WO2016190344A1 - Multibase-type single-axis robot and multibase-type dual single-axis robot - Google Patents
Multibase-type single-axis robot and multibase-type dual single-axis robot Download PDFInfo
- Publication number
- WO2016190344A1 WO2016190344A1 PCT/JP2016/065426 JP2016065426W WO2016190344A1 WO 2016190344 A1 WO2016190344 A1 WO 2016190344A1 JP 2016065426 W JP2016065426 W JP 2016065426W WO 2016190344 A1 WO2016190344 A1 WO 2016190344A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base
- bases
- axis robot
- longitudinal direction
- moving element
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J18/00—Arms
- B25J18/02—Arms extensible
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H21/00—Gearings comprising primarily only links or levers, with or without slides
- F16H21/10—Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H25/00—Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
- F16H25/18—Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
- F16H25/20—Screw mechanisms
Definitions
- the present invention relates to a multi-base single-axis robot and a multi-base double-axis single-axis robot that can be suitably used for positioning devices, moving arms, actuators, and the like.
- the single-axis robot described in Patent Document 1 includes a nut member 9 to which a ball screw shaft 7 is screwed, a motor 11 that rotates the nut member 9, and a movable portion 3 that is integrally attached to the nut member 9.
- the movable part 3 is configured to move along the fixed rail 6 by forward / reverse rotation driving of the nut member 9, but the motor 11 has an axis of the ball screw shaft 7 with respect to the movable part 3. Arranged in the direction.
- the work unit mounting portion can be provided directly on the upper surface of the movable part 3, so that even if the work unit is mounted on the movable part 3, the entire robot is large in the height direction. Therefore, the space of the robot can be saved.
- the relay box 16 functions as a motor storage case.
- the robot can be reduced in size, and from this point, the robot can be saved in space.
- Patent Document 2 Japanese Patent Laid-Open No. 2006-043867
- the multistage telescopic positioning movement device described in this document employs the following technical configurations (1) to (6).
- a pair of driven transmission wheels 21 and 22 of a fixed column member 2 erected on one side of the base 1 is supported, and a linear motion guide groove 23 is provided vertically on the inner surface.
- a pair of intermediate transmission wheels 32 and 33 are supported on the first-stage liftable movable member 3 extending a linear motion slide 31 that is slidably fitted in the linear motion guide groove 23, and the linear motion guide groove 34 is provided vertically.
- the intermediate stage elevating movable member 4 that is the same as the first stage elevating movable member 3 extending the full length of the linear motion slide 41 that is fitted in the linear motion guide groove 34 is provided.
- a guide transmission wheel 71 supported on a fixed block 7 provided on the base 1 and a drive wheel 11 that can rotate integrally with a shaft are arranged vertically.
- a non-slip transmission band 6 whose start end is fixed to the last movable moving member 5 is wound in a meandering manner on each transmission wheel.
- the terminal end 62 of the non-slip transmission band 6 that has passed through the lower intermediate transmission wheel 52 of the final stage elevating movable member 5 is fixed to the starting end 62.
- the multi-stage expansion / contraction positioning / moving device of Patent Document 2 can combine a plurality of elevating movable members by circulating a common non-slip transmission band in an endless manner. In this way, a large amount of movement can be obtained with a small device.
- the multistage telescopic positioning and moving device of Patent Document 2 also has many problems as described below when diverted to a single-axis robot.
- a driving wheel or a transmission wheel is attached to the base 1 or a large number of the movable movable members 3 to 5, and a non-slip transmission band is wound around these wheels while meandering, so that the multi-stage movable movable member is expanded and contracted.
- the transmission means becomes extremely complicated.
- B Since the non-slip transmission band is wound in a meandering manner, there is a drawback that the transmission band becomes longer. The long non-slip transmission band makes the device expensive, and also increases slack and elongation, which may cause errors in the transmission system.
- C Since the non-slip transmission band, drive wheel, and transmission wheel are exposed to the outside, it is necessary to take care to ensure work safety and to prevent foreign matter from entering the transmission system. Consideration to do is necessary.
- the present invention solves the above-described problems and provides a single-axis robot technology that can be made compact while ensuring a large stroke.
- the present invention provides a multi-base type single-axis robot and a multi-base type single-axis robot having the following technical matters.
- the first problem solving means of the present invention is: (1) A plurality of bases, a drive mechanism, and a link mechanism are provided.
- the plurality of bases are combined so as to reciprocate along the longitudinal direction of the plurality of bases so as to face each other, (3)
- the drive mechanism has a moving element that reciprocates the base in the longitudinal direction, (4) Of two adjacent bases selected from the plurality of bases, one base has a mounting surface along the longitudinal direction of the base, the drive mechanism is mounted on the mounting surface, and The moving element is connected to the other base, (5) Each base is connected via the link mechanism so as to freely reciprocate while interlocking with the longitudinal direction of the base, (6) When the drive mechanism is operated to move the moving element back and forth in the longitudinal direction of the base, the base to which the moving element is connected and the other base are connected to the link mechanism.
- the multi-base type single-axis robot is provided that moves forward and backward along the longitudinal direction of the base while interlocking with each other (7).
- the second problem solving means of the present invention is: (1) A plurality of bases and a plurality of drive mechanisms are provided, (2) The plurality of bases are combined so as to be reciprocable along the longitudinal direction of the plurality of bases so that the plurality of bases face each other, (3) The plurality of drive mechanisms have moving elements that can reciprocate along the longitudinal direction of the plurality of bases, (4) Each of the other bases excluding one base among the plurality of bases has an attachment surface along the longitudinal direction of the base, and the drive mechanism is attached to the attachment surface, and the drive The moving element is connected to each of the base to which the mechanism is attached and the adjacent base, (5) When operating each driving mechanism to move each moving element back and forth in the longitudinal direction of the base, each of the bases to which the moving element is connected is the length of the base.
- the present invention provides a multi-base type single-axis robot characterized by moving forward and backward in a direction (6).
- the third problem solving means of the present invention is: (1) comprising two or more multibase type single axis robots selected from the multibase type single axis robot according to the first problem solving means and / or the multibase type single axis robot according to the first problem solving means; (2) Provided is a multi-base type single-axis robot characterized in that the plurality of multi-base type single-axis robots are arranged so as to be capable of cooperating with each other (3). .
- the multi-base type single-axis robot and the multi-base type single-axis robot according to the present invention have the following effects.
- a conventional single-axis robot used when moving a workpiece in a factory or the like is a single base type having only one base.
- the stroke that can move the workpiece is limited within the range of the effective length of the single base. Therefore, the workpiece cannot be moved with a large stroke exceeding the limit amount.
- the single-axis robot of the present invention is a multi-base type having a plurality of bases, the total effective length of the plurality of bases can be the maximum stroke.
- the multi-base type single-axis robot of the present invention can be applied to work in a wide range of strokes from a short stroke to a long stroke, and the versatility is high. .
- C In order to secure a stroke of “5 m” with a conventional single base type single-axis robot, a base longer than that, for example, a base with a total length of “5.5 m” is required.
- a stroke of “maximum 20 m” and a stroke of “maximum 30 m” can be secured with three bases.
- each base that can reciprocate freely expands and contracts in the length direction. Therefore, if the total length of each base is "5.5 m”, each base is "5 m”. .5 m "contracted state, which can save a lot of space and provide a long stroke single axis robot with very compact size.
- each base is connected via a link mechanism.
- each base can be reciprocated by one drive mechanism, the number of components is reduced.
- the configuration can be simplified, and accordingly, labor saving and cost reduction of the assembly work of the single-axis robot can be achieved.
- the link mechanism used in the multi-base type single-axis robot of the present invention has a function of appropriately holding each base in a stopped state or an operating state, and therefore, each base is dispersed or detached. Is blocked.
- F In the multi-base type single-axis robot of the present invention, when the other bases except for one base are reciprocated via the respective driving mechanisms, the amount of movement of each reciprocable base is individually determined.
- the “multi-base type single-axis robot” of the present invention including two or more “multi-base type single-axis robots” can be obtained by cooperating a plurality of “multi-base type single-axis robots”. Work that cannot be accomplished by the group alone can be performed. Such a dual type robot can also handle each base that can reciprocate according to the situation at the work site.
- FIG. 1 is a front view of a multi-base type single-axis robot according to a first embodiment of the present invention, a longitudinal sectional view of main parts, and a front view of a partially cutaway state.
- FIG. 2 is a front view of a left-handed state and a right-handed state of the multi-base type single-axis robot of FIG. 1. It is the front view and principal part longitudinal cross-sectional view of the partially notched state of the multi-base type single axis robot by the 2nd Embodiment of this invention.
- FIG. 4 is a front view of the multi-base type single-axis robot of FIG. 3 in a left motion state and a right motion state. It is a principal part longitudinal cross-sectional view of 1st and 2nd embodiment of the multi-base type
- FIGS. 1-10 A first embodiment of a multi-base type single-axis robot according to the present invention will be described with reference to FIGS.
- Each component of the multi-base type single-axis robot shown in FIGS. 1 and 2 is made of a material having excellent mechanical characteristics. Typically these are made of a metallic material such as steel or aluminum. Some components may be made from synthetic resins (including FRP) or composite materials. In addition, off-the-shelf products (commercial products) are often used as components such as an electric motor, a transmission band, and a cylinder.
- the multi-base type single-axis robot shown in FIGS. 1 and 2 includes a plurality of bases 11a to 11e, a drive mechanism wp21, and a link mechanism 31.
- the bases 11a to 11e are long in any one direction among front and rear, left and right, and top and bottom. In the example of FIGS. 1 and 2, each of the bases 11a to 11e is long in the left-right direction of FIGS. Of the bases 11a to 11e, the lowermost base 11a has a solid or hollow cross section of a quadrangle. Each of the bases 11b to 11e other than the lowermost base 11a is an inverted U-shaped square channel type having an open bottom surface.
- each of the other bases 11a to 11d except the base 11e has a pair of guide rails 12 attached to the upper surface. More specifically, the pair of guide rails 12 are provided on the upper surface front side and the upper surface rear side of each of the bases 11a to 11d. The pair of guide rails 12 extend along the left-right direction (longitudinal direction) in FIG.
- the channel-type bases 11b to 11e have grooves 13 on the front lower surface and the rear lower surface. More specifically, a groove-shaped member 14 having an open lower surface groove 13 is attached to the front lower surface and the rear lower surface of the bases 11b to 11e, and thus the grooves 13 are formed in the bases 11b to 11e.
- each base 11b to 11e has two channel members 14 on the front lower surface and two channel members 14 on the rear lower surface, so that there are four for each base. These four groove-shaped members 14 having the groove-shaped members 14 are provided symmetrically on the left and right and front and rear. As can be seen from FIG.
- the distance between the left and right grooves 13 corresponds to the distance between the left and right guide rails 12, and therefore the guide rails 12 and the grooves 13 corresponding to each other are fitted.
- a sliding member having a sliding property or a rotatable rolling member (for example, a ball retainer) is usually interposed between the guide rail 12 and the groove 13. Often incorporated into the groove 13. Further, the groove 13 may be replaced with a roller or a wheel.
- the multi-base type single-axis robot shown in FIGS. 1 and 2 includes a base 11b on the base 11a, a base 11c on the base 11b, a base 11d on the base 11c, and a base 11e on the base 11d.
- Bases 11a to 11e are stacked in multiple layers. In this case, the two bases adjacent to each other in the vertical direction are fitted so as to be relatively slidable between the guide rail 12 and the groove 13. Accordingly, the bases 11a to 11e are assembled so as to be reciprocally movable (stretchable) in the longitudinal direction of the base.
- the drive mechanism 21 includes a screw screw shaft 22, a nut type moving element 23, an electric motor (motor) 24, and a coupling 25.
- the screw shaft 22 and the moving element 23 may be in the form of a well-known “ball screw” in which a screw shaft, a nut, and a ball are combined together.
- the electric motor 23 may be any selected from known motors such as an AC motor, a DC motor, a servo motor, and a stepping motor.
- the coupling 25 may also be a well-known one that linearly couples the shafts.
- the nut-type moving element 23 is screwed to the screw shaft 22, so that the moving element 23 moves in the axial direction of the screw shaft 22 as the screw shaft 22 rotates forward and backward. Move forward or backward.
- the screw shaft 22 provided with the moving element 23 is disposed on the base 11a along the longitudinal direction of the base 11a, and both ends of the screw shaft 22 are rotatably supported via a pair of bearing stands 26 attached to the upper surface of the base 11a.
- the drive mechanism 21 is attached to the attachment surface with the upper surface of the base 11a as the attachment surface.
- the electric motor 24 is attached to the base 11 a via a support bracket 27 and connected to the right end of the screw shaft 22 via a coupling 25.
- the moving element 23 screwed to the screw shaft 22 is connected to the base 11b.
- the link mechanism 31 includes a plurality of long link pieces 32 and a plurality of short link pieces 33, and these link pieces are assembled in a pantograph shape via a plurality of pins 34 and 35.
- the pantograph-type link mechanism 31 is foldable in the vertical direction (vertical direction) in FIG. 1A, for example, and can be expanded and contracted in a predetermined direction.
- the attachment portions 15 are respectively provided on a part of the bases 11 a to 11 e (front in the illustrated example). Are arranged on the front side of the bases 11a to 11e and attached to the attachment portions 15 of the bases 11a to 11e via pins (center pins) 34, respectively.
- the multi-base type single-axis robot of the embodiment shown in FIG. 1 fixes the base 11a to a floor or the like as a fixed base and operates the electric motor 24 of the drive mechanism 21.
- the electric motor 24 is rotated forward or backward, as shown in FIGS. 2A and 2B, the bases 11a to 11e move forward or backward in the longitudinal direction. More specifically, when the electric motor 24 rotates forward or backward to rotate the screw shaft 22 in the same direction, the moving element 23 moves to the left or right in FIG. When the moving element 23 moves left or right, the base 11b connected to the moving element 23 also moves left or right.
- the bases 11a to 11e are connected via the link mechanism 31, the bases 11c to 11e move in the same direction in synchronization with the left or right movement of the base 11b. In this way, the bases 11a to 11e are displaced from the state of FIG. 1A to the state of FIG. 2A, or from the state of FIG. 1A to the state of FIG. To do.
- the drive mechanism 21 can be any one of the following forms.
- One of them is a cylinder mechanism such as an air cylinder mounted on the base 11a.
- the moving element 23 connected to the base 1b is attached to the tip of the piston rod of the cylinder mechanism.
- the other one is a timing belt transmission mechanism that is also mounted on the base 11a and rotates forward and backward in response to power transmission from the electric motor.
- the moving element 23 is attached to the timing belt of the timing belt transmission mechanism, and the moving element 23 is connected to the base 11b.
- the other one is a linear motor mounted on the base 11a, and this linear motor travels the moving element 23 connected to the base 11b in an electromagnetic drive type or a piezo element drive type.
- the multi-base type single-axis robot shown in FIGS. 3 and 4 does not include the link mechanism 31 used in the first embodiment shown in FIGS. Therefore, in the embodiment of FIGS. 3 and 4, the drive mechanism 21 is mounted on each of the four bases 11a to 11d except for the uppermost base, as in the previous example.
- the moving element 23 mounted on the base 11a is connected to the base 11b
- the moving element 23 mounted on the base 11b is connected to the base 11c
- the moving element 23 mounted on the base 11c is connected to the base 11d.
- the moving element 23 mounted on the base 11d is connected to the base 11e.
- two upper and lower adjacent bases for example, a relatively upper base 11b and the like reciprocate relative to a relatively lower base 11a and the like.
- a pair of stoppers that collide with each other at the left limit movement position of the base 11b so that the base 11b that moves to the left limit or moves to the right limit in FIG.
- a pair of stoppers that collide with each other at the right limit movement position of the base 11b are provided.
- the groove member 14 also serves as one of the stoppers.
- a stopper 16 corresponding to the groove member 14 is provided on the other base.
- the operation of the multi-base type single-axis robot of the second embodiment shown in FIGS. 3 to 4 is substantially the same as that of the first embodiment, but the electric motor of the drive mechanism 21 on each base. 24 is operated to rotate the electric motor 24 at each stage forward and backward, and the bases 11a to 11e are reciprocated as shown in FIGS.
- the bases 11b to 11e can be operated in various ways.
- the second embodiment can employ a cylinder mechanism, a timing belt transmission mechanism, a linear motor, or the like as the drive mechanism 21.
- the bases 11a to 11e are in a horizontal state, but these bases 11a to 11e are used in a vertical state or an inclined state. Sometimes. Further, when the multi-base single-axis robot is movable, for example, the base 11a or other base may be equipped with wheels, outriggers, and the like.
- the multi-base type single-axis robot shown in FIG. 5 (A) uses two of the multi-base type single-axis robots shown in FIGS. 1 and 2, and these are spaced at a predetermined interval. It is installed on the floor.
- the multi-base type single-axis robot shown in FIG. 5B uses two multi-base type single-axis robots shown in FIGS. It is installed on the floor.
- the multi-base type single-axis robots shown in FIGS. 5A and 5B both handle the workpiece W in cooperation with the two multi-base type single-axis robots.
- the multi-base type single-axis robot and the multi-base type single-axis robot according to the present invention can ensure a large stroke while maintaining compactness, and can be suitably used as a positioning device, a moving arm, an actuator, and the like. The possibility of industrial use is high.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
- Transmission Devices (AREA)
Abstract
Provided is a single-axis robot in which a plurality of bases 11a-11e are assembled so as to face each other and to freely reciprocate along the lengthwise direction of the bases. A drive mechanism 21 has a movement element 23 that moves the bases reciprocally along the lengthwise direction of the base. One base 11a among two adjacent bases 11a, 11b has an attachment surface along the lengthwise direction thereof, and the drive mechanism 21 is attached to the attachment surface. The movement element 23 is connected to the other base 11b. The bases 11a-11e are connected via a link mechanism 31 so as to be able to reciprocate in an interlocked manner along the lengthwise direction of the bases. Due to this configuration, a compact single-axis robot can be provided while securing a large stroke.
Description
本発明は位置決め装置、ムービングアーム、アクチュエータ等に好適に用いることができるマルチベース型単軸ロボット及びマルチベース型複式単軸ロボットに関するものである。
The present invention relates to a multi-base single-axis robot and a multi-base double-axis single-axis robot that can be suitably used for positioning devices, moving arms, actuators, and the like.
周知のとおり、自動車その他の各種の製品の製造分野においては、ワークの搬送手段として単軸ロボットが広く用いられている。この単軸ロボットの典型的な例が特許文献1(特開平07-276269号公報)に開示されている。
As is well known, single-axis robots are widely used as means for transporting workpieces in the field of manufacturing automobiles and other various products. A typical example of this single-axis robot is disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 07-276269).
この特許文献1に記載された単軸ロボットは、ボールねじ軸7が螺合するナット部材9と、このナット部材9を回転させるモータ11と、ナット部材9に一体に装着された可動部3とから成っており、ナット部材9の正逆回転駆動によって可動部3が固定レール6に沿って移動するように構成されているが、モータ11は、可動部3に対してボールねじ軸7の軸線方向にずらせて配置されている。このような単軸ロボットを用いると、作業ユニットの取付部分は、可動部3の上面に直接設けることができるので、可動部3に作業ユニットを装着しても、ロボット全体が高さ方向に大型化するのを抑えることができ、従って、ロボットを省スペース化することができる。
The single-axis robot described in Patent Document 1 includes a nut member 9 to which a ball screw shaft 7 is screwed, a motor 11 that rotates the nut member 9, and a movable portion 3 that is integrally attached to the nut member 9. The movable part 3 is configured to move along the fixed rail 6 by forward / reverse rotation driving of the nut member 9, but the motor 11 has an axis of the ball screw shaft 7 with respect to the movable part 3. Arranged in the direction. When such a single-axis robot is used, the work unit mounting portion can be provided directly on the upper surface of the movable part 3, so that even if the work unit is mounted on the movable part 3, the entire robot is large in the height direction. Therefore, the space of the robot can be saved.
特許文献1の単軸ロボットは、また、信号線及び中継端子等を収納するための中継ボックス16内にモータ11が配置されているので、中継ボックス16がモータ収納用ケースとして機能し、単軸ロボットを小型化することができ、この点からもロボットを省スペース化することができる。
In the single-axis robot of Patent Document 1, since the motor 11 is disposed in the relay box 16 for storing signal lines, relay terminals, and the like, the relay box 16 functions as a motor storage case. The robot can be reduced in size, and from this point, the robot can be saved in space.
しかし、特許文献1の単軸ロボットにおいて可動部3のストロークを大きくしようとすると、ボールねじ軸7は、長尺としなければならないが、このようにすると、長尺のボールねじ軸7を支持するための支持ブロック(ベース)8も大型化することになる。従って、特許文献1の単軸ロボットにおいて、可動部のストロークを大きくしようとする場合には、ロボットの長大化を回避することが要求される。
However, when trying to increase the stroke of the movable part 3 in the single-axis robot of Patent Document 1, the ball screw shaft 7 must be long, but in this case, the long ball screw shaft 7 is supported. Therefore, the support block (base) 8 is also increased in size. Therefore, in the single-axis robot disclosed in Patent Document 1, in order to increase the stroke of the movable part, it is required to avoid the lengthening of the robot.
上記のような課題を解決するため、特許文献2(特開2006-043867号公報)に開示された技術を参照することができる。この文献に記載の多段伸縮位置決め移動装置は、簡易な低床の構造で大きな移動量を得るために、下記(1)乃至(6)の技術的構成を採用している。
In order to solve the above problems, the technique disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2006-043867) can be referred to. In order to obtain a large amount of movement with a simple low-floor structure, the multistage telescopic positioning movement device described in this document employs the following technical configurations (1) to (6).
(1)基台1の片側に立設した固定柱部材2の一対の従動伝動輪21,22を支持し、内側面に直動ガイド溝23を垂直に設ける。
(2)直動ガイド溝23に滑嵌する直動スライド31を延在した初段昇降可動部材3に一対の中間伝動輪32、33を支持し、直動ガイド溝34を垂直に設ける。
(3)直動ガイド溝34に滑嵌する直動スライド41を全長に延在した初段昇降可動部材3と同一の中間段昇降可動部材4を設け、このようにして順次同様に複数段の昇降可動部材を組合せる。
(4)基台1に設けた固定ブロック7に支持したガイド伝動輪71と軸一体回転自在な駆動輪11を上下に配置する。
(5)最終段の昇降可動部材5に始端を止着したノンスリップ伝動帯6を各伝動輪に対して蛇行状に巻き掛けする。
(6)最終段昇降可動部材5の下中間伝動輪52を経たノンスリップ伝動帯6の終端62を始端62に止着する。 (1) A pair of driven transmission wheels 21 and 22 of a fixed column member 2 erected on one side of the base 1 is supported, and a linear motion guide groove 23 is provided vertically on the inner surface.
(2) A pair of intermediate transmission wheels 32 and 33 are supported on the first-stage liftable movable member 3 extending a linear motion slide 31 that is slidably fitted in the linear motion guide groove 23, and the linear motion guide groove 34 is provided vertically.
(3) The intermediate stage elevating movable member 4 that is the same as the first stage elevating movable member 3 extending the full length of the linear motion slide 41 that is fitted in the linearmotion guide groove 34 is provided. Combine movable members.
(4) A guide transmission wheel 71 supported on a fixed block 7 provided on thebase 1 and a drive wheel 11 that can rotate integrally with a shaft are arranged vertically.
(5) A non-slip transmission band 6 whose start end is fixed to the last movable moving member 5 is wound in a meandering manner on each transmission wheel.
(6) The terminal end 62 of the non-slip transmission band 6 that has passed through the lower intermediate transmission wheel 52 of the final stage elevating movable member 5 is fixed to the starting end 62.
(2)直動ガイド溝23に滑嵌する直動スライド31を延在した初段昇降可動部材3に一対の中間伝動輪32、33を支持し、直動ガイド溝34を垂直に設ける。
(3)直動ガイド溝34に滑嵌する直動スライド41を全長に延在した初段昇降可動部材3と同一の中間段昇降可動部材4を設け、このようにして順次同様に複数段の昇降可動部材を組合せる。
(4)基台1に設けた固定ブロック7に支持したガイド伝動輪71と軸一体回転自在な駆動輪11を上下に配置する。
(5)最終段の昇降可動部材5に始端を止着したノンスリップ伝動帯6を各伝動輪に対して蛇行状に巻き掛けする。
(6)最終段昇降可動部材5の下中間伝動輪52を経たノンスリップ伝動帯6の終端62を始端62に止着する。 (1) A pair of driven
(2) A pair of
(3) The intermediate stage elevating movable member 4 that is the same as the first stage elevating movable member 3 extending the full length of the linear motion slide 41 that is fitted in the linear
(4) A guide transmission wheel 71 supported on a fixed block 7 provided on the
(5) A non-slip transmission band 6 whose start end is fixed to the last movable moving member 5 is wound in a meandering manner on each transmission wheel.
(6) The terminal end 62 of the non-slip transmission band 6 that has passed through the lower intermediate transmission wheel 52 of the final stage elevating movable member 5 is fixed to the starting end 62.
特許文献2の多段伸縮位置決め移動装置は、1本の共通するノンスリップ伝動帯を無端状に巡らせることにより複数段の昇降可動部材を組み合わせることが可能である。このようにすると、大きな移動量を小型の装置で得ることができる。
The multi-stage expansion / contraction positioning / moving device of Patent Document 2 can combine a plurality of elevating movable members by circulating a common non-slip transmission band in an endless manner. In this way, a large amount of movement can be obtained with a small device.
しかし、特許文献2の多段伸縮位置決め移動装置も、単軸ロボットに転用する場合に、下記の如き多数の課題を有する。
(a)基台1や多数の昇降可動部材3乃至5に駆動輪や伝動輪を取り付け、これら輪にノンスリップ伝動帯を蛇行しつつ巻き掛けし、多段の昇降可動部材を伸縮させるので、そのベルト伝動手段がきわめて煩雑となる。
(b)ノンスリップ伝動帯は蛇行状に巻き掛けられるために伝動帯が長尺化する欠点がある。長尺のノンスリップ伝動帯は、装置を高価とし、また、弛みや伸びも大きくなるので、伝動系に誤差を発生することにもなる。
(c)ノンスリップ伝動帯、駆動輪、伝動輪が外部に露出した状態にあるので、作業上の安全性を確保するための配慮が必要となり、また、その伝動系へ異物が侵入するのを回避する配慮も必要になる。 However, the multistage telescopic positioning and moving device of Patent Document 2 also has many problems as described below when diverted to a single-axis robot.
(A) A driving wheel or a transmission wheel is attached to thebase 1 or a large number of the movable movable members 3 to 5, and a non-slip transmission band is wound around these wheels while meandering, so that the multi-stage movable movable member is expanded and contracted. The transmission means becomes extremely complicated.
(B) Since the non-slip transmission band is wound in a meandering manner, there is a drawback that the transmission band becomes longer. The long non-slip transmission band makes the device expensive, and also increases slack and elongation, which may cause errors in the transmission system.
(C) Since the non-slip transmission band, drive wheel, and transmission wheel are exposed to the outside, it is necessary to take care to ensure work safety and to prevent foreign matter from entering the transmission system. Consideration to do is necessary.
(a)基台1や多数の昇降可動部材3乃至5に駆動輪や伝動輪を取り付け、これら輪にノンスリップ伝動帯を蛇行しつつ巻き掛けし、多段の昇降可動部材を伸縮させるので、そのベルト伝動手段がきわめて煩雑となる。
(b)ノンスリップ伝動帯は蛇行状に巻き掛けられるために伝動帯が長尺化する欠点がある。長尺のノンスリップ伝動帯は、装置を高価とし、また、弛みや伸びも大きくなるので、伝動系に誤差を発生することにもなる。
(c)ノンスリップ伝動帯、駆動輪、伝動輪が外部に露出した状態にあるので、作業上の安全性を確保するための配慮が必要となり、また、その伝動系へ異物が侵入するのを回避する配慮も必要になる。 However, the multistage telescopic positioning and moving device of Patent Document 2 also has many problems as described below when diverted to a single-axis robot.
(A) A driving wheel or a transmission wheel is attached to the
(B) Since the non-slip transmission band is wound in a meandering manner, there is a drawback that the transmission band becomes longer. The long non-slip transmission band makes the device expensive, and also increases slack and elongation, which may cause errors in the transmission system.
(C) Since the non-slip transmission band, drive wheel, and transmission wheel are exposed to the outside, it is necessary to take care to ensure work safety and to prevent foreign matter from entering the transmission system. Consideration to do is necessary.
本発明は、上記のような課題を解決し、大きなストロークを確保しつつコンパクト化することができる単軸ロボット技術を提供するものである。
The present invention solves the above-described problems and provides a single-axis robot technology that can be made compact while ensuring a large stroke.
本発明は、上記の課題を解決するため、下記の技術的事項を有するマルチベース型単軸ロボット及びマルチベース型複式単軸ロボットを提供する。
本発明の第1の課題解決手段は、
(1)複数のベースと駆動機構とリンク機構と備え、
(2)前記複数のベースは、それぞれ互いに対面するように前記複数のベースの長手方向に沿って往復動自在となるように組み合わせられ、
(3)前記駆動機構は、前記ベースを長手方向に往復動する移動素子を有し、
(4)前記複数のベースから選択された隣り合う2つのベースのうち、一方のベースには当該ベースの長手方向に沿う取付け面を有し、前記取付け面に前記駆動機構が取り付けられ、かつ、他方のベースには前記移動素子が連結され、
(5)前記ベースの長手方向に連動しながら往復動自在に各ベースが前記リンク機構を介して連結され、
(6)前記駆動機構を運転して前記移動素子を前記ベースの長手方向に往動したり復動したりする際に、前記移動素子が連結された前記ベースと他のベースが前記リンク機構を介して連動しつつ当該ベースの長手方向に沿って往動したり復動したりする
(7)ことを特徴とするマルチベース型単軸ロボット
を提供するものである。
本発明の第2の課題解決手段は、
(1)複数のベースと複数の駆動機構とを備え、
(2)前記複数のベースがそれぞれ互いに対面するように前記複数のベースの長手方向に沿って往復動自在となるように組み合わせられ、
(3)前記複数の駆動機構は、前記複数のベースの長手方向に沿って往復動自在な移動素子を有し、
(4)前記複数のベースのうち一つのベースを除いた他のベースの各々は、当該ベースの長手方向に沿う取付け面を有し、前記取付け面に前記駆動機構が取り付けられ、かつ、この駆動機構が取り付けられたベースと隣接するベースの各々には前記移動素子が連結され、
(5)前記各駆動機構を運転して前記各移動素子を前記ベースの長手方向に往動したり復動したりする際に、前記移動素子が連結された前記ベースの各々がそのベースの長手方向に往動したり復動したりする
(6)ことを特徴とするマルチベース型単軸ロボット
を提供するものである。
本発明の第3の課題解決手段は、
(1)第1の課題解決手段によるマルチベース型単軸ロボット及び/又は第1の課題解決手段によるマルチベース型単軸ロボットから選択された二基以上のマルチベース型単軸ロボットを備え、
(2)前記複数のマルチベース型単軸ロボットが協働作業することができるように相対して配置されている
(3)ことを特徴とするマルチベース型複式単軸ロボット
を提供するものである。 In order to solve the above-described problems, the present invention provides a multi-base type single-axis robot and a multi-base type single-axis robot having the following technical matters.
The first problem solving means of the present invention is:
(1) A plurality of bases, a drive mechanism, and a link mechanism are provided.
(2) The plurality of bases are combined so as to reciprocate along the longitudinal direction of the plurality of bases so as to face each other,
(3) The drive mechanism has a moving element that reciprocates the base in the longitudinal direction,
(4) Of two adjacent bases selected from the plurality of bases, one base has a mounting surface along the longitudinal direction of the base, the drive mechanism is mounted on the mounting surface, and The moving element is connected to the other base,
(5) Each base is connected via the link mechanism so as to freely reciprocate while interlocking with the longitudinal direction of the base,
(6) When the drive mechanism is operated to move the moving element back and forth in the longitudinal direction of the base, the base to which the moving element is connected and the other base are connected to the link mechanism. The multi-base type single-axis robot is provided that moves forward and backward along the longitudinal direction of the base while interlocking with each other (7).
The second problem solving means of the present invention is:
(1) A plurality of bases and a plurality of drive mechanisms are provided,
(2) The plurality of bases are combined so as to be reciprocable along the longitudinal direction of the plurality of bases so that the plurality of bases face each other,
(3) The plurality of drive mechanisms have moving elements that can reciprocate along the longitudinal direction of the plurality of bases,
(4) Each of the other bases excluding one base among the plurality of bases has an attachment surface along the longitudinal direction of the base, and the drive mechanism is attached to the attachment surface, and the drive The moving element is connected to each of the base to which the mechanism is attached and the adjacent base,
(5) When operating each driving mechanism to move each moving element back and forth in the longitudinal direction of the base, each of the bases to which the moving element is connected is the length of the base. The present invention provides a multi-base type single-axis robot characterized by moving forward and backward in a direction (6).
The third problem solving means of the present invention is:
(1) comprising two or more multibase type single axis robots selected from the multibase type single axis robot according to the first problem solving means and / or the multibase type single axis robot according to the first problem solving means;
(2) Provided is a multi-base type single-axis robot characterized in that the plurality of multi-base type single-axis robots are arranged so as to be capable of cooperating with each other (3). .
本発明の第1の課題解決手段は、
(1)複数のベースと駆動機構とリンク機構と備え、
(2)前記複数のベースは、それぞれ互いに対面するように前記複数のベースの長手方向に沿って往復動自在となるように組み合わせられ、
(3)前記駆動機構は、前記ベースを長手方向に往復動する移動素子を有し、
(4)前記複数のベースから選択された隣り合う2つのベースのうち、一方のベースには当該ベースの長手方向に沿う取付け面を有し、前記取付け面に前記駆動機構が取り付けられ、かつ、他方のベースには前記移動素子が連結され、
(5)前記ベースの長手方向に連動しながら往復動自在に各ベースが前記リンク機構を介して連結され、
(6)前記駆動機構を運転して前記移動素子を前記ベースの長手方向に往動したり復動したりする際に、前記移動素子が連結された前記ベースと他のベースが前記リンク機構を介して連動しつつ当該ベースの長手方向に沿って往動したり復動したりする
(7)ことを特徴とするマルチベース型単軸ロボット
を提供するものである。
本発明の第2の課題解決手段は、
(1)複数のベースと複数の駆動機構とを備え、
(2)前記複数のベースがそれぞれ互いに対面するように前記複数のベースの長手方向に沿って往復動自在となるように組み合わせられ、
(3)前記複数の駆動機構は、前記複数のベースの長手方向に沿って往復動自在な移動素子を有し、
(4)前記複数のベースのうち一つのベースを除いた他のベースの各々は、当該ベースの長手方向に沿う取付け面を有し、前記取付け面に前記駆動機構が取り付けられ、かつ、この駆動機構が取り付けられたベースと隣接するベースの各々には前記移動素子が連結され、
(5)前記各駆動機構を運転して前記各移動素子を前記ベースの長手方向に往動したり復動したりする際に、前記移動素子が連結された前記ベースの各々がそのベースの長手方向に往動したり復動したりする
(6)ことを特徴とするマルチベース型単軸ロボット
を提供するものである。
本発明の第3の課題解決手段は、
(1)第1の課題解決手段によるマルチベース型単軸ロボット及び/又は第1の課題解決手段によるマルチベース型単軸ロボットから選択された二基以上のマルチベース型単軸ロボットを備え、
(2)前記複数のマルチベース型単軸ロボットが協働作業することができるように相対して配置されている
(3)ことを特徴とするマルチベース型複式単軸ロボット
を提供するものである。 In order to solve the above-described problems, the present invention provides a multi-base type single-axis robot and a multi-base type single-axis robot having the following technical matters.
The first problem solving means of the present invention is:
(1) A plurality of bases, a drive mechanism, and a link mechanism are provided.
(2) The plurality of bases are combined so as to reciprocate along the longitudinal direction of the plurality of bases so as to face each other,
(3) The drive mechanism has a moving element that reciprocates the base in the longitudinal direction,
(4) Of two adjacent bases selected from the plurality of bases, one base has a mounting surface along the longitudinal direction of the base, the drive mechanism is mounted on the mounting surface, and The moving element is connected to the other base,
(5) Each base is connected via the link mechanism so as to freely reciprocate while interlocking with the longitudinal direction of the base,
(6) When the drive mechanism is operated to move the moving element back and forth in the longitudinal direction of the base, the base to which the moving element is connected and the other base are connected to the link mechanism. The multi-base type single-axis robot is provided that moves forward and backward along the longitudinal direction of the base while interlocking with each other (7).
The second problem solving means of the present invention is:
(1) A plurality of bases and a plurality of drive mechanisms are provided,
(2) The plurality of bases are combined so as to be reciprocable along the longitudinal direction of the plurality of bases so that the plurality of bases face each other,
(3) The plurality of drive mechanisms have moving elements that can reciprocate along the longitudinal direction of the plurality of bases,
(4) Each of the other bases excluding one base among the plurality of bases has an attachment surface along the longitudinal direction of the base, and the drive mechanism is attached to the attachment surface, and the drive The moving element is connected to each of the base to which the mechanism is attached and the adjacent base,
(5) When operating each driving mechanism to move each moving element back and forth in the longitudinal direction of the base, each of the bases to which the moving element is connected is the length of the base. The present invention provides a multi-base type single-axis robot characterized by moving forward and backward in a direction (6).
The third problem solving means of the present invention is:
(1) comprising two or more multibase type single axis robots selected from the multibase type single axis robot according to the first problem solving means and / or the multibase type single axis robot according to the first problem solving means;
(2) Provided is a multi-base type single-axis robot characterized in that the plurality of multi-base type single-axis robots are arranged so as to be capable of cooperating with each other (3). .
本発明に係るマルチベース型単軸ロボット及びマルチベース型複式単軸ロボットは、下記の効果を有している。
(a)工場等でワークを動かす際に用いられる従来の単軸ロボットは、ベースが一つのみのシングルベース型である。このようなシングルベース型単軸ロボットは、ワークを移動させることができるストロークがシングルベースの有効長の範囲内に制限される。従って、この制限量を上回るような大きなストロークでワークを動かすことができない。本発明単軸ロボットは、複数のベースを有するマルチベース型であるので、複数のベースの有効長の合計を最大ストロークとすることができる。従って、最大ストロークを大幅に増加することができるので、ワークの移動、搬送、位置決め等を行う単軸ロボットの能力を格段に向上することができる。
(b)また、本発明のマルチベース型単軸ロボットは、ワークを移動させることができるストロークは、ショートストロークからロングストロークまでの広範囲のストロークの作業に適用することができ、汎用性が高くなる。
(c)従来のシングルベース型単軸ロボットで「5m」のストロークを確保するためには、それを上回る長さ、例えば、全長「5.5m」のベースが必要になるが、本発明のマルチベース型単軸ロボットは、例えば、1つのベースの長さが「5.5m」で、それに基づいて得られる最大ストロークが「左往復行程5m+右往復行程5m=10m」であり、2つのベースで「最大20m」のストローク、3つのベースで「最大30m」のストロークを確保することができる。また、本発明のマルチベース型単軸ロボットにおいて、往復動自在な各ベースは、その長さ方向に伸縮自在であるので、各ベースの全長を「5.5m」とすると、各ベースを「5.5m」の収縮状態にすることができ、大幅にスペースを節約することができ、非常にコンパクト化しつつロングストロークの単軸ロボットが得られる。
(d)本発明のマルチベース型単軸ロボットにおいて、各ベースがリンク機構を介して連結されているが、一つの駆動機構で各ベースを往復動させることができるので、構成部材を削減して構成を簡潔化することができ、それに伴って単軸ロボットの組立作業の省力化とコストダウンとが達成することができる。
(e)本発明のマルチベース型単軸ロボットに用いられるリンク機構は、停止状態や作動状態にある各ベースを適切に保持する機能を有し、従って、各ベースが分散したり、離脱する不具合が阻止される。
(f)本発明のマルチベース型単軸ロボットにおいて、1つのベースを除く他のベースが、それぞれの駆動機構を介して往復動する形態であると、往復動自在な各ベースの移動量を個々に操作したり制御したりすることができ、従って、作業現場の状況に応じて往復動自在な各ベースを適切に取り扱うことができる。
(g)二基以上の「マルチベース型単軸ロボット」を備えた本発明の「マルチベース型複式単軸ロボット」は、複数の「マルチベース型単軸ロボット」を協働させることによって、一基のみでは達成することができない作業が実行することができる。このような複式タイプのロボットも、作業現場の状況に応じて往復動自在な各ベースを適切に取り扱うことができる。 The multi-base type single-axis robot and the multi-base type single-axis robot according to the present invention have the following effects.
(A) A conventional single-axis robot used when moving a workpiece in a factory or the like is a single base type having only one base. In such a single base type single-axis robot, the stroke that can move the workpiece is limited within the range of the effective length of the single base. Therefore, the workpiece cannot be moved with a large stroke exceeding the limit amount. Since the single-axis robot of the present invention is a multi-base type having a plurality of bases, the total effective length of the plurality of bases can be the maximum stroke. Therefore, since the maximum stroke can be significantly increased, the ability of the single-axis robot for moving, transporting, positioning, etc., can be significantly improved.
(B) Moreover, the multi-base type single-axis robot of the present invention can be applied to work in a wide range of strokes from a short stroke to a long stroke, and the versatility is high. .
(C) In order to secure a stroke of “5 m” with a conventional single base type single-axis robot, a base longer than that, for example, a base with a total length of “5.5 m” is required. In the base type single-axis robot, for example, the length of one base is “5.5 m”, and the maximum stroke obtained based on the length is “left reciprocation stroke 5 m + right reciprocation stroke 5 m = 10 m”. A stroke of “maximum 20 m” and a stroke of “maximum 30 m” can be secured with three bases. Further, in the multi-base type single-axis robot of the present invention, each base that can reciprocate freely expands and contracts in the length direction. Therefore, if the total length of each base is "5.5 m", each base is "5 m". .5 m "contracted state, which can save a lot of space and provide a long stroke single axis robot with very compact size.
(D) In the multi-base type single-axis robot of the present invention, each base is connected via a link mechanism. However, since each base can be reciprocated by one drive mechanism, the number of components is reduced. The configuration can be simplified, and accordingly, labor saving and cost reduction of the assembly work of the single-axis robot can be achieved.
(E) The link mechanism used in the multi-base type single-axis robot of the present invention has a function of appropriately holding each base in a stopped state or an operating state, and therefore, each base is dispersed or detached. Is blocked.
(F) In the multi-base type single-axis robot of the present invention, when the other bases except for one base are reciprocated via the respective driving mechanisms, the amount of movement of each reciprocable base is individually determined. Therefore, it is possible to appropriately handle each base that can reciprocate according to the situation at the work site.
(G) The “multi-base type single-axis robot” of the present invention including two or more “multi-base type single-axis robots” can be obtained by cooperating a plurality of “multi-base type single-axis robots”. Work that cannot be accomplished by the group alone can be performed. Such a dual type robot can also handle each base that can reciprocate according to the situation at the work site.
(a)工場等でワークを動かす際に用いられる従来の単軸ロボットは、ベースが一つのみのシングルベース型である。このようなシングルベース型単軸ロボットは、ワークを移動させることができるストロークがシングルベースの有効長の範囲内に制限される。従って、この制限量を上回るような大きなストロークでワークを動かすことができない。本発明単軸ロボットは、複数のベースを有するマルチベース型であるので、複数のベースの有効長の合計を最大ストロークとすることができる。従って、最大ストロークを大幅に増加することができるので、ワークの移動、搬送、位置決め等を行う単軸ロボットの能力を格段に向上することができる。
(b)また、本発明のマルチベース型単軸ロボットは、ワークを移動させることができるストロークは、ショートストロークからロングストロークまでの広範囲のストロークの作業に適用することができ、汎用性が高くなる。
(c)従来のシングルベース型単軸ロボットで「5m」のストロークを確保するためには、それを上回る長さ、例えば、全長「5.5m」のベースが必要になるが、本発明のマルチベース型単軸ロボットは、例えば、1つのベースの長さが「5.5m」で、それに基づいて得られる最大ストロークが「左往復行程5m+右往復行程5m=10m」であり、2つのベースで「最大20m」のストローク、3つのベースで「最大30m」のストロークを確保することができる。また、本発明のマルチベース型単軸ロボットにおいて、往復動自在な各ベースは、その長さ方向に伸縮自在であるので、各ベースの全長を「5.5m」とすると、各ベースを「5.5m」の収縮状態にすることができ、大幅にスペースを節約することができ、非常にコンパクト化しつつロングストロークの単軸ロボットが得られる。
(d)本発明のマルチベース型単軸ロボットにおいて、各ベースがリンク機構を介して連結されているが、一つの駆動機構で各ベースを往復動させることができるので、構成部材を削減して構成を簡潔化することができ、それに伴って単軸ロボットの組立作業の省力化とコストダウンとが達成することができる。
(e)本発明のマルチベース型単軸ロボットに用いられるリンク機構は、停止状態や作動状態にある各ベースを適切に保持する機能を有し、従って、各ベースが分散したり、離脱する不具合が阻止される。
(f)本発明のマルチベース型単軸ロボットにおいて、1つのベースを除く他のベースが、それぞれの駆動機構を介して往復動する形態であると、往復動自在な各ベースの移動量を個々に操作したり制御したりすることができ、従って、作業現場の状況に応じて往復動自在な各ベースを適切に取り扱うことができる。
(g)二基以上の「マルチベース型単軸ロボット」を備えた本発明の「マルチベース型複式単軸ロボット」は、複数の「マルチベース型単軸ロボット」を協働させることによって、一基のみでは達成することができない作業が実行することができる。このような複式タイプのロボットも、作業現場の状況に応じて往復動自在な各ベースを適切に取り扱うことができる。 The multi-base type single-axis robot and the multi-base type single-axis robot according to the present invention have the following effects.
(A) A conventional single-axis robot used when moving a workpiece in a factory or the like is a single base type having only one base. In such a single base type single-axis robot, the stroke that can move the workpiece is limited within the range of the effective length of the single base. Therefore, the workpiece cannot be moved with a large stroke exceeding the limit amount. Since the single-axis robot of the present invention is a multi-base type having a plurality of bases, the total effective length of the plurality of bases can be the maximum stroke. Therefore, since the maximum stroke can be significantly increased, the ability of the single-axis robot for moving, transporting, positioning, etc., can be significantly improved.
(B) Moreover, the multi-base type single-axis robot of the present invention can be applied to work in a wide range of strokes from a short stroke to a long stroke, and the versatility is high. .
(C) In order to secure a stroke of “5 m” with a conventional single base type single-axis robot, a base longer than that, for example, a base with a total length of “5.5 m” is required. In the base type single-axis robot, for example, the length of one base is “5.5 m”, and the maximum stroke obtained based on the length is “left reciprocation stroke 5 m + right reciprocation stroke 5 m = 10 m”. A stroke of “maximum 20 m” and a stroke of “maximum 30 m” can be secured with three bases. Further, in the multi-base type single-axis robot of the present invention, each base that can reciprocate freely expands and contracts in the length direction. Therefore, if the total length of each base is "5.5 m", each base is "5 m". .5 m "contracted state, which can save a lot of space and provide a long stroke single axis robot with very compact size.
(D) In the multi-base type single-axis robot of the present invention, each base is connected via a link mechanism. However, since each base can be reciprocated by one drive mechanism, the number of components is reduced. The configuration can be simplified, and accordingly, labor saving and cost reduction of the assembly work of the single-axis robot can be achieved.
(E) The link mechanism used in the multi-base type single-axis robot of the present invention has a function of appropriately holding each base in a stopped state or an operating state, and therefore, each base is dispersed or detached. Is blocked.
(F) In the multi-base type single-axis robot of the present invention, when the other bases except for one base are reciprocated via the respective driving mechanisms, the amount of movement of each reciprocable base is individually determined. Therefore, it is possible to appropriately handle each base that can reciprocate according to the situation at the work site.
(G) The “multi-base type single-axis robot” of the present invention including two or more “multi-base type single-axis robots” can be obtained by cooperating a plurality of “multi-base type single-axis robots”. Work that cannot be accomplished by the group alone can be performed. Such a dual type robot can also handle each base that can reciprocate according to the situation at the work site.
本発明に係るマルチベース型単軸ロボットの第1の実施形態を図1及び図2を参照して説明する。
A first embodiment of a multi-base type single-axis robot according to the present invention will be described with reference to FIGS.
図1及び図2に示されたマルチベース型単軸ロボットの各構成要素は、機械的特性の優れた材質から作られる。典型的には、これらは、スチールやアルミニウムの如き金属材料から成っている。一部の構成要素が合成樹脂(FRPを含む)や複合材から作られることもある。また、電動機、伝動帯、シリンダの如き構成要素は、既製品(市販品)が用いられることが多い。
Each component of the multi-base type single-axis robot shown in FIGS. 1 and 2 is made of a material having excellent mechanical characteristics. Typically these are made of a metallic material such as steel or aluminum. Some components may be made from synthetic resins (including FRP) or composite materials. In addition, off-the-shelf products (commercial products) are often used as components such as an electric motor, a transmission band, and a cylinder.
図1及び図2に示されたマルチベース型単軸ロボットは、複数のベース11a乃至11eと、駆動機構wp21と、リンク機構31とから成っている。
The multi-base type single-axis robot shown in FIGS. 1 and 2 includes a plurality of bases 11a to 11e, a drive mechanism wp21, and a link mechanism 31.
ベース11a乃至11eは、前後、左右、上下のうち任意の一方向に長く形成されている。図1及び図2の例では、各ベース11a乃至11eは、図1及び図2の左右方向に長いものとなっている。ベース11a乃至11eのうちで、最下段のベース11aには中実又は中空の断面が四角形をなしている。最下段のベース11aを除く他の各ベース11b乃至11eは、下面が開放された逆U字形の四角いチャンネル型である。
The bases 11a to 11e are long in any one direction among front and rear, left and right, and top and bottom. In the example of FIGS. 1 and 2, each of the bases 11a to 11e is long in the left-right direction of FIGS. Of the bases 11a to 11e, the lowermost base 11a has a solid or hollow cross section of a quadrangle. Each of the bases 11b to 11e other than the lowermost base 11a is an inverted U-shaped square channel type having an open bottom surface.
図1及び図2において、ベース11eを除く他の各ベース11a乃至11dは、上面に1対のガイドレール12が取り付けられている。更に詳細に述べると、1対のガイドレール12は、ベース11a乃至11dの各々の上面前側部と上面後側部に設けられている。これらの1対のガイドレール12は、図1(A)の左右方向(長手方向)に沿って延びている。
1 and 2, each of the other bases 11a to 11d except the base 11e has a pair of guide rails 12 attached to the upper surface. More specifically, the pair of guide rails 12 are provided on the upper surface front side and the upper surface rear side of each of the bases 11a to 11d. The pair of guide rails 12 extend along the left-right direction (longitudinal direction) in FIG.
図1(B)から明らかなように、チャンネル型のベース11b乃至11eは、その前側下面と後側下面に溝13を有する。更に具体的に述べると、下面開放型の溝13を有する溝形部材14がベース11b乃至11eの前側下面や後側下面にそれぞれ取り付けられ、このようにして溝13が各ベース11b乃至11eに形成されている。一層具体的に述べると、各ベース11b乃至11eは、前側下面に2つの溝形部材14を有し、後側下面に2つの溝形部材14を有し、従って、1つのベース毎に4つの溝形部材14を有する、これらの四つの溝形部材14は、左右及び前後に対称的に設けられている。図1(B)から解るように、左右の溝13の間隔は、左右のガイドレール12の間隔と対応し、従って、相互に対応するガイドレール12と溝13が嵌まり合っている。図示していないが、ガイドレール12と溝13との間には、通常、滑性のある滑り部材や回転自在な転がり部材(例:ボールリテーナ)が介在され、これら部材は、ガイドレール12又は溝13に組み込まれていることが多い。また、溝13は、ローラ又は車輪に置き換えてもよい。
As is clear from FIG. 1 (B), the channel-type bases 11b to 11e have grooves 13 on the front lower surface and the rear lower surface. More specifically, a groove-shaped member 14 having an open lower surface groove 13 is attached to the front lower surface and the rear lower surface of the bases 11b to 11e, and thus the grooves 13 are formed in the bases 11b to 11e. Has been. More specifically, each base 11b to 11e has two channel members 14 on the front lower surface and two channel members 14 on the rear lower surface, so that there are four for each base. These four groove-shaped members 14 having the groove-shaped members 14 are provided symmetrically on the left and right and front and rear. As can be seen from FIG. 1B, the distance between the left and right grooves 13 corresponds to the distance between the left and right guide rails 12, and therefore the guide rails 12 and the grooves 13 corresponding to each other are fitted. Although not shown, a sliding member having a sliding property or a rotatable rolling member (for example, a ball retainer) is usually interposed between the guide rail 12 and the groove 13. Often incorporated into the groove 13. Further, the groove 13 may be replaced with a roller or a wheel.
図1及び図2に示されたマルチベース型単軸ロボットには、ベース11aの上にベース11b、ベース11bの上にベース11c、ベース11cの上にベース11d、ベース11dの上にベース11eという積層の形態でベース11a乃至11eが多段に積まれている。この場合、それぞれ上下に隣接する2つのベースは、ガイドレール12と溝13とで相対的にスライド自在なるように嵌まり合っている。従って、ベース11a乃至11eは、そのベースの長手方向に往復動自在(伸縮自在)なるように集合されている。
The multi-base type single-axis robot shown in FIGS. 1 and 2 includes a base 11b on the base 11a, a base 11c on the base 11b, a base 11d on the base 11c, and a base 11e on the base 11d. Bases 11a to 11e are stacked in multiple layers. In this case, the two bases adjacent to each other in the vertical direction are fitted so as to be relatively slidable between the guide rail 12 and the groove 13. Accordingly, the bases 11a to 11e are assembled so as to be reciprocally movable (stretchable) in the longitudinal direction of the base.
図1及び図2の実施形態において、駆動機構21は、スクリューねじ軸22とナットタイプの移動素子23と電動機(モータ)24とカップリング25とから成っている。ねじ軸22と移動素子23は、例えば、ねじ軸とナットとボールとが一体に組み合わされた周知の「ボールねじ」の形態とすることができる。電動機23は、交流モータ、直流モータ、サーボモータ、ステッピングモータの如き周知のモータから選択された任意のものとすることができる。カップリング25も、軸と軸とを直線的に結合する周知のものとすることができる。
1 and 2, the drive mechanism 21 includes a screw screw shaft 22, a nut type moving element 23, an electric motor (motor) 24, and a coupling 25. The screw shaft 22 and the moving element 23 may be in the form of a well-known “ball screw” in which a screw shaft, a nut, and a ball are combined together. The electric motor 23 may be any selected from known motors such as an AC motor, a DC motor, a servo motor, and a stepping motor. The coupling 25 may also be a well-known one that linearly couples the shafts.
図1及び図2の実施形態において、ナットタイプの移動素子23は、ねじ軸22に螺合しているので、移動素子23は、ねじ軸22の正逆回転にともなってねじ軸22の軸線方向に前進又は後退する。移動素子23を備えたねじ軸22は、ベース11aの長手方向に沿ってベース11a上に配置され、その両端は、ベース11a上面に取り付けられた1対の軸受スタンド26を介して回転自在に支持されている。従って、駆動機構21は、ベース11aの上面を取付け面にしてこの取付け面に取り付けられている。電動機24は、図1(C)に示すように、ベース11a上にサポートブラケット27を介して取り付けられてねじ軸22の右端にカップリング25を介して接続されている。
In the embodiment shown in FIGS. 1 and 2, the nut-type moving element 23 is screwed to the screw shaft 22, so that the moving element 23 moves in the axial direction of the screw shaft 22 as the screw shaft 22 rotates forward and backward. Move forward or backward. The screw shaft 22 provided with the moving element 23 is disposed on the base 11a along the longitudinal direction of the base 11a, and both ends of the screw shaft 22 are rotatably supported via a pair of bearing stands 26 attached to the upper surface of the base 11a. Has been. Accordingly, the drive mechanism 21 is attached to the attachment surface with the upper surface of the base 11a as the attachment surface. As shown in FIG. 1C, the electric motor 24 is attached to the base 11 a via a support bracket 27 and connected to the right end of the screw shaft 22 via a coupling 25.
図1(B)(C)から明らかなように、ねじ軸22に螺合されている移動素子23は、ベース11bに連結されている。
As apparent from FIGS. 1B and 1C, the moving element 23 screwed to the screw shaft 22 is connected to the base 11b.
リンク機構31は、複数の長いリンク片32と複数の短いリンク片33とから成り、これらのリンク片は、複数のピン34、35を介してパンタグラフ型に組み立てられている。このパンタグラフ型のリンク機構31は、例えば、図1(A)の上下方向(垂直方向)に折り畳み自在になっており、従って、所定方向に伸縮させることができる。
The link mechanism 31 includes a plurality of long link pieces 32 and a plurality of short link pieces 33, and these link pieces are assembled in a pantograph shape via a plurality of pins 34 and 35. The pantograph-type link mechanism 31 is foldable in the vertical direction (vertical direction) in FIG. 1A, for example, and can be expanded and contracted in a predetermined direction.
図1及び図2の実施形態では、リンク機構31とベース11a乃至11eとを連結するため、ベース11a乃至11eの一部(図示の例では正面)に取付け部15がそれぞれ設けられ、リンク機構31は、ベース11a乃至11eの正面側に配置されてピン(センターピン)34を介してベース11a乃至11eの取付け部15にそれぞれ取り付けられている。
In the embodiment of FIGS. 1 and 2, in order to connect the link mechanism 31 and the bases 11 a to 11 e, the attachment portions 15 are respectively provided on a part of the bases 11 a to 11 e (front in the illustrated example). Are arranged on the front side of the bases 11a to 11e and attached to the attachment portions 15 of the bases 11a to 11e via pins (center pins) 34, respectively.
図1及び図2に示された実施の形態のマルチベース型単軸ロボットは、ベース11aを床等に固定して固定台とし、駆動機構21の電動機24を運転する。電動機24を正回転又は逆回転すると、図2(A)(B)に示すように、ベース11a乃至11eは、その長手方向に往動又は復動する。更に具体的に述べると、電動機24が正回転又は逆回転してねじ軸22を同方向に回転させると、移動素子23が図1(C)の左方又は右方に移動する。移動素子23が左動又は右動すると、この移動素子23に連結されているベース11bも左動又は右動する。ベース11a乃至11eは、リンク機構31を介して連結されているので、ベース11bの左動又は右動に伴ってベース11c乃至11eも同方向に同期して移動する。このようにして、ベース11a乃至11eは、図1(A)の状態から図2(A)の状態に変位したり、図1(A)の状態から図2(B)の状態に変位したりする。
1 and 2, the multi-base type single-axis robot of the embodiment shown in FIG. 1 fixes the base 11a to a floor or the like as a fixed base and operates the electric motor 24 of the drive mechanism 21. When the electric motor 24 is rotated forward or backward, as shown in FIGS. 2A and 2B, the bases 11a to 11e move forward or backward in the longitudinal direction. More specifically, when the electric motor 24 rotates forward or backward to rotate the screw shaft 22 in the same direction, the moving element 23 moves to the left or right in FIG. When the moving element 23 moves left or right, the base 11b connected to the moving element 23 also moves left or right. Since the bases 11a to 11e are connected via the link mechanism 31, the bases 11c to 11e move in the same direction in synchronization with the left or right movement of the base 11b. In this way, the bases 11a to 11e are displaced from the state of FIG. 1A to the state of FIG. 2A, or from the state of FIG. 1A to the state of FIG. To do.
図1及び図2の実施形態において、駆動機構21は、次の形態のいずれかとすることができる。その一つは、ベース11a上に搭載されたエアシリンダーの如きシリンダ機構である。この場合、シリンダ機構のピストンロッドの先端には、ベース1bに連結された移動素子23が取り付けられる。他の一つは、同じくベース11aに搭載され、電動機の動力伝達を受けて正逆回転するタイミングベルト伝動機構である。タイミングベルト伝動機構のタイミングベルトに移動素子23が取り付けられ、この移動素子23がベース11bに連結される。更に他の一つは、ベース11a上に搭載されたリニアモータであり、このリニアモータは、ベース11bに連結された移動素子23を電磁駆動式又はピエゾ素子駆動式に走行する。
1 and 2, the drive mechanism 21 can be any one of the following forms. One of them is a cylinder mechanism such as an air cylinder mounted on the base 11a. In this case, the moving element 23 connected to the base 1b is attached to the tip of the piston rod of the cylinder mechanism. The other one is a timing belt transmission mechanism that is also mounted on the base 11a and rotates forward and backward in response to power transmission from the electric motor. The moving element 23 is attached to the timing belt of the timing belt transmission mechanism, and the moving element 23 is connected to the base 11b. The other one is a linear motor mounted on the base 11a, and this linear motor travels the moving element 23 connected to the base 11b in an electromagnetic drive type or a piezo element drive type.
次に、本発明に係るマルチベース型単軸ロボットの第2の実施形態を、図3及び図4を参照して説明する。
Next, a second embodiment of the multi-base type single-axis robot according to the present invention will be described with reference to FIGS.
図3及び図4に示されたマルチベース型単軸ロボットは、図1及び図2の第1の実施形態で用いられたリンク機構31を備えていない。従って、図3及び図4の実施形態では、前例と同様にして駆動機構21が最上段のベースを除く4つのベース11a乃至11d上にそれぞれ搭載されている。そして、ベース11aに搭載された移動素子23がベース11bに連結され、ベース11bに搭載された移動素子23がベース11cに連結され、ベース11cに搭載された移動素子23がベース11dに連結され、ベース11dに搭載された移動素子23がベース11eに連結される。
The multi-base type single-axis robot shown in FIGS. 3 and 4 does not include the link mechanism 31 used in the first embodiment shown in FIGS. Therefore, in the embodiment of FIGS. 3 and 4, the drive mechanism 21 is mounted on each of the four bases 11a to 11d except for the uppermost base, as in the previous example. The moving element 23 mounted on the base 11a is connected to the base 11b, the moving element 23 mounted on the base 11b is connected to the base 11c, and the moving element 23 mounted on the base 11c is connected to the base 11d. The moving element 23 mounted on the base 11d is connected to the base 11e.
この第2の実施形態においては、上下に隣接する2つのベース、例えば、相対的下位のベース11a等に対して相対的上位のベース11b等が往復動する。この場合、図4(A)の左限まで移動したり右限まで移動したりするベース11bがベース11aから離脱しないようにするために、ベース11bの左限移動位置で互いに衝突する一対のストッパや、ベース11bの右限移動位置で互いに衝突する一対のストッパが設けられる。そのストッパの一方を溝形部材14が兼ねている。この溝形部材14に対応するストッパ16が他方のベースに設けられている。
In the second embodiment, two upper and lower adjacent bases, for example, a relatively upper base 11b and the like reciprocate relative to a relatively lower base 11a and the like. In this case, a pair of stoppers that collide with each other at the left limit movement position of the base 11b so that the base 11b that moves to the left limit or moves to the right limit in FIG. Alternatively, a pair of stoppers that collide with each other at the right limit movement position of the base 11b are provided. The groove member 14 also serves as one of the stoppers. A stopper 16 corresponding to the groove member 14 is provided on the other base.
図3乃至図4の実施形態において、説明を省略した他の構成は、図1及び図2の第1の実施形態と実質的に同一か、又はそれに準ずるものとすることができる。
3 to 4, other configurations that are not described may be substantially the same as or equivalent to those of the first embodiment of FIGS. 1 and 2.
図3乃至図4に示された第2の実施の形態のマルチベース型単軸ロボットの動作も第1の実施の形態のそれと実質的に同じであるが、各ベース上の駆動機構21の電動機24を運転して各段の電動機24を正逆回転させ、各ベース11a乃至11eを図4(A)(B)のように往復動させる。この場合、一部のベース上の駆動機構21の電動機24のみを運転したり、及び/又は、各駆動機構21の電動機24を異なる回転速度や異なる回転方向に駆動したりすることもできる。このようにすると、ベース11b乃至11eを種々の態様で動作させることができる。
The operation of the multi-base type single-axis robot of the second embodiment shown in FIGS. 3 to 4 is substantially the same as that of the first embodiment, but the electric motor of the drive mechanism 21 on each base. 24 is operated to rotate the electric motor 24 at each stage forward and backward, and the bases 11a to 11e are reciprocated as shown in FIGS. In this case, only the electric motor 24 of the drive mechanism 21 on a part of the bases can be operated, and / or the electric motor 24 of each drive mechanism 21 can be driven at different rotational speeds and different rotational directions. In this way, the bases 11b to 11e can be operated in various ways.
第2の実施形態も第1の実施形態と同様に、シリンダ機構、タイミングベルト伝動機構、リニアモータ等を駆動機構21として採用することができる。
As in the first embodiment, the second embodiment can employ a cylinder mechanism, a timing belt transmission mechanism, a linear motor, or the like as the drive mechanism 21.
図1乃至図4にそれぞれ示された実施の形態によるにマルチベース型単軸ロボットは、ベース11a乃至11eが水平状態であるが、これらのベース11a乃至11eが垂直状態や傾斜状態で使用されることもある。また、マルチベース型単軸ロボットを移動式とする場合、例えば、ベース11a又はその他のベースに、車輪やアウトリガー等を装備してもよい。
In the multi-base type single-axis robot according to the embodiments shown in FIGS. 1 to 4, the bases 11a to 11e are in a horizontal state, but these bases 11a to 11e are used in a vertical state or an inclined state. Sometimes. Further, when the multi-base single-axis robot is movable, for example, the base 11a or other base may be equipped with wheels, outriggers, and the like.
本発明に係るマルチベース型複式単軸ロボットの実施形態について、図5を参照して説明する。
An embodiment of a multi-base type single-axis robot according to the present invention will be described with reference to FIG.
図5(A)に示されたマルチベース型複式単軸ロボットは、図1及び図2に示されたマルチベース型単軸ロボットの二基が用いられており、これらが所定の間隔をおいて床面に設置されている。また、図5(B)に示されたマルチベース型複式単軸ロボットは、図3乃至図4に示されたマルチベース型単軸ロボットの二基が用いられており、これらが所定の間隔をおいて床面に設置されている。
The multi-base type single-axis robot shown in FIG. 5 (A) uses two of the multi-base type single-axis robots shown in FIGS. 1 and 2, and these are spaced at a predetermined interval. It is installed on the floor. The multi-base type single-axis robot shown in FIG. 5B uses two multi-base type single-axis robots shown in FIGS. It is installed on the floor.
図5(A)(B)に示されたマルチベース型複式単軸ロボットは、いずれも、二基のマルチベース型単軸ロボットが協働してワークWを取り扱うこととなる。
5A and 5B, the multi-base type single-axis robots shown in FIGS. 5A and 5B both handle the workpiece W in cooperation with the two multi-base type single-axis robots.
本発明に係るマルチベース型単軸ロボット及びマルチベース型複式単軸ロボットは、コンパクト化を維持しつつ大きなストロークを確保することができ、位置決め装置、ムービングアーム、アクチュエータ等として好適に用いることができ、産業上の利用の可能性が高い。
The multi-base type single-axis robot and the multi-base type single-axis robot according to the present invention can ensure a large stroke while maintaining compactness, and can be suitably used as a positioning device, a moving arm, an actuator, and the like. The possibility of industrial use is high.
11a ベース
11b ベース
11c ベース
11d ベース
11e ベース
12 ガイドレール
13 溝
14 溝形部材
15 取付け部
16 ストッパ
21 駆動機構
22 ねじ軸
23 移動素子
24 電動機(モータ)
25 カップリング
26 軸受スタンド
27 サポートブラケット
31 リンク機構
32 長いリンク片
33 短いリンク片
34 ピン
35 ピン11a base 11b base 11c base 11d base 11e base 12 guide rail 13 groove 14 groove-shaped member 15 mounting portion 16 stopper 21 drive mechanism 22 screw shaft 23 moving element 24 electric motor (motor)
25Coupling 26 Bearing stand 27 Support bracket 31 Link mechanism 32 Long link piece 33 Short link piece 34 pin 35 pin
11b ベース
11c ベース
11d ベース
11e ベース
12 ガイドレール
13 溝
14 溝形部材
15 取付け部
16 ストッパ
21 駆動機構
22 ねじ軸
23 移動素子
24 電動機(モータ)
25 カップリング
26 軸受スタンド
27 サポートブラケット
31 リンク機構
32 長いリンク片
33 短いリンク片
34 ピン
35 ピン
25
Claims (3)
- 複数のベースと駆動機構とリンク機構と備え、前記複数のベースは、それぞれ互いに対面するように前記複数のベースの長手方向に沿って往復動自在となるように組み合わせられ、前記駆動機構は、前記ベースを長手方向に往復動する移動素子を有し、複数のベースから選択された隣り合う2つのベースのうち、一方のベースには当該ベースの長手方向に沿う取付け面を有し、前記取付け面に前記駆動機構が取り付けられ、かつ、他方のベースには前記移動素子が連結され、前記ベースの長手方向に連動しながら往復動自在に各ベースが前記リンク機構を介して連結され、前記駆動機構を運転して前記移動素子を前記ベースの長手方向に往動したり復動したりする際に、前記移動素子が連結された前記ベースと他のベースが前記リンク機構を介して連動しつつ当該ベースの長手方向に沿って往動したり復動したりすることを特徴とするマルチベース型単軸ロボット。 A plurality of bases, a drive mechanism and a link mechanism, wherein the plurality of bases are combined so as to reciprocate along the longitudinal direction of the plurality of bases so as to face each other; A moving element that reciprocates in the longitudinal direction of the base, and one of the two adjacent bases selected from the plurality of bases has a mounting surface along the longitudinal direction of the base, and the mounting surface The drive mechanism is attached to the other base, the moving element is connected to the other base, and the bases are connected to each other via the link mechanism so as to reciprocate while interlocking with the longitudinal direction of the base. When the moving element is moved back and forth in the longitudinal direction of the base by operating the base, the base to which the moving element is connected and the other base are connected to the link mechanism. Multibase type single-axis robot, which comprises or backward or forward in the longitudinal direction of the base while interlocked through.
- 複数のベースと複数の駆動機構とを備え、前記複数のベースがそれぞれ互いに対面するように前記複数のベースの長手方向に沿って往復動自在となるように組み合わせられ、前記複数の駆動機構は、前記複数のベースの長手方向に沿って往復動自在な移動素子をそれぞれ有し、前記複数のベースのうち一つのベースを除いた他のベースの各々は、当該ベースの長手方向に沿う取付け面を有し、前記取付け面に前記駆動機構が取り付けられ、かつ、前記駆動機構が取り付けられたベースと隣接するベースの各々には前記移動素子が連結され、前記各駆動機構を運転して前記各移動素子を前記ベースの長手方向に往動したり復動したりする際に、前記移動素子が連結された前記ベースの各々がそのベースの長手方向に往動したり復動したりすることを特徴とするマルチベース型単軸ロボット。 A plurality of bases and a plurality of drive mechanisms, wherein the plurality of bases are combined so that they can reciprocate along the longitudinal direction of the plurality of bases so that they face each other, Each of the plurality of bases excluding one base has a mounting surface along the longitudinal direction of the base, each having a moving element that can reciprocate along the longitudinal direction of the plurality of bases. The driving mechanism is mounted on the mounting surface, and the moving element is connected to each of the bases adjacent to the base to which the driving mechanism is mounted, and the respective movements are operated by operating the driving mechanisms. When the element is moved back and forth in the longitudinal direction of the base, each of the bases to which the moving element is connected may move back and forth in the longitudinal direction of the base. Multibase type single-axis robot according to claim.
- 請求項1によるマルチベース型単軸ロボット及び/又は請求項2マルチベース型単軸ロボットから選択された二基以上のマルチベース型単軸ロボットを備え、前記複数のマルチベース型単軸ロボットが協働作業することができるように相対して配置されていることを特徴とするマルチベース型複式単軸ロボット。 Two or more multi-base single-axis robots selected from the multi-base single-axis robot according to claim 1 and / or the second multi-base single-axis robot are provided, and the plurality of multi-base single-axis robots cooperate. A multi-base type single-axis robot characterized by being arranged relative to each other so that it can work.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016548393A JPWO2016190344A1 (en) | 2015-05-26 | 2016-05-25 | Multi-base type single-axis robot and multi-base type single-axis robot |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015106889 | 2015-05-26 | ||
JP2015-106889 | 2015-05-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016190344A1 true WO2016190344A1 (en) | 2016-12-01 |
Family
ID=57393869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/065426 WO2016190344A1 (en) | 2015-05-26 | 2016-05-25 | Multibase-type single-axis robot and multibase-type dual single-axis robot |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2016190344A1 (en) |
WO (1) | WO2016190344A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08168980A (en) * | 1994-10-21 | 1996-07-02 | Shibaura Eng Works Co Ltd | Industrial robot |
JP2002089649A (en) * | 2000-09-18 | 2002-03-27 | Ckd Corp | Slide transfer device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5828485A (en) * | 1981-08-10 | 1983-02-19 | 日本鋼管株式会社 | Device for converting pitch of arrangement of steel pipe |
JP2554968B2 (en) * | 1991-09-24 | 1996-11-20 | 松下電工株式会社 | Article transfer method by multiple robots |
JPH072352A (en) * | 1993-06-11 | 1995-01-06 | Takahama Kogyo Kk | Arranging device for conveyed object |
JP2001198871A (en) * | 2000-01-11 | 2001-07-24 | Dainichi Engineering:Kk | Robot hand |
US6439631B1 (en) * | 2000-03-03 | 2002-08-27 | Micron Technology, Inc. | Variable-pitch pick and place device |
JP2004076770A (en) * | 2002-08-09 | 2004-03-11 | Yamaha Motor Co Ltd | Variable pitch mechanism |
JP4896627B2 (en) * | 2006-08-22 | 2012-03-14 | 株式会社日立プラントテクノロジー | Access device |
JP6153027B2 (en) * | 2013-08-20 | 2017-06-28 | 大森機械工業株式会社 | Accumulator |
CN104517879A (en) * | 2013-09-28 | 2015-04-15 | 沈阳新松机器人自动化股份有限公司 | Convey manipulator with adjustable finger interval and wafer convey device |
-
2016
- 2016-05-25 WO PCT/JP2016/065426 patent/WO2016190344A1/en active Application Filing
- 2016-05-25 JP JP2016548393A patent/JPWO2016190344A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08168980A (en) * | 1994-10-21 | 1996-07-02 | Shibaura Eng Works Co Ltd | Industrial robot |
JP2002089649A (en) * | 2000-09-18 | 2002-03-27 | Ckd Corp | Slide transfer device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016190344A1 (en) | 2018-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6087430B2 (en) | A method for assembling a scissors lift table and a scissors lift table | |
US6345547B1 (en) | Linear actuator | |
US6712512B2 (en) | Rolling guide device and drive system using rolling guide device | |
CN109915567B (en) | Multistage synchronous lead screw push rod mechanism | |
CN104021718B (en) | A kind of freedom degree parallel connection tilter containing closed-loop subchain | |
CN105415352A (en) | Six-DOF (degrees of freedom) three-dimensional-manipulation robot | |
KR101219499B1 (en) | Cylinder device | |
US12036658B2 (en) | Device for supporting a load | |
US11110617B2 (en) | Linear motion mechanism | |
JP2016117444A (en) | Elevating type safety fence | |
WO2016190344A1 (en) | Multibase-type single-axis robot and multibase-type dual single-axis robot | |
CN104647357A (en) | Four-degree-of-freedom stepper motor driving joint-type manipulator | |
JP2006046656A (en) | Construction of power-driven linear motion actuator | |
WO2018186504A1 (en) | Double-component for extendable device, extendable unit for extendable device, and extendable device | |
KR20100137414A (en) | Lifting mechanism and transport vehicle equipped with such mechanism | |
CN1583372A (en) | Three freedom serial-parallel mixed robot driven by ball spline | |
JP3164195U (en) | lift device | |
JP7565366B2 (en) | Compact 6-axis positioning system | |
US12134185B2 (en) | Compact 6-axis positioning system | |
JP5995330B2 (en) | 2-axis actuator | |
CN219429469U (en) | Lifting device | |
JP2010133519A (en) | Actuator of multi-stage structure | |
KR102626397B1 (en) | Multiple-axis automatic alignment jig | |
KR101340867B1 (en) | Parallel robot | |
CN110939653A (en) | Linear guide rail pair and guide rail mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016548393 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16800048 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16800048 Country of ref document: EP Kind code of ref document: A1 |