17 and the light incident end face 19 b of the light guide plate 19 are disposed so as to be interposed.
  • the wavelength conversion unit 20 is held in the above-described posture by holding means (not shown).
  • the wavelength conversion unit 20 extends along the length direction (X-axis direction) of the light incident end surface 19b of the light guide plate 19, is opposed to the light incident end surface 19b over almost the entire length, and is mounted on the LED substrate 18. All the LEDs 17 are arranged so as to face each other.
  • the wavelength converter 20 has a substantially oval shape in which a cross-sectional shape cut along a direction orthogonal to its length direction (extending direction, X-axis direction) has a vertically long shape (about the X-axis direction). ) Is larger than the long side dimension of the light guide plate 19, and the height dimension (dimension in the Z-axis direction) is larger than the thickness dimension of the light guide plate 19.
  • the wavelength conversion unit 20 has both the front and back outer surfaces along the X-axis direction and the Z-axis direction being flat, and the outer surface facing the light-emitting surface 17a of each LED 17 emits light in parallel with the light-emitting surface 17a.
  • the wavelength conversion unit 20 has an inner end position in the width direction (Y-axis direction) arranged outside the inner end position of the frame-shaped portion 16 a of the frame 16. That is, the wavelength converter 20 is arranged so that the entire area thereof overlaps the frame-like portion 16a of the frame 16 when viewed in plan, so that the user of the liquid crystal display device 10 can directly recognize the wavelength converter 20 from the front side. This is unlikely to occur.
  • the light emitted from the LED 17 is wavelength-converted in the process of passing through the wavelength conversion unit 20 arranged in a form interposed between the LED 17 and the light incident end surface 19b of the light guide plate 19. After that, the light is incident on the light incident end surface 19b and propagates through the light guide plate 19, and then is emitted from the light exit plate surface 19a. Since the wavelength conversion unit 20 is disposed between the LED 17 and the light incident end surface 19b of the light guide plate 19, the wavelength conversion unit is formed into a sheet shape and the light output plate surface 19a of the light guide plate 19 or Compared with the case where it is arranged so as to overlap with the opposite plate surface 19c, the amount of phosphor used is small, which is suitable for reducing the manufacturing cost.
  • the wavelength conversion unit 20 includes a phosphor-containing unit 29 containing a phosphor (wavelength conversion substance) for wavelength-converting light from the LED 17, and a light incident end face 19b.
  • a container 30 that extends along the X-axis direction, which is the length direction, and accommodates the phosphor-containing part 29, and a low-transmittance part (low-transmittance seal) that seals the X-axis direction end of the container 30 Stop portion) 31.
  • the phosphor-containing portion 29 includes a red phosphor that emits red light (visible light in a specific wavelength region belonging to red) using blue monochromatic light from the LED 17 as excitation light, and green (a specific wavelength belonging to green).
  • the wavelength conversion part 20 is the secondary light (green light and red color) which exhibits the color (yellow) which becomes a color complementary to the light emission (blue light, primary light) of LED17 with respect to the color (blue).
  • the phosphor-containing portion 29 is, for example, cured by being irradiated with ultraviolet rays after filling the container 30 with a mixture of a red phosphor and a green phosphor dispersed in an ultraviolet curable resin material. .
  • the phosphors of the respective colors contained in the phosphor-containing portion 29 are such that the excitation light is blue light and has the following emission spectrum. That is, the green phosphor emits blue light as excitation light and emits light in a wavelength region (about 500 nm to about 570 nm) belonging to green, that is, green light as fluorescence light.
  • the green phosphor preferably has an emission spectrum having a peak wavelength of about 530 nm in the wavelength range of green light and a half width of less than 40 nm.
  • the red phosphor emits blue light as excitation light and emits light in a wavelength region (about 600 nm to about 780 nm) belonging to red, that is, red light as fluorescent light.
  • the red phosphor preferably has an emission spectrum having a peak wavelength of about 610 nm in the wavelength range of red light and a half width of less than 40 nm.
  • the phosphors of the respective colors are of the down conversion type (down shifting type) in which the excitation wavelength is shorter than the fluorescence wavelength.
  • This down-conversion type phosphor is supposed to convert excitation light having a relatively short wavelength and high energy into fluorescence light having a relatively long wavelength and low energy. Therefore, the quantum efficiency (light conversion efficiency) is 30% to 30% higher than when using an up-conversion type phosphor whose excitation wavelength is longer than the fluorescence wavelength (quantum efficiency is about 28%, for example). It is about 50% and higher.
  • Each color phosphor is a quantum dot phosphor (Quantum Dot Phosphor).
  • Quantum dot phosphors have discrete energy levels by confining electrons, holes, and excitons in all three-dimensional space in a nano-sized semiconductor crystal (for example, about 2 nm to 10 nm in diameter) By changing the size of the dots, the peak wavelength (emission color) of emitted light can be appropriately selected.
  • the emission light (fluorescence light) of the quantum dot phosphor has a sharp peak in the emission spectrum and a narrow half width, so that the color purity is extremely high and the color gamut is wide.
  • the phosphor-containing portion 29 is sealed in the internal space of the container 30 and has a substantially film shape having surfaces along the X-axis direction and the Z-axis direction.
  • the formation range of the phosphor-containing portion 29 overlaps with the entire area of the LED 17 mounting area on the LED substrate 18 in the X-axis direction and overlaps with the entire area of the light emitting surface 17a of the LED 17 in the Z-axis direction. Is set.
  • the phosphor-containing portion 29 has a thickness dimension (dimension in the Y-axis direction) smaller than the thickness dimension of the container 30 described below, specifically about 0.5 mm.
  • the phosphor-containing portion 29 is flat on both the front and back surfaces along the X-axis direction and the Z-axis direction, and is parallel to the light emitting surface 17a of the LED 17 and the light incident end surface 19b of the light guide plate 19, respectively.
  • the container 30 is made of an inorganic glass material (for example, non-alkali glass or quartz glass) that is substantially transparent and excellent in translucency, and its refractive index is about 1.5, for example.
  • the container 30 surrounds the phosphor-containing portion 29 over its entire length, forms a substantially cylindrical shape extending along the X-axis direction, and its length direction (extending direction).
  • the cross-sectional shape cut in a shape orthogonal to) is a substantially oval shape that is vertically long.
  • Both outer surfaces along the length direction of the container 30 constitute the light incident surface 20a and the light emitting surface 20b described above.
  • the thickness of the container 30 is larger than the thickness of the phosphor-containing portion 29 described above, specifically about 1 mm.
  • the container 30 is sealed at both ends in the length direction by a low-transmittance sealing portion 31 described later.
  • the low-transmittance sealing portion 31 is provided as a pair so as to seal both end portions in the length direction of the container 30, and has a light transmittance higher than that of the container 30. Low. According to such a configuration, light (red and green light) emitted from the LED 17 and wavelength-converted by the phosphor contained in the phosphor-containing portion 29 in the container 30 of the wavelength converting portion 20 or not yet. Even if the conversion light (blue light) includes a light that travels outward in the X-axis direction, the low-transmittance sealing portion that seals the end of the container 30 with the light 31 is difficult to penetrate.
  • the low-transmittance sealing portion 31 includes an inorganic glass material and a metal oxide mixed in the inorganic glass material.
  • the inorganic glass material constituting the low transmittance sealing portion 31 is the same as the inorganic glass material constituting the container 30.
  • the metal oxide constituting the low-transmittance sealing part 31 is, for example, calcium fluoride, sodium fluoride, calcium phosphate, etc., so that the low-transmittance sealing part 31 is substantially white with excellent light reflectivity. It is supposed to present.
  • the low transmittance sealing portion 31 exhibiting substantially white has a light reflectance higher than that of the light in the container 30. Therefore, the light existing in the container 30 can be reflected by the low transmittance sealing portion 31, thereby reducing the light transmittance while efficiently guiding the light to the light incident end surface 19 b of the light guide plate 19. Light leakage can be suppressed.
  • the type and amount of the metal oxide mixed in the inorganic glass material of the low transmittance sealing portion 31 the light reflectance and transmittance in the low transmittance sealing portion 31 can be easily controlled. can do.
  • the manufacturing method of the wavelength conversion unit 20 includes a first sealing step of sealing one end of a previously manufactured container 30 with one low transmittance sealing part 31, and containing an uncured phosphor in the container 30.
  • one low-permeability sealing part 31 containing the same glass material as the container 30 is welded to one end part of the substantially cylindrical container 30 having both ends in the length direction opened. I am letting.
  • the uncured and liquid phosphor-containing part 29 is injected into the internal space through the other open end of the container 30 by utilizing capillary action.
  • a curing step is performed when the phosphor-containing portion 29 is filled in the container 30.
  • the phosphor-containing portion 29 containing the ultraviolet-curing resin material is irradiated with ultraviolet rays, whereby the curing of the phosphor-containing portion 29 is promoted.
  • the other low-permeability sealing portion 31 containing the same glass material as that of the container 30 is welded to the other end of the container 30 that is open.
  • the wavelength conversion part 20 in which the fluorescent substance containing part 29 is sealed in the container 30 is manufactured.
  • the wavelength conversion unit 20 thus manufactured is used by being incorporated in the backlight device 12 constituting the liquid crystal display device 10.
  • the operation of the liquid crystal display device 10 will be described.
  • driving of the liquid crystal panel 11 is controlled by a panel control circuit of a control board (not shown), and driving power from an LED drive circuit of an LED drive circuit board (not shown) is supplied to each LED board 18.
  • the drive is controlled by being supplied to LED17.
  • the light from each LED 17 is guided by the light guide plate 19, so that the liquid crystal panel 11 is irradiated through the optical member 15, and a predetermined image is displayed on the liquid crystal panel 11.
  • the operation of the backlight device 12 will be described in detail.
  • each LED 17 When each LED 17 is turned on, the blue light (primary light) emitted from the light emitting surface 17a of each LED 17 is incident on the light incident surface 20a of the wavelength converter 20 as shown in FIGS.
  • the wavelength is converted into green light and red light (secondary light) by the green phosphor and the red phosphor contained in the phosphor containing part 29 in 30.
  • substantially white illumination light is obtained.
  • the green light and the red light that have been wavelength-converted by the phosphor-containing portion 29 and the blue light that has not been wavelength-converted by the phosphor-containing portion 29 are emitted from the light exit surface 20 b of the wavelength converting portion 20.
  • the light enters the light incident end surface 19 b of the light guide plate 19.
  • the light incident on the light incident end surface 19b is totally reflected at the interface with the external air layer in the light guide plate 19 or is reflected by the reflection sheet 25 and propagates through the light guide plate 19 while being reflected by the light reflection pattern.
  • the incident angle with respect to the light output plate surface 19a becomes light that does not exceed the critical angle, and emission from the light output plate surface 19a is promoted.
  • the light emitted from the light exit plate surface 19 a of the light guide plate 19 is applied to the liquid crystal panel 11 after being given an optical action in the process of passing through each optical member 15.
  • the wavelength conversion unit 20 has a low transmission whose light transmittance is lower than that of the container 30 at the end in the length direction of the container 30 that accommodates the phosphor. Since it is sealed by the rate sealing portion 31, it is difficult for a part of the light existing in the container 30 to pass through the low transmittance sealing portion 31 even toward the end in the length direction of the container 30. As a result, the light hardly leaks out of the container 30 in the longitudinal direction.
  • the low-transmittance sealing portion 31 since the low-transmittance sealing portion 31 has higher light reflectance than the container 30, the low-transmittance sealing portion 31 exists in the container 30 and heads toward the end of the container 30 in the length direction. Light can be efficiently reflected and directed toward the center in the length direction of the container 30.
  • the light reflected by the low transmittance sealing portion 31 is emitted from the light exit surface 20 b of the wavelength conversion portion 20 and is efficiently guided to the light entrance end surface 19 b of the light guide plate 19. Thereby, generation
  • the backlight device (illumination device) 12 of the present embodiment includes an LED (light source) 17, a light incident end surface 19 b that is at least a part of the outer peripheral end surface and receives light from the LED 17, and a pair of plate surfaces.
  • the light guide plate 19 having a light output plate surface 19a for emitting light, and a wavelength conversion unit 20 disposed between the LED 17 and the light incident end surface 19b for wavelength conversion of light from the LED 17 are provided.
  • the phosphor containing part (phosphor) 29 containing the phosphor that uses the light from the LED 17 as excitation light and the phosphor containing part 29 extending along the length direction of the light incident end face 19b are accommodated.
  • the wavelength conversion part 20 which has the container 30 and the low transmittance
  • the light emitted from LED17 will be in the fluorescent substance containing part 29 provided in the wavelength conversion part 20 arrange
  • the end in the length direction of the container 30 that accommodates the phosphor-containing unit 29 is sealed by the low-transmittance sealing unit 31 that has lower light transmittance than the container 30.
  • the light existing in the container 30 is less likely to pass through the low-transmittance sealing portion 31 than the container 30, thereby making it difficult for the light to leak out of the container 30 in the longitudinal direction. Thereby, occurrence of light leakage is suppressed.
  • the low transmittance sealing portion 31 has a higher light reflectance than the container 30. In this way, the light present in the container 30 is reflected by the low-transmittance sealing portion 31, thereby reducing the light transmittance while efficiently guiding the light to the light incident end surface 19 b of the light guide plate 19. It is possible to suppress light leakage. Moreover, the low-transmittance sealing part 31 mixes a metal oxide with the material which has translucency. If it does in this way, the reflectance and absorption factor of light in the low transmittance sealing part 31 can be easily controlled by adjusting the kind and amount of the metal oxide mixed in the material having translucency. Can do.
  • the low-transmittance sealing portion 31 includes a light-transmitting material, and the material is the same as the material of the container 30. In this way, the adhesion of the low-permeability sealing portion 31 to the end portion of the container 30 is good, so that the sealing property (moisture resistance) of the container 30 is high, and the phosphor-containing portion 29 The contained phosphor is difficult to deteriorate due to moisture absorption or the like. Moreover, the container 30 and the low-transmittance sealing part 31 contain glass material. In this way, the sealing property (moisture resistance) of the container 30 becomes higher, and the phosphor contained in the phosphor containing portion 29 is less likely to deteriorate due to moisture absorption or the like.
