WO2016190174A1 - Wireless battery system - Google Patents
Wireless battery system Download PDFInfo
- Publication number
- WO2016190174A1 WO2016190174A1 PCT/JP2016/064668 JP2016064668W WO2016190174A1 WO 2016190174 A1 WO2016190174 A1 WO 2016190174A1 JP 2016064668 W JP2016064668 W JP 2016064668W WO 2016190174 A1 WO2016190174 A1 WO 2016190174A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- controller
- battery
- data
- cell
- cell controller
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
- G08C17/02—Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C19/00—Electric signal transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/14—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using a plurality of keys or algorithms
Definitions
- the storage battery module that constitutes them has a plurality of batteries (hereinafter referred to as cells). Are connected in series and parallel.
- FIG. 1 shows a configuration of a storage battery module mounted on a hybrid electric vehicle or an electric vehicle.
- a plurality of cells are connected to a cell controller (hereinafter referred to as CC), and the CC measures the state of the plurality of cells.
- CC cell controller
- the plurality of CCs are connected to a battery controller (hereinafter referred to as BC), and the BC acquires the states of the plurality of cells from the plurality of CCs. Further, the BC calculates a state of charge (SOC) and a battery deterioration state (SOH: State of Health) from the acquired states of the plurality of cells, and notifies the upper controller and the like of the calculation result.
- SOC state of charge
- SOH Battery deterioration state
- FIG. 1 shows general wired communication between BC and CC.
- CC 100 and BC 200 are connected by wire, and information on CC 100 is transmitted to BC 200 through this wire.
- wired communication physical connection is required, and thus there are spatial restrictions such as securing a space for providing a communication line.
- wiring costs and insulation costs and assembly costs for high voltage countermeasures are required.
- Patent Document 1 discloses a technique for reducing the wiring cost, the insulation cost for assuring high voltage, and the assembly cost by changing the CC and BC from wired to wireless.
- An object of the present invention is to provide a wireless battery system that performs wireless communication with security in wireless communication in a battery system such as a hybrid vehicle or an electric vehicle, and performs highly versatile wireless communication in wireless communication in the distribution process. It is.
- a wireless battery system in which a battery controller and a plurality of cell controllers communicate wirelessly, data sent from the cell controller to the battery controller is encrypted or non-encrypted according to a signal sent from the battery controller to the cell controller.
- a wireless battery system that determines whether or not
- determination means for encryption include, for example, 1) and 2) below.
- a wireless battery system that determines whether data sent from the cell controller to the battery controller is encrypted or non-encrypted based on a difference in command of a signal sent from the battery controller to the cell controller.
- a wireless battery system that determines whether data sent from the cell controller to the battery controller is encrypted or unencrypted based on a difference in frequency of a signal sent from the battery controller to the cell controller.
- CC changes encryption / non-encryption of data sent from CC to BC according to a change in signal transmitted from BC to CC, that is, change in command type or change in frequency.
- the CC can achieve both general-purpose communication and security communication.
- FIG. 2 shows the configuration of the battery system related to Example 1.
- the battery system 9 includes a CC 100 and a BC 200 attached to a cell group 10 including one or a plurality of cells.
- the CC 100 includes one or more measuring devices (sensors) 20 that measure the state (voltage, current, temperature, etc.) of the cell 8, a processing unit 30 that acquires and processes the state information of the cell 8, a radio circuit 40, and radio waves. It comprises an antenna 50 that inputs and outputs.
- the processing unit 30 includes a power supply circuit 31 that receives power from the cell group 10 to generate an operating voltage, an A / D conversion circuit (ADC) 32 that converts an analog value measured by the measuring instrument 20 into digital data, an A / D A processing circuit (CPU) 33 that outputs data converted by the D conversion circuit (ADC) 32 to the radio circuit, a storage device (memory) 34 that stores individual identification information (unique ID), and the like, and a clock generator 35 Composed.
- the clock generator 35 can oscillate by switching between a high-speed clock of about several MHz and a low-speed clock of about several tens of kHz.
- processing circuit (CPU) 33 is based on data from the wireless circuit 40 and turns on / off some of the circuits in the wireless circuit 40 and the processing circuit (CPU) 33, and switches the clock frequency of the clock generator 35. Read / write to the storage device (memory) 34 and instructions from the BC 200 can be executed.
- BC 200 includes a wireless circuit 210, a processing circuit (CPU) 220, a power supply circuit 230 including a battery, a storage device (memory) 240, and an antenna 250.
- a battery is incorporated in this embodiment, but power may be supplied from the outside.
- FIG. 3 shows a schematic diagram of wireless communication between the BC 200 and the CC 100.
- the BC communicates with one or more CCs and acquires the cell status measured by the CCs. At this time, time-division wireless communication is performed between CC and BC.
- the BC 200 broadcasts a beacon (B) periodically in order to acquire a cell state from the CC 100.
- the data content of this beacon (B) is composed of commands and data (FIG. 4).
- information regarding whether or not to encrypt communication can be entered in the most significant bit of the command (MSB in FIG. 4 represents the most significant bit and LSB represents the least significant bit).
- designation of information instructing transmission to the CC by the BC for example, designation of “voltage”, “current”, or the like can be entered.
- Information relating to the ID of the BC or information for identifying the CC when communication is performed with respect to the individual CC can be included in the data.
- the information from CC to BC is also composed of commands and data. For example, information indicating what information is to be sent, such as voltage and current, can be included in the command, and specific information can be included in the data.
- the data communication slot (see FIG. 3) transmitted by each CC is transmitted in a slot assigned in advance to each CC.
- Each CC that has received the beacon recognizes the command in the beacon and determines whether or not to encrypt the transmission data in accordance with the command.
- the difference between commands is recognized, and it is determined whether or not to encrypt data.
- the MSB most significant bit
- the MSB is determined to be encrypted when the transmission data is “0”, and is determined to be unencrypted when the command is “1”.
- Fig. 6 shows the flow structure of CC transmission data encryption.
- the CC first receives a beacon, recognizes the command, and determines whether to encrypt it.
- the pseudo-random number generation circuit 303 creates scrambled data using the BC ID (unique number) set in the beacon data as the BC and CC encryption keys.
- the encryption unit 304 creates encrypted data that is XORed from the scrambled data and data (transmission data) indicating the state of the cell such as voltage and current. This encrypted data is transmitted to the BC.
- the scrambled data and the transmission data may be converted bit by bit based on the XOR, or may be converted into encrypted data as a fixed group.
- the BC that has received the encrypted data converts the encrypted data into transmission data for use.
- the BC has a pseudo-random number generation circuit that operates using the ID of the BC as an encryption key, like the CC.
- the BC converts the scrambled data created by the pseudo random number generator and the encrypted data received from the CC into transmission data according to the XOR method.
- the switching between encryption and non-encryption of communication between BC and CC can be changed, for example, before and after the start of battery use.
- communication is performed without encryption
- communication is performed after encryption.
- the BC ID (unique number) set in the BC transmission data is used as the encryption key.
- BC transmission data is not set with a BC ID (unique number), and data (such as BC ID) written in advance in the CC storage device (memory) 34 is used as an encryption key ( FIG. 7).
- the CC determines whether or not to receive and encrypt a beacon as in the first embodiment.
- scramble data is created, and encrypted data is created from the created scramble data and transmission data.
- data stored in the CC memory in advance is created as an encryption key for creating scramble data.
- a method similar to that of the first embodiment can be used as a method for creating encrypted data from scrambled data and transmission data.
- the ID transmitted from the BC is not used as the encryption key, and the stored information in the CC is used. Therefore, it can be said that the security is higher than that in the first embodiment. However, in this case, it is necessary to put encryption key information in the CC in advance.
- Embodiment 3 is an example in which the determination is made based on the frequency of information transmitted by the BC as a method for determining whether or not the CC encrypts transmission data.
- Fig. 8 shows the flow of encryption decision.
- CC detects the radio frequency transmitted by BC, determines that encryption is performed when the radio frequency is in the 2.4 GHz band, and determines that encryption is not performed when the radio frequency is not in the 2.4 GHz band.
- CC detects information from BC. Next, it is determined whether the detected information has a frequency in the 2.4 GHz band. If the detected information has a frequency in the 2.4 GHz band, the transmission data is encrypted.
- Fig. 9 shows a method for detecting frequencies in the 2.4 GHz band.
- the wireless circuit 210 there are provided two types of filter 401 that resonates at 2.4 GHz and a notch filter 402 that removes a resonance component.
- the power obtained from the antenna 50 that inputs and outputs power from the BC is passed through these two types of filters.
- the wireless power output from the resonance filter 401 is equal to or greater than a predetermined threshold value, it is determined that the CC transmission data is encrypted.
- the wireless power output from the notch filter 402 is equal to or greater than a predetermined threshold, it is determined that the CC transmission data is not encrypted.
- the output of the resonance filter 401 and the output of the notch filter 402 may be greater than or less than the respective predetermined threshold values.
- the CC determines that transmission data is encrypted with emphasis on security.
- the CC does not respond because the BC is not transmitting.
- the result of comparing the strength of the wireless power output from the resonance filter 401 and the wireless power output from the notch filter 402 can be used for determination of encryption or non-encryption.
- the determination of encryption or non-encryption is wrong.
- the flow after the determination of encryption or non-encryption can use the same flow as in the first and second embodiments.
- the first and second embodiments which determine whether encryption or non-encryption is performed by a command, are not affected by noise. Further, it is not necessary to provide a resonance filter 401 or a notch filter 402. On the other hand, since no command is used in the third embodiment, there is an advantage that communication data and a logic circuit can be simplified.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Security & Cryptography (AREA)
- Signal Processing (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
The purpose of the present invention is to provide a wireless battery system that performs a security wireless communication in wireless communication in a battery system of a hybrid car, an electric car, or the like, and that performs a highly versatile wireless communication in wireless communication in a distribution process. In accordance with a change in a signal that a BC transmits to a CC, that is, a change in command type or a change in frequency, the CC performs switching between encryption and decryption of data to be sent from the CC to the BC. Accordingly, the CC is capable of performing both a versatile communication and a security communication.
Description
電池制御システム
Battery control system
現在、地球環境問題が大きくクローズアップされる中、地球温暖化防止の為に、あらゆる場面で炭酸ガスの排出削減が求められており、炭酸ガスの大きな排出源となっているガソリンエンジンの自動車については、ハイブリッド電気自動車や電機自動車などへの代替が始まっている。
Currently, as global environmental problems are greatly highlighted, in order to prevent global warming, there is a need to reduce carbon dioxide emissions in every situation. About gasoline engine cars, which are a major source of carbon dioxide emissions. Has begun to be replaced by hybrid electric vehicles and electric vehicles.
ハイブリッド電気自動車や電気自動車の動力用電源に代表される大型二次電池は、高出力、大容量であることが必要である為、それを構成する蓄電池モジュール内は、複数の電池(以降、セルと言う)を直並列接続して構成される。
Large secondary batteries represented by power sources for hybrid electric vehicles and electric vehicles need to have a high output and a large capacity. Therefore, the storage battery module that constitutes them has a plurality of batteries (hereinafter referred to as cells). Are connected in series and parallel.
また、二次電池であるリチウムイオン電池は、高電圧充電の防止や過放電による性能低下の防止などの適切な二次電池の使いこなしが必要となる。この為、ハイブリッド電気自動車や電気自動車に搭載される蓄電池モジュールには、電池の状態である電圧、電流、温度などを検出する機能を持っている。図1にハイブリッド電気自動車や電気自動車に搭載される蓄電池モジュールの構成を示す。図1に示すように、複数のセルはセルコントローラ(以降、CCと言う)と接続され、CCは、複数のセルの状態を計測する。また、複数のCCはバッテリコントローラ(以降、BCと言う)に接続され、BCは、複数のCCから複数のセルの状態を取得する。さらにBCは、取得した複数のセルの状態から充電状態(SOC:State of Charge)や電池劣化状態(SOH:State of Health)を演算し、上位のコントローラなどに演算結果を通知する。
In addition, lithium ion batteries that are secondary batteries require appropriate use of secondary batteries, such as prevention of high-voltage charging and deterioration of performance due to overdischarge. For this reason, the storage battery module mounted on a hybrid electric vehicle or an electric vehicle has a function of detecting voltage, current, temperature, and the like, which are battery states. FIG. 1 shows a configuration of a storage battery module mounted on a hybrid electric vehicle or an electric vehicle. As shown in FIG. 1, a plurality of cells are connected to a cell controller (hereinafter referred to as CC), and the CC measures the state of the plurality of cells. The plurality of CCs are connected to a battery controller (hereinafter referred to as BC), and the BC acquires the states of the plurality of cells from the plurality of CCs. Further, the BC calculates a state of charge (SOC) and a battery deterioration state (SOH: State of Health) from the acquired states of the plurality of cells, and notifies the upper controller and the like of the calculation result.
図1では、BCとCCの一般的な有線通信を示す。CC100とBC200は有線により接続されており、CC100の情報はこの有線を通してBC200に伝わる。このような有線での通信では、物理的な接続が必要となるため、通信線を設ける空間の確保など、空間的な制約がある。また、配線コストや高電圧対策の為の絶縁コスト及び組立てコストが必要となる。
FIG. 1 shows general wired communication between BC and CC. CC 100 and BC 200 are connected by wire, and information on CC 100 is transmitted to BC 200 through this wire. In such wired communication, physical connection is required, and thus there are spatial restrictions such as securing a space for providing a communication line. In addition, wiring costs and insulation costs and assembly costs for high voltage countermeasures are required.
これに対して、特許文献1にはCCとBC間を有線から無線にして、配線コストや高電圧対策の為の絶縁コスト及び組立てコストを低減する技術の開示がある。
On the other hand, Patent Document 1 discloses a technique for reducing the wiring cost, the insulation cost for assuring high voltage, and the assembly cost by changing the CC and BC from wired to wireless.
しかし、BCとCCの通信を有線から無線にすると、無線上のデータを外部から傍受される、セルの情報が外部に漏れる等、セキュリティ上の安全性が低下する可能性がある。また、外部から誤データが混入し、セルの状態を正しく把握できなくなり、適切な電池制御ができない場合が生じる恐れがある。
However, if communication between BC and CC is changed from wired to wireless, wireless data may be intercepted from the outside, cell information may be leaked to the outside, and security safety may be reduced. Moreover, there is a possibility that erroneous data is mixed from the outside, the cell state cannot be correctly grasped, and proper battery control cannot be performed.
一方、セルは製造、倉庫管理、輸送などの流通過程で、どこにどのようなセルがあるかなど、物品管理されることが望ましく、この場合は汎用性の高い無線通信が必要である。
On the other hand, it is desirable to manage articles such as where and what cells are in the distribution process such as manufacturing, warehouse management, and transportation. In this case, highly versatile wireless communication is required.
本発明の目的は、ハイブリッド自動車や電気自動車などの電池システム内の無線通信ではセキュリティを持った無線通信を行い、流通過程における無線通信では汎用性の高い無線通信を行う無線電池システムを提供するものである。
An object of the present invention is to provide a wireless battery system that performs wireless communication with security in wireless communication in a battery system such as a hybrid vehicle or an electric vehicle, and performs highly versatile wireless communication in wireless communication in the distribution process. It is.
本発明の特徴は、例えば、以下の通りである。
The features of the present invention are, for example, as follows.
バッテリコントローラと複数のセルコントローラとが無線で通信する無線電池システムにおいて、前記バッテリコントローラから前記セルコントローラに送る信号に応じて、前記セルコントローラから前記バッテリコントローラに送るデータを暗号化するかまたは非暗号化とするかを判断する無線電池システム。
In a wireless battery system in which a battery controller and a plurality of cell controllers communicate wirelessly, data sent from the cell controller to the battery controller is encrypted or non-encrypted according to a signal sent from the battery controller to the cell controller. A wireless battery system that determines whether or not
また、暗号化する具体的な判断手段としては例えば以下1)、2)が挙げられる。
Further, specific determination means for encryption include, for example, 1) and 2) below.
1)前記セルコントローラから前記バッテリコントローラに送るデータを暗号化するかまたは非暗号化とするかの判断は、前記バッテリコントローラから前記セルコントローラに送る信号のコマンドの違いによってなされる無線電池システム。
1) A wireless battery system that determines whether data sent from the cell controller to the battery controller is encrypted or non-encrypted based on a difference in command of a signal sent from the battery controller to the cell controller.
2)前記セルコントローラから前記バッテリコントローラに送るデータを暗号化するかまたは非暗号化とするかの判断は、前記バッテリコントローラから前記セルコントローラに送る信号の周波数の違いによってなされる無線電池システム。
2) A wireless battery system that determines whether data sent from the cell controller to the battery controller is encrypted or unencrypted based on a difference in frequency of a signal sent from the battery controller to the cell controller.
CCは、BCがCCへ送信する信号の変化、すなわちコマンド種別の変化または周波数の変化に応じて、CCからBCに送るデータの暗号化、非暗号化を変更する。これにより、CCは汎用通信とセキュリティ通信を両立させることが可能となる。
CC changes encryption / non-encryption of data sent from CC to BC according to a change in signal transmitted from BC to CC, that is, change in command type or change in frequency. As a result, the CC can achieve both general-purpose communication and security communication.
本発明により、セキュリティが求められる実使用時、汎用性が求められる流通時、等の状況の変化に応じた通信が可能な二次電池の通信システムを提供することができる。
According to the present invention, it is possible to provide a communication system for a secondary battery capable of communication according to a change in a situation such as actual use requiring security or distribution requiring versatility.
以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible.
実施例1に関する電池システムの構成を図2に示す。電池システム9は、1つまたは複数のセルから成るセル群10に取り付けられたCC100とBC200から構成される。
FIG. 2 shows the configuration of the battery system related to Example 1. The battery system 9 includes a CC 100 and a BC 200 attached to a cell group 10 including one or a plurality of cells.
CC100は、セル8の状態(電圧、電流、温度など)を計測する1つまたは複数の計測器(センサー)20、セル8の状態情報を取得し処理する処理部30、無線回路40および電波を入出力するアンテナ50から構成される。処理部30は、セル群10から電源をもらって動作電圧を生成する電源回路31と、計測器20によって計測されたアナログ値をデジタルデータに変換するA/D変換回路(ADC)32と、A/D変換回路(ADC)32によって変換されたデータを無線回路に出力する処理回路(CPU)33と、個体識別情報(固有ID)などを記憶する記憶装置(メモリ)34と、クロック発生器35から構成される。
クロック発生器35は、数MHz程度の高速クロックと数十kHz程度の低速クロックを切替えて発振することができる。また、処理回路(CPU)33は、無線回路40からのデータに基づき、無線回路40及び処理回路(CPU)33内の一部の回路のオン/オフ、クロック発生器35のクロック周波数の切り替え、記憶装置(メモリ)34へのリード/ライト、BC200からの指示を実行することができる。 TheCC 100 includes one or more measuring devices (sensors) 20 that measure the state (voltage, current, temperature, etc.) of the cell 8, a processing unit 30 that acquires and processes the state information of the cell 8, a radio circuit 40, and radio waves. It comprises an antenna 50 that inputs and outputs. The processing unit 30 includes a power supply circuit 31 that receives power from the cell group 10 to generate an operating voltage, an A / D conversion circuit (ADC) 32 that converts an analog value measured by the measuring instrument 20 into digital data, an A / D A processing circuit (CPU) 33 that outputs data converted by the D conversion circuit (ADC) 32 to the radio circuit, a storage device (memory) 34 that stores individual identification information (unique ID), and the like, and a clock generator 35 Composed.
Theclock generator 35 can oscillate by switching between a high-speed clock of about several MHz and a low-speed clock of about several tens of kHz. Further, the processing circuit (CPU) 33 is based on data from the wireless circuit 40 and turns on / off some of the circuits in the wireless circuit 40 and the processing circuit (CPU) 33, and switches the clock frequency of the clock generator 35. Read / write to the storage device (memory) 34 and instructions from the BC 200 can be executed.
クロック発生器35は、数MHz程度の高速クロックと数十kHz程度の低速クロックを切替えて発振することができる。また、処理回路(CPU)33は、無線回路40からのデータに基づき、無線回路40及び処理回路(CPU)33内の一部の回路のオン/オフ、クロック発生器35のクロック周波数の切り替え、記憶装置(メモリ)34へのリード/ライト、BC200からの指示を実行することができる。 The
The
BC200は、無線回路210、処理回路(CPU)220、電池を含む電源回路230、記憶装置(メモリ)240およびアンテナ250から構成される。電源回路230については、本実施例では電池を内蔵しているが、外部から電源を供給しても構わない。
BC 200 includes a wireless circuit 210, a processing circuit (CPU) 220, a power supply circuit 230 including a battery, a storage device (memory) 240, and an antenna 250. As for the power supply circuit 230, a battery is incorporated in this embodiment, but power may be supplied from the outside.
図3にBC200とCC100との無線通信の概略図を示す。
FIG. 3 shows a schematic diagram of wireless communication between the BC 200 and the CC 100.
通常、BCは一つ以上のCCと通信し、CCが計測するセル状態を取得する。この時のCCとBC間は、時分割の無線通信が行われる。
Usually, the BC communicates with one or more CCs and acquires the cell status measured by the CCs. At this time, time-division wireless communication is performed between CC and BC.
まずBC200は、CC100からセル状態を取得する為に、周期的にビーコン(B)をブロードキャスト送信する。このビーコン(B)のデータ内容としては、コマンド及びデータから構成される(図4)。コマンドの最上位ビットには例えば後述するように、通信を暗号化するか否かに関する情報を入れることができる(図4中のMSBは最上位、LSBは最下位ビットを表わす。)。また、BCがCCに対して、送信を指示する情報の指定、例えば「電圧」、「電流」などの指定に関する情報を入れることができる。データにはBCのIDに関する情報、または個別のCCに対して通信を行う場合にCCを特定する情報が入れることができる。
First, the BC 200 broadcasts a beacon (B) periodically in order to acquire a cell state from the CC 100. The data content of this beacon (B) is composed of commands and data (FIG. 4). For example, as will be described later, information regarding whether or not to encrypt communication can be entered in the most significant bit of the command (MSB in FIG. 4 represents the most significant bit and LSB represents the least significant bit). In addition, information regarding designation of information instructing transmission to the CC by the BC, for example, designation of “voltage”, “current”, or the like can be entered. Information relating to the ID of the BC or information for identifying the CC when communication is performed with respect to the individual CC can be included in the data.
CCからBCへの情報も同様にコマンドおよびデータから成る。例えばコマンドには、電圧、電流など、何の情報を送るものであるかを示す情報を入れることができ、データにはその具体的な情報を入れることができる。ここで、各CCが送信するデータ通信スロット(図3参照)は、各CCに予め割当てされたスロットで送信する。
The information from CC to BC is also composed of commands and data. For example, information indicating what information is to be sent, such as voltage and current, can be included in the command, and specific information can be included in the data. Here, the data communication slot (see FIG. 3) transmitted by each CC is transmitted in a slot assigned in advance to each CC.
ビーコン(B)を受信した各CCは、ビーコン内のコマンドを認識して、そのコマンドに応じて送信データを暗号化するか否かを判定する。本実施例では、コマンドの違いを認識して、データを暗号化するか否かを判定した。図5の例では、コマンドを8ビットとした時にMSB(最上位ビット)が、“0”の時には送信データを暗号化する判定し、“1”の時には非暗号にすると判定するよう設定した。
Each CC that has received the beacon (B) recognizes the command in the beacon and determines whether or not to encrypt the transmission data in accordance with the command. In this embodiment, the difference between commands is recognized, and it is determined whether or not to encrypt data. In the example of FIG. 5, when the command is 8 bits, the MSB (most significant bit) is determined to be encrypted when the transmission data is “0”, and is determined to be unencrypted when the command is “1”.
図6にCCの送信データの暗号化のフロー構成を示す。CCは、まず、ビーコンを受信してそのコマンドを認識して、暗号化するか否かを判定する。送信データを暗号化する場合、擬似乱数発生回路303はビーコンのデータに設定されるBCのID(固有番号)をBCとCCの暗号鍵としてスクランブルデータを作成する。
Fig. 6 shows the flow structure of CC transmission data encryption. The CC first receives a beacon, recognizes the command, and determines whether to encrypt it. When the transmission data is encrypted, the pseudo-random number generation circuit 303 creates scrambled data using the BC ID (unique number) set in the beacon data as the BC and CC encryption keys.
次に暗号化手段304は、スクランブルデータと、電圧や電流等のセルの状態を示すデータ(送信データ)から、XOR化された暗号化データを作成する。この暗号化データは、BCに送信される。暗号化手段304では、スクランブルデータと送信データから1ビットずつXORに基づいて変換しても良く、一定の群として暗号化データに変換しても構わない。
Next, the encryption unit 304 creates encrypted data that is XORed from the scrambled data and data (transmission data) indicating the state of the cell such as voltage and current. This encrypted data is transmitted to the BC. In the encryption unit 304, the scrambled data and the transmission data may be converted bit by bit based on the XOR, or may be converted into encrypted data as a fixed group.
暗号化したデータを受信したBCは、暗号化したデータを送信データに変換して使用する。BCはCCと同様にBCのIDを暗号鍵として作動する疑似乱数発生回路を有する。BCは、この疑似乱数発生回路にて作成されたスクランブルデータと、CCから受信した暗号化データから、XORの方式に従って、送信データに変換する。
The BC that has received the encrypted data converts the encrypted data into transmission data for use. The BC has a pseudo-random number generation circuit that operates using the ID of the BC as an encryption key, like the CC. The BC converts the scrambled data created by the pseudo random number generator and the encrypted data received from the CC into transmission data according to the XOR method.
実施例1において、BCとCCとの通信を暗号化するか、非暗号化とするかの切り替えは、例えば、電池使用開始前、後とで変更することができる。電池が車載等に設置される前の流通段階においては、暗号化しない状態で通信をし、電池が車載等に設置された後は暗号化して通信をする。このように用いることで、セキュリティが求められる実使用時、汎用性が求められる流通時、等の状況の変化に応じた通信が可能となる。
In the first embodiment, the switching between encryption and non-encryption of communication between BC and CC can be changed, for example, before and after the start of battery use. In the distribution stage before the battery is installed on the vehicle or the like, communication is performed without encryption, and after the battery is installed on the vehicle or the like, communication is performed after encryption. By using in this way, it becomes possible to communicate according to changes in the situation such as actual use where security is required and distribution where versatility is required.
実施例1では、CCがBCのビーコンを受信し、送信データを暗号化すると判定した時に、BCの送信データに設定されるBCのID(固有番号)を暗号鍵としたが、実施例2では、BCの送信データにはBCのID(固有番号)を設定せず、CCの記憶装置(メモリ)34に、予め書き込まれているデータ(BCのIDなど)を暗号鍵とする方法である(図7)。
In the first embodiment, when the CC receives the BC beacon and determines that the transmission data is encrypted, the BC ID (unique number) set in the BC transmission data is used as the encryption key. In this method, BC transmission data is not set with a BC ID (unique number), and data (such as BC ID) written in advance in the CC storage device (memory) 34 is used as an encryption key ( FIG. 7).
まず、CCは、実施例1と同様にビーコンを受信して暗号化するか否かを判定する。送信データを暗号化する場合、スクランブルデータを作成し、作成したスクランブルデータと送信データから暗号化データを作成する。実施例2ではスクランブルデータの作成に予めCCのメモリに記憶しているデータを暗号鍵として作成する。スクランブルデータと送信データから暗号化データを作成する方法は実施例1と同様の方法を用いることができる。
First, the CC determines whether or not to receive and encrypt a beacon as in the first embodiment. When encrypting transmission data, scramble data is created, and encrypted data is created from the created scramble data and transmission data. In the second embodiment, data stored in the CC memory in advance is created as an encryption key for creating scramble data. A method similar to that of the first embodiment can be used as a method for creating encrypted data from scrambled data and transmission data.
実施例2では、暗号鍵にBCから送信されるIDを使用せず、CCの内部の記憶情報を用いるため、実施例1よりセキュリティが高いと言える。ただし、この場合、CCには予め暗号鍵の情報を入れておく必要がある。
In the second embodiment, the ID transmitted from the BC is not used as the encryption key, and the stored information in the CC is used. Therefore, it can be said that the security is higher than that in the first embodiment. However, in this case, it is necessary to put encryption key information in the CC in advance.
実施例3では、CCが送信データを暗号化するか否かを判定する方法として、BCが送信する情報の周波数にて判断する例である。
Embodiment 3 is an example in which the determination is made based on the frequency of information transmitted by the BC as a method for determining whether or not the CC encrypts transmission data.
図8に暗号化判断のフローを示す。
Fig. 8 shows the flow of encryption decision.
CCでは、BCが送信する無線周波数を検知して、その無線周波数が2.4GHz帯の時は暗号化すると判定し、2.4GHz帯以外の時は暗号化しないと判定する。
CC detects the radio frequency transmitted by BC, determines that encryption is performed when the radio frequency is in the 2.4 GHz band, and determines that encryption is not performed when the radio frequency is not in the 2.4 GHz band.
まず、CCがBCからの情報を検知する。次に検知した情報が2.4GHz帯の周波数であるかを判断し、2.4GHz帯の周波数である場合は、送信データを暗号化する。
First, CC detects information from BC. Next, it is determined whether the detected information has a frequency in the 2.4 GHz band. If the detected information has a frequency in the 2.4 GHz band, the transmission data is encrypted.
図9に2.4GHz帯の周波数を検出する方法を示す。
Fig. 9 shows a method for detecting frequencies in the 2.4 GHz band.
無線回路210内には2.4GHzで共振するフィルタ401と、共振成分を取り除くノッチフィルタ402の2種類が設けられている。BCからの電力を入出力するアンテナ50から得られる電力を、この2種類のフィルタを通す。
In the wireless circuit 210, there are provided two types of filter 401 that resonates at 2.4 GHz and a notch filter 402 that removes a resonance component. The power obtained from the antenna 50 that inputs and outputs power from the BC is passed through these two types of filters.
そして、共振フィルタ401から出力される無線電力が所定の閾値以上の時には、CCの送信データを暗号化すると判断する。また、ノッチフィルタ402から出力される無線電力が所定の閾値以上の時には、CCの送信データを暗号化しないと判断する。この判断方法の場合、共振フィルタ401の出力もノッチフィルタ402の出力も、それぞれの所定の閾値以上、または未満となる場合がある。共振フィルタ401の出力、ノッチフィルタ402の出力いづれも所定の閾値以上の時は、セキュリティを重視してCCは送信データを暗号化すると判断する。また、共振フィルタ401の出力、ノッチフィルタ402の出力いづれも所定の閾値未満の時は、BCが送信していないとしてCCは応答しない。
When the wireless power output from the resonance filter 401 is equal to or greater than a predetermined threshold value, it is determined that the CC transmission data is encrypted. When the wireless power output from the notch filter 402 is equal to or greater than a predetermined threshold, it is determined that the CC transmission data is not encrypted. In the case of this determination method, the output of the resonance filter 401 and the output of the notch filter 402 may be greater than or less than the respective predetermined threshold values. When both the output of the resonance filter 401 and the output of the notch filter 402 are equal to or greater than a predetermined threshold, the CC determines that transmission data is encrypted with emphasis on security. When neither the output of the resonance filter 401 nor the output of the notch filter 402 is less than a predetermined threshold, the CC does not respond because the BC is not transmitting.
他の判断方法としては、例えば共振フィルタ401から出力される無線電力とノッチフィルタ402から出力される無線電力の強度を比較した結果を暗号化、非暗号化の判断に用いることもできる。ただし、この場合は、外部からのノイズが多く、共振フィルタ401から出力される無線電力とノッチフィルタ402から出力される無線電力が同等となるような場合、暗号化、非暗号化の判断を誤る可能性もある。この理由から、BCから受信される情報の周波数により暗号化、非暗号化を判断する場合は、共振フィルタ401、ノッチフィルタ402の出力を独立でそれぞれ定められた所定の閾値と比較することが好ましい。
As another determination method, for example, the result of comparing the strength of the wireless power output from the resonance filter 401 and the wireless power output from the notch filter 402 can be used for determination of encryption or non-encryption. However, in this case, if there is a lot of noise from the outside and the wireless power output from the resonance filter 401 is equivalent to the wireless power output from the notch filter 402, the determination of encryption or non-encryption is wrong. There is a possibility. For this reason, when determining whether encryption or non-encryption is performed based on the frequency of information received from the BC, it is preferable to independently compare the outputs of the resonance filter 401 and the notch filter 402 with predetermined threshold values. .
暗号化、非暗号化の判断以降のフローは実施例1,2と同様のものを用いることができる。
The flow after the determination of encryption or non-encryption can use the same flow as in the first and second embodiments.
実施例1,2と実施例3とを比較すると、コマンドにより暗号化、非暗号化の判断をする実施例1,2のほうがノイズに影響されることがない。また、共振フィルタ401や、ノッチフィルタ402のようなものを設ける必要がない。これに対して、実施例3ではコマンドを用いない為、通信データや、論理回路が単純化できるというメリットがある。
When comparing the first and second embodiments with the third embodiment, the first and second embodiments, which determine whether encryption or non-encryption is performed by a command, are not affected by noise. Further, it is not necessary to provide a resonance filter 401 or a notch filter 402. On the other hand, since no command is used in the third embodiment, there is an advantage that communication data and a logic circuit can be simplified.
1:蓄電池モジュール
4:リレーボックス
5:ハイブリッドコントローラー
6:インバーター
7:モーター
8:セル
9:電池システム
10:1つまたは複数の電池セル群
20:電池の状態を計測する1つまたは複数の計測器(センサー)
30:電池の状態情報を取得し処理する処理部
31:電源回路
32:電池セルの状態を検出する検出回路(A/D変換器)
33:処理回路(CPU)
34:記憶装置(メモリ)
35:クロック発生器
36:電源回路
37:スイッチ(SW)
40:無線回路
50:アンテナ
60:無線電力回収回路
100:セルコントローラ(CC)
200:バッテリコントローラ(BC)
210:無線回路
220:処理回路(CPU)
230:電池を含む電源回路
240:記憶装置(メモリ)
250:アンテナ
301:暗号化判断手段
302:暗号鍵認識手段
303:擬似乱数発生回路
304:暗号化手段
305:初期値 メモリデータ
401:2.4GHz帯共振フィルタ(共振フィルタ)
402:2.4GHz帯ノッチフィルタ(ノッチフィルタ)
403:増幅器
404:周波数検知部 1: storage battery module 4: relay box 5: hybrid controller 6: inverter 7: motor 8: cell 9: battery system 10: one or more battery cell groups 20: one or more measuring instruments for measuring the state of the battery (sensor)
30: Processingunit 31 that acquires and processes battery state information 31: Power supply circuit 32: Detection circuit (A / D converter) that detects the state of a battery cell
33: Processing circuit (CPU)
34: Storage device (memory)
35: Clock generator 36: Power supply circuit 37: Switch (SW)
40: Radio circuit 50: Antenna 60: Wireless power recovery circuit 100: Cell controller (CC)
200: Battery controller (BC)
210: Radio circuit 220: Processing circuit (CPU)
230: Power supply circuit including battery 240: Storage device (memory)
250: Antenna 301: Encryption determination unit 302: Encryption key recognition unit 303: Pseudorandom number generation circuit 304: Encryption unit 305: Initial value Memory data 401: 2.4 GHz band resonance filter (resonance filter)
402: 2.4 GHz band notch filter (notch filter)
403: Amplifier 404: Frequency detection unit
4:リレーボックス
5:ハイブリッドコントローラー
6:インバーター
7:モーター
8:セル
9:電池システム
10:1つまたは複数の電池セル群
20:電池の状態を計測する1つまたは複数の計測器(センサー)
30:電池の状態情報を取得し処理する処理部
31:電源回路
32:電池セルの状態を検出する検出回路(A/D変換器)
33:処理回路(CPU)
34:記憶装置(メモリ)
35:クロック発生器
36:電源回路
37:スイッチ(SW)
40:無線回路
50:アンテナ
60:無線電力回収回路
100:セルコントローラ(CC)
200:バッテリコントローラ(BC)
210:無線回路
220:処理回路(CPU)
230:電池を含む電源回路
240:記憶装置(メモリ)
250:アンテナ
301:暗号化判断手段
302:暗号鍵認識手段
303:擬似乱数発生回路
304:暗号化手段
305:初期値 メモリデータ
401:2.4GHz帯共振フィルタ(共振フィルタ)
402:2.4GHz帯ノッチフィルタ(ノッチフィルタ)
403:増幅器
404:周波数検知部 1: storage battery module 4: relay box 5: hybrid controller 6: inverter 7: motor 8: cell 9: battery system 10: one or more battery cell groups 20: one or more measuring instruments for measuring the state of the battery (sensor)
30: Processing
33: Processing circuit (CPU)
34: Storage device (memory)
35: Clock generator 36: Power supply circuit 37: Switch (SW)
40: Radio circuit 50: Antenna 60: Wireless power recovery circuit 100: Cell controller (CC)
200: Battery controller (BC)
210: Radio circuit 220: Processing circuit (CPU)
230: Power supply circuit including battery 240: Storage device (memory)
250: Antenna 301: Encryption determination unit 302: Encryption key recognition unit 303: Pseudorandom number generation circuit 304: Encryption unit 305: Initial value Memory data 401: 2.4 GHz band resonance filter (resonance filter)
402: 2.4 GHz band notch filter (notch filter)
403: Amplifier 404: Frequency detection unit
Claims (8)
- バッテリコントローラと複数のセルコントローラとが無線で通信する無線電池システムにおいて、
前記バッテリコントローラから前記セルコントローラに送る信号に応じて、前記セルコントローラから前記バッテリコントローラに送るデータを暗号化するかまたは非暗号化とするかを判断する無線電池システム。 In a wireless battery system in which a battery controller and a plurality of cell controllers communicate wirelessly,
A wireless battery system that determines whether data to be transmitted from the cell controller to the battery controller is encrypted or unencrypted in response to a signal transmitted from the battery controller to the cell controller. - 請求項1において、
前記セルコントローラから前記バッテリコントローラに送るデータを暗号化するかまたは非暗号化とするかの判断は、前記バッテリコントローラから前記セルコントローラに送る信号のコマンドの違いによってなされる無線電池システム。 In claim 1,
The wireless battery system is configured to determine whether the data sent from the cell controller to the battery controller is encrypted or unencrypted based on a difference in a command of a signal sent from the battery controller to the cell controller. - 請求項1において、
前記セルコントローラから前記バッテリコントローラに送るデータを暗号化するかまたは非暗号化とするかの判断は、前記バッテリコントローラから前記セルコントローラに送る信号の周波数の違いによってなされる無線電池システム。 In claim 1,
The wireless battery system is configured to determine whether the data sent from the cell controller to the battery controller is encrypted or unencrypted based on a difference in frequency of a signal sent from the battery controller to the cell controller. - 請求項2または請求項3において、
前記セルコントローラから前記バッテリコントローラに送るデータを暗号化すると判断した場合、
前記バッテリコントローラから前記セルコントローラに送る信号に含まれる情報を暗号鍵として前記セルコントローラから前記バッテリコントローラに送るデータを暗号化する無線電池システム。 In claim 2 or claim 3,
When it is determined that the data sent from the cell controller to the battery controller is encrypted,
A wireless battery system that encrypts data to be sent from the cell controller to the battery controller using information included in a signal sent from the battery controller to the cell controller as an encryption key. - 請求項2または請求項3において、
前記セルコントローラから前記バッテリコントローラに送るデータを暗号化すると判断した場合、前記セルコントローラが記憶している情報を暗号鍵として前記セルコントローラから前記バッテリコントローラに送るデータを暗号化する無線電池システム。 In claim 2 or claim 3,
A wireless battery system that encrypts data to be sent from the cell controller to the battery controller by using information stored in the cell controller as an encryption key when it is determined that data to be sent from the cell controller to the battery controller is encrypted. - 請求項4または請求項5において、
前記セルコントローラは、擬似乱数発生回路を有し、
前記擬似乱数発生回路は、前記暗号鍵に基づいてスクランブルデータを作成し、前記セルコントローラが前記バッテリコントローラに送信するセル内部の情報と、前記スクランブルデータにより暗号化データを作成する無線電池システム。 In claim 4 or claim 5,
The cell controller has a pseudo random number generation circuit,
The pseudo-random number generation circuit creates scramble data based on the encryption key, and creates a scrambled data based on information inside the cell that the cell controller sends to the battery controller and the scramble data. - 請求項3において、
前記セルコントローラは、所定の周波数の信号を増幅する共振フィルタを有し、前記セルコントローラは、前記共振フィルタが前記所定の周波数の信号を所定以上受けとった場合、前記セルコントローラから前記バッテリコントローラに送るデータを暗号化する判断をする無線電池システム。 In claim 3,
The cell controller includes a resonance filter that amplifies a signal having a predetermined frequency, and the cell controller sends the signal from the cell controller to the battery controller when the resonance filter receives a signal having the predetermined frequency. A wireless battery system that decides to encrypt data. - 請求項7において、
前記セルコントローラは、前記所定の周波数を減少させるノッチフィルタを有し、
前記セルコントローラは、前記ノッチフィルタが前記所定の周波数の信号以外の信号を所定以上受けとった場合、前記セルコントローラから前記バッテリコントローラに送るデータを非暗号化で行う判断をする無線電池システム。 In claim 7,
The cell controller has a notch filter that reduces the predetermined frequency;
The cell controller is a wireless battery system that, when the notch filter receives a signal other than the signal of the predetermined frequency for a predetermined amount or more, determines whether to send data sent from the cell controller to the battery controller without encryption.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015108066A JP2018137489A (en) | 2015-05-28 | 2015-05-28 | Radio battery system |
JP2015-108066 | 2015-05-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016190174A1 true WO2016190174A1 (en) | 2016-12-01 |
Family
ID=57392804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/064668 WO2016190174A1 (en) | 2015-05-28 | 2016-05-18 | Wireless battery system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018137489A (en) |
WO (1) | WO2016190174A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1141245A (en) * | 1997-07-22 | 1999-02-12 | Fujitsu Ltd | Enciphered communication system |
JP2005319870A (en) * | 2004-05-07 | 2005-11-17 | Denso Corp | Tire air pressure detecting device |
JP2007134996A (en) * | 2005-11-10 | 2007-05-31 | Nintendo Co Ltd | Communication system, communication program, and communication terminal |
JP2011234250A (en) * | 2010-04-28 | 2011-11-17 | Nec Access Technica Ltd | Information communication system, information communication method and program |
WO2012070632A1 (en) * | 2010-11-26 | 2012-05-31 | ソニー株式会社 | Secondary battery cell, battery pack and power consumption device |
-
2015
- 2015-05-28 JP JP2015108066A patent/JP2018137489A/en active Pending
-
2016
- 2016-05-18 WO PCT/JP2016/064668 patent/WO2016190174A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1141245A (en) * | 1997-07-22 | 1999-02-12 | Fujitsu Ltd | Enciphered communication system |
JP2005319870A (en) * | 2004-05-07 | 2005-11-17 | Denso Corp | Tire air pressure detecting device |
JP2007134996A (en) * | 2005-11-10 | 2007-05-31 | Nintendo Co Ltd | Communication system, communication program, and communication terminal |
JP2011234250A (en) * | 2010-04-28 | 2011-11-17 | Nec Access Technica Ltd | Information communication system, information communication method and program |
WO2012070632A1 (en) * | 2010-11-26 | 2012-05-31 | ソニー株式会社 | Secondary battery cell, battery pack and power consumption device |
Also Published As
Publication number | Publication date |
---|---|
JP2018137489A (en) | 2018-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110316013B (en) | Carrier, carrier charging system and carrier charging method | |
CN108536118B (en) | Vehicle ECU, system and method for ECU to provide diagnostic information | |
US10193190B2 (en) | Battery control system | |
JP6392088B2 (en) | Wireless battery system and cell controller and battery controller used therefor | |
JP5808418B2 (en) | Battery monitoring device, battery monitoring system | |
CN106026219B (en) | Battery control IC, battery pack, and authentication method therefor | |
US7613924B2 (en) | Encrypted and other keys in public and private battery memories | |
CN102668314B (en) | Battery pack for electric power tool, and battery connection device | |
US20120316813A1 (en) | Method and device for providing reliable information about the lifetime of a battery | |
US20160277189A1 (en) | Method and apparatus for performing cross-authentication based on secret information | |
US10089499B2 (en) | Method and apparatuses for authenticating measurement data relating to a battery | |
JP2009015744A (en) | Authentication system and authenticating apparatus | |
US20080018448A1 (en) | System and method for tire pressure monitoring | |
US20160171794A1 (en) | Method and Devices for Providing Information for the Purposes of Maintaining and Servicing a Battery | |
US10473722B2 (en) | Method and apparatuses for authenticating measurement data for a battery | |
US8519669B2 (en) | Energy storage unit provided with application unit and a safety unit | |
JP5659844B2 (en) | Battery identification device | |
CN103392248A (en) | Method for monitoring a battery pack, battery with a monitoring module and a motor vehicle with a corresponding battery | |
CN111162328B (en) | Method and system for replacing battery for vehicle | |
CN108116367B (en) | Keyless system matching method and keyless matching system | |
CN111163432A (en) | Battery anti-theft method, management equipment, battery and server | |
WO2016190174A1 (en) | Wireless battery system | |
US10073990B1 (en) | System and method for monitoring network devices incorporating authentication capable power supply modules | |
JP2013248915A (en) | Integrated receiver | |
JP2019149707A (en) | Verification device and verification system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16799880 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16799880 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |