WO2016189629A1 - Endoscope system and method for controlling endoscope system - Google Patents

Endoscope system and method for controlling endoscope system Download PDF

Info

Publication number
WO2016189629A1
WO2016189629A1 PCT/JP2015/064958 JP2015064958W WO2016189629A1 WO 2016189629 A1 WO2016189629 A1 WO 2016189629A1 JP 2015064958 W JP2015064958 W JP 2015064958W WO 2016189629 A1 WO2016189629 A1 WO 2016189629A1
Authority
WO
WIPO (PCT)
Prior art keywords
illumination
unit
light
area
attention area
Prior art date
Application number
PCT/JP2015/064958
Other languages
French (fr)
Japanese (ja)
Inventor
田中 良典
真博 西尾
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2015/064958 priority Critical patent/WO2016189629A1/en
Priority to JP2017520103A priority patent/JP6736550B2/en
Publication of WO2016189629A1 publication Critical patent/WO2016189629A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements

Definitions

  • the present invention relates to an endoscope system and an endoscope system control method.
  • Patent Document 1 discloses an endoscope having an elongated insertion portion.
  • the insertion unit includes a light guide that transmits light emitted from the light source, and an illumination optical system that is disposed in front of the light emission end of the light guide and includes an illumination lens group.
  • the illumination lens group has at least one optical element.
  • the optical element has an inclined surface facing the emission end face of the light guide and inclined with respect to the emission end face.
  • the illumination area of the illumination light is fixed in advance. For this reason, if the illumination area of the illumination light is set to be narrow in advance corresponding to a narrow viewing angle, when the viewing angle becomes wide according to the observation, the attention area that is the area of interest for observation is more than the illumination area.
  • the attention area includes the illumination area. In this case, there is a possibility that the illumination light cannot be sufficiently distributed to the planned illumination area that exists inside the attention area and outside the illumination area and is planned to be illuminated with illumination light.
  • the illumination area of the illumination light is set to be wide in advance corresponding to a wide viewing angle, when the viewing angle becomes narrow according to observation, the illumination area becomes larger than the attention area, and the illumination area is focused. Contains the area.
  • the region that exists inside the illumination region and outside the region of interest and is illuminated with illumination light is a region where illumination light is illuminated wastefully. For this reason, the illumination light cannot be sufficiently distributed according to the viewing angle, and the illumination light is wasted. It is desired that illumination light can be sufficiently distributed without being affected by the viewing angle, and that waste of illumination light is suppressed.
  • the present invention has been made in view of these circumstances, and an object thereof is to provide an endoscope system and an endoscope system control method that can suppress the waste of illumination light regardless of the viewing angle.
  • One aspect of the endoscope system of the present invention is an imaging unit that illuminates a subject with illumination light, an imaging unit that images the subject based on the illumination light reflected from the subject, and an image taken by the imaging unit.
  • An attention area determination unit that determines an attention area that is an area of interest for observation based on a captured image of the subject and an illumination area that is illuminated by the illumination light are identified based on the captured image
  • An illumination area specifying unit, an illumination scheduled area setting unit for setting an illumination scheduled area that is an area where illumination of the illumination light is scheduled based on the attention area and the illumination area, and the illumination scheduled area is the An adjustment mechanism for adjusting the optical characteristics of the illumination light so that the illumination light is illuminated.
  • One aspect of the control method of the endoscope system includes an illumination step of emitting illumination light from an illumination unit to illuminate the subject with the illumination light, and the subject on the basis of the illumination light reflected from the subject.
  • An imaging step of imaging by the imaging unit a specifying step of specifying an illumination region, which is a region illuminated by the illumination light, by an illumination region specifying unit based on a captured image of the subject imaged by the imaging unit, Based on the captured image, a determination step of determining an attention area that is an area of interest for observation by an attention area determination unit, and illumination of the illumination light is scheduled based on the attention area and the illumination area.
  • an endoscope system and an endoscope system control method capable of suppressing the waste of illumination light regardless of the viewing angle.
  • FIG. 1A is a schematic diagram of an endoscope system according to the first embodiment of the present invention.
  • FIG. 1B is a diagram illustrating a configuration of an illumination unit and an adjustment mechanism.
  • FIG. 1C is a front view of the distal end portion of the insertion portion.
  • FIG. 2A is a diagram illustrating that a planned illumination area is set in a state where the attention area is larger than the illumination area and the attention area includes the illumination area.
  • FIG. 2B is a diagram illustrating that illumination light is illuminated on the planned illumination area illustrated in FIG. 2A.
  • FIG. 2C is a diagram illustrating that the illumination planned area is set in a state where the illumination area is larger than the attention area and the illumination area includes the attention area.
  • FIG. 1A is a schematic diagram of an endoscope system according to the first embodiment of the present invention.
  • FIG. 1B is a diagram illustrating a configuration of an illumination unit and an adjustment mechanism.
  • FIG. 1C is a front view of the distal end
  • FIG. 2D is a diagram illustrating that the illumination light is illuminated on the planned illumination area illustrated in FIG. 2C.
  • FIG. 3A is a diagram for explaining the principle of adjusting the light distribution.
  • FIG. 3B is a diagram for explaining the principle of adjusting the light distribution.
  • FIG. 4 is a flowchart illustrating an operation of adjusting the light distribution in the first embodiment.
  • FIG. 5 is a flowchart showing an operation for adjusting the light distribution in the modification of the first embodiment.
  • FIG. 6A is a diagram illustrating a configuration of an illumination unit, an adjustment mechanism, and a light distribution adjustment illumination unit according to the second embodiment of the present invention.
  • FIG. 6B is a diagram illustrating a state in which the relative distance between the illumination unit and the optical element of the light distribution adjusting illumination unit is shortened, and illumination light is emitted with wide light distribution.
  • FIG. 6C is a diagram illustrating a state in which the relative distance between the illumination unit and the optical element of the light distribution adjusting illumination unit is increased, and illumination light is emitted with a narrow light distribution.
  • FIG. 6D is a diagram illustrating a region of interest according to the second embodiment.
  • FIG. 6E is a flowchart showing an operation of adjusting the light distribution in the second embodiment.
  • FIG. 7A is a diagram illustrating a configuration of an illumination unit and an adjustment mechanism according to the third embodiment of the present invention.
  • FIG. 7A is a diagram illustrating a configuration of an illumination unit and an adjustment mechanism according to the third embodiment of the present invention.
  • FIG. 7B is a diagram illustrating the illumination unit inclined by the adjustment mechanism.
  • FIG. 7C is a diagram illustrating a positional relationship among a region of interest, an illumination region, and a planned illumination region in a state before the illumination unit is tilted.
  • FIG. 7D is a diagram illustrating a positional relationship among a region of interest, an illumination region, and a planned illumination region in a state after the illumination unit is tilted.
  • FIG. 7E is a flowchart illustrating an operation of adjusting the light distribution in the third embodiment.
  • FIG. 8A is a schematic view of an endoscope system according to the fourth embodiment of the present invention.
  • FIG. 8A is a schematic view of an endoscope system according to the fourth embodiment of the present invention.
  • FIG. 8B is a diagram illustrating a positional relationship among a region of interest, an illumination region, and an illumination scheduled region before the light amount is adjusted.
  • FIG. 8C is a diagram illustrating a positional relationship among the attention area, the illumination area, and the illumination scheduled area in a state after the light amount is adjusted.
  • FIG. 8D is a flowchart illustrating an operation of adjusting the light distribution in the fourth embodiment.
  • FIG. 9 is a flowchart showing an operation of adjusting the light distribution in the fifth embodiment.
  • an endoscope system 10 includes an illumination unit 20 that illuminates a subject 13 with illumination light IL from a distal end portion 11 of an insertion portion that is provided in an endoscope (not shown), and a reflection that is reflected from the subject 13.
  • An imaging unit 40 that images the subject 13 based on the illumination light IL that is the light RL.
  • the endoscope system 10 includes a display unit 50 that displays a captured image 301 (see FIGS. 2A, 2B, 2C, and 2D) captured by the imaging unit 40.
  • the illumination unit 20 includes a light source 21 that emits primary light, a light source control unit 23 that controls the light source 21, a plurality of light guide members 25 that guide primary light, and a light source 21. And a demultiplexing unit 27 that demultiplexes the primary light emitted from the light into a plurality of primary lights.
  • the illumination unit 20 converts the optical characteristics of the primary light guided by the light guide member 25, and illuminates the subject 13 with the primary light having the converted optical characteristics as illumination light IL, and It has the same number of the illumination units 29 and is arranged in pairs with the illumination units 29, and has an optical element 31 through which the illumination light IL emitted from the illumination unit 29 is transmitted.
  • the light source 21 includes, for example, a laser diode that emits blue laser light.
  • the center wavelength of the laser light is, for example, 445 nm.
  • the light source 21 may emit light of other colors.
  • the light source 21 may be provided inside a housing part provided outside the endoscope, or may be provided inside the endoscope.
  • the light source control unit 23 supplies power necessary for the light source 21 to drive to the light source 21.
  • the light source control unit 23 supplies power to the light source 21 that is equal to or greater than a predetermined threshold power and is proportional to the amount of illumination light IL, or supplies power to the light source 21 according to the driving interval of the light source 21.
  • the light source control unit 23 supplies power when a first operation unit (not shown) is operated.
  • the first operation unit is operated to instruct the operator to turn on or off the emission of the illumination light IL.
  • the light source control unit 23 and the first operation unit are provided inside the housing unit.
  • the light source control unit 23 is provided inside the endoscope.
  • the first operation unit is provided in the endoscope.
  • the light guide member 25 is provided between the light source 21 and the demultiplexing unit 27 and guides the primary light emitted from the light source 21 to the demultiplexing unit 27.
  • the light guide member 25 is further provided between the demultiplexing unit 27 and the illumination unit 29, and guides the primary light demultiplexed by the demultiplexing unit 27 to the illumination unit 29.
  • Such a light guide member 25 includes, for example, an optical fiber.
  • the light guide member 25 is provided inside the casing and inside the endoscope.
  • the light guide member 25 is provided inside the endoscope.
  • the demultiplexing unit 27 demultiplexes the primary light in accordance with the number of illumination units 29. In the present embodiment, for example, since two illumination units 29 are provided, the demultiplexing unit 27 demultiplexes the primary light into two. The demultiplexing unit 27 demultiplexes the primary light at a desired ratio, for example. In the present embodiment, the ratio is, for example, 50:50. The ratio need not be uniform. When only one illumination unit 29 is provided, the demultiplexing unit 27 is omitted, and the light source 21 is connected to the illumination unit 29 via the light guide member 25.
  • the demultiplexing unit 27 is optically connected to the light guide member 25 by an optical connector (not shown).
  • the demultiplexing unit 27 may be provided inside the housing unit or may be provided inside the endoscope.
  • the demultiplexing unit 27 is provided inside the endoscope.
  • the illumination unit 29 is fixed to the inside of the distal end portion 11 of the insertion portion by, for example, an adhesive.
  • the illumination unit 29 functions as a light conversion unit that converts the optical characteristics of the primary light to a desired value.
  • the illumination unit 29 generates illumination light IL having a light distribution characteristic different from the primary light, and emits the illumination light IL.
  • the illumination unit 29 functions as a light distribution conversion unit that converts the light distribution of the primary light.
  • the light distribution characteristic of the illumination light IL has a property that does not vary depending on the amount of primary light.
  • the illumination unit 29 is interposed between the light conversion member 29a and the light emitting member 29a and the light conversion member 29a in the traveling direction of the primary light, and the traveling direction of the primary light.
  • the light transmission member 29b is optically connected to the light output end face of the light guide member 25 and the light conversion member 29a.
  • the illumination unit 29 holds the reflection member 29c provided on the side of the light conversion member 29a and the transmission member 29b, the tip of the light guide member 25, the light conversion member 29a, the transmission member 29b, and the reflection member 29c. And a member 29d.
  • the light conversion member 29a As shown in FIG. 1B, the light conversion member 29a is provided in front of the transmission member 29b in the traveling direction of the primary light, and is optically connected to the transmission member 29b.
  • the light conversion member 29a has a truncated cone shape.
  • the truncated cone expands in diameter according to the traveling direction of the primary light.
  • the shape of the base end surface of the light conversion member 29a is substantially the same as the shape of the front end surface of the transmission member 29b, and the base end surface of the light conversion member 29a is in direct contact with the front end surface of the transmission member 29b.
  • the shape in which the light conversion member 29a and the transmission member 29b are combined is a truncated cone shape.
  • the truncated cone expands in diameter according to the traveling direction of the primary light.
  • the light conversion member 29a emits primary light incident on the light conversion member 29a as illumination light IL toward the front on the subject 13 side and the rear on the light guide member 25 side.
  • the light conversion member 29a includes at least one of a phosphor (not shown) and a diffusion member (not shown), and a sealing member (not shown) that seals at least one of the phosphor and the diffusion member.
  • the phosphor is a wavelength conversion member that absorbs the primary light and converts the primary light into converted light having a wavelength longer than that of the primary light.
  • the phosphor is, for example, a powder represented by YAG: Ce.
  • the phosphor has a function of absorbing the primary light in the blue wavelength region and converting the wavelength of the primary light into yellow fluorescence that is the illumination light IL. Further, since yellow fluorescence is emitted without directivity, the phosphor also has a diffusion function.
  • the sealing member collectively includes the phosphors in a state where the powdery phosphors are dispersed in the sealing member.
  • the diffusing member has a function of converting the primary light incident on the diffusing member into diffused light with a reduced coherence by expanding the light distribution angle of the primary light without changing the wavelength of the primary light.
  • the diffusing member emits diffused light as illumination light IL.
  • the diffusion member is a fine particle formed of a metal or a metal compound. Such a diffusing member is, for example, alumina or titanium oxide.
  • the sealing member collectively includes the diffusion member in a state where the diffusion members are dispersed in the sealing member.
  • the sealing member is formed of a member that transmits the primary light and the illumination light IL.
  • a sealing member is, for example, a transparent silicone resin or a transparent epoxy resin.
  • the sealing member has a high transmittance with respect to the primary light and the illumination light IL.
  • the refractive index of the diffusion member is different from the refractive index of the sealing member.
  • the refractive index of the diffusing member is higher than the refractive index of the sealing member, and is preferably 1.5 or more.
  • the light distribution angle of the light conversion member 29a is controlled by, for example, the concentration of the diffusion member with respect to the sealing member, the thickness of the light conversion member 29a, and the like.
  • the refractive index of the diffusing member is 1.7 and the refractive index of the sealing member is 1.4
  • the volume concentration of the diffusing member with respect to the sealing member is 20%
  • the thickness of the light conversion member 29a is 0.1 mm. It becomes.
  • the primary light is sufficiently diffused as diffused light (illumination light IL), and the light distribution angle of the illumination light IL is sufficiently widened.
  • the transmitting member 29b has a property of transmitting the primary light and the illumination light IL.
  • the transmissive member 29b is formed of glass having a high transmittance or a silicone resin having a high transmittance.
  • the transmission member 29b has a truncated cone shape. The truncated cone expands in diameter according to the traveling direction of the primary light.
  • the reflection member 29c regularly reflects or diffusely reflects the primary light and the incident light incident on the reflection member 29c.
  • the reflection member 29c may be scattered and reflected.
  • the incident light is illumination light IL emitted backward from the light conversion member 29a.
  • the reflecting member 29c is a thin film of metal such as silver or aluminum.
  • the holding member 29d has a first hole 29e with which the light guide member 25 is engaged, and a second hole 29f with which the light conversion member 29a and the transmission member 29b are engaged.
  • the first hole 29e is provided coaxially with the second hole 29f, and communicates with the second hole 29f.
  • the first hole 29e has a cylindrical shape.
  • the second hole 29f has a truncated cone shape. The truncated cone expands in diameter according to the traveling direction of the primary light.
  • a reflective member 29c is provided on the inner peripheral surface of the second hole 29f.
  • the holding member 29d is connected to the light guide member 25 and the light conversion member 29a.
  • the transmission member 29b is held.
  • the light guide member 25 is optically connected to the transmission member 29b
  • the transmission member 29b is optically connected to the light conversion member 29a
  • the reflection member 29c is connected to the side surface of the light conversion member 29a and the side surface of the transmission member 29b.
  • the tip surface of the light conversion member 29a is provided on the same plane as the tip surface of the holding member 29d.
  • the taper angle of the second hole 29f, the light conversion member 29a, and the transmission member 29b is set to, for example, approximately 10 degrees to approximately 60 degrees with respect to the longitudinal axis of the holding member 29d. In the present embodiment, for example, the taper angle is 25 degrees. Accordingly, the illumination light IL that is non-directional fluorescence and the illumination light IL that is diffused diffused light are efficiently emitted from the illumination unit 29.
  • optical element 31 As shown in FIGS. 1A and 1B, one optical element 31 is arranged with respect to one illumination unit 29, and the optical element 31 is arranged in front of the illumination unit 29.
  • the optical element 31 is a lens through which the illumination light IL emitted from the illumination unit 29 is transmitted.
  • Each optical element 31 is held by an adjustment mechanism 70 described later in the distal end portion 11 of the insertion portion.
  • Each optical element 31 can be simultaneously moved in the axial direction of the optical element 31 by the adjusting mechanism 70, and approaches or moves away from the illumination unit 29 by the movement. That is, the relative distance between the optical element 31 and the illumination unit 29 can be adjusted by the adjustment mechanism 70.
  • Imaging unit 40 As illustrated in FIG. 1A, the imaging unit 40 generates a captured image 301 by performing image processing on the reflected light RL captured by the imaging unit 41 and an imaging unit 41 that captures the reflected light RL reflected from the subject 13. And an image processing unit (not shown). The imaging unit 40 starts an imaging operation when a second operation unit (not shown) is operated. The second operation unit is disposed in the operation unit of the endoscope.
  • the imaging unit 41 includes, for example, a CCD or a CMOS.
  • the imaging unit 41 has a color filter for each pixel, and has a color pixel group.
  • an optical element 43 that transmits the reflected light RL is provided in front of the imaging unit 41.
  • the reflected light RL passes through the optical element 43 and enters the imaging unit 42.
  • the optical element 43 has substantially the same configuration as the optical element 31. Unlike the optical element 31, the optical element 43 is fixed inside the distal end portion 11 of the insertion portion.
  • the imaging unit 41 is provided between the two illumination units 29 and is fixed inside the distal end portion 11 of the insertion unit.
  • the illumination units 29 are provided symmetrically with respect to each other about the imaging unit 41.
  • the illumination units 29 may be provided asymmetrically so that the observation is optimally performed.
  • the image processing unit may be provided inside a casing unit provided outside the endoscope, or may be provided inside the endoscope.
  • the endoscope system 10 extracts a representative value that extracts a representative value indicating a state of a pixel value of a captured image 301 (see FIGS. 2A, 2B, 2C, and 2D) captured by the imaging unit 40.
  • the extraction unit 61 extracts a contrast value that is an example of a representative value.
  • the extraction unit 61 starts extraction after the imaging unit 40 starts an imaging operation.
  • the extraction unit 61 receives a captured image 301 including pixel value information of blue pixels, green pixels, and red pixels from the imaging unit 40.
  • the extraction unit 61 divides the captured image 301 into a plurality of regions.
  • the extraction unit 61 extracts a high-frequency component of the pixel for each divided area using a bandpass filter.
  • the extraction unit 61 integrates the extracted high frequency components and extracts a contrast value for each region. As described above, the extraction unit 61 divides the captured image 301 into a plurality of regions, and extracts a contrast value for each of the divided regions.
  • the extraction unit 61 may extract a contrast value based on any one of the color pixel values. For example, the extraction unit 61 extracts a contrast value based on a value obtained by adding the color pixel values. For example, the extraction unit 61 may extract a contrast value based on the luminance value.
  • the endoscope system 10 includes a region of interest 201 (FIGS. 2A, 2B, 2C, and 2C) that is a region of interest for observation based on the captured image 301 of the subject 13 captured by the imaging unit 40. It further includes an attention area determination unit (hereinafter referred to as a determination unit 63) that determines (see 2D).
  • a region of interest 201 FIGS. 2A, 2B, 2C, and 2C
  • a determination unit 63 that determines (see 2D).
  • the determining unit 63 calculates whether or not the contrast value extracted by the extracting unit 61 is higher than a predetermined value.
  • the determination unit 63 determines an area having a contrast value calculated to be higher than the predetermined value as the attention area 201. For example, when the subject 13 is a tumor, the convex and concave portions present on the surface of the portion where blood vessels are present in the tumor are present more finely than the portion where the tumor is not present.
  • the contrast value is large at the portion where the convex / concave portion exists, and the contrast value is small at the portion where the convex / concave portion does not exist.
  • the predetermined value is set based on the maximum contrast value on the captured image 301.
  • the determination part 63 can determine the attention area
  • the predetermined value may be set by integrating a value of a predetermined ratio with respect to the maximum value.
  • the value of the predetermined ratio may be set according to the subject 13. As described above, since the contrast value is large in the portion where the convex / concave portion exists, at least a part of this portion is determined as the attention area 201.
  • the determining unit 63 may determine the logical sum of the attention areas 201 corresponding to the respective color pixels as the final attention area 201.
  • the determination unit 63 may determine one area including all the parts with a high contrast value as the attention area 201.
  • the determination unit 63 may determine the attention area 201 so that the attention area 201 includes all the portions having high contrast values and the attention area 201 is set to the minimum area.
  • the determination unit 63 may determine the attention area 201 such that the end of the captured image 301 is excluded from the attention area 201. When both ends are dark, the determination unit 63 may perform a process in which the contrast value indicates the original value.
  • the endoscope system 10 is configured to identify an illumination area 203 (see FIGS. 2A, 2B, 2C, and 2D) that is an area illuminated by the illumination light IL based on the captured image 301.
  • An area specifying unit (hereinafter referred to as specifying unit 65) is further included.
  • the identifying unit 65 identifies an area having a brightness equal to or higher than a predetermined brightness in the captured image 301 as the illumination area 203.
  • the specifying unit 65 calculates the brightest pixel value (hereinafter, the brightest pixel value) in the captured image 301.
  • the specifying unit 65 calculates a pixel value (hereinafter, referred to as a predetermined pixel value) having a predetermined percentage of the brightness of the brightest pixel value from the captured image 301.
  • the specifying unit 65 specifies an area having a predetermined pixel value as the illumination area 203.
  • the illumination area 203 is an area having a luminance value equal to or higher than a predetermined luminance value corresponding to the brightness necessary for observation in the captured image 301.
  • the specifying unit 65 may specify the illumination area 203 for each illumination unit 29, for example.
  • the illumination region 203 corresponding to one illumination unit 29 is referred to as illumination region 203a
  • the illumination region 203 corresponding to the other illumination unit 29 is referred to as illumination region 203b
  • illumination regions 203a, 203b is collectively referred to as an illumination area 203.
  • the identifying unit 65 may identify an area having brightness such that the imaging unit 40 can output signal characteristics desirable for the imaging unit 40 as the illumination area 203.
  • the endoscope system 10 is based on a region of interest 201 and an illumination region 203, and is a planned illumination region 205 (FIGS. 2A, 2B, 2C, 2D) further includes a scheduled illumination area setting unit (hereinafter referred to as a setting unit 67).
  • a scheduled illumination area setting unit hereinafter referred to as a setting unit 67.
  • the illumination scheduled area 205 is, for example, inside the attention area 201 and the illumination area 203. Is an external area.
  • the planned illumination area 205 is an area that needs to be illuminated but is not actually illuminated. In this case, the planned illumination area 205 is a logical difference between the attention area 201 and the illumination area 203. Therefore, the setting unit 67 sets an area calculated by subtracting the illumination area 203 from the attention area 201 as the scheduled illumination area 205. As illustrated in FIG.
  • the illumination planned area 205 is the attention area 201 in a state where the illumination area 203 is larger than the attention area 201 and the illumination area 203 includes the attention area 201. Therefore, the setting unit 67 sets the attention area 201 as the scheduled illumination area 205.
  • the processing in the extraction unit 61, the determination unit 63, the specifying unit 65, and the setting unit 67 may be executed by a processor including a hardware configuration.
  • the processing may be executed by a processor including an electronic circuit such as an ASIC (Application Specific Integrated Circuit).
  • the processing may be executed by a general-purpose processor such as a CPU (Central Processing Unit) reading various programs.
  • the endoscope system 10 includes an adjustment mechanism 70 that adjusts the optical characteristics of the illumination light IL so that the planned illumination area 205 is illuminated with the illumination light IL, a light source control unit 23, and an adjustment mechanism. And a control unit 80 for controlling the entire endoscope system 10 including the control unit 70.
  • the control of the control unit 80 with respect to the adjustment mechanism 70 and the operation of the adjustment mechanism 70 include a state in which the first operation unit is operated, the illumination unit 29 is driven, and the illumination light IL is emitted, and the second operation unit is operated. In the state where the imaging unit 40 is driven.
  • the adjusting mechanism 70 adjusts the optical characteristics of the illumination light IL so that the area of the illumination scheduled area 205 satisfies a predetermined standard.
  • the control unit 80 calculates and calculates the area of the scheduled illumination area 205. Based on the result, the adjusting mechanism 70 adjusts the light distribution.
  • the control unit 80 controls the optical characteristics of the illumination light IL via the adjustment mechanism 70 so that the area of the planned illumination area 205 illustrated in FIG. 2A is equal to or less than a predetermined ratio of the area of the attention area 201. .
  • the predetermined ratio is, for example, 10%, and is a ratio at which it can be determined that the illumination scheduled area 205 has been substantially eliminated as shown in FIG. 2B.
  • Substantially elimination of the scheduled illumination area 205 indicates that the area not illuminated with the illumination light IL is substantially eliminated.
  • the control unit 80 controls the adjustment mechanism 70, and the adjustment mechanism 70 adjusts the light distribution in the optical characteristics of the illumination light IL by the control. By this adjustment, the illumination area 203 is enlarged so as to approximate the attention area 201.
  • the control unit 80 stops the light distribution adjustment of the adjustment mechanism 70.
  • the control unit 80 may perform hill climbing control using the area as an evaluation value so that the area of the planned illumination area 205 is minimized.
  • the control unit 80 sets the attention area 201, which is the scheduled illumination area 205.
  • the area is calculated, and the adjustment mechanism 70 adjusts the light distribution based on the calculation result.
  • the control unit 80 causes the illumination light IL to pass through the adjustment mechanism 70 so that the area of the region 207 (see FIG. 2C) between the attention region 201 and the illumination region 203 is equal to or less than a predetermined ratio of the area of the attention region 201.
  • the predetermined ratio is, for example, 10%, and is a ratio at which it can be determined that the area 207 is almost eliminated as shown in FIG. 2D.
  • the almost elimination of the area 207 indicates that the unnecessary illumination light IL is almost eliminated.
  • the control unit 80 controls the adjustment mechanism 70, and the adjustment mechanism 70 adjusts the light distribution in the optical characteristics of the illumination light IL by the control.
  • the illumination area 203 is reduced so as to approximate the attention area 201.
  • the control unit 80 stops the light distribution adjustment of the adjustment mechanism 70.
  • the adjustment mechanism 70 includes a drive source 71 controlled by the control unit 80, a transmission unit 73 that transmits the driving force output from the drive source 71, and a driving force that is transmitted from the transmission unit 73.
  • the adjusting member 75 for adjusting the relative distance between the illumination unit 29 and the optical element 31 is provided.
  • the drive source 71 has a micromotor.
  • the transmission part 73 has a ball screw. The ball screw is screwed into the adjustment member 75.
  • the adjusting member 75 holds the optical element 31 so that the optical element 31 is arranged corresponding to the illumination unit 29. Specifically, the adjustment member 75 holds the optical element 31 so that the optical element 31 is disposed in front of the illumination unit 29. One adjusting member 75 holds all the optical elements 31.
  • the adjustment member 75 has an imaging hole 75a provided in front of the optical element 43 so that the imaging of the imaging unit 41 is not blocked.
  • the adjustment member 75 moves along the axial direction of the optical element 31 by the rotation of the ball screw.
  • the optical element 31 held by the adjustment member 75 moves along the axial direction of the optical element 31 with respect to the illumination unit 29 in conjunction with the adjustment member 75.
  • the relative distance between the illumination part 29 and the optical element 31 is adjusted, and the light distribution which is the optical characteristic of the illumination light IL is adjusted by adjusting the relative distance.
  • the illumination area 203 is enlarged or reduced so as to approximate the attention area 201, the illumination scheduled area 205 is canceled along with the enlargement, and the area 207 is eliminated along with the reduction.
  • the illumination scheduled area 205 illuminates the illumination light IL.
  • the axial direction of the optical element 31 coincides with the longitudinal axis direction of the insertion portion and coincides with the optical axis direction of the primary light.
  • the optical axis of the primary light indicates the central axis of the primary light emitted from the distal end surface of the light guide member 25 connected to the transmission member 29b.
  • the illumination unit 29 is fixed, the adjustment member 75 holds the optical element 31, and the adjustment member 75 moves, so that the optical element 31 moves.
  • the relative distance is adjusted, but the adjustment of the relative distance need not be limited to this.
  • the optical element 31 may be fixed, the adjustment member 75 may hold the illumination unit 29, and the adjustment unit 75 may move to move the illumination unit 29 relative to the optical element 31. Thereby, the relative distance may be adjusted.
  • the adjustment member 75 may hold at least one of the illumination unit 29 and the optical element 31, and when the adjustment member 75 moves, at least one of the illumination unit 29 and the optical element 31 may move relative to the other. . Thereby, the relative distance may be adjusted.
  • the adjustment mechanism 70 adjusts the optical distance of the illumination light IL by adjusting the relative distance between the illumination unit 29 and the optical element 31.
  • the relative distance is adjusted stepwise or continuously.
  • the adjustment mechanism 70 adjusts the optical characteristics of the illumination light IL in a state where the illumination unit 20 is illuminating and the imaging unit 40 is imaging.
  • one adjustment mechanism 70 adjusts the optical characteristics of the illumination light IL emitted from all the illumination units 20 simultaneously in conjunction with all the illumination units 29.
  • the light source control unit 23 controls the light source 21 to emit the primary light.
  • the primary light emitted from the light source 21 passes through the light guide member 25, the demultiplexing unit 27, and the light guide member 25 and proceeds to the illumination unit 29.
  • the primary light passes through the transmission member 29b and irradiates the light conversion member 29a.
  • the light conversion member 29a includes a phosphor, a diffusion member, and a sealing member
  • a part of the primary light is absorbed by the phosphor and converted into light having a wavelength longer than the wavelength of the primary light. This light is referred to as converted light.
  • the remaining part of the primary light is diffused by the diffusing particles. This light is called diffuse light. It is preferable that the light distribution characteristic of the converted light and the light distribution characteristic of the diffused light are substantially equal to each other.
  • the converted light and the diffused light are incident on the optical element 31 as illumination light IL.
  • the light distribution of the illumination light IL is adjusted by the principle of adjusting the light distribution described later in the optical element 31.
  • the illumination light IL is emitted outward from the optical element 31 to illuminate the subject 13.
  • the imaging unit 40 When the second operation unit is operated to instruct the start of the imaging operation, the imaging unit 40 is driven. As shown in FIG. 1A, the illumination light IL is reflected and diffused by the subject 13, and the reflected light RL enters the imaging unit 41. The imaging unit 41 captures the reflected light RL, the image processing unit generates a captured image 301 based on the reflected light RL, and the display unit 50 displays the captured image 301.
  • the distance from the center of the optical element 31 to the focal point of the optical element 31 is defined as a focal length F of the optical element 31.
  • a distance from the center of the optical element 31 to the emission end face of the illumination unit 29 is a distance L1.
  • a distance from the center of the optical element 31 to the reference position of the light distribution angle of the illumination light IL is defined as a distance L2.
  • the reference position of the light distribution angle is located on the light guide member 25 side with respect to the position of the optical element 31.
  • the illumination light IL spreads through the optical element 31 starting from the reference position of the light distribution angle calculated by the distance L2.
  • the adjustment member 75 When the distance L1 is shorter than the focal length F as described above, when the ball screw is rotated in the first direction around the axis of the ball screw by the driving force in the adjustment mechanism 70, the adjustment member 75 is along the axial direction of the optical element 31. To move away from the illumination unit 29. The optical element 31 held by the adjustment member 75 moves along the axial direction of the optical element 31 with respect to the illumination unit 29 in conjunction with the adjustment member 75, and moves away from the illumination unit 29. Thereby, the distance L1, which is the relative distance between the illumination unit 29 and the optical element 31, is adjusted to be long, and the distance L2 is shortened. Therefore, the light distribution angle of the illumination light IL is widened, and the illumination area 203 is enlarged as shown in FIG. 2B. Then, the illumination area 203 is enlarged so as to approximate the attention area 201, and the illumination planned area 205 is canceled along with the enlargement. As a result, the illumination scheduled area 205 is illuminated with the illumination light IL.
  • the adjusting member 75 rotates the optical element in the second direction opposite to the first direction around the axis of the ball screw by the driving force in the adjusting mechanism 70. It moves in the direction approaching the illumination unit 29 along the axial direction of 31.
  • the optical element 31 held by the adjustment member 75 moves along the axial direction of the optical element 31 with respect to the illumination unit 29 in conjunction with the adjustment member 75, and approaches the illumination unit 29.
  • the distance L1 which is the relative distance between the illumination unit 29 and the optical element 31
  • the distance L2 is lengthened. Therefore, the light distribution angle of the illumination light IL is narrowed, and the illumination area 203 is reduced and the area 207 is narrowed as shown in FIG. 2D.
  • the illumination area 203 is reduced so as to approximate the attention area 201, and unnecessary illumination light IL is eliminated along with the reduction.
  • the attention area 201 that is the planned illumination area 205 is illuminated with the illumination light IL.
  • the illumination unit 29 is driven according to the operation of the first operation unit, and the illumination unit 29 emits illumination light IL and illuminates the subject 13 with the illumination light IL (Step 1).
  • the imaging unit 40 images the subject 13 illuminated with the illumination light IL in accordance with the operation of the second operation unit (Step 2).
  • the identifying unit 65 identifies the illumination area 203 from the captured image 301 captured by the imaging unit 40 (Step 3).
  • the extraction unit 61 extracts the contrast value and outputs the contrast value to the determination unit 63 (Step 4).
  • the determining unit 63 determines the attention area 201 based on the contrast value extracted by the extracting unit 61 (Step 5).
  • the setting unit 67 sets the scheduled illumination area 205 based on the attention area 201 and the illumination area 203 (Step 6). In Step 6, the setting unit 67 outputs information related to the planned illumination area 205 to the control unit 80.
  • the control unit 80 controls the adjustment mechanism 70 based on this information. And the adjustment mechanism 70 adjusts the relative distance between the optical element 31 and the illumination part 29 based on control of the control part 80 (Step7). Thereby, the illumination planned area 205 is illuminated with the illumination light IL (Step 8).
  • Steps 5 and 6 as shown in FIG. 2A, for example, in a state where the attention area 201 is larger than the illumination area 203 and the attention area 201 includes the illumination area 203, the illumination scheduled area 205 is, for example, This is an area inside 201 and outside the illumination area 203. And it is necessary to expand so that the illumination area
  • the optical element 31 is adjusted so that the distance L1 as the relative distance is long and the distance L2 is short, away from the illumination unit 29. Thereby, the light distribution angle of the illumination light IL is widened, and as shown in FIG.
  • the illumination area 203 is enlarged so as to approximate the attention area 201, and the planned illumination area 205 is eliminated along with the enlargement.
  • the illumination planned area 205 is illuminated with the illumination light IL.
  • Steps 5 and 6 for example, when the illumination area 203 is larger than the attention area 201 and the illumination area 203 includes the attention area 201, the planned illumination area 205 is the attention area 201. . Then, it is necessary to reduce the illumination area 203 so as to approximate the attention area 201. For this reason, as described above, in Step 7, the optical element 31 is adjusted so as to approach the illuminating unit 29, the relative distance L1 is short, and the distance L2 is long. Thereby, the light distribution angle of the illumination light IL is narrowed, and as shown in FIG. 2D, the illumination area 203 is reduced and the area 207 is narrowed.
  • Step 8 the attention area 201 which is the illumination scheduled area 205 is illuminated with the illumination light IL.
  • the adjustment mechanism 70 stops the adjustment.
  • Step 8 the light distribution adjustment is completed.
  • the operations of Step 1 to Step 8 are repeated in this order. Note that the operations of Step 2 to Step 8 may be repeatedly performed in this order at the time of observation.
  • the illumination area 203 is enlarged to the attention area 201 as shown in FIGS. 2A and 2B, or the illumination area 203 is reduced to the attention area 201 as shown in FIGS. 2C and 2D.
  • the illumination light IL can be sufficiently distributed without being influenced by the viewing angle, and the waste of the illumination light IL can be suppressed.
  • the attention area 201 is determined based on the contrast value. For example, when the subject 13 is a tumor, the contrast value becomes large at the site where the convex and concave portions exist on the surface of the site where the blood vessel exists in the tumor. For this reason, it is possible to illuminate the illumination light IL reliably and without waste to the convex and concave portions.
  • the determination unit 63 determines the attention area 201 based on the contrast value extracted by the extraction unit 61.
  • the determination of the attention area 201 need not be limited to this.
  • the determination unit 63 determines the attention region 201 based on the region specified by the specification unit 120 from the image displayed on the display unit 50.
  • the designation unit 120 is an input unit that is input to the endoscope system 10 by the operator.
  • the designation unit 120 is, for example, a mouse or a keyboard.
  • the designation unit 120 designates a region of particular interest of the subject 13 from the image displayed on the display unit 50.
  • the designation unit 120 designates, from the image displayed on the display unit 50, the start point and the end point diagonal to the start point at the tip of the mouse arrow.
  • the designation unit 120 designates an area formed by the start point and the end point.
  • the determination unit 63 determines the designated area as the attention area 201.
  • the designation unit 120 designates a start point at the tip of the mouse arrow, and designates an area having an arbitrary radius with the start point as a center point.
  • the determination unit 63 determines the designated area as the attention area 201.
  • the designation unit 120 is a keyboard
  • the designation unit 120 designates a rectangular region or an XY coordinate of the center point by designating the XY coordinates of the diagonal points of the rectangle from the image displayed on the display unit 50. Specify a circular area.
  • the determination unit 63 determines this area as the attention area 201.
  • the designation unit 120 designates an area from the image displayed on the display unit 50 (Step 11).
  • the determination unit 63 determines the region specified by the specifying unit 120 as the attention region 201 (Step 12).
  • Steps 6, 7, and 8 are sequentially performed.
  • the attention area 201 can be manually designated by the designation unit 120.
  • One or more illumination units 29 may be arranged.
  • the light emitted from the illumination unit 29 is defined as the illumination light IL.
  • the light emitted from the illumination unit 29 is the secondary light SL (FIGS. 6B and 6C).
  • the light emitted from the light distribution adjustment illumination unit 90 is defined as illumination light IL (see FIGS. 6B and 6C).
  • the illumination unit 20 receives the secondary light SL emitted from the illumination unit 29, adjusts the light distribution characteristics of the received secondary light SL, and has the adjusted light distribution characteristics. It further includes a light distribution adjusting illumination unit 90 that emits the light IL to the outside. The light distribution characteristic of the secondary light SL emitted from the illumination unit 29 is fixed.
  • the light distribution adjusting illumination units 90 are arranged in the same number as the illumination units 29 and in pairs with the illumination units 29.
  • the light distribution adjustment illumination unit 90 can be moved along the optical axis direction of the primary light with respect to the illumination unit 29 by the adjustment mechanism 70.
  • the optical axis of the primary light indicates the central axis of the primary light emitted from the distal end surface of the light guide member 25 connected to the transmission member 29b.
  • the light distribution adjustment lighting unit 90 varies the adjustment amount of the light distribution characteristic according to the movement amount.
  • the light distribution adjustment illumination unit 90 includes a hollow member 91 in which the illumination unit 29 is disposed, an optical element 93 provided in the hollow member 91, and a reflection member 95 provided in the hollow member 91.
  • the hollow member 91 has a first hole 91a and a second hole 91b.
  • the first hole portion 91a is provided coaxially with the second hole portion 91b and communicates with the second hole portion 91b.
  • the first hole portion 91a has a cylindrical shape.
  • the second hole portion 91b has a truncated cone shape. The truncated cone expands in diameter according to the traveling direction of the primary light.
  • the illumination unit 29 is inserted into the first hole 91a and the second hole 91b.
  • the first hole 91 a and the second hole 91 b are larger than the illumination unit 29.
  • the hollow member 91 is connected to the adjustment member 75.
  • the optical element 93 is a transmissive member through which the secondary light SL having the light distribution characteristic adjusted by the light distribution adjusting illumination unit 90 is transmitted.
  • the optical element 93 is made of, for example, glass having a high transmittance.
  • the optical element 93 has a cylindrical shape, for example.
  • the optical element 93 is fixed to the distal end surface of the hollow member 91 by adhesion so that the optical element 93 is disposed in front of the illumination unit 29, and covers the second hole 91b.
  • the reflecting member 95 is provided on the inner peripheral surface of the second hole portion 91b.
  • the reflection member 95 regularly reflects or diffusely reflects incident light incident on the reflection member 95.
  • the reflection member 95 may be scattered and reflected.
  • the incident light is secondary light SL including fluorescence and diffused light.
  • the reflecting member 95 is a metal thin film such as silver or aluminum.
  • the reflection member 95 is plated on the inner peripheral surface.
  • Adjustment mechanism 70 As shown in FIG. 6A, in the adjustment mechanism 70, the adjustment member 75 directly holds the light distribution adjustment illumination unit 90 and holds the optical element 93 via the hollow member 91.
  • the adjustment member 75 includes an illumination unit 29 inserted into the first hole 91a and the second hole 91b, an optical element 93 disposed in front of the illumination unit 29, and a light distribution adjustment illumination unit 90. Is held on the same axis as the optical axis of the primary light.
  • the adjustment member 75 moves along the optical axis direction of the primary light by the rotation of the ball screw.
  • the light distribution adjustment illumination unit 90 held by the adjustment member 75 moves along the optical axis direction of the primary light with respect to the illumination unit 29 in conjunction with the adjustment member 75.
  • the relative distance between the illumination unit 29 and the optical element 93 is adjusted, and the optical characteristic of the illumination light IL is adjusted by adjusting the relative distance.
  • the illumination area 203 is enlarged or reduced so as to approximate the attention area 201, and the illumination scheduled area 205 is canceled along with the enlargement, or the area 207 is eliminated along with the reduction, and as a result, the illumination scheduled area 205 receives the illumination light IL. Illuminated.
  • the illumination unit 29 is fixed, the adjustment member 75 holds the light distribution adjustment illumination unit 90, and the adjustment member 75 moves, so that the light distribution adjustment illumination unit 90 moves.
  • the relative distance is adjusted, but the adjustment of the relative distance need not be limited to this.
  • the light distribution adjustment illumination unit 90 may be fixed, the adjustment member 75 may hold the illumination unit 29, and the adjustment member 75 may move to move the illumination unit 29 relative to the light distribution adjustment illumination unit 90. .
  • the relative distance may be adjusted.
  • the adjustment member 75 holds at least one of the illumination unit 29 and the light distribution adjustment illumination unit 90, and when the adjustment member 75 moves, at least one of the illumination unit 29 and the light distribution adjustment illumination unit 90 is opposed to the other. You may move. Thereby, the relative distance may be adjusted.
  • the adjustment mechanism 70 adjusts the optical characteristic of the illumination light IL by adjusting the relative distance between the illumination unit 29 and the light distribution adjustment illumination unit 90.
  • the relative distance is adjusted stepwise or continuously.
  • the extraction unit 61 divides the captured image 301 into a plurality of areas, and extracts color coordinate values that are examples of representative values for each of the divided areas.
  • the color coordinate value is extracted from the color pixel values constituting the pixel.
  • the conversion from the color pixel value to the color coordinate value is calculated based on the following formula (2), for example.
  • the RGB color system represents a color based on the mixing amount of the three primary colors of R (700.0 nm), G (546.1 nm), and B (435.8 nm).
  • the conversion formula to the XYZ color system which corrects the defect indicating the negative value of the RGB color system is the following formula (1).
  • Expressions (2) and (3) shown below are converted from the XYZ color system to the two-dimensional coordinate xy expression coordinates.
  • RGB of the pixel value of the captured image is extracted, converted by these formulas, and converted to formula coordinates.
  • the determination unit 63 calculates whether or not the color coordinate value falls within a predetermined range of the color coordinate value, and pays attention to an area 209 (see FIG. 6D) having the color coordinate value that falls within the predetermined range.
  • the region 201 is determined.
  • the determination unit 63 determines an area 209 having a color coordinate value characteristically present in the tumor as a predetermined color coordinate range. .
  • the determination unit 63 sets the region 209 as the attention region 201 where the tumor exists.
  • the predetermined color coordinate range may be set according to the part of the subject 13.
  • Information on the color coordinate range corresponding to the target part may be stored and read as table data in a recording unit (not shown).
  • the determination unit 63 may determine a range 211 that includes a color existing in a region other than the tumor in the subject 13.
  • the determining unit 63 may determine, for example, an area in which the red pixel value is equal to or greater than a predetermined value among the RGB values of the captured image 301 as the attention area 201.
  • the determination unit 63 may determine, as the attention area 201, an area in which the values of a plurality of color pixels such as blue and green other than the red pixels are equal to or greater than a predetermined value among the RGB values of the captured image 301.
  • the light source control unit 23 controls the light source 21 to emit primary light.
  • the primary light emitted from the light source 21 passes through the light guide member 25, the demultiplexing unit 27, and the light guide member 25 and proceeds to the illumination unit 29.
  • the light distribution angle of the primary light emitted from the light guide member 25 and entering the illumination unit 29 is narrow, and the primary light is a narrow light distribution.
  • the light distribution half-value angle of the primary light is, for example, 15 degrees.
  • the primary light passes through the transmission member 29b and irradiates the light conversion member 29a.
  • a part of the primary light is diffused by the diffusing particles. This light is referred to as primary diffused light that is secondary light SL.
  • the primary diffused light has a different diffusion angle from the primary light incident on the illumination unit 29.
  • the remaining part of the primary light is absorbed by the phosphor and converted into light having a wavelength longer than that of the primary light. This light is referred to as converted light that is the secondary light SL.
  • converted light is emitted without directivity inside the light conversion member 29a.
  • the primary diffused light and the converted light travels in the direction opposite to the primary light incident on the illumination unit 29 inside the light conversion member 29a.
  • the first-order diffused light and converted light traveling in the opposite directions are reflected by the reflecting member 29c and travel forward of the light converting member 29a.
  • the primary diffused light and the converted light are repeatedly performed by diffusing the diffusing particles and reflecting the reflecting member 29c.
  • the primary diffused light and the converted light are emitted as the secondary light SL from the illumination unit 29 toward the light distribution adjusting illumination unit 90 in a state having a wide light distribution angle.
  • the light distribution half-value angle of the secondary light SL is, for example, around 125 degrees.
  • the light distribution characteristic of the secondary light SL is symmetrical with respect to the optical axis.
  • the secondary light SL is incident on the optical element 93.
  • the light distribution of the illumination light IL is adjusted by the relationship described later in the optical element 93.
  • the illumination light IL is emitted from the optical element 31 to the outside and illuminates the subject 13.
  • the illumination light IL is reflected and diffused by the subject 13, and the reflected light RL enters the imaging unit 41.
  • the imaging unit 40 is driven.
  • the imaging unit 41 captures the reflected light RL, the image processing unit generates a captured image 301 based on the reflected light RL, and the display unit 50 displays the captured image 301.
  • Steps 1, 2, and 3 are performed in order.
  • the extraction unit 61 extracts a color coordinate value and outputs the color coordinate value to the determination unit 63 (Step 21).
  • the determination unit 63 determines the region of interest 201 based on the color coordinate values extracted by the extraction unit 61 (Step 22).
  • Step 6 is performed as in the first embodiment.
  • the setting unit 67 outputs information related to the planned illumination area 205 to the control unit 80.
  • the control unit 80 controls the adjustment mechanism 70 based on this information. And the adjustment mechanism 70 adjusts the relative distance between the optical element 93 and the illumination part 29 based on control of the control part 80 (Step23). Then, Step 8 is performed.
  • the illumination scheduled area 205 includes, for example, the inside of the attention area 201 and the illumination area 203. Is an external area. In this case, the illumination area 203 needs to be enlarged to approximate the attention area 201.
  • the ball screw of the adjusting mechanism 70 rotates in the second direction around the axis of the ball screw by the driving force, and the adjusting member 75 moves along the optical axis direction of the primary light.
  • the light distribution adjustment illumination unit 90 held by the adjustment member 75 moves along the optical axis direction of the primary light with respect to the illumination unit 29 in conjunction with the adjustment member 75.
  • the optical element 93 approaches the illumination unit 29, and the relative distance between the illumination unit 29 and the optical element 93 is shortened.
  • the illumination light IL is emitted from the light distribution adjustment illumination unit 90 as a wide light distribution.
  • the illumination area 203 is enlarged so as to approximate the attention area 201, and the planned illumination area 205 is eliminated along with the enlargement.
  • the illumination planned area 205 is illuminated with the illumination light IL.
  • Steps 22 and 6 for example, when the illumination area 203 is larger than the attention area 201 and the illumination area 203 includes the attention area 201, the illumination scheduled area 205 is the attention area 201. In this case, the illumination area 203 needs to be reduced so as to approximate the attention area 201. For this reason, in Step 23, the ball screw of the adjusting mechanism 70 rotates in the first direction around the axis of the ball screw by the driving force, and the adjusting member 75 moves along the optical axis direction of the primary light. The light distribution adjustment illumination unit 90 held by the adjustment member 75 moves along the optical axis direction of the primary light with respect to the illumination unit 29 in conjunction with the adjustment member 75. As shown in FIG. 6C, the optical element 93 is separated from the illumination unit 29, and the relative distance between the illumination unit 29 and the optical element 93 is increased.
  • the relative distance when the relative distance is long, the component of the secondary light SL having a large angle formed with the optical axis in the secondary light SL emitted from the illumination unit 29 is reflected on the reflecting member 95. It travels and is reflected toward the optical element 93 by the reflecting member 95 so that the angle formed with the optical axis becomes small.
  • the adjustment amount of the light distribution adjusting illumination unit 90 with respect to the secondary light SL is large, and the light distribution angle of the illumination light IL is narrow. Therefore, the illumination light IL is emitted from the light distribution adjustment illumination unit 90 as a narrow light distribution.
  • the illumination area 203 is reduced so as to approximate the attention area 201, and unnecessary illumination light IL is eliminated along with the reduction.
  • the attention area 201 which is the illumination scheduled area 205 is illuminated with the illumination light IL.
  • the attention area 201 is determined based on the color coordinate value. For this reason, a specific part, for example, the periphery of a blood vessel can be easily determined as the attention area 201, and the illumination light IL can be illuminated without waste.
  • the light distribution of the illumination light IL applied to the planned illumination area 205 can be adjusted by the light distribution adjustment illumination unit 90 and the adjustment mechanism 70.
  • the light distribution characteristic associated with the relative distance can be adjusted stepwise or continuously.
  • the illumination area 203 is enlarged or reduced by light distribution adjustment so that the illumination area 203 substantially matches the attention area 201.
  • the light quantity ratio of the primary light in the illumination areas 203a and 203b is constant, and the illumination area 203 is enlarged or reduced according to the light quantity of the illumination light IL, not the light distribution adjustment, and the illumination area 203 is illuminated. The position is adjusted by the mechanical structure.
  • the endoscope system 10 is fixed to the fixing portion 101 while holding the illumination portion 29 and the fixing portion 101 fixed to the inner wall of the distal end portion 11 of the insertion portion, and is elastically deformable.
  • an elastic holding portion 103 holds one illumination unit 29 so that the illumination light IL is not blocked by the elastic holding unit 103.
  • the elastic holding portion 103 has, for example, a ring shape, and the distal end portion of the illumination unit 29 engages with the hollow portion of the elastic holding portion 103.
  • a part of the elastic holding part 103 is fixed to the fixing part 101.
  • the fixing part 101 is disposed outside the elastic holding part 103.
  • one or more illumination units 29 are arranged.
  • the illumination units 29 are arranged symmetrically with respect to each other with the imaging unit 41 as the center.
  • the illumination part 29 is arrange
  • the adjustment mechanism 70 is arranged in the same number as the illumination unit 29 and in pairs with the illumination unit 29, and includes an inclined unit 110 that inclines the illumination unit 29 with respect to the central axis of the distal end portion 11. Have.
  • the adjustment mechanism 70 adjusts the direction that is the optical characteristic of the illumination light IL by tilting.
  • the inclined portion 110 is a working source that operates by a supply source 111 that supplies a current, an electromagnet 113 that is a drive source driven by the current supplied from the supply source 111, and a magnetic force that is a driving force generated by the electromagnet 113.
  • Magnetic body 115 is a working source that operates by a supply source 111 that supplies a current, an electromagnet 113 that is a drive source driven by the current supplied from the supply source 111, and a magnetic force that is a driving force generated by the electromagnet 113.
  • the supply source 111 is controlled by the control unit 80.
  • the electromagnet 113 is disposed behind the magnetic body 115.
  • the electromagnet 113 is arranged at a desired distance from the magnetic body 115 so that the magnetic force can act on the magnetic body 115.
  • the magnetic body 115 is disposed on the opposite side of the fixing unit 101 with the illumination unit 29 interposed therebetween in the elastic holding unit 103.
  • the magnetic body 115 is disposed beside the illumination unit 29 and inside the elastic holding unit 103.
  • the magnetic body 115 is arranged between the illumination unit 29 and the imaging unit 41.
  • the determination unit 63 determines the entire display image 303 displayed by the display unit 50 as the attention area 201.
  • Steps 1, 2, and 3 are performed in order.
  • the determination unit 63 determines the entire display image 303 as the attention area 201 (Step 31).
  • Step 6 is performed as in the first embodiment.
  • the setting unit 67 outputs information related to the planned illumination area 205 to the control unit 80.
  • the control unit 80 controls the light source control unit 23 and the adjustment mechanism 70 based on this information.
  • the light source control unit 23 controls the amount of primary light output from the light source 21 based on the control of the control unit 80 (information on the planned illumination area 205). Thereby, the size of the illumination area 203 is adjusted according to the planned illumination area 205, and is enlarged or reduced as desired (Step 32). The size of the illumination area 203 does not need to be defined in advance, and may be adjusted according to the situation.
  • the illumination unit 29 is inclined with respect to the axial direction of the optical element 31 by the adjusting mechanism 70 (Step 33). Specifically, in the adjustment mechanism 70, the supply source 111 supplies current to the electromagnet 113. When the electromagnet 113 causes a magnetic force to act on the magnetic body 115 (the magnetic body 115 is attracted to or separated from the electromagnet 113), as shown in FIG. The illumination unit 29 is tilted with respect to the axial direction of the optical element 31. As a result, the emission direction of the illumination light IL changes. As shown in FIG. 7B, for example, when the electromagnet 113 attracts the magnetic body 115, the illumination unit 29 is inclined so that the optical axis of the illumination unit 29 approaches the central axis of the imaging unit 41. When the electromagnet 113 separates the magnetic body 115, the illumination unit 29 is tilted so that the optical axis of the illumination unit 29 is separated from the central axis of the imaging unit 41. The inclination angle increases in proportion to the current value.
  • the illumination region 203 moves according to the tilt, as shown in FIGS. 7C and 7D.
  • the electromagnet 113 attracts the magnetic body 115
  • the illumination areas 203a and 203b approach each other.
  • the electromagnet 113 separates the magnetic body 115, the illumination areas 203a and 203b are separated from each other.
  • the attention area 201 that is the planned illumination area 205 is illuminated with the illumination light IL (Step 8).
  • the illumination area 203 When the illumination area 203 substantially coincides with the attention area 201, it is necessary that the illumination area 203 does not protrude from the planned illumination area 205. For this reason, the illumination area 203 moves so that the area of the planned illumination area 205 is equal to or less than a predetermined ratio (for example, 10%) of the area of the attention area 201.
  • a predetermined ratio for example, 10%
  • the attention area 201 is a display image 303.
  • the illumination light IL can be illuminated on the entire captured image 301.
  • the illumination unit 29 Since the illumination unit 29 is tilted and the illumination light IL is illuminated on the planned illumination area 205, the illumination light IL can be easily illuminated at a desired site to be observed.
  • two or more illumination units 29 are arranged, it is possible to illuminate a desired part to be observed with a plurality of illumination lights IL, and to observe a desired part to be observed in a bright state.
  • One or more illumination units 29 may be arranged.
  • the adjustment mechanism 70 also serves as the light source control unit 23.
  • the adjustment mechanism 70 adjusts the optical characteristics of the illumination light IL by adjusting the light quantity ratio of the primary light output from each light source 21.
  • the amount of primary light When the amount of primary light is adjusted, the amount of primary light increases or decreases. As a result, the illumination area 203 expands or contracts around the optical axis of the illumination light IL.
  • the center of the illumination area 203 is bright and the periphery of the illumination area 203 is dark.
  • the illumination areas 203a and 203b have the same size and the illumination areas 203a and 203b have the same light amount, a part of the illumination area 203a overlaps with a part of the illumination area 203b as shown in FIG. 8B.
  • the center of the captured image 301 is bright and the periphery of the captured image 301 is dark.
  • the illumination area 203a shrinks because the light quantity of the primary light radiate
  • Step 6 the setting unit 67 outputs information related to the planned illumination area 205 to the control unit 80.
  • the control unit 80 controls the light source control unit 23 based on this information.
  • the light source control unit 23 controls the amount of primary light output from the light source 21 based on the control of the control unit 80 (information on the planned illumination area 205).
  • the size of the illumination area 203 is adjusted according to the planned illumination area 205, and is enlarged or reduced as desired (Step 32).
  • the attention area 201 that is the planned illumination area 205 is illuminated with the illumination light IL (Step 8).
  • the illumination area 203a (illumination light IL) that does not need to be illuminated can be cut according to the attention area 201, so that power consumption can be reduced.
  • the determination unit 63 determines the attention area 201 based on any one of the contrast value, the color coordinate value, and the display image 303 of the display unit 50, which are specified values specified in advance.
  • the specific method is not limited to the above.
  • the configurations shown in the first, second, and third embodiments may be combined, and any one of the contrast value, the color coordinate value, and the display image 303 of the display unit 50 that are representative values may be designated.
  • Steps 1, 2, and 3 are sequentially performed as in the first embodiment.
  • the designation unit 120 designates any one of the designated values of the contrast value, the color coordinate value, and the display image 303 of the display unit 50 used for determining the attention area 201 ( Step 51).
  • the determination unit 63 determines the attention area 201 based on the specified value specified by the specifying unit 120 (Step 52). For example, when the designation unit 120 designates the contrast value, the designation unit 120 outputs the designation result to the extraction unit 61 as illustrated in FIG. The extraction unit 61 extracts a contrast value and outputs the contrast value to the determination unit 63. The determination unit 63 determines the attention area 201 based on the contrast value extracted by the extraction unit 61. For example, when the designation unit 120 designates the color coordinate value, the designation unit 120 outputs the designation result to the extraction unit 61 as illustrated in FIG. The extraction unit 61 extracts the color coordinate value and outputs the contrast value to the determination unit 63.
  • the determination unit 63 determines the attention area 201 based on the color coordinate values extracted by the extraction unit 61. For example, when the designation unit 120 designates the display image 303 of the display unit 50, the designation unit 120 outputs the designation result to the determination unit 63 as illustrated in FIG. The determination unit 63 determines the entire display image 303 displayed by the display unit 50 as the attention area 201.
  • Steps 6, 7, and 8 are sequentially performed as in the first embodiment.
  • the designation unit 120 can perform appropriate light distribution adjustment according to the subject 13.
  • the determination unit 63 determines the attention area 201 based on the contrast value extracted by the extraction unit 61.
  • the adjustment mechanism 70 adjusts the relative distance between the illumination unit 29 and the optical element 31.
  • the determination unit 63 determines the attention area 201 based on the color coordinate values.
  • the adjustment mechanism 70 adjusts the relative distance between the illumination unit 29 and the light distribution adjustment illumination unit 90.
  • the determination unit 63 determines the display image 303 as the attention area 201.
  • the adjustment mechanism 70 tilts the illumination unit 29 to adjust the emission direction of the illumination light IL.
  • the combination of the determination unit 63 and the adjustment mechanism 70 in each embodiment is not limited to the above, and can be changed as appropriate.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment.

Abstract

This endoscope system (10) includes: an illumination unit (20); an imaging unit (40); a determination unit (63) that determines a region of interest (201) which is a region of interest for observation on the basis of a captured image of a subject imaged by the imaging unit (40); and a specification unit (65) that specifies an illuminated region (203) which is a region illuminated by an illumination light on the basis of the captured image. The endoscope system (10) further includes: a setting unit (67) that sets a predetermined illumination region (205) which is region to be illuminated with the illumination light on the basis of the region of interest (201) and the illuminated region (203); and an adjustment mechanism (70) that adjusts the optical properties of the illumination light so that the predetermined illumination region (205) will be illuminated with the illumination light.

Description

内視鏡システム及び内視鏡システムの制御方法Endoscope system and control method of endoscope system
 本発明は、内視鏡システム及び内視鏡システムの制御方法に関する。 The present invention relates to an endoscope system and an endoscope system control method.
 例えば特許文献1は、細長い挿入部を有する内視鏡を開示している。この挿入部は、光源から出射された光を伝送するライトガイドと、ライトガイドの出射端部前方に配置され、照明レンズ群を有する照明光学系とを内蔵する。照明レンズ群は、少なくとも1つ光学素子を有する。光学素子は、ライトガイドの出射端面に対向し、出射端面に対して傾斜した斜面を有する。 For example, Patent Document 1 discloses an endoscope having an elongated insertion portion. The insertion unit includes a light guide that transmits light emitted from the light source, and an illumination optical system that is disposed in front of the light emission end of the light guide and includes an illumination lens group. The illumination lens group has at least one optical element. The optical element has an inclined surface facing the emission end face of the light guide and inclined with respect to the emission end face.
 広い視野角を有する細い内視鏡において、石英系のライトガイドのように、NAが小さいライトガイドが使用された場合であっても、光学素子によって、視野周辺は十分に照明される。 Even in the case where a light guide having a small NA such as a quartz light guide is used in a thin endoscope having a wide viewing angle, the periphery of the field of view is sufficiently illuminated by the optical element.
特開平8-286125号公報JP-A-8-286125
 内視鏡において、照明光の照明領域は予め固定されている。このため照明光の照明領域を狭い視野角に対応して予め狭く設定していると、観察に応じて視野角が広くなった場合、観察のために注目する領域である注目領域が照明領域よりも大きくなり、注目領域が照明領域を内包する。この場合、注目領域の内部且つ照明領域の外部に存在し、照明光の照明を予定される領域である照明予定領域に、照明光を十分に配光できない虞が生じる。 
 逆に、照明光の照明領域を広い視野角に対応して予め広く設定していると、観察に応じて視野角が狭くなった場合、照明領域が注目領域よりも大きくなり、照明領域が注目領域を内包する。この場合、照明領域の内部且つ注目領域の外部に存在し、照明光が照明される領域は、照明光が無駄に照明される領域となる。 
 このため、視野角に応じて、照明光を十分に配光できず、照明光に無駄が発生する。 
 視野角に影響されることなく、照明光を十分に配光でき、照明光の無駄を抑制することが望まれている。
In the endoscope, the illumination area of the illumination light is fixed in advance. For this reason, if the illumination area of the illumination light is set to be narrow in advance corresponding to a narrow viewing angle, when the viewing angle becomes wide according to the observation, the attention area that is the area of interest for observation is more than the illumination area. The attention area includes the illumination area. In this case, there is a possibility that the illumination light cannot be sufficiently distributed to the planned illumination area that exists inside the attention area and outside the illumination area and is planned to be illuminated with illumination light.
On the other hand, if the illumination area of the illumination light is set to be wide in advance corresponding to a wide viewing angle, when the viewing angle becomes narrow according to observation, the illumination area becomes larger than the attention area, and the illumination area is focused. Contains the area. In this case, the region that exists inside the illumination region and outside the region of interest and is illuminated with illumination light is a region where illumination light is illuminated wastefully.
For this reason, the illumination light cannot be sufficiently distributed according to the viewing angle, and the illumination light is wasted.
It is desired that illumination light can be sufficiently distributed without being affected by the viewing angle, and that waste of illumination light is suppressed.
 本発明は、これらの事情に鑑みてなされたものであり、視野角によらず、照明光の無駄を抑制できる内視鏡システム及び内視鏡システムの制御方法を提供することを目的とする。 The present invention has been made in view of these circumstances, and an object thereof is to provide an endoscope system and an endoscope system control method that can suppress the waste of illumination light regardless of the viewing angle.
 本発明の内視鏡システムの一態様は、照明光を被写体に照明する照明ユニットと、被写体から反射された前記照明光を基に前記被写体を撮像する撮像ユニットと、前記撮像ユニットによって撮像された前記被写体の撮像画像を基に観察のために注目する領域である注目領域を決定する注目領域決定部と、前記照明光が照明している領域である照明領域を、前記撮像画像を基に特定する照明領域特定部と、前記注目領域と前記照明領域とを基に、前記照明光の照明を予定される領域である照明予定領域を設定する照明予定領域設定部と、前記照明予定領域が前記照明光を照明されるように、前記照明光の光学特性を調整する調整機構とを具備する。 One aspect of the endoscope system of the present invention is an imaging unit that illuminates a subject with illumination light, an imaging unit that images the subject based on the illumination light reflected from the subject, and an image taken by the imaging unit. An attention area determination unit that determines an attention area that is an area of interest for observation based on a captured image of the subject and an illumination area that is illuminated by the illumination light are identified based on the captured image An illumination area specifying unit, an illumination scheduled area setting unit for setting an illumination scheduled area that is an area where illumination of the illumination light is scheduled based on the attention area and the illumination area, and the illumination scheduled area is the An adjustment mechanism for adjusting the optical characteristics of the illumination light so that the illumination light is illuminated.
 本発明の内視鏡システムの制御方法の一態様は、照明部から照明光を出射し前記照明光を被写体に照明する照明工程と、前記被写体から反射された前記照明光を基に前記被写体を撮像ユニットによって撮像する撮像工程と、前記照明光が照明している領域である照明領域を、前記撮像ユニットによって撮像された前記被写体の撮像画像を基に照明領域特定部によって特定する特定工程と、前記撮像画像を基に、観察のために注目する領域である注目領域を注目領域決定部によって決定する決定工程と、前記注目領域と前記照明領域とを基に、前記照明光の照明を予定される領域である照明予定領域を照明予定領域設定部によって設定する設定工程と、前記照明予定領域が前記照明光を照明されるように、前記照明光の光学特性を調整機構によって調整する調整工程とを具備する。 One aspect of the control method of the endoscope system according to the present invention includes an illumination step of emitting illumination light from an illumination unit to illuminate the subject with the illumination light, and the subject on the basis of the illumination light reflected from the subject. An imaging step of imaging by the imaging unit, a specifying step of specifying an illumination region, which is a region illuminated by the illumination light, by an illumination region specifying unit based on a captured image of the subject imaged by the imaging unit, Based on the captured image, a determination step of determining an attention area that is an area of interest for observation by an attention area determination unit, and illumination of the illumination light is scheduled based on the attention area and the illumination area. A setting step of setting a planned illumination area, which is a target area, by the planned illumination area setting unit; and an optical mechanism for adjusting the optical characteristics of the illumination light so that the planned illumination area is illuminated with the illumination light. It includes an adjustment step of adjusting me.
 本発明によれば、視野角によらず、照明光の無駄を抑制できる内視鏡システム及び内視鏡システムの制御方法を提供できる。 According to the present invention, it is possible to provide an endoscope system and an endoscope system control method capable of suppressing the waste of illumination light regardless of the viewing angle.
図1Aは、本発明の第1の実施形態に係る内視鏡システムの概略図である。FIG. 1A is a schematic diagram of an endoscope system according to the first embodiment of the present invention. 図1Bは、照明部と調整機構との構成を示す図である。FIG. 1B is a diagram illustrating a configuration of an illumination unit and an adjustment mechanism. 図1Cは、挿入部の先端部の正面図である。FIG. 1C is a front view of the distal end portion of the insertion portion. 図2Aは、注目領域が照明領域よりも大きく、注目領域が照明領域を内包している状態で、照明予定領域が設定されること示す図である。FIG. 2A is a diagram illustrating that a planned illumination area is set in a state where the attention area is larger than the illumination area and the attention area includes the illumination area. 図2Bは、図2Aに示す照明予定領域に照明光が照明されることを示す図である。FIG. 2B is a diagram illustrating that illumination light is illuminated on the planned illumination area illustrated in FIG. 2A. 図2Cは、照明領域が注目領域よりも大きく、照明領域が注目領域を内包している状態で、照明予定領域が設定されること示す図である。FIG. 2C is a diagram illustrating that the illumination planned area is set in a state where the illumination area is larger than the attention area and the illumination area includes the attention area. 図2Dは、図2Cに示す照明予定領域に照明光が照明されることを示す図である。FIG. 2D is a diagram illustrating that the illumination light is illuminated on the planned illumination area illustrated in FIG. 2C. 図3Aは、配光を調整する原理を説明する図である。FIG. 3A is a diagram for explaining the principle of adjusting the light distribution. 図3Bは、配光を調整する原理を説明する図である。FIG. 3B is a diagram for explaining the principle of adjusting the light distribution. 図4は、第1の実施形態における配光を調整する動作を示すフローチャートである。FIG. 4 is a flowchart illustrating an operation of adjusting the light distribution in the first embodiment. 図5は、第1の実施形態の変形例における配光を調整する動作を示すフローチャートである。FIG. 5 is a flowchart showing an operation for adjusting the light distribution in the modification of the first embodiment. 図6Aは、本発明の第2の実施形態に係る照明部と調整機構と配光調整照明ユニットとの構成を示す図である。FIG. 6A is a diagram illustrating a configuration of an illumination unit, an adjustment mechanism, and a light distribution adjustment illumination unit according to the second embodiment of the present invention. 図6Bは、照明部と配光調整照明ユニットの光学素子との間の相対距離が短くなり、広配光で照明光が出射される状態を示す図である。FIG. 6B is a diagram illustrating a state in which the relative distance between the illumination unit and the optical element of the light distribution adjusting illumination unit is shortened, and illumination light is emitted with wide light distribution. 図6Cは、照明部と配光調整照明ユニットの光学素子との間の相対距離が長くなり、狭配光で照明光が出射される状態を示す図である。FIG. 6C is a diagram illustrating a state in which the relative distance between the illumination unit and the optical element of the light distribution adjusting illumination unit is increased, and illumination light is emitted with a narrow light distribution. 図6Dは、第2の実施形態の注目領域を説明する図である。FIG. 6D is a diagram illustrating a region of interest according to the second embodiment. 図6Eは、第2の実施形態における配光を調整する動作を示すフローチャートである。FIG. 6E is a flowchart showing an operation of adjusting the light distribution in the second embodiment. 図7Aは、本発明の第3の実施形態に係る照明部と調整機構との構成を示す図である。FIG. 7A is a diagram illustrating a configuration of an illumination unit and an adjustment mechanism according to the third embodiment of the present invention. 図7Bは、調整機構によって傾斜した照明部を示す図である。FIG. 7B is a diagram illustrating the illumination unit inclined by the adjustment mechanism. 図7Cは、照明部が傾斜する前の状態における注目領域と照明領域と照明予定領域との位置関係を示す図である。FIG. 7C is a diagram illustrating a positional relationship among a region of interest, an illumination region, and a planned illumination region in a state before the illumination unit is tilted. 図7Dは、照明部が傾斜した後の状態における注目領域と照明領域と照明予定領域との位置関係を示す図である。FIG. 7D is a diagram illustrating a positional relationship among a region of interest, an illumination region, and a planned illumination region in a state after the illumination unit is tilted. 図7Eは、第3の実施形態における配光を調整する動作を示すフローチャートである。FIG. 7E is a flowchart illustrating an operation of adjusting the light distribution in the third embodiment. 図8Aは、本発明の第4の実施形態に係る内視鏡システムの概略図である。FIG. 8A is a schematic view of an endoscope system according to the fourth embodiment of the present invention. 図8Bは、光量が調整される前の状態における注目領域と照明領域と照明予定領域との位置関係を示す図である。FIG. 8B is a diagram illustrating a positional relationship among a region of interest, an illumination region, and an illumination scheduled region before the light amount is adjusted. 図8Cは、光量が調整された後の状態における注目領域と照明領域と照明予定領域との位置関係を示す図である。FIG. 8C is a diagram illustrating a positional relationship among the attention area, the illumination area, and the illumination scheduled area in a state after the light amount is adjusted. 図8Dは、第4の実施形態における配光を調整する動作を示すフローチャートである。FIG. 8D is a flowchart illustrating an operation of adjusting the light distribution in the fourth embodiment. 図9は、第5の実施形態における配光を調整する動作を示すフローチャートである。FIG. 9 is a flowchart showing an operation of adjusting the light distribution in the fifth embodiment.
 以下、図面を参照して本発明の実施形態について詳細に説明する。なお一部の図面では図示の明瞭化のために部材の一部の図示を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that in some drawings, illustration of some of the members is omitted for clarity of illustration.
 [第1の実施形態] 
 [構成] 
 図1Aと図1Bと図1Cと図2Aと図2Bと図2Cと図2Dと図3Aと図3Bと図4とを参照して第1の実施形態について説明する。 
 図1Aに示すように、内視鏡システム10は、図示しない内視鏡に設けられる挿入部の先端部11から照明光ILを被写体13に照明する照明ユニット20と、被写体13から反射された反射光RLである照明光ILを基に被写体13を撮像する撮像ユニット40とを有する。内視鏡システム10は、撮像ユニット40によって撮像された撮像画像301(図2A,2B,2C,2D参照)を表示する表示部50を有する。
[First Embodiment]
[Constitution]
The first embodiment will be described with reference to FIGS. 1A, 1B, 1C, 2A, 2B, 2C, 2D, 3A, 3B, and 4. FIG.
As shown in FIG. 1A, an endoscope system 10 includes an illumination unit 20 that illuminates a subject 13 with illumination light IL from a distal end portion 11 of an insertion portion that is provided in an endoscope (not shown), and a reflection that is reflected from the subject 13. An imaging unit 40 that images the subject 13 based on the illumination light IL that is the light RL. The endoscope system 10 includes a display unit 50 that displays a captured image 301 (see FIGS. 2A, 2B, 2C, and 2D) captured by the imaging unit 40.
 [照明ユニット20] 
 図1Aに示すように、照明ユニット20は、1次光を出射する光源21と、光源21を制御する光源制御部23と、1次光を導光する複数の導光部材25と、光源21から出射された1次光を複数の1次光に分波する分波部27とを有する。照明ユニット20は、導光部材25によって導光された1次光の光学特性を変換し、光学特性を変換された1次光を照明光ILとして被写体13に照明する複数の照明部29と、照明部29と同数且つ照明部29と対に配置され、照明部29から出射された照明光ILが透過する光学素子31とを有する。
[Lighting unit 20]
As shown in FIG. 1A, the illumination unit 20 includes a light source 21 that emits primary light, a light source control unit 23 that controls the light source 21, a plurality of light guide members 25 that guide primary light, and a light source 21. And a demultiplexing unit 27 that demultiplexes the primary light emitted from the light into a plurality of primary lights. The illumination unit 20 converts the optical characteristics of the primary light guided by the light guide member 25, and illuminates the subject 13 with the primary light having the converted optical characteristics as illumination light IL, and It has the same number of the illumination units 29 and is arranged in pairs with the illumination units 29, and has an optical element 31 through which the illumination light IL emitted from the illumination unit 29 is transmitted.
 [光源21] 
 光源21は、例えば、青色のレーザ光を出射するレーザーダイオードを有する。レーザ光の中心波長は、例えば、445nmである。光源21は、他の色の光を出射してもよい。光源21は、内視鏡の外部に設けられる筐体部の内部に設けられてもよいし、内視鏡の内部に設けられてもよい。
[Light source 21]
The light source 21 includes, for example, a laser diode that emits blue laser light. The center wavelength of the laser light is, for example, 445 nm. The light source 21 may emit light of other colors. The light source 21 may be provided inside a housing part provided outside the endoscope, or may be provided inside the endoscope.
 [光源制御部23] 
 光源制御部23は、光源21が駆動するために必要な電力を光源21に供給する。光源制御部23は、所定の閾値の電力以上かつ照明光ILの光量に比例した電力を光源21に供給する、または光源21の駆動間隔に応じた電力を光源21に供給する。光源制御部23は、図示しない第1操作部が操作されることによって、電力を供給する。この第1操作部は、操作者が照明光ILの出射をオンまたはオフすることを指示するために操作される。光源21が筐体部の内部に設けられる場合、光源制御部23及び第1操作部は筐体部の内部に設けられる。光源21が内視鏡の内部に設けられる場合、光源制御部23は内視鏡の内部に設けられる。第1操作部は、内視鏡に設けられる。
[Light source control unit 23]
The light source control unit 23 supplies power necessary for the light source 21 to drive to the light source 21. The light source control unit 23 supplies power to the light source 21 that is equal to or greater than a predetermined threshold power and is proportional to the amount of illumination light IL, or supplies power to the light source 21 according to the driving interval of the light source 21. The light source control unit 23 supplies power when a first operation unit (not shown) is operated. The first operation unit is operated to instruct the operator to turn on or off the emission of the illumination light IL. When the light source 21 is provided inside the housing unit, the light source control unit 23 and the first operation unit are provided inside the housing unit. When the light source 21 is provided inside the endoscope, the light source control unit 23 is provided inside the endoscope. The first operation unit is provided in the endoscope.
 [導光部材25] 
 図1Aに示すように、導光部材25は、光源21と分波部27の間に設けられ、光源21から出射された1次光を分波部27に導光する。導光部材25は、分波部27と照明部29との間にさらに設けられ、分波部27によって分波された1次光を照明部29にまで導光する。このような導光部材25は、例えば光ファイバを有する。光ファイバのコア径は例えば50μm、開口数FNA=0.2となっており、光ファイバはマルチモードの光ファイバである。光源21が筐体部の内部に設けられる場合、導光部材25は筐体部の内部と内視鏡の内部とに設けられる。光源21が内視鏡の内部に設けられる場合、導光部材25は内視鏡の内部に設けられる。
[Light guide member 25]
As shown in FIG. 1A, the light guide member 25 is provided between the light source 21 and the demultiplexing unit 27 and guides the primary light emitted from the light source 21 to the demultiplexing unit 27. The light guide member 25 is further provided between the demultiplexing unit 27 and the illumination unit 29, and guides the primary light demultiplexed by the demultiplexing unit 27 to the illumination unit 29. Such a light guide member 25 includes, for example, an optical fiber. The core diameter of the optical fiber is, for example, 50 μm and the numerical aperture FNA = 0.2, and the optical fiber is a multimode optical fiber. When the light source 21 is provided inside the casing, the light guide member 25 is provided inside the casing and inside the endoscope. When the light source 21 is provided inside the endoscope, the light guide member 25 is provided inside the endoscope.
 [分波部27] 
 図1Aに示すように、分波部27は、照明部29の数に合わせて1次光を分波する。本実施形態では、例えば2つの照明部29が設けられるため、分波部27は1次光を2つに分波する。分波部27は、例えば所望の比率で、1次光を分波する。本実施形態では、比率は、例えば、50:50である。比率は、均一になる必要はない。 
 なお照明部29が1つのみ設けられる場合、分波部27は省略され、光源21は導光部材25を介して照明部29に接続される。
[Demultiplexer 27]
As illustrated in FIG. 1A, the demultiplexing unit 27 demultiplexes the primary light in accordance with the number of illumination units 29. In the present embodiment, for example, since two illumination units 29 are provided, the demultiplexing unit 27 demultiplexes the primary light into two. The demultiplexing unit 27 demultiplexes the primary light at a desired ratio, for example. In the present embodiment, the ratio is, for example, 50:50. The ratio need not be uniform.
When only one illumination unit 29 is provided, the demultiplexing unit 27 is omitted, and the light source 21 is connected to the illumination unit 29 via the light guide member 25.
 図示はしないが、分波部27は、図示しない光コネクタによって、導光部材25に光学的に接続される。例えば、光源21が筐体部の内部に設けられる場合、分波部27は筐体部の内部に設けられてもよいし、内視鏡の内部に設けられてもよい。例えば、光源21が内視鏡の内部に設けられる場合、分波部27は内視鏡の内部に設けられる。 Although not shown, the demultiplexing unit 27 is optically connected to the light guide member 25 by an optical connector (not shown). For example, when the light source 21 is provided inside the housing unit, the demultiplexing unit 27 may be provided inside the housing unit or may be provided inside the endoscope. For example, when the light source 21 is provided inside the endoscope, the demultiplexing unit 27 is provided inside the endoscope.
 [照明部29] 
 図1Aに示すように、照明部29は、例えば接着剤などによって、挿入部の先端部11の内部に固定される。照明部29が導光部材25によって導光された1次光を受光した際、照明部29は、1次光の光学特性を所望に変換する光変換部として機能する。例えば、照明部29は、1次光とは異なる配光特性を有する照明光ILを生成し、照明光ILを出射する。このように照明部29は、1次光の配光を変換する配光変換部として機能する。照明光ILの配光特性は、1次光の光量によって変動しない性質を有する。
[Lighting unit 29]
As shown in FIG. 1A, the illumination unit 29 is fixed to the inside of the distal end portion 11 of the insertion portion by, for example, an adhesive. When the illumination unit 29 receives the primary light guided by the light guide member 25, the illumination unit 29 functions as a light conversion unit that converts the optical characteristics of the primary light to a desired value. For example, the illumination unit 29 generates illumination light IL having a light distribution characteristic different from the primary light, and emits the illumination light IL. Thus, the illumination unit 29 functions as a light distribution conversion unit that converts the light distribution of the primary light. The light distribution characteristic of the illumination light IL has a property that does not vary depending on the amount of primary light.
 図1Bに示すように、照明部29は、光変換部材29aと、1次光の進行方向において導光部材25の出射端面と光変換部材29aとの間に介在し、1次光の進行方向において導光部材25の出射端面及び光変換部材29aに光学的に接続される透過部材29bとを有する。照明部29は、光変換部材29aと透過部材29bとの側方に設けられる反射部材29cと、導光部材25の先端部と光変換部材29aと透過部材29bと反射部材29cとを保持する保持部材29dとをさらに有する。 As shown in FIG. 1B, the illumination unit 29 is interposed between the light conversion member 29a and the light emitting member 29a and the light conversion member 29a in the traveling direction of the primary light, and the traveling direction of the primary light. The light transmission member 29b is optically connected to the light output end face of the light guide member 25 and the light conversion member 29a. The illumination unit 29 holds the reflection member 29c provided on the side of the light conversion member 29a and the transmission member 29b, the tip of the light guide member 25, the light conversion member 29a, the transmission member 29b, and the reflection member 29c. And a member 29d.
 [光変換部材29a] 
 図1Bに示すように、光変換部材29aは、1次光の進行方向において透過部材29bの前方に設けられ、透過部材29bに光学的に接続される。光変換部材29aは、円錐台形状を有する。円錐台は、1次光の進行方向に従って拡径する。光変換部材29aの基端面の形状は透過部材29bの先端面の形状と略同一であり、光変換部材29aの基端面は透過部材29bの先端面に直接接触される。光変換部材29aと透過部材29bとが組み合わさった形状は、円錐台形状である。円錐台は、1次光の進行方向に従って拡径する。
[Light conversion member 29a]
As shown in FIG. 1B, the light conversion member 29a is provided in front of the transmission member 29b in the traveling direction of the primary light, and is optically connected to the transmission member 29b. The light conversion member 29a has a truncated cone shape. The truncated cone expands in diameter according to the traveling direction of the primary light. The shape of the base end surface of the light conversion member 29a is substantially the same as the shape of the front end surface of the transmission member 29b, and the base end surface of the light conversion member 29a is in direct contact with the front end surface of the transmission member 29b. The shape in which the light conversion member 29a and the transmission member 29b are combined is a truncated cone shape. The truncated cone expands in diameter according to the traveling direction of the primary light.
 光変換部材29aは、光変換部材29aに入射した1次光を照明光ILとして、被写体13側である前方及び導光部材25側である後方に向けて出射する。 The light conversion member 29a emits primary light incident on the light conversion member 29a as illumination light IL toward the front on the subject 13 side and the rear on the light guide member 25 side.
 光変換部材29aは、図示しない蛍光体と図示しない拡散部材との少なくとも一方と、蛍光体と拡散部材との少なくとも一方を封止する図示しない封止部材とを有する。 The light conversion member 29a includes at least one of a phosphor (not shown) and a diffusion member (not shown), and a sealing member (not shown) that seals at least one of the phosphor and the diffusion member.
 蛍光体は、1次光を吸収し、1次光の波長よりも長い波長を有する変換光に1次光を変換する波長変換部材である。蛍光体は、例えば、YAG:Ceで示す粉末である。蛍光体は、青色の波長域の1次光を吸収し、1次光を照明光ILである黄色の蛍光に波長変換する機能を有する。また、黄色の蛍光は指向性なく出射されるので、蛍光体は拡散機能も有する。封止部材は、粉末状の蛍光体が互いに封止部材に分散された状態で、蛍光体をまとめて包含する。 The phosphor is a wavelength conversion member that absorbs the primary light and converts the primary light into converted light having a wavelength longer than that of the primary light. The phosphor is, for example, a powder represented by YAG: Ce. The phosphor has a function of absorbing the primary light in the blue wavelength region and converting the wavelength of the primary light into yellow fluorescence that is the illumination light IL. Further, since yellow fluorescence is emitted without directivity, the phosphor also has a diffusion function. The sealing member collectively includes the phosphors in a state where the powdery phosphors are dispersed in the sealing member.
 拡散部材は、拡散部材に入射した1次光を、1次光の波長を変えずに、1次光の配光角を広げ、可干渉性を低めた拡散光に変換する機能を有する。拡散部材は、拡散光を照明光ILとして出射する。拡散部材は、金属または金属化合物によって形成される微粒子である。このような拡散部材は、例えばアルミナまたは酸化チタンである。封止部材は、拡散部材同士が互いに封止部材に分散された状態で、拡散部材をまとめて包含する。 The diffusing member has a function of converting the primary light incident on the diffusing member into diffused light with a reduced coherence by expanding the light distribution angle of the primary light without changing the wavelength of the primary light. The diffusing member emits diffused light as illumination light IL. The diffusion member is a fine particle formed of a metal or a metal compound. Such a diffusing member is, for example, alumina or titanium oxide. The sealing member collectively includes the diffusion member in a state where the diffusion members are dispersed in the sealing member.
 封止部材は、1次光及び照明光ILが透過する部材によって形成される。このような封止部材は、例えば、透明なシリコーン系の樹脂または透明なエポキシ系の樹脂である。封止部材は、1次光及び照明光ILに対して高い透過率を有する。 The sealing member is formed of a member that transmits the primary light and the illumination light IL. Such a sealing member is, for example, a transparent silicone resin or a transparent epoxy resin. The sealing member has a high transmittance with respect to the primary light and the illumination light IL.
 拡散部材の屈折率は、封止部材の屈折率とは異なる。例えば、拡散部材の屈折率は、封止部材の屈折率よりも高く、1.5以上であることが好ましい。これにより、拡散部材は、1次光の拡散性を向上可能となる。光変換部材29aの配光角は、例えば、封止部材に対する拡散部材の濃度、光変換部材29aの厚み等によって制御される。例えば、拡散部材の屈折率は1.7で、封止部材の屈折率は1.4である場合、封止部材に対する拡散部材の体積濃度は20%、光変換部材29aの厚みが0.1mmとなる。これにより、1次光は拡散光(照明光IL)として十分拡散され、照明光ILの配光角度が十分に広がる。 The refractive index of the diffusion member is different from the refractive index of the sealing member. For example, the refractive index of the diffusing member is higher than the refractive index of the sealing member, and is preferably 1.5 or more. Thereby, the diffusion member can improve the diffusibility of the primary light. The light distribution angle of the light conversion member 29a is controlled by, for example, the concentration of the diffusion member with respect to the sealing member, the thickness of the light conversion member 29a, and the like. For example, when the refractive index of the diffusing member is 1.7 and the refractive index of the sealing member is 1.4, the volume concentration of the diffusing member with respect to the sealing member is 20%, and the thickness of the light conversion member 29a is 0.1 mm. It becomes. Thereby, the primary light is sufficiently diffused as diffused light (illumination light IL), and the light distribution angle of the illumination light IL is sufficiently widened.
 [透過部材29b] 
 透過部材29bは、1次光と照明光ILとが透過する性質を有する。透過部材29bは、透過率が高いガラスまたは透過率が高いシリコーン樹脂によって形成される。透過部材29bは、円錐台形状を有する。円錐台は、1次光の進行方向に従って拡径する。
[Transparent member 29b]
The transmitting member 29b has a property of transmitting the primary light and the illumination light IL. The transmissive member 29b is formed of glass having a high transmittance or a silicone resin having a high transmittance. The transmission member 29b has a truncated cone shape. The truncated cone expands in diameter according to the traveling direction of the primary light.
 [反射部材29c] 
 反射部材29cは、1次光及び反射部材29cに入射した入射光を正反射または拡散反射する。反射部材29cは、散乱反射してもよい。入射光は、光変換部材29aから後方に向かって出射された照明光ILである。反射部材29cは、銀またはアルミニウムといった金属の薄膜である。
[Reflection member 29c]
The reflection member 29c regularly reflects or diffusely reflects the primary light and the incident light incident on the reflection member 29c. The reflection member 29c may be scattered and reflected. The incident light is illumination light IL emitted backward from the light conversion member 29a. The reflecting member 29c is a thin film of metal such as silver or aluminum.
 [保持部材29d] 
 図1Bに示すように、保持部材29dは、導光部材25が係合する第1孔部29eと、光変換部材29aと透過部材29bとが係合する第2孔部29fとを有する。第1孔部29eは、第2孔部29fと同軸上に設けられ、第2孔部29fと連通する。例えば、第1孔部29eは円柱形状を有する。例えば、第2孔部29fは、円錐台形状を有する。円錐台は、1次光の進行方向に従って拡径する。第2孔部29fの内周面には、反射部材29cが設けられる。
[Holding member 29d]
As shown in FIG. 1B, the holding member 29d has a first hole 29e with which the light guide member 25 is engaged, and a second hole 29f with which the light conversion member 29a and the transmission member 29b are engaged. The first hole 29e is provided coaxially with the second hole 29f, and communicates with the second hole 29f. For example, the first hole 29e has a cylindrical shape. For example, the second hole 29f has a truncated cone shape. The truncated cone expands in diameter according to the traveling direction of the primary light. A reflective member 29c is provided on the inner peripheral surface of the second hole 29f.
 導光部材25が第1孔部29eに係合し、光変換部材29aと透過部材29bとが第2孔部29fに係合した際、保持部材29dは導光部材25と光変換部材29aと透過部材29bとを保持する。これにより、導光部材25は透過部材29bに光学的に接続され、透過部材29bは光変換部材29aに光学的に接続され、反射部材29cは光変換部材29aの側面と透過部材29bの側面とに光学的に接続される。保持部材29dが光変換部材29aを保持した際、光変換部材29aの先端面は保持部材29dの先端面と同一平面上に設けられる。 When the light guide member 25 is engaged with the first hole 29e and the light conversion member 29a and the transmission member 29b are engaged with the second hole 29f, the holding member 29d is connected to the light guide member 25 and the light conversion member 29a. The transmission member 29b is held. Thereby, the light guide member 25 is optically connected to the transmission member 29b, the transmission member 29b is optically connected to the light conversion member 29a, and the reflection member 29c is connected to the side surface of the light conversion member 29a and the side surface of the transmission member 29b. To be optically connected. When the holding member 29d holds the light conversion member 29a, the tip surface of the light conversion member 29a is provided on the same plane as the tip surface of the holding member 29d.
 第2孔部29fと光変換部材29aと透過部材29bとのテーパ角度は保持部材29dの長手軸に対して例えば略10度~略60度に設定される。本実施形態では、例えばテーパ角度は、25度である。これにより、無指向性の蛍光である照明光ILと拡散された拡散光である照明光ILとは、照明部29から効率よく出射される。 The taper angle of the second hole 29f, the light conversion member 29a, and the transmission member 29b is set to, for example, approximately 10 degrees to approximately 60 degrees with respect to the longitudinal axis of the holding member 29d. In the present embodiment, for example, the taper angle is 25 degrees. Accordingly, the illumination light IL that is non-directional fluorescence and the illumination light IL that is diffused diffused light are efficiently emitted from the illumination unit 29.
 [光学素子31] 
 図1Aと図1Bとに示すように、1つの光学素子31が1つの照明部29に対して配置され、光学素子31が照明部29の前方に配置される。光学素子31は、照明部29から出射された照明光ILが透過するレンズである。各光学素子31は、挿入部の先端部11の内部において、後述する調整機構70によって保持される。各光学素子31は、調整機構70によって、同時に、光学素子31の軸方向に移動可能であり、移動によって照明部29に近づくまたは照明部29から離れる。つまり、光学素子31と照明部29との間の相対距離は、調整機構70によって、調整可能となっている。
[Optical element 31]
As shown in FIGS. 1A and 1B, one optical element 31 is arranged with respect to one illumination unit 29, and the optical element 31 is arranged in front of the illumination unit 29. The optical element 31 is a lens through which the illumination light IL emitted from the illumination unit 29 is transmitted. Each optical element 31 is held by an adjustment mechanism 70 described later in the distal end portion 11 of the insertion portion. Each optical element 31 can be simultaneously moved in the axial direction of the optical element 31 by the adjusting mechanism 70, and approaches or moves away from the illumination unit 29 by the movement. That is, the relative distance between the optical element 31 and the illumination unit 29 can be adjusted by the adjustment mechanism 70.
 [撮像ユニット40] 
 図1Aに示すように、撮像ユニット40は、被写体13から反射された反射光RLを撮像する撮像部41と、撮像部41によって撮像された反射光RLを画像処理することによって撮像画像301を生成する図示しない画像処理部とを有する。撮像ユニット40は、図示しない第2操作部が操作されることによって、撮像動作を開始する。第2操作部は、内視鏡の操作部に配設される。
[Imaging unit 40]
As illustrated in FIG. 1A, the imaging unit 40 generates a captured image 301 by performing image processing on the reflected light RL captured by the imaging unit 41 and an imaging unit 41 that captures the reflected light RL reflected from the subject 13. And an image processing unit (not shown). The imaging unit 40 starts an imaging operation when a second operation unit (not shown) is operated. The second operation unit is disposed in the operation unit of the endoscope.
 撮像部41は、例えば、CCDまたはCMOS等を有する。撮像部41は、画素ごとにカラーフィルタを有し、色画素群を有する。図1Aと図1Bとに示すように、撮像部41の前方には、反射光RLが透過する光学素子43が設けられる。反射光RLは、光学素子43を透過して、撮像部42に入射する。光学素子43は、光学素子31と略同一の構成を有する。光学素子43は、光学素子31とは異なり、挿入部の先端部11の内部に固定される。 The imaging unit 41 includes, for example, a CCD or a CMOS. The imaging unit 41 has a color filter for each pixel, and has a color pixel group. As shown in FIGS. 1A and 1B, an optical element 43 that transmits the reflected light RL is provided in front of the imaging unit 41. The reflected light RL passes through the optical element 43 and enters the imaging unit 42. The optical element 43 has substantially the same configuration as the optical element 31. Unlike the optical element 31, the optical element 43 is fixed inside the distal end portion 11 of the insertion portion.
 図1Aと図1Bと図1Cとに示すように、撮像部41は、2つの照明部29の間に設けられ、挿入部の先端部11の内部に固定される。言い換えると、照明部29同士は、撮像部41を中心に互いに対して対称に設けられる。なお照明部29同士は、観察が最適に実施されるように、非対称に設けられてもよい。 As shown in FIG. 1A, FIG. 1B, and FIG. 1C, the imaging unit 41 is provided between the two illumination units 29 and is fixed inside the distal end portion 11 of the insertion unit. In other words, the illumination units 29 are provided symmetrically with respect to each other about the imaging unit 41. The illumination units 29 may be provided asymmetrically so that the observation is optimally performed.
 画像処理部は、内視鏡の外部に設けられる筐体部の内部に設けられてもよいし、内視鏡の内部に設けられてもよい。 The image processing unit may be provided inside a casing unit provided outside the endoscope, or may be provided inside the endoscope.
 [代表値抽出部] 
 図1Aに示すように、内視鏡システム10は、撮像ユニット40によって撮像された撮像画像301(図2A,2B,2C,2D参照)の画素値の状態を示す代表値を抽出する代表値抽出部(以下、抽出部61と称する)をさらに有する。本実施形態では、抽出部61は、代表値の一例であるコントラスト値を抽出する。抽出部61は、例えば、撮像ユニット40が撮像動作を開始した後、抽出を開始する。
[Representative value extraction unit]
As shown in FIG. 1A, the endoscope system 10 extracts a representative value that extracts a representative value indicating a state of a pixel value of a captured image 301 (see FIGS. 2A, 2B, 2C, and 2D) captured by the imaging unit 40. (Hereinafter referred to as the extraction unit 61). In the present embodiment, the extraction unit 61 extracts a contrast value that is an example of a representative value. For example, the extraction unit 61 starts extraction after the imaging unit 40 starts an imaging operation.
 抽出部61は、青色画素と緑色画素と赤色画素との画素値情報を含む撮像画像301を撮像ユニット40から受け取る。抽出部61は、撮像画像301を複数の領域に分ける。抽出部61は、分けられた領域毎にバンドパスフィルタによって画素の高周波成分を抽出する。抽出部61は、抽出した高周波成分を積分してコントラスト値を領域毎に抽出する。このように抽出部61は、撮像画像301を複数の領域に分け、分けられた領域毎にコントラスト値を抽出する。 The extraction unit 61 receives a captured image 301 including pixel value information of blue pixels, green pixels, and red pixels from the imaging unit 40. The extraction unit 61 divides the captured image 301 into a plurality of regions. The extraction unit 61 extracts a high-frequency component of the pixel for each divided area using a bandpass filter. The extraction unit 61 integrates the extracted high frequency components and extracts a contrast value for each region. As described above, the extraction unit 61 divides the captured image 301 into a plurality of regions, and extracts a contrast value for each of the divided regions.
 例えば、抽出部61は、各色画素値のいずれかを基にコントラスト値を抽出してもよい。 
 例えば、抽出部61は、各色画素値同士を加算した値を基にコントラスト値を抽出する。 
 例えば、抽出部61は、輝度値を基にコントラスト値を抽出してもよい。 
 輝度値は、例えば、下記式(1)を基に算出される。 
 輝度値 = 0.299×赤の画素値 + 0.587×緑の画素値 + 0.114×青の画素値 ・・・式(1)。
For example, the extraction unit 61 may extract a contrast value based on any one of the color pixel values.
For example, the extraction unit 61 extracts a contrast value based on a value obtained by adding the color pixel values.
For example, the extraction unit 61 may extract a contrast value based on the luminance value.
The luminance value is calculated based on, for example, the following formula (1).
Luminance value = 0.299 × red pixel value + 0.587 × green pixel value + 0.114 × blue pixel value Equation (1).
 [注目領域決定部] 
 図1Aに示すように、内視鏡システム10は、撮像ユニット40によって撮像された被写体13の撮像画像301を基に観察のために注目する領域である注目領域201(図2A,2B,2C,2D参照)を決定する注目領域決定部(以下、決定部63と称する)をさらに有する。
[Attention area determination unit]
As shown in FIG. 1A, the endoscope system 10 includes a region of interest 201 (FIGS. 2A, 2B, 2C, and 2C) that is a region of interest for observation based on the captured image 301 of the subject 13 captured by the imaging unit 40. It further includes an attention area determination unit (hereinafter referred to as a determination unit 63) that determines (see 2D).
 決定部63は、抽出部61によって抽出されたコントラスト値が所定値よりも高いか否かを算出する。決定部63は、所定値よりも高いと算出されたコントラスト値を有する領域を注目領域201として決定する。例えば被写体13が腫瘍である場合、腫瘍において血管が存在する部位の表面において、この表面に存在する凸凹部は、腫瘍が存在しない部位よりも多く細かく存在する。凸凹部が存在する部位ではコントラスト値が大きくなり、凸凹部が存在しない部位ではコントラスト値が小さくなる。所定値は、撮像画像301上のコントラスト値の最大値を基に設定される。これにより決定部63は、注目領域201を安定的に決定できる。所定値は、最大値に対して所定の割合の値を積算することによって設定されてもよい。所定の割合の値は、被写体13に応じて設定されてもよい。前記したように凸凹部が存在する部位ではコントラスト値が大きくなるため、この部位の少なくとも一部が注目領域201として決定される。 The determining unit 63 calculates whether or not the contrast value extracted by the extracting unit 61 is higher than a predetermined value. The determination unit 63 determines an area having a contrast value calculated to be higher than the predetermined value as the attention area 201. For example, when the subject 13 is a tumor, the convex and concave portions present on the surface of the portion where blood vessels are present in the tumor are present more finely than the portion where the tumor is not present. The contrast value is large at the portion where the convex / concave portion exists, and the contrast value is small at the portion where the convex / concave portion does not exist. The predetermined value is set based on the maximum contrast value on the captured image 301. Thereby, the determination part 63 can determine the attention area | region 201 stably. The predetermined value may be set by integrating a value of a predetermined ratio with respect to the maximum value. The value of the predetermined ratio may be set according to the subject 13. As described above, since the contrast value is large in the portion where the convex / concave portion exists, at least a part of this portion is determined as the attention area 201.
 決定部63は、各色画素に対応する注目領域201の論理和を最終的な注目領域201として決定してもよい。 The determining unit 63 may determine the logical sum of the attention areas 201 corresponding to the respective color pixels as the final attention area 201.
 コントラスト値が高い部分が複数の不連続な領域に分離した場合、決定部63は、コントラスト値が高い部分を全て内包する1つの領域を注目領域201として決定してもよい。コントラスト値が高い部分を注目領域201が全て内包しつつ、注目領域201が最小の面積に設定されるように、決定部63は注目領域201を決定してもよい。 When the part with a high contrast value is separated into a plurality of discontinuous areas, the determination unit 63 may determine one area including all the parts with a high contrast value as the attention area 201. The determination unit 63 may determine the attention area 201 so that the attention area 201 includes all the portions having high contrast values and the attention area 201 is set to the minimum area.
 決定部63は、撮像画像301の端部が注目領域201から除外されるように、注目領域201を決定してもよい。両端部が暗い場合、コントラスト値が本来の値を示す処理を、決定部63は実施してもよい。 The determination unit 63 may determine the attention area 201 such that the end of the captured image 301 is excluded from the attention area 201. When both ends are dark, the determination unit 63 may perform a process in which the contrast value indicates the original value.
 [照明領域特定部] 
 図1Aに示すように、内視鏡システム10は、照明光ILが照明している領域である照明領域203(図2A,2B,2C,2D参照)を、撮像画像301を基に特定する照明領域特定部(以下、特定部65と称する)をさらに有する。
[Lighting area identification part]
As illustrated in FIG. 1A, the endoscope system 10 is configured to identify an illumination area 203 (see FIGS. 2A, 2B, 2C, and 2D) that is an area illuminated by the illumination light IL based on the captured image 301. An area specifying unit (hereinafter referred to as specifying unit 65) is further included.
 特定部65は、撮像画像301内において所定の明るさ以上の明るさを有する領域を照明領域203として特定する。特定部65は、撮像画像301内において最も明るい画素値(以下、最明画素値)を算出する。特定部65は、最明画素値の明るさの所定の割合の明るさを有する画素値(以下、所定画素値と称する)を撮像画像301内から算出する。特定部65は、所定画素値を有する領域を照明領域203として特定する。照明領域203は、撮像画像301において、観察に必要な明るさに相当する所定の輝度値以上の輝度値を有する領域である。特定部65は、例えば照明部29毎に、照明領域203を特定してもよい。以下において、図2Aに示すように、一方の照明部29に対応する照明領域203を照明領域203aと称し、他方の照明部29に対応する照明領域203を照明領域203bと称し、照明領域203a,203bをまとめて照明領域203と称する。 The identifying unit 65 identifies an area having a brightness equal to or higher than a predetermined brightness in the captured image 301 as the illumination area 203. The specifying unit 65 calculates the brightest pixel value (hereinafter, the brightest pixel value) in the captured image 301. The specifying unit 65 calculates a pixel value (hereinafter, referred to as a predetermined pixel value) having a predetermined percentage of the brightness of the brightest pixel value from the captured image 301. The specifying unit 65 specifies an area having a predetermined pixel value as the illumination area 203. The illumination area 203 is an area having a luminance value equal to or higher than a predetermined luminance value corresponding to the brightness necessary for observation in the captured image 301. The specifying unit 65 may specify the illumination area 203 for each illumination unit 29, for example. In the following, as shown in FIG. 2A, the illumination region 203 corresponding to one illumination unit 29 is referred to as illumination region 203a, the illumination region 203 corresponding to the other illumination unit 29 is referred to as illumination region 203b, and illumination regions 203a, 203b is collectively referred to as an illumination area 203.
 特定部65は、撮像ユニット40として望ましい信号特性を撮像ユニット40が出力可能となるような明るさを有する領域を照明領域203として特定してもよい。 The identifying unit 65 may identify an area having brightness such that the imaging unit 40 can output signal characteristics desirable for the imaging unit 40 as the illumination area 203.
 [照明予定領域設定部] 
 図1Aに示すように、内視鏡システム10は、注目領域201と照明領域203とを基に、照明光ILの照明を予定される領域である照明予定領域205(図2A,2B,2C,2D参照)を設定する照明予定領域設定部(以下、設定部67と称する)をさらに有する。
[Scheduled illumination area setting section]
As shown in FIG. 1A, the endoscope system 10 is based on a region of interest 201 and an illumination region 203, and is a planned illumination region 205 (FIGS. 2A, 2B, 2C, 2D) further includes a scheduled illumination area setting unit (hereinafter referred to as a setting unit 67).
 図2Aに示すように、注目領域201が照明領域203よりも大きく、注目領域201が照明領域203を内包している状態において、照明予定領域205は、例えば、注目領域201の内部且つ照明領域203の外部の領域である。照明予定領域205は、照明が必要だが実際には照明されていない領域である。この場合、照明予定領域205は、注目領域201と照明領域203との論理差である。このため設定部67は、注目領域201から照明領域203を引くことによって算出された領域を照明予定領域205として設定する。 
 図2Cに示すように、照明領域203が注目領域201よりも大きく、照明領域203が注目領域201を内包している状態において、照明予定領域205は、注目領域201である。このため設定部67は、注目領域201を照明予定領域205として設定する。 
 なお抽出部61と決定部63と特定部65と設定部67とにおける処理は、ハードウエア構成を含むプロセッサによって、実行されても良い。例えば、ASIC(Application Specific Integrated Circuit)等の電子回路を備えたプロセッサによって、処理が実行されても良い。またはCPU(Central Processing Unit)等の汎用的なプロセッサが各種プログラムを読み込むことによって、処理が実行されても良い。
As shown in FIG. 2A, in a state where the attention area 201 is larger than the illumination area 203 and the attention area 201 includes the illumination area 203, the illumination scheduled area 205 is, for example, inside the attention area 201 and the illumination area 203. Is an external area. The planned illumination area 205 is an area that needs to be illuminated but is not actually illuminated. In this case, the planned illumination area 205 is a logical difference between the attention area 201 and the illumination area 203. Therefore, the setting unit 67 sets an area calculated by subtracting the illumination area 203 from the attention area 201 as the scheduled illumination area 205.
As illustrated in FIG. 2C, the illumination planned area 205 is the attention area 201 in a state where the illumination area 203 is larger than the attention area 201 and the illumination area 203 includes the attention area 201. Therefore, the setting unit 67 sets the attention area 201 as the scheduled illumination area 205.
The processing in the extraction unit 61, the determination unit 63, the specifying unit 65, and the setting unit 67 may be executed by a processor including a hardware configuration. For example, the processing may be executed by a processor including an electronic circuit such as an ASIC (Application Specific Integrated Circuit). Alternatively, the processing may be executed by a general-purpose processor such as a CPU (Central Processing Unit) reading various programs.
 [調整機構70と制御部80] 
 図1Aに示すように、内視鏡システム10は、照明予定領域205が照明光ILを照明されるように、照明光ILの光学特性を調整する調整機構70と、光源制御部23と調整機構70とを含む内視鏡システム10全体を制御する制御部80とをさらに有する。調整機構70に対する制御部80の制御及び調整機構70の動作とは、第1操作部が操作され、照明部29が駆動して、照明光ILが出射されている状態且つ第2操作部が操作され、撮像ユニット40が駆動している状態で実施される。
[Adjustment mechanism 70 and control unit 80]
As shown in FIG. 1A, the endoscope system 10 includes an adjustment mechanism 70 that adjusts the optical characteristics of the illumination light IL so that the planned illumination area 205 is illuminated with the illumination light IL, a light source control unit 23, and an adjustment mechanism. And a control unit 80 for controlling the entire endoscope system 10 including the control unit 70. The control of the control unit 80 with respect to the adjustment mechanism 70 and the operation of the adjustment mechanism 70 include a state in which the first operation unit is operated, the illumination unit 29 is driven, and the illumination light IL is emitted, and the second operation unit is operated. In the state where the imaging unit 40 is driven.
 調整機構70は、照明予定領域205の面積が所定の基準を満たすように、照明光ILの光学特性を調整する。 
 図2Aに示すように、例えば、注目領域201が照明領域203よりも大きく、注目領域201が照明領域203を内包している状態では、制御部80は照明予定領域205の面積を算出し、算出結果を基に調整機構70は配光を調整する。 
 この場合、例えば、図2Aに示す照明予定領域205の面積が注目領域201の面積の所定の割合以下となるように、制御部80は調整機構70を介して照明光ILの光学特性を制御する。所定の割合は、例えば1割であり、図2Bに示すように照明予定領域205がほぼ解消されたと判断できる割合である。照明予定領域205のほぼ解消は、照明光ILを照明されていない領域がほぼ解消されたことを示す。所定の割合が高めに設定されることで、照明光ILは注目領域201全体にまで照明される。 
 図2Bに示すように照明予定領域205が解消されるために、制御部80が調整機構70を制御して、調整機構70は制御によって照明光ILの光学特性における配光を調整する。この調整によって、照明領域203が注目領域201に近似するように拡大する。照明領域203が拡大し、照明予定領域205の面積が注目領域201の面積の1割以下となった場合、制御部80は調整機構70の配光調整を停止する。制御部80は、照明予定領域205の面積が最も小さくなるように、面積を評価値とした山登り制御を実施してもよい。
The adjusting mechanism 70 adjusts the optical characteristics of the illumination light IL so that the area of the illumination scheduled area 205 satisfies a predetermined standard.
As shown in FIG. 2A, for example, in a state where the attention area 201 is larger than the illumination area 203 and the attention area 201 includes the illumination area 203, the control unit 80 calculates and calculates the area of the scheduled illumination area 205. Based on the result, the adjusting mechanism 70 adjusts the light distribution.
In this case, for example, the control unit 80 controls the optical characteristics of the illumination light IL via the adjustment mechanism 70 so that the area of the planned illumination area 205 illustrated in FIG. 2A is equal to or less than a predetermined ratio of the area of the attention area 201. . The predetermined ratio is, for example, 10%, and is a ratio at which it can be determined that the illumination scheduled area 205 has been substantially eliminated as shown in FIG. 2B. Substantially elimination of the scheduled illumination area 205 indicates that the area not illuminated with the illumination light IL is substantially eliminated. By setting the predetermined ratio to be high, the illumination light IL is illuminated up to the entire region of interest 201.
As shown in FIG. 2B, in order to eliminate the planned illumination area 205, the control unit 80 controls the adjustment mechanism 70, and the adjustment mechanism 70 adjusts the light distribution in the optical characteristics of the illumination light IL by the control. By this adjustment, the illumination area 203 is enlarged so as to approximate the attention area 201. When the illumination area 203 is enlarged and the area of the scheduled illumination area 205 becomes 10% or less of the area of the attention area 201, the control unit 80 stops the light distribution adjustment of the adjustment mechanism 70. The control unit 80 may perform hill climbing control using the area as an evaluation value so that the area of the planned illumination area 205 is minimized.
 なお図2Cに示すように、例えば、照明領域203が注目領域201よりも大きく、照明領域203が注目領域201を内包している状態では、制御部80は照明予定領域205である注目領域201の面積を算出し、算出結果を基に調整機構70は配光を調整する。 
 この場合、注目領域201以上照明領域203以下の領域207(図2C参照)の面積が注目領域201の面積の所定の割合以下となるように、制御部80は調整機構70を介して照明光ILの光学特性を制御する。所定の割合は、例えば1割であり、図2Dに示すように領域207がほぼ解消されたと判断できる割合である。領域207のほぼ解消は、無駄な照明光ILがほぼ解消されたことを示す。所定の割合が高めに設定されることで、照明光ILは注目領域201全体にまで絞られて照明される。 
 図2Dに示すように領域207が解消されるためには、制御部80が調整機構70を制御して、調整機構70は制御によって照明光ILの光学特性における配光を調整する。この調整によって、照明領域203が注目領域201に近似するように縮小する。照明領域203が縮小し、領域207の面積が注目領域201の面積の1割以下となった場合、制御部80は調整機構70の配光調整を停止する。
As shown in FIG. 2C, for example, in a state where the illumination area 203 is larger than the attention area 201 and the illumination area 203 includes the attention area 201, the control unit 80 sets the attention area 201, which is the scheduled illumination area 205. The area is calculated, and the adjustment mechanism 70 adjusts the light distribution based on the calculation result.
In this case, the control unit 80 causes the illumination light IL to pass through the adjustment mechanism 70 so that the area of the region 207 (see FIG. 2C) between the attention region 201 and the illumination region 203 is equal to or less than a predetermined ratio of the area of the attention region 201. Control the optical properties of The predetermined ratio is, for example, 10%, and is a ratio at which it can be determined that the area 207 is almost eliminated as shown in FIG. 2D. The almost elimination of the area 207 indicates that the unnecessary illumination light IL is almost eliminated. By setting the predetermined ratio to be high, the illumination light IL is focused on the entire attention area 201 and illuminated.
In order to eliminate the region 207 as shown in FIG. 2D, the control unit 80 controls the adjustment mechanism 70, and the adjustment mechanism 70 adjusts the light distribution in the optical characteristics of the illumination light IL by the control. By this adjustment, the illumination area 203 is reduced so as to approximate the attention area 201. When the illumination area 203 is reduced and the area of the area 207 becomes 10% or less of the area of the attention area 201, the control unit 80 stops the light distribution adjustment of the adjustment mechanism 70.
 図1Bに示すように、調整機構70は、制御部80によって制御される駆動源71と、駆動源71から出力される駆動力を伝達する伝達部73と、伝達部73から伝達される駆動力によって照明部29と光学素子31との間の相対距離を調整する調整部材75とを有する。 
 駆動源71は、マイクロモータを有する。 
 伝達部73は、ボールねじを有する。ボールねじは、調整部材75に螺合する。
As shown in FIG. 1B, the adjustment mechanism 70 includes a drive source 71 controlled by the control unit 80, a transmission unit 73 that transmits the driving force output from the drive source 71, and a driving force that is transmitted from the transmission unit 73. The adjusting member 75 for adjusting the relative distance between the illumination unit 29 and the optical element 31 is provided.
The drive source 71 has a micromotor.
The transmission part 73 has a ball screw. The ball screw is screwed into the adjustment member 75.
 調整部材75は、光学素子31が照明部29に対応して配置されるように、光学素子31を保持する。詳細には、調整部材75は、光学素子31が照明部29の前方に配置されるように、光学素子31を保持する。1つの調整部材75が全ての光学素子31を保持する。調整部材75は、撮像部41の撮像が遮られないように、光学素子43の前方に設けられる撮像孔部75aを有する。 The adjusting member 75 holds the optical element 31 so that the optical element 31 is arranged corresponding to the illumination unit 29. Specifically, the adjustment member 75 holds the optical element 31 so that the optical element 31 is disposed in front of the illumination unit 29. One adjusting member 75 holds all the optical elements 31. The adjustment member 75 has an imaging hole 75a provided in front of the optical element 43 so that the imaging of the imaging unit 41 is not blocked.
 ボールねじが駆動力によってボールねじの軸周りに回転した際、調整部材75はボールねじの回転によって光学素子31の軸方向に沿って移動する。そして調整部材75に保持される光学素子31は、調整部材75に連動して照明部29に対して光学素子31の軸方向に沿って移動する。これにより、照明部29と光学素子31と間の相対距離が調整され、この相対距離の調整によって照明光ILの光学特性である配光が調整される。そして照明領域203が注目領域201に近似するように拡大または縮小し、拡大に伴い照明予定領域205が解消され、縮小に伴い領域207が解消され、結果として照明予定領域205は照明光ILを照明される。光学素子31の軸方向は、挿入部の長手軸方向に一致し、1次光の光軸方向に一致する。1次光の光軸とは、透過部材29bに接続される導光部材25の先端面から出射される1次光の中心軸を示す。 When the ball screw rotates around the axis of the ball screw by the driving force, the adjustment member 75 moves along the axial direction of the optical element 31 by the rotation of the ball screw. The optical element 31 held by the adjustment member 75 moves along the axial direction of the optical element 31 with respect to the illumination unit 29 in conjunction with the adjustment member 75. Thereby, the relative distance between the illumination part 29 and the optical element 31 is adjusted, and the light distribution which is the optical characteristic of the illumination light IL is adjusted by adjusting the relative distance. Then, the illumination area 203 is enlarged or reduced so as to approximate the attention area 201, the illumination scheduled area 205 is canceled along with the enlargement, and the area 207 is eliminated along with the reduction. As a result, the illumination scheduled area 205 illuminates the illumination light IL. Is done. The axial direction of the optical element 31 coincides with the longitudinal axis direction of the insertion portion and coincides with the optical axis direction of the primary light. The optical axis of the primary light indicates the central axis of the primary light emitted from the distal end surface of the light guide member 25 connected to the transmission member 29b.
 なお図1Bに示すように、照明部29が固定され、調整部材75が光学素子31を保持し、調整部材75が移動することによって、光学素子31が移動する。そして相対距離が調整されるが、相対距離の調整はこれに限定される必要はない。 
 例えば、光学素子31が固定され、調整部材75は照明部29を保持し、調整部材75が移動することによって、照明部29が光学素子31に対して移動してもよい。これにより相対距離が調整されてもよい。 
 または調整部材75は照明部29と光学素子31との少なくとも一方を保持し、調整部材75が移動することによって、照明部29と光学素子31との少なくとも一方が他方に対して移動してもよい。これにより相対距離が調整されてもよい。 
 このように調整機構70は、照明部29と光学素子31と間の相対距離を調整することによって、照明光ILの光学特性を調整する。相対距離は、段階的または連続的に調整される。調整機構70は、照明ユニット20が照明し且つ撮像ユニット40が撮像している状態で、照明光ILの光学特性を調整する。本実施形態では、1つ調整機構70は、全ての照明部29に対して連動して、全ての照明ユニット20から出射される照明光ILの光学特性を同時に調整する。
1B, the illumination unit 29 is fixed, the adjustment member 75 holds the optical element 31, and the adjustment member 75 moves, so that the optical element 31 moves. The relative distance is adjusted, but the adjustment of the relative distance need not be limited to this.
For example, the optical element 31 may be fixed, the adjustment member 75 may hold the illumination unit 29, and the adjustment unit 75 may move to move the illumination unit 29 relative to the optical element 31. Thereby, the relative distance may be adjusted.
Alternatively, the adjustment member 75 may hold at least one of the illumination unit 29 and the optical element 31, and when the adjustment member 75 moves, at least one of the illumination unit 29 and the optical element 31 may move relative to the other. . Thereby, the relative distance may be adjusted.
As described above, the adjustment mechanism 70 adjusts the optical distance of the illumination light IL by adjusting the relative distance between the illumination unit 29 and the optical element 31. The relative distance is adjusted stepwise or continuously. The adjustment mechanism 70 adjusts the optical characteristics of the illumination light IL in a state where the illumination unit 20 is illuminating and the imaging unit 40 is imaging. In the present embodiment, one adjustment mechanism 70 adjusts the optical characteristics of the illumination light IL emitted from all the illumination units 20 simultaneously in conjunction with all the illumination units 29.
 [作用] 
 [照明動作及び撮像動作] 
 第1操作部が操作されて照明光ILの出射をオンすることを指示されると、光源制御部23は、1次光を出射させるために、光源21を制御する。光源21から出射された1次光は、導光部材25と分波部27と導光部材25とを通過して、照明部29に進行する。照明部29において、1次光は、透過部材29bを透過し、光変換部材29aを照射する。
[Action]
[Lighting operation and imaging operation]
When the first operation unit is operated to instruct to turn on the emission of the illumination light IL, the light source control unit 23 controls the light source 21 to emit the primary light. The primary light emitted from the light source 21 passes through the light guide member 25, the demultiplexing unit 27, and the light guide member 25 and proceeds to the illumination unit 29. In the illumination unit 29, the primary light passes through the transmission member 29b and irradiates the light conversion member 29a.
 光変換部材29aが蛍光体と拡散部材と封止部材とを有する場合、1次光の一部は、蛍光体によって吸収され、1次光の波長よりも長い波長を有する光に変換される。この光を変換光と称する。1次光の残りの一部は、拡散粒子によって、拡散される。この光を拡散光と称する。変換光の配光特性と拡散光の配光特性とは、互いに略等しいことが好ましい。 When the light conversion member 29a includes a phosphor, a diffusion member, and a sealing member, a part of the primary light is absorbed by the phosphor and converted into light having a wavelength longer than the wavelength of the primary light. This light is referred to as converted light. The remaining part of the primary light is diffused by the diffusing particles. This light is called diffuse light. It is preferable that the light distribution characteristic of the converted light and the light distribution characteristic of the diffused light are substantially equal to each other.
 図1Aに示すように、変換光と拡散光とは、照明光ILとして、光学素子31に入射される。照明光ILの配光は、光学素子31において後述する配光を調整する原理によって調整される。調整された状態で、照明光ILは、光学素子31から外部に向けて出射され、被写体13を照明する。 As shown in FIG. 1A, the converted light and the diffused light are incident on the optical element 31 as illumination light IL. The light distribution of the illumination light IL is adjusted by the principle of adjusting the light distribution described later in the optical element 31. In the adjusted state, the illumination light IL is emitted outward from the optical element 31 to illuminate the subject 13.
 第2操作部が操作されて撮像動作の開始が指示されると、撮像ユニット40は駆動する。図1Aに示すように照明光ILは、被写体13によって反射及び拡散され、反射光RLが撮像部41に入射する。撮像部41は反射光RLを撮像し、画像処理部は反射光RLを基に撮像画像301を生成し、表示部50が撮像画像301を表示する。 When the second operation unit is operated to instruct the start of the imaging operation, the imaging unit 40 is driven. As shown in FIG. 1A, the illumination light IL is reflected and diffused by the subject 13, and the reflected light RL enters the imaging unit 41. The imaging unit 41 captures the reflected light RL, the image processing unit generates a captured image 301 based on the reflected light RL, and the display unit 50 displays the captured image 301.
 [光学特性である配光を調整する原理] 
 この調整は、照明部29と光学素子31との間の相対距離と光学素子31の焦点距離とを基に、実施される。照明部29から出射される照明光ILは、照明部29の出射開口部の中心に存在する点光源から出射されると仮定する。
[Principle for adjusting light distribution, which is an optical property]
This adjustment is performed based on the relative distance between the illumination unit 29 and the optical element 31 and the focal length of the optical element 31. It is assumed that the illumination light IL emitted from the illumination unit 29 is emitted from a point light source that exists at the center of the emission opening of the illumination unit 29.
 図3Aと図3Bとに示すように、光学素子31の中心から光学素子31の焦点までの距離を、光学素子31の焦点距離Fとする。 
 光学素子31の中心から照明部29の出射端面までの距離を、距離L1とする。 
 光学素子31の中心から照明光ILの配光角の基準位置までの距離を、距離L2とする。この場合、配光角の基準位置は、光学素子31の位置に対して導光部材25側に位置する。
As shown in FIGS. 3A and 3B, the distance from the center of the optical element 31 to the focal point of the optical element 31 is defined as a focal length F of the optical element 31.
A distance from the center of the optical element 31 to the emission end face of the illumination unit 29 is a distance L1.
A distance from the center of the optical element 31 to the reference position of the light distribution angle of the illumination light IL is defined as a distance L2. In this case, the reference position of the light distribution angle is located on the light guide member 25 side with respect to the position of the optical element 31.
 L1<Fの場合、焦点距離Fと距離L1と距離L2とにおいて、距離L2は、下記式(2)によって算出される。 
 1/L1 + 1/L2 = 1/F ・・・式(2) 
 距離L2によって算出される配光角の基準位置を起点に光学素子31を通って照明光ILは広がる。
In the case of L1 <F, the distance L2 is calculated by the following formula (2) in the focal length F, the distance L1, and the distance L2.
1 / L1 + 1 / L2 = 1 / F Equation (2)
The illumination light IL spreads through the optical element 31 starting from the reference position of the light distribution angle calculated by the distance L2.
 このように距離L1が焦点距離Fよりも短い場合に、調整機構70においてボールねじが駆動力によってボールねじの軸周りにおいて第1方向に回転すると、調整部材75は光学素子31の軸方向に沿って照明部29から離れる方向に移動する。そして調整部材75に保持される光学素子31は、調整部材75に連動して照明部29に対して光学素子31の軸方向に沿って移動し、照明部29から離れる。これにより照明部29と光学素子31と間の相対距離である距離L1が長く調整され、距離L2は短くなる。よって、照明光ILの配光角は広がり、図2Bに示すように照明領域203が拡大する。そして照明領域203が注目領域201に近似するように拡大し、拡大に伴い照明予定領域205が解消され、結果として照明予定領域205は照明光ILを照明される。 When the distance L1 is shorter than the focal length F as described above, when the ball screw is rotated in the first direction around the axis of the ball screw by the driving force in the adjustment mechanism 70, the adjustment member 75 is along the axial direction of the optical element 31. To move away from the illumination unit 29. The optical element 31 held by the adjustment member 75 moves along the axial direction of the optical element 31 with respect to the illumination unit 29 in conjunction with the adjustment member 75, and moves away from the illumination unit 29. Thereby, the distance L1, which is the relative distance between the illumination unit 29 and the optical element 31, is adjusted to be long, and the distance L2 is shortened. Therefore, the light distribution angle of the illumination light IL is widened, and the illumination area 203 is enlarged as shown in FIG. 2B. Then, the illumination area 203 is enlarged so as to approximate the attention area 201, and the illumination planned area 205 is canceled along with the enlargement. As a result, the illumination scheduled area 205 is illuminated with the illumination light IL.
 また、距離L1が焦点距離Fよりも長い場合に、調整機構70においてボールねじが駆動力によってボールねじの軸周りにおいて第1方向とは逆の第2方向に回転すると、調整部材75は光学素子31の軸方向に沿って照明部29に近づく方向に移動する。そして調整部材75に保持される光学素子31は、調整部材75に連動して照明部29に対して光学素子31の軸方向に沿って移動し、照明部29に近づく。これにより照明部29と光学素子31と間の相対距離である距離L1が短く調整され、距離L2は長くなる。よって、照明光ILの配光角は狭まり、図2Dに示すように照明領域203が縮小し、領域207が狭まる。そして照明領域203が注目領域201に近似するように縮小し、縮小に伴い無駄な照明光ILが解消され、結果として照明予定領域205である注目領域201は照明光ILを照明される。 When the distance L1 is longer than the focal length F, the adjusting member 75 rotates the optical element in the second direction opposite to the first direction around the axis of the ball screw by the driving force in the adjusting mechanism 70. It moves in the direction approaching the illumination unit 29 along the axial direction of 31. The optical element 31 held by the adjustment member 75 moves along the axial direction of the optical element 31 with respect to the illumination unit 29 in conjunction with the adjustment member 75, and approaches the illumination unit 29. Thereby, the distance L1, which is the relative distance between the illumination unit 29 and the optical element 31, is adjusted to be short, and the distance L2 is lengthened. Therefore, the light distribution angle of the illumination light IL is narrowed, and the illumination area 203 is reduced and the area 207 is narrowed as shown in FIG. 2D. Then, the illumination area 203 is reduced so as to approximate the attention area 201, and unnecessary illumination light IL is eliminated along with the reduction. As a result, the attention area 201 that is the planned illumination area 205 is illuminated with the illumination light IL.
 [光学特性である配光の調整] 
 図4を参照して配光の調整について説明する。 
 第1操作部の操作に応じて、照明部29が駆動し、照明部29は、照明光ILを出射し、照明光ILを被写体13に照明する(Step1)。 
 照明光ILが出射されている状態において、第2操作部の操作に応じて、撮像ユニット40は、照明光ILを照明される被写体13を撮像する(Step2)。
[Adjustment of light distribution as optical characteristics]
The light distribution adjustment will be described with reference to FIG.
The illumination unit 29 is driven according to the operation of the first operation unit, and the illumination unit 29 emits illumination light IL and illuminates the subject 13 with the illumination light IL (Step 1).
In a state where the illumination light IL is emitted, the imaging unit 40 images the subject 13 illuminated with the illumination light IL in accordance with the operation of the second operation unit (Step 2).
 特定部65は、撮像ユニット40によって撮像された撮像画像301から照明領域203を特定する(Step3)。 The identifying unit 65 identifies the illumination area 203 from the captured image 301 captured by the imaging unit 40 (Step 3).
 抽出部61は、コントラスト値を抽出し、コントラスト値を決定部63に出力する(Step4)。 The extraction unit 61 extracts the contrast value and outputs the contrast value to the determination unit 63 (Step 4).
 決定部63は、抽出部61によって抽出されたコントラスト値を基に、注目領域201を決定する(Step5)。 The determining unit 63 determines the attention area 201 based on the contrast value extracted by the extracting unit 61 (Step 5).
 設定部67は、注目領域201と照明領域203とを基に、照明予定領域205を設定する(Step6)。Step6において、設定部67は、照明予定領域205に関する情報を、制御部80に出力する。 The setting unit 67 sets the scheduled illumination area 205 based on the attention area 201 and the illumination area 203 (Step 6). In Step 6, the setting unit 67 outputs information related to the planned illumination area 205 to the control unit 80.
 制御部80は、この情報を基に調整機構70を制御する。そして、調整機構70は、制御部80の制御を基に、光学素子31と照明部29との間の相対距離を調整する(Step7)。これにより照明予定領域205は、照明光ILを照明される(Step8)。 The control unit 80 controls the adjustment mechanism 70 based on this information. And the adjustment mechanism 70 adjusts the relative distance between the optical element 31 and the illumination part 29 based on control of the control part 80 (Step7). Thereby, the illumination planned area 205 is illuminated with the illumination light IL (Step 8).
 Step5,6において、図2Aに示すように、例えば、注目領域201が照明領域203よりも大きく、注目領域201が照明領域203を内包している状態では、照明予定領域205は、例えば、注目領域201の内部且つ照明領域203の外部の領域である。そして照明領域203が注目領域201に近似するように拡大する必要がある。このため、前記したように、Step7において、光学素子31は照明部29から離れ、相対距離である距離L1が長く、距離L2は短くなるように調整される。これにより、照明光ILの配光角は広がり、図2Bに示すように、照明領域203が注目領域201に近似するように拡大し、拡大に伴い照明予定領域205が解消される。結果としてStep8において、照明予定領域205は照明光ILを照明される。照明領域203が拡大し、照明予定領域205の面積が注目領域201の面積の1割以下となった場合、制御部80は調整を停止する。 In Steps 5 and 6, as shown in FIG. 2A, for example, in a state where the attention area 201 is larger than the illumination area 203 and the attention area 201 includes the illumination area 203, the illumination scheduled area 205 is, for example, This is an area inside 201 and outside the illumination area 203. And it is necessary to expand so that the illumination area | region 203 may approximate the attention area 201. FIG. For this reason, as described above, in Step 7, the optical element 31 is adjusted so that the distance L1 as the relative distance is long and the distance L2 is short, away from the illumination unit 29. Thereby, the light distribution angle of the illumination light IL is widened, and as shown in FIG. 2B, the illumination area 203 is enlarged so as to approximate the attention area 201, and the planned illumination area 205 is eliminated along with the enlargement. As a result, in Step 8, the illumination planned area 205 is illuminated with the illumination light IL. When the illumination area 203 is enlarged and the area of the illumination scheduled area 205 becomes 10% or less of the area of the attention area 201, the control unit 80 stops the adjustment.
 Step5,6において、図2Cに示すように例えば、照明領域203が注目領域201よりも大きく、照明領域203が注目領域201を内包している状態では、照明予定領域205は、注目領域201である。そして、照明領域203が注目領域201に近似するように縮小する必要がある。このため、前記したように、Step7において、光学素子31は照明部29に近づき、相対距離である距離L1が短く、距離L2は長くなるように調整される。これにより、照明光ILの配光角は狭まり、図2Dに示すように、照明領域203が縮小し、領域207が狭まる。そして照明領域203が注目領域201に近似するように縮小し、縮小に伴い無駄な照明光ILが解消される。結果としてStep8において、照明予定領域205である注目領域201は照明光ILを照明される。領域207の面積が注目領域201の面積の1割以下となった場合、調整機構70は調整を停止する。 In Steps 5 and 6, as shown in FIG. 2C, for example, when the illumination area 203 is larger than the attention area 201 and the illumination area 203 includes the attention area 201, the planned illumination area 205 is the attention area 201. . Then, it is necessary to reduce the illumination area 203 so as to approximate the attention area 201. For this reason, as described above, in Step 7, the optical element 31 is adjusted so as to approach the illuminating unit 29, the relative distance L1 is short, and the distance L2 is long. Thereby, the light distribution angle of the illumination light IL is narrowed, and as shown in FIG. 2D, the illumination area 203 is reduced and the area 207 is narrowed. Then, the illumination area 203 is reduced to approximate the attention area 201, and unnecessary illumination light IL is eliminated along with the reduction. As a result, in Step 8, the attention area 201 which is the illumination scheduled area 205 is illuminated with the illumination light IL. When the area of the area 207 becomes 10% or less of the area of the attention area 201, the adjustment mechanism 70 stops the adjustment.
 Step8の後、配光の調整は終了する。内視鏡システム10が別の被写体13を観察する場合、Step1乃至Step8の動作がこの順で繰り返される。なお、観察時、常にStep2乃至Step8の動作がこの順で繰り返し実施されてもよい。 After step 8, the light distribution adjustment is completed. When the endoscope system 10 observes another subject 13, the operations of Step 1 to Step 8 are repeated in this order. Note that the operations of Step 2 to Step 8 may be repeatedly performed in this order at the time of observation.
 [効果] 
 本実施形態では、図2Aと図2Bとに示すように照明領域203を注目領域201に拡大させ、あるいは図2Cと図2Dとに示すように照明領域203を注目領域201に縮小させる。これにより本実施形態では、視野角に影響されることなく、照明光ILを十分に配光でき、照明光ILの無駄を抑制できる。
[effect]
In this embodiment, the illumination area 203 is enlarged to the attention area 201 as shown in FIGS. 2A and 2B, or the illumination area 203 is reduced to the attention area 201 as shown in FIGS. 2C and 2D. Thereby, in this embodiment, the illumination light IL can be sufficiently distributed without being influenced by the viewing angle, and the waste of the illumination light IL can be suppressed.
 本実施形態では、注目領域201はコントラスト値を基に決定される。例えば被写体13が腫瘍である場合、腫瘍において血管が存在する部位の表面において、凸凹部が存在する部位ではコントラスト値が大きくなる。このため、凸凹部に確実且つ無駄なく照明光ILを照明できる。 In this embodiment, the attention area 201 is determined based on the contrast value. For example, when the subject 13 is a tumor, the contrast value becomes large at the site where the convex and concave portions exist on the surface of the site where the blood vessel exists in the tumor. For this reason, it is possible to illuminate the illumination light IL reliably and without waste to the convex and concave portions.
 [変形例]
 第1の実施形態では、決定部63は、抽出部61によって抽出されたコントラスト値を基に、注目領域201を決定する。しかしながら、注目領域201の決定は、これに限定される必要はない。
[Modification]
In the first embodiment, the determination unit 63 determines the attention area 201 based on the contrast value extracted by the extraction unit 61. However, the determination of the attention area 201 need not be limited to this.
 図1Aと図5とに示すように、決定部63は、表示部50に表示された画像から指定部120によって指定された領域を基に、注目領域201を決定する。この場合、指定部120は、操作者によって内視鏡システム10に入力される入力部である。指定部120は、例えば、マウスまたはキーボードなどである。指定部120は、表示部50に表示された画像から、被写体13の特に注目する領域を指定する。指定部120がマウスである場合、指定部120は、表示部50に表示された画像から、マウスの矢印の先端で始点と始点に対角する終点とを指定する。指定部120は、始点と終点とによって形成される領域を指定する。決定部63は、この指定された領域を、注目領域201として決定する。または指定部120は、マウスの矢印の先端で始点を指定し、この始点を中心点として任意の半径を有する領域を指定する。決定部63は、この指定された領域を、注目領域201として決定する。指定部120がキーボードである場合、指定部120は、表示部50に表示された画像から矩形の対角点のXY座標を指定することで矩形の領域を、あるいは中心点のXY座標を指定することで円形の領域を指定する。決定部63は、この領域を注目領域201として決定する。 As shown in FIGS. 1A and 5, the determination unit 63 determines the attention region 201 based on the region specified by the specification unit 120 from the image displayed on the display unit 50. In this case, the designation unit 120 is an input unit that is input to the endoscope system 10 by the operator. The designation unit 120 is, for example, a mouse or a keyboard. The designation unit 120 designates a region of particular interest of the subject 13 from the image displayed on the display unit 50. When the designation unit 120 is a mouse, the designation unit 120 designates, from the image displayed on the display unit 50, the start point and the end point diagonal to the start point at the tip of the mouse arrow. The designation unit 120 designates an area formed by the start point and the end point. The determination unit 63 determines the designated area as the attention area 201. Alternatively, the designation unit 120 designates a start point at the tip of the mouse arrow, and designates an area having an arbitrary radius with the start point as a center point. The determination unit 63 determines the designated area as the attention area 201. When the designation unit 120 is a keyboard, the designation unit 120 designates a rectangular region or an XY coordinate of the center point by designating the XY coordinates of the diagonal points of the rectangle from the image displayed on the display unit 50. Specify a circular area. The determination unit 63 determines this area as the attention area 201.
 本変形例では、Step1,2,3が順に実施された後、指定部120は、表示部50に表示された画像から領域を指定する(Step11)。次に、決定部63は、指定部120によって指定された領域を、注目領域201として決定する(Step12)。次に、Step6,7,8が順に実施される。 In the present modification, after Steps 1, 2, and 3 are sequentially performed, the designation unit 120 designates an area from the image displayed on the display unit 50 (Step 11). Next, the determination unit 63 determines the region specified by the specifying unit 120 as the attention region 201 (Step 12). Next, Steps 6, 7, and 8 are sequentially performed.
 本変形例では、指定部120によって、手動で、注目領域201を指定できる。 In this modification, the attention area 201 can be manually designated by the designation unit 120.
 [第2の実施形態] 
 以下、図6Aと図6Bと図6Cと図6Dと図6Eとを参照して、第1の実施形態とは異なる点のみ記載する。なお照明部29は、1以上配置されていればよい。第1の実施形態では、照明部29から出射された光を照明光ILと定義しているが、本実施形態では、照明部29から出射された光を2次光SL(図6Bと図6Cとを参照)と定義し、配光調整照明ユニット90から出射された光を照明光IL(図6Bと図6Cとを参照)と定義する。
[Second Embodiment]
Hereinafter, only points different from the first embodiment will be described with reference to FIGS. 6A, 6B, 6C, 6D, and 6E. One or more illumination units 29 may be arranged. In the first embodiment, the light emitted from the illumination unit 29 is defined as the illumination light IL. However, in this embodiment, the light emitted from the illumination unit 29 is the secondary light SL (FIGS. 6B and 6C). And the light emitted from the light distribution adjustment illumination unit 90 is defined as illumination light IL (see FIGS. 6B and 6C).
 [構成] 
 [配光調整照明ユニット90] 
 図6Aに示すように、照明ユニット20は、照明部29から出射された2次光SLを受光し、受光した2次光SLの配光特性を調整し、調整された配光特性を有する照明光ILを外部に出射する配光調整照明ユニット90をさらに有する。照明部29から出射された2次光SLの配光特性は、固定される。配光調整照明ユニット90は、照明部29と同数且つ照明部29と対に配置される。
[Constitution]
[Light distribution adjustment lighting unit 90]
As illustrated in FIG. 6A, the illumination unit 20 receives the secondary light SL emitted from the illumination unit 29, adjusts the light distribution characteristics of the received secondary light SL, and has the adjusted light distribution characteristics. It further includes a light distribution adjusting illumination unit 90 that emits the light IL to the outside. The light distribution characteristic of the secondary light SL emitted from the illumination unit 29 is fixed. The light distribution adjusting illumination units 90 are arranged in the same number as the illumination units 29 and in pairs with the illumination units 29.
 図6Bと図6Cとに示すように、配光調整照明ユニット90は、調整機構70によって、照明部29に対して1次光の光軸方向に沿って移動可能である。1次光の光軸とは、透過部材29bに接続される導光部材25の先端面から出射される1次光の中心軸を示す。配光調整照明ユニット90は、移動量に応じて、配光特性の調整量を可変する。 As shown in FIGS. 6B and 6C, the light distribution adjustment illumination unit 90 can be moved along the optical axis direction of the primary light with respect to the illumination unit 29 by the adjustment mechanism 70. The optical axis of the primary light indicates the central axis of the primary light emitted from the distal end surface of the light guide member 25 connected to the transmission member 29b. The light distribution adjustment lighting unit 90 varies the adjustment amount of the light distribution characteristic according to the movement amount.
 図6Aに示すように、配光調整照明ユニット90は、照明部29が内部に配置される中空部材91と、中空部材91に設けられる光学素子93と、中空部材91に設けられる反射部材95とを有する。 As shown in FIG. 6A, the light distribution adjustment illumination unit 90 includes a hollow member 91 in which the illumination unit 29 is disposed, an optical element 93 provided in the hollow member 91, and a reflection member 95 provided in the hollow member 91. Have
 [中空部材91] 
 図6Aに示すように、中空部材91は、第1孔部91aと第2孔部91bとを有する。第1孔部91aは、第2孔部91bと同軸上に設けられ、第2孔部91bと連通する。例えば、第1孔部91aは円柱形状を有する。例えば、第2孔部91bは、円錐台形状を有する。円錐台は、1次光の進行方向に従って拡径する。第1孔部91a及び第2孔部91bには、照明部29が挿入される。第1孔部91a及び第2孔部91bは、照明部29よりも大きい。中空部材91は、調整部材75に接続される。
[Hollow member 91]
As shown in FIG. 6A, the hollow member 91 has a first hole 91a and a second hole 91b. The first hole portion 91a is provided coaxially with the second hole portion 91b and communicates with the second hole portion 91b. For example, the first hole portion 91a has a cylindrical shape. For example, the second hole portion 91b has a truncated cone shape. The truncated cone expands in diameter according to the traveling direction of the primary light. The illumination unit 29 is inserted into the first hole 91a and the second hole 91b. The first hole 91 a and the second hole 91 b are larger than the illumination unit 29. The hollow member 91 is connected to the adjustment member 75.
 [光学素子93] 
 図6Aに示すように、光学素子93は、配光調整照明ユニット90によって調整された配光特性を有する2次光SLが透過する透過部材である。光学素子93は、例えば、透過率が高いガラスによって形成される。光学素子93は、例えば円柱形状を有する。光学素子93は、光学素子93が照明部29の前方に配置されるように、接着によって中空部材91の先端面に固定され、第2孔部91bをカバーする。
[Optical element 93]
As shown in FIG. 6A, the optical element 93 is a transmissive member through which the secondary light SL having the light distribution characteristic adjusted by the light distribution adjusting illumination unit 90 is transmitted. The optical element 93 is made of, for example, glass having a high transmittance. The optical element 93 has a cylindrical shape, for example. The optical element 93 is fixed to the distal end surface of the hollow member 91 by adhesion so that the optical element 93 is disposed in front of the illumination unit 29, and covers the second hole 91b.
 [反射部材95] 
 図6Aに示すように、反射部材95は、第2孔部91bの内周面に設けられる。反射部材95は、反射部材95に入射した入射光を正反射または拡散反射する。反射部材95は、散乱反射してもよい。この入射光は、蛍光及び拡散光を含む2次光SLである。反射部材95は、銀またはアルミニウムといった金属の薄膜である。反射部材95は、内周面にメッキされる。
[Reflection member 95]
As shown in FIG. 6A, the reflecting member 95 is provided on the inner peripheral surface of the second hole portion 91b. The reflection member 95 regularly reflects or diffusely reflects incident light incident on the reflection member 95. The reflection member 95 may be scattered and reflected. The incident light is secondary light SL including fluorescence and diffused light. The reflecting member 95 is a metal thin film such as silver or aluminum. The reflection member 95 is plated on the inner peripheral surface.
 [調整機構70] 
 図6Aに示すように、調整機構70において、調整部材75は、配光調整照明ユニット90を直接保持し、中空部材91を介して光学素子93を保持する。
[Adjustment mechanism 70]
As shown in FIG. 6A, in the adjustment mechanism 70, the adjustment member 75 directly holds the light distribution adjustment illumination unit 90 and holds the optical element 93 via the hollow member 91.
 図6Aに示すように、調整部材75は、照明部29が第1孔部91a及び第2孔部91bに挿入され、光学素子93が照明部29の前方に配置され、配光調整照明ユニット90が1次光の光軸と同軸上に配置されるように、配光調整照明ユニット90を保持する。 As shown in FIG. 6A, the adjustment member 75 includes an illumination unit 29 inserted into the first hole 91a and the second hole 91b, an optical element 93 disposed in front of the illumination unit 29, and a light distribution adjustment illumination unit 90. Is held on the same axis as the optical axis of the primary light.
 図6Bと図6Cとに示すように、ボールねじが駆動力によってボールねじの軸周りに回転した際、調整部材75はボールねじの回転によって1次光の光軸方向に沿って移動する。そして調整部材75に保持される配光調整照明ユニット90は、調整部材75に連動して照明部29に対して1次光の光軸方向に沿って移動する。これにより、照明部29と光学素子93と間の相対距離が調整され、この相対距離の調整によって照明光ILの光学特性が調整される。そして照明領域203が注目領域201に近似するように拡大または縮小し、拡大に伴い照明予定領域205が解消され、または縮小に伴い領域207が解消され、結果として照明予定領域205は照明光ILを照明される。 As shown in FIGS. 6B and 6C, when the ball screw is rotated around the axis of the ball screw by the driving force, the adjustment member 75 moves along the optical axis direction of the primary light by the rotation of the ball screw. The light distribution adjustment illumination unit 90 held by the adjustment member 75 moves along the optical axis direction of the primary light with respect to the illumination unit 29 in conjunction with the adjustment member 75. Thereby, the relative distance between the illumination unit 29 and the optical element 93 is adjusted, and the optical characteristic of the illumination light IL is adjusted by adjusting the relative distance. Then, the illumination area 203 is enlarged or reduced so as to approximate the attention area 201, and the illumination scheduled area 205 is canceled along with the enlargement, or the area 207 is eliminated along with the reduction, and as a result, the illumination scheduled area 205 receives the illumination light IL. Illuminated.
 なお照明部29が固定され、調整部材75が配光調整照明ユニット90を保持し、調整部材75が移動することによって、配光調整照明ユニット90が移動する。そして相対距離が調整されるが、相対距離の調整はこれに限定される必要はない。 
 例えば、配光調整照明ユニット90が固定され、調整部材75は照明部29を保持し、調整部材75が移動することによって、照明部29が配光調整照明ユニット90に対して移動してもよい。これにより相対距離が調整されてもよい。 
 または調整部材75は照明部29と配光調整照明ユニット90との少なくとも一方を保持し、調整部材75が移動することによって、照明部29と配光調整照明ユニット90との少なくとも一方が他方に対して移動してもよい。これにより相対距離が調整されてもよい。 
 このように調整機構70は、照明部29と配光調整照明ユニット90と間の相対距離を調整することによって、照明光ILの光学特性を調整する。相対距離は、段階的または連続的に調整される。
The illumination unit 29 is fixed, the adjustment member 75 holds the light distribution adjustment illumination unit 90, and the adjustment member 75 moves, so that the light distribution adjustment illumination unit 90 moves. The relative distance is adjusted, but the adjustment of the relative distance need not be limited to this.
For example, the light distribution adjustment illumination unit 90 may be fixed, the adjustment member 75 may hold the illumination unit 29, and the adjustment member 75 may move to move the illumination unit 29 relative to the light distribution adjustment illumination unit 90. . Thereby, the relative distance may be adjusted.
Alternatively, the adjustment member 75 holds at least one of the illumination unit 29 and the light distribution adjustment illumination unit 90, and when the adjustment member 75 moves, at least one of the illumination unit 29 and the light distribution adjustment illumination unit 90 is opposed to the other. You may move. Thereby, the relative distance may be adjusted.
As described above, the adjustment mechanism 70 adjusts the optical characteristic of the illumination light IL by adjusting the relative distance between the illumination unit 29 and the light distribution adjustment illumination unit 90. The relative distance is adjusted stepwise or continuously.
 [抽出部61] 
 本実施形態では、抽出部61は、撮像画像301を複数の領域に分け、分けられた領域毎に代表値の一例である色座標値を抽出する。色座標値は、画素を構成する色画素値から抽出する。色画素値から色座標値への変換は、例えば、下記式(2)を基に算出される。
[Extractor 61]
In the present embodiment, the extraction unit 61 divides the captured image 301 into a plurality of areas, and extracts color coordinate values that are examples of representative values for each of the divided areas. The color coordinate value is extracted from the color pixel values constituting the pixel. The conversion from the color pixel value to the color coordinate value is calculated based on the following formula (2), for example.
 RGB表色系は、R(700.0nm)、G(546.1nm)、B(435.8nm)の3原色の混合量を基に表色を表す。RGB表色系の負の値を示す欠点を直すXYZ表色系への変換式は、下記に示す式(1)である。 The RGB color system represents a color based on the mixing amount of the three primary colors of R (700.0 nm), G (546.1 nm), and B (435.8 nm). The conversion formula to the XYZ color system which corrects the defect indicating the negative value of the RGB color system is the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 このXYZ表色系から2次元座標のxy式度座標に変換する式が、下記に示す式(2),(3)である。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Expressions (2) and (3) shown below are converted from the XYZ color system to the two-dimensional coordinate xy expression coordinates.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 撮像画像の画素値のRGBを抽出し、これらの式により変換し、式度座標への変換を実施する。 * RGB of the pixel value of the captured image is extracted, converted by these formulas, and converted to formula coordinates.
 [決定部63] 
 本実施形態では、決定部63は、色座標値が色座標値の所定の範囲に入るか否かを算出し、所定の範囲に入った色座標値を有する領域209(図6D参照)を注目領域201として決定する。
[Determining unit 63]
In the present embodiment, the determination unit 63 calculates whether or not the color coordinate value falls within a predetermined range of the color coordinate value, and pays attention to an area 209 (see FIG. 6D) having the color coordinate value that falls within the predetermined range. The region 201 is determined.
 図6Dに示すように、例えば、被写体13が腫瘍のような病変部を有する場合、決定部63は、腫瘍において特徴的に存在する色座標値を有する領域209を所定の色座標範囲として決定する。決定部63は、領域209を腫瘍が存在する注目領域201として設定する。所定の色座標範囲は、被写体13の部位に応じて設定するとよい。対象部位と対応する色座標範囲の情報は、図示しない記録部にテーブルデータとして保存し、読み出されてもよい。決定部63は、被写体13において腫瘍以外の部位に存在する色を含む範囲211を決定してもよい。 As shown in FIG. 6D, for example, when the subject 13 has a lesion such as a tumor, the determination unit 63 determines an area 209 having a color coordinate value characteristically present in the tumor as a predetermined color coordinate range. . The determination unit 63 sets the region 209 as the attention region 201 where the tumor exists. The predetermined color coordinate range may be set according to the part of the subject 13. Information on the color coordinate range corresponding to the target part may be stored and read as table data in a recording unit (not shown). The determination unit 63 may determine a range 211 that includes a color existing in a region other than the tumor in the subject 13.
 決定部63は、撮像画像301のRGB値の中で、例えば赤画素の値が所定値以上の領域を注目領域201として決定してもよい。決定部63は、撮像画像301のRGB値の中で、例えば赤画素以外の青及び緑といった複数の色画素の値が所定値以上の領域を注目領域201として決定してもよい。 The determining unit 63 may determine, for example, an area in which the red pixel value is equal to or greater than a predetermined value among the RGB values of the captured image 301 as the attention area 201. The determination unit 63 may determine, as the attention area 201, an area in which the values of a plurality of color pixels such as blue and green other than the red pixels are equal to or greater than a predetermined value among the RGB values of the captured image 301.
 [作用] 
 [照明動作及び撮像動作] 
 第1操作部が操作されると、光源制御部23は、1次光を出射させるために、光源21を制御する。光源21から出射された1次光は、導光部材25と分波部27と導光部材25とを通過して、照明部29に進行する。導光部材25から出射され、照明部29に入射する1次光の配光角は狭く、1次光は狭配光である。1次光の配光半値角は、例えば15度である。照明部29において、1次光は、透過部材29bを透過し、光変換部材29aを照射する。
[Action]
[Lighting operation and imaging operation]
When the first operation unit is operated, the light source control unit 23 controls the light source 21 to emit primary light. The primary light emitted from the light source 21 passes through the light guide member 25, the demultiplexing unit 27, and the light guide member 25 and proceeds to the illumination unit 29. The light distribution angle of the primary light emitted from the light guide member 25 and entering the illumination unit 29 is narrow, and the primary light is a narrow light distribution. The light distribution half-value angle of the primary light is, for example, 15 degrees. In the illumination unit 29, the primary light passes through the transmission member 29b and irradiates the light conversion member 29a.
 1次光の一部は、拡散粒子によって、拡散される。この光を2次光SLである1次拡散光と称する。1次拡散光は、照明部29に入射した1次光とは異なる拡散角を有する。 A part of the primary light is diffused by the diffusing particles. This light is referred to as primary diffused light that is secondary light SL. The primary diffused light has a different diffusion angle from the primary light incident on the illumination unit 29.
 1次光の残りの一部は、蛍光体によって吸収され、1次光の波長よりも長い波長を有する光に変換される。この光を2次光SLである変換光と称する。変換光は、光変換部材29aの内部で指向性なく発光する。 The remaining part of the primary light is absorbed by the phosphor and converted into light having a wavelength longer than that of the primary light. This light is referred to as converted light that is the secondary light SL. The converted light is emitted without directivity inside the light conversion member 29a.
 図6Bと図6Cとに示すように、1次拡散光と変換光との一部は、光変換部材29aの内部にて、照明部29に入射した1次光とは逆向きの方向に進行する。この逆向きに進行する1次拡散光と変換光とは、反射部材29cによって反射され、光変換部材29aの前方に進行する。1次拡散光と変換光とは、拡散粒子の拡散と反射部材29cの反射とを繰り返し実施される。そして図6Bと図6Cとに示すように、1次拡散光と変換光とは2次光SLとして広い配光角を有する状態で照明部29から配光調整照明ユニット90に向けて出射される。2次光SLの配光半値角は例えば125度付近である。2次光SLの配光特性は、光軸に対して左右対称である。 As shown in FIGS. 6B and 6C, a part of the primary diffused light and the converted light travels in the direction opposite to the primary light incident on the illumination unit 29 inside the light conversion member 29a. To do. The first-order diffused light and converted light traveling in the opposite directions are reflected by the reflecting member 29c and travel forward of the light converting member 29a. The primary diffused light and the converted light are repeatedly performed by diffusing the diffusing particles and reflecting the reflecting member 29c. 6B and 6C, the primary diffused light and the converted light are emitted as the secondary light SL from the illumination unit 29 toward the light distribution adjusting illumination unit 90 in a state having a wide light distribution angle. . The light distribution half-value angle of the secondary light SL is, for example, around 125 degrees. The light distribution characteristic of the secondary light SL is symmetrical with respect to the optical axis.
 2次光SLは、光学素子93に入射される。照明光ILの配光は、光学素子93において後述する関係によって調整される。調整された状態で、図6Bと図6Cとに示すように、照明光ILは、光学素子31から外部に向けて出射され、被写体13を照明する。 The secondary light SL is incident on the optical element 93. The light distribution of the illumination light IL is adjusted by the relationship described later in the optical element 93. In the adjusted state, as shown in FIGS. 6B and 6C, the illumination light IL is emitted from the optical element 31 to the outside and illuminates the subject 13.
 照明光ILは、被写体13によって反射及び拡散され、反射光RLが撮像部41に入射する。第2操作部が操作されると、撮像ユニット40は駆動する。撮像部41は反射光RLを撮像し、画像処理部は反射光RLを基に撮像画像301を生成し、表示部50が撮像画像301を表示する。 The illumination light IL is reflected and diffused by the subject 13, and the reflected light RL enters the imaging unit 41. When the second operation unit is operated, the imaging unit 40 is driven. The imaging unit 41 captures the reflected light RL, the image processing unit generates a captured image 301 based on the reflected light RL, and the display unit 50 displays the captured image 301.
 [光学特性である配光の調整] 
 図6Eを参照して配光の調整について説明する。 
 第1の実施形態と同様に、Step1,2,3が順に実施される。次に、抽出部61は、色座標値を抽出し、色座標値を決定部63に出力する(Step21)。そして決定部63は、抽出部61によって抽出された色座標値を基に、注目領域201を決定する(Step22)。第1の実施形態と同様に、Step6が実施される。Step6において、設定部67は、照明予定領域205に関する情報を、制御部80に出力する。
[Adjustment of light distribution as optical characteristics]
The adjustment of light distribution will be described with reference to FIG. 6E.
As in the first embodiment, Steps 1, 2, and 3 are performed in order. Next, the extraction unit 61 extracts a color coordinate value and outputs the color coordinate value to the determination unit 63 (Step 21). Then, the determination unit 63 determines the region of interest 201 based on the color coordinate values extracted by the extraction unit 61 (Step 22). Step 6 is performed as in the first embodiment. In Step 6, the setting unit 67 outputs information related to the planned illumination area 205 to the control unit 80.
 制御部80は、この情報を基に調整機構70を制御する。そして、調整機構70は、制御部80の制御を基に、光学素子93と照明部29との間の相対距離を調整する(Step23)。そして、Step8が実施される。 The control unit 80 controls the adjustment mechanism 70 based on this information. And the adjustment mechanism 70 adjusts the relative distance between the optical element 93 and the illumination part 29 based on control of the control part 80 (Step23). Then, Step 8 is performed.
 Step22,6において、例えば、注目領域201が照明領域203よりも大きく、注目領域201が照明領域203を内包している状態では、照明予定領域205は、例えば、注目領域201の内部且つ照明領域203の外部の領域である。この場合、照明領域203は、注目領域201に近似するように拡大する必要がある。このためStep23において、調整機構70のボールねじが駆動力によってボールねじの軸周りにおいて第2方向に回転し、調整部材75は1次光の光軸方向に沿って移動する。調整部材75に保持される配光調整照明ユニット90は、調整部材75に連動して照明部29に対して1次光の光軸方向に沿って移動する。図6Bに示すように、光学素子93は照明部29に近づき、照明部29と光学素子93と間の相対距離が短くなる。 In Steps 22 and 6, for example, in a state where the attention area 201 is larger than the illumination area 203 and the attention area 201 includes the illumination area 203, the illumination scheduled area 205 includes, for example, the inside of the attention area 201 and the illumination area 203. Is an external area. In this case, the illumination area 203 needs to be enlarged to approximate the attention area 201. For this reason, in Step 23, the ball screw of the adjusting mechanism 70 rotates in the second direction around the axis of the ball screw by the driving force, and the adjusting member 75 moves along the optical axis direction of the primary light. The light distribution adjustment illumination unit 90 held by the adjustment member 75 moves along the optical axis direction of the primary light with respect to the illumination unit 29 in conjunction with the adjustment member 75. As shown in FIG. 6B, the optical element 93 approaches the illumination unit 29, and the relative distance between the illumination unit 29 and the optical element 93 is shortened.
 図6Bに示すように、相対距離が短い場合、照明部29から出射される2次光SLの大部分は、光学素子93を透過し、照明光ILとして外部に出射される。この場合、照明部29から出射される2次光SLの大部分は、反射部材95に進行せず、反射部材95によって反射されない。このため、2次光SLに対する配光調整照明ユニット90の調整量は少なく、照明光ILの配光角は2次光SLの配光角に近く広配角となり、照明光ILの配光半値角は例えば120度である。よって、照明光ILは、広配光として配光調整照明ユニット90から出射される。そして照明領域203が注目領域201に近似するように拡大し、拡大に伴い照明予定領域205が解消される。結果としてStep8において、照明予定領域205は照明光ILを照明される。 As shown in FIG. 6B, when the relative distance is short, most of the secondary light SL emitted from the illumination unit 29 passes through the optical element 93 and is emitted to the outside as illumination light IL. In this case, most of the secondary light SL emitted from the illumination unit 29 does not travel to the reflecting member 95 and is not reflected by the reflecting member 95. For this reason, the adjustment amount of the light distribution adjusting illumination unit 90 with respect to the secondary light SL is small, the light distribution angle of the illumination light IL is close to the light distribution angle of the secondary light SL, and the light distribution half-value angle of the illumination light IL. Is, for example, 120 degrees. Therefore, the illumination light IL is emitted from the light distribution adjustment illumination unit 90 as a wide light distribution. Then, the illumination area 203 is enlarged so as to approximate the attention area 201, and the planned illumination area 205 is eliminated along with the enlargement. As a result, in Step 8, the illumination planned area 205 is illuminated with the illumination light IL.
 Step22,6において、例えば、照明領域203が注目領域201よりも大きく、照明領域203が注目領域201を内包している状態では、照明予定領域205は、注目領域201である。この場合、照明領域203は、注目領域201に近似するように縮小する必要がある。このためStep23において、調整機構70のボールねじが駆動力によってボールねじの軸周りにおいて第1方向に回転し、調整部材75は1次光の光軸方向に沿って移動する。調整部材75に保持される配光調整照明ユニット90は、調整部材75に連動して照明部29に対して1次光の光軸方向に沿って移動する。図6Cに示すように、光学素子93は照明部29から離れ、照明部29と光学素子93と間の相対距離が長くなる。 In Steps 22 and 6, for example, when the illumination area 203 is larger than the attention area 201 and the illumination area 203 includes the attention area 201, the illumination scheduled area 205 is the attention area 201. In this case, the illumination area 203 needs to be reduced so as to approximate the attention area 201. For this reason, in Step 23, the ball screw of the adjusting mechanism 70 rotates in the first direction around the axis of the ball screw by the driving force, and the adjusting member 75 moves along the optical axis direction of the primary light. The light distribution adjustment illumination unit 90 held by the adjustment member 75 moves along the optical axis direction of the primary light with respect to the illumination unit 29 in conjunction with the adjustment member 75. As shown in FIG. 6C, the optical element 93 is separated from the illumination unit 29, and the relative distance between the illumination unit 29 and the optical element 93 is increased.
 図6Cに示すように、相対距離が長い場合、照明部29から出射される2次光SLにおいて、光軸との間に形成される角度が大きい2次光SLの成分は、反射部材95に進行し、光軸との間に形成される角度が小さくなるように反射部材95によって光学素子93に向かって反射される。このため、2次光SLに対する配光調整照明ユニット90の調整量は多く、照明光ILの配光角は狭配角となる。よって照明光ILは、狭配光として配光調整照明ユニット90から出射される。このため照明領域203が注目領域201に近似するように縮小し、縮小に伴い無駄な照明光ILが解消される。結果としてStep8において、照明予定領域205である注目領域201は照明光ILを照明される。 As shown in FIG. 6C, when the relative distance is long, the component of the secondary light SL having a large angle formed with the optical axis in the secondary light SL emitted from the illumination unit 29 is reflected on the reflecting member 95. It travels and is reflected toward the optical element 93 by the reflecting member 95 so that the angle formed with the optical axis becomes small. For this reason, the adjustment amount of the light distribution adjusting illumination unit 90 with respect to the secondary light SL is large, and the light distribution angle of the illumination light IL is narrow. Therefore, the illumination light IL is emitted from the light distribution adjustment illumination unit 90 as a narrow light distribution. For this reason, the illumination area 203 is reduced so as to approximate the attention area 201, and unnecessary illumination light IL is eliminated along with the reduction. As a result, in Step 8, the attention area 201 which is the illumination scheduled area 205 is illuminated with the illumination light IL.
 [効果] 
 本実施形態では、注目領域201は色座標値を基に決定される。このため、特定の部位、例えば血管周辺を注目領域201に容易に決定でき、照明光ILを無駄なく照明できる。
[effect]
In the present embodiment, the attention area 201 is determined based on the color coordinate value. For this reason, a specific part, for example, the periphery of a blood vessel can be easily determined as the attention area 201, and the illumination light IL can be illuminated without waste.
 本実施形態では、照明予定領域205に照射される照明光ILの配光を、配光調整照明ユニット90と調整機構70とによって調整できる。本実施形態では、相対距離に伴う配光特性を段階的または連続的に調整できる。 In the present embodiment, the light distribution of the illumination light IL applied to the planned illumination area 205 can be adjusted by the light distribution adjustment illumination unit 90 and the adjustment mechanism 70. In the present embodiment, the light distribution characteristic associated with the relative distance can be adjusted stepwise or continuously.
 [第3の実施形態] 
 以下、図7Aと図7Bと図7Cと図7Dと図7Eとを参照して、第1の実施形態とは異なる点のみ記載する。第1,2の実施形態では、照明領域203が注目領域201に略一致するように、照明領域203は配光調整によって拡大または縮小する。しかしながら、本実施形態では、照明領域203a,203bにおける1次光の光量比が一定で、照明領域203は配光調整ではなく照明光ILの光量に応じて拡大または縮小し、照明領域203の照明位置は機械的な構造によって調整される。
[Third Embodiment]
Hereinafter, only points different from the first embodiment will be described with reference to FIGS. 7A, 7B, 7C, 7D, and 7E. In the first and second embodiments, the illumination area 203 is enlarged or reduced by light distribution adjustment so that the illumination area 203 substantially matches the attention area 201. However, in this embodiment, the light quantity ratio of the primary light in the illumination areas 203a and 203b is constant, and the illumination area 203 is enlarged or reduced according to the light quantity of the illumination light IL, not the light distribution adjustment, and the illumination area 203 is illuminated. The position is adjusted by the mechanical structure.
 [構成] 
 図7Aに示すように、内視鏡システム10は、挿入部の先端部11の内壁に固定される固定部101と、照明部29を保持した状態で固定部101に固定され、弾性変形可能な弾性保持部103とを有する。1つの弾性保持部103は、照明光ILが弾性保持部103によって遮られないように、1つの照明部29を保持する。例えば、弾性保持部103は例えばリング状を有し、弾性保持部103の中空部に照明部29の先端部が係合する。弾性保持部103の一部分は固定部101に固定される。固定部101は、弾性保持部103の外側に配置される。
[Constitution]
As shown in FIG. 7A, the endoscope system 10 is fixed to the fixing portion 101 while holding the illumination portion 29 and the fixing portion 101 fixed to the inner wall of the distal end portion 11 of the insertion portion, and is elastically deformable. And an elastic holding portion 103. One elastic holding unit 103 holds one illumination unit 29 so that the illumination light IL is not blocked by the elastic holding unit 103. For example, the elastic holding portion 103 has, for example, a ring shape, and the distal end portion of the illumination unit 29 engages with the hollow portion of the elastic holding portion 103. A part of the elastic holding part 103 is fixed to the fixing part 101. The fixing part 101 is disposed outside the elastic holding part 103.
 本実施形態では、1以上の照明部29が配置される。例えば2つ以上の照明部29が配置されることが好ましい。この場合、照明部29同士は撮像部41を中心に互いに対して対称に配置される。照明部29は、同心円上に配置される。 In the present embodiment, one or more illumination units 29 are arranged. For example, it is preferable that two or more illumination units 29 are arranged. In this case, the illumination units 29 are arranged symmetrically with respect to each other with the imaging unit 41 as the center. The illumination part 29 is arrange | positioned on a concentric circle.
 図7Aと図7Bとに示すように、調整機構70は、照明部29と同数且つ照明部29と対に配置され、先端部11の中心軸に対して照明部29を傾斜させる傾斜部110を有する。本実施形態では、調整機構70は、傾斜によって照明光ILの光学特性である向きを調整する。傾斜部110は、電流を供給する供給源111と、供給源111から供給された電流によって駆動する駆動源である電磁石113と、電磁石113が発生する駆動力である磁力によって作用する作用部である磁性体115とを有する。 As shown in FIG. 7A and FIG. 7B, the adjustment mechanism 70 is arranged in the same number as the illumination unit 29 and in pairs with the illumination unit 29, and includes an inclined unit 110 that inclines the illumination unit 29 with respect to the central axis of the distal end portion 11. Have. In the present embodiment, the adjustment mechanism 70 adjusts the direction that is the optical characteristic of the illumination light IL by tilting. The inclined portion 110 is a working source that operates by a supply source 111 that supplies a current, an electromagnet 113 that is a drive source driven by the current supplied from the supply source 111, and a magnetic force that is a driving force generated by the electromagnet 113. Magnetic body 115.
 供給源111は、制御部80によって制御される。 The supply source 111 is controlled by the control unit 80.
 電磁石113は、磁性体115よりも後方に配置される。電磁石113は、磁力が磁性体115に作用できるように、磁性体115とは所望な間隔離れて配置される。 The electromagnet 113 is disposed behind the magnetic body 115. The electromagnet 113 is arranged at a desired distance from the magnetic body 115 so that the magnetic force can act on the magnetic body 115.
 磁性体115は、弾性保持部103において、固定部101とは照明部29を挟んで反対側に配置される。磁性体115は、照明部29の側方且つ弾性保持部103の内側に配置される。照明部29が撮像部41を中心に対称に配置される場合、磁性体115は照明部29と撮像部41との間に配置される。 The magnetic body 115 is disposed on the opposite side of the fixing unit 101 with the illumination unit 29 interposed therebetween in the elastic holding unit 103. The magnetic body 115 is disposed beside the illumination unit 29 and inside the elastic holding unit 103. When the illumination unit 29 is arranged symmetrically around the imaging unit 41, the magnetic body 115 is arranged between the illumination unit 29 and the imaging unit 41.
 図7Cと図7Dとに示すように、決定部63は、表示部50が表示する表示画像303全体を、注目領域201として決定する。 7C and 7D, the determination unit 63 determines the entire display image 303 displayed by the display unit 50 as the attention area 201.
 [光学特性である配光の調整] 
 図7Eを参照して配光の調整について説明する。 
 第1の実施形態と同様に、Step1,2,3が順に実施される。次に決定部63は、表示画像303全体を注目領域201として決定する(Step31)。第1の実施形態と同様に、Step6が実施される。Step6において、設定部67は、照明予定領域205に関する情報を、制御部80に出力する。制御部80は、この情報を基に光源制御部23と調整機構70とを制御する。
[Adjustment of light distribution as optical characteristics]
The light distribution adjustment will be described with reference to FIG. 7E.
As in the first embodiment, Steps 1, 2, and 3 are performed in order. Next, the determination unit 63 determines the entire display image 303 as the attention area 201 (Step 31). Step 6 is performed as in the first embodiment. In Step 6, the setting unit 67 outputs information related to the planned illumination area 205 to the control unit 80. The control unit 80 controls the light source control unit 23 and the adjustment mechanism 70 based on this information.
 光源制御部23は、制御部80の制御(照明予定領域205に関する情報)を基に、光源21が出力する1次光の光量を制御する。これにより、照明領域203のサイズは、照明予定領域205に応じて調整されて、所望に拡大または縮小する(Step32)。照明領域203のサイズは、予め規定される必要はなく、状況に応じて調整されてもよい。 The light source control unit 23 controls the amount of primary light output from the light source 21 based on the control of the control unit 80 (information on the planned illumination area 205). Thereby, the size of the illumination area 203 is adjusted according to the planned illumination area 205, and is enlarged or reduced as desired (Step 32). The size of the illumination area 203 does not need to be defined in advance, and may be adjusted according to the situation.
 調整機構70によって、照明部29は光学素子31の軸方向に対して傾斜する(Step33)。詳細には、調整機構70において、供給源111は、電流を電磁石113に供給する。電磁石113が磁力を磁性体115に作用させた(磁性体115を電磁石113に引き寄せるまたは電磁石113から引き離す)際、図7Bに示すように、照明部29を保持する弾性保持部103は固定部101を中心に回動し(湾曲し)、照明部29は光学素子31の軸方向に対して傾斜する。これにより照明光ILの出射方向が変わる。図7Bに示すように、例えば電磁石113が磁性体115を引き寄せると、照明部29の光軸が撮像部41の中心軸に近づくように、照明部29は傾斜する。電磁石113が磁性体115を引き離すと、照明部29の光軸が撮像部41の中心軸から離れるように、照明部29は傾斜する。傾斜角度は、電流値に比例して大きくなる。 The illumination unit 29 is inclined with respect to the axial direction of the optical element 31 by the adjusting mechanism 70 (Step 33). Specifically, in the adjustment mechanism 70, the supply source 111 supplies current to the electromagnet 113. When the electromagnet 113 causes a magnetic force to act on the magnetic body 115 (the magnetic body 115 is attracted to or separated from the electromagnet 113), as shown in FIG. The illumination unit 29 is tilted with respect to the axial direction of the optical element 31. As a result, the emission direction of the illumination light IL changes. As shown in FIG. 7B, for example, when the electromagnet 113 attracts the magnetic body 115, the illumination unit 29 is inclined so that the optical axis of the illumination unit 29 approaches the central axis of the imaging unit 41. When the electromagnet 113 separates the magnetic body 115, the illumination unit 29 is tilted so that the optical axis of the illumination unit 29 is separated from the central axis of the imaging unit 41. The inclination angle increases in proportion to the current value.
 照明部29は傾斜することによって、図7Cと図7Dとに示すように、照明領域203が傾斜に応じて移動する。電磁石113が磁性体115を引き寄せると、照明領域203a,203bは互いに対して近づく。電磁石113が磁性体115を引き離すと、照明領域203a,203bは互いに対して離れる。結果として、照明予定領域205である注目領域201は、照明光ILを照明される(Step8)。 As the illumination unit 29 is tilted, the illumination region 203 moves according to the tilt, as shown in FIGS. 7C and 7D. When the electromagnet 113 attracts the magnetic body 115, the illumination areas 203a and 203b approach each other. When the electromagnet 113 separates the magnetic body 115, the illumination areas 203a and 203b are separated from each other. As a result, the attention area 201 that is the planned illumination area 205 is illuminated with the illumination light IL (Step 8).
 照明領域203が注目領域201に略一致する際に、照明領域203が照明予定領域205からはみでないようする必要がある。このため、照明予定領域205の面積が注目領域201の面積の所定の割合(例えば1割)以下となるように、照明領域203は移動する。 When the illumination area 203 substantially coincides with the attention area 201, it is necessary that the illumination area 203 does not protrude from the planned illumination area 205. For this reason, the illumination area 203 moves so that the area of the planned illumination area 205 is equal to or less than a predetermined ratio (for example, 10%) of the area of the attention area 201.
 [効果] 
 本実施形態では、注目領域201は表示画像303である。このため撮像画像301全体に照明光ILを照明できる。
[effect]
In the present embodiment, the attention area 201 is a display image 303. For this reason, the illumination light IL can be illuminated on the entire captured image 301.
 照明部29が傾斜し、照明光ILが照明予定領域205に照明されるため、観察したい所望の部位に容易に照明光ILを照明できる。 Since the illumination unit 29 is tilted and the illumination light IL is illuminated on the planned illumination area 205, the illumination light IL can be easily illuminated at a desired site to be observed.
 2つ以上の照明部29が配置されるため、観察したい所望の部位に複数の照明光ILを照明でき、観察したい所望の部位を明るい状態で観察できる。 Since two or more illumination units 29 are arranged, it is possible to illuminate a desired part to be observed with a plurality of illumination lights IL, and to observe a desired part to be observed in a bright state.
 [第4の実施形態] 
 以下、図8Aと図8Bと図8Cと図8Dとを参照して、第1の実施形態とは異なる点のみ記載する。なお照明部29は、1以上配置されていればよい。
[Fourth Embodiment]
Hereinafter, only points different from the first embodiment will be described with reference to FIGS. 8A, 8B, 8C, and 8D. One or more illumination units 29 may be arranged.
 [構成] 
 図8Aに示すように、調整機構70は、光源制御部23を兼ねる。この場合、調整機構70は、各光源21から出力される1次光の光量比を調整することによって、照明光ILの光学特性を調整する。
[Constitution]
As shown in FIG. 8A, the adjustment mechanism 70 also serves as the light source control unit 23. In this case, the adjustment mechanism 70 adjusts the optical characteristics of the illumination light IL by adjusting the light quantity ratio of the primary light output from each light source 21.
 1次光の光量が調整されると、1次光の光量が増減する。これにより照明領域203は、照明光ILの光軸を中心に拡大または縮小する。 When the amount of primary light is adjusted, the amount of primary light increases or decreases. As a result, the illumination area 203 expands or contracts around the optical axis of the illumination light IL.
 例えば、照明領域203において、照明領域203の中心部が明るく、照明領域203の周辺部が暗い。照明領域203a,203bのサイズが互いに同一で、照明領域203a,203bの光量が互いに同一である場合、図8Bに示すように照明領域203aの一部が照明領域203bの一部に重なった状態の撮像画像301において、撮像画像301の中心部が明るく、撮像画像301の周辺は暗くなる。 For example, in the illumination area 203, the center of the illumination area 203 is bright and the periphery of the illumination area 203 is dark. When the illumination areas 203a and 203b have the same size and the illumination areas 203a and 203b have the same light amount, a part of the illumination area 203a overlaps with a part of the illumination area 203b as shown in FIG. 8B. In the captured image 301, the center of the captured image 301 is bright and the periphery of the captured image 301 is dark.
 図8Bに示すように、例えば注目領域201が照明領域203bに含まれる部分にのみ存在する場合、照明領域203aは不要となる。このため、図8Cに示すように、第1照明部29から出射される1次光の光量が減少することで、照明領域203aは縮小する。必要に応じて、第2照明部29から出射される1次光の光量が減少することで、第2照明部29の照明領域203bは縮小する。 As shown in FIG. 8B, for example, when the attention area 201 exists only in a portion included in the illumination area 203b, the illumination area 203a is not necessary. For this reason, as shown to FIG. 8C, the illumination area | region 203a shrinks because the light quantity of the primary light radiate | emitted from the 1st illumination part 29 reduces. If necessary, the amount of primary light emitted from the second illumination unit 29 is reduced, so that the illumination region 203b of the second illumination unit 29 is reduced.
 [光学特性である配光の調整] 
 図8Dを参照して配光の調整について説明する。 
 第1の実施形態と同様に、Step1,2,3,4,5,6が順に実施される。Step6において、設定部67は、照明予定領域205に関する情報を、制御部80に出力する。制御部80は、この情報を基に光源制御部23を制御する。光源制御部23は、制御部80の制御(照明予定領域205に関する情報)を基に、光源21が出力する1次光の光量を制御する。これにより、照明領域203のサイズは、照明予定領域205に応じて調整されて、所望に拡大または縮小する(Step32)。結果として、照明予定領域205である注目領域201は、照明光ILを照明される(Step8)。
[Adjustment of light distribution as optical characteristics]
The adjustment of light distribution will be described with reference to FIG. 8D.
As in the first embodiment, Steps 1, 2, 3, 4, 5, and 6 are sequentially performed. In Step 6, the setting unit 67 outputs information related to the planned illumination area 205 to the control unit 80. The control unit 80 controls the light source control unit 23 based on this information. The light source control unit 23 controls the amount of primary light output from the light source 21 based on the control of the control unit 80 (information on the planned illumination area 205). Thereby, the size of the illumination area 203 is adjusted according to the planned illumination area 205, and is enlarged or reduced as desired (Step 32). As a result, the attention area 201 that is the planned illumination area 205 is illuminated with the illumination light IL (Step 8).
 [効果] 
 本実施形態では、注目領域201に応じて、照明する必要のない照明領域203a(照明光IL)をカットできるため、消費電力を低減できる。
[effect]
In the present embodiment, the illumination area 203a (illumination light IL) that does not need to be illuminated can be cut according to the attention area 201, so that power consumption can be reduced.
 [第5の実施形態] 
 以下、図1と図9とを参照して、第1の実施形態とは異なる点のみ記載する。前記した実施形態では、決定部63は、予め特定された指定値であるコントラスト値と色座標値と表示部50の表示画像303とのいずれかを基に注目領域201を決定しているが、特定の仕方は、前記に限定されない。例えば、第1,2,3の実施形態に示す構成が組み合わされ、代表値であるコントラスト値と色座標値と表示部50の表示画像303とのいずれかが指定されてもよい。
[Fifth Embodiment]
Hereinafter, with reference to FIG. 1 and FIG. 9, only a different point from 1st Embodiment is described. In the embodiment described above, the determination unit 63 determines the attention area 201 based on any one of the contrast value, the color coordinate value, and the display image 303 of the display unit 50, which are specified values specified in advance. The specific method is not limited to the above. For example, the configurations shown in the first, second, and third embodiments may be combined, and any one of the contrast value, the color coordinate value, and the display image 303 of the display unit 50 that are representative values may be designated.
 この場合、図9に示すように、第1の実施形態と同様に、Step1,2,3が順に実施される。 In this case, as shown in FIG. 9, Steps 1, 2, and 3 are sequentially performed as in the first embodiment.
 次に、図9に示すように、指定部120は、注目領域201の決定のために用いられるコントラスト値と色座標値と表示部50の表示画像303とのいずれかの指定値を指定する(Step51)。 Next, as illustrated in FIG. 9, the designation unit 120 designates any one of the designated values of the contrast value, the color coordinate value, and the display image 303 of the display unit 50 used for determining the attention area 201 ( Step 51).
 図9に示すように、決定部63は、指定部120によって指定された指定値を基に、注目領域201を決定する(Step52)。 
 例えば、指定部120がコントラスト値を指定した場合、図1に示すように指定部120は、指定結果を抽出部61に出力する。抽出部61は、コントラスト値を抽出し、コントラスト値を決定部63に出力する。決定部63は、抽出部61によって抽出されたコントラスト値を基に、注目領域201を決定する。 
 例えば、指定部120が色座標値を指定した場合、図1に示すように指定部120は、指定結果を抽出部61に出力する。抽出部61は、色座標値を抽出し、コントラスト値を決定部63に出力する。決定部63は、抽出部61によって抽出された色座標値を基に、注目領域201を決定する。 
 例えば、指定部120が表示部50の表示画像303を指定した場合、図1に示すように指定部120は、指定結果を決定部63に出力する。決定部63は、表示部50が表示する表示画像303全体を、注目領域201として決定する。
As illustrated in FIG. 9, the determination unit 63 determines the attention area 201 based on the specified value specified by the specifying unit 120 (Step 52).
For example, when the designation unit 120 designates the contrast value, the designation unit 120 outputs the designation result to the extraction unit 61 as illustrated in FIG. The extraction unit 61 extracts a contrast value and outputs the contrast value to the determination unit 63. The determination unit 63 determines the attention area 201 based on the contrast value extracted by the extraction unit 61.
For example, when the designation unit 120 designates the color coordinate value, the designation unit 120 outputs the designation result to the extraction unit 61 as illustrated in FIG. The extraction unit 61 extracts the color coordinate value and outputs the contrast value to the determination unit 63. The determination unit 63 determines the attention area 201 based on the color coordinate values extracted by the extraction unit 61.
For example, when the designation unit 120 designates the display image 303 of the display unit 50, the designation unit 120 outputs the designation result to the determination unit 63 as illustrated in FIG. The determination unit 63 determines the entire display image 303 displayed by the display unit 50 as the attention area 201.
 そして、図9に示すように第1の実施形態と同様に、Step6,7,8が順に実施される。 Then, as shown in FIG. 9, Steps 6, 7, and 8 are sequentially performed as in the first embodiment.
 本実施形態では、指定部120によって、被写体13に応じて適切な配光調整を実施できる。 In the present embodiment, the designation unit 120 can perform appropriate light distribution adjustment according to the subject 13.
 [その他] 
 なお第1の実施形態では、決定部63は、抽出部61によって抽出されたコントラスト値を基に、注目領域201を決定する。調整機構70は、照明部29と光学素子31との相対距離を調整する。 
 第2の実施形態では、決定部63は、色座標値を基に注目領域201を決定する。調整機構70は、照明部29と配光調整照明ユニット90との相対距離を調整する。 
 第3の実施形態では、決定部63は、表示画像303を注目領域201として決定する。調整機構70は、照明部29を傾斜させて、照明光ILの出射方向を調整する。 
 各実施形態における決定部63と調整機構70との組み合わせは、前記に限定される必要はなく、適宜変更可能である。
[Others]
In the first embodiment, the determination unit 63 determines the attention area 201 based on the contrast value extracted by the extraction unit 61. The adjustment mechanism 70 adjusts the relative distance between the illumination unit 29 and the optical element 31.
In the second embodiment, the determination unit 63 determines the attention area 201 based on the color coordinate values. The adjustment mechanism 70 adjusts the relative distance between the illumination unit 29 and the light distribution adjustment illumination unit 90.
In the third embodiment, the determination unit 63 determines the display image 303 as the attention area 201. The adjustment mechanism 70 tilts the illumination unit 29 to adjust the emission direction of the illumination light IL.
The combination of the determination unit 63 and the adjustment mechanism 70 in each embodiment is not limited to the above, and can be changed as appropriate.
 本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。上記実施形態に開示される複数の構成要素の適宜な組み合せにより種々の発明を形成できる。 The present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment.

Claims (16)

  1.  照明光を被写体に照明する照明ユニットと、
     被写体から反射された前記照明光を基に前記被写体を撮像する撮像ユニットと、
     前記撮像ユニットによって撮像された前記被写体の撮像画像を基に観察のために注目する領域である注目領域を決定する注目領域決定部と、
     前記照明光が照明している領域である照明領域を、前記撮像画像を基に特定する照明領域特定部と、
     前記注目領域と前記照明領域とを基に、前記照明光の照明を予定される領域である照明予定領域を設定する照明予定領域設定部と、
     前記照明予定領域が前記照明光を照明されるように、前記照明光の光学特性を調整する調整機構と、
     を具備する内視鏡システム。
    An illumination unit that illuminates the subject with illumination light;
    An imaging unit that images the subject based on the illumination light reflected from the subject;
    An attention area determination unit that determines an attention area that is an area of interest for observation based on a captured image of the subject imaged by the imaging unit;
    An illumination area identifying unit that identifies an illumination area, which is an area illuminated by the illumination light, based on the captured image;
    Based on the region of interest and the illumination region, a planned illumination region setting unit that sets a planned illumination region that is a region where illumination of the illumination light is planned,
    An adjustment mechanism that adjusts optical characteristics of the illumination light so that the illumination planned area is illuminated with the illumination light;
    An endoscope system comprising:
  2.  前記撮像画像を複数の領域に分け、分けられた前記領域毎にコントラスト値を抽出する抽出部をさらに具備し、
     前記注目領域決定部は、前記コントラスト値が所定値よりも高いか否かを算出し、前記所定値よりも高いと算出された前記コントラスト値を有する領域を前記注目領域として決定する請求項1に記載の内視鏡システム。
    Further comprising an extraction unit that divides the captured image into a plurality of regions and extracts a contrast value for each of the divided regions;
    The attention area determination unit calculates whether or not the contrast value is higher than a predetermined value, and determines, as the attention area, an area having the contrast value calculated to be higher than the predetermined value. The endoscope system described.
  3.  前記撮像画像を複数の領域に分け、分けられた前記領域毎に色座標値を抽出する抽出部をさらに具備し、
     前記注目領域決定部は、前記色座標値が前記色座標値の所定の範囲に入るか否かを算出し、前記所定の範囲に入った前記色座標値を有する領域を前記注目領域として決定する請求項1に記載の内視鏡システム。
    Further comprising an extraction unit that divides the captured image into a plurality of regions and extracts color coordinate values for each of the divided regions;
    The attention area determination unit calculates whether or not the color coordinate value falls within a predetermined range of the color coordinate value, and determines an area having the color coordinate value that falls within the predetermined range as the attention area. The endoscope system according to claim 1.
  4.  前記撮像画像を表示する表示部をさらに具備し、
     前記注目領域決定部は、前記表示部が表示する表示画像を、前記注目領域として決定する請求項1に記載の内視鏡システム。
    A display unit for displaying the captured image;
    The endoscope system according to claim 1, wherein the attention area determination unit determines a display image displayed by the display unit as the attention area.
  5.  前記照明予定領域設定部は、
      前記注目領域が前記照明領域よりも大きく、前記注目領域が前記照明領域を内包している状態において、前記注目領域から前記照明領域を引くことによって算出された領域を前記照明予定領域として設定し、
      前記照明領域が前記注目領域よりも大きく、前記照明領域が前記注目領域を内包している状態において、前記注目領域を前記照明予定領域として設定し、
     前記調整機構は、前記照明予定領域の面積が所定の基準を満たすように、前記照明光の前記光学特性を調整する請求項1に記載の内視鏡システム。
    The illumination scheduled area setting unit is
    In the state where the attention area is larger than the illumination area and the attention area includes the illumination area, an area calculated by subtracting the illumination area from the attention area is set as the illumination scheduled area,
    In the state where the illumination area is larger than the attention area and the illumination area includes the attention area, the attention area is set as the illumination scheduled area,
    The endoscope system according to claim 1, wherein the adjustment mechanism adjusts the optical characteristics of the illumination light so that an area of the illumination scheduled area satisfies a predetermined criterion.
  6.  前記照明領域特定部は、前記撮像画像内において所定の明るさ以上の明るさを有する領域を前記照明領域として特定する請求項5に記載の内視鏡システム。 The endoscope system according to claim 5, wherein the illumination area specifying unit specifies an area having a brightness equal to or higher than a predetermined brightness in the captured image as the illumination area.
  7.  前記照明ユニットは、前記照明光を前記被写体に照明する1以上の照明部と、前記照明部と同数且つ前記照明部と対に配置され、前記照明部から出射された前記照明光が透過する光学素子とを有し、
     前記調整機構は、前記照明部と前記光学素子と間の相対距離を調整することによって、前記照明光の前記光学特性を調整する請求項6に記載の内視鏡システム。
    The illumination unit is arranged in one or more illumination units that illuminate the subject with the illumination light, and the same number as the illumination units and in pairs with the illumination unit, and an optical through which the illumination light emitted from the illumination unit passes. Having an element,
    The endoscope system according to claim 6, wherein the adjustment mechanism adjusts the optical characteristic of the illumination light by adjusting a relative distance between the illumination unit and the optical element.
  8.  前記照明ユニットは、
      前記照明光を出射する1以上の照明部と、
      前記照明部から出射された前記照明光を受光し、受光した前記照明光の配光特性を調整し、調整された前記配光特性を有する前記照明光を前記被写体に照明する配光調整照明ユニットと、
     を有し、
     前記調整機構は、前記照明部と前記配光調整照明ユニットとの間の相対距離を調整することによって、前記照明光の前記光学特性を調整する請求項6に記載の内視鏡システム。
    The lighting unit is:
    One or more illumination units that emit the illumination light;
    A light distribution adjustment illumination unit that receives the illumination light emitted from the illumination unit, adjusts the light distribution characteristic of the received illumination light, and illuminates the subject with the illumination light having the adjusted light distribution characteristic When,
    Have
    The endoscope system according to claim 6, wherein the adjustment mechanism adjusts the optical characteristic of the illumination light by adjusting a relative distance between the illumination unit and the light distribution adjustment illumination unit.
  9.  前記照明ユニットは、前記照明光を前記被写体に照射する1以上の照明部を有し、
     前記調整機構は、前記照明部と同数且つ前記照明部と対に配置され、前記照明部を傾斜させる傾斜部を有し、
     前記調整機構は、傾斜によって前記照明光の前記光学特性を調整する請求項6に記載の内視鏡システム。
    The illumination unit has one or more illumination units that irradiate the subject with the illumination light,
    The adjustment mechanism is arranged in the same number as the illumination unit and in pairs with the illumination unit, and has an inclined unit that inclines the illumination unit,
    The endoscope system according to claim 6, wherein the adjustment mechanism adjusts the optical characteristic of the illumination light by tilting.
  10.  前記照明ユニットは、 
      1次光を出射する複数の光源と、 
      前記光源と同数且つ前記光源と対に配置され、前記1次光の前記光学特性を変換し、前記光学特性を変換された前記1次光を前記照明光として前記被写体に出射する複数の照明部と、
     を有し、
     前記調整機構は、各前記光源から出射される前記1次光の光量比を調整することによって、前記照明光の前記光学特性を調整する請求項6に記載の内視鏡システム。
    The lighting unit is:
    A plurality of light sources that emit primary light;
    A plurality of illumination units arranged in the same number as the light sources and paired with the light sources, converting the optical characteristics of the primary light, and emitting the primary light converted the optical characteristics as the illumination light to the subject When,
    Have
    The endoscope system according to claim 6, wherein the adjustment mechanism adjusts the optical characteristic of the illumination light by adjusting a light amount ratio of the primary light emitted from each light source.
  11.  前記照明ユニットは、
      1次光を出射する光源と、
      前記1次光を導光する導光部材と、
      前記導光部材によって導光された前記1次光の前記光学特性を変換し、前記光学特性を変換された前記1次光を前記照明光として前記被写体に出射する1以上の照明部と、
     を有する請求項1に記載の内視鏡システム。
    The lighting unit is:
    A light source that emits primary light;
    A light guide member for guiding the primary light;
    One or more illumination units that convert the optical characteristics of the primary light guided by the light guide member, and emit the primary light having the converted optical characteristics as the illumination light to the subject;
    The endoscope system according to claim 1, comprising:
  12.  前記調整機構は、全ての前記照明部に対して連動して、全ての前記照明ユニットの前記光学特性を同時に調整する請求項11に記載の内視鏡システム。 The endoscope system according to claim 11, wherein the adjustment mechanism adjusts the optical characteristics of all the illumination units simultaneously in conjunction with all the illumination units.
  13.  前記照明ユニットの前記照明部同士は、前記撮像ユニットの撮像部を中心に対称に設けられる請求項11に記載の内視鏡システム。 The endoscope system according to claim 11, wherein the illumination units of the illumination unit are provided symmetrically about the imaging unit of the imaging unit.
  14.  前記撮像画像を複数の領域に分け、分けられた前記領域毎にコントラスト値または色座標値を抽出する抽出部と、
     前記撮像画像を表示する表示部と、
     前記注目領域の決定のために用いられる前記コントラスト値と前記色座標値と前記表示部の表示画像とのいずれかの指定値を指定する指定部と、
     をさらに具備し、
     前記注目領域決定部は、前記指定部によって指定された前記指定値を基に前記注目領域を決定し、
     前記指定部が前記コントラスト値を指定した場合、前記注目領域決定部は、前記コントラスト値が所定値よりも高いか否かを算出し、前記所定値よりも高いと算出された前記コントラスト値を有する領域を前記注目領域として決定し、
     前記指定部が前記色座標値を指定した場合、前記注目領域決定部は、前記色座標値が前記色座標値の所定の範囲に入るか否かを算出し、前記所定の範囲に入った前記色座標値を有する領域を前記注目領域として決定し、
     前記指定部が前記表示画像を指定した場合、前記注目領域決定部は、前記表示画像を、前記注目領域として決定する請求項1に記載の内視鏡システム。
    An extraction unit that divides the captured image into a plurality of regions and extracts a contrast value or a color coordinate value for each of the divided regions;
    A display unit for displaying the captured image;
    A designation unit that designates any one of the contrast value, the color coordinate value, and the display image of the display unit that are used for determining the region of interest;
    Further comprising
    The attention area determination unit determines the attention area based on the designated value designated by the designation unit,
    When the specifying unit specifies the contrast value, the attention area determining unit calculates whether or not the contrast value is higher than a predetermined value, and has the contrast value calculated to be higher than the predetermined value. Determining a region as the region of interest;
    When the designation unit designates the color coordinate value, the attention area determination unit calculates whether the color coordinate value falls within a predetermined range of the color coordinate value, and enters the predetermined range. Determining a region having a color coordinate value as the region of interest;
    The endoscope system according to claim 1, wherein, when the designation unit designates the display image, the attention area determination unit determines the display image as the attention area.
  15.  前記注目領域決定部は、表示部に表示された表示画像から指定部によって指定された領域を基に、前記注目領域を決定する請求項11に記載の内視鏡システム。 12. The endoscope system according to claim 11, wherein the attention area determination unit determines the attention area based on an area designated by a designation section from a display image displayed on a display section.
  16.  照明部から照明光を出射し前記照明光を被写体に照明する照明工程と、
     前記被写体から反射された前記照明光を基に前記被写体を撮像ユニットによって撮像する撮像工程と、
     前記照明光が照明している領域である照明領域を、前記撮像ユニットによって撮像された前記被写体の撮像画像を基に照明領域特定部によって特定する特定工程と、
     前記撮像画像を基に、観察のために注目する領域である注目領域を注目領域決定部によって決定する決定工程と、
     前記注目領域と前記照明領域とを基に、前記照明光の照明を予定される領域である照明予定領域を照明予定領域設定部によって設定する設定工程と、
     前記照明予定領域が前記照明光を照明されるように、前記照明光の光学特性を調整機構によって調整する調整工程と、
     を具備する内視鏡システムの制御方法。
    An illumination step of emitting illumination light from the illumination unit and illuminating the illumination light on a subject;
    An imaging step of imaging the subject by an imaging unit based on the illumination light reflected from the subject;
    A specifying step of specifying an illumination area, which is an area illuminated by the illumination light, by an illumination area specifying unit based on a captured image of the subject imaged by the imaging unit;
    A determination step of determining a region of interest, which is a region of interest for observation based on the captured image, by a region of interest determination unit;
    Based on the attention area and the illumination area, a setting step of setting an illumination scheduled area that is an area where illumination of the illumination light is scheduled by an illumination scheduled area setting unit;
    An adjustment step of adjusting an optical characteristic of the illumination light by an adjustment mechanism so that the illumination scheduled area is illuminated with the illumination light;
    An endoscopic system control method comprising:
PCT/JP2015/064958 2015-05-25 2015-05-25 Endoscope system and method for controlling endoscope system WO2016189629A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/064958 WO2016189629A1 (en) 2015-05-25 2015-05-25 Endoscope system and method for controlling endoscope system
JP2017520103A JP6736550B2 (en) 2015-05-25 2015-05-25 Endoscope system and control method for endoscope system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/064958 WO2016189629A1 (en) 2015-05-25 2015-05-25 Endoscope system and method for controlling endoscope system

Publications (1)

Publication Number Publication Date
WO2016189629A1 true WO2016189629A1 (en) 2016-12-01

Family

ID=57394090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064958 WO2016189629A1 (en) 2015-05-25 2015-05-25 Endoscope system and method for controlling endoscope system

Country Status (2)

Country Link
JP (1) JP6736550B2 (en)
WO (1) WO2016189629A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235166A1 (en) * 2017-06-20 2018-12-27 オリンパス株式会社 Endoscope system
WO2021181967A1 (en) * 2020-03-11 2021-09-16 富士フイルム株式会社 Endoscope system, control method, and control program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01185510A (en) * 1988-01-19 1989-07-25 Toshiba Corp Endoscope
JPH07140329A (en) * 1993-11-12 1995-06-02 Fujikura Ltd Wide angle illuminating device
JP2001281559A (en) * 2000-03-31 2001-10-10 Olympus Optical Co Ltd Endoscope instrument
JP2012245157A (en) * 2011-05-27 2012-12-13 Olympus Corp Endoscope apparatus
JP2012245161A (en) * 2011-05-27 2012-12-13 Olympus Corp Endoscope apparatus
JP2015036066A (en) * 2013-08-13 2015-02-23 オリンパス株式会社 Observation device and failure detection method for luminaire for use in the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4270634B2 (en) * 1999-03-18 2009-06-03 オリンパス株式会社 Endoscope device
JP4791395B2 (en) * 2007-03-16 2011-10-12 株式会社モリタ製作所 Medical imaging device
JP5150388B2 (en) * 2008-07-01 2013-02-20 富士フイルム株式会社 Endoscope

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01185510A (en) * 1988-01-19 1989-07-25 Toshiba Corp Endoscope
JPH07140329A (en) * 1993-11-12 1995-06-02 Fujikura Ltd Wide angle illuminating device
JP2001281559A (en) * 2000-03-31 2001-10-10 Olympus Optical Co Ltd Endoscope instrument
JP2012245157A (en) * 2011-05-27 2012-12-13 Olympus Corp Endoscope apparatus
JP2012245161A (en) * 2011-05-27 2012-12-13 Olympus Corp Endoscope apparatus
JP2015036066A (en) * 2013-08-13 2015-02-23 オリンパス株式会社 Observation device and failure detection method for luminaire for use in the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235166A1 (en) * 2017-06-20 2018-12-27 オリンパス株式会社 Endoscope system
US11583173B2 (en) 2017-06-20 2023-02-21 Olympus Corporation Light source apparatus, endoscope system, and illumination control method for adjusting first and second illumination light emitted from first and second illumination light emission ends of a light guide
WO2021181967A1 (en) * 2020-03-11 2021-09-16 富士フイルム株式会社 Endoscope system, control method, and control program

Also Published As

Publication number Publication date
JPWO2016189629A1 (en) 2018-03-15
JP6736550B2 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
JP2020114388A (en) Multi-focal, multi-camera endoscope systems
JP4317478B2 (en) Phosphor-type light emitting device and endoscope device using the same as an illumination source
JP5956146B2 (en) Illumination optical system and 3D image acquisition apparatus including the same
US11583163B2 (en) Endoscope system for adjusting ratio of distributing primary light to first illuminator and second illuminator
US20120010465A1 (en) Endoscope apparatus
US20060215406A1 (en) Medical diagnostic instrument with highly efficient, tunable light emitting diode light source
EP2754379B1 (en) Endoscope system and image display method
US20110172492A1 (en) Medical apparatus and endoscope apparatus
EP2436303A2 (en) Endoscope device
US11627880B2 (en) Real-time parathyroid imaging system
US20190087970A1 (en) Endoscope system, processor device, and endoscope system operation method
JP2007021084A (en) Endoscope
US10527237B2 (en) Illumination apparatus
JP6736550B2 (en) Endoscope system and control method for endoscope system
WO2018003263A1 (en) Observation device and control method for observation device
JP2012142926A (en) Optical system obtained by integrating illumination optical system and image formation optical system, and three-dimensional image acquisition device
US20190317313A1 (en) Light source device, light source control method, and image acquisition system
WO2017159046A1 (en) Endoscope light source, control method for endoscope light source, and endoscope device
US20190269309A1 (en) Electronic scope and electronic endoscope system
TW201329607A (en) Short-distance light source apparatus for image capturing device and image capturing device having the same
US20200302610A1 (en) Medical image processing device, medical observation device, method of processing image, and computer readable recording medium
WO2018216118A1 (en) Lighting device
KR101969893B1 (en) Light device for fluorescence molecular imaging endoscopy
US10849487B2 (en) Illumination unit and endoscope system
JP2020146407A (en) Light source device, medical observation system, illumination method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520103

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893264

Country of ref document: EP

Kind code of ref document: A1