  • a pair of low transmittance sealing portions 31 is provided so as to seal both ends of the container 30 in the length direction. In this way, light existing in the container 30 is less likely to leak outward from both ends in the length direction of the container 30, so that light leakage is more preferably suppressed.
  • the phosphor contained in the phosphor-containing portion 29 is a quantum dot phosphor. If it does in this way, while the wavelength conversion efficiency of the light by the wavelength conversion part 20 will become higher, the color purity of the wavelength-converted light will become high.
  • the low transmittance sealing portion 131 has a light absorption rate higher than that of the container 130.
  • the low-transmittance sealing part 131 is different from that of the first embodiment described above in that the metal oxide mixed in the same inorganic glass material as the container 130 is, and thereby exhibits a substantially black color. Is done.
  • the metal oxide contained in the low transmittance sealing part 131 includes, for example, manganese oxide, chromium oxide, nickel oxide, cobalt oxide, iron oxide, copper oxide, and the like.
  • the low-permeability sealing portion 131 is configured by mixing what is blended at the blending ratio in the inorganic glass material. Thereby, the low-transmittance sealing part 131 is exhibiting substantially black excellent in the light absorptivity.
  • the low-transmittance sealing portion 131 that exhibits a substantially black color has a light absorption rate higher than the light reflectance in the container 130. Therefore, the light which exists in the container 130 and goes to the edge part in the length direction in the container 130 can be efficiently absorbed by the low transmittance sealing part 131.
  • the light absorptivity and transmittance in the low transmittance sealing portion 131 can be easily adjusted by appropriately adjusting the type and amount of the metal oxide mixed in the inorganic glass material of the low transmittance sealing portion 131. Can be controlled.
  • Embodiment 3 A third embodiment of the present invention will be described with reference to FIG. In this Embodiment 3, what changed the low-transmittance sealing part 231 from above-mentioned Embodiment 1 is shown. In addition, the overlapping description about the same structure, operation
  • the low-transmittance sealing portion 231 is similar to Embodiments 1 and 2 described above in that it is made of the same inorganic glass material as the container 230, but a metal oxide is used as in Embodiments 1 and 2 described above. It shall not be contained. Instead of the metal oxide, the surface of the low-transmittance sealing portion 231 is subjected to, for example, sand blasting and the like, so that a large number of fine irregularities 32 for irregularly reflecting light are formed. The light transmittance in the sealing portion 231 is lower than that of the container 230.
  • the light that exists in the container 230 and travels toward the end in the length direction of the container 230 is irregularly reflected by the irregularities 32 on the surface of the low-transmittance sealing part 231, so that the low-transmittance sealing part 231. It is difficult to penetrate. Thereby, light leakage can be suppressed.
  • the light transmittance in the low transmittance sealing portion 231 can be easily adjusted by appropriately adjusting the degree of surface roughness and the formation range of the irregularities 32 formed on the surface of the low transmittance sealing portion 231. Can be controlled.
  • the end portion of the container 330 is sealed with the low refractive index sealing portion 33.
  • movement, and effect as above-mentioned Embodiment 1 is abbreviate
  • the wavelength conversion unit 320 according to the present embodiment is arranged so as to be interposed between the LED 317 and the light incident end surface 319 b of the light guide plate 319, and uses light from the LED 317 as excitation light.
  • the low refractive index sealing portion 33 is made of a synthetic resin material having a refractive index lower than that of the inorganic glass material constituting the container 330.
  • the synthetic resin material constituting the low refractive index sealing portion 33 is, for example, polyvinylidene fluoride (PVDF), the refractive index of which is about 1.42, and the inorganic constituting the container 330.
  • PVDF polyvinylidene fluoride
  • the value is lower than the refractive index (about 1.5) of the glass material.
  • the low refractive index sealing part 33 has a thickness dimension (dimension in the X-axis direction) larger than the thickness dimension of the container 330, for example, about 5 mm to 10 mm.
  • the light emitted from the LED 317 and subjected to wavelength conversion by the phosphor-containing unit 329 in the wavelength conversion unit 320 or unconverted light goes to the end in the length direction of the container 330.
  • the light is likely to be totally reflected at the interface (bonding surface) IF between the end in the length direction of the container 330 and the low refractive index sealing portion 33. That is, when light travels from the container 330, which is a relatively high refractive index medium, to the low refractive index sealing portion 33, which is a relatively low refractive index medium, total reflection may occur depending on the incident angle.
  • the low refractive index sealing portion 33 can totally reflect at least a part of the light and direct it toward the center side in the length direction of the container 330. Although this total reflection can also occur on the outer surface of the low refractive index sealing portion 33, in the present embodiment, the interface IF between the low refractive index sealing portion 33 and the end in the length direction of the container 330, that is, the length. Since total reflection can be generated at a position closer to the center in the direction (closer to the phosphor-containing portion 329), the light can be more efficiently directed toward the center in the length direction of the container 330, It is possible to promote wavelength conversion of unconverted light (blue light).
  • the thickness dimension of the container 330 is larger than the thickness dimension of the phosphor-containing portion 329, the end portion in the length direction of the container 330, which is a portion where total reflection of light occurs, and low refraction.
  • the interface IF with the rate sealing part 33 is sufficiently secured.
  • the light totally reflected by the low refractive index sealing portion 33 is emitted from the wavelength conversion portion 320 and is efficiently guided to the light incident end surface 319b of the light guide plate 319. Thereby, generation
  • Embodiment 5 of the present invention will be described with reference to FIG.
  • a configuration in which the number of installed wavelength conversion units 420 is changed from the first embodiment is shown.
  • movement, and effect as above-mentioned Embodiment 1 is abbreviate
  • two wavelength converters 420 according to the present embodiment are arranged side by side along the length direction of the light incident end surface 419 b of the light guide plate 419.
  • the container 430 constituting the wavelength conversion unit 420 is open at only one end in the length direction, and is sealed by the low-transmittance sealing portion 431, and the other end is originally closed. It is configured.
  • the two wavelength converters 420 have the same structure as each other and are arranged side by side along the X-axis direction in the space between the LED 417 and the light guide plate 419 so that the axes of the two wavelength converters 420 substantially coincide with each other. .
  • the two wavelength conversion units 420 arranged along the X-axis direction have one end in the length direction in the container 430, that is, the low-transmittance sealing unit 431 is in the X-axis direction in the backlight device 412. It is arranged to be located outside. That is, the two wavelength converters 420 are formed by selectively arranging a pair of low-transmittance sealing portions 431 at a pair of end portions that are not adjacent to each other among the end portions in the length direction.
  • Embodiment 6 of the present invention will be described with reference to FIG.
  • the number of installed wavelength conversion units 520 is changed from the fifth embodiment.
  • action, and effect as above-mentioned Embodiment 5 is abbreviate
  • three wavelength conversion units 520 according to the present embodiment are arranged side by side along the length direction of the light incident end surface 519 b of the light guide plate 519.
  • the three wavelength conversion units 520 are arranged side by side along the X-axis direction in the space between the LED 517 and the light guide plate 519 such that the axes of the wavelength conversion units 520 substantially coincide with each other.
  • the two wavelength converters 520 positioned at both ends in the X-axis direction are the two wavelength converters 420 described in the fifth embodiment. It is set as the same structure. That is, in the two wavelength conversion units 520 located at both ends in the X-axis direction, only one end in the length direction of the container 530 is opened and is sealed by the low transmittance sealing unit 531. In addition, one end portion and the low-transmittance sealing portion 531 disposed there are disposed so as to be located outside the backlight device 512 in the X-axis direction.
  • one wavelength conversion unit 520 located in the center in the X-axis direction has only one end in the length direction of the container 530. Is opened and sealed by the sealing portion 34, and the other end is originally closed.
  • this sealing part 34 is the same as the low-transmittance sealing part 531 of the two wavelength conversion parts 520 described above in that it is made of the same inorganic glass material as the container 530, the two wavelength conversion parts 520 described above.
  • the low-transmittance sealing portion 531 does not contain a metal oxide. That is, the sealing portion 34 has substantially the same light transmittance as that of the container 530.
  • the three wavelength conversion parts 520 are formed by selectively arranging a pair of low-transmittance sealing parts 531 at a pair of end parts that are not adjacent to each other among the end parts in the length direction. It is said. According to such a configuration, light leaks to the outside from a pair of end portions that are not adjacent to each other among the end portions in the length direction of the containers 530 constituting the two wavelength conversion units 520. Since it becomes difficult to take out, generation
  • a seventh embodiment of the present invention will be described with reference to FIGS.
  • a structure in which a holding structure for the wavelength conversion unit 620 is added to the one described in the first embodiment is shown.
  • movement, and effect as above-mentioned Embodiment 1 is abbreviate
  • the wavelength conversion unit 620 according to the present embodiment is held by the holder 35 at a position between the LED 617 and the light incident end surface 619 b of the light guide plate 619 in the backlight device 612.
  • the holder 35 is made of a synthetic resin exhibiting white having excellent light reflectivity, and has a substantially cylindrical shape so as to accommodate the wavelength conversion unit 620 in a shape that substantially surrounds the entire length.
  • the holder 35 includes a pair of first wall portions 35a sandwiching the wavelength conversion unit 620 from the top and bottom shown in FIG. 15 in the Z-axis direction, and a pair of sandwiching the wavelength conversion unit 620 from the left and right (front and back) shown in FIG. And a second wall portion 35b.
  • the wall portions 35a and 35b surround the wavelength converting portion 620 over almost the entire length to hold it.
  • the second wall portion 35b on the left side (LED substrate 618 side) shown in FIG. 15 is an LED that houses the LED 617, as shown in FIGS.
  • An accommodation opening 36 is provided open.
  • a plurality of LED housing openings 36 are provided in the second wall portion 35b as independent openings so as to individually accommodate the LEDs 617 mounted on the LED substrate 618.
  • a plurality (the same number as the LEDs 617) of the LED housing openings 36 are provided along the X-axis direction in the second wall portion 35b, and the arrangement interval thereof matches the arrangement interval of the LEDs 617 on the LED substrate 618. Yes.
  • the second wall 35b provided with the LED housing opening 36 is fixed so that the outer surface thereof is in contact with the mounting surface 618a of the LED substrate 618.
  • the LED 617 housed in the LED housing opening 36 is maintained in a positional relationship in which the light emitting surface 617a is substantially in contact with the light incident surface 620a of the wavelength conversion unit 620. Thereby, the light emitted from the light emitting surface 617a of the LED 617 is efficiently incident on the light incident surface 620a of the wavelength conversion unit 620.
  • a light-transmitting opening 37 for allowing light emitted from the light exit surface 620b of 620 to enter the light incident end surface 619b of the light guide plate 619 is provided.
  • the translucent opening 37 is provided in the second wall portion 35b as an elongated opening extending along the X-axis direction, and the formation range thereof is set to a size including the formation range of all the LED accommodating openings 36. Has been. Thereby, the light emitted from each LED 617 and transmitted through the wavelength conversion unit 620 can be efficiently incident on the light incident end surface 619 b of the light guide plate 619.
  • the second wall portion 35b provided with the light-transmitting opening portion 37 is disposed so that the outer surface thereof is opposed to the light incident end surface 619b of the light guide plate 619 in the Y-axis direction with a predetermined interval. Accordingly, when the temperature environment in the backlight device 612 is increased and the light guide plate 619 is thermally expanded along with the temperature environment, the light transmitting plate 619 is in a stage just before the thermally expanded light guide plate 619 interferes with the wavelength conversion unit 620. It will interfere with the 2nd wall part 35b in which 37 was provided.
  • the displacement of the light guide plate 619 that thermally expands can be regulated by the second wall portion 35b provided with the light transmitting opening 37, the stress from the light guide plate 619 is directly applied to the wavelength conversion unit 620 and the LED 617. It can be prevented from acting.
  • each of the pair of long side end faces of the outer peripheral end faces of the light guide plate 719 is the light incident end face 719b into which the light from the LED 717 is incident, whereas the remaining pair of short faces.
  • the end surface on the side is a non-light-incident end surface 719d. Therefore, the non-light-incident end surface 719d according to this embodiment does not include the non-light-incident opposite end surface 19d1 (see FIG. 3) as in the first embodiment, and a pair adjacent to the light-incident end surface 719b. Only the non-light-incident side end face 719d2 is included.
  • the light guide plate 719 is sandwiched between the pair of LED substrates 718 and the LEDs 717 mounted thereon from both sides in the short side direction (Y-axis direction). Both sides are incident light type.
  • a pair of wavelength converters 720 are arranged so as to be interposed between the LED substrates 718 and the light incident end surfaces 719b.
  • the light emitted from each LED 717 of each LED substrate 718 is wavelength-converted by each wavelength conversion unit 720 and is incident on each light incident end surface 719 b of the light guide plate 719.
  • Embodiment 9 of the present invention will be described with reference to FIG.
  • a configuration in which the number of LED substrates 818 and wavelength conversion units 820 installed is changed from the eighth embodiment described above.
  • action, and effect as above-mentioned Embodiment 8 is abbreviate
  • the LED 817 and the LED substrate 818 include both ends on the long side and one end (on the left side in FIG. 19) on the short side. It is the composition arranged in each.
  • each LED board 818 is arranged such that each mounted LED 817 faces each of the pair of long side end faces and one short side end face of the outer peripheral end face of the light guide plate 819. . Therefore, in this embodiment, each of the pair of long side end surfaces and one short side end surface of the outer peripheral end surfaces of the light guide plate 819 is a light incident end surface 819b on which light from the LED 817 is incident. On the other hand, the other end surface on the other short side is a non-light-incident end surface 819d.
  • the non-light-incident end surface 819d is a non-light-incident opposite end surface 819d1 with respect to the short-side light-incident end surface 819b and is not incident with respect to the pair of long-side light-incident end surfaces 819b. It is a light side end face 819d2.
  • the backlight device 812 according to the present embodiment has three sides that receive light from the three LED boards 818 on which the light guide plate 819 is arranged along the three sides and the LEDs 817 mounted thereon. It is a light incident type. Three wavelength converters 820 are arranged so as to be interposed between each LED substrate 818 and each light incident end face 819b. Thereby, the light emitted from each LED 817 of each LED substrate 818 is wavelength-converted by each wavelength conversion unit 820 and is incident on each light incident end surface 819 b of the light guide plate 819.
  • a tenth embodiment of the present invention will be described with reference to FIG.
  • a configuration in which the number of LED substrates 918 and wavelength conversion units 920 installed is changed from the eighth embodiment described above.
  • action, and effect as above-mentioned Embodiment 8 is abbreviate
  • the LED 917 and the LED substrate 918 are respectively arranged on both ends on the long side and both ends on the short side, that is, on the outer periphery. It has the structure arranged over the entire circumference of the side end.
  • each LED board 918 is arranged such that each mounted LED 917 is opposed over the entire outer peripheral end surface of the light guide plate 919. Therefore, in this embodiment, the outer peripheral end surface of the light guide plate 919 is a light incident end surface 919b into which light from the LED 917 is incident over the entire periphery, and the outer peripheral end surface of the light guide plate 919 does not have a non-light incident end surface.
  • the backlight device 912 has four sides on which the light guide plate 919 receives light from the four LED substrates 918 arranged along the four sides and the respective LEDs 917 mounted thereon. It is a light incident type.
  • the wavelength conversion unit 1120 of the eleventh embodiment includes a phosphor-containing unit 1129 containing a phosphor (wavelength conversion substance) for wavelength-converting light from the LED 1117, and the length of the light incident end surface 1119b.
  • a container 1130 that extends along the X-axis direction that is the vertical direction and accommodates the phosphor-containing portion 1129, and a sealing portion 1131 that is disposed at one end of the container 1130 in the X-axis direction. is doing.
  • the phosphor-containing portion 1129 includes a red phosphor that emits red light (visible light in a specific wavelength region belonging to red) using blue monochromatic light from the LED 1117 as excitation light, and green (a specific wavelength belonging to green). And a green phosphor that emits light in the visible region).
  • the wavelength conversion unit 1120 has secondary light (green light and red light) that exhibits a color (yellow) that is complementary to the color (blue) of the light emitted from the LED 1117 (blue light, primary light).
  • Wavelength conversion to light For example, the phosphor-containing portion 1129 is cured by being irradiated with ultraviolet rays after filling the container 1130 with a mixture of a red phosphor and a green phosphor dispersed in an ultraviolet curable resin material. .
  • the low transmittance part 1132 having a light transmittance lower than that of the container 1130 at the end in the X-axis direction (the length direction of the light incident end surface 1119b) of the container 1130 constituting the wavelength conversion unit 1120 according to the present embodiment. Is provided so as to be in contact with substantially the entire outer surface.
  • light red and green light
  • the conversion light blue light
  • the light is provided in such a manner that the light is in contact with the outer surface at the end of the container 1130. It is difficult for the rate part 1132 to pass through. Therefore, light existing in the container 1130 is difficult to leak out of the container 1130 in the X-axis direction, and the occurrence of light leakage is suppressed.
  • the low transmittance portion 1132 Since the low transmittance portion 1132 is provided in contact with the outer surface of the end portion in the length direction of the container 1130, the low transmittance portion 1132 is installed in a state where the phosphor-containing portion 1129 is accommodated in the container 1130. It becomes possible to do. That is, for example, a low-transmittance part is added to a general-purpose wavelength conversion part formed by injecting the phosphor-containing part 1129 through one end part opened in the container 1130 and sealing one end part with the sealing part 1131. Since the wavelength conversion unit 1120 according to this embodiment can be obtained by performing post-processing for installing 1132, the manufacturing cost of the wavelength conversion unit 1120 can be reduced and the post-processing itself is also easily performed. be able to.
  • the low-transmittance portion 1132 is assumed to exhibit a substantially white color with excellent light reflectivity, and the light reflectivity is higher than the light reflectivity in the container 1130. Therefore, the light existing in the container 1130 can be reflected by the low transmittance part 1132, thereby reducing the light transmittance while efficiently guiding the light to the light incident end surface 1119 b of the light guide plate 1119. Leakage can be suppressed.
  • the low transmittance portion 1132 is made of the same material as the reflective sheet 1125.
  • a pair of low transmittance parts 1132 are provided in contact with the outer surfaces of both end parts in the X-axis direction of the container 1130.
  • a pair of low-transmittance portions 1132 are provided in contact with the outer surfaces of the sealing portion 1131 that seals one end of the container 1130 and the other end.
  • the low transmittance portion 12132 As shown in FIG. 22, the low transmittance portion 12132 according to the present embodiment has a light absorption rate higher than that of the container 12130. Specifically, the low-transmittance portion 12132 is formed by applying paint to the end of the container 12130 in the X-axis direction (the length direction of the light incident end surface 12119b), and the paint has excellent light absorption. It is assumed to exhibit a substantially black color.
  • the low transmittance part 12132 can be easily and inexpensively installed at the end of the container 12130 in the X-axis direction.
  • the light transmittance of the low transmittance portion 12132 that is substantially black is higher than the light reflectance of the container 12130.
  • the low transmittance part 13232 is made of a light shielding tape (light shielding material) 1333 that blocks most of the light.
  • the light-shielding tape 1333 constituting the low-transmittance portion 13232 is formed by applying different color paints on the front and back surfaces of the base material 1333a.
  • the light-shielding tape 1333 has a light reflecting layer 1333b formed by applying substantially white paint on the inner surface (container 13230 side) of the base material 1333a, whereas the light shielding tape 1333 has an outer (container 13230).
  • a light absorption layer 1333c is formed by applying a substantially black paint on the surface (opposite side).
  • the light reflecting layer 1333b has a light reflectance higher than that of the container 13230.
  • the light reflected by the light reflecting layer 1333b of the light shielding tape 1333 which is the low transmittance portion 13232 is emitted from the light exit surface 13220b of the wavelength conversion portion 13220 and efficiently guided to the light incident end surface 13219b of the light guide plate 13219. It is supposed to be.
  • the light shielding tape 14333 constituting the low transmittance portion 14332 according to the present embodiment is formed by forming light absorption layers 14333c on both front and back surfaces of the base material 14333a.
  • the light that exists in the container 14330 and travels toward the end in the X-axis direction (the length direction of the light incident end surface 14319b) in the container 14330 is caused by the light absorption layer 14333c of the light shielding tape 14333 that is the low transmittance part 14332. It can absorb efficiently and suppress light leakage.
  • the wavelength conversion unit 15420 according to the present embodiment is arranged so that two are adjacent to each other along the length direction (X-axis direction) of the light incident end surface 15419 b of the light guide plate 15419. ing.
  • the two wavelength converters 15420 have the same structure as each other, and are arranged side by side along the X-axis direction in the space between the LED 15417 and the light guide plate 15419 so that the axes of the two are substantially coincident. .
  • the two wavelength converters 15420 arranged along the X-axis direction have one end in the length direction in the container 15430, that is, the low-transmittance part 15432 outside the X-axis direction in the backlight device 412. It is arranged to be located. According to such a configuration, light leaks outward from a pair of end portions that are not adjacent to each other among the end portions in the length direction of the respective containers 15430 constituting the two wavelength conversion portions 15420. Since it becomes difficult to take out, generation
  • Embodiment 16 of the present invention will be described with reference to FIG.
  • a configuration in which the number of wavelength conversion units installed is changed from the above-described fifteenth embodiment.
  • action, and effect as above-mentioned Embodiment 15 is abbreviate
  • the wavelength converter 16520 according to the present embodiment is arranged in such a manner that three are adjacent to each other along the length direction (X-axis direction) of the light incident end surface 16519b of the light guide plate 16519. ing.
  • the three wavelength conversion units 16520 are arranged side by side along the X-axis direction in the space between the LED 16517 and the light guide plate 16519 so that the axes of the wavelength conversion units 16520 substantially coincide with each other.
  • the two wavelength converters 16520 positioned at both ends in the X-axis direction are the two wavelength converters 15420 described in the above-described Embodiment 15. It is set as the same structure.
  • one wavelength conversion unit 16520 located in the center in the X-axis direction is configured not to be provided with the low transmittance unit 16532. .
  • the wavelength conversion unit 16520 located in the center in the X-axis direction has one end sealed by the sealing unit 16531 in the other end of the wavelength conversion unit 16520 adjacent to the left side shown in FIG. 26 in the X-axis direction.
  • the other end is opposed to the other end of the wavelength conversion unit 16520 adjacent to the right side shown in FIG. 26 in the X-axis direction.
  • the three wavelength conversion units 16520 are formed by selectively arranging a pair of low transmittance portions 16532 at a pair of end portions that are not adjacent to each other among the end portions in the length direction.
  • the wavelength conversion unit 1720 includes a phosphor containing unit 1729 containing a phosphor (wavelength converting substance) for converting the wavelength of light from the LED 1717, and the length of the light incident end surface 1719b.
  • a container 1730 that extends along the X-axis direction that is the vertical direction and accommodates the phosphor-containing portion 1729, and a sealing portion 1731 that is disposed at one end of the container 1730 in the X-axis direction.
  • a low transmittance part 1732 having a light transmittance lower than that of the container 1730 is provided on the inner surface. It is provided so as to contact almost the entire area.
  • light red and green light
  • the conversion light blue light
  • the light is provided in such a way that the light is in contact with the inner surface at the end of the container 1730 It is difficult for the rate part 1732 to pass through.
  • the low-transmittance portion 1732 has a substantially white color with excellent light reflectivity, and the light reflectivity is higher than the light reflectivity in the container 1730. Therefore, the light existing in the container 1730 can be reflected by the low transmittance part 1732, thereby reducing the light transmittance while efficiently guiding the light to the light incident end face 1719b of the light guide plate 1719. Leakage can be suppressed.
  • the low transmittance portion 1732 is made of a synthetic resin material and is provided in contact with the inner surface of the sealing portion 1731. As a synthetic resin material constituting the low transmittance portion 1732, for example, a thermoplastic resin material can be used.
  • the synthetic resin material constituting the low transmittance portion 1732 has a higher viscosity than a metal material or the like, when the wavelength conversion portion 1720 is manufactured, the end portion of the container 1730 in the X-axis direction is used.
  • the low transmittance part 1732 made of a synthetic resin material can be easily installed inside, and the sealing part 1731 can be provided in that state.
  • a pair of low transmittance parts 1732 are provided in contact with the inner surfaces of a pair of sealing parts 1731 that seal both ends of the container 1730 in the X-axis direction.
  • the low transmittance portion 1732 contacts each inner surface of one sealing portion 1731 that seals one end portion of the container 1730 and the other sealing portion 1731 that seals the other end portion.
  • a pair is provided in the form.
  • the low transmittance portion 20132 has a light absorption rate higher than that of the container 20130. Specifically, the low transmittance portion 20132 is assumed to exhibit a substantially black color with excellent light absorption, and the light absorption rate is higher than the light absorption rate in the container 20130.
  • the light that exists in the container 20130 and travels toward the end in the X-axis direction in the container 20130 can be efficiently absorbed by the low transmittance part 20132. Thereby, light leakage can be suppressed.
  • the light absorptivity and transmittance in the low transmittance portion 20132 can be adjusted by appropriately adjusting the type and amount of the pigment or dye mixed with the synthetic resin material (thermoplastic resin material) used for the low transmittance portion 20132. It can be controlled easily.
  • a nineteenth embodiment of the present invention will be described with reference to FIG.
  • a configuration in which the number of wavelength conversion units installed is changed from the above-described embodiment.
  • action, and effect similar to above-described embodiment is abbreviate
  • the wavelength conversion unit 21220 according to the present embodiment is arranged so that two are adjacent to each other along the length direction (X-axis direction) of the light incident end surface 21219b of the light guide plate 21219. ing.
  • the container 21230 constituting the wavelength conversion unit 21220 has a substantially bottomed cylindrical shape in which only one end in the length direction is opened and the other end is closed, and the one end opened. Is sealed by a sealing portion 21231.
  • the low-transmittance portion 21232 is provided so as to be in contact with the inner surface of the sealing portion 21231 that seals one end portion of both ends of the container 21230 in the length direction, and is provided at the other end portion. It is not done.
  • Embodiment 20 A twentieth embodiment of the present invention will be described with reference to FIG.
  • This Embodiment 20 shows what changed the installation number of the wavelength conversion part from above-described embodiment.
  • action, and effect similar to above-described embodiment is abbreviate
  • 223 are arranged side by side along the length direction (X-axis direction) of the light incident end surface 22319b of the light guide plate 22319.
  • the two wavelength conversion units 22320 located at both ends in the X-axis direction are the two wavelength conversion units 21220 described in the nineteenth embodiment.
  • the two wavelength conversion parts 22320 located at both ends in the X-axis direction are in contact with the inner surface of the sealing part 22331 that opens only at one end in the length direction of the container 22330 and seals it.
  • the low-transmittance part 22332 is provided in the form, and one end part and the low-transmittance part 22332 arranged there are arranged so as to be located outside the backlight device 22312 in the X-axis direction.
  • one wavelength conversion unit 22320 located in the center in the X-axis direction is configured not to be provided with the low transmittance unit 22332. .
  • SYMBOLS 10 Liquid crystal display device (display device), 10TV ... Television receiver, 11 ... Liquid crystal panel (display panel), 12 ... Backlight device (illumination device), 17 ... LED (light source) 19 ... light guide plate, 19a ... light exit plate surface, 19b ... light incident end face, 20 ... wavelength conversion part, 29 ... phosphor containing part (phosphor), 30 ... Container, 31 ... low transmittance sealing part, 32 ... concave, 33 ... low refractive index sealing part, IF ... interface

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

バックライト装置(12)は、LED(17)と、外周端面の少なくとも一部であってLED(17)からの光が入射される入光端面(19b)と一対の板面のいずれかであって光を出射させる出光板面(19a)とを有する導光板(19)と、LED(17)と入光端面(19b)との間に介在する形で配されてLED(17)からの光を波長変換する波長変換部(20)であって、LED(17)からの光を励起光とする蛍光体を含有する蛍光体含有部(29)と、入光端面(19b)の長さ方向に沿って延在して蛍光体含有部(29)を収容する容器(30)と、容器(30)における長さ方向についての端部を封止し容器(30)よりも光の透過率が低い低透過率封止部(31)と、を有する波長変換部(20)と、を備える。

Description

照明装置、表示装置、及びテレビ受信装置
 本発明は、照明装置、表示装置、及びテレビ受信装置に関する。
 従来の液晶表示装置に用いられるバックライトの一例として下記特許文献1に記載されたものが知られている。この特許文献1に記載されたバックライトである面状光源は、青色が発光可能なLEDと、LEDの発光により励起されて蛍光を発する蛍光物質が具備された波長変換体と、LEDと波長変換体を介して設けられLEDからの発光と蛍光物質からの発光とを合成した発光を端面より導入し発光観測面側から放出する導光板からなる。
特開平10-269822号公報
(発明が解決しようとする課題)
 上記した特許文献1に記載されたような波長変換体は、LEDからの光を波長変換して導光板の端面に入射させているが、波長変換した光の全てを導光板の端面に入射させるのは難しく、その一部が端面の長さ方向について外側へ漏れ出すおそれがある。このような漏れ光により液晶表示装置においては表示不良が生じることが懸念される。
 本発明は上記のような事情に基づいて完成されたものであって、光漏れを抑制することを目的とする。
(課題を解決するための手段)
 本発明の第1の照明装置は、光源と、外周端面の少なくとも一部であって前記光源からの光が入射される入光端面と一対の板面のいずれかであって光を出射させる出光板面とを有する導光板と、前記光源と前記入光端面との間に介在する形で配されて前記光源からの光を波長変換する波長変換部であって、前記光源からの光を励起光とする蛍光体と、前記入光端面の長さ方向に沿って延在して前記蛍光体を収容する容器と、前記容器における前記長さ方向についての端部を封止し前記容器よりも光の透過率が低い低透過率部と、を有する波長変換部と、を備える。
 このようにすれば、光源から発せられた光は、光源と導光板の入光端面との間に介在する形で配される波長変換部に有される蛍光体にて波長変換されるなどしてから入光端面に入射されて導光板内を伝播された後に出光板面から出射される。波長変換部は、蛍光体を収容する容器における長さ方向についての端部が、容器よりも光の透過率が低い低透過率部により封止されているから、容器内に存在する光が容器よりも低透過率部を透過し難く、それによりその光が容器から長さ方向についての外側へ漏れ出し難いものとなる。これにより、光漏れの発生が抑制される。
 本発明の第1の照明装置の実施態様として、次の構成が好ましい。
(1)前記低透過率部は、前記容器よりも光の反射率が高い。このようにすれば、容器内に存在する光を低透過率部により反射することで、光を導光板の入光端面へと効率的に導きつつ光の透過率を低下させて光漏れを抑制することができる。
(2)前記低透過率部は、前記容器よりも光の吸収率が高い。このようにすれば、容器内に存在する光を低透過率部により吸収することで、光の透過率を低下させて光漏れを抑制することができる。
(3)前記低透過率部は、透光性を有する材料に金属酸化物を混合してなる。このようにすれば、透光性を有する材料に混合する金属酸化物の種類や量などを調整することで、低透過率部における光の反射率や吸収率を容易に制御することができる。
(4)前記低透過率部は、透光性を有する材料からなりその表面に微細な凹凸を形成してなる。このようにすれば、容器内に存在する光を低透過率部の表面に形成された微細な凹凸によって乱反射させることで、光の透過率を低下させて光漏れを抑制することができる。
(5)前記低透過率部は、透光性を有する材料を含んでいてその材料が前記容器の材料と同じとされる。このようにすれば、容器の端部に対する低透過率部の密着性が良好なものとなるので、容器のシール性(防湿性)が高いものとなり、蛍光体が吸湿などにより劣化し難いものとなる。
(6)前記容器及び前記低透過率部は、ガラス材料を含む。このようにすれば、容器のシール性(防湿性)がより高いものとなり、蛍光体が吸湿などにより劣化し難いものとなる。
 本発明の第2の照明装置は、光源と、外周端面の少なくとも一部であって前記光源からの光が入射される入光端面と一対の板面のいずれかであって光を出射させる出光板面とを有する導光板と、前記光源と前記入光端面との間に介在する形で配されて前記光源からの光を波長変換する波長変換部であって、前記光源からの光を励起光とする蛍光体と、前記入光端面の長さ方向に沿って延在して前記蛍光体を収容する容器と、前記容器における前記長さ方向についての端部を封止し前記容器よりも屈折率が低い低屈折率部と、を有する波長変換部と、を備える。
 このようにすれば、光源から発せられた光は、光源と導光板の入光端面との間に介在する形で配される波長変換部に有される蛍光体にて波長変換されるなどしてから入光端面に入射されて導光板内を伝播された後に出光板面から出射される。波長変換部は、蛍光体を収容する容器における長さ方向についての端部が、容器よりも屈折率が低い低屈折率部により封止されているから、容器内に存在する光が容器と低屈折率部との界面にて全反射され易く、それによりその光が容器から長さ方向についての外側へ漏れ出し難いものとなる。これにより、光漏れの発生が抑制される。なお、前記容器は、ガラス材料からなり、前記低屈折率部は、合成樹脂材料からなるものとすることができる。このようにすれば、ガラス材料及び合成樹脂材料として汎用的なものを用いつつ、両材料間の屈折率の差を十分に確保することが可能となるので、製造コストの低下を図る上で好適となる。
 本発明の第1の照明装置または第2の照明装置の実施態様として、次の構成が好ましい。
(1)前記低透過率部または前記低屈折率部は、前記容器における前記長さ方向についての両端部を封止するよう一対備えられる。このようにすれば、容器内に存在する光が容器の長さ方向について両端部からそれぞれ外側へ漏れ出し難いものとなるので、光漏れの発生がより好適に抑制される。
(2)前記波長変換部は、前記長さ方向に沿って複数が並んで配されており、前記低透過率部または前記低屈折率部は、複数の前記波長変換部における前記長さ方向についての各端部のうち互いに隣り合うことがない一対の端部に選択的に設けられている。このようにすれば、複数の波長変換部を構成する各容器における長さ方向についての各端部のうち、互いに隣り合うことがない一対の端部からそれぞれ外側へ光が漏れ出し難いものとなるので、光漏れの発生がより好適に抑制される。
(3)前記蛍光体は、量子ドット蛍光体とされる。このようにすれば、波長変換部による光の波長変換効率がより高いものとなるとともに、波長変換された光の色純度が高いものとなる。
 本発明の第3の照明装置は、光源と、外周端面の少なくとも一部であって前記光源からの光が入射される入光端面と一対の板面のいずれかであって光を出射させる出光板面とを有する導光板と、前記光源と前記入光端面との間に介在する形で配されて前記光源からの光を波長変換する波長変換部であって、前記光源からの光を励起光とする蛍光体と、前記入光端面の長さ方向に沿って延在して前記蛍光体を収容する容器と、前記容器における前記長さ方向についての端部の外面または内面に接する形で設けられて前記容器よりも光の透過率が低い低透過率部と、を有する波長変換部と、を備える。
 このようにすれば、光源から発せられた光は、光源と導光板の入光端面との間に介在する形で配される波長変換部に有される蛍光体にて波長変換されるなどしてから入光端面に入射されて導光板内を伝播された後に出光板面から出射される。波長変換部は、蛍光体を収容する容器における長さ方向についての端部の外面または内面に接する形で容器よりも光の透過率が低い低透過率部が設けられているから、容器内に存在する光が容器よりも低透過率部を透過し難くなっている。これにより、容器内に存在する光が容器から長さ方向についての外側へ漏れ出し難くなり、もって光漏れを抑制することができる。
 なお、低透過率部を、容器における長さ方向についての端部の外面に接する形で設けられている場合、容器内に蛍光体を収容した状態において低透過率部を設置することが可能となり、利便性などに優れる。
 一方、低透過率部を、容器における長さ方向についての端部の内面に接する形で設けられている場合、同端部の外面に接する形で設けられた場合に比べると、同端部の厚さ分だけ蛍光体の近くに配されることになる。
 本発明の第3の照明装置の実施態様として、低透過率部が容器における長さ方向についての端部の外面に接する形で設けられている場合、次の構成が好ましい。
(1)前記低透過率部は、前記容器よりも光の反射率が高い。このようにすれば、容器内に存在する光を低透過率部により反射することで、光を導光板の入光端面へと効率的に導きつつ光の透過率を低下させて光漏れを抑制することができる。
(2)前記導光板の前記出光板面とは反対側の反対板面と対向する形で配されるとともに光を反射する反射部材を備えており、前記低透過率部は、前記反射部材と同一材料からなる。このようにすれば、低透過率部の材料が反射部材と共通化されているので、低透過率部における光の反射率を十分に高くすることができるとともに、低透過率部の設置に係るコストを低下させることができる。
(3)前記低透過率部は、前記容器よりも光の吸収率が高い。このようにすれば、容器内に存在する光を低透過率部により吸収することで、光の透過率を低下させて光漏れを抑制することができる。
(4)前記低透過率部は、前記容器の端部に塗料を塗布してなる。このようにすれば、低透過率部を容易に且つ低コストでもって設置することができる。
(5)前記低透過率部は、遮光材からなる。このようにすれば、容器内に存在する光を低透過率部により遮光することで、光の透過率を低下させて光漏れを抑制することができる。
(6)前記容器は、ガラス材料からなる。このようにすれば、容器のシール性(防湿性)が十分に高いものとなり、蛍光体が吸湿などに劣化し難いものとなる。
(7)前記容器は、前記長さ方向についての一方の端部が開口する有底筒型をなしていて前記一方の端部を封止する封止部が設けられており、前記低透過率部は、前記容器における前記長さ方向についての他方の端部及び前記封止部の各外面に接する形で一対備えられる。このようにすれば、容器内に存在する光が、容器の長さ方向についての一方の端部を封止する封止部及び他方の端部からそれぞれ外側へ漏れ出し難いものとなるので、光漏れの発生がより好適に抑制される。
(8)前記波長変換部は、前記長さ方向について複数が並んで配されており、前記低透過率部は、複数の前記波長変換部における前記長さ方向についての各端部のうち互いに隣り合うことがない一対の端部に選択的に設けられている。このようにすれば、複数の波長変換部を構成する各容器における長さ方向についての各端部のうち、互いに隣り合うことがない一対の端部からそれぞれ外側へ光が漏れ出し難いものとなるので、光漏れの発生がより好適に抑制される。
(9)前記蛍光体は、量子ドット蛍光体とされる。このようにすれば、波長変換部による光の波長変換効率がより高いものとなるとともに、波長変換された光の色純度が高いものとなる。
 本発明の第3の照明装置の実施態様として、低透過率部が容器における長さ方向についての端部の内面に接する形で設けられている場合、次の構成が好ましい。
(1)前記低透過率部は、前記容器よりも光の反射率が高い。このようにすれば、容器内に存在する光を低透過率部により反射することで、光を導光板の入光端面へと効率的に導きつつ光の透過率を低下させて光漏れを抑制することができる。
(2)前記低透過率部は、前記容器よりも光の吸収率が高い。このようにすれば、容器内に存在する光を低透過率部により吸収することで、光の透過率を低下させて光漏れを抑制することができる。
(3)前記容器は、前記長さ方向についての端部が開口していてその端部を封止する封止部が設けられており、前記低透過率部は、合成樹脂材料からなり前記封止部の内面に接する形で設けられている。仮に低透過率部を金属材料からなる構成とした場合に比べると、低透過率部を構成する合成樹脂材料は高い粘性を有しているので、例えば波長変換部の製造に際しては、容器における長さ方向についての端部を開口した状態でその内部に合成樹脂材料からなる低透過率部を容易に設置し、その状態で封止部を設けることが可能となる。これにより、波長変換部の製造が容易なものとなる。
(4)前記低透過率部は、前記合成樹脂材料に顔料または染料を混合してなる。このようにすれば、合成樹脂材料に混合する顔料または染料の量を調整することで、低透過率部における光の透過率を容易に制御することができる。
(5)前記容器は、ガラス材料からなる。このようにすれば、容器のシール性(防湿性)が十分に高いものとなり、蛍光体が吸湿などに劣化し難いものとなる。
(6)前記容器は、前記長さ方向についての両端部がそれぞれ開口する筒型をなしていて前記両端部をそれぞれ封止する封止部が一対設けられており、前記低透過率部は、一対の前記封止部の内面にそれぞれ接する形で一対設けられている。このようにすれば、容器内に存在する光が、容器の長さ方向についての両端部をそれぞれ封止する一対の封止部からそれぞれ外側へ漏れ出し難いものとなるので、光漏れの発生がより好適に抑制される。
(7)前記波長変換部は、前記長さ方向について複数が並んで配されており、前記低透過率部は、複数の前記波長変換部における前記長さ方向についての各端部のうち互いに隣り合うことがない一対の端部に選択的に設けられている。このようにすれば、複数の波長変換部を構成する各容器における長さ方向についての各端部のうち、互いに隣り合うことがない一対の端部からそれぞれ外側へ光が漏れ出し難いものとなるので、光漏れの発生がより好適に抑制される。
(8)前記蛍光体は、量子ドット蛍光体とされる。このようにすれば、波長変換部による光の波長変換効率がより高いものとなるとともに、波長変換された光の色純度が高いものとなる。
 次に、上記課題を解決するために、本発明の表示装置は、上記記載のいずれかの照明装置と、前記照明装置から照射される光を利用して画像を表示する表示パネルと、を備える表示装置。このような構成の表示装置によれば、照明装置の容器内に存在する光が容器の長さ方向について外側へ漏れ出し難いものとなっているから、表示品位に優れた表示を実現することができる。さらには、上記課題を解決するために、本発明のテレビ受信装置は、上記記載の表示装置を備えるテレビ受信装置。このようなテレビ受信装置によれば、表示装置の表示品位が優れたものとされているから、表示品位に優れたテレビ画像の表示を実現することができる。
