WO2016190074A1 - Reflective x-ray generation device - Google Patents

Reflective x-ray generation device Download PDF

Info

Publication number
WO2016190074A1
WO2016190074A1 PCT/JP2016/063792 JP2016063792W WO2016190074A1 WO 2016190074 A1 WO2016190074 A1 WO 2016190074A1 JP 2016063792 W JP2016063792 W JP 2016063792W WO 2016190074 A1 WO2016190074 A1 WO 2016190074A1
Authority
WO
WIPO (PCT)
Prior art keywords
window
target
ray generator
electron gun
ray
Prior art date
Application number
PCT/JP2016/063792
Other languages
French (fr)
Japanese (ja)
Inventor
和哉 熊本
定好 松田
Original Assignee
松定プレシジョン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松定プレシジョン株式会社 filed Critical 松定プレシジョン株式会社
Priority to JP2016564096A priority Critical patent/JP6121072B1/en
Publication of WO2016190074A1 publication Critical patent/WO2016190074A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • H01J35/18Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof

Definitions

  • the present invention relates to a reflective X-ray generator, and more specifically to a reflective X-ray generator capable of sufficiently suppressing target quality degradation.
  • X-ray imaging is used for diagnosis in the medical field and non-destructive inspection in the industrial field.
  • An X-ray generator that generates X-rays includes an electron gun that emits electrons (electron beams), a lens electrode that focuses the electrons emitted from the electron gun, a target that generates X-rays when the electrons collide, It has.
  • the X-ray generator collides electrons emitted from an electron gun with a target, and generates X-rays from the target by the collision energy.
  • the generated X-ray is radiated to an external object through the window.
  • the transmission type is a method in which X-rays are extracted from the same direction as the traveling direction of the electron beam from the electron gun toward the target.
  • the reflection type is a method in which X-rays are extracted from a direction different from the traveling direction of the electron beam from the electron gun toward the target.
  • the target In the transmission type, the target is held at a position in contact with the window, whereas in the reflection type, the target is held at a position away from the window. Therefore, the reflection type can cool the target more easily than the transmission type. Therefore, in the reflection type, the intensity of the electron beam can be increased, and more sensitive X-ray imaging can be performed.
  • Patent Document 1 discloses a transmission X-ray tube that houses an electron gun for generating an electron beam in a vacuum vessel.
  • the vacuum vessel includes a vacuum vessel main body, a target, a target support that supports the target, and a connecting body that connects the vacuum vessel main body and the target support.
  • the coupling body is airtightly fixed to each of the vacuum vessel main body and the target support body, and allows displacement of the target support body with respect to the vacuum vessel main body.
  • the target support can be tilted with respect to the axis of the electron beam generated by the electron gun, and the direction of tilting along the circumferential direction around the axis of the electron beam can be changed.
  • Patent Document 2 an electron gun that emits electrons from the cathode in the direction of electron incidence, an anode made of a reflective target that emits X-rays by making the emitted electrons incident on the target surface, and a target are provided.
  • a reflection type X-ray tube including an electron shielding means for shielding electrons reflected from a target surface is disclosed.
  • Patent Document 1 relates to a transmission type.
  • the transmission type target has a problem that it is difficult to cool the target as compared with the reflection type. Therefore, miniaturization of the electron beam convergence size and increase of the electron beam energy have a problem of shortening the life of the target.
  • the connection body is increased in size, the irradiation position of the electron beam on the target cannot be changed in a wide range, and the deterioration of the quality of the target cannot be sufficiently prevented.
  • the conventional reflection type X-ray generator as in Patent Document 2 since the irradiation position of the electron beam on the target is always the same, there is a problem that the quality of the target is significantly deteriorated.
  • the present invention is for solving the above-described problems, and an object of the present invention is to provide a reflection type X-ray generator capable of sufficiently suppressing a reduction in target quality.
  • a reflective X-ray generator includes a chamber constituting an internal space extending in at least one direction, an electron gun that is supported by the chamber in the internal space and irradiates an electron beam to a target,
  • the chamber includes a window for guiding X-rays generated from the target to the outside of the internal space.
  • the reflection type X-ray generator further includes an expansion / contraction portion that can be expanded / contracted by an external force, the electron gun is supported by the chamber via the expansion / contraction portion, and the adjustment portion locally expands / contracts the expansion / contraction portion.
  • the electron gun is fixed and further includes a fixing base connected to the expansion / contraction part, and the chamber is a bottom part provided at a position sandwiching the electron gun and the fixing base between the window and the window.
  • the elastic part is supported by the bottom part.
  • the adjustment unit includes a pushing unit that pushes the fixed base in a direction to locally increase the distance between the electron gun and the bottom.
  • the adjustment unit includes a pulling unit that pulls the fixed base in a direction to locally reduce the distance between the electron gun and the bottom.
  • the chamber further includes a head portion having a length in a direction perpendicular to the one direction along one direction, and the window is fixed to the head portion.
  • the head portion includes a shape in which an upper portion of the cylinder is cut by at least the first surface and the second surface, and a window is provided on the first surface.
  • the first surface is a plane, and the second surface forms a boundary line with the first surface.
  • the head portion includes a shape in which an upper portion of the cylinder is further cut by a third surface, and the second and third surfaces are both flat surfaces, The surface forms a boundary line with the first surface, and the second surface and the third surface are symmetric with respect to a plane including the rotation axis of the cylinder.
  • the adjustment unit locally decreases the distance between the electron gun and the bottom and a push screw that pushes the fixing base in a direction to locally increase the distance between the electron gun and the bottom.
  • a pulling screw for pulling the fixing base in the direction to be fixed, and the fixing base is fixed by the push screw and the pulling screw.
  • the area of the window portion exposed to the outside is preferably not less than 0.5 square millimeters and not more than 20 square millimeters.
  • the target includes a substrate made of a light element material and a heavy metal material formed on a surface of the substrate that is irradiated with an electron beam.
  • the minimum value of the distance from the surface irradiated with the electron beam to the outer surface of the window is preferably 0.1 mm or more and 4 mm or less.
  • the minimum value of the distance from the surface irradiated with the electron beam to the outer surface of the window is preferably 0.2 mm or more and 2 mm or less.
  • the minimum value of the distance from the surface irradiated with the electron beam to the outer surface of the window is preferably 0.3 mm or more and 1.5 mm or less.
  • the focal diameter is preferably larger than 0 and not larger than 5 ⁇ m.
  • FIG. (B) is a schematic representation of the plane PL1 surface of FIG.
  • the area of the window exposed to the outside is (a) by bringing the position of the arrow AR2 closer to the substantially triangular tip of the plane PL1. It is a figure which shows typically the positional relationship in the case of making it smaller than the case of.
  • the boundary line LN1 with the plane PL2 or the phase CS2 exists in the vicinity of the plane PL1 where the window 12 is provided, the head portion 11 when the area of the window exposed to the outside is smaller than in the case of FIG.
  • FIG.14 (b) which shows the positional relationship of a workpiece
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an X-ray imaging apparatus according to an embodiment of the present invention.
  • FIG. 1 shows the X-ray direction that coincides with the normal direction of the outer surface of the window among the traveling direction of the electron beam from the electron gun to the target (arrow AR1) and the X-ray emission direction from the window to the workpiece WK. It is sectional drawing at the time of seeing in the cross section containing the advancing direction (arrow AR2).
  • the z-axis direction indicates the traveling direction of the electron beam (the direction indicated by the arrow AR1), and the z1 axis direction indicates the normal direction of the outer surface of the window (the direction indicated by the arrow AR2).
  • Each of the x-axis, y-axis, and z-axis is assumed to be orthogonal to each other. Furthermore, it is assumed that the x1 axis, the y axis, and the z1 axis are orthogonal to each other.
  • the X-ray imaging apparatus of the present embodiment includes an X-ray generation apparatus 1, an X-ray detection apparatus 70, a control unit 80, an operation unit 90, and the like.
  • the workpiece WK to be subjected to inspection and X-ray irradiation is arranged so that the normal line of the plane of the workpiece WK facing the X-ray generation device 1 side is parallel to the normal line of the outer surface of the window.
  • the arrow AR2 indicates the traveling direction of the X-ray that coincides with the normal direction of the outer surface of the window in the X-ray emission direction.
  • the workpiece WK may be arranged such that the normal line of the plane of the workpiece WK facing the X-ray generator 1 side is inclined with respect to the normal line of the outer surface of the window.
  • the workpiece WK may be a flat plate or a size that protrudes from the window.
  • the work WK may be arranged in contact with the window.
  • the X-ray generator (X-ray source) 1 is a reflective X-ray generator.
  • the chamber 10 is a sealed type and constitutes a decompressed internal space IS.
  • the internal space IS extends in the z-axis direction.
  • the electron gun 20 is supported by the chamber 10 in the internal space IS.
  • the X-ray generator 1 generates X-rays from the target by irradiating the target with an electron beam as indicated by an arrow AR1 from the electron gun 20 in the internal space IS.
  • X-rays generated from the target spread radially are guided to the outside of the internal space IS from the window 12 provided in the chamber 10, and are irradiated onto the work WK.
  • An arrow AR4 indicates the traveling direction of the end portion of the X-ray that spreads radially.
  • the lower part of the X-ray generator 1 is arranged in the case 100.
  • a power source 101 is provided in the case 100.
  • the bottom of the chamber 10 and the electron gun 20 are maintained at a high voltage by the power source 101, and the case 100 is maintained at the ground potential.
  • the case 100 is filled with an insulating gas or resin for the purpose of preventing discharge.
  • the X-ray detection device 70 receives the X-ray that has passed through the workpiece WK, and transmits a signal indicating the intensity of the received X-ray to the control unit 80.
  • the control unit 80 is electrically connected to each of the X-ray generation apparatus 1, the X-ray detection apparatus 70, and the operation unit 90, and controls the entire X-ray imaging apparatus.
  • the control unit 80 includes an X-ray generation control unit 81, a position angle adjustment unit 82, and an image generation unit 83.
  • the X-ray generation control unit 81 controls the voltage applied to the parts constituting the electron gun 20 and the lens of the X-ray generation apparatus 1 and the degree of vacuum inside the X-ray generation apparatus 1 to thereby control the X-ray generation apparatus 1. Controls X-rays generated from.
  • the position angle adjustment unit 82 adjusts the position (X-ray irradiation position) and the desired angle (X-ray irradiation angle) of the work WK by moving or tilting the work WK.
  • the position angle adjustment unit 82 rotates the X-ray generation device 1 and the X-ray detection device 70 around the irradiation position of the electron beam on the target or the workpiece WK, thereby adjusting the position and angle desired to view the workpiece WK. You may do.
  • the position angle adjustment unit 82 may adjust the position of the workpiece WK to be seen and the angle to be seen by moving the X-ray detection device 70 along the x1 axis direction or the y axis direction.
  • the image generation unit 83 generates an X-ray image of the work WK based on the signal received from the X-ray detection device 70.
  • the operation unit 90 receives various operations related to the X-ray imaging apparatus from the operator, and transmits a signal based on the received operation to the control unit 80.
  • FIG. 2 is a cross-sectional view showing a first configuration of the X-ray generator in one embodiment of the present invention.
  • the X-ray generator 1 having the first configuration includes a chamber 10, an electron gun 20, a telescopic unit 30, an adjustment unit 40, an electrode 51, a fixed base 52, and the like.
  • Each of the electron gun 20, the telescopic part 30, and the fixed base 52 is provided in the internal space IS of the chamber 10.
  • Each of the adjustment unit 40 and the electrode 51 is provided on the bottom 14 of the chamber 10.
  • the chamber 10 includes a head part (anode) 11, a window (X-ray extraction window) 12, a target 13, a bottom part 14, a main body 15, metal plates (joining rings) 16a and 16b, and the like.
  • the internal space IS of the chamber 10 has at least a degree of vacuum (for example, a degree of vacuum of 1 ⁇ 10 ⁇ 4 Pa or less) such that electrons can fly between the electron gun 20 and the target 13.
  • the degree of vacuum of the internal space IS is preferably set as appropriate in consideration of the type of the electron gun 20 to be used, the operating temperature of the electron gun 20, and the like.
  • the head portion 11 is fixed to the work WK side (upper side in FIG. 2) of the main body 15.
  • the head part 11 is fixed to the metal plate 16a by a method such as welding, and the metal plate 16a is fixed to the main body 15 by a method such as brazing.
  • the head unit 11 and the target 13 are kept at the ground potential (GND potential) during electron beam irradiation.
  • the head portion 11 is tapered such that the length in the direction perpendicular to the z-axis direction (the length in the x-axis direction or the y-axis direction) decreases toward the upper side in FIG. 2 along the z-axis direction. It has a shape. It is preferable that the head part 11 has a substantially polygonal cone shape or a substantially conical tip.
  • the head portion 11 is made of a metal such as copper, for example.
  • the window 12 is fixed near the position closest to the workpiece WK in the head portion 11.
  • the window 12 closes a hole 11 a provided between the internal space IS and the outside of the head portion 11.
  • the outer surface of the window 12 is a flat surface and has a normal line in the z1 axis direction.
  • the outer surface of the window 12 and the outer surface of the head portion 11 are substantially on the same plane.
  • the window 12 has a higher X-ray transmittance than the head unit 11.
  • the window 12 is made of Be (beryllium), SiN (silicon nitride), SiC (silicon carbide), diamond-like carbon, or the like.
  • the window 12 has a shape such as a circular plate, a square plate, or a trapezoidal plate.
  • the thickness of the window 12 is, for example, not less than 0.01 mm and not more than 1 mm, preferably not less than 0.05 mm and not more than 0.5 mm, and more preferably not less than 0.1 mm and not more than 0.3 mm.
  • the area of the window 12 exposed to the outside is preferably 0.5 square millimeters or more and 20 square millimeters or less. By setting the area of the window 12 exposed to the outside to 0.5 square millimeters or more, the X-ray radiation angle can be secured.
  • the head part 11 can be reduced in size by setting the area of the window 12 exposed to the outside to 20 square millimeters or less.
  • the target 13 is fixed to a portion of the head portion 11 facing the internal space IS.
  • the target 13 is close to the window 12.
  • One end of the target 13 is close to the joint between the window 12 and the head portion 11.
  • the target 13 is an X-ray generation source that generates X-rays when irradiated with an electron beam.
  • the target 13 is usually made of a heavy metal having an atomic number of 26 or more.
  • the target 13 preferably has a high thermal conductivity and a high melting point.
  • the target 13 is made of W (tungsten), Ta (tantalum), Rh (rhodium), Mo (molybdenum), Cr (chromium), or the like.
  • the thickness of the target 13 is, for example, 0.1 ⁇ m or more and 1 mm or less.
  • the target 13 may be formed on one surface of the substrate by a method such as sputtering or vapor deposition, and may be fixed to the head portion 11 by bonding the other surface of the substrate to the inner wall surface of the head portion 11.
  • the substrate in this case is made of a light element material such as diamond-like carbon, diamond, graphite sheet, or beryllium.
  • the target 13 may be formed of a thin film produced by rolling or polishing.
  • the thickness of the target 13 is, for example, not less than 0.1 ⁇ m and not more than 3 ⁇ m.
  • the target 13 has a heavy metal formed on one surface (surface irradiated with an electron beam) made of a light element, the thickness of the substrate is such that electrons of the electron beam stop in the substrate. It is preferable to have.
  • the intensity of X-rays generated from heavy metals is greater than the intensity of X-rays generated from light elements. By doing in this way, the magnitude
  • the bottom portion 14 is fixed to the opposite side (lower side in FIG. 2) of the work WK in the main body 15.
  • the bottom portion 14 is provided at a position where the electron gun 20 and the fixed base 52 are sandwiched between the bottom portion 14 and the window 12.
  • the bottom part 14 is fixed to the metal plate 16b by a method such as welding, and the metal plate 16b is fixed to the main body 15 by a method such as brazing.
  • the bottom 14 is made of a metal such as stainless steel.
  • a plurality of holes 14a are opened at the center of the bottom portion 14, and a plurality of electrodes 51 are inserted into each of the plurality of holes 14a.
  • An insulating material such as glass is buried between the electrode 51 and the bottom portion 14 so as to be airtight.
  • Each of the plurality of electrodes 51 is for supplying a potential or electric power to the electron gun 20.
  • the main body 15 has a cylindrical shape, and has an opening on each of the workpiece WK side and the opposite side of the workpiece WK.
  • the opening on the workpiece WK side is covered with the head portion 11 and the window 12.
  • the opening on the opposite side of the workpiece WK is covered by the bottom 14.
  • the main body 15 insulates the electron gun 20 from the target 13 (head portion 11).
  • the main body 15 is made of an insulator such as ceramic.
  • the electron gun 20 is fixed to a cylindrical fixed base 52.
  • the electron gun 20 is supported on the bottom portion 14 via the telescopic portion 30 and the fixed base 52.
  • the electron gun 20 is kept at a negative potential during electron beam irradiation.
  • the electron gun 20 may be a thermal electron cathode, a tungsten filament, a crystal electron source such as a LaB6 cathode, or a field emission type such as cold FE or thermal FE.
  • the electron gun 20 includes a lens (not shown) for extracting and converging electrons generated from the electron gun 20 into the internal space IS.
  • the lens of the electron gun 20 may be an electrostatic lens type or a magnetic lens type.
  • FIG. 3 is a plan view showing the configuration of the telescopic part 30 and the fixed base lower end part 52a when viewed from the lower side in FIG. 3, 5, and 7, the portion of the fixing base lower end portion 52 a that contacts the push screw 41 is indicated by a triangular symbol, and the portion of the fixing base lower end portion 52 a that contacts the pull screw 42 is a rectangular shape. It is indicated by a symbol.
  • the fixing base 52 includes a fixing base lower end portion 52a having a circumferential planar shape when viewed from the z-axis direction.
  • the elastic part 30 is connected to the fixed base lower end part 52 a and is supported by the bottom part 14.
  • the expansion / contraction part 30 can be expanded and contracted by an external force.
  • the expansion / contraction part 30 extends from the fixed base lower end 52a to the inner diameter side (the electrode 51 side in FIG. 2) and reaches the bottom 14 and the outer diameter side (main body in FIG. 2) from the fixed base lower end 52a. 15 side) and an outer diameter side portion 30b reaching the bottom portion 14.
  • the adjusting unit 40 locally expands and contracts the expansion and contraction unit 30 to thereby change the inclination angle of the electron beam (direction indicated by the arrow AR1) irradiated from the electron gun 20 with respect to the extending direction (z-axis direction) of the internal space IS. Adjust.
  • the adjustment part 40 includes a push screw 41 (an example of a push part) and a pull screw 42 (an example of a pull part). Each of the push screw 41 and the pull screw 42 is, for example, three.
  • the push screw 41 is screwed into a hole 14 b provided in the bottom portion 14.
  • a thread is formed on the inner wall of the hole 14b.
  • the pull screw 42 is inserted into a hole 14 c provided in the bottom portion 14.
  • the hole 14c is a through hole, and no thread is formed on the inner wall of the hole 14c.
  • the head portion of the pull screw 42 is in contact with the peripheral surface of the hole 14 c in the bottom portion 14.
  • Each of the push screw 41 and the pull screw 42 is provided alternately at equal intervals along the circumferential shape of the edge of the fixed base lower end 52a.
  • the push screw 41 When the push screw 41 is rotated in the direction of entering the hole 14b, the push screw 41 pushes the lower end 52a of the fixed base away from the bottom 14. Thereby, the expansion / contraction part 30 in the vicinity of the position where the push screw 41 presses the fixed base lower end 52a is locally extended, and the distance between the electron gun 20 and the fixed base 52 and the bottom 14 is the same as the distance between the push screw 41 and the fixed base lower end It becomes locally large near the position where the portion 52a is pressed.
  • the tip of the pull screw 42 is screwed into a groove 52b provided in the lower end 52a of the fixed base.
  • the pull screw 42 When the pull screw 42 is rotated in a direction to enter the fixed base lower end portion 52 a, the head portion of the pull screw 42 is in contact with and pressed against the bottom portion 14. Therefore, the pull screw 42 pulls the fixed base lower end portion 52 a toward the bottom portion 14.
  • the expansion / contraction part 30 near the position where the pulling screw 42 pulls the fixed base lower end part 52a is locally contracted, and the distance between the electron gun 20 and the fixing base 52 and the bottom part 14 is that the pulling screw 42 is at the lower end of the fixed base. It becomes locally smaller in the vicinity of the position where the portion 52a is pulled.
  • the electron gun 20 is moved by the arrow M1.
  • the electron beam trajectory also changes in the direction indicated by the arrow M11 (the tilt angle of the electron beam increases).
  • the electron beam irradiation position on the target 13 changes, and the distance (minimum FOD) between the electron beam irradiation position on the target 13 and the atmosphere-side surface of the window 12 changes. 2 is rotated in a direction in which the pull screw 42 on both sides of the right push screw 41 in FIG.
  • the electron gun 20 is tilted in the direction indicated by the arrow M2, and the locus of the electron beam is also changed in the direction indicated by the arrow M12 (the tilt angle of the electron beam is increased).
  • the electron beam irradiation position on the target 13 changes, and the distance (minimum FOD) between the electron beam irradiation position on the target 13 and the atmosphere-side surface of the window 12 changes.
  • the push screw 41 After adjusting the electron gun 20 to a target angle, the push screw 41 applies a pressing force to the fixed base 52 so that the angle does not tilt, and the pull screw 42 pulls the fixed base 52.
  • Each of the push screw 41 and the pull screw 42 applies a force to the fixing base 52 in directions opposite to each other along the circumferential direction of the fixing base lower end portion 52a. Thereby, the fixing base 52 is stably fixed. As a result, it is possible to prevent the tilt of the electron gun 20 from changing unnecessarily due to vibration or the like.
  • FIG. 4 is a cross-sectional view showing a second configuration of the X-ray generator in one embodiment of the present invention.
  • FIG. 5 is a plan view showing the configuration of the telescopic part 30 and the fixed base lower end part 52a when viewed from the lower side in FIG.
  • the internal space IS of the chamber 10 is configured by the chamber 10, the extendable part 30, and the fixed base 52.
  • the bottom part 14 has an annular shape.
  • the main body 15 is made of an insulator such as glass.
  • the fixed base 52 is cylindrical and includes a fixed base lower end 52a having a circular planar shape when viewed from the z-axis direction.
  • the fixed base lower end 52 a covers one opening in the cylindrical shape of the fixed base 52.
  • Four holes 52c are opened in the fixed base lower end 52a, and each of the four electrodes 51 is inserted into each of the four holes 52c.
  • Each hole 52c of the electrode 51 is provided with an insulating material such as glass so as to airtightly fill the space between the fixed base lower end 52a and the electrode 51.
  • the configuration other than the above in the X-ray generator 1 of the second configuration and the method of tilting the electron gun 20 are the same as in the case of the X-ray generator of the first configuration.
  • the same reference numerals are given and description thereof will not be repeated.
  • FIG. 6 is a cross-sectional view showing a third configuration of the X-ray generator in one embodiment of the present invention.
  • FIG. 7 is a plan view showing the configuration of the telescopic part 30 and the fixed base lower end part 52a when viewed from the lower side in FIG.
  • the internal space IS of the chamber 10 is configured by the chamber 10, the telescopic portion 30, and the fixed base 52.
  • a main body 15 of the chamber 10 is integrated with the head portion 11.
  • the main body 15 and the head unit 11 may be separated from each other.
  • the main body 15 may be made of, for example, stainless steel, and the head portion 11 may be made of, for example, a metal such as copper.
  • the chamber 10 is an open type.
  • the main body 15 is provided with an opening 15a, and a vacuum pump 60 is connected to the opening 15a. Thereby, the opening 15a can be opened to the atmosphere, and the electron gun 20 and the like can be exchanged.
  • the bottom part 14 is airtightly fixed with screws or the like with a copper gasket or an O-ring sandwiched between the main body 15 and the like.
  • the bottom part 14 has an annular shape.
  • the head portion 11 and the main body 15 are made of a metal such as copper, for example.
  • the fixed base 52 has a truncated cone shape, and includes a fixed base lower end 52a having a circumferential planar shape when viewed from the z-axis direction.
  • the fixed base 52 insulates the electron gun 20 from the target 13 (main body 15).
  • a part of the fixed base 52 (part other than the fixed base lower end 52a) is made of an insulator such as ceramic.
  • Four holes 52c are opened in the fixed base lower end 52a, and each of the four electrodes 51 is inserted into each of the four holes 52c.
  • the elastic part 30 is connected to the fixed base lower end part 52 a and is supported by the bottom part 14.
  • the stretchable part 30 has a bellows shape.
  • the expansion / contraction part 30 is arrange
  • the configuration other than the above in the X-ray generator 1 of the third configuration and the method of tilting the electron gun 20 are the same as in the case of the X-ray generator of the first configuration.
  • the same reference numerals are given and description thereof will not be repeated.
  • the configuration of the X-ray generator may be any of the first to third configurations described above, or may be a combination of the members in each of the first to third configurations described above.
  • the configuration of the X-ray generator may be other than the first to third configurations described above.
  • FIG. 8 is a perspective view showing a first configuration of the head portion according to the embodiment of the present invention.
  • the head portion 11 of the first configuration includes a shape in which the upper part of the cylinder is cut by a plurality of surfaces.
  • the tip of the head part 11 has a substantially polygonal pyramid shape.
  • the head unit 11 includes planes PL1 and PL2 that are planes for cutting a cylinder, and a curved surface CS1 that is a side surface of the cylinder.
  • Window 12 is provided in the vicinity of the tip of head portion 11 on plane PL1.
  • the normal lines of the planes PL1 and PL2 are inclined with respect to the cylindrical rotation axis OA.
  • the plane PL1 and the plane PL2 are adjacent to each other at the boundary line LN1.
  • the boundary line LN1 is linear and is located at the most distal end (position closest to the workpiece WK) in the head portion 11.
  • Each of planes PL1 and PL2 has a substantially semicircular planar shape.
  • FIG. 9 is a perspective view showing a second configuration of the head portion according to the embodiment of the present invention.
  • the head portion 11 having the second configuration also includes a shape in which the upper part of the cylinder is cut by a plurality of surfaces.
  • the tip of the head part 11 has a substantially polygonal pyramid shape.
  • the head unit 11 includes planes PL1, PL2, PL3, and PL4 that are planes for cutting a cylinder, and a curved surface CS1 that is a side surface of the cylinder.
  • Window 12 is provided in the vicinity of the tip of head portion 11 on plane PL1.
  • Each normal of the planes PL1, PL2, PL3, and PL4 is inclined with respect to the rotation axis OA of the cylinder, and each of the planes PL1, PL2, PL3, and PL4 surrounds the rotation axis OA of the cylinder. Is arranged.
  • the plane PL1 and the plane PL2 are adjacent by a boundary line LN1, the plane PL1 and the plane PL3 are adjacent by a boundary line LN2, the plane PL2 and the plane PL4 are adjacent by a boundary line LN3, and the plane PL3 And the plane PL4 are adjacent to each other at the boundary line LN4.
  • Each of the boundary lines LN1, LN2, LN3, and LN4 is linear.
  • Each of planes PL1, PL2, PL3, and PL4 has a substantially triangular planar shape.
  • the plane PL1 and the plane PL2 are symmetric with respect to the plane PL10 including the cylindrical rotation axis OA.
  • FIG. 10 and FIG. 11 are perspective views showing a third configuration of the head portion in one embodiment of the present invention.
  • the head portion 11 having the third configuration also includes a shape in which the upper part of the cylinder is cut by a plurality of surfaces.
  • the tip of the head part 11 has a substantially conical shape.
  • the head unit 11 includes a plane PL1 that is a plane for cutting a cylinder, a curved surface CS2 that is a curved surface that cuts the cylinder into a conical shape, and a curved surface CS1 that is a side surface of the cylinder.
  • Window 12 is provided in the vicinity of the tip of head portion 11 on plane PL1.
  • the normal line of the plane PL1 is inclined with respect to the cylindrical rotation axis OA, and each of the plane PL1 and the curved surface CS2 is disposed so as to surround the cylindrical rotation axis OA.
  • the plane PL1 and the curved surface CS2 are adjacent to each other at the boundary lines LN1 and LN2.
  • Each of the boundary lines LN2 and LN3 is curved.
  • the plane PL1 has a substantially triangular planar shape.
  • the configuration of the head portion may be any of the first to third configurations described above, or may be a configuration other than these.
  • Each of the head portions having the first to third configurations may be applied to any of the above-described X-ray generators having the first to third configurations, and may be applied to an X-ray generator other than the above-described ones. Also good.
  • the tilt angle of the electron beam can be adjusted, the irradiation position of the electron beam on the target 13 is changed in a wide range by a simpler method than when the target 13 is moved. be able to. As a result, the quality degradation of the target 13 can be sufficiently suppressed.
  • the FOD can be shortened to some extent by irradiating the target 13 closest to the window 12 with the electron beam.
  • the tilt angle of the electron beam can be adjusted, the irradiation position of the electron beam on the target can be appropriately set in a wide range.
  • a window can be reduced in size and the size near the front-end
  • the head unit 11 has a configuration in which a boundary line with another surface exists in the vicinity of the plane on which the window 12 is provided, particularly as in the configurations of the second and third head units.
  • the FOD can be reduced even in the state where the normal line on the X-ray irradiation side of the workpiece WK is inclined with respect to the normal line on the outer surface of the window 12 (z1 axis direction). The effect of reducing the FOD will be described in detail with reference to FIGS.
  • FIG. 12 is a diagram schematically showing the positional relationship between the head unit 11 and the workpiece WK when there is no boundary line with another surface near the plane PL1 where the window 12 is provided.
  • the case where head portion 11 has a configuration in which no boundary line with another surface exists in the vicinity of plane PL1 where window 12 is provided is, for example, the tip of head portion 11 Is formed of a single plane (when the head portion 11 has a substantially cylindrical shape).
  • the normal line (arrow AR3) of the plane on the head portion 11 side of the workpiece WK is inclined with respect to the normal line (arrow AR2) of the outer surface of the window 13 (when the workpiece WK is tilted)
  • a circle X1 At the position, the end of the work WK interferes with the head part 11, and the work WK cannot approach the target 13.
  • FOD has a large value of distance D1.
  • FIG. 13 is a diagram schematically showing the positional relationship between the head portion 11 and the work WK when a boundary line LN1 between the plane PL2 or the curved surface CS2 exists in the vicinity of the plane PL1 where the window 12 is provided. is there.
  • the boundary line is set so that work WK approaches plane PL2 or curved surface CS2.
  • the workpiece WK can be tilted with LN1 as a fulcrum.
  • work WK can be made to approach the target 13 compared with the case of FIG.
  • FOD has a value of distance D2 that is smaller than distance D1.
  • the shortest distance between the point where AR2 penetrates the window 12 exposed to the outside and the boundary line LN1 is the distance D11.
  • FIG. 14A shows the plane PL1 in FIG. 9, and the shortest distance D11 between the point where the arrow AR2 passes through the window 12 in FIG. 13 and the boundary line LN1 is drawn.
  • FIG. 14B shows the position of the arrow AR2 at the substantially triangular tip of the plane PL1 when the boundary line LN1 with the plane PL2 or the phase CS2 exists in the vicinity of the plane PL1 where the window 12 is provided. It is a figure when the area of the window exposed outside becomes smaller than the case of FIG. 13 (FIG. 14 (a)) by approaching.
  • the shortest distance D12 between the point where the arrow AR2 passes through the window 12 and the boundary line LN1 is drawn. It can be seen that the distance D12 can be shorter than the distance D11.
  • FIG. 15 shows a case where the area of the window exposed to the outside is smaller than in the case of FIG. 13 when the boundary line LN1 with the plane PL2 or the phase CS2 exists in the vicinity of the plane PL1 where the window 12 is provided.
  • FIG. 15 is a view corresponding to FIG. 14B schematically showing the positional relationship between the head unit 11 and the workpiece WK.
  • boundary line LN1 with plane PL2 or curved surface CS2 exists in the vicinity of plane PL1 where window 12 is provided. is doing.
  • the area of the window 12 smaller than the conventional area (area in the case of FIG. 13) as described above, the point where the arrow AR2 passes through the window 12 exposed to the outside and the boundary line LN1 Is the distance D12 smaller than the distance D11.
  • FOD has a value of distance D3 that is smaller than distance D2.
  • the distance D4 indicating the minimum FOD (the minimum value of the distance from the surface irradiated with the electron beam in the target 13 to the outer surface of the window 12) in the present embodiment is, for example, 0.1 mm or more and 4 mm or less, preferably It is 0.2 mm or more and 2 mm or less, More preferably, it is 0.3 mm or more and 1.5 mm or less, More preferably, it is 1 mm or more and 1.5 mm or less.
  • the reproducibility of the assembly accuracy is poor and a large fluctuation occurs in the minimum FOD.
  • the minimum FOD can be adjusted with high accuracy as in the above range.
  • the window 12 is typically used with a thickness of 0.5 mm. Therefore, the minimum FOD is 0.5 mm.
  • the reflection type is typically used at about 10 mm. A case where the minimum FOD is, for example, about 1 mm to 1.5 mm will be described. In this case, it can be used without much difference compared to the transmission type. For example, when the thickness of the workpiece WK is 3 mm, the FOD including the thickness is 3.5 mm in the transmission type, and the FOD including the thickness is, for example, 4 mm to 4.5 mm in the present embodiment. Then there is no big difference.
  • the X-ray dose can be increased by the amount that can be cooled in the reflective type, it is possible to realize an enlargement rate equivalent to that of the transmissive type by separating the X-ray detection device 70 compared to the transmissive type.
  • the following effects can be obtained by reducing the FOD.
  • the geometric magnification of the captured image of the workpiece WK can be increased by reducing the FOD, The photographed image of the work WK can be enlarged and viewed.
  • the amount of received X-rays in the X-ray detection device 70 increases as the FOD decreases.
  • the amount of received X-ray light is reduced to the same extent as in the conventional case, the amount of electron beam colliding with the target 13 can be reduced.
  • the spread of the electron beam can be reduced, and the size of the X-ray generation part in the target 13 can be reduced. That is, the resolution can be improved.
  • the amount of electron beams can be reduced, damage to the target 13 can be reduced.
  • the X-ray generator may be a microfocus type (having a focal diameter of 10 ⁇ m or less) in addition to a sealed type and an open type.
  • the focal diameter is preferably 5 ⁇ m or less.
  • the adjustment unit may be provided on the side surface or the front surface of the chamber instead of being provided on the bottom surface.
  • the shape of the internal space formed by the chamber is arbitrary, and the internal space may have a plurality of extending directions.
  • the adjusting unit may adjust the inclination angle of the electron beam emitted from the electron gun with respect to at least one extending direction of the internal space.

Abstract

Provided is a reflective X-ray generation device with which it is possible to adequately minimize any reduction in quality of a target. A reflective X-ray generation device is provided with: a chamber (10) constituting part of an interior space (IS) that extends in at least a z-axis direction; an electron gun (20) secured to the chamber (10) in the interior space (IS), the electron gun (20) irradiating a target (13) with electron rays; and an adjustment unit (82) for adjusting the angle of inclination, with respect to the z-axis direction, of the electron rays irradiated from the electron gun (20). The chamber (10) includes a window (12) via which X-rays emitted from the target (13) are led out of the interior space (IS).

Description

反射型X線発生装置Reflective X-ray generator
 本発明は、反射型X線発生装置に関し、より特定的には、ターゲットの品質低下を十分に抑止することのできる反射型X線発生装置に関する。 The present invention relates to a reflective X-ray generator, and more specifically to a reflective X-ray generator capable of sufficiently suppressing target quality degradation.
 従来、X線撮影は、医療分野における診断や産業機器分野における非破壊検査などに用いられている。 Conventionally, X-ray imaging is used for diagnosis in the medical field and non-destructive inspection in the industrial field.
 X線を発生するX線発生装置は、電子(電子線)を放射する電子銃と、電子銃から放射された電子を集束するレンズ電極と、電子が衝突することでX線を発生するターゲットとを備えている。X線発生装置は、電子銃から放射された電子をターゲットに衝突させ、その衝突エネルギーによりターゲットからX線を発生させる。発生したX線は、ウインドウを通じて外部の対象物へ放射される。X線発生装置には、透過型と反射型という2つの方式がある。透過型は、電子銃からターゲットに向かう電子線の進行方向と同じ方面からX線を取り出す方式である。反射型は、電子銃からターゲットに向かう電子線の進行方向とは異なる方向からX線を取り出す方式である。 An X-ray generator that generates X-rays includes an electron gun that emits electrons (electron beams), a lens electrode that focuses the electrons emitted from the electron gun, a target that generates X-rays when the electrons collide, It has. The X-ray generator collides electrons emitted from an electron gun with a target, and generates X-rays from the target by the collision energy. The generated X-ray is radiated to an external object through the window. There are two types of X-ray generators, a transmission type and a reflection type. The transmission type is a method in which X-rays are extracted from the same direction as the traveling direction of the electron beam from the electron gun toward the target. The reflection type is a method in which X-rays are extracted from a direction different from the traveling direction of the electron beam from the electron gun toward the target.
 透過型では、ターゲットはウインドウに接触した位置に保持されるのに対し、反射型では、ターゲットはウインドウから離した位置に保持されるため、反射型は透過型に比べてターゲットを冷却しやすい。したがって、反射型では、電子線の強度を強くすることができ、より高感度なX線撮影を行うことができる。 In the transmission type, the target is held at a position in contact with the window, whereas in the reflection type, the target is held at a position away from the window. Therefore, the reflection type can cool the target more easily than the transmission type. Therefore, in the reflection type, the intensity of the electron beam can be increased, and more sensitive X-ray imaging can be performed.
 近年、電子源から放射される電子線を、ターゲットにおける所望の位置に当てるための技術が提案されている。たとえば下記特許文献1には、真空容器内に、電子ビームを発生する電子銃を収容する透過型のX線管が開示されている。このX線管において、真空容器は、真空容器本体と、ターゲットと、ターゲットを支持するターゲット支持体と、真空容器本体とターゲット支持体とを連結する連結体とを備えている。連結体は、真空容器本体とターゲット支持体との各々に気密に固定されており、真空容器本体に対するターゲット支持体の変位を許容する。ターゲット支持体は、電子銃が発生する電子ビームの軸に対して傾斜可能であり、電子ビームの軸を中心とする円周方向に沿って傾斜させる方向を変更可能である。 In recent years, a technique for applying an electron beam emitted from an electron source to a desired position on a target has been proposed. For example, Patent Document 1 below discloses a transmission X-ray tube that houses an electron gun for generating an electron beam in a vacuum vessel. In this X-ray tube, the vacuum vessel includes a vacuum vessel main body, a target, a target support that supports the target, and a connecting body that connects the vacuum vessel main body and the target support. The coupling body is airtightly fixed to each of the vacuum vessel main body and the target support body, and allows displacement of the target support body with respect to the vacuum vessel main body. The target support can be tilted with respect to the axis of the electron beam generated by the electron gun, and the direction of tilting along the circumferential direction around the axis of the electron beam can be changed.
 また下記特許文献2には、カソードから電子入射方向に電子を放射する電子銃と、放射した電子をターゲット面に入射させてX線を放射する反射型のターゲットからなるアノードと、ターゲットに設けられ、ターゲット面で反射した電子を遮蔽する電子遮蔽手段とを備えた、反射型のX線管が開示されている。 In Patent Document 2 below, an electron gun that emits electrons from the cathode in the direction of electron incidence, an anode made of a reflective target that emits X-rays by making the emitted electrons incident on the target surface, and a target are provided. A reflection type X-ray tube including an electron shielding means for shielding electrons reflected from a target surface is disclosed.
特開2011-113705号公報JP 2011-113705 A 特開2004-111336号公報JP 2004-111336 A
 しかしながら、特許文献1の技術は、透過型に関するものである。透過型のターゲットは、反射型と比べてターゲットを冷却しにくいという問題があった。そのため、電子線の収束サイズの微小化と電子線エネルギーを増加させることは、ターゲットの寿命を短くしてしまうという問題があった。また、連結体の大型化を招くため、ターゲットにおける電子線の照射位置を広い範囲で変更することができず、ターゲットの品質低下を十分に抑止することはできなかった。特許文献2のような従来の反射型X線発生装置においては、ターゲットにおける電子ビームの照射位置が常に同じであるため、ターゲットの品質低下が顕著であるという問題があった。 However, the technique of Patent Document 1 relates to a transmission type. The transmission type target has a problem that it is difficult to cool the target as compared with the reflection type. Therefore, miniaturization of the electron beam convergence size and increase of the electron beam energy have a problem of shortening the life of the target. Moreover, since the connection body is increased in size, the irradiation position of the electron beam on the target cannot be changed in a wide range, and the deterioration of the quality of the target cannot be sufficiently prevented. In the conventional reflection type X-ray generator as in Patent Document 2, since the irradiation position of the electron beam on the target is always the same, there is a problem that the quality of the target is significantly deteriorated.
 本発明は、上記課題を解決するためのものであり、その目的は、ターゲットの品質低下を十分に抑止することのできる反射型X線発生装置を提供することである。 The present invention is for solving the above-described problems, and an object of the present invention is to provide a reflection type X-ray generator capable of sufficiently suppressing a reduction in target quality.
 本発明の一の局面に従う反射型X線発生装置は、少なくとも一の方向に延在する内部空間を構成するチャンバーと、内部空間においてチャンバーに支持され、ターゲットへ電子線を照射する電子銃と、電子銃から照射する電子線の一の方向に対する傾斜角を調節する調節部とを備え、チャンバーは、ターゲットから発生したX線を内部空間外へ導くウインドウを含む。 A reflective X-ray generator according to one aspect of the present invention includes a chamber constituting an internal space extending in at least one direction, an electron gun that is supported by the chamber in the internal space and irradiates an electron beam to a target, The chamber includes a window for guiding X-rays generated from the target to the outside of the internal space.
 上記反射型X線発生装置において好ましくは、外部からの力により伸縮可能な伸縮部をさらに備え、電子銃は、伸縮部を介してチャンバーに支持され、調節部は、伸縮部を局所的に伸縮させる。 Preferably, the reflection type X-ray generator further includes an expansion / contraction portion that can be expanded / contracted by an external force, the electron gun is supported by the chamber via the expansion / contraction portion, and the adjustment portion locally expands / contracts the expansion / contraction portion. Let
 上記反射型X線発生装置において好ましくは、電子銃を固定し、伸縮部と連結された固定台をさらに備え、チャンバーは、ウインドウとの間で電子銃および固定台を挟む位置に設けられた底部をさらに含み、伸縮部は底部に支持される。 In the reflection type X-ray generator, preferably, the electron gun is fixed and further includes a fixing base connected to the expansion / contraction part, and the chamber is a bottom part provided at a position sandwiching the electron gun and the fixing base between the window and the window. The elastic part is supported by the bottom part.
 上記反射型X線発生装置において好ましくは、調節部は、電子銃と底部との距離を局所的に大きくする方向に固定台を押す押し部を含む。 Preferably, in the reflection type X-ray generator, the adjustment unit includes a pushing unit that pushes the fixed base in a direction to locally increase the distance between the electron gun and the bottom.
 上記反射型X線発生装置において好ましくは、調節部は、電子銃と底部との距離を局所的に小さくする方向に固定台を引く引き部を含む。 Preferably, in the above reflection type X-ray generator, the adjustment unit includes a pulling unit that pulls the fixed base in a direction to locally reduce the distance between the electron gun and the bottom.
 上記反射型X線発生装置において好ましくは、チャンバーは、一の方向に沿って、一の方向に対して垂直な方向の長さが小さくなるヘッド部をさらに含み、ウインドウはヘッド部に固定される。 Preferably, in the reflection type X-ray generation device, the chamber further includes a head portion having a length in a direction perpendicular to the one direction along one direction, and the window is fixed to the head portion. .
 上記反射型X線発生装置において好ましくは、ヘッド部は、円筒の上部が少なくとも第1の面および第2の面の各々によって削られた形状を含んでおり、第1の面にはウインドウが設けられ、第1の面は平面であり、第2の面は、第1の面との間で境界線を形成する。 Preferably, in the reflection type X-ray generator, the head portion includes a shape in which an upper portion of the cylinder is cut by at least the first surface and the second surface, and a window is provided on the first surface. The first surface is a plane, and the second surface forms a boundary line with the first surface.
 上記反射型X線発生装置において好ましくは、ヘッド部は、円筒の上部が第3の面によってさらに削られた形状を含んでおり、第2および第3の面はいずれも平面であり、第3の面は、第1の面との間で境界線を形成し、第2の面と第3の面とは、円筒の回転軸を含む平面に関して対称である。 Preferably, in the reflection type X-ray generation device, the head portion includes a shape in which an upper portion of the cylinder is further cut by a third surface, and the second and third surfaces are both flat surfaces, The surface forms a boundary line with the first surface, and the second surface and the third surface are symmetric with respect to a plane including the rotation axis of the cylinder.
 上記反射型X線発生装置において好ましくは、調節部は、電子銃と底部との距離を局所的に大きくする方向に固定台を押す押しネジと、電子銃と底部との距離を局所的に小さくする方向に固定台を引く引きネジとを含み、押しネジおよび引きネジによって固定台は固定される。 Preferably, in the reflection type X-ray generator, the adjustment unit locally decreases the distance between the electron gun and the bottom and a push screw that pushes the fixing base in a direction to locally increase the distance between the electron gun and the bottom. And a pulling screw for pulling the fixing base in the direction to be fixed, and the fixing base is fixed by the push screw and the pulling screw.
 上記反射型X線発生装置において好ましくは、外部に露出したウインドウの部分の面積は、0.5平方ミリメートル以上20平方ミリメートル以下である。 In the reflection type X-ray generator, the area of the window portion exposed to the outside is preferably not less than 0.5 square millimeters and not more than 20 square millimeters.
 上記反射型X線発生装置において好ましくは、ターゲットは、軽元素材料よりなる基板と、基板における電子線が照射される面に形成された重金属材料とを含む。 Preferably, in the reflection X-ray generator, the target includes a substrate made of a light element material and a heavy metal material formed on a surface of the substrate that is irradiated with an electron beam.
 上記反射型X線発生装置において好ましくは、ターゲットにおける電子線が照射される面からウインドウの外面までの距離の最小値は、0.1mm以上4mm以下である。 In the reflective X-ray generator, the minimum value of the distance from the surface irradiated with the electron beam to the outer surface of the window is preferably 0.1 mm or more and 4 mm or less.
 上記反射型X線発生装置において好ましくは、ターゲットにおける電子線が照射される面からウインドウの外面までの距離の最小値は、0.2mm以上2mm以下である。 In the reflective X-ray generator, the minimum value of the distance from the surface irradiated with the electron beam to the outer surface of the window is preferably 0.2 mm or more and 2 mm or less.
 上記反射型X線発生装置において好ましくは、ターゲットにおける電子線が照射される面からウインドウの外面までの距離の最小値は、0.3mm以上1.5mm以下である。 In the above reflection type X-ray generator, the minimum value of the distance from the surface irradiated with the electron beam to the outer surface of the window is preferably 0.3 mm or more and 1.5 mm or less.
 上記反射型X線発生装置において好ましくは、焦点径が0より大きく5μm以下である。 In the reflective X-ray generator, the focal diameter is preferably larger than 0 and not larger than 5 μm.
 本発明によれば、ターゲットの品質低下を十分に抑止することができる。 According to the present invention, it is possible to sufficiently suppress the target quality deterioration.
本発明の一実施の形態におけるX線撮影装置の概略的な構成を示す断面図である。It is sectional drawing which shows schematic structure of the X-ray imaging apparatus in one embodiment of this invention. 本発明の一実施の形態におけるX線発生装置の第1の構成を示す断面図である。It is sectional drawing which shows the 1st structure of the X-ray generator in one embodiment of this invention. 図2中下側から見た場合の伸縮部30および固定台下端部52aの構成を示す平面図である。It is a top view which shows the structure of the expansion-contraction part 30 at the time of seeing from the lower side in FIG. 2 and the fixed base lower end part 52a. 本発明の一実施の形態におけるX線発生装置の第2の構成を示す断面図である。It is sectional drawing which shows the 2nd structure of the X-ray generator in one embodiment of this invention. 図4中下側から見た場合の伸縮部30および固定台下端部52aの構成を示す平面図である。It is a top view which shows the structure of the expansion-contraction part 30 at the time of seeing from the lower side in FIG. 4 and the fixed stand lower end part 52a. 本発明の一実施の形態におけるX線発生装置の第3の構成を示す断面図である。It is sectional drawing which shows the 3rd structure of the X-ray generator in one embodiment of this invention. 図6中下側から見た場合の伸縮部30および固定台下端部52aの構成を示す平面図である。It is a top view which shows the structure of the expansion-contraction part 30 at the time of seeing from the lower side in FIG. 6, and the fixing stand lower end part 52a. 本発明の一実施の形態におけるヘッド部の第1の構成を示す斜視図である。It is a perspective view which shows the 1st structure of the head part in one embodiment of this invention. 本発明の一実施の形態におけるヘッド部の第2の構成を示す斜視図である。It is a perspective view which shows the 2nd structure of the head part in one embodiment of this invention. 本発明の一実施の形態におけるヘッド部の第3の構成を示す第1の方向から見た場合の斜視図である。It is a perspective view at the time of seeing from the 1st direction which shows the 3rd structure of the head part in one embodiment of this invention. 本発明の一実施の形態におけるヘッド部の第3の構成を示す第2の方向から見た場合の斜視図である。It is a perspective view at the time of seeing from the 2nd direction which shows the 3rd structure of the head part in one embodiment of this invention. ウインドウ12が設けられている平面PL1の付近に、他の面との境界線が存在しない場合における、ヘッド部11とワークWKとの位置関係を模式的に示す図である。It is a figure which shows typically the positional relationship of the head part 11 and the workpiece | work WK when the boundary line with another surface does not exist in the vicinity of plane PL1 in which the window 12 is provided. ウインドウ12が設けられている平面PL1の付近に、平面PL2または曲面CS2との境界線LN1が存在する場合における、ヘッド部11とワークWKとの位置関係を模式的に示す図である。It is a figure which shows typically the positional relationship of the head part 11 and the workpiece | work WK in case the boundary line LN1 with plane PL2 or curved surface CS2 exists in the vicinity of plane PL1 in which the window 12 is provided. (a)は、図9の平面PL1面を模式的に表したものであり、図13におけるウインドウ12を矢印AR2が貫く点と境界線LN1との最短距離D11との位置関係を模式的に示す図である。(b)は、図9の平面PL1面を模式的に表したものであり、矢印AR2の位置を平面PL1の略三角形状の先端に近づけることで、外部に露出したウインドウの面積が(a)の場合よりも小さくする場合の位置関係を模式的に示す図である。9A schematically shows the plane PL1 of FIG. 9, and schematically shows the positional relationship between the point where the arrow AR2 passes through the window 12 in FIG. 13 and the shortest distance D11 between the boundary line LN1. FIG. (B) is a schematic representation of the plane PL1 surface of FIG. 9, and the area of the window exposed to the outside is (a) by bringing the position of the arrow AR2 closer to the substantially triangular tip of the plane PL1. It is a figure which shows typically the positional relationship in the case of making it smaller than the case of. ウインドウ12が設けられている平面PL1の付近に、平面PL2または局面CS2との境界線LN1が存在する場合において、外部に露出したウインドウの面積が図13の場合よりも小さい時の、ヘッド部11とワークWKとの位置関係を模式的に示す図14(b)に対応する図である。When the boundary line LN1 with the plane PL2 or the phase CS2 exists in the vicinity of the plane PL1 where the window 12 is provided, the head portion 11 when the area of the window exposed to the outside is smaller than in the case of FIG. It is a figure corresponding to FIG.14 (b) which shows the positional relationship of a workpiece | work WK typically.
 以下、本発明の一実施の形態について、図面に基づいて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 [X線撮影装置の概略的な構成] [Schematic configuration of X-ray imaging apparatus]
 始めに、本発明の一実施の形態におけるX線撮影装置の概略的な構成について説明する。 First, a schematic configuration of an X-ray imaging apparatus according to an embodiment of the present invention will be described.
 図1は、本発明の一実施の形態におけるX線撮影装置の概略的な構成を示す断面図である。なお図1は、電子銃からターゲットへの電子線の進行方向(矢印AR1)と、ウインドウからワークWKへのX線の放射方向の中で、ウインドウの外面の法線方向と一致するX線の進行方向(矢印AR2)とを含む断面で見た場合の断面図である。z軸方向は、電子線の進行方向(矢印AR1で示す方向)を示しており、z1軸方向は、ウインドウの外面の法線方向(矢印AR2で示す方向)を示している。x軸、y軸、およびz軸の各々は互いに直交しているものとする。さらに、x1軸、y軸、およびz1軸の各々は互いに直交しているものとする。 FIG. 1 is a cross-sectional view showing a schematic configuration of an X-ray imaging apparatus according to an embodiment of the present invention. Note that FIG. 1 shows the X-ray direction that coincides with the normal direction of the outer surface of the window among the traveling direction of the electron beam from the electron gun to the target (arrow AR1) and the X-ray emission direction from the window to the workpiece WK. It is sectional drawing at the time of seeing in the cross section containing the advancing direction (arrow AR2). The z-axis direction indicates the traveling direction of the electron beam (the direction indicated by the arrow AR1), and the z1 axis direction indicates the normal direction of the outer surface of the window (the direction indicated by the arrow AR2). Each of the x-axis, y-axis, and z-axis is assumed to be orthogonal to each other. Furthermore, it is assumed that the x1 axis, the y axis, and the z1 axis are orthogonal to each other.
 図1を参照して、本実施の形態のX線撮影装置は、X線発生装置1と、X線検出装置70と、制御部80と、操作部90などを備えている。検査およびX線照射の対象となるワークWKは、X線発生装置1側を向いたワークWKの平面の法線が、ウインドウの外面の法線に対して平行になるように配置される。なお矢印AR2は、X線の放射方向の中で、ウインドウの外面の法線方向と一致するX線の進行方向を示している。ワークWKは、X線発生装置1側を向いたワークWKの平面の法線がウインドウの外面の法線に対して傾斜するように配置されてもよい。ワークWKは平板であってもよく、ウインドウからはみ出る大きさのものであってもよい。ワークWKはウインドウに接触して配置されてもよい。 Referring to FIG. 1, the X-ray imaging apparatus of the present embodiment includes an X-ray generation apparatus 1, an X-ray detection apparatus 70, a control unit 80, an operation unit 90, and the like. The workpiece WK to be subjected to inspection and X-ray irradiation is arranged so that the normal line of the plane of the workpiece WK facing the X-ray generation device 1 side is parallel to the normal line of the outer surface of the window. The arrow AR2 indicates the traveling direction of the X-ray that coincides with the normal direction of the outer surface of the window in the X-ray emission direction. The workpiece WK may be arranged such that the normal line of the plane of the workpiece WK facing the X-ray generator 1 side is inclined with respect to the normal line of the outer surface of the window. The workpiece WK may be a flat plate or a size that protrudes from the window. The work WK may be arranged in contact with the window.
 X線発生装置(X線源)1は、反射型のX線発生装置である。X線発生装置1において、チャンバー10は、密閉型であり、減圧された内部空間ISを構成している。内部空間ISはz軸方向に延在している。電子銃20は、内部空間ISにおいてチャンバー10に支持されている。X線発生装置1は、内部空間ISにおいて、電子銃20から矢印AR1で示すようにターゲットに対して電子線を照射することにより、ターゲットからX線を発生させる。ターゲットから発生したX線は、放射状に広がり、チャンバー10に設けられたウインドウ12から内部空間ISの外部に導かれ、ワークWKに照射される。矢印AR4は、放射状に広がるX線の端部の進行方向を示している。X線発生装置1の下部は、ケース100内に配置されている。ケース100内には、電源101が設けられている。チャンバー10の底部や電子銃20は電源101によって高電圧に保たれ、ケース100は接地電位に保たれる。ケース100内には、放電を防止する目的で、絶縁ガスや樹脂などが充填されている。 The X-ray generator (X-ray source) 1 is a reflective X-ray generator. In the X-ray generator 1, the chamber 10 is a sealed type and constitutes a decompressed internal space IS. The internal space IS extends in the z-axis direction. The electron gun 20 is supported by the chamber 10 in the internal space IS. The X-ray generator 1 generates X-rays from the target by irradiating the target with an electron beam as indicated by an arrow AR1 from the electron gun 20 in the internal space IS. X-rays generated from the target spread radially, are guided to the outside of the internal space IS from the window 12 provided in the chamber 10, and are irradiated onto the work WK. An arrow AR4 indicates the traveling direction of the end portion of the X-ray that spreads radially. The lower part of the X-ray generator 1 is arranged in the case 100. A power source 101 is provided in the case 100. The bottom of the chamber 10 and the electron gun 20 are maintained at a high voltage by the power source 101, and the case 100 is maintained at the ground potential. The case 100 is filled with an insulating gas or resin for the purpose of preventing discharge.
 X線検出装置70は、ワークWKを透過したX線を受信し、受信したX線の強度を示す信号を制御部80に送信する。 The X-ray detection device 70 receives the X-ray that has passed through the workpiece WK, and transmits a signal indicating the intensity of the received X-ray to the control unit 80.
 制御部80は、X線発生装置1、X線検出装置70、および操作部90の各々と電気的に接続されており、X線撮影装置全体の制御を行う。制御部80は、X線発生制御部81と、位置角度調節部82と、画像生成部83とを含んでいる。 The control unit 80 is electrically connected to each of the X-ray generation apparatus 1, the X-ray detection apparatus 70, and the operation unit 90, and controls the entire X-ray imaging apparatus. The control unit 80 includes an X-ray generation control unit 81, a position angle adjustment unit 82, and an image generation unit 83.
 X線発生制御部81は、X線発生装置1の電子銃20およびレンズを構成する部分に印加する電圧、ならびにX線発生装置1内部の真空度などを制御することにより、X線発生装置1から発生するX線を制御する。 The X-ray generation control unit 81 controls the voltage applied to the parts constituting the electron gun 20 and the lens of the X-ray generation apparatus 1 and the degree of vacuum inside the X-ray generation apparatus 1 to thereby control the X-ray generation apparatus 1. Controls X-rays generated from.
 位置角度調整部82は、ワークWKを移動または傾斜させることにより、ワークWKの見たい位置(X線の照射位置)や見たい角度(X線の照射角度)を調節する。位置角度調整部82は、X線発生装置1およびX線検出装置70を、ターゲットにおける電子線の照射位置またはワークWKを中心に回転させることで、ワークWKの見たい位置や見たい角度を調節するものであってもよい。また位置角度調整部82は、X線検出装置70をx1軸方向やy軸方向に沿って移動させることで、ワークWKの見たい位置や見たい角度を調節するものであってもよい。 The position angle adjustment unit 82 adjusts the position (X-ray irradiation position) and the desired angle (X-ray irradiation angle) of the work WK by moving or tilting the work WK. The position angle adjustment unit 82 rotates the X-ray generation device 1 and the X-ray detection device 70 around the irradiation position of the electron beam on the target or the workpiece WK, thereby adjusting the position and angle desired to view the workpiece WK. You may do. Further, the position angle adjustment unit 82 may adjust the position of the workpiece WK to be seen and the angle to be seen by moving the X-ray detection device 70 along the x1 axis direction or the y axis direction.
 画像生成部83は、X線検出装置70から受信した信号に基づいて、ワークWKのX線画像を生成する。 The image generation unit 83 generates an X-ray image of the work WK based on the signal received from the X-ray detection device 70.
 操作部90は、X線撮影装置に関する各種操作を操作者から受け付け、受け付けた操作に基づく信号を制御部80に送信する。 The operation unit 90 receives various operations related to the X-ray imaging apparatus from the operator, and transmits a signal based on the received operation to the control unit 80.
 [X線発生装置の構成] [Configuration of X-ray generator]
 続いて、本発明の一実施の形態におけるX線発生装置の構成について説明する。 Subsequently, the configuration of the X-ray generator in one embodiment of the present invention will be described.
 図2は、本発明の一実施の形態におけるX線発生装置の第1の構成を示す断面図である。 FIG. 2 is a cross-sectional view showing a first configuration of the X-ray generator in one embodiment of the present invention.
 図2を参照して、第1の構成のX線発生装置1は、チャンバー10と、電子銃20と、伸縮部30と、調節部40と、電極51と、固定台52などを含んでいる。電子銃20、伸縮部30、および固定台52の各々は、チャンバー10の内部空間ISに設けられている。調節部40および電極51の各々は、チャンバー10の底部14に設けられている。 Referring to FIG. 2, the X-ray generator 1 having the first configuration includes a chamber 10, an electron gun 20, a telescopic unit 30, an adjustment unit 40, an electrode 51, a fixed base 52, and the like. . Each of the electron gun 20, the telescopic part 30, and the fixed base 52 is provided in the internal space IS of the chamber 10. Each of the adjustment unit 40 and the electrode 51 is provided on the bottom 14 of the chamber 10.
 チャンバー10は、ヘッド部(アノード)11と、ウインドウ(X線取出窓)12と、ターゲット13と、底部14と、本体15と、金属板(接合リング)16aおよび16bなどを含んでいる。チャンバー10の内部空間ISは、少なくとも、電子銃20とターゲット13との間を電子が飛翔することができる程度の真空度(たとえば1×10-4Pa以下の真空度)を有している。内部空間ISの真空度は、使用する電子銃20の種類や、電子銃20の動作温度などを考慮して適宜設定されることが好ましい。 The chamber 10 includes a head part (anode) 11, a window (X-ray extraction window) 12, a target 13, a bottom part 14, a main body 15, metal plates (joining rings) 16a and 16b, and the like. The internal space IS of the chamber 10 has at least a degree of vacuum (for example, a degree of vacuum of 1 × 10 −4 Pa or less) such that electrons can fly between the electron gun 20 and the target 13. The degree of vacuum of the internal space IS is preferably set as appropriate in consideration of the type of the electron gun 20 to be used, the operating temperature of the electron gun 20, and the like.
 ヘッド部11は、本体15におけるワークWK側(図2中上側)に固定されている。ヘッド部11は、金属板16aに対して溶接などの方法で固定されており、金属板16aは、本体15に対してロウ付けなどの方法で固定されている。ヘッド部11およびターゲット13は、電子線照射時に接地電位(GND電位)に保たれる。ヘッド部11は、たとえば、z軸方向に沿って図2中上側に行くほど、z軸方向に対して垂直な方向の長さ(x軸方向またはy軸方向の長さ)が小さくなる先細りの形状を有している。ヘッド部11は、略多角円錐形状または略円錐形状の先端部を有していることが好ましい。ヘッド部11は、たとえば銅などの金属よりなっている。 The head portion 11 is fixed to the work WK side (upper side in FIG. 2) of the main body 15. The head part 11 is fixed to the metal plate 16a by a method such as welding, and the metal plate 16a is fixed to the main body 15 by a method such as brazing. The head unit 11 and the target 13 are kept at the ground potential (GND potential) during electron beam irradiation. For example, the head portion 11 is tapered such that the length in the direction perpendicular to the z-axis direction (the length in the x-axis direction or the y-axis direction) decreases toward the upper side in FIG. 2 along the z-axis direction. It has a shape. It is preferable that the head part 11 has a substantially polygonal cone shape or a substantially conical tip. The head portion 11 is made of a metal such as copper, for example.
 ウインドウ12は、ヘッド部11における最もワークWK側の位置の付近に固定されている。ウインドウ12は、内部空間ISとヘッド部11の外部との間に設けられた孔11aを塞いでいる。ウインドウ12の外面は平面であり、z1軸方向の法線を有している。ウインドウ12の外面と、ヘッド部11の外面とは略同一平面上にある。ウインドウ12は、ヘッド部11よりも高いX線透過率を有している。ウインドウ12は、Be(ベリリウム)、SiN(窒化シリコン)、SiC(炭化シリコン)、またはダイヤモンドライクカーボンなどよりなっている。ウインドウ12は、たとえば円板、四角板、または台形板などの形状を有している。ウインドウ12の厚みは、たとえば0.01mm以上1mm以下であり、好ましくは0.05mm以上0.5mm以下であり、より好ましくは0.1mm以上0.3mm以下である。また外部に露出したウインドウ12の面積は、0.5平方ミリメートル以上20平方ミリメートル以下であることが好ましい。外部に露出したウインドウ12の面積を0.5平方ミリメートル以上とすることで、X線の放射角を確保することができる。外部に露出したウインドウ12の面積を20平方ミリメートル以下とすることで、ヘッド部11を小型化することができる。 The window 12 is fixed near the position closest to the workpiece WK in the head portion 11. The window 12 closes a hole 11 a provided between the internal space IS and the outside of the head portion 11. The outer surface of the window 12 is a flat surface and has a normal line in the z1 axis direction. The outer surface of the window 12 and the outer surface of the head portion 11 are substantially on the same plane. The window 12 has a higher X-ray transmittance than the head unit 11. The window 12 is made of Be (beryllium), SiN (silicon nitride), SiC (silicon carbide), diamond-like carbon, or the like. The window 12 has a shape such as a circular plate, a square plate, or a trapezoidal plate. The thickness of the window 12 is, for example, not less than 0.01 mm and not more than 1 mm, preferably not less than 0.05 mm and not more than 0.5 mm, and more preferably not less than 0.1 mm and not more than 0.3 mm. The area of the window 12 exposed to the outside is preferably 0.5 square millimeters or more and 20 square millimeters or less. By setting the area of the window 12 exposed to the outside to 0.5 square millimeters or more, the X-ray radiation angle can be secured. The head part 11 can be reduced in size by setting the area of the window 12 exposed to the outside to 20 square millimeters or less.
 ターゲット13は、ヘッド部11における内部空間ISに面した部分に固定されている。ターゲット13は、ウインドウ12に近接している。ターゲット13の一端は、ウインドウ12とヘッド部11との接合部に近接している。ターゲット13は、電子線が照射された場合にX線を発生するX線の発生源である。ターゲット13は、通常、原子番号26以上の重金属よりなっている。ターゲット13は、熱伝導率が大きく融点が高いものが好ましい。具体的には、ターゲット13は、W(タングステン)、Ta(タンタル)、Rh(ロジウム)、Mo(モリブデン)、またはCr(クロム)などよりなっている。ターゲット13の厚みは、たとえば0.1μm以上1mm以下である。 The target 13 is fixed to a portion of the head portion 11 facing the internal space IS. The target 13 is close to the window 12. One end of the target 13 is close to the joint between the window 12 and the head portion 11. The target 13 is an X-ray generation source that generates X-rays when irradiated with an electron beam. The target 13 is usually made of a heavy metal having an atomic number of 26 or more. The target 13 preferably has a high thermal conductivity and a high melting point. Specifically, the target 13 is made of W (tungsten), Ta (tantalum), Rh (rhodium), Mo (molybdenum), Cr (chromium), or the like. The thickness of the target 13 is, for example, 0.1 μm or more and 1 mm or less.
 ターゲット13は、基板の一方の面にスパッタや蒸着などの方法で形成され、基板の他方の面がヘッド部11の内壁面に接合されることにより、ヘッド部11に固定されてもよい。この場合の基板は、たとえばダイヤモンドライクカーボン、ダイヤモンド、グラファイトシート、またはベリリウムなどの軽元素の材料よりなる。またターゲット13は、圧延や研磨などにより作製された薄膜によって形成されてもよい。ターゲット13の厚みは、たとえば0.1μm以上3μm以下である。ターゲット13が、軽元素よりなる基板の一方の面(電子線が照射される面)に重金属が形成されたものである場合、基板の厚みは電子線の電子が基板内で停止する程度の厚みを有することが好ましい。重金属から発生するX線の強度は、軽元素から発生するX線の強度よりも大きくなる。このようにすることで、ターゲット13におけるX線発生部の大きさを小さくすることができる。 The target 13 may be formed on one surface of the substrate by a method such as sputtering or vapor deposition, and may be fixed to the head portion 11 by bonding the other surface of the substrate to the inner wall surface of the head portion 11. The substrate in this case is made of a light element material such as diamond-like carbon, diamond, graphite sheet, or beryllium. The target 13 may be formed of a thin film produced by rolling or polishing. The thickness of the target 13 is, for example, not less than 0.1 μm and not more than 3 μm. In the case where the target 13 has a heavy metal formed on one surface (surface irradiated with an electron beam) made of a light element, the thickness of the substrate is such that electrons of the electron beam stop in the substrate. It is preferable to have. The intensity of X-rays generated from heavy metals is greater than the intensity of X-rays generated from light elements. By doing in this way, the magnitude | size of the X-ray generation part in the target 13 can be made small.
 底部14は、本体15におけるワークWKの反対側(図2中下側)に固定されている。底部14は、ウインドウ12との間で電子銃20および固定台52を挟む位置に設けられている。底部14は、金属板16bに対して溶接などの方法で固定されており、金属板16bは、本体15に対してロウ付けなどの方法で固定されている。底部14はたとえばステンレスなどの金属よりなっている。底部14の中央部には複数の孔14aが開口されており、複数の孔14aの各々には複数の電極51が挿入されている。電極51と底部14との間には、たとえばガラスなどの絶縁材料が気密になるように埋められている。複数の電極51の各々は、電子銃20に電位または電力を供給するためのものである。 The bottom portion 14 is fixed to the opposite side (lower side in FIG. 2) of the work WK in the main body 15. The bottom portion 14 is provided at a position where the electron gun 20 and the fixed base 52 are sandwiched between the bottom portion 14 and the window 12. The bottom part 14 is fixed to the metal plate 16b by a method such as welding, and the metal plate 16b is fixed to the main body 15 by a method such as brazing. The bottom 14 is made of a metal such as stainless steel. A plurality of holes 14a are opened at the center of the bottom portion 14, and a plurality of electrodes 51 are inserted into each of the plurality of holes 14a. An insulating material such as glass is buried between the electrode 51 and the bottom portion 14 so as to be airtight. Each of the plurality of electrodes 51 is for supplying a potential or electric power to the electron gun 20.
 本体15は、円筒形状を有しており、ワークWK側およびワークWKの反対側の各々に開口を有している。ワークWK側の開口は、ヘッド部11およびウインドウ12によって覆われている。ワークWKの反対側の開口は、底部14によって覆われている。本体15は、電子銃20とターゲット13(ヘッド部11)とを絶縁している。本体15は、たとえばセラミックなどの絶縁体よりなっている。 The main body 15 has a cylindrical shape, and has an opening on each of the workpiece WK side and the opposite side of the workpiece WK. The opening on the workpiece WK side is covered with the head portion 11 and the window 12. The opening on the opposite side of the workpiece WK is covered by the bottom 14. The main body 15 insulates the electron gun 20 from the target 13 (head portion 11). The main body 15 is made of an insulator such as ceramic.
 電子銃20は、円筒形状の固定台52に固定されている。電子銃20は、伸縮部30および固定台52を介して底部14に支持されている。電子銃20は、電子線照射時に負電位に保たれる。電子銃20は、防熱型カソード、タングステンフィラメント、もしくはLaB6カソードなどの結晶電子源、またはコールドFEもしくはサーマルFEなどの電界放射型のものを使用することができる。 The electron gun 20 is fixed to a cylindrical fixed base 52. The electron gun 20 is supported on the bottom portion 14 via the telescopic portion 30 and the fixed base 52. The electron gun 20 is kept at a negative potential during electron beam irradiation. The electron gun 20 may be a thermal electron cathode, a tungsten filament, a crystal electron source such as a LaB6 cathode, or a field emission type such as cold FE or thermal FE.
 なお、電子銃20は、電子銃20から発生した電子を内部空間ISに引き出して収束するためのレンズ(図示無し)を含んでいる。電子銃20のレンズは、静電レンズ型のものであっても磁気レンズ型のものであってもよい。 The electron gun 20 includes a lens (not shown) for extracting and converging electrons generated from the electron gun 20 into the internal space IS. The lens of the electron gun 20 may be an electrostatic lens type or a magnetic lens type.
 図3は、図2中下側から見た場合の伸縮部30および固定台下端部52aの構成を示す平面図である。なお図3、図5、および図7では、固定台下端部52aにおける押しネジ41が接触する部分を三角形の記号で示しており、固定台下端部52aにおける引きネジ42が接触する部分を四角形の記号で示している。 FIG. 3 is a plan view showing the configuration of the telescopic part 30 and the fixed base lower end part 52a when viewed from the lower side in FIG. 3, 5, and 7, the portion of the fixing base lower end portion 52 a that contacts the push screw 41 is indicated by a triangular symbol, and the portion of the fixing base lower end portion 52 a that contacts the pull screw 42 is a rectangular shape. It is indicated by a symbol.
 図2および図3を参照して、固定台52は、z軸方向から見た場合に円周の平面形状を有する固定台下端部52aを含んでいる。伸縮部30は、固定台下端部52aと連結されており、底部14に支持されている。伸縮部30は、外部からの力により伸縮可能である。伸縮部30は、固定台下端部52aから内径側(図2中電極51側)に延在し、底部14に達する内径側部分30aと、固定台下端部52aから外径側(図2中本体15側)に延在し、底部14に達する外径側部分30bとを含んでいる。 Referring to FIGS. 2 and 3, the fixing base 52 includes a fixing base lower end portion 52a having a circumferential planar shape when viewed from the z-axis direction. The elastic part 30 is connected to the fixed base lower end part 52 a and is supported by the bottom part 14. The expansion / contraction part 30 can be expanded and contracted by an external force. The expansion / contraction part 30 extends from the fixed base lower end 52a to the inner diameter side (the electrode 51 side in FIG. 2) and reaches the bottom 14 and the outer diameter side (main body in FIG. 2) from the fixed base lower end 52a. 15 side) and an outer diameter side portion 30b reaching the bottom portion 14.
 調節部40は、伸縮部30を局所的に伸縮させることにより、電子銃20から照射する電子線(矢印AR1で示す方向)の、内部空間ISの延在方向(z軸方向)に対する傾斜角を調節する。調節部40は、押しネジ41(押し部の一例)と、引きネジ42(引き部の一例)とを含んでいる。押しネジ41および引きネジ42の各々は、たとえば3個である。押しネジ41は、底部14に設けられた孔14bに螺合している。孔14bの内壁にはねじ山が形成されている。引きネジ42は、底部14に設けられた孔14cに挿入されている。孔14cは貫通孔であり、孔14cの内壁にはねじ山が形成されていない。引きネジ42の頭の部分は底部14の孔14cの周辺面に接している。押しネジ41および引きネジ42の各々は、固定台下端部52aの縁の円周形状に沿って等間隔で交互に設けられている。 The adjusting unit 40 locally expands and contracts the expansion and contraction unit 30 to thereby change the inclination angle of the electron beam (direction indicated by the arrow AR1) irradiated from the electron gun 20 with respect to the extending direction (z-axis direction) of the internal space IS. Adjust. The adjustment part 40 includes a push screw 41 (an example of a push part) and a pull screw 42 (an example of a pull part). Each of the push screw 41 and the pull screw 42 is, for example, three. The push screw 41 is screwed into a hole 14 b provided in the bottom portion 14. A thread is formed on the inner wall of the hole 14b. The pull screw 42 is inserted into a hole 14 c provided in the bottom portion 14. The hole 14c is a through hole, and no thread is formed on the inner wall of the hole 14c. The head portion of the pull screw 42 is in contact with the peripheral surface of the hole 14 c in the bottom portion 14. Each of the push screw 41 and the pull screw 42 is provided alternately at equal intervals along the circumferential shape of the edge of the fixed base lower end 52a.
 押しネジ41は、孔14bに入り込む方向に回転された場合、固定台下端部52aを底部14から離れる方向に押す。これによって、押しネジ41が固定台下端部52aを押す位置の付近における伸縮部30が局所的に伸び、電子銃20および固定台52と、底部14との距離は、押しネジ41が固定台下端部52aを押す位置の付近において局所的に大きくなる。 When the push screw 41 is rotated in the direction of entering the hole 14b, the push screw 41 pushes the lower end 52a of the fixed base away from the bottom 14. Thereby, the expansion / contraction part 30 in the vicinity of the position where the push screw 41 presses the fixed base lower end 52a is locally extended, and the distance between the electron gun 20 and the fixed base 52 and the bottom 14 is the same as the distance between the push screw 41 and the fixed base lower end It becomes locally large near the position where the portion 52a is pressed.
 引きネジ42の先端は、固定台下端部52aの内部に設けられた溝52bと螺合している。引きネジ42が固定台下端部52aに入り込む方向に回転された場合、引きネジ42の頭の部分は底部14に接し押しつけられる。そのため、引きネジ42は固定台下端部52aを底部14の方向へ引っ張る。これによって、引きネジ42が固定台下端部52aを引っ張る位置の付近における伸縮部30が局所的に縮み、電子銃20および固定台52と、底部14との距離は、引きネジ42が固定台下端部52aを引く位置の付近において局所的に小さくなる。 The tip of the pull screw 42 is screwed into a groove 52b provided in the lower end 52a of the fixed base. When the pull screw 42 is rotated in a direction to enter the fixed base lower end portion 52 a, the head portion of the pull screw 42 is in contact with and pressed against the bottom portion 14. Therefore, the pull screw 42 pulls the fixed base lower end portion 52 a toward the bottom portion 14. Thereby, the expansion / contraction part 30 near the position where the pulling screw 42 pulls the fixed base lower end part 52a is locally contracted, and the distance between the electron gun 20 and the fixing base 52 and the bottom part 14 is that the pulling screw 42 is at the lower end of the fixed base. It becomes locally smaller in the vicinity of the position where the portion 52a is pulled.
 たとえば、図2中右側の押しネジ41が孔14bに入り込む方向に回転され、図2中左側の引きネジ42が溝52bに入り込む方向に回転された場合には、電子銃20は、矢印M1で示す方向に傾斜し、それによって電子線の軌跡も矢印M11で示す方向に変化する(電子線の傾斜角が大きくなる)。その結果、ターゲット13における電子線の照射位置が変化し、ターゲット13における電子線の照射位置とウインドウ12の大気側表面との距離(最小FOD)が変化する。また、図2中右側の押しネジ41の両隣りの引きネジ42が溝52bに入り込む方向に回転され、図2中左側の引きネジ42の両隣りの押しネジ41が孔14bに入り込む方向に回転された場合には、電子銃20は、矢印M2で示す方向に傾斜し、それによって電子線の軌跡も矢印M12で示す方向に変化する(電子線の傾斜角が大きくなる)。その結果、ターゲット13における電子線の照射位置が変化し、ターゲット13における電子線の照射位置とウインドウ12の大気側表面との距離(最小FOD)が変化する。 For example, when the push screw 41 on the right side in FIG. 2 is rotated in the direction to enter the hole 14b and the pull screw 42 on the left side in FIG. 2 is rotated in the direction to enter the groove 52b, the electron gun 20 is moved by the arrow M1. The electron beam trajectory also changes in the direction indicated by the arrow M11 (the tilt angle of the electron beam increases). As a result, the electron beam irradiation position on the target 13 changes, and the distance (minimum FOD) between the electron beam irradiation position on the target 13 and the atmosphere-side surface of the window 12 changes. 2 is rotated in a direction in which the pull screw 42 on both sides of the right push screw 41 in FIG. 2 enters the groove 52b, and the push screw 41 on both sides in the left pull screw 42 in FIG. 2 is rotated in a direction to enter the hole 14b. In such a case, the electron gun 20 is tilted in the direction indicated by the arrow M2, and the locus of the electron beam is also changed in the direction indicated by the arrow M12 (the tilt angle of the electron beam is increased). As a result, the electron beam irradiation position on the target 13 changes, and the distance (minimum FOD) between the electron beam irradiation position on the target 13 and the atmosphere-side surface of the window 12 changes.
 電子銃20を目的の角度に調整した後、角度が傾かないように押しネジ41は押す力を固定台52に与えるとともに、引きネジ42は固定台52を引き付ける。押しネジ41および引きネジ42の各々は、固定台52に対して、固定台下端部52aの周方向に沿って互いに反対の方向に力を加える。これにより、固定台52は安定に固定される。その結果、振動などによって電子銃20の傾きが不要に変化するのを防止することができる。 After adjusting the electron gun 20 to a target angle, the push screw 41 applies a pressing force to the fixed base 52 so that the angle does not tilt, and the pull screw 42 pulls the fixed base 52. Each of the push screw 41 and the pull screw 42 applies a force to the fixing base 52 in directions opposite to each other along the circumferential direction of the fixing base lower end portion 52a. Thereby, the fixing base 52 is stably fixed. As a result, it is possible to prevent the tilt of the electron gun 20 from changing unnecessarily due to vibration or the like.
 図4は、本発明の一実施の形態におけるX線発生装置の第2の構成を示す断面図である。図5は、図4中下側から見た場合の伸縮部30および固定台下端部52aの構成を示す平面図である。 FIG. 4 is a cross-sectional view showing a second configuration of the X-ray generator in one embodiment of the present invention. FIG. 5 is a plan view showing the configuration of the telescopic part 30 and the fixed base lower end part 52a when viewed from the lower side in FIG.
 図4および図5を参照して、第2の構成のX線発生装置1では、チャンバー10の内部空間ISが、チャンバー10、伸縮部30、および固定台52によって構成されている。底部14は、環状を有している。本体15は、たとえばガラスなどの絶縁体よりなっている。 4 and 5, in the X-ray generator 1 having the second configuration, the internal space IS of the chamber 10 is configured by the chamber 10, the extendable part 30, and the fixed base 52. The bottom part 14 has an annular shape. The main body 15 is made of an insulator such as glass.
 固定台52は、円筒状であり、z軸方向から見た場合に円の平面形状を有する固定台下端部52aを含んでいる。固定台下端部52aは固定台52の円筒形状における一方の開口を覆っている。固定台下端部52aには4つの孔52cが開口されており、4つの孔52cの各々には4つの電極51の各々が挿入されている。電極51の各々の孔52cには、固定台下端部52aと電極51との間を気密に埋めるように、たとえばガラスなどの絶縁材料が設けられている。 The fixed base 52 is cylindrical and includes a fixed base lower end 52a having a circular planar shape when viewed from the z-axis direction. The fixed base lower end 52 a covers one opening in the cylindrical shape of the fixed base 52. Four holes 52c are opened in the fixed base lower end 52a, and each of the four electrodes 51 is inserted into each of the four holes 52c. Each hole 52c of the electrode 51 is provided with an insulating material such as glass so as to airtightly fill the space between the fixed base lower end 52a and the electrode 51.
 なお、第2の構成のX線発生装置1における上述以外の構成、および電子銃20を傾斜させる方法は、第1の構成のX線発生装置の場合と同一であるため、同一の部材には同一の符号を付し、その説明は繰り返さない。 The configuration other than the above in the X-ray generator 1 of the second configuration and the method of tilting the electron gun 20 are the same as in the case of the X-ray generator of the first configuration. The same reference numerals are given and description thereof will not be repeated.
 図6は、本発明の一実施の形態におけるX線発生装置の第3の構成を示す断面図である。図7は、図6中下側から見た場合の伸縮部30および固定台下端部52aの構成を示す平面図である。 FIG. 6 is a cross-sectional view showing a third configuration of the X-ray generator in one embodiment of the present invention. FIG. 7 is a plan view showing the configuration of the telescopic part 30 and the fixed base lower end part 52a when viewed from the lower side in FIG.
 図6および図7を参照して、第3の構成のX線発生装置1では、チャンバー10の内部空間ISが、チャンバー10、伸縮部30、および固定台52によって構成されている。チャンバー10の本体15は、ヘッド部11と一体化している。なお、本体15とヘッド部11とは互いに分離してもよい。本体15は、たとえばステンレスよりなっており、ヘッド部11は、たとえば銅などの金属よりなっていてもよい。チャンバー10は開放型である。本体15には、開口15aが設けられており、開口15aには真空ポンプ60が接続されている。これにより、開口15aを大気に開放して電子銃20などを交換することができる。底部14は、本体15に対して銅ガスケットやOリングなどを挟み、ネジなどで気密に固定されている。底部14は、環状を有している。ヘッド部11および本体15は、たとえば銅などの金属よりなっている。 6 and 7, in the X-ray generator 1 having the third configuration, the internal space IS of the chamber 10 is configured by the chamber 10, the telescopic portion 30, and the fixed base 52. A main body 15 of the chamber 10 is integrated with the head portion 11. The main body 15 and the head unit 11 may be separated from each other. The main body 15 may be made of, for example, stainless steel, and the head portion 11 may be made of, for example, a metal such as copper. The chamber 10 is an open type. The main body 15 is provided with an opening 15a, and a vacuum pump 60 is connected to the opening 15a. Thereby, the opening 15a can be opened to the atmosphere, and the electron gun 20 and the like can be exchanged. The bottom part 14 is airtightly fixed with screws or the like with a copper gasket or an O-ring sandwiched between the main body 15 and the like. The bottom part 14 has an annular shape. The head portion 11 and the main body 15 are made of a metal such as copper, for example.
 固定台52は、円錐台形状を有しており、z軸方向から見た場合に円周の平面形状を有する固定台下端部52aを含んでいる。固定台52は、電子銃20とターゲット13(本体15)とを絶縁している。固定台52の一部(固定台下端部52a以外の部分)は、たとえばセラミックなどの絶縁体よりなっている。固定台下端部52aには4つの孔52cが開口されており、4つの孔52cの各々には4つの電極51の各々が挿入されている。伸縮部30は、固定台下端部52aと連結されており、底部14に支持されている。伸縮部30は、ベローズの形状を有している。伸縮部30は、z軸方向から見た場合に固定台下端部52aと重なる位置に配置されている。 The fixed base 52 has a truncated cone shape, and includes a fixed base lower end 52a having a circumferential planar shape when viewed from the z-axis direction. The fixed base 52 insulates the electron gun 20 from the target 13 (main body 15). A part of the fixed base 52 (part other than the fixed base lower end 52a) is made of an insulator such as ceramic. Four holes 52c are opened in the fixed base lower end 52a, and each of the four electrodes 51 is inserted into each of the four holes 52c. The elastic part 30 is connected to the fixed base lower end part 52 a and is supported by the bottom part 14. The stretchable part 30 has a bellows shape. The expansion / contraction part 30 is arrange | positioned in the position which overlaps with the fixed stand lower end part 52a, when it sees from a z-axis direction.
 なお、第3の構成のX線発生装置1における上述以外の構成、および電子銃20を傾斜させる方法は、第1の構成のX線発生装置の場合と同一であるため、同一の部材には同一の符号を付し、その説明は繰り返さない。 The configuration other than the above in the X-ray generator 1 of the third configuration and the method of tilting the electron gun 20 are the same as in the case of the X-ray generator of the first configuration. The same reference numerals are given and description thereof will not be repeated.
 X線発生装置の構成は、上述の第1~第3の構成のいずれであってもよく、上述の第1~第3の構成の各々における各部材を適宜組み合わせたものであってもよい。また、X線発生装置の構成は、上述の第1~第3の構成以外のものであってもよい。 The configuration of the X-ray generator may be any of the first to third configurations described above, or may be a combination of the members in each of the first to third configurations described above. The configuration of the X-ray generator may be other than the first to third configurations described above.
 [ヘッド部の外観形状] [Appearance of head section]
 続いて、本発明の一実施の形態におけるヘッド部の外観形状について説明する。 Subsequently, the external shape of the head portion in one embodiment of the present invention will be described.
 図8は、本発明の一実施の形態におけるヘッド部の第1の構成を示す斜視図である。 FIG. 8 is a perspective view showing a first configuration of the head portion according to the embodiment of the present invention.
 図8を参照して、第1の構成のヘッド部11は、円筒の上部が複数の面によって削られた形状を含んでいる。ヘッド部11の先端は、略多角錐形状を有している。ヘッド部11は、円筒を削る平面である平面PL1およびPL2と、円筒の側面である曲面CS1とを有している。ウインドウ12は、平面PL1におけるヘッド部11の先端付近に設けられている。平面PL1およびPL2の法線は、円筒の回転軸OAに対して傾斜している。平面PL1と平面PL2とは境界線LN1で隣接している。境界線LN1は、直線状であり、ヘッド部11における最も先端(最もワークWKに近い位置)に位置している。平面PL1およびPL2の各々は、略半円状の平面形状を有している。 Referring to FIG. 8, the head portion 11 of the first configuration includes a shape in which the upper part of the cylinder is cut by a plurality of surfaces. The tip of the head part 11 has a substantially polygonal pyramid shape. The head unit 11 includes planes PL1 and PL2 that are planes for cutting a cylinder, and a curved surface CS1 that is a side surface of the cylinder. Window 12 is provided in the vicinity of the tip of head portion 11 on plane PL1. The normal lines of the planes PL1 and PL2 are inclined with respect to the cylindrical rotation axis OA. The plane PL1 and the plane PL2 are adjacent to each other at the boundary line LN1. The boundary line LN1 is linear and is located at the most distal end (position closest to the workpiece WK) in the head portion 11. Each of planes PL1 and PL2 has a substantially semicircular planar shape.
 図9は、本発明の一実施の形態におけるヘッド部の第2の構成を示す斜視図である。 FIG. 9 is a perspective view showing a second configuration of the head portion according to the embodiment of the present invention.
 図9を参照して、第2の構成のヘッド部11もまた、円筒の上部が複数の面によって削られた形状を含んでいる。ヘッド部11の先端は、略多角錐形状を有している。ヘッド部11は、円筒を削る平面である平面PL1、PL2、PL3、およびPL4と、円筒の側面である曲面CS1とを有している。ウインドウ12は、平面PL1におけるヘッド部11の先端付近に設けられている。平面PL1、PL2、PL3、およびPL4の各々の法線は、円筒の回転軸OAに対して傾斜しており、平面PL1、PL2、PL3、およびPL4の各々は、円筒の回転軸OAを取り囲むように配置されている。平面PL1と平面PL2とは境界線LN1で隣接しており、平面PL1と平面PL3とは境界線LN2で隣接しており、平面PL2と平面PL4とは境界線LN3で隣接しており、平面PL3と平面PL4とは境界線LN4で隣接している。境界線LN1、LN2、LN3、およびLN4の各々は、直線状である。平面PL1、PL2、PL3、およびPL4の各々は、略三角形状の平面形状を有している。平面PL1と平面PL2とは、円筒の回転軸OAを含む平面PL10に関して対称である。 Referring to FIG. 9, the head portion 11 having the second configuration also includes a shape in which the upper part of the cylinder is cut by a plurality of surfaces. The tip of the head part 11 has a substantially polygonal pyramid shape. The head unit 11 includes planes PL1, PL2, PL3, and PL4 that are planes for cutting a cylinder, and a curved surface CS1 that is a side surface of the cylinder. Window 12 is provided in the vicinity of the tip of head portion 11 on plane PL1. Each normal of the planes PL1, PL2, PL3, and PL4 is inclined with respect to the rotation axis OA of the cylinder, and each of the planes PL1, PL2, PL3, and PL4 surrounds the rotation axis OA of the cylinder. Is arranged. The plane PL1 and the plane PL2 are adjacent by a boundary line LN1, the plane PL1 and the plane PL3 are adjacent by a boundary line LN2, the plane PL2 and the plane PL4 are adjacent by a boundary line LN3, and the plane PL3 And the plane PL4 are adjacent to each other at the boundary line LN4. Each of the boundary lines LN1, LN2, LN3, and LN4 is linear. Each of planes PL1, PL2, PL3, and PL4 has a substantially triangular planar shape. The plane PL1 and the plane PL2 are symmetric with respect to the plane PL10 including the cylindrical rotation axis OA.
 図10および図11は、本発明の一実施の形態におけるヘッド部の第3の構成を示す斜視図である。 FIG. 10 and FIG. 11 are perspective views showing a third configuration of the head portion in one embodiment of the present invention.
 図10および図11を参照して、第3の構成のヘッド部11もまた、円筒の上部が複数の面によって削られた形状を含んでいる。ヘッド部11の先端は、略円錐形状を有している。ヘッド部11は、円筒を削る平面である平面PL1と、円筒を円錐形状に削る曲面である曲面CS2と、円筒の側面である曲面CS1とを有している。ウインドウ12は、平面PL1におけるヘッド部11の先端付近に設けられている。平面PL1の法線は、円筒の回転軸OAに対して傾斜しており、平面PL1および曲面CS2の各々は、円筒の回転軸OAを取り囲むように配置されている。平面PL1と曲面CS2とは境界線LN1およびLN2の各々で隣接している。境界線LN2およびLN3の各々は、曲線状である。平面PL1は、略三角形状の平面形状を有している。 Referring to FIG. 10 and FIG. 11, the head portion 11 having the third configuration also includes a shape in which the upper part of the cylinder is cut by a plurality of surfaces. The tip of the head part 11 has a substantially conical shape. The head unit 11 includes a plane PL1 that is a plane for cutting a cylinder, a curved surface CS2 that is a curved surface that cuts the cylinder into a conical shape, and a curved surface CS1 that is a side surface of the cylinder. Window 12 is provided in the vicinity of the tip of head portion 11 on plane PL1. The normal line of the plane PL1 is inclined with respect to the cylindrical rotation axis OA, and each of the plane PL1 and the curved surface CS2 is disposed so as to surround the cylindrical rotation axis OA. The plane PL1 and the curved surface CS2 are adjacent to each other at the boundary lines LN1 and LN2. Each of the boundary lines LN2 and LN3 is curved. The plane PL1 has a substantially triangular planar shape.
 ヘッド部の構成は、上述の第1~第3の構成のいずれであってもよく、またこれら以外の構成であってもよい。また、第1~第3の構成のヘッド部の各々は、上述の第1~第3の構成のX線発生装置のいずれに適用されてもよく、上述以外のX線発生装置に適用されてもよい。 The configuration of the head portion may be any of the first to third configurations described above, or may be a configuration other than these. Each of the head portions having the first to third configurations may be applied to any of the above-described X-ray generators having the first to third configurations, and may be applied to an X-ray generator other than the above-described ones. Also good.
 [実施の形態の効果] [Effects of the embodiment]
 次に、本実施の形態の効果について説明する。 Next, the effect of this embodiment will be described.
 本実施の形態によれば、電子線の傾斜角を調節することができるので、ターゲット13を移動する場合に比べてより簡素な方法で、ターゲット13における電子線の照射位置を広い範囲で変更することができる。その結果、ターゲット13の品質低下を十分に抑止することができる。 According to the present embodiment, since the tilt angle of the electron beam can be adjusted, the irradiation position of the electron beam on the target 13 is changed in a wide range by a simpler method than when the target 13 is moved. be able to. As a result, the quality degradation of the target 13 can be sufficiently suppressed.
 また、ウインドウ12に不純物が混入した場合(この現象は、ウインドウ12がBeよりなる場合に起こりやすい)、不純物を回避してX線を照射することができるので、ワークWKの撮影画像の品質の低下を抑止することができる。 Further, when impurities are mixed in the window 12 (this phenomenon is likely to occur when the window 12 is made of Be), X-rays can be irradiated while avoiding the impurities, so that the quality of the captured image of the work WK can be improved. Decline can be suppressed.
 また、ウインドウ12に最も近い位置のターゲット13に電子線を照射することで、FODをある程度短くすることができる。 Further, the FOD can be shortened to some extent by irradiating the target 13 closest to the window 12 with the electron beam.
 さらに、電子線の傾斜角を調節することができるので、ターゲットにおける電子線の照射位置を広い範囲で適切に設定することができる。これにより、ウインドウを小型化することができ、ヘッド部の先端付近のサイズを小さくすることができる。その結果、特に第2および第3のヘッド部の構成のように、ウインドウ12が設けられている平面の付近に、他の面との境界線が存在する構成をヘッド部11が有している構成の場合には、ワークWKにおけるX線が照射される側の平面の法線がウインドウ12の外面の法線(z1軸方向)に対して傾斜した状態でも、FODを小さくすることができる。FODを小さくすることができる効果について、図12~図14を用いて詳細に説明する。 Furthermore, since the tilt angle of the electron beam can be adjusted, the irradiation position of the electron beam on the target can be appropriately set in a wide range. Thereby, a window can be reduced in size and the size near the front-end | tip of a head part can be made small. As a result, the head unit 11 has a configuration in which a boundary line with another surface exists in the vicinity of the plane on which the window 12 is provided, particularly as in the configurations of the second and third head units. In the case of the configuration, the FOD can be reduced even in the state where the normal line on the X-ray irradiation side of the workpiece WK is inclined with respect to the normal line on the outer surface of the window 12 (z1 axis direction). The effect of reducing the FOD will be described in detail with reference to FIGS.
 図12は、ウインドウ12が設けられている平面PL1の付近に、他の面との境界線が存在しない場合における、ヘッド部11とワークWKとの位置関係を模式的に示す図である。 FIG. 12 is a diagram schematically showing the positional relationship between the head unit 11 and the workpiece WK when there is no boundary line with another surface near the plane PL1 where the window 12 is provided.
 図12を参照して、ウインドウ12が設けられている平面PL1の付近に、他の面との境界線が存在しない構成をヘッド部11が有している場合とは、たとえばヘッド部11の先端が単一の平面よりなる場合(ヘッド部11が略円筒形状を有する場合)などである。この場合、ワークWKにおけるヘッド部11側の平面の法線(矢印AR3)をウインドウ13の外面の法線(矢印AR2)に対して傾斜させると(ワークWKを傾けると)、丸印X1で示す位置においてワークWKの端部がヘッド部11と干渉し、ワークWKをターゲット13に接近させることができない。その結果、FODは距離D1という大きな値になる。 Referring to FIG. 12, the case where head portion 11 has a configuration in which no boundary line with another surface exists in the vicinity of plane PL1 where window 12 is provided is, for example, the tip of head portion 11 Is formed of a single plane (when the head portion 11 has a substantially cylindrical shape). In this case, when the normal line (arrow AR3) of the plane on the head portion 11 side of the workpiece WK is inclined with respect to the normal line (arrow AR2) of the outer surface of the window 13 (when the workpiece WK is tilted), it is indicated by a circle X1. At the position, the end of the work WK interferes with the head part 11, and the work WK cannot approach the target 13. As a result, FOD has a large value of distance D1.
 図13は、ウインドウ12が設けられている平面PL1の付近に、平面PL2または曲面CS2との境界線LN1が存在する場合における、ヘッド部11とワークWKとの位置関係を模式的に示す図である。 FIG. 13 is a diagram schematically showing the positional relationship between the head portion 11 and the work WK when a boundary line LN1 between the plane PL2 or the curved surface CS2 exists in the vicinity of the plane PL1 where the window 12 is provided. is there.
 図13を参照して、ウインドウ12が設けられている平面PL1の付近に、平面PL2または曲面CS2との境界線LN1が存在する場合、ワークWKが平面PL2または曲面CS2に接近するように境界線LN1を支点としてワークWKを傾けることができる。これにより、図12の場合に比べてワークWKをターゲット13に接近させることができる。その結果、FODは、距離D1よりも小さい距離D2という値になる。なお図13の場合、外部に露出したウインドウ12をAR2が貫く点と境界線LN1との最短距離は、距離D11となる。 Referring to FIG. 13, when there is a boundary line LN1 with plane PL2 or curved surface CS2 in the vicinity of plane PL1 where window 12 is provided, the boundary line is set so that work WK approaches plane PL2 or curved surface CS2. The workpiece WK can be tilted with LN1 as a fulcrum. Thereby, the workpiece | work WK can be made to approach the target 13 compared with the case of FIG. As a result, FOD has a value of distance D2 that is smaller than distance D1. In the case of FIG. 13, the shortest distance between the point where AR2 penetrates the window 12 exposed to the outside and the boundary line LN1 is the distance D11.
 図14(a)は図9の平面PL1面を表したものであり、図13におけるウインドウ12を矢印AR2が貫く点と境界線LN1との最短距離D11が描かれている。図14(b)は、ウインドウ12が設けられている平面PL1の付近に、平面PL2または局面CS2との境界線LN1が存在する場合において、矢印AR2の位置を平面PL1の略三角形状の先端に近づけることで、外部に露出したウインドウの面積が図13(図14(a))の場合よりも小さくする時の、図である。ウインドウ12を矢印AR2が貫く点と境界線LN1との最短距離D12が描かれている。距離D12は距離D11より短くできることがわかる。 FIG. 14A shows the plane PL1 in FIG. 9, and the shortest distance D11 between the point where the arrow AR2 passes through the window 12 in FIG. 13 and the boundary line LN1 is drawn. FIG. 14B shows the position of the arrow AR2 at the substantially triangular tip of the plane PL1 when the boundary line LN1 with the plane PL2 or the phase CS2 exists in the vicinity of the plane PL1 where the window 12 is provided. It is a figure when the area of the window exposed outside becomes smaller than the case of FIG. 13 (FIG. 14 (a)) by approaching. The shortest distance D12 between the point where the arrow AR2 passes through the window 12 and the boundary line LN1 is drawn. It can be seen that the distance D12 can be shorter than the distance D11.
 図15は、ウインドウ12が設けられている平面PL1の付近に、平面PL2または局面CS2との境界線LN1が存在する場合において、外部に露出したウインドウの面積が図13の場合よりも小さい時の、ヘッド部11とワークWKとの位置関係を模式的に示す図14(b)に対応する図である。 FIG. 15 shows a case where the area of the window exposed to the outside is smaller than in the case of FIG. 13 when the boundary line LN1 with the plane PL2 or the phase CS2 exists in the vicinity of the plane PL1 where the window 12 is provided. FIG. 15 is a view corresponding to FIG. 14B schematically showing the positional relationship between the head unit 11 and the workpiece WK.
 図15を参照して、本実施の形態の第2および第3の構成のヘッド部11では、ウインドウ12が設けられている平面PL1の付近に、平面PL2または曲面CS2との境界線LN1が存在している。このような構成では、上述のようにウインドウ12の面積を従来の面積(図13の場合の面積)よりも小さくすることにより、外部に露出したウインドウ12を矢印AR2が貫く点と境界線LN1との最短距離は、距離D11より小さい距離D12となる。その結果、FODは、距離D2よりも小さい距離D3という値になる。 Referring to FIG. 15, in head portion 11 of the second and third configurations of the present embodiment, boundary line LN1 with plane PL2 or curved surface CS2 exists in the vicinity of plane PL1 where window 12 is provided. is doing. In such a configuration, by making the area of the window 12 smaller than the conventional area (area in the case of FIG. 13) as described above, the point where the arrow AR2 passes through the window 12 exposed to the outside and the boundary line LN1 Is the distance D12 smaller than the distance D11. As a result, FOD has a value of distance D3 that is smaller than distance D2.
 なお、本実施の形態における最小FOD(ターゲット13における電子線が照射される面からウインドウ12の外面までの距離の最小値)を示す距離D4は、たとえば0.1mm以上4mm以下であり、好ましくは0.2mm以上2mm以下であり、より好ましくは0.3mm以上1.5mm以下であり、より好ましくは1mm以上1.5mm以下である。従来のX線発生装置では、組み立て精度の再現性が悪く、最小FODに大きな変動が生じていたが、本実施の形態のようにX線発生装置に電子線の角度調節機能を付加することで、最小FODを上述の範囲のように精度良く調整することができる。 The distance D4 indicating the minimum FOD (the minimum value of the distance from the surface irradiated with the electron beam in the target 13 to the outer surface of the window 12) in the present embodiment is, for example, 0.1 mm or more and 4 mm or less, preferably It is 0.2 mm or more and 2 mm or less, More preferably, it is 0.3 mm or more and 1.5 mm or less, More preferably, it is 1 mm or more and 1.5 mm or less. In the conventional X-ray generator, the reproducibility of the assembly accuracy is poor and a large fluctuation occurs in the minimum FOD. However, by adding an electron beam angle adjustment function to the X-ray generator as in this embodiment. The minimum FOD can be adjusted with high accuracy as in the above range.
 透過型では標準的にはウインドウ12の厚みを0.5mmにして使われている。したがって、最小FODは0.5mmとなる。一方、反射型では標準的には10mm程度で使われている。反射型で最小FODがたとえば1mmから1.5mm程度の場合を説明する。この場合、透過型と比べて大差なく使える。たとえばワークWKの厚みが3mmの場合、透過型では厚みを含めたFODが3.5mm、本実施の形態では厚みを含めたFODが、たとえば4mmから4.5mmとなり、よく用いられるワークWKの厚みでは大差がない。また、反射型では冷却できる分、X線量を多くすることができるので、透過型と比べて、X線検出装置70を離すことで透過型と同等の拡大率を実現することもできる。 In the transmission type, the window 12 is typically used with a thickness of 0.5 mm. Therefore, the minimum FOD is 0.5 mm. On the other hand, the reflection type is typically used at about 10 mm. A case where the minimum FOD is, for example, about 1 mm to 1.5 mm will be described. In this case, it can be used without much difference compared to the transmission type. For example, when the thickness of the workpiece WK is 3 mm, the FOD including the thickness is 3.5 mm in the transmission type, and the FOD including the thickness is, for example, 4 mm to 4.5 mm in the present embodiment. Then there is no big difference. Further, since the X-ray dose can be increased by the amount that can be cooled in the reflective type, it is possible to realize an enlargement rate equivalent to that of the transmissive type by separating the X-ray detection device 70 compared to the transmissive type.
 さらに本実施の形態によれば、FODが小さくなることにより、次のような効果を得ることができる。 Furthermore, according to the present embodiment, the following effects can be obtained by reducing the FOD.
 X線発生装置1とX線検出装置70との距離を従来の場合の距離と同じにした場合には、FODが小さくなることで、ワークWKの撮影画像の幾何倍率を大きくすることができ、ワークWKの撮影画像を拡大して見ることができる。 When the distance between the X-ray generator 1 and the X-ray detector 70 is the same as the distance in the conventional case, the geometric magnification of the captured image of the workpiece WK can be increased by reducing the FOD, The photographed image of the work WK can be enlarged and viewed.
 幾何倍率を従来の場合と同じにした場合には、FODが小さくなることで、X線検出装置70におけるX線の受光量が増加する。これにより、X線の受光量を従来の場合と同程度に減らす場合、ターゲット13に衝突させる電子線の量を減らすことができる。その結果、電子線の広がりを小さくすることができ、ターゲット13におけるX線発生部の大きさを小さくすることができる。すなわち、分解能の向上することができる。また、電子線の量を減らすことができるので、ターゲット13の損傷を小さくすることができる。 When the geometric magnification is the same as the conventional case, the amount of received X-rays in the X-ray detection device 70 increases as the FOD decreases. As a result, when the amount of received X-ray light is reduced to the same extent as in the conventional case, the amount of electron beam colliding with the target 13 can be reduced. As a result, the spread of the electron beam can be reduced, and the size of the X-ray generation part in the target 13 can be reduced. That is, the resolution can be improved. Further, since the amount of electron beams can be reduced, damage to the target 13 can be reduced.
 [その他] [Others]
 X線発生装置は、密閉型および開放型の他、マイクロフォーカス型(10μm以下の焦点径を有するもの)であってもよい。X線発生装置がマイクロフォーカス形である場合、焦点径は、5μm以下であることが好ましい。 The X-ray generator may be a microfocus type (having a focal diameter of 10 μm or less) in addition to a sealed type and an open type. When the X-ray generator is a microfocus type, the focal diameter is preferably 5 μm or less.
 調節部は、底面に設けられる代わりにチャンバーの側面や前面などに設けられていてもよい。 The adjustment unit may be provided on the side surface or the front surface of the chamber instead of being provided on the bottom surface.
 チャンバーが構成する内部空間の形状は任意であり、内部空間は複数の延在方向を有していてもよい。内部空間が複数の延在方向を有している場合、調節部は、内部空間の少なくとも一の延在方向に対する電子銃から照射する電子線の傾斜角を調節するものであればよい。 The shape of the internal space formed by the chamber is arbitrary, and the internal space may have a plurality of extending directions. When the internal space has a plurality of extending directions, the adjusting unit may adjust the inclination angle of the electron beam emitted from the electron gun with respect to at least one extending direction of the internal space.
 上述の実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The above embodiment should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 X線発生装置
 10 チャンバー
 11 ヘッド部
 11a ヘッド部の孔
 12 ウインドウ
 13 ターゲット
 14 底部
 14a,14b,14c 底部の孔
 15 本体
 15a 本体の開口
 16a,16b 金属板
 20 電子銃
 30 伸縮部
 30a 伸縮部の内径側部分
 30b 伸縮部の外径側部分
 40 調節部
 41 押しネジ
 42 引きネジ
 51 電極
 52 固定台
 52a 固定台下端部
 52b 固定台の溝
 52c 固定台の孔
 60 真空ポンプ
 70 X線検出装置
 80 制御部
 81 X線発生制御部
 82 位置角度調節部
 83 画像生成部
 90 操作部
 100 ケース
 101 電源
 AR1 電子線の進行方向を示す矢印
 AR2 ウインドウからワークへのX線の放射方向の中で、ウインドウの法線方向と一致するX線の進行方向を示す矢印
 AR3 ワークにおけるヘッド部側の平面の法線の方向を示す矢印
 AR4 放射状に広がるX線の端部の進行方向
 CS1,CS2 曲面
 D1,D2,D3,D4,D11,D12 距離
 IS 内部空間
 LN1,LN2,LN3,LN4 境界線
 M1,M2 電子銃の傾斜方向を示す矢印
 M11,M12 電子線の軌跡の変化する方向を示す矢印
 OA 円筒の回転軸
 PL1,PL2,PL3,PL4,PL10 平面
 WK ワーク
 X1 ワークの端部がヘッド部と干渉する位置
DESCRIPTION OF SYMBOLS 1 X-ray generator 10 Chamber 11 Head part 11a Head part hole 12 Window 13 Target 14 Bottom part 14a, 14b, 14c Bottom part hole 15 Main body 15a Main body opening 16a, 16b Metal plate 20 Electron gun 30 Expansion / contraction part 30a Expansion / contraction part Inner diameter side portion 30b Outer diameter side portion of expansion / contraction portion 40 Adjustment portion 41 Push screw 42 Pull screw 51 Electrode 52 Fixing base 52a Fixing base lower end 52b Fixing base groove 52c Fixing base hole 60 Vacuum pump 70 X-ray detection device 80 Control Unit 81 X-ray generation control unit 82 Position angle adjustment unit 83 Image generation unit 90 Operation unit 100 Case 101 Power supply AR1 Arrow indicating the traveling direction of the electron beam AR2 Among the X-ray emission directions from the window to the workpiece, the window method Arrow indicating the direction of travel of X-rays that matches the line direction AR3 AR4 indicating the direction of the normal line of the plane on the side of the side AR4 Traveling direction of the end of the X-ray that spreads radially CS1, CS2 Curved surface D1, D2, D3, D4, D11, D12 Distance IS internal space LN1, LN2, LN3 LN4 Boundary line M1, M2 Arrow indicating the tilt direction of the electron gun M11, M12 Arrow indicating the direction in which the trajectory of the electron beam changes OA Cylindrical rotation axis PL1, PL2, PL3, PL4, PL10 Plane WK Work X1 End of work Where the head interferes with the head

Claims (15)

  1.  少なくとも一の方向に延在する内部空間を構成するチャンバーと、
     前記内部空間において前記チャンバーに支持され、ターゲットへ電子線を照射する電子銃と、
     前記電子銃から照射する電子線の前記一の方向に対する傾斜角を調節する調節部とを備え、
     前記チャンバーは、前記ターゲットから発生したX線を前記内部空間外へ導くウインドウを含む、反射型X線発生装置。
    A chamber constituting an internal space extending in at least one direction;
    An electron gun that is supported by the chamber in the internal space and irradiates an electron beam to a target;
    An adjustment unit for adjusting an inclination angle of the electron beam irradiated from the electron gun with respect to the one direction;
    The reflection type X-ray generator, wherein the chamber includes a window for guiding X-rays generated from the target to the outside of the internal space.
  2.  外部からの力により伸縮可能な伸縮部をさらに備え、
     前記電子銃は、前記伸縮部を介して前記チャンバーに支持され、
     前記調節部は、前記伸縮部を局所的に伸縮させる、請求項1に記載の反射型X線発生装置。
    It is further equipped with a stretchable part that can be stretched by external force,
    The electron gun is supported by the chamber via the extendable part,
    The reflective X-ray generation device according to claim 1, wherein the adjustment unit locally expands and contracts the expansion and contraction unit.
  3.  前記電子銃を固定し、前記伸縮部と連結された固定台をさらに備え、
     前記チャンバーは、前記ウインドウとの間で前記電子銃および前記固定台を挟む位置に設けられた底部をさらに含み、
     前記伸縮部は前記底部に支持される、請求項2に記載の反射型X線発生装置。
    The electron gun is fixed, and further includes a fixing base connected to the extendable part,
    The chamber further includes a bottom provided at a position sandwiching the electron gun and the fixed base between the window and the window,
    The reflective X-ray generator according to claim 2, wherein the expandable portion is supported by the bottom portion.
  4.  前記調節部は、前記電子銃と前記底部との距離を局所的に大きくする方向に前記固定台を押す押し部を含む、請求項3に記載の反射型X線発生装置。 The reflection type X-ray generation device according to claim 3, wherein the adjustment unit includes a pressing unit that pushes the fixed base in a direction to locally increase a distance between the electron gun and the bottom.
  5.  前記調節部は、前記電子銃と前記底部との距離を局所的に小さくする方向に前記固定台を引く引き部を含む、請求項3に記載の反射型X線発生装置。 4. The reflection type X-ray generator according to claim 3, wherein the adjusting unit includes a pulling unit that pulls the fixed base in a direction to locally reduce a distance between the electron gun and the bottom.
  6.  前記チャンバーは、前記一の方向に沿って、前記一の方向に対して垂直な方向の長さが小さくなるヘッド部をさらに含み、
     前記ウインドウは前記ヘッド部に固定される、請求項1に記載の反射型X線発生装置。
    The chamber further includes a head portion having a length in a direction perpendicular to the one direction along the one direction.
    The reflective X-ray generator according to claim 1, wherein the window is fixed to the head portion.
  7.  前記ヘッド部は、円筒の上部が少なくとも第1の面および第2の面の各々によって削られた形状を含んでおり、前記第1の面には前記ウインドウが設けられ、前記第1の面は平面であり、前記第2の面は、前記第1の面との間で境界線を形成する、請求項6に記載の反射型X線発生装置。 The head portion includes a shape in which an upper portion of a cylinder is cut by at least a first surface and a second surface, the window is provided on the first surface, and the first surface is The reflection type X-ray generation device according to claim 6, wherein the reflection type X-ray generation device is a flat surface, and the second surface forms a boundary line with the first surface.
  8.  前記ヘッド部は、円筒の上部が第3の面によってさらに削られた形状を含んでおり、前記第2および第3の面はいずれも平面であり、前記第3の面は、前記第1の面との間で境界線を形成し、前記第2の面と前記第3の面とは、前記円筒の回転軸を含む平面に関して対称である、請求項7に記載の反射型X線発生装置。 The head portion includes a shape in which an upper portion of a cylinder is further cut by a third surface, the second and third surfaces are both flat surfaces, and the third surface is the first surface. The reflective X-ray generator according to claim 7, wherein a boundary line is formed between the second surface and the third surface, and the second surface and the third surface are symmetric with respect to a plane including a rotation axis of the cylinder. .
  9.  前記調節部は、
      前記電子銃と前記底部との距離を局所的に大きくする方向に前記固定台を押す押しネジと、
      前記電子銃と前記底部との距離を局所的に小さくする方向に前記固定台を引く引きネジとを含み、
     前記押しネジおよび前記引きネジによって前記固定台は固定される、請求項3に記載の反射型X線発生装置。
    The adjusting unit is
    A push screw that pushes the fixed base in a direction to locally increase the distance between the electron gun and the bottom,
    A pull screw for pulling the fixing base in a direction to locally reduce the distance between the electron gun and the bottom,
    The reflective X-ray generator according to claim 3, wherein the fixing base is fixed by the push screw and the pull screw.
  10.  外部に露出した前記ウインドウの部分の面積は、0.5平方ミリメートル以上20平方ミリメートル以下である、請求項1に記載の反射型X線発生装置。 2. The reflection type X-ray generator according to claim 1, wherein an area of the portion of the window exposed to the outside is not less than 0.5 square millimeters and not more than 20 square millimeters.
  11.  前記ターゲットは、軽元素材料よりなる基板と、前記基板における電子線が照射される面に形成された重金属材料とを含む、請求項1に記載の反射型X線発生装置。 2. The reflective X-ray generator according to claim 1, wherein the target includes a substrate made of a light element material and a heavy metal material formed on a surface of the substrate irradiated with an electron beam.
  12.  前記ターゲットにおける電子線が照射される面から前記ウインドウの外面までの距離の最小値は、0.1mm以上4mm以下である、請求項1に記載の反射型X線発生装置。 The reflection type X-ray generator according to claim 1, wherein the minimum value of the distance from the surface of the target irradiated with the electron beam to the outer surface of the window is 0.1 mm or more and 4 mm or less.
  13.  前記ターゲットにおける電子線が照射される面から前記ウインドウの外面までの距離の最小値は、0.2mm以上2mm以下である、請求項12に記載の反射型X線発生装置。 The reflection type X-ray generator according to claim 12, wherein the minimum value of the distance from the surface of the target irradiated with the electron beam to the outer surface of the window is 0.2 mm or more and 2 mm or less.
  14.  前記ターゲットにおける電子線が照射される面から前記ウインドウの外面までの距離の最小値は、0.3mm以上1.5mm以下である、請求項13に記載の反射型X線発生装置。 The reflection type X-ray generator according to claim 13, wherein the minimum value of the distance from the surface of the target irradiated with the electron beam to the outer surface of the window is 0.3 mm or more and 1.5 mm or less.
  15.  焦点径が0より大きく5μm以下である、請求項1に記載の反射型X線発生装置。 The reflection type X-ray generator according to claim 1, wherein the focal diameter is greater than 0 and 5 μm or less.
PCT/JP2016/063792 2015-05-27 2016-05-09 Reflective x-ray generation device WO2016190074A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016564096A JP6121072B1 (en) 2015-05-27 2016-05-09 Reflective X-ray generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015107858 2015-05-27
JP2015-107858 2015-05-27

Publications (1)

Publication Number Publication Date
WO2016190074A1 true WO2016190074A1 (en) 2016-12-01

Family

ID=57393365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063792 WO2016190074A1 (en) 2015-05-27 2016-05-09 Reflective x-ray generation device

Country Status (2)

Country Link
JP (1) JP6121072B1 (en)
WO (1) WO2016190074A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113454U (en) * 1984-06-29 1986-01-25 株式会社東芝 Rotating anode X-ray tube
JPS6162344U (en) * 1984-09-29 1986-04-26
JPS63228553A (en) * 1987-03-18 1988-09-22 Hitachi Ltd Target for x-ray tube, manufacture thereof and x-ray tube
JP2004111336A (en) * 2002-09-20 2004-04-08 Hamamatsu Photonics Kk X-ray tube

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3726257B2 (en) * 1997-03-07 2005-12-14 理学電機工業株式会社 X-ray irradiation apparatus and fluorescent X-ray analysis apparatus using the same
JP6444693B2 (en) * 2014-10-29 2018-12-26 松定プレシジョン株式会社 Reflective X-ray generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113454U (en) * 1984-06-29 1986-01-25 株式会社東芝 Rotating anode X-ray tube
JPS6162344U (en) * 1984-09-29 1986-04-26
JPS63228553A (en) * 1987-03-18 1988-09-22 Hitachi Ltd Target for x-ray tube, manufacture thereof and x-ray tube
JP2004111336A (en) * 2002-09-20 2004-04-08 Hamamatsu Photonics Kk X-ray tube

Also Published As

Publication number Publication date
JP6121072B1 (en) 2017-04-26
JPWO2016190074A1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
US7215741B2 (en) X-ray generating apparatus
JP3998556B2 (en) High resolution X-ray microscope
US20120307974A1 (en) X-ray tube and radiation imaging apparatus
US9818571B2 (en) X-ray generation tube, X-ray generation apparatus, and radiography system
US9029795B2 (en) Radiation generating tube, and radiation generating device and apparatus including the tube
TWI625737B (en) X-ray generating device
JP2015191795A (en) X-ray generator
JP6316019B2 (en) X-ray generating tube, X-ray generating apparatus and X-ray imaging system provided with the X-ray generating tube
JP5479276B2 (en) X-ray irradiation equipment
JP2009158138A (en) X-ray tube and x-ray ct device
JPWO2008062519A1 (en) X-ray generator
JP6121072B1 (en) Reflective X-ray generator
JP2017529661A (en) High voltage feedthrough assembly, time-resolved transmission electron microscope, and method of electrode manipulation in a vacuum environment
JP2012004060A (en) X-ray source and adjusting apparatus and method for the same
JP6821304B2 (en) Electron gun, X-ray generator, X-ray generator and radiography system
JP6444693B2 (en) Reflective X-ray generator
JP6153314B2 (en) X-ray transmission type target and manufacturing method thereof
JP2017103100A (en) X-ray generation apparatus and x-ray imaging system
US10636610B2 (en) Target geometry for small spot X-ray tube
JP7167196B2 (en) X-ray generating tube, X-ray generator and X-ray imaging system
JP6110209B2 (en) X-ray generation target and X-ray generation apparatus
JP2014203674A (en) X-ray generator and x-ray imaging device using the same
JP2015076214A (en) Radiation tube and radiation inspection device
JP2015153548A (en) Radiation tube and radiation generation device using the same, radiographic system, and method of manufacturing radiation tube

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016564096

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799782

Country of ref document: EP

Kind code of ref document: A1