WO2016189911A1 - Tool abrasion evaluation device - Google Patents

Tool abrasion evaluation device Download PDF

Info

Publication number
WO2016189911A1
WO2016189911A1 PCT/JP2016/055597 JP2016055597W WO2016189911A1 WO 2016189911 A1 WO2016189911 A1 WO 2016189911A1 JP 2016055597 W JP2016055597 W JP 2016055597W WO 2016189911 A1 WO2016189911 A1 WO 2016189911A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency spectrum
tool
contour diagram
frequency
contour
Prior art date
Application number
PCT/JP2016/055597
Other languages
French (fr)
Japanese (ja)
Inventor
静雄 西川
陽平 小田
公行 西村
和哉 大越
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Priority to DE112016002313.8T priority Critical patent/DE112016002313T5/en
Publication of WO2016189911A1 publication Critical patent/WO2016189911A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0971Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring mechanical vibrations of parts of the machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0995Tool life management

Definitions

  • an operator in machining using a machine tool, an operator can evaluate the wear state of a tool during machining by other visual means without directly viewing the tool. It relates to an evaluation device.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-76168
  • This detection method is to detect the wear limit of a tool based on machining vibration generated during machining. First, the tool or workpiece is rotated at a first rotational speed in a non-machining state. While detecting vibration, a threshold is set based on the maximum value of vibration.
  • processing is performed at the first rotational speed, the vibration detected during processing is compared with the threshold value to check whether the detected vibration exceeds the threshold value, and when the detected vibration exceeds the threshold value, The frequency that maximizes the vibration is acquired as the first frequency.
  • processing is performed at a second rotation speed different from the first rotation speed, and the vibration detected during the processing is compared with the threshold value to check whether the detected vibration exceeds the threshold value.
  • the threshold value is exceeded, the maximum frequency of the vibration is acquired as the second frequency, and the first frequency and the second frequency are compared with each other. If it is within the range, it is determined that the tool has reached the wear limit.
  • the wear limit of the tool can be detected in a state in which the influence of regenerative chatter vibration is removed, It is not necessary to prepare a reference value for determining the wear limit of the tool in advance by test processing or the like, and the wear limit of the tool can be detected in a short time.
  • the rotation speed is changed at the time of machining, that is, the machining conditions are changed. Therefore, even if the change is slight, the machining accuracy is not a little affected. There is a problem of giving.
  • the present invention has been made in view of the above circumstances, and provides an evaluation apparatus capable of evaluating the wear state of a tool by visual means without affecting the processing time and processing accuracy. For that purpose.
  • the present invention for solving the above problems is as follows.
  • a vibration detector for detecting a machining vibration generated when machining a workpiece with the tool using a machine tool;
  • a frequency analysis unit for analyzing the spectrum of vibration data detected by the vibration detector at a predetermined sampling interval;
  • a contour diagram creation unit for creating a contour diagram representing the intensity of each frequency component for each time by color.
  • the present invention relates to a tool wear evaluation apparatus including a display and a display device that displays a contour map created by the contour map creation unit on the display.
  • machining vibration generated when machining a workpiece using a tool is detected by the vibration detector, and vibration data detected by the vibration detector is detected by the frequency analysis.
  • the spectrum is analyzed at predetermined sampling intervals by the unit. Then, based on the frequency spectrum sequentially analyzed at the sampling interval, a contour diagram of the frequency spectrum expressed by color coding according to the intensity of each frequency component for each time is created and created by the contour diagram creation unit.
  • the contour map thus displayed is displayed on the display of the display device.
  • the intensity of a specific frequency component gradually increases as the tool wears. Therefore, the contour diagram created by the contour diagram creation unit and displayed on the display is weak in the strength of the general frequency component when the tool is not worn. It shows strength. On the other hand, as the wear of the tool progresses due to machining, as described above, the intensity of a specific frequency component gradually increases, and the color of the contour diagram also has a strong intensity corresponding to the frequency component. It becomes the color shown.
  • the operator can visually recognize the strength of the vibration acting on the tool by visually checking the color of the contour map displayed on the display, and visually check the wear state of the tool. Can be evaluated.
  • the cooperation with the numerical control device is not particularly required in creating the contour diagram, there is no problem that the processing time is extended unlike the conventional detection method, and it is also necessary to change the rotation speed. Because there is no, it does not affect the processing accuracy.
  • the color includes an achromatic color and a chromatic color.
  • the color classification includes a mode in which the brightness is different, and in the case of the chromatic color, any one of hue, saturation, and brightness. Different aspects apply. However, in order to clarify the change of the frequency spectrum, it is preferable that the chromatic color is color-coded according to all of hue, saturation and brightness.
  • the vibration detector may be anything as long as it can detect machining vibration.
  • the vibration detector is disposed in the vicinity of the machining operation portion of the machine tool and is applied to the machining operation portion by machining.
  • Examples thereof include an accelerometer that detects a vibration that acts and a microphone that is disposed in a machining area of a machine tool and collects a machining sound generated by machining.
  • the contour diagram creation unit is a frequency spectrum analyzed by the frequency analysis unit, and a frequency spectrum at a predetermined past reference time is used as a reference frequency spectrum, and the reference frequency spectrum and the frequency analysis
  • a difference frequency spectrum obtained by taking a difference from a frequency spectrum sequentially analyzed by the unit may be sequentially calculated, and the contour diagram may be created based on the calculated difference frequency spectrum.
  • the contour diagram shows that the displayed color shows a weak strength because the strength is low with respect to the general frequency component when the tool is not worn.
  • the intensity of a specific frequency component gradually increases, and the color of the contour diagram also becomes a hue in which the portion corresponding to the frequency component shows a strong intensity.
  • the frequency spectrum at a predetermined past reference time is used as a reference frequency spectrum, and a differential frequency spectrum obtained by sequentially calculating a difference between the reference frequency spectrum and the frequency spectrum sequentially analyzed by the frequency analysis unit is obtained.
  • the frequency spectrum resulting from tool wear can be calculated, and by creating a contour diagram based on the calculated difference frequency spectrum, the contour diagram is a direct representation of the wear state of the tool. be able to. Thus, the operator can recognize the wear state of the tool more accurately by visually recognizing such a contour diagram.
  • the reference frequency spectrum may be set to a frequency spectrum at a specific time, such as a frequency spectrum when the tool is new, or set to a frequency spectrum a predetermined time before the current time. You may do it.
  • the contour map creation unit While creating the contour diagram corresponding to the frequency spectrum sequentially analyzed at the sampling interval by the frequency analysis unit, Using the frequency spectrum at a predetermined past reference time as a reference frequency spectrum, the difference frequency spectrum obtained by calculating the difference between the reference frequency spectrum and the frequency spectrum sequentially analyzed by the frequency analysis unit is sequentially calculated. Configured to create the contour map corresponding to the difference frequency spectrum;
  • the display device may be configured to simultaneously display two contour diagrams created by the contour diagram creation unit on the display.
  • the operator can visually recognize the vibration intensity acting on the tool by checking the contour map corresponding to the current frequency spectrum displayed on the display, and at the same time, By confirming the contour diagram corresponding to the differential frequency spectrum displayed on the display, the wear state of the tool can be more accurately evaluated.
  • the tool wear evaluation apparatus may further include a warning unit that outputs an alarm when the sum of the difference frequency spectrum or the maximum value of the absolute value thereof exceeds a predetermined reference value.
  • the intensity of the specific frequency component gradually increases, and the differential frequency spectrum represents a frequency spectrum caused by the tool wear. . Therefore, when the sum of the difference frequency spectrum exceeds a predetermined reference value, it can be determined that the tool wear has reached the limit, and the maximum value of each absolute value of the difference frequency spectrum is a predetermined reference value. Similarly, when the value is exceeded, it can be determined that the tool wear has reached its limit. Therefore, if an alarm is output by the warning unit in such a case, the numerical control device of the machine tool or the operator can objectively recognize that the tool has reached the wear limit without using visual means. Can be made.
  • the warning unit may be configured to output an operation stop signal to the numerical control device.
  • the warning unit may be configured to output an operation stop signal to the numerical control device.
  • the operator can visually recognize the strength of vibration acting on the tool by looking at the color of the contour diagram displayed on the display.
  • the wear state of the tool can be visually evaluated.
  • the cooperation with the numerical control device is not particularly required in creating the contour diagram, there is no problem that the processing time is extended unlike the conventional detection method, and it is also necessary to change the rotation speed. Because there is no, it does not affect the processing accuracy.
  • the contour diagram directly represents the wear state of the tool, so the operator visually recognizes such a contour diagram.
  • the wear state of the tool can be recognized more accurately.
  • the sum of the difference frequency spectrum exceeds a predetermined reference value, it can be determined that the tool wear has reached the limit, or the maximum absolute value of the difference frequency spectrum is a predetermined reference value.
  • the numerical control device or operator of the machine tool It is possible to objectively recognize that the tool has reached the wear limit regardless of visual means.
  • FIG. 1 is an explanatory view showing a tool wear evaluation apparatus according to an embodiment of the present invention and a machine tool provided with the tool wear evaluation apparatus.
  • a schematic configuration of the machine tool 1 will be described, and then a specific configuration of the tool wear evaluation apparatus 20 of the present example will be described.
  • the machine tool 1 is an NC lathe and includes a bed 3, a motion mechanism unit 2 including a headstock 4 and a carriage 7 disposed on the bed 3, and the motion mechanism. And a numerical controller 10 that controls the operation of the unit 2.
  • the spindle stock 4 holds the spindle 5 rotatably, and rotates the spindle 5 around its axis by a built-in spindle motor.
  • a chuck 6 is attached to the tip of the spindle 5, and the workpiece W is gripped by the chuck 6.
  • the carriage 7 is movable in the Z-axis direction along the axis of the main shaft 5, and a tool rest 8 is disposed on the carriage 7, and the tool rest 8 is connected to the Z-axis. It can move in the X-axis direction orthogonal to each other.
  • a turret 9 is mounted on the main spindle 5 side of the tool post 8, and a tool T is mounted on the turret 9.
  • the carriage 7 is moved in the Z-axis direction by a Z-axis drive mechanism (not shown), and the tool post 8 is moved in the X-axis direction by an X-axis drive mechanism (not shown).
  • the operations of the spindle drive motor (not shown), the X-axis drive mechanism (not shown), and the Z-axis drive mechanism (not shown) are controlled by the numerical control device 10, respectively.
  • the workpiece W and the tool T move relatively in the XZ plane while the main shaft 5 is rotated about the axis, so that the workpiece W is moved. It is processed by the tool T.
  • the tool wear evaluation device 20 includes an accelerometer 21 mounted on the tool post 8, a frequency analysis unit 22, an analysis data storage unit 23, a contour diagram creation unit 24, a warning unit 25, and a display device 26.
  • the accelerometer 21 is a measuring device that detects acceleration acting on the accelerometer and outputs a signal corresponding to the detected acceleration. For example, a capacitance type or piezo element type measuring device using MEMS technology. Can be illustrated.
  • the accelerometer 21 detects machining vibration transmitted through the tool T, the turret 9 and the tool post 8 when the workpiece W is machined by the tool T, and outputs the machining vibration to the frequency analysis unit 22. .
  • the frequency analysis unit 22 is a processing unit that receives a signal related to machining vibration from the accelerometer 21 and performs spectrum analysis by Fourier transforming the received signal at a predetermined sampling interval, and is output from the accelerometer 21.
  • the signal to be processed is sequentially processed, and the analysis data (frequency spectrum) for each time is stored in the analysis data storage unit 23.
  • the frequency spectrum obtained in the processing of the frequency analysis unit 22 is data relating to the intensity of each frequency component (or an appropriately divided frequency band, hereinafter simply referred to as “frequency component”), and the analysis data
  • the storage unit 23 stores each frequency component and data related to its intensity, which are processed in the order of time passage, in association with each other.
  • the contour diagram creation unit 24 is processed by the frequency analysis unit 22 sequentially at the sampling interval, and is stored in the analysis data storage unit 23 at the present time spectrum and a predetermined time before the present time (100 in this example). Secondly, the frequency spectrum (hereinafter referred to as “reference frequency spectrum”) is sequentially read out, and first, a contour diagram is created in which the intensity of each frequency component is color-coded based on the read current frequency spectrum. To do.
  • the contour diagram created by the contour diagram creation unit 24 is in a weak state with respect to general frequency components when the tool is not worn, and its display color shows a weak strength.
  • the intensity of a specific frequency component gradually increases, so the color of the contour diagram also becomes a color that shows a strong intensity at the part corresponding to the frequency component. To go.
  • the contour diagram creation unit 24 sequentially calculates a difference frequency spectrum that is read from the analysis data storage unit 23 and takes a difference between the current frequency spectrum and a reference frequency spectrum, and based on the calculated difference frequency spectrum. Then, contour maps corresponding to this are created in sequence.
  • the difference frequency spectrum obtained by taking the difference between the current frequency spectrum and the reference frequency spectrum represents the strength (characteristic) due to tool wear. Therefore, the contour diagram created based on the difference frequency spectrum directly represents the wear state of the tool.
  • the contour diagram creation unit 24 sequentially transmits the contour diagram corresponding to the created current frequency spectrum and the data related to the contour diagram corresponding to the difference frequency spectrum to the display device 26, and also calculates the calculated difference frequency spectrum. Processing for sequentially transmitting such data to the warning unit 25 is performed.
  • the color includes an achromatic color and a chromatic color.
  • the color classification includes a mode in which the brightness is different, and in the case of the chromatic color, any one of hue, saturation, and brightness. Different aspects apply. However, in order to clarify the change of the frequency spectrum, it is preferable that the chromatic color is color-coded according to all of hue, saturation and brightness.
  • the display device 26 includes a display 27, and performs processing for simultaneously displaying two contour diagrams transmitted from the contour diagram creation unit 24 on the display 27.
  • the display screens displayed on the display 27 are shown in FIGS.
  • Each of the display screens shown in FIGS. 2 to 6 is an area (hereinafter, referred to as a contour map) relating to the current frequency spectrum (hereinafter referred to as “real frequency spectrum” in comparison with the “differential frequency spectrum”). And an area for displaying a contour diagram relating to the difference frequency spectrum (hereinafter referred to as “difference frequency spectrum display area”). Contour diagrams related to the actual frequency spectrum up to 2 seconds before are displayed while being updated sequentially in time series. Similarly, in the differential frequency spectrum display area, contour diagrams related to the differential frequency spectrum up to 50 seconds before the current time are displayed. Displayed while being sequentially updated. As a matter of course, the time zone to be displayed is not limited to this.
  • the display screens illustrated in FIG. 2 to FIG. 6 use the machine tool 1, and the outer peripheral portion of a cylindrical workpiece W (material SUS630) having an outer diameter of 102 mm is cut at a cutting speed of 100 m / min and a feed speed of 0.
  • the contour diagrams obtained when the outer diameter machining is repeated n times under the cutting condition of 2 mm / rev, with the depth of cut being 2 mm and the cutting length being 100 mm are shown.
  • FIG. 2 shows a contour diagram in which the current processing is the 17th processing
  • FIG. 3 shows a contour diagram in which the current processing is the 18th processing
  • FIG. 4 shows a contour diagram in which the current processing is the 20th processing.
  • FIG. 5 shows a contour diagram in which the current time is the 24th machining
  • FIG. 6 is a contour diagram in which the current time is the 24th machining.
  • the tool T performs chipping about 15 seconds after the time in FIG. The contour diagram when it wakes up is shown.
  • both the contour diagram related to the actual frequency spectrum and the contour diagram related to the difference frequency spectrum have a hue that shows extremely strong strength.
  • FIG. 4 where the wear of the tool seems to have progressed a little
  • the hue showing a slightly strong intensity at a low frequency component is shown.
  • 5 and 6 showing the state before the part appears and chipping occurs in the tool T
  • both the contour diagram related to the actual frequency spectrum and the contour diagram related to the differential frequency spectrum have a considerably strong intensity at low frequency components. The part of the hue which shows is appearing.
  • the warning unit 25 receives the data related to the differential frequency spectrum calculated and sequentially transmitted by the contour diagram creation unit 24, calculates the total sum of the differential frequency spectrum for each time, and calculates the total Is compared with a predetermined reference value, and when the sum exceeds the reference value, it is determined that the wear of the tool T during processing has reached the limit, and the alarm signal is sent to the numerical control device 10 and the display device 26. Process to send to. As described above, as the wear of the tool T progresses, the intensity of the specific frequency component gradually increases, and the sum of the difference frequency spectrum also gradually increases. Therefore, when the sum of the difference frequency spectrum exceeds a predetermined reference value, it can be determined that the tool T has reached the wear limit.
  • the numerical control device 10 When receiving an alarm signal from the warning unit 25, the numerical control device 10 immediately stops its operation. That is, the alarm signal transmitted to the numerical controller 10 functions as an operation stop signal. On the other hand, the display device 26 that has received the alarm signal from the warning unit 25 displays an alarm on the display 27 that the tool T has reached the wear limit.
  • the machining vibration generated when the workpiece W is machined by the tool T is detected by the accelerometer 21, and vibration data output from the accelerometer 21 is obtained.
  • the frequency analysis unit 22 sequentially performs spectrum analysis at a predetermined sampling interval, and the analyzed data (frequency spectrum) is sequentially stored in the analysis data storage unit 23.
  • the contour diagram creation unit 24 converts the current frequency spectrum (same as the actual frequency spectrum).
  • Such contour diagrams and contour diagrams related to the difference frequency spectrum obtained by taking the difference between the current frequency spectrum and the reference frequency spectrum are sequentially generated, and the generated contour diagrams are sequentially transmitted to the display device 26.
  • the display device 26 performs processing for displaying the received contour map on the display 27, and the contour map related to the actual frequency spectrum from the present time to 110 seconds before is displayed in the actual frequency spectrum display area on the display 27. Similarly, the contour map relating to the difference frequency spectrum from the present time to 50 seconds before is displayed while being sequentially updated in the difference frequency spectrum display area.
  • the contour diagram displayed on the display 27 is generally shown in the state where the tool T is not worn. Since the strength of the frequency components is weak, the display color indicates weak strength. As the tool wears up due to processing, the strength of specific frequency components gradually increases. Thus, the color of the contour diagram also becomes a color in which the portion corresponding to the frequency component shows a strong intensity.
  • the operator can visually recognize the intensity of vibration acting on the tool T by looking at the color of the contour diagram displayed on the display 27, and thereby visually determine the wear state of the tool T. Can be evaluated. Further, as described above, the contour diagram related to the difference frequency spectrum directly represents the wear state of the tool T. Therefore, the operator can recognize the wear state of the tool T more accurately by visually recognizing the contour diagram relating to the difference frequency spectrum.
  • the tool wear evaluation apparatus 20 of this example about each difference frequency spectrum for every time, based on the data concerning the difference frequency spectrum sequentially transmitted from the contour diagram creation unit 24 by the warning unit 25, The sum is calculated, and the calculated sum is compared with a predetermined reference value. When the sum exceeds the reference value, it is determined that the wear of the tool T during processing has reached the limit, and the alarm signal is It is transmitted to the numerical control device 10 and the display device 26.
  • the numerical control device 10 When the alarm signal is received from the warning unit 25, the numerical control device 10 immediately stops its operation, and the display device 26 displays an alarm on the display 27 that the tool T has reached the wear limit. Thus, by checking the alarm displayed on the display 27, the operator can objectively recognize that the tool T has reached the wear limit regardless of visual means. By stopping the operation of the control device 10 immediately, it is possible to prevent the tool T from being damaged, and to prevent the work W and the machine tool 1 from being damaged due to the damage of the tool T. Can do.
  • the warning unit 25 detects the maximum value of the absolute value of the difference frequency spectrum sequentially transmitted from the contour diagram creation unit 24, and when the detected maximum value exceeds a predetermined reference value, It may be configured to determine that the tool T has reached the wear limit and transmit an alarm signal to the numerical control device 10 and the display device 26.
  • the machining vibration is detected by the accelerometer 21.
  • the present invention is not limited to this, and any instrument may be used as long as the machining vibration can be detected.
  • a microphone that collects machining sound in the machining area of the machine tool 1 can be used.
  • the reference frequency spectrum for calculating the difference frequency spectrum is set to a frequency spectrum a predetermined time before (specifically, 100 seconds before) from the present time.
  • a specific frequency spectrum at a certain point in time may be set as the reference frequency spectrum, such as a frequency spectrum when the tool is new.
  • the calculated difference frequency spectrum represents the strength (characteristic) due to tool wear, and the contour diagram created based on this difference frequency spectrum directly indicates the wear state of the tool. It will be expressed.

Abstract

Provided is an evaluation device (20) capable of evaluating the abrasion state of a tool by visual means without affecting machining time or machining precision. The present invention is provided with a vibration detector (21) for detecting machining vibrations produced when a workpiece (W) is machined by a tool (T) using a machine tool (1), a frequency analyzer (22) for performing a spectrum analysis of vibration data detected by the vibration detector (21) using a predetermined sampling interval, a contour diagram formation unit (24) for forming a contour diagram that expresses in different colors the intensity of the frequency components each time interval on the basis of the frequency spectrum sequentially analyzed by the frequency analyzer (22), and a display device (26) for displaying on a display (27) the contour diagram formed by the contour diagram formation unit (24).

Description

工具摩耗評価装置Tool wear evaluation device
 本発明は、工作機械を用いた加工において、オペレータが、加工中の工具の摩耗状態を、当該工具の直接的な視認を行わなくても、他の視覚的な手段によって評価することが可能な評価装置に関する。 According to the present invention, in machining using a machine tool, an operator can evaluate the wear state of a tool during machining by other visual means without directly viewing the tool. It relates to an evaluation device.
 従来、加工中の工具の摩耗限界を検出する方法として、特開2012-76168号公報(下記特許文献1)に開示された検出方法が知られている。 Conventionally, as a method for detecting the wear limit of a tool during machining, a detection method disclosed in Japanese Patent Application Laid-Open No. 2012-76168 (Patent Document 1 below) is known.
 この検出方法は、加工中に生じる加工振動に基づいて、工具の摩耗限界を検出するというものであり、まず、工具又は被加工物を非加工の状態で第1の回転速度で回転させてその振動を検出するとともに、振動の最大値に基づいて閾値を設定する。 This detection method is to detect the wear limit of a tool based on machining vibration generated during machining. First, the tool or workpiece is rotated at a first rotational speed in a non-machining state. While detecting vibration, a threshold is set based on the maximum value of vibration.
 次に、前記第1の回転速度で加工を行い、加工中に検出した振動を前記閾値と比較して、検出振動が閾値を超えるかどうかを確認し、検出振動が閾値を超えたとき、当該振動の最大となる周波数を第1の周波数として取得する。 Next, processing is performed at the first rotational speed, the vibration detected during processing is compared with the threshold value to check whether the detected vibration exceeds the threshold value, and when the detected vibration exceeds the threshold value, The frequency that maximizes the vibration is acquired as the first frequency.
 この後、第1の回転速度とは異なる第2の回転速度で加工を行い、加工中に検出した振動を前記閾値と比較して、検出振動が閾値を超えるかどうかを確認し、検出振動が閾値を超えたとき、当該振動の最大となる周波数を第2の周波数として取得するとともに、前記第1の周波数と第2の周波数とを比較して、両者が一致若しくは両者の差が予め設定した範囲以内である場合には、工具が摩耗限界に達していると判定する。 Thereafter, processing is performed at a second rotation speed different from the first rotation speed, and the vibration detected during the processing is compared with the threshold value to check whether the detected vibration exceeds the threshold value. When the threshold value is exceeded, the maximum frequency of the vibration is acquired as the second frequency, and the first frequency and the second frequency are compared with each other. If it is within the range, it is determined that the tool has reached the wear limit.
 斯くして、この従来の検出方法によれば、回転速度を変更して加工するようにしているので、再生びびり振動の影響を除いた状態で工具の摩耗限界を検出することができ、また、工具の摩耗限界を判定するための基準値を、テスト加工等によって予め用意する必要がなく、短時間で工具の摩耗限界を検出することができる、とのことである。 Thus, according to this conventional detection method, since the rotational speed is changed and processed, the wear limit of the tool can be detected in a state in which the influence of regenerative chatter vibration is removed, It is not necessary to prepare a reference value for determining the wear limit of the tool in advance by test processing or the like, and the wear limit of the tool can be detected in a short time.
特開2012-76168号公報JP 2012-76168 A
 ところが、上述した従来の検出方法では、工具の摩耗限界を検出するための閾値を設定する処理、並びに加工時に回転速度を変更する処理を、数値制御装置との協働によって実行する必要があるため、当該数値制御装置における加工プログラムの実行時間(言い換えれば加工時間)が、この処理によって長くなるという問題があった。近年、工作機械による加工の分野では、加工時間を極限まで短縮する努力が絶えず払われており、例え、工具の摩耗限界が検出可能になるというメリットがあるとは言え、加工時間が延長されることは看過することができない問題である。 However, in the conventional detection method described above, it is necessary to execute a process for setting a threshold for detecting the wear limit of the tool and a process for changing the rotation speed during machining in cooperation with the numerical controller. There is a problem that the execution time of the machining program (in other words, the machining time) in the numerical control device becomes longer due to this processing. In recent years, in the field of machining with machine tools, efforts to reduce machining time to the utmost have been constantly made. For example, the machining time can be extended even though there is an advantage that the wear limit of the tool can be detected. That is a problem that cannot be overlooked.
 また、上述のように、従来の検出方法では、加工時に回転速度が変更される、即ち、加工条件が変更されるため、仮に、その変更が僅かであるとしても、少なからず、加工精度に影響を与えるという問題がある。 Further, as described above, in the conventional detection method, the rotation speed is changed at the time of machining, that is, the machining conditions are changed. Therefore, even if the change is slight, the machining accuracy is not a little affected. There is a problem of giving.
 本発明は、以上の実情に鑑みなされたものであって、加工時間や加工精度に影響を与えることなく、視覚的な手段によって工具の摩耗状態を評価することが可能な評価装置の提供を、その目的とする。 The present invention has been made in view of the above circumstances, and provides an evaluation apparatus capable of evaluating the wear state of a tool by visual means without affecting the processing time and processing accuracy. For that purpose.
 上記課題を解決するための本発明は、
 工作機械を用い、その工具によりワークを加工する際に生じる加工振動を検出する振動検出器と、
 前記振動検出器によって検出される振動データを、予め定められたサンプリング間隔でスペクトル解析する周波数解析部と、
 前記周波数解析部により、前記サンプリング間隔で順次解析された周波数スペクトルを基に、各時間毎の各周波数成分の強度を色分けして表現したコンター図を作成するコンター図作成部と、
 ディスプレイを備え、前記コンター図作成部によって作成されたコンター図を前記ディスプレイに表示する表示装置とから構成された工具摩耗評価装置に係る。
The present invention for solving the above problems is as follows.
A vibration detector for detecting a machining vibration generated when machining a workpiece with the tool using a machine tool;
A frequency analysis unit for analyzing the spectrum of vibration data detected by the vibration detector at a predetermined sampling interval;
Based on the frequency spectrum sequentially analyzed at the sampling interval by the frequency analysis unit, a contour diagram creation unit for creating a contour diagram representing the intensity of each frequency component for each time by color,
The present invention relates to a tool wear evaluation apparatus including a display and a display device that displays a contour map created by the contour map creation unit on the display.
 本発明に係る工具摩耗評価装置によれば、工具を用いてワークを加工する際に生じた加工振動が前記振動検出器によって検出され、この振動検出器によって検出された振動データが、前記周波数解析部により予め定められたサンプリング間隔でスペクトル解析される。そして、前記サンプリング間隔で順次解析された周波数スペクトルを基に、前記コンター図作成部によって、各時間毎の各周波数成分の強度に応じ色分けして表現した、周波数スペクトルのコンター図が作成され、作成されたコンター図が表示装置のディスプレイに表示される。 According to the tool wear evaluation apparatus according to the present invention, machining vibration generated when machining a workpiece using a tool is detected by the vibration detector, and vibration data detected by the vibration detector is detected by the frequency analysis. The spectrum is analyzed at predetermined sampling intervals by the unit. Then, based on the frequency spectrum sequentially analyzed at the sampling interval, a contour diagram of the frequency spectrum expressed by color coding according to the intensity of each frequency component for each time is created and created by the contour diagram creation unit. The contour map thus displayed is displayed on the display of the display device.
 本発明者等が得た知見によれば、工具の摩耗が進むと、特定の周波数成分の強度が徐々に強くなる。したがって、前記コンター図作成部によって作成され、前記ディスプレイに表示されるコンター図は、工具が摩耗していない新品時には、全般的な周波数成分についてその強度が弱い状態にあるため、その表示色が弱い強度を示すものとなっている。一方、加工により工具の摩耗が進行していくと、上述のように、特定の周波数成分の強度が徐々に強くなっていき、コンター図の色合いも、当該周波数成分に対応する部分が強い強度を示す色合いとなっていく。 According to the knowledge obtained by the present inventors, the intensity of a specific frequency component gradually increases as the tool wears. Therefore, the contour diagram created by the contour diagram creation unit and displayed on the display is weak in the strength of the general frequency component when the tool is not worn. It shows strength. On the other hand, as the wear of the tool progresses due to machining, as described above, the intensity of a specific frequency component gradually increases, and the color of the contour diagram also has a strong intensity corresponding to the frequency component. It becomes the color shown.
 斯くして、オペレータは、前記ディスプレイに表示されるコンター図の色合いを見ることで、工具に作用する振動の強弱を視覚的に認識することができるとともに、これによって工具の摩耗状態を視覚的に評価することができる。また、コンター図の作成に当たり、特に数値制御装置との協働は要しないので、従来の検出方法のように、加工時間が延長されるという不具合は生じず、また、回転速度を変更する必要もないので、加工精度に影響を与えることもない。 Thus, the operator can visually recognize the strength of the vibration acting on the tool by visually checking the color of the contour map displayed on the display, and visually check the wear state of the tool. Can be evaluated. In addition, since the cooperation with the numerical control device is not particularly required in creating the contour diagram, there is no problem that the processing time is extended unlike the conventional detection method, and it is also necessary to change the rotation speed. Because there is no, it does not affect the processing accuracy.
 尚、上記色には、無彩色と有彩色とが含まれ、上記色分けには、無彩色の場合、明度が異なる態様が該当し、有彩色の場合、色相、彩度、明度のいずれか一つが異なる態様が該当する。但し、周波数スペクトルの変化を明確にするには、有彩色として、色相、彩度及び明度の全てによって色分けするのが好ましい。 The color includes an achromatic color and a chromatic color. In the case of the achromatic color, the color classification includes a mode in which the brightness is different, and in the case of the chromatic color, any one of hue, saturation, and brightness. Different aspects apply. However, in order to clarify the change of the frequency spectrum, it is preferable that the chromatic color is color-coded according to all of hue, saturation and brightness.
 また、前記振動検出器は、加工振動を検出することができれば、どのようなものであっても良く、例えば、前記工作機械の加工作用部近傍に配設されて、加工によって当該加工作用部に作用する振動を検出する加速度計や、工作機械の加工領域内に配設され、加工によって生じる加工音を集音するマイクロフォンなどを例示することができる。 The vibration detector may be anything as long as it can detect machining vibration. For example, the vibration detector is disposed in the vicinity of the machining operation portion of the machine tool and is applied to the machining operation portion by machining. Examples thereof include an accelerometer that detects a vibration that acts and a microphone that is disposed in a machining area of a machine tool and collects a machining sound generated by machining.
 本発明において、前記コンター図作成部は、前記周波数解析部により解析された周波数スペクトルであって、予め定めた過去の基準時間における周波数スペクトルを基準周波数スペクトルとして、該基準周波数スペクトルと、前記周波数解析部により順次解析される周波数スペクトルとの差をとった差分周波数スペクトルを順次算出し、算出した差分周波数スペクトルを基に、前記コンター図を作成するように構成されていても良い。 In the present invention, the contour diagram creation unit is a frequency spectrum analyzed by the frequency analysis unit, and a frequency spectrum at a predetermined past reference time is used as a reference frequency spectrum, and the reference frequency spectrum and the frequency analysis A difference frequency spectrum obtained by taking a difference from a frequency spectrum sequentially analyzed by the unit may be sequentially calculated, and the contour diagram may be created based on the calculated difference frequency spectrum.
 上述したように、前記コンター図は、工具が摩耗していない新品時には、全般的な周波数成分についてその強度が弱い状態にあるため、表示される色が弱い強度を示すものとなっているが、加工によって工具の摩耗が進行していくと、特定の周波数成分の強度が徐々に強くなっていき、コンター図の色合いも、当該周波数成分に対応する部分が強い強度を示す色合いとなっていく。 As described above, the contour diagram shows that the displayed color shows a weak strength because the strength is low with respect to the general frequency component when the tool is not worn. As the tool wears due to processing, the intensity of a specific frequency component gradually increases, and the color of the contour diagram also becomes a hue in which the portion corresponding to the frequency component shows a strong intensity.
 したがって、予め定めた過去の基準時間における周波数スペクトルを基準周波数スペクトルとして、この基準周波数スペクトルと、前記周波数解析部により順次解析される周波数スペクトルとの差をとった差分周波数スペクトルを順次算出することで、工具摩耗に起因した周波数スペクトルを算出することができ、算出した差分周波数スペクトルを基に、コンター図を作成することで、当該コンター図を、工具の摩耗状態を直接的に表現したものとすることができる。斯くして、オペレータは、このようなコンター図を視認することで、工具の摩耗状態をより正確に認識することができる。 Accordingly, the frequency spectrum at a predetermined past reference time is used as a reference frequency spectrum, and a differential frequency spectrum obtained by sequentially calculating a difference between the reference frequency spectrum and the frequency spectrum sequentially analyzed by the frequency analysis unit is obtained. The frequency spectrum resulting from tool wear can be calculated, and by creating a contour diagram based on the calculated difference frequency spectrum, the contour diagram is a direct representation of the wear state of the tool. be able to. Thus, the operator can recognize the wear state of the tool more accurately by visually recognizing such a contour diagram.
 尚、基準周波数スペクトルは、これを、例えば、工具が新品であるときの周波数スペクトルというように、特定の時点の周波数スペクトルに設定しても良く、或いは、現時点から所定時間前の周波数スペクトルに設定しても良い。 The reference frequency spectrum may be set to a frequency spectrum at a specific time, such as a frequency spectrum when the tool is new, or set to a frequency spectrum a predetermined time before the current time. You may do it.
 或いは、本発明において、前記コンター図作成部は、
 前記周波数解析部により、前記サンプリング間隔で順次解析される周波数スペクトルに対応した前記コンター図を作成するとともに、
 予め定めた過去の基準時間における前記周波数スペクトルを基準周波数スペクトルとして、該基準周波数スペクトルと、前記周波数解析部により順次解析される周波数スペクトルとの差をとった差分周波数スペクトルを順次算出し、算出した差分周波数スペクトルに対応した前記コンター図を作成するように構成され、
 前記表示装置は、前記コンター図作成部によって作成された2つのコンター図を、前記ディスプレイに同時に表示するように構成されていても良い。
Alternatively, in the present invention, the contour map creation unit
While creating the contour diagram corresponding to the frequency spectrum sequentially analyzed at the sampling interval by the frequency analysis unit,
Using the frequency spectrum at a predetermined past reference time as a reference frequency spectrum, the difference frequency spectrum obtained by calculating the difference between the reference frequency spectrum and the frequency spectrum sequentially analyzed by the frequency analysis unit is sequentially calculated. Configured to create the contour map corresponding to the difference frequency spectrum;
The display device may be configured to simultaneously display two contour diagrams created by the contour diagram creation unit on the display.
 このようにすれば、オペレータは、ディスプレイに表示される、現時点の周波数スペクトルに対応したコンター図を確認することによって、工具に作用する振動の強弱を視覚的に認識することができ、また、同時にディスプレイに表示される、差分周波数スペクトルに対応したコンター図を確認することによって、工具の摩耗状態をより正確に評価することができる。 In this way, the operator can visually recognize the vibration intensity acting on the tool by checking the contour map corresponding to the current frequency spectrum displayed on the display, and at the same time, By confirming the contour diagram corresponding to the differential frequency spectrum displayed on the display, the wear state of the tool can be more accurately evaluated.
 また、前記工具摩耗評価装置は、前記差分周波数スペクトルの総和、又はその絶対値の最大値が、予め定めた基準値を超えたときに、アラームを出力する警告部を更に備えていても良い。 Further, the tool wear evaluation apparatus may further include a warning unit that outputs an alarm when the sum of the difference frequency spectrum or the maximum value of the absolute value thereof exceeds a predetermined reference value.
 上述したように、加工により工具の摩耗が進行していくと、特定の周波数成分の強度が徐々に強くなっていき、また、前記差分周波数スペクトルは、工具摩耗に起因した周波数スペクトルを表している。したがって、差分周波数スペクトルの総和が予め定めた基準値を超えたときに、工具摩耗が限界に達したと判断することができ、また、差分周波数スペクトルの各絶対値の最大値が予め定めた基準値を超えたとき、同様に、工具摩耗が限界に達したと判断することができる。よって、このような場合に警告部によってアラームを出力するようにすれば、工作機械の数値制御装置やオペレータに、工具が摩耗限界に達したことを、視覚的な手段によらず客観的に認識させることができる。 As described above, as the wear of the tool progresses due to machining, the intensity of the specific frequency component gradually increases, and the differential frequency spectrum represents a frequency spectrum caused by the tool wear. . Therefore, when the sum of the difference frequency spectrum exceeds a predetermined reference value, it can be determined that the tool wear has reached the limit, and the maximum value of each absolute value of the difference frequency spectrum is a predetermined reference value. Similarly, when the value is exceeded, it can be determined that the tool wear has reached its limit. Therefore, if an alarm is output by the warning unit in such a case, the numerical control device of the machine tool or the operator can objectively recognize that the tool has reached the wear limit without using visual means. Can be made.
 更に、この場合に、前記警告部は、前記数値制御装置に動作停止信号を出力するように構成されていても良い。このようにすれば、工具が摩耗限界に達したときに、数値制御装置による加工動作を停止させることができ、これによって、工具が破損するのを未然に防止することができるとともに、工具の破損によって、ワークや工作機械が損傷するのを防止することができる。 Further, in this case, the warning unit may be configured to output an operation stop signal to the numerical control device. In this way, when the tool reaches the wear limit, it is possible to stop the machining operation by the numerical control device, thereby preventing the tool from being damaged in advance and breaking the tool. Therefore, it is possible to prevent the workpiece and the machine tool from being damaged.
 以上詳述したように、本発明によれば、オペレータは、ディスプレイに表示されたコンター図の色合いを見ることで、工具に作用する振動の強弱を視覚的に認識することができるとともに、これによって工具の摩耗状態を視覚的に評価することができる。また、コンター図の作成に当たり、特に数値制御装置との協働は要しないので、従来の検出方法のように、加工時間が延長されるという不具合は生じず、また、回転速度を変更する必要もないので、加工精度に影響を与えることもない。 As described above in detail, according to the present invention, the operator can visually recognize the strength of vibration acting on the tool by looking at the color of the contour diagram displayed on the display. The wear state of the tool can be visually evaluated. In addition, since the cooperation with the numerical control device is not particularly required in creating the contour diagram, there is no problem that the processing time is extended unlike the conventional detection method, and it is also necessary to change the rotation speed. Because there is no, it does not affect the processing accuracy.
 また、差分周波数スペクトルを基に、コンター図を作成するようにすれば、当該コンター図は、工具の摩耗状態を直接的に表現したものとなるので、オペレータは、このようなコンター図を視認することで、工具の摩耗状態をより正確に認識することができる。 Further, if a contour diagram is created based on the difference frequency spectrum, the contour diagram directly represents the wear state of the tool, so the operator visually recognizes such a contour diagram. Thus, the wear state of the tool can be recognized more accurately.
 また、差分周波数スペクトルの総和が予め定めた基準値を超えたときに、工具摩耗が限界に達したと判断することができ、或いは、差分周波数スペクトルの絶対値の最大値が予め定めた基準値を超えたとき、同様に、工具摩耗が限界に達したと判断することができるので、このような場合に、警告部によってアラームを出力するようにすれば、工作機械の数値制御装置やオペレータに、工具が摩耗限界に達したことを、視覚的な手段によらず客観的に認識させることができる。 Further, when the sum of the difference frequency spectrum exceeds a predetermined reference value, it can be determined that the tool wear has reached the limit, or the maximum absolute value of the difference frequency spectrum is a predetermined reference value. Similarly, since it can be determined that the tool wear has reached the limit, in such a case, if an alarm is output by the warning unit, the numerical control device or operator of the machine tool It is possible to objectively recognize that the tool has reached the wear limit regardless of visual means.
 更に、この場合に、前記警告部から、前記数値制御装置に動作停止信号を出力するようにすれば、工具が摩耗によって破損するのを未然に防止することができ、また、工具の破損によって、ワークや工作機械が損傷するのを防止することができる。 Further, in this case, if an operation stop signal is output from the warning unit to the numerical control device, it is possible to prevent the tool from being damaged due to wear, It is possible to prevent the workpiece and the machine tool from being damaged.
工作機械と、本発明の一実施形態に係る工具摩耗評価装置とを示した説明図である。It is explanatory drawing which showed the machine tool and the tool wear evaluation apparatus which concerns on one Embodiment of this invention. 本実施形態におけるコンター図の一例を示した説明図である。It is explanatory drawing which showed an example of the contour figure in this embodiment. 本実施形態におけるコンター図の一例を示した説明図である。It is explanatory drawing which showed an example of the contour figure in this embodiment. 本実施形態におけるコンター図の一例を示した説明図である。It is explanatory drawing which showed an example of the contour figure in this embodiment. 本実施形態におけるコンター図の一例を示した説明図である。It is explanatory drawing which showed an example of the contour figure in this embodiment. 本実施形態におけるコンター図の一例を示した説明図である。It is explanatory drawing which showed an example of the contour figure in this embodiment.
 以下、本発明の具体的な実施の形態について、図面を参照しながら説明する。図1は、本発明の一実施形態に係る工具摩耗評価装置と、この工具摩耗評価装置が付設される工作機械とを示した説明図である。以下、まず、工作機械1の概略構成について説明し、次に、本例の工具摩耗評価装置20の具体的な構成について説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing a tool wear evaluation apparatus according to an embodiment of the present invention and a machine tool provided with the tool wear evaluation apparatus. Hereinafter, first, a schematic configuration of the machine tool 1 will be described, and then a specific configuration of the tool wear evaluation apparatus 20 of the present example will be described.
 工作機械1は、図1に示すように、NC旋盤であり、ベッド3、このベッド3上に配設された主軸台4及び往復台7などから構成される運動機構部2と、この運動機構部2の動作を制御する数値制御装置10とを備えている。 As shown in FIG. 1, the machine tool 1 is an NC lathe and includes a bed 3, a motion mechanism unit 2 including a headstock 4 and a carriage 7 disposed on the bed 3, and the motion mechanism. And a numerical controller 10 that controls the operation of the unit 2.
 前記主軸台4は、回転自在に主軸5を保持するとともに、内蔵された主軸モータによって主軸5をその軸中心に回転させる。また、主軸5の先端部にはチャック6が装着されており、このチャック6によってワークWが把持される。前記往復台7は、前記主軸5の軸線に沿ったZ軸方向に移動可能となっており、この往復台7上には、刃物台8が配設され、当該刃物台8は、Z軸と直交するX軸方向に移動可能となっている。また、刃物台8の主軸5側には、タレット9が装着され、このタレット9に工具Tが装着されている。 The spindle stock 4 holds the spindle 5 rotatably, and rotates the spindle 5 around its axis by a built-in spindle motor. A chuck 6 is attached to the tip of the spindle 5, and the workpiece W is gripped by the chuck 6. The carriage 7 is movable in the Z-axis direction along the axis of the main shaft 5, and a tool rest 8 is disposed on the carriage 7, and the tool rest 8 is connected to the Z-axis. It can move in the X-axis direction orthogonal to each other. A turret 9 is mounted on the main spindle 5 side of the tool post 8, and a tool T is mounted on the turret 9.
 前記往復台7は、図示しないZ軸駆動機構によってZ軸方向に移動し、刃物台8は、同じく図示しないX軸駆動機構によってX軸方向に移動する。そして、前記主軸駆動モータ(図示せず)、X軸駆動機構(図示せず)及びZ軸駆動機構(図示せず)は、それぞれ前記数値制御装置10によって、その作動が制御される。 The carriage 7 is moved in the Z-axis direction by a Z-axis drive mechanism (not shown), and the tool post 8 is moved in the X-axis direction by an X-axis drive mechanism (not shown). The operations of the spindle drive motor (not shown), the X-axis drive mechanism (not shown), and the Z-axis drive mechanism (not shown) are controlled by the numerical control device 10, respectively.
 斯くして、数値制御装置10による制御の下、主軸5が軸中心に回転された状態で、ワークWと工具Tとが、X-Z平面内で相対的に移動することで、ワークWが工具Tによって加工される。 Thus, under the control of the numerical controller 10, the workpiece W and the tool T move relatively in the XZ plane while the main shaft 5 is rotated about the axis, so that the workpiece W is moved. It is processed by the tool T.
 前記工具摩耗評価装置20は、前記刃物台8に装着された加速度計21と、周波数解析部22、解析データ記憶部23、コンター図作成部24、警告部25及び表示装置26から構成される。 The tool wear evaluation device 20 includes an accelerometer 21 mounted on the tool post 8, a frequency analysis unit 22, an analysis data storage unit 23, a contour diagram creation unit 24, a warning unit 25, and a display device 26.
 前記加速度計21は、自体に作用する加速度を検出して、検出した加速度に応じた信号を出力する計測器であって、例えば、MEMS技術を用いた静電容量型やピエゾ素子型の計測器を例示することができる。この加速度計21は、工具TによってワークWが加工される際に、この工具T、前記タレット9及び刃物台8を介して伝達される加工振動を検出して、前記周波数解析部22に出力する。 The accelerometer 21 is a measuring device that detects acceleration acting on the accelerometer and outputs a signal corresponding to the detected acceleration. For example, a capacitance type or piezo element type measuring device using MEMS technology. Can be illustrated. The accelerometer 21 detects machining vibration transmitted through the tool T, the turret 9 and the tool post 8 when the workpiece W is machined by the tool T, and outputs the machining vibration to the frequency analysis unit 22. .
 前記周波数解析部22は、前記加速度計21から加工振動に係る信号を受信し、受信した信号を所定のサンプリング間隔でフーリエ変換することによってスペクトル解析する処理部であり、前記加速度計21から出力される信号を順次処理して、各時間毎の解析データ(周波数スペクトル)を前記解析データ記憶部23に格納する処理を行う。尚、この周波数解析部22の処理において得られる周波数スペクトルは、各周波数成分(或いは適宜区分された周波数帯域であり、以下、単に「周波数成分」という)毎の強度に関するデータであり、前記解析データ記憶部23には、時間経過順に処理された、各周波数成分とその強度に関するデータとが相互に関連付けられて格納される。 The frequency analysis unit 22 is a processing unit that receives a signal related to machining vibration from the accelerometer 21 and performs spectrum analysis by Fourier transforming the received signal at a predetermined sampling interval, and is output from the accelerometer 21. The signal to be processed is sequentially processed, and the analysis data (frequency spectrum) for each time is stored in the analysis data storage unit 23. Note that the frequency spectrum obtained in the processing of the frequency analysis unit 22 is data relating to the intensity of each frequency component (or an appropriately divided frequency band, hereinafter simply referred to as “frequency component”), and the analysis data The storage unit 23 stores each frequency component and data related to its intensity, which are processed in the order of time passage, in association with each other.
 前記コンター図作成部24は、前記周波数解析部22により、前記サンプリング間隔で順次処理され、前記解析データ記憶部23に格納される現時点の周波数スペクトルと、現時点から所定時間だけ前(本例では100秒前)の周波数スペクトル(以下、「基準周波数スペクトル」という)とを順次読み出し、まず、前記読み出した現時点の周波数スペクトルを基に、各周波数成分の強度を色分けして表現したコンター図を順次作成する。 The contour diagram creation unit 24 is processed by the frequency analysis unit 22 sequentially at the sampling interval, and is stored in the analysis data storage unit 23 at the present time spectrum and a predetermined time before the present time (100 in this example). Secondly, the frequency spectrum (hereinafter referred to as “reference frequency spectrum”) is sequentially read out, and first, a contour diagram is created in which the intensity of each frequency component is color-coded based on the read current frequency spectrum. To do.
 上述したように、本発明者等が得た知見によれば、工具Tの摩耗が進むと、特定の周波数成分の強度が徐々に強くなる傾向にある。したがって、前記コンター図作成部24によって作成されるコンター図は、工具が摩耗していない新品時には、全般的な周波数成分についてその強度が弱い状態にあり、その表示色は弱い強度を示すものとなる。一方、加工により工具の摩耗が進行していくと、特定の周波数成分の強度が徐々に強くなっていくため、コンター図の色合いも、当該周波数成分に対応する部分が強い強度を示す色合いとなっていく。 As described above, according to the knowledge obtained by the present inventors, when the wear of the tool T progresses, the strength of a specific frequency component tends to gradually increase. Therefore, the contour diagram created by the contour diagram creation unit 24 is in a weak state with respect to general frequency components when the tool is not worn, and its display color shows a weak strength. . On the other hand, as the wear of the tool progresses due to machining, the intensity of a specific frequency component gradually increases, so the color of the contour diagram also becomes a color that shows a strong intensity at the part corresponding to the frequency component. To go.
 また、前記コンター図作成部24は、前記解析データ記憶部23から読み出した、前記現時点の周波数スペクトルと基準周波数スペクトルとの差をとった差分周波数スペクトルを順次算出し、算出した差分周波数スペクトルを基に、これに対応したコンター図を順次作成する。現時点の周波数スペクトルと基準周波数スペクトルとの差をとった差分周波数スペクトルは、工具摩耗に起因した強度(特性)を表している。しがって、差分周波数スペクトルを基に作成したコンター図は、工具の摩耗状態を直接的に表現したものとなる。 Further, the contour diagram creation unit 24 sequentially calculates a difference frequency spectrum that is read from the analysis data storage unit 23 and takes a difference between the current frequency spectrum and a reference frequency spectrum, and based on the calculated difference frequency spectrum. Then, contour maps corresponding to this are created in sequence. The difference frequency spectrum obtained by taking the difference between the current frequency spectrum and the reference frequency spectrum represents the strength (characteristic) due to tool wear. Therefore, the contour diagram created based on the difference frequency spectrum directly represents the wear state of the tool.
 そして、コンター図作成部24は、作成した現時点の周波数スペクトルに対応したコンター図と、差分周波数スペクトルに対応したコンター図に係るデータを順次表示装置26に送信し、また、算出した差分周波数スペクトルに係るデータを順次前記警告部25に送信する処理を行う。 Then, the contour diagram creation unit 24 sequentially transmits the contour diagram corresponding to the created current frequency spectrum and the data related to the contour diagram corresponding to the difference frequency spectrum to the display device 26, and also calculates the calculated difference frequency spectrum. Processing for sequentially transmitting such data to the warning unit 25 is performed.
 尚、上記色には、無彩色と有彩色とが含まれ、上記色分けには、無彩色の場合、明度が異なる態様が該当し、有彩色の場合、色相、彩度、明度のいずれか一つが異なる態様が該当する。但し、周波数スペクトルの変化を明確にするには、有彩色として、色相、彩度及び明度の全てによって色分けするのが好ましい。 The color includes an achromatic color and a chromatic color. In the case of the achromatic color, the color classification includes a mode in which the brightness is different, and in the case of the chromatic color, any one of hue, saturation, and brightness. Different aspects apply. However, in order to clarify the change of the frequency spectrum, it is preferable that the chromatic color is color-coded according to all of hue, saturation and brightness.
 前記表示装置26は、ディスプレイ27を備え、前記コンター図作成部24から送信される2つのコンター図を、このディスプレイ27に同時に表示する処理を行う。このように、ディスプレイ27上に表示される表示画面を図2~図6に示す。 The display device 26 includes a display 27, and performs processing for simultaneously displaying two contour diagrams transmitted from the contour diagram creation unit 24 on the display 27. The display screens displayed on the display 27 are shown in FIGS.
 図2~図6に示した表示画面は、それぞれ、前記現時点の周波数スペクトル(以下、「差分周波数スペクトル」との対比から、「実周波数スペクトル」という)に係るコンター図を表示する領域(以下、「実周波数スペクトル表示領域」という)と、差分周波数スペクトルに係るコンター図を表示する領域(以下、「差分周波数スペクトル表示領域」という)とが設定され、実周波数スペクトル表示領域には、現時点から110秒前までの実周波数スペクトルに係るコンター図が時系列的に逐次更新されながら表示され、同様に、差分周波数スペクトル表示領域には、現時点から50秒前までの差分周波数スペクトルに係るコンター図が時系列的に逐次更新されながら表示される。尚、当然のことながら、表示する時間帯は、これに限られるものではない。 Each of the display screens shown in FIGS. 2 to 6 is an area (hereinafter, referred to as a contour map) relating to the current frequency spectrum (hereinafter referred to as “real frequency spectrum” in comparison with the “differential frequency spectrum”). And an area for displaying a contour diagram relating to the difference frequency spectrum (hereinafter referred to as “difference frequency spectrum display area”). Contour diagrams related to the actual frequency spectrum up to 2 seconds before are displayed while being updated sequentially in time series. Similarly, in the differential frequency spectrum display area, contour diagrams related to the differential frequency spectrum up to 50 seconds before the current time are displayed. Displayed while being sequentially updated. As a matter of course, the time zone to be displayed is not limited to this.
 また、図2~図6に例示した表示画面は、前記工作機械1を用い、外径102mmの円筒形をしたワークW(材質SUS630)の外周部を、切削速度100m/min、送り速度0.2mm/revの切削条件の下で、切り込み量を2mm、切削長を100mmとして、n回繰り返して外径加工を行ったときに得られるコンター図をそれぞれ示している。nは整数で、この例では、n=24回の繰り返し加工を行った。 The display screens illustrated in FIG. 2 to FIG. 6 use the machine tool 1, and the outer peripheral portion of a cylindrical workpiece W (material SUS630) having an outer diameter of 102 mm is cut at a cutting speed of 100 m / min and a feed speed of 0. The contour diagrams obtained when the outer diameter machining is repeated n times under the cutting condition of 2 mm / rev, with the depth of cut being 2 mm and the cutting length being 100 mm are shown. n is an integer, and in this example, n = 24 repetitions were performed.
 そして、図2は現時点が17回目の加工であるコンター図を示し、図3は現時点が18回目の加工であるコンター図を示し、図4は現時点が20回目の加工であるコンター図を示している。また、図5は現時点が24回目の加工であるコンター図を示しており、図6は同じく現時点が24回目の加工であるコンター図で、図5の時点より約15秒後に工具Tがチッピングを起こした時のコンター図を示している。 2 shows a contour diagram in which the current processing is the 17th processing, FIG. 3 shows a contour diagram in which the current processing is the 18th processing, and FIG. 4 shows a contour diagram in which the current processing is the 20th processing. Yes. FIG. 5 shows a contour diagram in which the current time is the 24th machining, and FIG. 6 is a contour diagram in which the current time is the 24th machining. The tool T performs chipping about 15 seconds after the time in FIG. The contour diagram when it wakes up is shown.
 上述したように、工具の摩耗が進行していない状態では、全般的な周波数成分についてその強度が弱い状態にあり、工具の摩耗が進むと、特定の周波数成分の強度が徐々に強くなる傾向にある。図2~図6に示したコンター図は、このような傾向を示している。 As described above, when the wear of the tool is not progressing, the strength of the general frequency component is weak, and as the wear of the tool progresses, the strength of the specific frequency component tends to gradually increase. is there. The contour diagrams shown in FIGS. 2 to 6 show such a tendency.
 即ち、工具Tが摩耗限界に至っていない状態では、図2及び図3に示すように、実周波数スペクトルに係るコンター図及び差分周波数スペクトルに係るコンター図の双方とも、とりたてて強い強度を示す色合いとなっていないが、工具の摩耗が少し進んだと思われる図4では、実周波数スペクトルに係るコンター図及び差分周波数スペクトルに係るコンター図の双方において、低い周波数成分において、若干強い強度を示す色合いの部分が出現し、工具Tにチッピングが生じる前の状態を示す図5及び図6では、実周波数スペクトルに係るコンター図及び差分周波数スペクトルに係るコンター図の双方とも、低い周波数成分において、かなり強い強度を示す色合いの部分が出現している。 That is, in the state where the tool T has not reached the wear limit, as shown in FIGS. 2 and 3, both the contour diagram related to the actual frequency spectrum and the contour diagram related to the difference frequency spectrum have a hue that shows extremely strong strength. In FIG. 4 where the wear of the tool seems to have progressed a little, in both the contour diagram relating to the actual frequency spectrum and the contour diagram relating to the difference frequency spectrum, the hue showing a slightly strong intensity at a low frequency component is shown. 5 and 6 showing the state before the part appears and chipping occurs in the tool T, both the contour diagram related to the actual frequency spectrum and the contour diagram related to the differential frequency spectrum have a considerably strong intensity at low frequency components. The part of the hue which shows is appearing.
 前記警告部25は、前記コンター図作成部24によって算出され、順次送信される差分周波数スペクトルに係るデータを受信して、各時間毎の差分周波数スペクトルについて、それぞれその総和を算出し、算出した総和と予め定めた基準値とを比較して、総和が基準値を超えたとき、加工中の工具Tの摩耗が限界に達したと判断して、アラーム信号を前記数値制御装置10及び表示装置26に送信する処理を行う。上述したように、工具Tの摩耗が進むと、特定の周波数成分の強度が徐々に強くなり、差分周波数スペクトルの総和も徐々に大きな値となる。したがって、差分周波数スペクトルの総和が、所定の基準値を超えたとき、工具Tが摩耗限界に達したと判断することができる。 The warning unit 25 receives the data related to the differential frequency spectrum calculated and sequentially transmitted by the contour diagram creation unit 24, calculates the total sum of the differential frequency spectrum for each time, and calculates the total Is compared with a predetermined reference value, and when the sum exceeds the reference value, it is determined that the wear of the tool T during processing has reached the limit, and the alarm signal is sent to the numerical control device 10 and the display device 26. Process to send to. As described above, as the wear of the tool T progresses, the intensity of the specific frequency component gradually increases, and the sum of the difference frequency spectrum also gradually increases. Therefore, when the sum of the difference frequency spectrum exceeds a predetermined reference value, it can be determined that the tool T has reached the wear limit.
 尚、警告部25からアラーム信号を受信すると、前記数値制御装置10は、直ちにその動作を停止する。即ち、数値制御装置10に送信されるアラーム信号は、動作停止信号として機能する。一方、警告部25からアラーム信号を受信した表示装置26は、前記ディスプレイ27に工具Tが摩耗限界に達した旨のアラームを表示する。 When receiving an alarm signal from the warning unit 25, the numerical control device 10 immediately stops its operation. That is, the alarm signal transmitted to the numerical controller 10 functions as an operation stop signal. On the other hand, the display device 26 that has received the alarm signal from the warning unit 25 displays an alarm on the display 27 that the tool T has reached the wear limit.
 以上の構成を備えた本例の工具摩耗評価装置20によれば、工具TによってワークWを加工する際に生じる加工振動が加速度計21によって検出され、この加速度計21から出力される振動データが、周波数解析部22により予め定められたサンプリング間隔で順次スペクトル解析され、解析されたデータ(周波数スペクトル)が順次解析データ記憶部23に格納される。 According to the tool wear evaluation apparatus 20 of the present example having the above configuration, the machining vibration generated when the workpiece W is machined by the tool T is detected by the accelerometer 21, and vibration data output from the accelerometer 21 is obtained. The frequency analysis unit 22 sequentially performs spectrum analysis at a predetermined sampling interval, and the analyzed data (frequency spectrum) is sequentially stored in the analysis data storage unit 23.
 そして、この周波数解析部22の処理と並行して、前記解析データ記憶部23に格納された周波数スペクトルを基に、前記コンター図作成部24によって、現時点の周波数スペクトル(実周波数スペクトルに同じ)に係るコンター図と、現時点の周波数スペクトルと基準周波数スペクトルとの差をとった差分周波数スペクトルに係るコンター図とが順次作成され、作成されたコンター図が順次表示装置26に送信される。 In parallel with the processing of the frequency analysis unit 22, based on the frequency spectrum stored in the analysis data storage unit 23, the contour diagram creation unit 24 converts the current frequency spectrum (same as the actual frequency spectrum). Such contour diagrams and contour diagrams related to the difference frequency spectrum obtained by taking the difference between the current frequency spectrum and the reference frequency spectrum are sequentially generated, and the generated contour diagrams are sequentially transmitted to the display device 26.
 そして、表示装置26では、受信したコンター図をディスプレイ27に表示する処理が行われ、当該ディスプレイ27上の実周波数スペクトル表示領域に、現時点から110秒前までの実周波数スペクトルに係るコンター図が時系列的に逐次更新されながら表示され、同様に、差分周波数スペクトル表示領域には、現時点から50秒前までの差分周波数スペクトルに係るコンター図が時系列的に逐次更新されながら表示される。 Then, the display device 26 performs processing for displaying the received contour map on the display 27, and the contour map related to the actual frequency spectrum from the present time to 110 seconds before is displayed in the actual frequency spectrum display area on the display 27. Similarly, the contour map relating to the difference frequency spectrum from the present time to 50 seconds before is displayed while being sequentially updated in the difference frequency spectrum display area.
 上述したように、工具Tの摩耗が進むと、特定の周波数成分の強度が徐々に強くなり、したがって、前記ディスプレイ27に表示されるコンター図は、工具Tが摩耗していない状態では、全般的な周波数成分についてその強度が弱い状態にあるため、その表示色が弱い強度を示すものとなっており、加工により工具の摩耗が進行していくと、特定の周波数成分の強度が徐々に強くなって、コンター図の色合いも、当該周波数成分に対応する部分が強い強度を示す色合いとなっていく。 As described above, as the wear of the tool T progresses, the intensity of the specific frequency component gradually increases. Therefore, the contour diagram displayed on the display 27 is generally shown in the state where the tool T is not worn. Since the strength of the frequency components is weak, the display color indicates weak strength. As the tool wears up due to processing, the strength of specific frequency components gradually increases. Thus, the color of the contour diagram also becomes a color in which the portion corresponding to the frequency component shows a strong intensity.
 したがって、オペレータは、前記ディスプレイ27に表示されるコンター図の色合いを見ることで、工具Tに作用する振動の強弱を視覚的に認識することができるとともに、これによって工具Tの摩耗状態を視覚的に評価することができる。また、上述したように、差分周波数スペクトルに係るコンター図は、工具Tの摩耗状態が直接的に表現されている。したがって、オペレータは、この差分周波数スペクトルに係るコンター図を視認することで、工具Tの摩耗状態をより正確に認識することができる。 Therefore, the operator can visually recognize the intensity of vibration acting on the tool T by looking at the color of the contour diagram displayed on the display 27, and thereby visually determine the wear state of the tool T. Can be evaluated. Further, as described above, the contour diagram related to the difference frequency spectrum directly represents the wear state of the tool T. Therefore, the operator can recognize the wear state of the tool T more accurately by visually recognizing the contour diagram relating to the difference frequency spectrum.
 また、上述した2つのコンター図の作成に当たり、特に数値制御装置10との協働は要しないので、従来の検出方法のように、加工時間が延長するという不具合は生じず、また、回転速度を変更する必要もないので、加工精度に影響を与えることもない。 Further, since the two contour diagrams described above are not particularly required to cooperate with the numerical controller 10, there is no problem that the processing time is extended unlike the conventional detection method, and the rotation speed is reduced. Since it is not necessary to change, it does not affect the machining accuracy.
 また、本例の工具摩耗評価装置20では、前記警告部25により、前記コンター図作成部24から順次送信される差分周波数スペクトルに係るデータを基に、各時間毎の差分周波数スペクトルについて、それぞれその総和が算出され、算出された総和と予め定めた基準値とが比較されて、総和が基準値を超えたとき、加工中の工具Tの摩耗が限界に達したと判断され、アラーム信号が前記数値制御装置10及び表示装置26に送信される。 Moreover, in the tool wear evaluation apparatus 20 of this example, about each difference frequency spectrum for every time, based on the data concerning the difference frequency spectrum sequentially transmitted from the contour diagram creation unit 24 by the warning unit 25, The sum is calculated, and the calculated sum is compared with a predetermined reference value. When the sum exceeds the reference value, it is determined that the wear of the tool T during processing has reached the limit, and the alarm signal is It is transmitted to the numerical control device 10 and the display device 26.
 そして、警告部25からアラーム信号を受信すると、前記数値制御装置10は、直ちにその動作を停止し、表示装置26は、前記ディスプレイ27に工具Tが摩耗限界に達した旨のアラームを表示する。斯くして、オペレータは、ディスプレイ27に表示されるアラームを確認することによって、工具Tが摩耗限界に達したことを、視覚的な手段によらず客観的に認識することができ、また、数値制御装置10が、直ちにその動作を停止することで、工具Tが破損するのを未然に防止することができるとともに、工具Tの破損によって、ワークWや工作機械1が損傷するのを防止することができる。 When the alarm signal is received from the warning unit 25, the numerical control device 10 immediately stops its operation, and the display device 26 displays an alarm on the display 27 that the tool T has reached the wear limit. Thus, by checking the alarm displayed on the display 27, the operator can objectively recognize that the tool T has reached the wear limit regardless of visual means. By stopping the operation of the control device 10 immediately, it is possible to prevent the tool T from being damaged, and to prevent the work W and the machine tool 1 from being damaged due to the damage of the tool T. Can do.
 以上、本発明の一実施の形態について説明したが、本発明が採り得る具体的な態様は、何らこれに限定されるものではない。 As mentioned above, although one embodiment of the present invention was described, the concrete mode which the present invention can take is not limited to this at all.
 例えば、前記警告部25は、前記コンター図作成部24から順次送信される差分周波数スペクトルについて、その絶対値の最大値を検出し、検出した最大値が予め定めた基準値を超えたときに、工具Tが摩耗限界に達したと判断して、アラーム信号を前記数値制御装置10及び表示装置26に送信するように構成されていても良い。 For example, the warning unit 25 detects the maximum value of the absolute value of the difference frequency spectrum sequentially transmitted from the contour diagram creation unit 24, and when the detected maximum value exceeds a predetermined reference value, It may be configured to determine that the tool T has reached the wear limit and transmit an alarm signal to the numerical control device 10 and the display device 26.
 上述したように、工具Tの摩耗が進むと、特定の周波数成分の強度が徐々に強くなる。したがって、差分周波数スペクトルの最大値が、所定の基準値を超えたとき、工具Tが摩耗限界に達したと判断することができる。 As described above, as the wear of the tool T progresses, the strength of the specific frequency component gradually increases. Therefore, when the maximum value of the difference frequency spectrum exceeds the predetermined reference value, it can be determined that the tool T has reached the wear limit.
 また、上例では、加速度計21により加工振動を検出するようにしたが、これに限られるものではなく、加工振動を検出することができれば、どのような計器であっても良い。例えば、加速度計21に代えて、工作機械1の加工領域内において、加工音を集音するマイクロフォンを用いることができる。 In the above example, the machining vibration is detected by the accelerometer 21. However, the present invention is not limited to this, and any instrument may be used as long as the machining vibration can be detected. For example, instead of the accelerometer 21, a microphone that collects machining sound in the machining area of the machine tool 1 can be used.
 また、上例では、差分周波数スペクトルを算出するための基準周波数スペクトルを、現時点から所定時間前(具体的には100秒前)の周波数スペクトルに設定したが、これに限られるものではなく、例えば、工具が新品であるときの周波数スペクトルのように、ある時点の特定の周波数スペクトルを基準周波数スペクトルに設定しても良い。このようにしても、算出される差分周波数スペクトルは、工具摩耗に起因した強度(特性)を表すものとなり、この差分周波数スペクトルを基に作成されるコンター図は、工具の摩耗状態を直接的に表現したものとなる。 In the above example, the reference frequency spectrum for calculating the difference frequency spectrum is set to a frequency spectrum a predetermined time before (specifically, 100 seconds before) from the present time. However, the present invention is not limited to this. A specific frequency spectrum at a certain point in time may be set as the reference frequency spectrum, such as a frequency spectrum when the tool is new. Even in this case, the calculated difference frequency spectrum represents the strength (characteristic) due to tool wear, and the contour diagram created based on this difference frequency spectrum directly indicates the wear state of the tool. It will be expressed.
 1  工作機械
 2  運動機構部
 3  ベッド
 4  主軸台
 5  主軸
 6  チャック
 7  往復台
 8  刃物台
 9  タレット
 10 数値制御装置
 20 工具摩耗評価装置
 21 加速度計
 22 周波数解析部
 23 解析データ記憶部
 24 コンター図作成部
 25 警告部
 26 表示装置
 27 ディスプレイ
 T  工具
 W  ワーク
 
DESCRIPTION OF SYMBOLS 1 Machine tool 2 Motion mechanism part 3 Bed 4 Spindle table 5 Spindle 6 Chuck 7 Reciprocating table 8 Tool post 9 Turret 10 Numerical control device 20 Tool wear evaluation device 21 Accelerometer 22 Frequency analysis unit 23 Analysis data storage unit 24 Contour figure creation unit 25 Warning section 26 Display device 27 Display T Tool W Workpiece

Claims (7)

  1.  工作機械を用い、その工具によりワークを加工する際に生じる加工振動を検出する振動検出器と、
     前記振動検出器によって検出される振動データを、予め定められたサンプリング間隔でスペクトル解析する周波数解析部と、
     前記周波数解析部により、前記サンプリング間隔で順次解析された周波数スペクトルを基に、各時間毎の各周波数成分の強度を色分けして表現したコンター図を作成するコンター図作成部と、
     ディスプレイを備え、前記コンター図作成部によって作成されたコンター図を前記ディスプレイに表示する表示装置とから構成したことを特徴とする工具摩耗評価装置。
    A vibration detector for detecting a machining vibration generated when machining a workpiece with the tool using a machine tool;
    A frequency analysis unit for analyzing the spectrum of vibration data detected by the vibration detector at a predetermined sampling interval;
    Based on the frequency spectrum sequentially analyzed at the sampling interval by the frequency analysis unit, a contour diagram creation unit for creating a contour diagram representing the intensity of each frequency component for each time by color,
    A tool wear evaluation device comprising a display and a display device for displaying a contour diagram created by the contour diagram creation unit on the display.
  2.  前記コンター図作成部は、前記周波数解析部により解析された周波数スペクトルであって、予め定めた過去の基準時間における周波数スペクトルを基準周波数スペクトルとして、該基準周波数スペクトルと、前記周波数解析部により順次解析される周波数スペクトルとの差をとった差分周波数スペクトルを順次算出し、算出した差分周波数スペクトルを基に、前記コンター図を作成するように構成されていることを特徴とする請求項1記載の工具摩耗評価装置。 The contour diagram creation unit is a frequency spectrum analyzed by the frequency analysis unit, and a frequency spectrum at a predetermined past reference time is set as a reference frequency spectrum, and the reference frequency spectrum and the frequency analysis unit sequentially analyze the frequency spectrum. 2. The tool according to claim 1, wherein a difference frequency spectrum obtained by taking a difference from a frequency spectrum to be calculated is sequentially calculated, and the contour diagram is created based on the calculated difference frequency spectrum. Wear evaluation device.
  3.  前記コンター図作成部は、
     前記周波数解析部により、前記サンプリング間隔で順次解析される周波数スペクトルに対応した前記コンター図を作成するとともに、
     予め定めた過去の基準時間における前記周波数スペクトルを基準周波数スペクトルとして、該基準周波数スペクトルと、前記周波数解析部により順次解析される周波数スペクトルとの差をとった差分周波数スペクトルを順次算出し、算出した差分周波数スペクトルに対応した前記コンター図を作成するように構成され、
     前記表示装置は、前記コンター図作成部によって作成された2つのコンター図を、前記ディスプレイに同時に表示するように構成されていることを特徴とする請求項1記載の工具摩耗評価装置。
    The contour map creation unit
    While creating the contour diagram corresponding to the frequency spectrum sequentially analyzed at the sampling interval by the frequency analysis unit,
    Using the frequency spectrum at a predetermined past reference time as a reference frequency spectrum, the difference frequency spectrum obtained by calculating the difference between the reference frequency spectrum and the frequency spectrum sequentially analyzed by the frequency analysis unit is sequentially calculated. Configured to create the contour map corresponding to the difference frequency spectrum;
    The tool wear evaluation device according to claim 1, wherein the display device is configured to simultaneously display two contour diagrams created by the contour diagram creation unit on the display.
  4.  前記差分周波数スペクトルの総和、又はその絶対値の最大値が、予め定めた基準値を超えたときに、アラームを出力する警告部を更に備えていることを特徴とする請求項2記載の工具摩耗評価装置。 The tool wear according to claim 2, further comprising a warning unit that outputs an alarm when the sum of the difference frequency spectrums or the maximum absolute value thereof exceeds a predetermined reference value. Evaluation device.
  5.  前記差分周波数スペクトルの総和、又はその絶対値の最大値が、予め定めた基準値を超えたときに、アラームを出力する警告部を更に備えていることを特徴とする請求項3記載の工具摩耗評価装置。 The tool wear according to claim 3, further comprising a warning unit that outputs an alarm when the sum of the difference frequency spectrums or the maximum absolute value thereof exceeds a predetermined reference value. Evaluation device.
  6.  前記警告部は、更に、工作機械の数値制御装置に動作停止信号を出力するように構成されていることを特徴とする請求項4記載の工具摩耗評価装置。 5. The tool wear evaluation apparatus according to claim 4, wherein the warning unit is further configured to output an operation stop signal to a numerical control device of a machine tool.
  7.  前記警告部は、更に、工作機械の数値制御装置に動作停止信号を出力するように構成されていることを特徴とする請求項5記載の工具摩耗評価装置。
     
    6. The tool wear evaluation apparatus according to claim 5, wherein the warning unit is further configured to output an operation stop signal to a numerical controller of a machine tool.
PCT/JP2016/055597 2015-05-22 2016-02-25 Tool abrasion evaluation device WO2016189911A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112016002313.8T DE112016002313T5 (en) 2015-05-22 2016-02-25 Device for assessing tool wear

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015104310A JP5937727B1 (en) 2015-05-22 2015-05-22 Tool wear evaluation device
JP2015-104310 2015-05-22

Publications (1)

Publication Number Publication Date
WO2016189911A1 true WO2016189911A1 (en) 2016-12-01

Family

ID=56184763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055597 WO2016189911A1 (en) 2015-05-22 2016-02-25 Tool abrasion evaluation device

Country Status (3)

Country Link
JP (1) JP5937727B1 (en)
DE (1) DE112016002313T5 (en)
WO (1) WO2016189911A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6675297B2 (en) * 2016-12-09 2020-04-01 Dmg森精機株式会社 Information processing method, information processing system, and information processing apparatus
JP7091743B2 (en) * 2018-03-16 2022-06-28 株式会社リコー Information processing equipment, information processing methods, programs, and mechanical equipment
DE102019004404A1 (en) * 2019-06-19 2020-12-24 Stöber Antriebstechnik GmbH & Co. KG Method for monitoring the operating state of at least one movable component of assemblies of machines and the like
JP6944103B2 (en) * 2019-10-22 2021-10-06 エヌティーエンジニアリング株式会社 Machining status monitoring method and system for work machines
CN111590390B (en) * 2020-04-27 2021-08-27 黄河水利职业技术学院 Cutter wear state real-time assessment method and system, storage medium and terminal
JP7191901B2 (en) 2020-07-27 2022-12-19 日本電子株式会社 Sample analysis device and method
JP7315072B2 (en) 2021-12-24 2023-07-26 株式会社デンソー Anomaly detection device, anomaly detection system, anomaly detection method and anomaly detection program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262490A (en) * 1993-03-16 1994-09-20 Nagase Integuretsukusu:Kk Machining capacity evaluating device
JP2000275098A (en) * 1999-03-26 2000-10-06 Toshiba Corp Waveform signal analyzer
JP2012076168A (en) * 2010-09-30 2012-04-19 Okuma Corp Tool abrasion detection method and machine tool
US20130136282A1 (en) * 2011-11-30 2013-05-30 David McClain System and Method for Spectral Personalization of Sound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262490A (en) * 1993-03-16 1994-09-20 Nagase Integuretsukusu:Kk Machining capacity evaluating device
JP2000275098A (en) * 1999-03-26 2000-10-06 Toshiba Corp Waveform signal analyzer
JP2012076168A (en) * 2010-09-30 2012-04-19 Okuma Corp Tool abrasion detection method and machine tool
US20130136282A1 (en) * 2011-11-30 2013-05-30 David McClain System and Method for Spectral Personalization of Sound

Also Published As

Publication number Publication date
DE112016002313T5 (en) 2018-03-08
JP2016215333A (en) 2016-12-22
JP5937727B1 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP5937727B1 (en) Tool wear evaluation device
US9211624B2 (en) Vibration determination method and vibration determination device
Grossi et al. Spindle speed ramp-up test: A novel experimental approach for chatter stability detection
US9186765B2 (en) Monitoring method and monitoring apparatus for machine tool, and machine tool
KR102120753B1 (en) Prognostic method of tool life using vibration properties analysis
JP5608036B2 (en) Operation history management method and operation history management device
WO2018062445A1 (en) Work machine vibration monitoring method and system
US11400556B2 (en) Abnormality detection apparatus for working tools
JP7053526B2 (en) Spindle vibration measurement system, spindle vibration measurement method, and program
KR20190013344A (en) An Intelligent CNC machine control system for smart monitering, smart diagnosis and smart control by using the physical cutting characteristic map in which the cutting characteristics are mapped in accordance to cutting location in terms of cutting time on working coordinate
JP6722052B2 (en) Multi-blade tool abnormality detection method
Cai et al. A method for identification of machine-tool dynamics under machining
WO2019073793A1 (en) Abnormality detection device and machine tool including abnormality detection device
Gavrilin et al. Mobile complex for rapid diagnosis of the technological system elements
KR102491716B1 (en) Machining environment estimation device
Denkena et al. Self-adjusting process monitoring system in series production
Bhagat et al. LabVIEW based tool condition monitoring and control for CNC lathe based on parameter analysis
KR20220071540A (en) Method for detecting status of machine tools
JP2010069540A (en) Abnormality detection device for drilling, machine tool equipped with the abnormality detection device, abnormality detection method
JP2008087093A (en) Abnormality detecting device for machine tool
Omelchak et al. Dynamic Processes in a Мachine-Tool at High-Speed Machining
US20040093191A1 (en) System and method for performing modal analysis of at least one remote structure
JP2019072806A (en) Cutting working device
US20200309642A1 (en) Diagnosis device, diagnosis system, and computer-readable medium
González et al. MEMS accelerometer-based system for inexpensive online CNC milling process chatter detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799620

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016002313

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799620

Country of ref document: EP

Kind code of ref document: A1