(発明の効果)
 本発明によれば、光漏れを抑制することができる。
本発明の実施形態1に係るテレビ受信装置の概略構成を示す分解斜視図 テレビ受信装置が備える液晶表示装置の概略構成を示す分解斜視図 液晶表示装置が備えるバックライト装置を構成するシャーシ、LED基板及び導光板の平面図 液晶表示装置を短辺方向に沿って切断した断面構成を示す断面図 液晶表示装置を長辺方向に沿って切断した断面構成を示す断面図 LED及びLED基板の断面図 図4の拡大図 図4のviii-viii線断面図 図8の拡大図 本発明の実施形態2に係るバックライト装置の拡大平断面図 本発明の実施形態3に係るバックライト装置の拡大平断面図 本発明の実施形態4に係るバックライト装置の拡大平断面図 本発明の実施形態5に係るバックライト装置の拡大平断面図 本発明の実施形態6に係るバックライト装置の拡大平断面図 本発明の実施形態7に係るバックライト装置の拡大側断面図 ホルダの正面図 ホルダの背面図 本発明の実施形態8に係るバックライト装置の平断面図 本発明の実施形態9に係るバックライト装置の平断面図 本発明の実施形態10に係るバックライト装置の平断面図 本発明の実施形態11に係るバックライト装置の拡大平断面図 本発明の実施形態12に係るバックライト装置の拡大平断面図 本発明の実施形態13に係るバックライト装置の拡大平断面図 本発明の実施形態14に係るバックライト装置の拡大平断面図 本発明の実施形態15に係るバックライト装置の拡大平断面図 本発明の実施形態16に係るバックライト装置の拡大平断面図 本発明の実施形態17に係るバックライト装置の拡大側断面図 本発明の実施形態18に係るバックライト装置の拡大平断面図 本発明の実施形態19に係るバックライト装置の拡大平断面図 本発明の実施形態20に係るバックライト装置の拡大平断面図
 <実施形態1>
 本発明の実施形態1を図1から図9によって説明する。本実施形態では、バックライト装置12及びそれを用いた液晶表示装置10について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。また、図4及び図5などに示す上側を表側とし、同図下側を裏側とする。本実施形態に係るテレビ受信装置10TVは、図1に示すように、液晶表示装置10と、当該液晶表示装置10を挟むようにして収容する表裏両キャビネット10Ca,10Cbと、電源10Pと、テレビ信号を受信するチューナー(受信部)10Tと、スタンド10Sと、を備えて構成される。液晶表示装置10は、図2に示すように、画像を表示する表示パネルである液晶パネル11と、液晶パネル11に表示のための光を供給する外部光源であるバックライト装置(照明装置)12と、を備え、これらが枠状のベゼル13などにより一体的に保持されるようになっている。
 液晶表示装置10を構成する液晶パネル(表示パネル)11は、平面に視て横長な方形状をなしており、一対のガラス基板が所定のギャップを隔てた状態で貼り合わせられている。バックライト装置12は、図2に示すように、表側(液晶パネル11側、出光側)の外部に向けて開口する光出射部14bを有した略箱型をなすシャーシ14と、シャーシ14の光出射部14bを覆う形で配される複数の光学部材(光学シート)15と、を備える。さらに、シャーシ14内には、光源であるLED17と、LED17が実装されたLED基板18と、LED17からの光を導光して光学部材15(液晶パネル11)へと導く導光板19と、LED17と導光板19との間に介在する形で配されてLED17からの光を波長変換する波長変換部20と、導光板19などを表側から押さえるとともに光学部材15を裏側から受けるフレーム16と、が備えられる。
 光学部材15は、図2に示すように、液晶パネル11及びシャーシ14と同様に平面に視て横長の方形状をなしている。光学部材15は、シャーシ14の光出射部14bを覆うとともに、液晶パネル11と導光板19との間に介在する形で配されている。つまり、光学部材15は、LED17に対して出光経路の出口側に配されている、と言える。光学部材15は、シート状をなしていて合計で3枚が備えられている。具体的には、光学部材15は、光に等方性集光作用を付与するマイクロレンズシート21と、光に異方性集光作用を付与するプリズムシート22と、光を偏光反射する反射型偏光シート23と、から構成される。光学部材15は、図4及び図5に示すように、裏側からマイクロレンズシート21、プリズムシート22、及び反射型偏光シート23の順で相互に積層されてそれらの外縁部がフレーム16に対してその表側に載せられている。つまり、光学部材15を構成するマイクロレンズシート21、プリズムシート22、及び反射型偏光シート23は、導光板19に対して表側、つまり光出射側にフレーム16(詳しくは後述する枠状部16a)分の間隔を空けて対向状をなしている。
 LED17は、図3及び図4に示すように、LED基板18上に表面実装されるとともにその発光面17aがLED基板18側とは反対側を向いた、いわゆる頂面発光型とされている。このLED17は、青色の単色光を発する青色LEDとされている。そして、LED17から発せられた青色の光は、その一部が詳しくは後述する波長変換部20によって緑色の光や赤色の光に波長変換されるようになっており、これら波長変換された緑色の光及び赤色の光(二次光)と、LED17の青色の光(一次光)と、の加法混色によりバックライト装置12の出射光が概ね白色を呈するものとされる。
 波長変換部20は、図7及び図8に示すように、LED17から発せられた光(一次光)を他の波長の光(二次光)へと波長変換する蛍光体(波長変換物質)を含有するとともにLED17と導光板19の入光端面19bとの間に介在する形で配されている。波長変換部20は、図示しない保持手段によって上記した姿勢に保持されている。波長変換部20は、導光板19の入光端面19bにおける長さ方向(X軸方向)に沿って延在し、入光端面19bに対してほぼ全長にわたって対向状をなすとともにLED基板18に実装された全てのLED17に対して対向状をなす形で配されている。波長変換部20は、その長さ方向(延在方向、X軸方向)と直交する方向に沿って切断した断面形状が縦長の略長円形状をなしており、長さ寸法(X軸方向についての寸法)が導光板19の長辺寸法よりも大きく、高さ寸法(Z軸方向についての寸法)が導光板19の厚み寸法よりも大きなものとされる。波長変換部20は、X軸方向及びZ軸方向に沿う表裏の両外面が共にフラットな面とされており、各LED17の発光面17aと対向する外面が同発光面17aに並行して同発光面17aからの光が入射される入光面20aとされるのに対し、導光板19の入光端面19bと対向する外面が同入光端面19bに並行して同入光端面19bに向けて光が出射される出光面20bとされる。波長変換部20は、その幅方向(Y軸方向)について内端位置がフレーム16の枠状部16aの内端位置よりも外側に配されている。つまり、波長変換部20は、その全域がフレーム16の枠状部16aと平面に視て重畳する配置とされているので、液晶表示装置10の使用者に表側から波長変換部20が直接視認されるなどといった事態が生じ難いものとされる。このような構成によれば、LED17から発せられた光は、LED17と導光板19の入光端面19bとの間に介在する形で配される波長変換部20を透過する過程で波長変換されるなどしてから入光端面19bに入射されて導光板19内を伝播された後に出光板面19aから出射されることになる。波長変換部20は、LED17と導光板19の入光端面19bとの間に介在する形で配されているので、仮に波長変換部をシート状に形成して導光板19の出光板面19aまたは反対板面19cに重なる形で配した場合に比べると、蛍光体の使用量が少なく済み、もって製造コストを低下させる上で好適とされる。
 そして、波長変換部20は、図7及び図8に示すように、LED17からの光を波長変換するための蛍光体(波長変換物質)を含有する蛍光体含有部29と、入光端面19bの長さ方向であるX軸方向に沿って延在して蛍光体含有部29を収容する容器30と、容器30におけるX軸方向についての端部を封止する低透過率部(低透過率封止部)31と、を有している。蛍光体含有部29には、LED17からの青色の単色光を励起光として、赤色の光(赤色に属する特定の波長領域の可視光線)を発する赤色蛍光体と、緑色(緑色に属する特定の波長領域の可視光線)の光を発する緑色蛍光体と、が分散配合されている。これにより、波長変換部20は、LED17の発光光(青色の光、一次光)をその色味(青色)に対して補色となる色味(黄色)を呈する二次光(緑色の光及び赤色の光)に波長変換するものとされる。蛍光体含有部29は、例えば紫外線硬化樹脂材料中に赤色蛍光体及び緑色蛍光体を分散配合したものを容器30内に充填した後に、紫外線を照射されることで硬化されてなるものとされる。
 より詳しくは、蛍光体含有部29に含有される各色の蛍光体は、いずれも励起光が青色の光とされており、次のような発光スペクトルを有している。すなわち、緑色蛍光体は、青色の光を励起光として、緑色に属する波長領域(約500nm~約570nm)の光、つまり緑色の光を蛍光光として発するものとされる。緑色蛍光体は、好ましくは、ピーク波長が緑色の光の波長範囲の中の約530nmとされ且つ半値幅が40nm未満とされる発光スペクトルを有する。赤色蛍光体は、青色の光を励起光として、赤色に属する波長領域(約600nm~約780nm)の光、つまり赤色の光を蛍光光として発するものとされる。赤色蛍光体は、好ましくは、ピーク波長が赤色の光の波長範囲の中の約610nmとされ且つ半値幅が40nm未満とされる発光スペクトルを有する。
 このように、各色の蛍光体は、励起波長が蛍光波長よりも短波長とされるダウンコンバージョン型(ダウンシフティング型)とされている。このダウンコンバージョン型の蛍光体は、相対的に短波長で且つ高いエネルギーを持つ励起光を、相対的に長波長で且つ低いエネルギーを持つ蛍光光に変換するものとされる。従って、仮に励起波長が蛍光波長よりも長波長とされるアップコンバージョン型の蛍光体を用いた場合(量子効率が例えば28%程度)に比べると、量子効率(光の変換効率)が30%~50%程度と、より高いものとなっている。各色の蛍光体は、それぞれ量子ドット蛍光体(Quantum Dot Phosphor)とされる。量子ドット蛍光体は、ナノサイズ(例えば直径2nm~10nm程度)の半導体結晶中に電子・正孔や励起子を三次元空間全方位で閉じ込めることで、離散的エネルギー準位を有しており、そのドットのサイズを変えることで発光光のピーク波長(発光色)などを適宜に選択することが可能とされる。この量子ドット蛍光体の発光光(蛍光光)は、その発光スペクトルにおけるピークが急峻となってその半値幅が狭くなることから、色純度が極めて高くなるとともにその色域が広いものとなる。
 蛍光体含有部29は、図7及び図8に示すように、容器30の内部空間に密封されており、X軸方向及びZ軸方向に沿う面を有する略フィルム状をなしている。蛍光体含有部29は、その形成範囲が、X軸方向についてLED基板18におけるLED17の実装範囲の全域に対して重畳するとともに、Z軸方向についてLED17の発光面17aの全域に対して重畳するよう設定されている。蛍光体含有部29は、その厚さ寸法(Y軸方向についての寸法)が、次述する容器30の厚さ寸法よりも小さくて具体的には約0.5mm程度とされる。蛍光体含有部29は、X軸方向及びZ軸方向に沿う表裏の両面が共にフラットな面とされ、LED17の発光面17a及び導光板19の入光端面19bにそれぞれ並行している。
 容器30は、ほぼ透明で透光性に優れた無機ガラス材料(例えば無アルカリガラスや石英ガラスなど)からなり、その屈折率は、例えば約1.5程度とされる。容器30は、図7及び図8に示すように、蛍光体含有部29をその全長にわたって取り囲んでおり、X軸方向に沿って延在する略筒状をなすとともにその長さ方向(延在方向)と直交する形で切断した断面形状が縦長な略長円形状をなしている。容器30における長さ方向に沿った両外面が、既述した入光面20a及び出光面20bを構成している。容器30は、その厚さ寸法が、上記した蛍光体含有部29の厚さ寸法よりも大きくて具体的には約1mm程度ずつとされる。容器30は、その長さ方向の両端部が後述する低透過率封止部31により封止されている。
 低透過率封止部31は、図8及び図9に示すように、容器30における長さ方向についての両端部をそれぞれ封止する形で一対設けられるとともに、容器30よりも光の透過率が低いものとされる。このような構成によれば、LED17から発せられて波長変換部20の容器30内にて蛍光体含有部29に含有される蛍光体により波長変換された光(赤色及び緑色の各光)や未変換の光(青色の光)に、X軸方向について外側に向かって進行するものが含まれていた場合であっても、その光が容器30の端部を封止する低透過率封止部31を透過し難いものとされる。従って、容器30内に存在する光が容器30からX軸方向についての外側へ漏れ出し難いものとなる。これにより、光漏れの発生が抑制される。仮に上記した光が容器30からX軸方向について外側へ漏れ出した場合には、漏れ光が液晶パネル11の角部付近において使用者に局所的に観察され易くなって表示品位を悪化させるおそれがあるものの、上記のように光漏れが抑制されることで、液晶パネル11の角部付近にて局所的に光が観察されるという表示不良が発生し難くなり、もって表示品位が良好に保たれる。
 低透過率封止部31は、無機ガラス材料と、無機ガラス材料中に混合される金属酸化物と、を含んでなる。低透過率封止部31を構成する無機ガラス材料は、容器30を構成する無機ガラス材料と同一とされる。これにより、容器30の端部に対する低透過率封止部31の密着性が良好なものとなるので、容器30のシール性(防湿性)が高いものとなり、内部の蛍光体含有部29に含有される蛍光体が吸湿などにより劣化し難いものとなる。低透過率封止部31を構成する金属酸化物は、例えばフッ化カルシウム、フッ化ソーダ、リン酸カルシウムなどとされており、それにより低透過率封止部31が光の反射性に優れた略白色を呈するものとされる。略白色を呈する低透過率封止部31は、その光の反射率が容器30における光の反射率よりも高いものとされる。従って、容器30内に存在する光を低透過率封止部31により反射することができ、それにより光を導光板19の入光端面19bへと効率的に導きつつ光の透過率を低下させて光漏れを抑制することができる。低透過率封止部31の無機ガラス材料中に混合される金属酸化物の種類や量を適宜に調整することで、低透過率封止部31における光の反射率及び透過率を容易に制御することができる。
 ここで、波長変換部20の製造方法について説明する。波長変換部20の製造方法は、予め製造した容器30における一方の端部を一方の低透過率封止部31により封止する第1封止工程と、容器30内に未硬化の蛍光体含有部29を注入する蛍光体注入工程と、蛍光体含有部29を硬化させる硬化工程と、容器30における他方の端部を他方の低透過率封止部31により封止する第2封止工程と、から構成される。第1封止工程では、長さ方向の両端部が開口した略筒状をなす容器30における一方の端部に対し、容器30と同じガラス材料を含む一方の低透過率封止部31を溶着させている。これにより、容器30は、一方の端部が封止されるので、他方の端部のみが開口した状態となる。蛍光体注入工程では、容器30のうち開口した状態の他方の端部を通してその内部空間に未硬化で液体状の蛍光体含有部29が、毛細管現象を利用して注入される。容器30内に蛍光体含有部29が充填されたところで、硬化工程が行われる。硬化工程では、紫外線硬化樹脂材料を含む蛍光体含有部29に紫外線を照射することで、蛍光体含有部29の硬化が促進される。第2封止工程では、容器30のうち開口した状態の他方の端部に対し、容器30と同じガラス材料を含む他方の低透過率封止部31を溶着させている。これにより、容器30内に蛍光体含有部29が封止されてなる波長変換部20が製造される。このようにして製造された波長変換部20は、液晶表示装置10を構成するバックライト装置12内に組み込まれて使用される。
 続いて、液晶表示装置10に係る作用について説明する。液晶表示装置10の電源をONすると、図示しないコントロール基板のパネル制御回路により液晶パネル11の駆動が制御されるとともに、図示しないLED駆動回路基板のLED駆動回路からの駆動電力がLED基板18の各LED17に供給されることでその駆動が制御される。各LED17からの光は、導光板19により導光されることで、光学部材15を介して液晶パネル11に照射され、もって液晶パネル11に所定の画像が表示される。以下、バックライト装置12に係る作用について詳しく説明する。
 各LED17を点灯させると、各LED17の発光面17aから発せられた青色の光(一次光)は、図7及び図8に示すように、波長変換部20の入光面20aに入射し、容器30内の蛍光体含有部29に含有される緑色蛍光体及び赤色蛍光体により緑色の光及び赤色の光(二次光)へと波長変換される。この波長変換された緑色の光及び赤色の光と、LED17の青色の光と、によって、概ね白色の照明光が得られることになる。蛍光体含有部29にて波長変換された緑色の光及び赤色の光と、蛍光体含有部29にて波長変換されなかった青色の光と、は、波長変換部20の出光面20bから出射して導光板19における入光端面19bに入射する。入光端面19bに入射した光は、導光板19における外部の空気層との界面にて全反射されたり、反射シート25により反射されるなどして導光板19内を伝播されつつ、光反射パターンの光反射部にて散乱反射されることで、出光板面19aに対する入射角が臨界角を超えない光となって出光板面19aからの出射が促されるようになっている。導光板19の出光板面19aを出射した光は、各光学部材15を透過する過程でそれぞれ光学作用を付与された上で液晶パネル11に対して照射される。
 ここで、波長変換部20に係る作用について詳しく説明する。図7及び図8に示すように、LED17から発せられた青色の光(一次光)が波長変換部20の入光面20aに入射すると、容器30内に充填された蛍光体含有部29に分散配合された緑色蛍光体及び赤色蛍光体では青色の光の一部が励起光として利用されて緑色蛍光体及び赤色蛍光体から緑色の光及び赤色の光(二次光)が発せられる。波長変換された緑色の光及び赤色の光と、未変換の青色の光と、は、その大半が波長変換部20の出光面20bから出射して導光板19の入光端面19bに入射されるものの、一部については容器30における長さ方向(X軸方向)についての端部へ向かってそのまま漏れ出すことが懸念される。その点、本実施形態に係る波長変換部20は、図9に示すように、蛍光体を収容する容器30における長さ方向についての端部が、容器30よりも光の透過率が低い低透過率封止部31により封止されているから、容器30内に存在する光の一部が容器30における長さ方向についての端部へ向かっても、低透過率封止部31を透過し難いものとされ、それによりその光が容器30から長さ方向についての外側へ漏れ出し難いものとなる。具体的には、低透過率封止部31は、容器30よりも光の反射率が高いものとされているから、容器30内に存在して容器30における長さ方向についての端部へ向かう光を効率的に反射して容器30における長さ方向についての中央側へ向かわせることができる。低透過率封止部31にて反射された光は、波長変換部20の出光面20bから出射して導光板19の入光端面19bへと効率的に導かれるものとされる。これにより、光漏れの発生が抑制されるとともに導光板19の入光端面19bへの光の入射効率を向上させることができる。
 本実施形態のバックライト装置(照明装置)12は、LED(光源)17と、外周端面の少なくとも一部であってLED17からの光が入射される入光端面19bと一対の板面のいずれかであって光を出射させる出光板面19aとを有する導光板19と、LED17と入光端面19bとの間に介在する形で配されてLED17からの光を波長変換する波長変換部20であって、LED17からの光を励起光とする蛍光体を含有する蛍光体含有部(蛍光体)29と、入光端面19bの長さ方向に沿って延在して蛍光体含有部29を収容する容器30と、容器30における長さ方向についての端部を封止し容器30よりも光の透過率が低い低透過率封止部31と、を有する波長変換部20と、を備える。
 このようにすれば、LED17から発せられた光は、LED17と導光板19の入光端面19bとの間に介在する形で配される波長変換部20に有される蛍光体含有部29にて波長変換されるなどしてから入光端面19bに入射されて導光板19内を伝播された後に出光板面19aから出射される。波長変換部20は、蛍光体含有部29を収容する容器30における長さ方向についての端部が、容器30よりも光の透過率が低い低透過率封止部31により封止されているから、容器30内に存在する光が容器30よりも低透過率封止部31を透過し難く、それによりその光が容器30から長さ方向についての外側へ漏れ出し難いものとなる。これにより、光漏れの発生が抑制される。
 また、低透過率封止部31は、容器30よりも光の反射率が高い。このようにすれば、容器30内に存在する光を低透過率封止部31により反射することで、光を導光板19の入光端面19bへと効率的に導きつつ光の透過率を低下させて光漏れを抑制することができる。また、低透過率封止部31は、透光性を有する材料に金属酸化物を混合してなる。このようにすれば、透光性を有する材料に混合する金属酸化物の種類や量などを調整することで、低透過率封止部31における光の反射率や吸収率を容易に制御することができる。また、低透過率封止部31は、透光性を有する材料を含んでいてその材料が容器30の材料と同じとされる。このようにすれば、容器30の端部に対する低透過率封止部31の密着性が良好なものとなるので、容器30のシール性(防湿性)が高いものとなり、蛍光体含有部29に含有される蛍光体が吸湿などにより劣化し難いものとなる。また、容器30及び低透過率封止部31は、ガラス材料を含む。このようにすれば、容器30のシール性(防湿性)がより高いものとなり、蛍光体含有部29に含有される蛍光体が吸湿などにより劣化し難いものとなる。また、低透過率封止部31は、容器30における長さ方向についての両端部を封止するよう一対備えられる。このようにすれば、容器30内に存在する光が容器30の長さ方向について両端部からそれぞれ外側へ漏れ出し難いものとなるので、光漏れの発生がより好適に抑制される。また、蛍光体含有部29に含有される蛍光体は、量子ドット蛍光体とされる。このようにすれば、波長変換部20による光の波長変換効率がより高いものとなるとともに、波長変換された光の色純度が高いものとなる。
 <実施形態2>
 本発明の実施形態2を図10によって説明する。この実施形態2では、低透過率封止部131を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。本実施形態に係る低透過率封止部131は、図10に示すように、光の吸収率が容器130よりも高いものとされている。詳しくは、低透過率封止部131は、容器130と同じ無機ガラス材料中に混合される金属酸化物が上記した実施形態1とは異なるものとされており、それにより略黒色を呈するものとされる。具体的には、低透過率封止部131に含有される金属酸化物には、例えば酸化マンガン、酸化クロム、酸化ニッケル、酸化コバルト、酸化鉄、酸化銅などが含まれており、これらを所定の配合比率でもって配合したものを無機ガラス材料中に混合することで低透過率封止部131が構成されている。これにより、低透過率封止部131が光の吸収性に優れた略黒色を呈している。略黒色を呈する低透過率封止部131は、その光の吸収率が容器130における光の反射率よりも高いものとされる。従って、容器130内に存在して容器130における長さ方向についての端部へ向かう光を低透過率封止部131により効率的に吸収することができる。これにより、光漏れを抑制することができる。なお、低透過率封止部131の無機ガラス材料中に混合される金属酸化物の種類や量を適宜に調整することで、低透過率封止部131における光の吸収率及び透過率を容易に制御することができる。
 <実施形態3>
 本発明の実施形態3を図11によって説明する。この実施形態3では、上記した実施形態1から低透過率封止部231を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。本実施形態に係る低透過率封止部231は、図11に示すように、その表面に微細な凹凸32を形成してなる。詳しくは、低透過率封止部231は、容器230と同じ無機ガラス材料からなる点では上記した実施形態1,2と同様であるものの、上記した実施形態1,2のように金属酸化物を含有することがないものとされる。金属酸化物に代えて、低透過率封止部231における表面には、例えばサンドブラスト加工などが施されることで、光を乱反射させる微細な凹凸32が多数形成されており、それにより低透過率封止部231における光の透過率が容器230の同透過率よりも低いものとされる。従って、容器230内に存在して容器230における長さ方向についての端部へ向かう光は、低透過率封止部231の表面の凹凸32により乱反射されることで、低透過率封止部231を透過し難いものとされる。これにより、光漏れを抑制することができる。なお、低透過率封止部231の表面に形成される凹凸32の表面粗さの度合いや形成範囲などを適宜に調整することで、低透過率封止部231における光の透過率を容易に制御することができる。
 <実施形態4>
 本発明の実施形態4を図12によって説明する。この実施形態4では、容器330の端部を低屈折率封止部33により封止するようにしたものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。本実施形態に係る波長変換部320は、図12に示すように、LED317と導光板319の入光端面319bとの間に介在する形で配されており、LED317からの光を励起光とする蛍光体を含有する蛍光体含有部329と、入光端面319bの長さ方向に沿って延在して蛍光体含有部329を収容する容器330と、容器330における長さ方向についての端部を封止し容器330よりも屈折率が低い低屈折率封止部33と、から構成される。
 低屈折率封止部33は、容器330を構成する無機ガラス材料よりも屈折率が低い合成樹脂材料からなるものとされる。具体的には、低屈折率封止部33を構成する合成樹脂材料は、例えばポリフッ化ビニリデン(PVDF)とされ、その屈折率が約1.42程度とされており、容器330を構成する無機ガラス材料の屈折率(約1.5)よりも低い値とされる。低屈折率封止部33は、厚さ寸法(X軸方向についての寸法)が、容器330の厚さ寸法よりも大きくて例えば約5mm~10mm程度とされる。このような構成によれば、LED317から発せられて波長変換部320内の蛍光体含有部329にて波長変換された光や未変換の光に容器330における長さ方向についての端部へ向かうものが含まれていた場合には、その光は、容器330における長さ方向についての端部と低屈折率封止部33との界面(接合面)IFにて全反射され易いものとされる。つまり、光が、相対的に高屈折率媒質である容器330から相対的に低屈折率媒質である低屈折率封止部33へ進む際には、その入射角によっては全反射が生じ得るものとされるので、低屈折率封止部33は、光の少なくとも一部を全反射して容器330における長さ方向についての中央側へ向かわせることができるのである。この全反射は、低屈折率封止部33の外面でも生じ得るものの、本実施形態では、低屈折率封止部33と容器330における長さ方向についての端部との界面IF、つまり長さ方向について中央寄りの(蛍光体含有部329により近い)位置にて全反射を生じさせることができるので、光をより効率的に容器330における長さ方向についての中央側へ向かわせることができ、未変換の光(青色の光)の波長変換を促進させることが可能とされる。また、容器330の厚さ寸法は、蛍光体含有部329の厚さ寸法よりも大きなものとされるので、光の全反射が生じる部分である容器330の長さ方向についての端部と低屈折率封止部33との界面IFが十分に確保されている。低屈折率封止部33にて全反射された光は、波長変換部320から出射して導光板319の入光端面319bへと効率的に導かれるものとされる。これにより、光漏れの発生が抑制されるとともに導光板319の入光端面319bへの光の入射効率を向上させることができる。
 <実施形態5>
 本発明の実施形態5を図13によって説明する。この実施形態5では、上記した実施形態1から波長変換部420の設置数を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。本実施形態に係る波長変換部420は、図13に示すように、導光板419の入光端面419bの長さ方向に沿って2本が互いに隣り合う形で並んで配されている。波長変換部420を構成する容器430は、その長さ方向についての一方の端部のみが開口してそこが低透過率封止部431により封止されていて他方の端部が元々閉塞された構成とされている。2本の波長変換部420は、互いに同一構造とされるとともに互いの軸線がほぼ一致する形で、LED417と導光板419との間の空間にてX軸方向に沿って並んで配置されている。そして、X軸方向に沿って並ぶ2本の波長変換部420は、容器430における長さ方向についての一方の端部、つまり低透過率封止部431がバックライト装置412におけるX軸方向についての外側に位置するよう配置されている。すなわち、2本の波長変換部420は、長さ方向についての各端部のうち互いに隣り合うことがない一対の端部に選択的に一対の低透過率封止部431を配置してなるものとされる。このような構成によれば、2本の波長変換部420を構成する各容器430における長さ方向についての各端部のうち、互いに隣り合うことがない一対の端部からそれぞれ外側へ光が漏れ出し難いものとなるので、光漏れの発生がより好適に抑制される。このように2本の波長変換部420を用いるようにすれば、より大型のバックライト装置412に好適とされる。
 <実施形態6>
 本発明の実施形態6を図14によって説明する。この実施形態6では、上記した実施形態5から波長変換部520の設置数を変更したものを示す。なお、上記した実施形態5と同様の構造、作用及び効果について重複する説明は省略する。本実施形態に係る波長変換部520は、図14に示すように、導光板519の入光端面519bの長さ方向に沿って3本が互いに隣り合う形で並んで配されている。3本の波長変換部520は、互いの軸線がほぼ一致する形で、LED517と導光板519との間の空間にてX軸方向に沿って並んで配置されている。X軸方向に沿って並ぶ3本の波長変換部520のうち、X軸方向について両端に位置する2本の波長変換部520については、上記した実施形態5に記載した2本の波長変換部420と同様の構成とされる。つまり、X軸方向について両端に位置する2本の波長変換部520は、その容器530における長さ方向についての一方の端部のみが開口してそこが低透過率封止部531により封止されるとともに、一方の端部及びそこに配される低透過率封止部531がバックライト装置512におけるX軸方向についての外側に位置するよう配置されている。一方、X軸方向に沿って並ぶ3本の波長変換部520のうち、X軸方向について中央に位置する1本の波長変換部520は、その容器530における長さ方向についての一方の端部のみが開口してそこが封止部34により封止されていて他方の端部が元々閉塞された構成とされている。この封止部34は、容器530と同じ無機ガラス材料からなる点では上記した2本の波長変換部520の低透過率封止部531と同様であるものの、上記した2本の波長変換部520の低透過率封止部531のように金属酸化物を含有することがないものとされる。つまり、封止部34は、光の透過率が容器530とほぼ同じとされる。従って、3本の波長変換部520は、長さ方向についての各端部のうち互いに隣り合うことがない一対の端部に選択的に一対の低透過率封止部531を配置してなるものとされる。このような構成によれば、2本の波長変換部520を構成する各容器530における長さ方向についての各端部のうち、互いに隣り合うことがない一対の端部からそれぞれ外側へ光が漏れ出し難いものとなるので、光漏れの発生がより好適に抑制される。このように3本の波長変換部520を用いるようにすれば、さらに大型のバックライト装置512に好適とされる。
 <実施形態7>
 本発明の実施形態7を図15から図17によって説明する。この実施形態7では、上記した実施形態1に記載したものに波長変換部620の保持構造を追加したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。本実施形態に係る波長変換部620は、図15に示すように、バックライト装置612内においてLED617と導光板619の入光端面619bとの間となる位置にてホルダ35によって保持されている。ホルダ35は、光の反射性に優れた白色を呈する合成樹脂製とされており、波長変換部620をほぼ全長にわたって取り囲む形で収容するよう略筒状をなしている。ホルダ35は、波長変換部620をZ軸方向について図15に示す上下から挟み込む一対の第1壁部35aと、波長変換部620をY軸方向について図15に示す左右(前後)から挟み込む一対の第2壁部35bと、を有しており、これらの各壁部35a,35bによって波長変換部620をほぼ全長にわたって取り囲んで保持を図っている。
 ホルダ35を構成する一対の第2壁部35bのうち、図15に示す左側(LED基板618側)の第2壁部35bには、図15及び図16に示すように、LED617を収容するLED収容開口部36が開口して設けられている。LED収容開口部36は、LED基板618に実装された各LED617を個別に収容するよう、相互に独立した開口として第2壁部35bに複数設けられている。LED収容開口部36は、第2壁部35bにおいてX軸方向に沿って複数(LED617と同数)が並んで設けられており、その配列間隔がLED基板618における各LED617の配列間隔と一致している。このLED収容開口部36が設けられた第2壁部35bは、その外面がLED基板618における実装面618aに接する形で固定されている。LED収容開口部36に収容されたLED617は、その発光面617aが波長変換部620の入光面620aにほぼ接する位置関係に保たれている。これにより、LED617の発光面617aから発せられた光が波長変換部620の入光面620aにより効率的に入射されるようになっている。
 一方、ホルダ35を構成する一対の第2壁部35bのうち、図15に示す右側(導光板619側)の第2壁部35bには、図15及び図17に示すように、波長変換部620の出光面620bを出射した光を通して導光板619の入光端面619bに入射させるための透光開口部37が開口して設けられている。透光開口部37は、X軸方向に沿って延在する細長い開口として第2壁部35bに設けられており、その形成範囲が全LED収容開口部36の形成範囲を包含する大きさに設定されている。これにより、各LED617から発せられて波長変換部620を透過した光を効率的に導光板619の入光端面619bに入射させることができる。この透光開口部37が設けられた第2壁部35bは、その外面がY軸方向について導光板619の入光端面619bとの間に所定の間隔を空けて対向状に配置されている。従って、バックライト装置612内の温度環境が高温化し、それに伴って導光板619が熱膨張した場合には、熱膨張した導光板619が波長変換部620に干渉する手前の段階で透光開口部37が設けられた第2壁部35bに干渉することになる。つまり、透光開口部37が設けられた第2壁部35bによって熱膨張する導光板619の変位を規制することができるので、波長変換部620及びLED617に導光板619からの応力が直接的に作用するのを防ぐことができる。
 <実施形態8>
 本発明の実施形態8を図18によって説明する。この実施形態8では、上記した実施形態1からLED基板718及び波長変換部720の設置数を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。本実施形態に係るバックライト装置712では、図18に示すように、LED717及びLED基板718が、長辺側の両端部にそれぞれ配された構成となっている。詳しくは、一対のLED基板718は、実装された各LED717が導光板719の外周端面のうちの一対の長辺側の端面のそれぞれと対向する形で配されている。従って、本実施形態では、導光板719の外周端面のうちの一対の長辺側の端面のそれぞれがLED717からの光が入射される入光端面719bとされるのに対し、残りの一対の短辺側の端面が非入光端面719dとされる。従って、本実施形態に係る非入光端面719dには、上記した実施形態1のような非入光反対端面19d1(図3を参照)が含まれることがなく、入光端面719bに隣り合う一対の非入光側端面719d2のみが含まれている。このように本実施形態に係るバックライト装置712は、導光板719がその短辺方向(Y軸方向)についての両側から一対のLED基板718及びそれらに実装された各LED717によって挟み込まれてなる、両側入光タイプとされている。そして、波長変換部720は、各LED基板718と各入光端面719bとの間にそれぞれ介在する形で一対が配置されている。これにより、各LED基板718の各LED717から発せられた光は、各波長変換部720にて波長変換されて導光板719の各入光端面719bに入射されるようになっている。
 <実施形態9>
 本発明の実施形態9を図19によって説明する。この実施形態9では、上記した実施形態8からLED基板818及び波長変換部820の設置数を変更したものを示す。なお、上記した実施形態8と同様の構造、作用及び効果について重複する説明は省略する。本実施形態に係るバックライト装置812では、図19に示すように、LED817及びLED基板818が、長辺側の両端部と、一方(図19に示す左側)の短辺側の端部と、にそれぞれ配された構成となっている。詳しくは、各LED基板818は、実装された各LED817が導光板819の外周端面のうちの一対の長辺側の端面及び一方の短辺側の端面のそれぞれと対向する形で配されている。従って、本実施形態では、導光板819の外周端面のうちの一対の長辺側の端面及び一方の短辺側の端面のそれぞれがLED817からの光が入射される入光端面819bとされるのに対し、残りの他方の短辺側の端面が非入光端面819dとされる。従って、本実施形態に係る非入光端面819dは、短辺側の入光端面819bに対しては非入光反対端面819d1となり且つ一対の長辺側の入光端面819bに対しては非入光側端面819d2となっている。このように本実施形態に係るバックライト装置812は、導光板819がその3つの辺部に倣って配される3つのLED基板818及びそれらに実装された各LED817から入光される、3辺入光タイプとされている。そして、波長変換部820は、各LED基板818と各入光端面819bとの間にそれぞれ介在する形で3つが配置されている。これにより、各LED基板818の各LED817から発せられた光は、各波長変換部820にて波長変換されて導光板819の各入光端面819bに入射されるようになっている。
 <実施形態10>
 本発明の実施形態10を図20によって説明する。この実施形態10では、上記した実施形態8からLED基板918及び波長変換部920の設置数を変更したものを示す。なお、上記した実施形態8と同様の構造、作用及び効果について重複する説明は省略する。本実施形態に係るバックライト装置912では、図20に示すように、LED917及びLED基板918が、長辺側の両端部と、短辺側の両端部と、にそれぞれ配された構成、つまり外周側端部の全周にわたって配された構成となっている。詳しくは、各LED基板918は、実装された各LED917が導光板919の外周端面の全周にわたって対向する形で配されている。従って、本実施形態では、導光板919の外周端面が全周にわたってLED917からの光が入射される入光端面919bとされており、導光板919の外周端面に非入光端面が有されない構成とされている。このように本実施形態に係るバックライト装置912は、導光板919がその4つの辺部に倣って配される4つのLED基板918及びそれらに実装された各LED917から入光される、4辺入光タイプとされている。
 <実施形態11>
 本発明の実施形態11を図21によって説明する。この実施形態11では、上記した実施形態1から波長変換部20の構成を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。実施形態11の波長変換部1120は、図21に示すように、LED1117からの光を波長変換するための蛍光体(波長変換物質)を含有する蛍光体含有部1129と、入光端面1119bの長さ方向であるX軸方向に沿って延在して蛍光体含有部1129を収容する容器1130と、容器1130におけるX軸方向についての一方の端部に配される封止部1131と、を有している。蛍光体含有部1129には、LED1117からの青色の単色光を励起光として、赤色の光(赤色に属する特定の波長領域の可視光線)を発する赤色蛍光体と、緑色(緑色に属する特定の波長領域の可視光線)の光を発する緑色蛍光体と、が分散配合されている。これにより、波長変換部1120は、LED1117の発光光(青色の光、一次光)をその色味(青色)に対して補色となる色味(黄色)を呈する二次光(緑色の光及び赤色の光)に波長変換するものとされる。蛍光体含有部1129は、例えば紫外線硬化樹脂材料中に赤色蛍光体及び緑色蛍光体を分散配合したものを容器1130内に充填した後に、紫外線を照射されることで硬化されてなるものとされる。
 本実施形態に係る波長変換部1120を構成する容器1130におけるX軸方向(入光端面1119bの長さ方向)についての端部には、容器1130よりも光の透過率が低い低透過率部1132が外面のほぼ全域に接する形で設けられている。このような構成によれば、LED1117から発せられて波長変換部1120の容器1130内にて蛍光体含有部1129に含有される蛍光体により波長変換された光(赤色及び緑色の各光)や未変換の光(青色の光)に、X軸方向について外側に向かって進行するものが含まれていた場合であっても、その光が容器1130の端部における外面に接する形で設けられる低透過率部1132を透過し難いものとされる。従って、容器1130内に存在する光が容器1130からX軸方向についての外側へ漏れ出し難いものとなり、光漏れの発生が抑制される。低透過率部1132は、容器1130における長さ方向についての端部の外面に接する形で設けられているので、容器1130内に蛍光体含有部1129を収容した状態において低透過率部1132を設置することが可能となる。つまり、例えば容器1130内に開口した一方の端部を通して蛍光体含有部1129を注入した後に一方の端部を封止部1131により封止してなる汎用的な波長変換部に、低透過率部1132を設置する後加工を施すことで、本実施形態に係る波長変換部1120を得ることが可能となるので、波長変換部1120の製造コストを低下させることができるとともに後加工自体も容易に行うことができる。
 低透過率部1132は、光の反射性に優れた略白色を呈するものとされており、その光の反射率が容器1130における光の反射率よりも高いものとされる。従って、容器1130内に存在する光を低透過率部1132により反射することができ、それにより光を導光板1119の入光端面1119bへと効率的に導きつつ光の透過率を低下させて光漏れを抑制することができる。しかも、低透過率部1132は、反射シート1125と同一材料からなるものとされる。つまり、低透過率部1132の材料が反射シート1125と共通化されているので、低透過率部1132における光の反射率が反射シート1125と同等になって十分に高いものとなるとともに、低透過率部1132の設置に係るコストを低下させることができる。さらには、低透過率部1132は、容器1130におけるX軸方向についての両端部の外面にそれぞれ接する形で一対備えられている。具体的には、低透過率部1132は、容器1130における一方の端部を封止する封止部1131と他方の端部との各外面に接する形で一対が設けられている。これにより、容器1130内に存在する光が、容器1130のX軸方向についての一方の端部を封止する封止部1131及び他方の端部からそれぞれ外側へ漏れ出し難いものとなるので、光漏れの発生がより好適に抑制される。
 <実施形態12>
 本発明の実施形態12を図22によって説明する。この実施形態12では、低透過率部を変更したものを示す。なお、上記した実施形態11と同様の構造、作用及び効果について重複する説明は省略する。本実施形態に係る低透過率部12132は、図22に示すように、光の吸収率が容器12130よりも高いものとされている。詳しくは、低透過率部12132は、容器12130におけるX軸方向(入光端面12119bの長さ方向)についての端部に塗料を塗布してなるものとされ、その塗料が光の吸収性に優れた略黒色を呈するものとされる。これにより、低透過率部12132を容易に且つ低コストでもって容器12130におけるX軸方向についての端部に設置することができる。略黒色を呈する低透過率部12132は、その光の吸収率が容器12130における光の反射率よりも高いものとされる。
 <実施形態13>
 本発明の実施形態13を図23によって説明する。この実施形態13では、上記した実施形態11から低透過率部を変更したものを示す。なお、上記した実施形態11と同様の構造、作用及び効果について重複する説明は省略する。本実施形態に係る低透過率部13232は、図23に示すように、光の殆どを遮る遮光テープ(遮光材)1333からなるものとされる。低透過率部13232を構成する遮光テープ1333は、フィルム状を基材1333aの表裏両面に異なる色の塗料を塗布してなるものとされる。具体的には、遮光テープ1333は、基材1333aのうち内側(容器13230側)の面に略白色を呈する塗料が塗布されてなる光反射層1333bが形成されるのに対し、外側(容器13230側とは反対側)の面に略黒色を呈する塗料が塗布されてなる光吸収層1333cが形成されている。光反射層1333bは、光の反射率が容器13230よりも高いものとされる。低透過率部13232である遮光テープ1333の光反射層1333bにて反射された光は、波長変換部13220の出光面13220bから出射して導光板13219の入光端面13219bへと効率的に導かれるものとされる。
 <実施形態14>
 本発明の実施形態14を図24によって説明する。この実施形態14では、上記した実施形態13から低透過率部を変更したものを示す。なお、上記した実施形態13と同様の構造、作用及び効果について重複する説明は省略する。本実施形態に係る低透過率部14332を構成する遮光テープ14333は、図24に示すように、基材14333aの表裏両面に光吸収層14333cを形成してなるものとされる。これにより、容器14330内に存在して容器14330におけるX軸方向(入光端面14319bの長さ方向)についての端部へ向かう光を低透過率部14332である遮光テープ14333の光吸収層14333cにより効率的に吸収し、もって光漏れを抑制することができる。
 <実施形態15>
 本発明の実施形態15を図25によって説明する。この実施形態15では、上記した実施形態11から波長変換部の設置数を変更したものを示す。なお、上記した実施形態11と同様の構造、作用及び効果について重複する説明は省略する。本実施形態に係る波長変換部15420は、図25に示すように、導光板15419の入光端面15419bの長さ方向(X軸方向)に沿って2本が互いに隣り合う形で並んで配されている。2本の波長変換部15420は、互いに同一構造とされるとともに互いの軸線がほぼ一致する形で、LED15417と導光板15419との間の空間にてX軸方向に沿って並んで配置されている。そして、X軸方向に沿って並ぶ2本の波長変換部15420は、容器15430における長さ方向についての一方の端部、つまり低透過率部15432がバックライト装置412におけるX軸方向についての外側に位置するよう配置されている。このような構成によれば、2本の波長変換部15420を構成する各容器15430における長さ方向についての各端部のうち、互いに隣り合うことがない一対の端部からそれぞれ外側へ光が漏れ出し難いものとなるので、光漏れの発生がより好適に抑制される。
 <実施形態16>
 本発明の実施形態16を図26によって説明する。この実施形態16では、上記した実施形態15から波長変換部の設置数を変更したものを示す。なお、上記した実施形態15と同様の構造、作用及び効果について重複する説明は省略する。本実施形態に係る波長変換部16520は、図26に示すように、導光板16519の入光端面16519bの長さ方向(X軸方向)に沿って3本が互いに隣り合う形で並んで配されている。3本の波長変換部16520は、互いの軸線がほぼ一致する形で、LED16517と導光板16519との間の空間にてX軸方向に沿って並んで配置されている。X軸方向に沿って並ぶ3本の波長変換部16520のうち、X軸方向について両端に位置する2本の波長変換部16520については、上記した実施形態15に記載した2本の波長変換部15420と同様の構成とされる。一方、X軸方向に沿って並ぶ3本の波長変換部16520のうち、X軸方向について中央に位置する1本の波長変換部16520には、低透過率部16532が設けられない構成とされる。X軸方向について中央に位置する波長変換部16520は、封止部16531により封止された一方の端部が、X軸方向について図26に示す左側に隣り合う波長変換部16520における他方の端部と対向するのに対し、他方の端部がX軸方向について図26に示す右側に隣り合う波長変換部16520における他方の端部と対向している。従って、3本の波長変換部16520は、長さ方向についての各端部のうち互いに隣り合うことがない一対の端部に選択的に一対の低透過率部16532を配置してなるものとされる。このような構成によれば、2本の波長変換部16520を構成する各容器16530における長さ方向についての各端部のうち、互いに隣り合うことがない一対の端部からそれぞれ外側へ光が漏れ出し難いものとなるので、光漏れの発生がより好適に抑制される。
 <実施形態17>
 本発明の実施形態17を図27によって説明する。この実施形態17では、上記した実施形態1から波長変換部20の構成を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。実施形態17の波長変換部1720は、図27に示すように、LED1717からの光を波長変換するための蛍光体(波長変換物質)を含有する蛍光体含有部1729と、入光端面1719bの長さ方向であるX軸方向に沿って延在して蛍光体含有部1729を収容する容器1730と、容器1730におけるX軸方向についての一方の端部に配される封止部1731と、を有し、波長変換部1720を構成する容器1730におけるX軸方向(入光端面1719bの長さ方向)についての端部には、容器1730よりも光の透過率が低い低透過率部1732が内面のほぼ全域に接する形で設けられている。このような構成によれば、LED1717から発せられて波長変換部1720の容器1730内にて蛍光体含有部1729に含有される蛍光体により波長変換された光(赤色及び緑色の各光)や未変換の光(青色の光)に、X軸方向について外側に向かって進行するものが含まれていた場合であっても、その光が容器1730の端部における内面に接する形で設けられる低透過率部1732を透過し難いものとされる。
 低透過率部1732は、光の反射性に優れた略白色を呈するものとされており、その光の反射率が容器1730における光の反射率よりも高いものとされる。従って、容器1730内に存在する光を低透過率部1732により反射することができ、それにより光を導光板1719の入光端面1719bへと効率的に導きつつ光の透過率を低下させて光漏れを抑制することができる。低透過率部1732は、合成樹脂材料からなり封止部1731の内面に接する形で設けられている。低透過率部1732を構成する合成樹脂材料としては、例えば熱可塑性樹脂材料を用いることができる。この低透過率部1732を構成する合成樹脂材料は、金属材料などに比べると、高い粘性を有しているので、波長変換部1720の製造に際しては、容器1730におけるX軸方向についての端部を開口した状態でその内部に合成樹脂材料からなる低透過率部1732を容易に設置し、その状態で封止部1731を設けることが可能となる。さらには、低透過率部1732は、容器1730におけるX軸方向についての両端部を封止する一対の封止部1731の内面にそれぞれ接する形で一対備えられている。具体的には、低透過率部1732は、容器1730における一方の端部を封止する一方の封止部1731と他方の端部を封止する他方の封止部1731との各内面に接する形で一対が設けられている。これにより、容器1730内に存在する光が、容器1730のX軸方向についての一方の端部を封止する封止部1731及び他方の端部を封止する他方の封止部1731からそれぞれ外側へ漏れ出し難いものとなるので、光漏れの発生がより好適に抑制される。
 <実施形態18>
 本発明の実施形態18を図28によって説明する。この実施形態18では、低透過率部を変更したものを示す。なお、上記した実施形態と同様の構造、作用及び効果について重複する説明は省略する。本実施形態に係る低透過率部20132は、図28に示すように、光の吸収率が容器20130よりも高いものとされている。詳しくは、低透過率部20132は、光の吸収性に優れた略黒色を呈するものとされおり、その光の吸収率が容器20130における光の吸収率よりも高いものとされる。従って、容器20130内に存在して容器20130におけるX軸方向についての端部へ向かう光を低透過率部20132により効率的に吸収することができる。これにより、光漏れを抑制することができる。なお、低透過率部20132に用いる合成樹脂材料(熱可塑性樹脂材料)に混合する顔料または染料の種類や量を適宜に調整することで、低透過率部20132における光の吸収率及び透過率を容易に制御することができる。
 <実施形態19>
 本発明の実施形態19を図29によって説明する。この実施形態19では、上記した実施形態から波長変換部の設置数を変更したものを示す。なお、上記した実施形態と同様の構造、作用及び効果について重複する説明は省略する。本実施形態に係る波長変換部21220は、図29に示すように、導光板21219の入光端面21219bの長さ方向(X軸方向)に沿って2本が互いに隣り合う形で並んで配されている。波長変換部21220を構成する容器21230は、その長さ方向についての一方の端部のみが開口して他方の端部が閉塞された略有底筒型をなしており、開口した一方の端部が封止部21231により封止されている。低透過率部21232は、容器21230における長さ方向についての両端部のうち、一方の端部を封止する封止部21231の内面に接する形で設けられており、他方の端部には設けられていない。
 <実施形態20>
 本発明の実施形態20を図30によって説明する。この実施形態20では、上記した実施形態から波長変換部の設置数を変更したものを示す。なお、上記した実施形態と同様の構造、作用及び効果について重複する説明は省略する。本実施形態に係る波長変換部22320は、導光板22319の入光端面22319bの長さ方向(X軸方向)に沿って223本が互いに隣り合う形で並んで配されている。X軸方向に沿って並ぶ3本の波長変換部22320のうち、X軸方向について両端に位置する2本の波長変換部22320については、上記した実施形態19に記載した2本の波長変換部21220と同様の構成とされる。つまり、X軸方向について両端に位置する2本の波長変換部22320は、その容器22330における長さ方向についての一方の端部のみが開口してそこを封止する封止部22331の内面に接する形で低透過率部22332が設けられるとともに、一方の端部及びそこに配される低透過率部22332がバックライト装置22312におけるX軸方向についての外側に位置するよう配置されている。一方、X軸方向に沿って並ぶ3本の波長変換部22320のうち、X軸方向について中央に位置する1本の波長変換部22320には、低透過率部22332が設けられない構成とされる。
 10...液晶表示装置(表示装置)、10TV...テレビ受信装置、11...液晶パネル(表示パネル)、12...バックライト装置(照明装置)、17...LED(光源)、19...導光板、19a...出光板面、19b...入光端面、20...波長変換部、29...蛍光体含有部(蛍光体)、30...容器、31...低透過率封止部、32...凹凸、33...低屈折率封止部、IF...界面

Claims (11)

  1.  光源と、
     外周端面の少なくとも一部であって前記光源からの光が入射される入光端面と一対の板面のいずれかであって光を出射させる出光板面とを有する導光板と、
     前記光源と前記入光端面との間に介在する形で配されて前記光源からの光を波長変換する波長変換部であって、前記光源からの光を励起光とする蛍光体と、前記入光端面の長さ方向に沿って延在して前記蛍光体を収容する容器と、前記容器における前記長さ方向についての端部を封止し前記容器よりも光の透過率が低い低透過率部と、を有する波長変換部と、を備える照明装置。
  2.  光源と、
     外周端面の少なくとも一部であって前記光源からの光が入射される入光端面と一対の板面のいずれかであって光を出射させる出光板面とを有する導光板と、
     前記光源と前記入光端面との間に介在する形で配されて前記光源からの光を波長変換する波長変換部であって、前記光源からの光を励起光とする蛍光体と、前記入光端面の長さ方向に沿って延在して前記蛍光体を収容する容器と、前記容器における前記長さ方向についての端部の外面又は内面に接する形で設けられて前記容器よりも光の透過率が低い低透過率部と、を有する波長変換部と、を備える照明装置。
  3.  前記低透過率部は、前記容器における前記長さ方向についての端部の外面に接する形で設けられ、
     前記導光板の前記出光板面とは反対側の反対板面と対向する形で配されるとともに光を反射する反射部材を備えており、
     前記低透過率部は、前記反射部材と同一材料からなる請求項2に記載の照明装置。
  4.  前記低透過率部は、前記容器における前記長さ方向についての端部の外面に接する形で設けられ、
     前記容器は、前記長さ方向についての一方の端部が開口する有底筒型をなしていて前記一方の端部を封止する封止部が設けられており、
     前記低透過率部は、前記容器における前記長さ方向についての他方の端部及び前記封止部の各外面に接する形で一対備えられる請求項2に記載の照明装置。
  5.  前記低透過率部は、前記容器における前記長さ方向についての端部の内面に接する形で設けられ、
     前記容器は、前記長さ方向についての端部が開口していてその端部を封止する封止部が設けられており、
     前記低透過率部は、合成樹脂材料からなり前記封止部の内面に接する形で設けられている請求項2に記載の照明装置。
  6.  前記低透過率部は、前記容器よりも光の反射率が高い請求項1から請求項5のいずれか1項に記載の照明装置。
  7.  前記低透過率部は、前記容器よりも光の吸収率が高い請求項1から請求項5のいずれか1項に記載の照明装置。
  8.  前記波長変換部は、前記長さ方向に沿って複数が並んで配されており、
     前記低透過率部は、複数の前記波長変換部における前記長さ方向についての各端部のうち互いに隣り合うことがない一対の端部に選択的に設けられている請求項1から請求項7のいずれか1項に記載の照明装置。
  9.  前記蛍光体は、量子ドット蛍光体とされる請求項1から請求項8のいずれか1項に記載の照明装置。
  10.  請求項1から請求項9のいずれか1項に記載の照明装置と、前記照明装置から照射される光を利用して画像を表示する表示パネルと、を備える表示装置。
  11.  請求項10記載の表示装置を備えるテレビ受信装置。
PCT/JP2016/065536 2015-05-26 2016-05-26 照明装置、表示装置、及びテレビ受信装置 WO2016190379A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-106561 2015-05-26
JP2015106492 2015-05-26
JP2015-106537 2015-05-26
JP2015-106492 2015-05-26
JP2015106537 2015-05-26
JP2015106561 2015-05-26

Publications (1)

Publication Number Publication Date
WO2016190379A1 true WO2016190379A1 (ja) 2016-12-01

Family

ID=57394139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065536 WO2016190379A1 (ja) 2015-05-26 2016-05-26 照明装置、表示装置、及びテレビ受信装置

Country Status (1)

Country Link
WO (1) WO2016190379A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080302A (ja) * 2008-09-26 2010-04-08 Nec Lighting Ltd 照明器具、該照明器具の連結部材、および照明器具組立体
JP2012169271A (ja) * 2011-02-11 2012-09-06 Lg Innotek Co Ltd 表示装置
JP2013218954A (ja) * 2012-04-11 2013-10-24 Sony Corp 発光装置、表示装置および照明装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080302A (ja) * 2008-09-26 2010-04-08 Nec Lighting Ltd 照明器具、該照明器具の連結部材、および照明器具組立体
JP2012169271A (ja) * 2011-02-11 2012-09-06 Lg Innotek Co Ltd 表示装置
JP2013218954A (ja) * 2012-04-11 2013-10-24 Sony Corp 発光装置、表示装置および照明装置

Similar Documents

Publication Publication Date Title
JP6554595B2 (ja) 照明装置、表示装置及びテレビ受信装置
JP6554592B2 (ja) 照明装置、表示装置、及びテレビ受信装置
JP6532179B2 (ja) 照明装置、表示装置、及びテレビ受信装置
JP6603723B2 (ja) 照明装置、表示装置及びテレビ受信装置
JP6422572B2 (ja) 照明装置、表示装置、及びテレビ受信装置
JP5103849B2 (ja) 液晶表示装置
CN107407834B (zh) 照明装置、显示装置以及电视接收装置
JP6496031B2 (ja) 照明装置、表示装置、テレビ受信装置及び波長変換部の製造方法
WO2016190379A1 (ja) 照明装置、表示装置、及びテレビ受信装置
CN108027117B (zh) 照明装置、显示装置以及电视接收装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16800083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16800083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP