WO2016189625A1 - Motor, and indoor unit for air conditioning device - Google Patents

Motor, and indoor unit for air conditioning device Download PDF

Info

Publication number
WO2016189625A1
WO2016189625A1 PCT/JP2015/064951 JP2015064951W WO2016189625A1 WO 2016189625 A1 WO2016189625 A1 WO 2016189625A1 JP 2015064951 W JP2015064951 W JP 2015064951W WO 2016189625 A1 WO2016189625 A1 WO 2016189625A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
pipe
casing
water
indoor unit
Prior art date
Application number
PCT/JP2015/064951
Other languages
French (fr)
Japanese (ja)
Inventor
晋士 友井川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/064951 priority Critical patent/WO2016189625A1/en
Publication of WO2016189625A1 publication Critical patent/WO2016189625A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets

Definitions

  • the present invention relates to a motor having a cooling mechanism and an indoor unit of an air conditioner.
  • An indoor unit of an air conditioner generally includes a fan for blowing cool air or hot air into a room and a motor for rotating the fan. For example, during the cooling operation of the air conditioner, heat is generated in the indoor unit with the rotation of the motor, so even if cold air is generated, the cooling air is warmed by the heat from the motor, and efficient cooling operation cannot be performed. was there. Also, in the indoor unit of a conventional air conditioner, the heat source of drain water generated in the evaporator during cooling operation, water supplied to the humidifier during heating operation, and exhaust water discharged from the humidifier is used for other purposes. In general, the air was discharged outside the air conditioner without being reused.
  • Patent Document 1 In the air conditioner disclosed in Patent Document 1, it is unclear whether or not the cooling cover can be removed. Therefore, after attaching the cooling cover to the outer shell of the motor, there is a possibility that maintenance of the motor housed in the cooling cover cannot be performed. Further, since Patent Document 1 does not describe the detailed shape of the outer shell of the motor and the detailed mounting method of the cooling cover, it is unclear whether the cooling of the motor can actually be performed efficiently. It was.
  • the present invention has been made against the background of the above problems, and an object thereof is to obtain a motor including a cooling mechanism for efficiently cooling the outer shell of the motor and an indoor unit of an air conditioner.
  • a motor according to the present invention includes: a rotating shaft; a motor unit that rotationally drives a fan via the rotating shaft; a casing that houses the motor unit; and a pipe that is provided on a surface of the casing and allows fluid to pass therethrough. It is provided.
  • a motor capable of efficiently cooling the casing can be obtained by providing a pipe through which a cooling fluid is passed on the outer surface of the casing that houses the motor unit.
  • FIG. 1 is a schematic diagram of an indoor unit of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the indoor unit 100 of the air conditioner has a main body case 30, and the main body case 30 is partitioned into a blower unit 40 and a heat exchanger unit 50 by a fan plate 21.
  • the blower unit 40 is provided with a motor 1, two fan casings 2, a tube 7 and a drain port 22.
  • the motor 1 includes a rotating shaft 1a extending horizontally with the fan casing 2, a motor portion 1b that rotates the rotating shaft 1a, and a casing 1c made of, for example, aluminum that houses the motor portion 1b. .
  • a fan (not shown) is provided inside the fan casing 2.
  • the motor unit 1b rotationally drives the fan via the rotating shaft 1a.
  • the tube 7 connects the motor 1 side and the drain port 22.
  • the casing 1c is made of aluminum.
  • the casing 1c may be formed of other materials such as a steel plate or a resin.
  • the tube 7 corresponds to the “first tube” in the present invention.
  • the indoor unit 100 of the air conditioning apparatus showed the example provided with the fan casing 2 and two fans, this invention is not limited to this, The fan casing 2 and one fan may be sufficient. And three or more may be provided.
  • the heat exchanger unit 50 is provided with a heat exchanger 3, a drain pan 4 and a drain pump 5.
  • a drain pan 4 is provided below the heat exchanger section 50, and a drain pump 5 and a heat exchanger 3 are provided above the drain pan 4.
  • the drain pump 5 is provided with a tube 6 for sending out drain water, and is connected to the motor 1 side in the blower unit 40.
  • An air outlet (not shown) for blowing out air is provided on the side surface (the front side of the paper surface) of the heat exchanger unit 50.
  • the tube 6 corresponds to a “second tube” in the present invention.
  • the temperature of the refrigerant in the heat exchanger 3 is the water vapor contained in the air.
  • a drain pan 4 is provided below the heat exchanger 3 for storing and draining the condensed water.
  • Condensed water (drain water) generated in the heat exchanger 3 flows into the drain pan 4 installed below the heat exchanger 3 and is collected in one place by an inclination provided at the bottom of the drain pan 4.
  • a drain pump 5 is installed at the deepest part of the drain pan 4 where the condensed water collects.
  • Condensate water stored in the deepest part of the drain pan 4 is drained to the blower unit 40 side through the tube 6 by operation of the drain pump 5.
  • the condensed water drained to the air blower part 40 passes the tube 7 via the pipe 8 (refer FIG. 2) provided in the motor 1 mentioned later, and the exterior of the indoor unit 100 of the air conditioner from the drain port 22. Drained into
  • FIG. 2 is a schematic diagram of the motor of the indoor unit of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the motor 1 has heat dissipating fins 9 extending parallel to the rotating shaft 1 a (see FIG. 1) on the outer surface of the casing 1 c and arranged in the circumferential direction.
  • the radiating fin 9 has an elongated trapezoidal shape in which the top side is shorter than the bottom side and the height is high in the circumferential cross section of the casing 1c.
  • a cylindrical pipe 8 formed of a metal such as copper is attached along the surface of the casing 1 c of the motor 1. Both ends of the pipe 8 are threaded and are configured to be fitted to the socket 10.
  • the socket 10 is connected to a tube 6 for supplying a fluid (for example, water) or a tube 7 for draining the fluid, and the pipe 8 is configured to be detachable from the tube 6 and the tube 7 via the socket 10. Yes.
  • the drain pump 5 supplies fluid to the pipe 8 through the tube 6 and drains the fluid from the pipe 8 to the tube 7.
  • FIG. 2 in order to show the shape of the pipe 8 in an easy-to-understand manner, the end portion of the pipe 8 is shown as being cut, but the actual end portion of the pipe is not cut.
  • the example in which the radiating fins 9 are parallel to the rotating shaft 1a is shown, but it is not always necessary to be completely parallel and includes the concept of “substantially parallel”.
  • the shape of the pipe 8 is cylindrical, but the present invention is not limited to this, and the shape of the pipe 8 may be flat. By doing in this way, the heat exchange area of the pipe 8 and the casing 1c can be increased, and the casing 1c can be cooled more efficiently.
  • the trapezoid is formed in the circumferential cross section of the casing 1c of the radiating fin 9 is shown, but the present invention is not limited to this, and the cross section may be a triangle or a rectangular parallelepiped.
  • the heat radiating fins 9 may be formed of a thin plate member.
  • the motor 1 has a portion where heat exchange is easily performed and a portion where heat exchange is difficult to occur due to the flow of ambient air.
  • the main body case 30 has a fan plate 21 that partitions into a blower unit 40 and a heat exchanger unit 50.
  • the motor 1 between the two fan casings 2 since air easily flows on the blowing side of the fan casing 2, heat exchange between the air and the radiating fins 9 of the motor 1 is easy.
  • the blow-out side of the fan casing 2 is sandwiched between the fan plate 21 and the motor 1, air easily stagnates, and the heat radiation fins 9 and the air hardly exchange heat. Therefore, the motor 1 is efficiently cooled by placing the pipe 8 in a portion of the casing 1c of the motor 1 where heat exchange with the air is difficult to be performed and by causing a cooling fluid to flow in the pipe 8. Can do.
  • the heat generated by the operation of the motor 1 warms the air in the main body case 30, and the warmed air tends to accumulate in the upper part of the main body case 30. Accordingly, the temperature of the upper portion of the motor unit 1b and the casing 1c is likely to rise with respect to the ground. Therefore, the motor 1 can be efficiently cooled by installing the pipe 8 mainly in the upper part of the casing 1c of the motor 1 where the temperature is likely to rise, and causing the cooling fluid to flow in the pipe 8. it can.
  • a heat radiating fin is provided at the place where the control board is built in.
  • the cooling effect is promoted by providing a pipe for flowing a cooling fluid in the portion where the heat radiation fin is provided, that is, the portion where the motor generates heat most, rather than cooling the whole motor. It is possible.
  • the motor 1 of the indoor unit 100 of the air conditioning apparatus has the motor unit 1b that rotates the fan via the rotating shaft 1a, and the casing 1c that houses the motor unit 1b. And a pipe 8 provided on the outer surface of the casing 1c and allowing fluid to pass therethrough.
  • the motor 1 includes a tube 6 through which the fluid supplied to the pipe 8 circulates and a tube 7 through which the fluid discharged from the pipe 8 circulates, and one end of the pipe 8;
  • the tube 6 is configured to be detachable, and the other end of the pipe 8 and the tube 7 are configured to be detachable.
  • the motor 1 includes a plurality of heat radiation fins 9 parallel to the rotation shaft 1a on the outer surface of the casing 1c, and the pipe 8 is disposed between the plurality of heat radiation fins 9. .
  • heat can be radiated not only from the heat radiating fins 9 but also from the pipes 8, and the motor 1 can be cooled more efficiently.
  • the indoor unit 100 of the air conditioner includes a motor 1, a heat exchanger 3, a drain pan 4 that stores condensed water generated in the heat exchanger 3, and a drain pump 5 that drains the condensed water stored in the drain pan 4.
  • the drain pump 5 is configured to send condensed water as a fluid to the pipe 8 or a pipe 11 (see FIG. 3) described later. In this way, the condensed water generated during the cooling operation can be effectively used as the cooling water for the motor 1 before being discharged to the outside of the indoor unit 100 of the air conditioner.
  • Embodiment 2 Since the basic configuration of the indoor unit 100 of the air conditioning apparatus in the second embodiment is the same as that of the indoor unit 100 of the air conditioning apparatus in the first embodiment, hereinafter, the difference from the first embodiment will be mainly described.
  • the second embodiment will be described.
  • the difference between the first embodiment and the second embodiment is that a pipe is provided inside a radiating fin provided on the outer surface of the casing.
  • FIG. 3 is a schematic diagram of the motor of the indoor unit of the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • a plurality of radiating fins 9 parallel to the rotating shaft 1a are provided on the outer surface of the casing 1c.
  • the radiating fin 9 is provided with a hole in a direction parallel to the rotating shaft 1a, and a pipe 11 is inserted into the hole of the radiating fin 9 and is formed of a metal such as copper and passes a cooling fluid. .
  • Both ends of the pipe 11 are threaded and are configured to be fitted to the socket 10.
  • the socket 10 is connected to a tube 6 for supplying water or a tube 7 for draining water, and the pipe 11 is configured to be detachable from the tube 6 and the tube 7 via the socket 10.
  • the motor 1 includes the heat dissipating fins 9 parallel to the rotating shaft 1a on the outer surface of the casing 1c, and the pipe 11 is provided inside the heat dissipating fins 9. And By doing in this way, in addition to the effect of Embodiment 1, the motor 1 can be efficiently cooled from both the radiation fin 9 and the pipe 11.
  • Embodiment 3 Since the basic configuration of the indoor unit 100 of the air conditioning apparatus in the third embodiment is the same as that of the indoor unit 100 of the air conditioning apparatus in the first embodiment, the differences from the first embodiment will be mainly described below.
  • the third embodiment will be described.
  • the difference between the first embodiment and the third embodiment is that a convex portion parallel to the rotation axis is provided on the outer surface of the casing, and a pipe is provided inside the convex portion.
  • FIG. 4 is a schematic diagram of the motor of the indoor unit of the air-conditioning apparatus according to Embodiment 3 of the present invention.
  • a plurality of convex portions 12 parallel to the rotating shaft 1a are provided on the outer surface of the casing 1c.
  • the convex part 12 is provided with the hole in the direction parallel to the rotating shaft 1a,
  • the pipe 11 which shape
  • the socket 10 is connected to a tube 6 for supplying water or a tube 7 for draining water, and the pipe 11 is configured to be detachable from the tube 6 and the tube 7 via the socket 10.
  • the radiating fin 9 is provided for the purpose of exchanging heat with air, but the convex portion 12 is not provided for the purpose of exchanging heat with air, and the pipe 11 is provided inside the convex portion 12.
  • the purpose is to exchange heat between the fluid flowing through the pipe 11 and the motor 1. For this reason, since the convex part 12 does not need to make a surface area large, the height of the convex part 12 is made into the height equivalent to the height of the radiation fin 9 (refer FIG. 2), or lower than the radiation fin 9.
  • the motor 1 is provided with the convex portion 12 parallel to the rotating shaft 1a on the outer surface of the casing 1c, and the pipe 11 is provided inside the convex portion 12. And By doing in this way, in addition to the effect of Embodiment 1, the motor 1 can be efficiently cooled from both the radiation fin 9 and the pipe 11.
  • Embodiment 4 Since the basic configuration of the motor 1 according to the fourth embodiment is the same as that of the motor 1 according to the third embodiment, the fourth embodiment will be described below with a focus on differences from the third embodiment.
  • the difference between the third embodiment and the fourth embodiment is that a convex portion provided with a pipe is detachable from the casing.
  • FIG. 5 is a schematic diagram of a convex portion attached to the motor of the indoor unit of the air-conditioning apparatus according to Embodiment 4 of the present invention.
  • the motor cooling component 13 includes a convex portion 12 extending in the longitudinal direction.
  • a hole is provided in the convex portion 12, and a pipe 11 that is molded from a metal such as copper and passes a cooling fluid is inserted into the hole. Both ends of the pipe 11 are threaded and are configured to be fitted to the socket 10 (see FIG. 2).
  • the socket 10 is connected to a tube 6 for supplying water or a tube 7 for draining water, and the pipe 11 is configured to be detachable from the tube 6 and the tube 7 via the socket 10.
  • Screw holes 14a for fitting screws 14 are provided at both ends of the motor cooling component 13.
  • the motor cooling component fixing bracket 15 is formed of a U-shaped flat plate, and screw holes 14a for fitting screws 14 are provided at both ends of the flat plate.
  • the convex portion 12 is configured to be detachably provided on the casing 1c.
  • the motor cooling component 13 having the convex portion 12 and the motor cooling component fixing bracket 15 are provided.
  • the convex part 12 can be provided in the casing 1c later by fixing the casing 1c with When the convex portion 12 is no longer needed, the convex portion 12 can be removed from the casing 1c by removing the motor cooling component 13 and the motor cooling component fixing bracket 15.
  • the motor cooling component with the tubes 6 and 7 still attached to the pipe 11 provided on the convex portion 12 13 and the motor cooling component fixing bracket 15 are removed from the motor 1.
  • Embodiment 5 Since the basic configuration of the indoor unit 100 of the air conditioner in Embodiment 5 is the same as that of the indoor unit 100 of the air conditioner in Embodiment 1, the differences from Embodiment 1 will be mainly described below.
  • the fifth embodiment will be described. The difference between the first embodiment and the fifth embodiment is that the pipes are connected by a connecting member.
  • FIG. 6 is a schematic diagram of a connecting part of a pipe attached to the motor of the indoor unit of the air-conditioning apparatus according to Embodiment 5 of the present invention.
  • the pipe connection tube 16 is formed in a U shape, and sockets 10 are provided at both ends.
  • the pipe connection tube 16 can connect the two pipes 8 or the two pipes 11 via the sockets 10 at both ends.
  • the pipe connection tube 16 corresponds to a “connection member” in the present invention.
  • the two pipes 8 or 11 and the pipe connection tube 16 that connects the two pipes 8 or 11 are provided with the two pipes 8.
  • the pipes 11 are connected to each other via a pipe connecting tube 16.
  • Embodiment 6 Since the basic configuration of the indoor unit 100 of the air conditioner in the sixth embodiment is the same as that of the indoor unit 100 of the air conditioner in the first embodiment, the differences from the first embodiment are mainly described below.
  • the sixth embodiment will be described.
  • the difference between the first embodiment and the sixth embodiment is that a humidifier is provided in the indoor unit, and the motor is cooled using water supplied to the humidifier.
  • the fluid supplied to the pipe provided in the motor shown in the first embodiment is condensed water sucked up by the drain pump. Since the condensed water is generated only during the cooling operation, the condensed water is supplied to the motor during the heating operation. Cannot be used as a cooling fluid. Therefore, this method is possible only in the case of an air conditioner equipped with a humidifier. Before supplying water to the humidifier, the water is circulated through a pipe provided in the motor casing, so that the motor Cool down.
  • FIG. 7 is a schematic diagram of an indoor unit of an air-conditioning apparatus according to Embodiment 6 of the present invention.
  • the indoor unit 100a of the air conditioner is configured by adding a humidifier 19, a tube 17, a tube 18, a tube 20, and a water supply port 24 to the indoor unit 100 of the air conditioner according to Embodiment 1.
  • the tube 17 connects the water supply port 24 and a pipe (pipe 8 or pipe 11) provided on the outer surface of the casing 1c.
  • the tube 18 allows a pipe (pipe 8 or pipe 11) provided on the outer surface of the casing 1 c to communicate with the humidifier 19 provided in the heat exchanger unit 50.
  • the tube 20 is provided from the humidifier 19 toward the drain pan 4.
  • the water supplied from the water supply port 24 passes through the tube 17 and the pipe (pipe 8 or pipe 11) provided on the outer surface of the casing 1c to cool the motor 1. Thereafter, the water passes through the tube 18 and is supplied to the humidifier 19. Excess discharged water generated in the humidifier 19 is drained to the drain pan 4 through the tube 20. The drainage water stored in a certain amount in the drain pan 4 is sucked up by the drain pump 5, passes through the tube 6 and the pipe (pipe 8 or pipe 11) provided on the outer surface of the casing 1c, cools the motor 1, Then, it passes through the tube 7 and is discharged from the drain port 22 to the outside of the indoor unit 100a of the air conditioner.
  • the temperature of the water supplied to the humidifier 19 is higher, but most of the heating operation is in the winter season, In many cases, the temperature of water supplied from the water supply port 24 is low. Therefore, the water can be supplied to the humidifier 19 at a higher water temperature than usual by cooling the motor 1 and increasing the water temperature via the motor 1 before supplying water to the humidifier 19. For this reason, indoor humidification is facilitated.
  • both water supplied from the water supply port 24 and discharged water generated in the humidifier are supplied. showed that.
  • the present invention is not limited to this, for example, when the indoor unit naturally drains condensed water or discharged water without mounting a drain pump, or a pipe provided on the outer surface of the motor casing. If it is not necessary to supply the air to the interior, the discharged water may be discharged from the drain pan to the outside of the indoor unit without using it as a fluid for cooling the motor.
  • the indoor unit 100a of the air conditioner includes the motor 1 and the humidifier 19 that receives the supply of water and humidifies the air.
  • the pipe 8 or the pipe 11 passes water as a fluid, and the humidifier 19 is configured to receive the water passed through the pipe 8 or the pipe 11. By doing in this way, the temperature of water can be raised so that it may become easy to humidify with the humidifier 19, cooling the motor 1.
  • the indoor unit 100a of the air conditioner further includes a drain pan 4 that stores the discharged water that has flowed out of the humidifier 19, and a drain pump 5 that drains the discharged water stored in the drain pan 4.
  • the drain pump 5 sends the discharged water as a fluid to the pipe 8 or the pipe 11, and the pipe 8 or the pipe 11 passes the discharged water as the fluid.
  • the pipe for passing the cooling fluid is provided on the outer surface of the casing in order to cool the motor.
  • the method described above is not applied to the motor. It is also possible to cool these by applying to the control board and its components. A heat radiation fin is attached so as to come into contact with the control board or a component of the control board, and a pipe through which a cooling fluid is passed is provided to flow the fluid, whereby heat generation of the control board or the like can be suppressed. Thereby, it is possible to suppress a decrease in the life of the component and a decrease in the performance of the component due to the temperature rise of the control board and the like.

Abstract

The purpose of the present invention is to provide a motor (1) comprising piping for supplying cooling water for efficiently cooling the outer shell of the motor (1). The motor (1) comprises: a rotating shaft (1a); a motor section (1b) for rotationally driving a fan through the rotating shaft (1a); a casing (1c) for housing the motor section (1b); and a pipe (8) provided on the outside surface of the casing (1c) and allowing cooling fluid to flow therethrough.

Description

モータ、及び空気調和装置の室内機Indoor unit of motor and air conditioner
 本発明は、冷却機構を有しているモータ、及び空気調和装置の室内機に関するものである。 The present invention relates to a motor having a cooling mechanism and an indoor unit of an air conditioner.
 空気調和装置の室内機は、一般的に室内に冷風又は温風を送風するためのファンと、ファンを回転させるモータを備えている。例えば、空気調和装置の冷房運転時において、モータの回転駆動に伴い、室内機内で熱が発生するため、冷風を生成してもモータからの熱により冷風が温められ効率的な冷房運転ができない問題があった。また、従来の空気調和装置の室内機において、冷房運転時の蒸発器に発生するドレン水、暖房運転時の加湿器への供給水、及び加湿器から排出される排出水の熱源を他の用途で再利用することなく、一般的には空気調和装置の装置外へ排出していた。 An indoor unit of an air conditioner generally includes a fan for blowing cool air or hot air into a room and a motor for rotating the fan. For example, during the cooling operation of the air conditioner, heat is generated in the indoor unit with the rotation of the motor, so even if cold air is generated, the cooling air is warmed by the heat from the motor, and efficient cooling operation cannot be performed. was there. Also, in the indoor unit of a conventional air conditioner, the heat source of drain water generated in the evaporator during cooling operation, water supplied to the humidifier during heating operation, and exhaust water discharged from the humidifier is used for other purposes. In general, the air was discharged outside the air conditioner without being reused.
 そこで、空気調和装置の室内機に備えられているモータをカバーで覆い、冷房運転時の蒸発器に発生するドレン水をモータの外郭に滴下させ、モータを冷却させる空気調和装置が提案されている(例えば特許文献1参照)。 Then, the air conditioner which covers the motor with which the indoor unit of an air conditioner is equipped with a cover, dripping the drain water generated in the evaporator at the time of air conditioning operation to the outline of a motor, and cools a motor is proposed. (For example, refer to Patent Document 1).
特開昭58-175738号公報Japanese Patent Laid-Open No. 58-175738
 特許文献1に開示された空気調和装置においては、冷却用のカバーを取り外すことができるか否かが不明である。そのため、モータの外郭に冷却用のカバーを取り付けた後は、冷却用のカバーに収納されているモータのメンテナンスが行えなくなる可能性があった。また、特許文献1には、モータの外郭の詳細な形状及び冷却用のカバーの詳細な取付方法が記載されていないため、実際にモータの冷却を効率的に実行できるか否かが不明であった。 In the air conditioner disclosed in Patent Document 1, it is unclear whether or not the cooling cover can be removed. Therefore, after attaching the cooling cover to the outer shell of the motor, there is a possibility that maintenance of the motor housed in the cooling cover cannot be performed. Further, since Patent Document 1 does not describe the detailed shape of the outer shell of the motor and the detailed mounting method of the cooling cover, it is unclear whether the cooling of the motor can actually be performed efficiently. It was.
 本発明は、上記のような課題を背景としてなされたものであり、モータの外郭を効率的に冷却する冷却機構を備えたモータ、及び空気調和装置の室内機を得ることを目的とする。 The present invention has been made against the background of the above problems, and an object thereof is to obtain a motor including a cooling mechanism for efficiently cooling the outer shell of the motor and an indoor unit of an air conditioner.
 本発明に係るモータは、回転軸と、前記回転軸を介してファンを回転駆動するモータ部と、前記モータ部を収納するケーシングと、前記ケーシングの表面に設けられ、流体を通すパイプと、を備えたものである。 A motor according to the present invention includes: a rotating shaft; a motor unit that rotationally drives a fan via the rotating shaft; a casing that houses the motor unit; and a pipe that is provided on a surface of the casing and allows fluid to pass therethrough. It is provided.
 本発明によれば、モータ部を収納するケーシングの外部の表面に冷却用の流体を通すパイプを設けることで、ケーシングの冷却を効率的に行えるモータを得ることができる。 According to the present invention, a motor capable of efficiently cooling the casing can be obtained by providing a pipe through which a cooling fluid is passed on the outer surface of the casing that houses the motor unit.
本発明の実施の形態1に係る空気調和装置の室内機の概略図である。It is the schematic of the indoor unit of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の室内機のモータの概略図である。It is the schematic of the motor of the indoor unit of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る空気調和装置の室内機のモータの概略図である。It is the schematic of the motor of the indoor unit of the air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る空気調和装置の室内機のモータの概略図である。It is the schematic of the motor of the indoor unit of the air conditioning apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る空気調和装置の室内機のモータに取り付ける凸部の概略図である。It is the schematic of the convex part attached to the motor of the indoor unit of the air conditioning apparatus which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る空気調和装置の室内機のモータに取り付けるパイプの連結部品の概略図である。It is the schematic of the connection part of the pipe attached to the motor of the indoor unit of the air conditioning apparatus which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る空気調和装置の室内機の概略図である。It is the schematic of the indoor unit of the air conditioning apparatus which concerns on Embodiment 6 of this invention.
 以下、本発明のモータ、及び空気調和装置の室内機の実施の形態について、図面を参照して説明する。なお、図面の形態は一例であり、本発明を限定するものではない。また、各図において同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of a motor and an air conditioner indoor unit according to the present invention will be described with reference to the drawings. In addition, the form of drawing is an example and does not limit this invention. Moreover, what attached | subjected the same code | symbol in each figure is the same or it corresponds, and this is common in the whole text of a specification. Furthermore, in the following drawings, the relationship between the sizes of the constituent members may be different from the actual one.
実施の形態1.
[空気調和装置の室内機の構成]
 図1は、本発明の実施の形態1に係る空気調和装置の室内機の概略図である。図1に示されるように、空気調和装置の室内機100は、本体ケース30を有し、本体ケース30は、ファンプレート21によって内部が送風機部40と熱交換器部50とに区画されている。送風機部40には、モータ1、2つのファンケーシング2、チューブ7及び排水口22が設けられている。モータ1は、ファンケーシング2との間で水平方向に延伸する回転軸1aと、回転軸1aを回転させるモータ部1bと、モータ部1bを収納する例えばアルミニウム製のケーシング1cとにより構成されている。なお、ファンケーシング2の内部にはファン(図示省略)が設けられている。モータ部1bは、回転軸1aを介してファンを回転駆動させる。チューブ7は、モータ1側と排水口22とを繋いでいる。なお、本実施の形態1においてケーシング1cはアルミニウム製である例を示したが、他の材質、例えば鋼板や樹脂等で成形してもよい。なお、チューブ7は、本発明における「第一のチューブ」に相当する。
Embodiment 1 FIG.
[Configuration of indoor unit of air conditioner]
FIG. 1 is a schematic diagram of an indoor unit of an air-conditioning apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, the indoor unit 100 of the air conditioner has a main body case 30, and the main body case 30 is partitioned into a blower unit 40 and a heat exchanger unit 50 by a fan plate 21. . The blower unit 40 is provided with a motor 1, two fan casings 2, a tube 7 and a drain port 22. The motor 1 includes a rotating shaft 1a extending horizontally with the fan casing 2, a motor portion 1b that rotates the rotating shaft 1a, and a casing 1c made of, for example, aluminum that houses the motor portion 1b. . A fan (not shown) is provided inside the fan casing 2. The motor unit 1b rotationally drives the fan via the rotating shaft 1a. The tube 7 connects the motor 1 side and the drain port 22. In the first embodiment, the casing 1c is made of aluminum. However, the casing 1c may be formed of other materials such as a steel plate or a resin. The tube 7 corresponds to the “first tube” in the present invention.
 なお、本実施の形態1において空気調和装置の室内機100がファンケーシング2及びファンを2つ備えた例を示したが本発明はこれに限定されず、ファンケーシング2及びファンが1つでもよいし、3つ以上備えてもよい。 In addition, in this Embodiment 1, although the indoor unit 100 of the air conditioning apparatus showed the example provided with the fan casing 2 and two fans, this invention is not limited to this, The fan casing 2 and one fan may be sufficient. And three or more may be provided.
 熱交換器部50には、熱交換器3、ドレンパン4及びドレンポンプ5が設けられている。熱交換器部50の下方にはドレンパン4が設けられ、ドレンパン4の上方にはドレンポンプ5及び熱交換器3が設けられている。ドレンポンプ5にはドレン水を送出するためのチューブ6が設けられ、送風機部40内のモータ1側へと繋がっている。熱交換器部50の側面(紙面の手前側)には、空気を吹き出す空気吹出口(図示省略)が設けられている。なお、チューブ6は、本発明における「第二のチューブ」に相当する。 The heat exchanger unit 50 is provided with a heat exchanger 3, a drain pan 4 and a drain pump 5. A drain pan 4 is provided below the heat exchanger section 50, and a drain pump 5 and a heat exchanger 3 are provided above the drain pan 4. The drain pump 5 is provided with a tube 6 for sending out drain water, and is connected to the motor 1 side in the blower unit 40. An air outlet (not shown) for blowing out air is provided on the side surface (the front side of the paper surface) of the heat exchanger unit 50. The tube 6 corresponds to a “second tube” in the present invention.
[室内機100の動作]
 モータ1のモータ部1bが回転軸1aを介してファンを回転させると、送風機部40の内部のファンケーシング2の吸込側が負圧となり、居室内の空気は、空気調和装置の室内機100の内部へ吸引される。空気調和装置の室内機100の内部へ吸引される空気は、ファンケーシング2を通り、熱交換器部50に吹き出される。熱交換器部50に吹き出された空気は、熱交換器3を通過し、空気吹出口から空気調和装置の室内機100を出て、再び居室内に吹き出される。冷房運転時において、居室内に吹き出される空気は、冷媒により冷却された熱交換器3を通過することで冷やされる。なお、図1中の矢印は空気の流れ25を示す。
[Operation of indoor unit 100]
When the motor unit 1b of the motor 1 rotates the fan via the rotary shaft 1a, the suction side of the fan casing 2 inside the blower unit 40 becomes negative pressure, and the air in the room is inside the indoor unit 100 of the air conditioner. Sucked into. Air sucked into the indoor unit 100 of the air conditioner passes through the fan casing 2 and is blown out to the heat exchanger unit 50. The air blown out to the heat exchanger section 50 passes through the heat exchanger 3, exits the indoor unit 100 of the air conditioner from the air outlet, and is blown out again into the living room. During the cooling operation, the air blown into the living room is cooled by passing through the heat exchanger 3 cooled by the refrigerant. Note that the arrows in FIG.
 ここで、冷房運転時において、熱交換器3内の冷媒と、居室内に吹き出される空気とが熱交換を行う際に、熱交換器3内の冷媒の温度が、空気中に含まれる水蒸気の露点温度以下となる場合、熱交換器3に凝縮水(結露)が生じる。そこで、この凝縮水を貯留し、排水するためにドレンパン4が熱交換器3の下方に設けられている。 Here, during the cooling operation, when the refrigerant in the heat exchanger 3 exchanges heat with the air blown into the living room, the temperature of the refrigerant in the heat exchanger 3 is the water vapor contained in the air. When the temperature is lower than the dew point temperature, condensed water (condensation) is generated in the heat exchanger 3. Therefore, a drain pan 4 is provided below the heat exchanger 3 for storing and draining the condensed water.
 熱交換器3にて生じた凝縮水(ドレン水)は、熱交換器3の下方に設置されたドレンパン4に流れ、ドレンパン4の底部に設けられた傾斜によって、一カ所に集められる。凝縮水が集まるドレンパン4の最深部にはドレンポンプ5が設置され、ドレンポンプ5の運転により、ドレンパン4の最深部に貯留した凝縮水がチューブ6を介して送風機部40側へ排水される。そして、送風機部40へ排水された凝縮水は、後述するモータ1に設けられたパイプ8(図2参照)を経由してチューブ7を通り、排水口22から空気調和装置の室内機100の外部へ排水される。 Condensed water (drain water) generated in the heat exchanger 3 flows into the drain pan 4 installed below the heat exchanger 3 and is collected in one place by an inclination provided at the bottom of the drain pan 4. A drain pump 5 is installed at the deepest part of the drain pan 4 where the condensed water collects. Condensate water stored in the deepest part of the drain pan 4 is drained to the blower unit 40 side through the tube 6 by operation of the drain pump 5. And the condensed water drained to the air blower part 40 passes the tube 7 via the pipe 8 (refer FIG. 2) provided in the motor 1 mentioned later, and the exterior of the indoor unit 100 of the air conditioner from the drain port 22. Drained into
 図2は、本発明の実施の形態1に係る空気調和装置の室内機のモータの概略図である。図2に示されるように、モータ1は、ケーシング1cの外部の表面に回転軸1a(図1参照)に対して平行に延伸し、周方向に複数配列された放熱フィン9を有する。放熱フィン9は、ケーシング1cの周方向の断面において、上辺が底辺より短くて高さが高い、細長い台形の形状をなしている。2つの放熱フィン9との間には、銅等の金属で成型された円筒状のパイプ8が、モータ1のケーシング1cの表面に沿うように取り付けられている。パイプ8の両端部はネジ切りが施され、ソケット10と嵌合されるように構成されている。ソケット10は、流体(例えば水)を供給するためのチューブ6、又は流体を排水するためのチューブ7に接続され、パイプ8はソケット10を介してチューブ6及びチューブ7と着脱自在に構成されている。上述したように、ドレンポンプ5は、チューブ6を介してパイプ8に流体を供給し、パイプ8からチューブ7へ流体を排水させる。なお、図2においてパイプ8の形状を分かりやすく示すため、パイプ8の端部を切断した状態を示しているが、実際のパイプの端部は切断されてはいない。なお、本実施の形態1において、放熱フィン9が回転軸1aと平行である例を示したが、必ずしも完全に平行である必要はなく、「略平行」という概念を含むものである。 FIG. 2 is a schematic diagram of the motor of the indoor unit of the air-conditioning apparatus according to Embodiment 1 of the present invention. As shown in FIG. 2, the motor 1 has heat dissipating fins 9 extending parallel to the rotating shaft 1 a (see FIG. 1) on the outer surface of the casing 1 c and arranged in the circumferential direction. The radiating fin 9 has an elongated trapezoidal shape in which the top side is shorter than the bottom side and the height is high in the circumferential cross section of the casing 1c. Between the two radiating fins 9, a cylindrical pipe 8 formed of a metal such as copper is attached along the surface of the casing 1 c of the motor 1. Both ends of the pipe 8 are threaded and are configured to be fitted to the socket 10. The socket 10 is connected to a tube 6 for supplying a fluid (for example, water) or a tube 7 for draining the fluid, and the pipe 8 is configured to be detachable from the tube 6 and the tube 7 via the socket 10. Yes. As described above, the drain pump 5 supplies fluid to the pipe 8 through the tube 6 and drains the fluid from the pipe 8 to the tube 7. In FIG. 2, in order to show the shape of the pipe 8 in an easy-to-understand manner, the end portion of the pipe 8 is shown as being cut, but the actual end portion of the pipe is not cut. In the first embodiment, the example in which the radiating fins 9 are parallel to the rotating shaft 1a is shown, but it is not always necessary to be completely parallel and includes the concept of “substantially parallel”.
 なお、本実施の形態1において、パイプ8の形状を円筒状としたが、本発明はこれに限定されず、パイプ8の形状を扁平状にしてもよい。このようにすることで、パイプ8とケーシング1cとの熱交換面積を増加させ、より効率よくケーシング1cを冷却することができる。また、本実施の形態1において、放熱フィン9のケーシング1cの周方向の断面において台形をなしている例を示したが、本発明はこれに限定されず、断面が三角形、又は直方体でもよいし、放熱フィン9を薄い板状の部材で形成しても良い。 In the first embodiment, the shape of the pipe 8 is cylindrical, but the present invention is not limited to this, and the shape of the pipe 8 may be flat. By doing in this way, the heat exchange area of the pipe 8 and the casing 1c can be increased, and the casing 1c can be cooled more efficiently. Further, in the first embodiment, an example in which the trapezoid is formed in the circumferential cross section of the casing 1c of the radiating fin 9 is shown, but the present invention is not limited to this, and the cross section may be a triangle or a rectangular parallelepiped. The heat radiating fins 9 may be formed of a thin plate member.
 また、本実施の形態1において、ケーシング1cにパイプ8を1本設置した例を示したが、本発明はこれに限定されず、モータ1の発熱量又はモータ1の発熱しやすい箇所等の状況に合わせてパイプ8を複数設置してもよい。また、本実施の形態1において、ケーシング1cに複数の放熱フィン9を設けた例を示したが、本発明はこれに限定されず、放熱フィン9を設けないケーシング1cにパイプ8を設置してもよい。また、本実施の形態1において、チューブ6と、パイプ8とが1本対1本の関係で接続されているが、本発明はこれに限定されず、チューブ6の先端を分配し、1本のチューブ6で複数のパイプ8に接続してもよく、同様に、1本のチューブ7で複数のパイプ8に接続してもよい。これらのことは、後述する実施の形態2~6についても同様である。 Moreover, in this Embodiment 1, although the example which installed one pipe 8 in the casing 1c was shown, this invention is not limited to this, The situation of the heat generation amount of the motor 1, or the location where the motor 1 tends to generate heat, etc. A plurality of pipes 8 may be installed in accordance with the above. Moreover, in this Embodiment 1, although the example which provided the some radiation fin 9 in the casing 1c was shown, this invention is not limited to this, The pipe 8 is installed in the casing 1c which does not provide the radiation fin 9. FIG. Also good. In the first embodiment, the tube 6 and the pipe 8 are connected in a one-to-one relationship. However, the present invention is not limited to this, and the tip of the tube 6 is distributed to provide one tube. These tubes 6 may be connected to a plurality of pipes 8, and similarly, a single tube 7 may be connected to a plurality of pipes 8. The same applies to Embodiments 2 to 6 described later.
 次に、パイプ8のケーシング1cへの設置箇所及び設置本数について説明する。モータ1は周囲の空気の流れにより、熱交換が行われ易い部分と、熱交換が行われにくい部分とが発生する。例えば図1に示されるように、本体ケース30には、送風機部40と熱交換器部50とに区画するファンプレート21がある。2つのファンケーシング2の間にあるモータ1において、ファンケーシング2の吹込側は空気が流れやすいため、空気とモータ1の放熱フィン9とが熱交換を行い易い。しかし、ファンケーシング2の吹出側は、ファンプレート21とモータ1とに挟まれるため、空気が淀み易く、放熱フィン9と空気とが熱交換を行いにくい。そこで、モータ1のケーシング1cのうち、空気と熱交換がされにくい部分に重点的にパイプ8を設置し、パイプ8内に冷却用の流体を流動させることにより、効率よくモータ1を冷却することができる。 Next, the location and number of pipes 8 installed in the casing 1c will be described. The motor 1 has a portion where heat exchange is easily performed and a portion where heat exchange is difficult to occur due to the flow of ambient air. For example, as shown in FIG. 1, the main body case 30 has a fan plate 21 that partitions into a blower unit 40 and a heat exchanger unit 50. In the motor 1 between the two fan casings 2, since air easily flows on the blowing side of the fan casing 2, heat exchange between the air and the radiating fins 9 of the motor 1 is easy. However, since the blow-out side of the fan casing 2 is sandwiched between the fan plate 21 and the motor 1, air easily stagnates, and the heat radiation fins 9 and the air hardly exchange heat. Therefore, the motor 1 is efficiently cooled by placing the pipe 8 in a portion of the casing 1c of the motor 1 where heat exchange with the air is difficult to be performed and by causing a cooling fluid to flow in the pipe 8. Can do.
 また、モータ1の運転により発生した熱は、本体ケース30内の空気を温め、温められた空気は本体ケース30の上方部分に溜まり易い。これに伴い、モータ部1b及びケーシング1cは、地面に対して上方部分の温度が上昇し易くなる。そこで、モータ1のケーシング1cのうち、温度が上昇し易い上方部分に重点的にパイプ8を設置し、パイプ8内に冷却用の流体を流動させることにより、効率よくモータ1を冷却することができる。 Further, the heat generated by the operation of the motor 1 warms the air in the main body case 30, and the warmed air tends to accumulate in the upper part of the main body case 30. Accordingly, the temperature of the upper portion of the motor unit 1b and the casing 1c is likely to rise with respect to the ground. Therefore, the motor 1 can be efficiently cooled by installing the pipe 8 mainly in the upper part of the casing 1c of the motor 1 where the temperature is likely to rise, and causing the cooling fluid to flow in the pipe 8. it can.
 また、制御基板がモータのケーシングに内蔵されているモールドタイプのDCモータ等では、制御基板が発熱するのを抑制するために、制御基板が内蔵されている箇所に放熱フィンが設けられているものがある。このようなモータに関しても、モータ全体を冷却するのではなく、放熱フィンが設けられている部分、つまりモータが一番発熱する部分に冷却用の流体を流動させるパイプを設け、冷却効果を促進させることが可能である。 In addition, in a mold type DC motor or the like in which the control board is built in the motor casing, in order to suppress the control board from generating heat, a heat radiating fin is provided at the place where the control board is built in. There is. Also for such a motor, the cooling effect is promoted by providing a pipe for flowing a cooling fluid in the portion where the heat radiation fin is provided, that is, the portion where the motor generates heat most, rather than cooling the whole motor. It is possible.
[実施の形態1の効果]
 以上のことから、本実施の形態1によれば、空気調和装置の室内機100のモータ1が、回転軸1aを介してファンを回転駆動するモータ部1bと、モータ部1bを収納するケーシング1cと、ケーシング1cの外部の表面に設けられ、流体を通すパイプ8と、を備える。このようにすることで、モータ1の冷却すべき部分に集中して効率よく冷却することができ、冷房運転時における省エネルギー化を図ると共に、モータ1の発熱による寿命の低下を抑制することが可能なモータ1を得ることができる。
[Effect of Embodiment 1]
From the above, according to the first embodiment, the motor 1 of the indoor unit 100 of the air conditioning apparatus has the motor unit 1b that rotates the fan via the rotating shaft 1a, and the casing 1c that houses the motor unit 1b. And a pipe 8 provided on the outer surface of the casing 1c and allowing fluid to pass therethrough. By doing in this way, it can concentrate efficiently on the part which should be cooled of the motor 1, can cool efficiently, and can attain energy saving at the time of air_conditionaing | cooling operation, and can suppress the lifetime reduction by heat_generation | fever of the motor 1. A simple motor 1 can be obtained.
 また、本実施の形態1に係るモータ1は、パイプ8に供給される流体を流通させるチューブ6と、パイプ8から排出される流体を流通させるチューブ7と、を備え、パイプ8の一端と、チューブ6とは、着脱自在に構成され、パイプ8の他端と、チューブ7とは、着脱自在に構成されている。このようにすることで、モータ1のメンテナンス時にチューブ6、7をモータ1のパイプ8から外すことで容易にモータ1の交換を行うことができる。 Further, the motor 1 according to the first embodiment includes a tube 6 through which the fluid supplied to the pipe 8 circulates and a tube 7 through which the fluid discharged from the pipe 8 circulates, and one end of the pipe 8; The tube 6 is configured to be detachable, and the other end of the pipe 8 and the tube 7 are configured to be detachable. By doing so, the motor 1 can be easily replaced by removing the tubes 6 and 7 from the pipe 8 of the motor 1 during maintenance of the motor 1.
 また、本実施の形態1に係るモータ1は、ケーシング1cの外部の表面に回転軸1aと平行な複数の放熱フィン9を備え、パイプ8は、複数の放熱フィン9の間に配置されている。このようにすることで、放熱フィン9からの放熱だけでなく、パイプ8からも放熱をすることができ、より効率よくモータ1を冷却することが可能となる。 Further, the motor 1 according to the first embodiment includes a plurality of heat radiation fins 9 parallel to the rotation shaft 1a on the outer surface of the casing 1c, and the pipe 8 is disposed between the plurality of heat radiation fins 9. . In this way, heat can be radiated not only from the heat radiating fins 9 but also from the pipes 8, and the motor 1 can be cooled more efficiently.
 また、空気調和装置の室内機100が、モータ1と、熱交換器3と、熱交換器3で発生した凝縮水を貯留するドレンパン4と、ドレンパン4に貯留した凝縮水を排水するドレンポンプ5と、を備え、ドレンポンプ5は、流体として凝縮水をパイプ8、又は後述するパイプ11(図3参照)に送出する構成とする。このようにすることで、冷房運転時に発生した凝縮水を空気調和装置の室内機100の外部へ排出する前にモータ1の冷却水として有効に利用することができる。また、モータ1を冷却するために別途、冷却水供給用の配管等を設ける必要もなくなり、空気調和装置の室内機100の小型化及び製造コストの低減を実現することが可能となる。 The indoor unit 100 of the air conditioner includes a motor 1, a heat exchanger 3, a drain pan 4 that stores condensed water generated in the heat exchanger 3, and a drain pump 5 that drains the condensed water stored in the drain pan 4. The drain pump 5 is configured to send condensed water as a fluid to the pipe 8 or a pipe 11 (see FIG. 3) described later. In this way, the condensed water generated during the cooling operation can be effectively used as the cooling water for the motor 1 before being discharged to the outside of the indoor unit 100 of the air conditioner. In addition, it is not necessary to separately provide a cooling water supply pipe or the like for cooling the motor 1, and it is possible to reduce the size and manufacturing cost of the indoor unit 100 of the air conditioner.
実施の形態2.
 本実施の形態2における空気調和装置の室内機100の基本的な構成は実施の形態1における空気調和装置の室内機100と同様であるため、以下、実施の形態1との相違点を中心に本実施の形態2を説明する。実施の形態1と本実施の形態2との相違点は、ケーシングの外部の表面に設けられた放熱フィンの内部にパイプを設けている点である。
Embodiment 2. FIG.
Since the basic configuration of the indoor unit 100 of the air conditioning apparatus in the second embodiment is the same as that of the indoor unit 100 of the air conditioning apparatus in the first embodiment, hereinafter, the difference from the first embodiment will be mainly described. The second embodiment will be described. The difference between the first embodiment and the second embodiment is that a pipe is provided inside a radiating fin provided on the outer surface of the casing.
 図3は、本発明の実施の形態2に係る空気調和装置の室内機のモータの概略図である。図3に示されるように、ケーシング1cの外部の表面には回転軸1a(図1参照)と平行な放熱フィン9を複数備えている。そして、放熱フィン9は、回転軸1aと平行な方向に穴が設けられ、当該放熱フィン9の穴には、銅等の金属により成型され、冷却用の流体を通すパイプ11が挿入されている。パイプ11の両端部はネジ切りが施され、ソケット10と嵌合されるように構成されている。ソケット10は、水を供給するためのチューブ6、又は水を排水するためのチューブ7に接続され、パイプ11はソケット10を介してチューブ6及びチューブ7と着脱自在に構成されている。 FIG. 3 is a schematic diagram of the motor of the indoor unit of the air-conditioning apparatus according to Embodiment 2 of the present invention. As shown in FIG. 3, a plurality of radiating fins 9 parallel to the rotating shaft 1a (see FIG. 1) are provided on the outer surface of the casing 1c. The radiating fin 9 is provided with a hole in a direction parallel to the rotating shaft 1a, and a pipe 11 is inserted into the hole of the radiating fin 9 and is formed of a metal such as copper and passes a cooling fluid. . Both ends of the pipe 11 are threaded and are configured to be fitted to the socket 10. The socket 10 is connected to a tube 6 for supplying water or a tube 7 for draining water, and the pipe 11 is configured to be detachable from the tube 6 and the tube 7 via the socket 10.
 なお、本実施の形態2において、ケーシング1cにパイプ11を複数設置した例を示したが、本発明はこれに限定されず、モータ1の発熱量又はモータ1の発熱しやすい箇所等の状況に合わせてパイプ11を1本にしてもよい。このことは、後述する実施の形態3及び4についても同様である。 In the second embodiment, an example in which a plurality of pipes 11 are installed in the casing 1c has been shown. However, the present invention is not limited to this, and the situation is such as the amount of heat generated by the motor 1 or a location where the motor 1 easily generates heat. In combination, one pipe 11 may be provided. The same applies to Embodiments 3 and 4 described later.
[実施の形態2の効果]
 以上のことから、本実施の形態2によれば、モータ1は、ケーシング1cの外部の表面に回転軸1aと平行な放熱フィン9を備え、パイプ11は、放熱フィン9の内部に設けられる構成とする。このようにすることで、実施の形態1の効果に加えて、放熱フィン9及びパイプ11の両方から効率よくモータ1を冷却することができる。
[Effect of Embodiment 2]
From the above, according to the second embodiment, the motor 1 includes the heat dissipating fins 9 parallel to the rotating shaft 1a on the outer surface of the casing 1c, and the pipe 11 is provided inside the heat dissipating fins 9. And By doing in this way, in addition to the effect of Embodiment 1, the motor 1 can be efficiently cooled from both the radiation fin 9 and the pipe 11.
実施の形態3.
 本実施の形態3における空気調和装置の室内機100の基本的な構成は実施の形態1における空気調和装置の室内機100と同様であるため、以下、実施の形態1との相違点を中心に本実施の形態3を説明する。実施の形態1と本実施の形態3との相違点は、ケーシングの外部の表面に回転軸と平行な凸部を設け、当該凸部の内部にパイプを設けている点である。
Embodiment 3 FIG.
Since the basic configuration of the indoor unit 100 of the air conditioning apparatus in the third embodiment is the same as that of the indoor unit 100 of the air conditioning apparatus in the first embodiment, the differences from the first embodiment will be mainly described below. The third embodiment will be described. The difference between the first embodiment and the third embodiment is that a convex portion parallel to the rotation axis is provided on the outer surface of the casing, and a pipe is provided inside the convex portion.
 図4は、本発明の実施の形態3に係る空気調和装置の室内機のモータの概略図である。図4に示されるように、ケーシング1cの外部の表面には回転軸1a(図1参照)と平行な凸部12が複数設けられている。そして、凸部12は、回転軸1aと平行な方向に穴が設けられ、当該穴には、銅等の金属により成型され、冷却用の流体を通すパイプ11が挿入されている。パイプ11の両端部はネジ切りが施され、ソケット10(図2参照)と嵌合されるように構成されている。ソケット10は、水を供給するためのチューブ6、又は水を排水するためのチューブ7に接続され、パイプ11はソケット10を介してチューブ6及びチューブ7と着脱自在に構成されている。 FIG. 4 is a schematic diagram of the motor of the indoor unit of the air-conditioning apparatus according to Embodiment 3 of the present invention. As shown in FIG. 4, a plurality of convex portions 12 parallel to the rotating shaft 1a (see FIG. 1) are provided on the outer surface of the casing 1c. And the convex part 12 is provided with the hole in the direction parallel to the rotating shaft 1a, The pipe 11 which shape | molds with metals, such as copper, and lets the fluid for cooling pass in the said hole. Both ends of the pipe 11 are threaded and are configured to be fitted to the socket 10 (see FIG. 2). The socket 10 is connected to a tube 6 for supplying water or a tube 7 for draining water, and the pipe 11 is configured to be detachable from the tube 6 and the tube 7 via the socket 10.
 なお、放熱フィン9は空気との熱交換を目的として設けられているが、凸部12は、空気との熱交換を目的として設けられたものではなく、パイプ11を凸部12の内部に設け、パイプ11を流通する流体とモータ1との間での熱交換を目的とする。このため、凸部12は表面積を大きくする必要がないため、凸部12の高さは、放熱フィン9(図2参照)の高さと同等、もしくは放熱フィン9より低い高さとする。 The radiating fin 9 is provided for the purpose of exchanging heat with air, but the convex portion 12 is not provided for the purpose of exchanging heat with air, and the pipe 11 is provided inside the convex portion 12. The purpose is to exchange heat between the fluid flowing through the pipe 11 and the motor 1. For this reason, since the convex part 12 does not need to make a surface area large, the height of the convex part 12 is made into the height equivalent to the height of the radiation fin 9 (refer FIG. 2), or lower than the radiation fin 9. FIG.
[実施の形態3の効果]
 以上のことから、本実施の形態3によれば、モータ1は、ケーシング1cの外部の表面に回転軸1aと平行な凸部12を設け、パイプ11は、凸部12の内部に設けられる構成とする。このようにすることで、実施の形態1の効果に加えて、放熱フィン9及びパイプ11の両方から効率よくモータ1を冷却することができる。
[Effect of Embodiment 3]
From the above, according to the third embodiment, the motor 1 is provided with the convex portion 12 parallel to the rotating shaft 1a on the outer surface of the casing 1c, and the pipe 11 is provided inside the convex portion 12. And By doing in this way, in addition to the effect of Embodiment 1, the motor 1 can be efficiently cooled from both the radiation fin 9 and the pipe 11.
実施の形態4.
 本実施の形態4におけるモータ1の基本的な構成は実施の形態3におけるモータ1と同様であるため、以下、実施の形態3との相違点を中心に本実施の形態4を説明する。実施の形態3と本実施の形態4との相違点は、パイプを内部に設けた凸部がケーシングに対して着脱自在である点である。
Embodiment 4 FIG.
Since the basic configuration of the motor 1 according to the fourth embodiment is the same as that of the motor 1 according to the third embodiment, the fourth embodiment will be described below with a focus on differences from the third embodiment. The difference between the third embodiment and the fourth embodiment is that a convex portion provided with a pipe is detachable from the casing.
 図5は、本発明の実施の形態4に係る空気調和装置の室内機のモータに取り付ける凸部の概略図である。図5に示されるように、モータ冷却用部品13は、長手方向に延伸する凸部12を備えている。凸部12には穴が設けられ、当該穴には、銅等の金属により成型され、冷却用の流体を通すパイプ11が挿入されている。パイプ11の両端部はネジ切りが施され、ソケット10(図2参照)と嵌合されるように構成されている。ソケット10は、水を供給するためのチューブ6、又は水を排水するためのチューブ7に接続され、パイプ11はソケット10を介してチューブ6及びチューブ7と着脱自在に構成されている。 FIG. 5 is a schematic diagram of a convex portion attached to the motor of the indoor unit of the air-conditioning apparatus according to Embodiment 4 of the present invention. As shown in FIG. 5, the motor cooling component 13 includes a convex portion 12 extending in the longitudinal direction. A hole is provided in the convex portion 12, and a pipe 11 that is molded from a metal such as copper and passes a cooling fluid is inserted into the hole. Both ends of the pipe 11 are threaded and are configured to be fitted to the socket 10 (see FIG. 2). The socket 10 is connected to a tube 6 for supplying water or a tube 7 for draining water, and the pipe 11 is configured to be detachable from the tube 6 and the tube 7 via the socket 10.
 モータ冷却用部品13の両端部にはネジ14を嵌合させるためのネジ穴14aが設けられている。モータ冷却用部品固定金具15は、U字状の平板から構成され、平板の両端部には、ネジ14を嵌合させるためのネジ穴14aが設けられている。 Screw holes 14a for fitting screws 14 are provided at both ends of the motor cooling component 13. The motor cooling component fixing bracket 15 is formed of a U-shaped flat plate, and screw holes 14a for fitting screws 14 are provided at both ends of the flat plate.
 モータ冷却用部品13と、モータ冷却用部品固定金具15とでケーシング1cを挟み、ネジ14をネジ穴14aに嵌合させることで、モータ冷却用部品13と、モータ冷却用部品固定金具15とをケーシング1cに装着する。このようにして、パイプ11を備えた凸部12をケーシング1cに対して着脱自在にすることができる。 By sandwiching the casing 1c between the motor cooling component 13 and the motor cooling component fixing bracket 15, and fitting the screw 14 into the screw hole 14a, the motor cooling component 13 and the motor cooling component fixing bracket 15 are connected. Mount on the casing 1c. Thus, the convex part 12 provided with the pipe 11 can be attached or detached with respect to the casing 1c.
[実施の形態4の効果]
 以上のことから、本実施の形態4によれば、凸部12は、ケーシング1cに着脱自在に設けられている構成とする。このようにすることで、実施の形態3の効果に加えて、予めモータ1に凸部12を設けていなくても、凸部12を有するモータ冷却用部品13と、モータ冷却用部品固定金具15とでケーシング1cを挟んで固定することで、後から凸部12をケーシング1cに設けることができる。また、凸部12が不要になった場合には、モータ冷却用部品13と、モータ冷却用部品固定金具15とを取り外すことで、凸部12をケーシング1cから取り除くことができる。また、メンテナンス等でモータ1を空気調和装置の室内機100から取り外す必要が生じた場合でも、チューブ6、7を凸部12に設けられたパイプ11に取り付けたままの状態で、モータ冷却用部品13と、モータ冷却用部品固定金具15とをモータ1から取り外す。このようにすることで、モータ1のメンテナンス時に、チューブ6、7及びパイプ11の内部にある流体が漏洩することがなくなるという効果を得ることができる。
[Effect of Embodiment 4]
From the above, according to the fourth embodiment, the convex portion 12 is configured to be detachably provided on the casing 1c. In this way, in addition to the effects of the third embodiment, even if the motor 1 is not provided with the convex portion 12 in advance, the motor cooling component 13 having the convex portion 12 and the motor cooling component fixing bracket 15 are provided. The convex part 12 can be provided in the casing 1c later by fixing the casing 1c with When the convex portion 12 is no longer needed, the convex portion 12 can be removed from the casing 1c by removing the motor cooling component 13 and the motor cooling component fixing bracket 15. Further, even when it becomes necessary to remove the motor 1 from the indoor unit 100 of the air conditioner for maintenance or the like, the motor cooling component with the tubes 6 and 7 still attached to the pipe 11 provided on the convex portion 12 13 and the motor cooling component fixing bracket 15 are removed from the motor 1. By doing in this way, the effect that the fluid which exists in the inside of the tubes 6 and 7 and the pipe 11 does not leak at the time of the maintenance of the motor 1 can be acquired.
実施の形態5.
 本実施の形態5における空気調和装置の室内機100の基本的な構成は実施の形態1における空気調和装置の室内機100と同様であるため、以下、実施の形態1との相違点を中心に本実施の形態5を説明する。実施の形態1と本実施の形態5との相違点は、パイプを連結部材で連結する点である。
Embodiment 5 FIG.
Since the basic configuration of the indoor unit 100 of the air conditioner in Embodiment 5 is the same as that of the indoor unit 100 of the air conditioner in Embodiment 1, the differences from Embodiment 1 will be mainly described below. The fifth embodiment will be described. The difference between the first embodiment and the fifth embodiment is that the pipes are connected by a connecting member.
 図6は、本発明の実施の形態5に係る空気調和装置の室内機のモータに取り付けるパイプの連結部品の概略図である。図6に示されるように、パイプ連結チューブ16は、U字状に構成され、両端部にはソケット10が設けられている。パイプ連結チューブ16は、両端部のソケット10を介して、2本のパイプ8、又は2本のパイプ11を連結することができる。なお、パイプ連結チューブ16は、本発明における「連結部材」に相当する。 FIG. 6 is a schematic diagram of a connecting part of a pipe attached to the motor of the indoor unit of the air-conditioning apparatus according to Embodiment 5 of the present invention. As shown in FIG. 6, the pipe connection tube 16 is formed in a U shape, and sockets 10 are provided at both ends. The pipe connection tube 16 can connect the two pipes 8 or the two pipes 11 via the sockets 10 at both ends. The pipe connection tube 16 corresponds to a “connection member” in the present invention.
[実施の形態5の効果]
 以上のことから、本実施の形態5によれば、2本のパイプ8又はパイプ11と、2本のパイプ8又はパイプ11同士を連結するパイプ連結チューブ16と、を備え、2本のパイプ8又はパイプ11は、パイプ連結チューブ16を介して互いに連結される構成とする。このようにすることで、実施の形態1の効果に加えて、1本のパイプ8、11では冷却効果を十分に得ることができない場合において、2本のパイプ8、11を連結することで、熱交換面積を増加させ、より高い冷却効果を得ることが可能となる。
[Effect of Embodiment 5]
From the above, according to the fifth embodiment, the two pipes 8 or 11 and the pipe connection tube 16 that connects the two pipes 8 or 11 are provided with the two pipes 8. Alternatively, the pipes 11 are connected to each other via a pipe connecting tube 16. By doing in this way, in addition to the effect of the first embodiment, when the cooling effect cannot be sufficiently obtained with one pipe 8, 11, the two pipes 8, 11 are connected, It is possible to increase the heat exchange area and obtain a higher cooling effect.
実施の形態6.
 本実施の形態6における空気調和装置の室内機100の基本的な構成は実施の形態1における空気調和装置の室内機100と同様であるため、以下、実施の形態1との相違点を中心に本実施の形態6を説明する。実施の形態1と本実施の形態6との相違点は、室内機に加湿器を設け、加湿器に供給する水を利用してモータを冷却する点である。
Embodiment 6 FIG.
Since the basic configuration of the indoor unit 100 of the air conditioner in the sixth embodiment is the same as that of the indoor unit 100 of the air conditioner in the first embodiment, the differences from the first embodiment are mainly described below. The sixth embodiment will be described. The difference between the first embodiment and the sixth embodiment is that a humidifier is provided in the indoor unit, and the motor is cooled using water supplied to the humidifier.
 実施の形態1で示した、モータに設けられたパイプに供給する流体は、ドレンポンプで吸い上げられた凝縮水であるが、凝縮水は冷房運転時にしか発生しないため、暖房運転時には凝縮水をモータの冷却用の流体として使用できない。そこで、加湿器を搭載している空気調和装置の場合にのみ可能な方法であるが、加湿器へ水を供給する前に、モータのケーシングに設けられたパイプに水を流通させることにより、モータを冷却する。 The fluid supplied to the pipe provided in the motor shown in the first embodiment is condensed water sucked up by the drain pump. Since the condensed water is generated only during the cooling operation, the condensed water is supplied to the motor during the heating operation. Cannot be used as a cooling fluid. Therefore, this method is possible only in the case of an air conditioner equipped with a humidifier. Before supplying water to the humidifier, the water is circulated through a pipe provided in the motor casing, so that the motor Cool down.
[空気調和装置の室内機の構成]
 図7は、本発明の実施の形態6に係る空気調和装置の室内機の概略図である。図7に示されるように、空気調和装置の室内機100aは、実施の形態1に係る空気調和装置の室内機100に加湿器19、チューブ17、チューブ18、チューブ20及び給水口24を加えたものである。チューブ17は、給水口24とケーシング1cの外部の表面に設けられたパイプ(パイプ8又はパイプ11)とを連通させる。チューブ18は、ケーシング1cの外部の表面に設けられたパイプ(パイプ8又はパイプ11)と、熱交換器部50に設けられた加湿器19とを連通させる。チューブ20は、加湿器19からドレンパン4の方に向けて設けられている。
[Configuration of indoor unit of air conditioner]
FIG. 7 is a schematic diagram of an indoor unit of an air-conditioning apparatus according to Embodiment 6 of the present invention. As shown in FIG. 7, the indoor unit 100a of the air conditioner is configured by adding a humidifier 19, a tube 17, a tube 18, a tube 20, and a water supply port 24 to the indoor unit 100 of the air conditioner according to Embodiment 1. Is. The tube 17 connects the water supply port 24 and a pipe (pipe 8 or pipe 11) provided on the outer surface of the casing 1c. The tube 18 allows a pipe (pipe 8 or pipe 11) provided on the outer surface of the casing 1 c to communicate with the humidifier 19 provided in the heat exchanger unit 50. The tube 20 is provided from the humidifier 19 toward the drain pan 4.
 給水口24から供給された水は、チューブ17、及びケーシング1cの外部の表面に設けられたパイプ(パイプ8又はパイプ11)を通り、モータ1を冷却する。その後、水はチューブ18を通り、加湿器19に供給される。加湿器19で生じた余剰分の排出水はチューブ20によりドレンパン4へ排水される。ドレンパン4へ一定量蓄えられた排出水は、ドレンポンプ5により吸い上げられ、チューブ6、及びケーシング1cの外部の表面に設けられたパイプ(パイプ8又はパイプ11)を通り、モータ1を冷却し、その後、チューブ7を通り、排水口22から空気調和装置の室内機100aの外へ排出される。 The water supplied from the water supply port 24 passes through the tube 17 and the pipe (pipe 8 or pipe 11) provided on the outer surface of the casing 1c to cool the motor 1. Thereafter, the water passes through the tube 18 and is supplied to the humidifier 19. Excess discharged water generated in the humidifier 19 is drained to the drain pan 4 through the tube 20. The drainage water stored in a certain amount in the drain pan 4 is sucked up by the drain pump 5, passes through the tube 6 and the pipe (pipe 8 or pipe 11) provided on the outer surface of the casing 1c, cools the motor 1, Then, it passes through the tube 7 and is discharged from the drain port 22 to the outside of the indoor unit 100a of the air conditioner.
 ここで、加湿器19によって加湿をする場合、水温が高い方が蒸発しやすいため、加湿器19への供給水の温度は高い方が好ましいが、暖房運転を行う場合の多くは冬季であり、給水口24から供給される水の水温が低い場合が多い。そこで、加湿器19へ水を供給する前にモータ1を経由させて、モータ1を冷却し水温を上昇させることで、通常よりも高い水温で加湿器19に水を供給することができる。このため、室内の加湿が行い易くなる。 Here, when humidifying by the humidifier 19, since the higher water temperature is more likely to evaporate, it is preferable that the temperature of the water supplied to the humidifier 19 is higher, but most of the heating operation is in the winter season, In many cases, the temperature of water supplied from the water supply port 24 is low. Therefore, the water can be supplied to the humidifier 19 at a higher water temperature than usual by cooling the motor 1 and increasing the water temperature via the motor 1 before supplying water to the humidifier 19. For this reason, indoor humidification is facilitated.
 なお、本実施の形態6において、ケーシング1cの外部の表面に設けられたパイプに供給される流体として、給水口24から供給された水、及び加湿器で生じた排出水の両方を供給する例を示した。しかし、本発明はこれに限定されず、例えば、室内機がドレンポンプを搭載しないで凝縮水又は排出水を自然に排水させる場合、又は排出水をモータのケーシングの外部の表面に設けられたパイプに供給する必要がない場合は、排出水をモータの冷却用の流体として使用せずに、ドレンパンから室内機の外へ排出させてもよい。 In the sixth embodiment, as the fluid supplied to the pipe provided on the outer surface of the casing 1c, both water supplied from the water supply port 24 and discharged water generated in the humidifier are supplied. showed that. However, the present invention is not limited to this, for example, when the indoor unit naturally drains condensed water or discharged water without mounting a drain pump, or a pipe provided on the outer surface of the motor casing. If it is not necessary to supply the air to the interior, the discharged water may be discharged from the drain pan to the outside of the indoor unit without using it as a fluid for cooling the motor.
[実施の形態6の効果]
 以上のことから、本実施の形態6によれば、空気調和装置の室内機100aがモータ1と、水の供給を受けて空気を加湿する加湿器19と、を備える。そして、パイプ8又はパイプ11は、流体として水を通し、加湿器19は、パイプ8又はパイプ11を通った水を受け入れる構成とする。このようにすることで、モータ1を冷却しつつ、加湿器19により加湿されやすくなるように水の温度を上昇させることができる。
[Effect of Embodiment 6]
As described above, according to the sixth embodiment, the indoor unit 100a of the air conditioner includes the motor 1 and the humidifier 19 that receives the supply of water and humidifies the air. The pipe 8 or the pipe 11 passes water as a fluid, and the humidifier 19 is configured to receive the water passed through the pipe 8 or the pipe 11. By doing in this way, the temperature of water can be raised so that it may become easy to humidify with the humidifier 19, cooling the motor 1. FIG.
 また、空気調和装置の室内機100aが加湿器19から流出した排出水を貯留するドレンパン4と、ドレンパン4に貯留した排出水を排水するドレンポンプ5と、を更に備える。そして、ドレンポンプ5は、流体として排出水をパイプ8又はパイプ11に送出し、パイプ8又はパイプ11は、排出水を流体として通す。このようにすることで、加湿器19からの余剰分の排出水をモータ1の冷却用の流体として再利用できるため、水を有効に活用し、節約することが可能となる。 Further, the indoor unit 100a of the air conditioner further includes a drain pan 4 that stores the discharged water that has flowed out of the humidifier 19, and a drain pump 5 that drains the discharged water stored in the drain pan 4. The drain pump 5 sends the discharged water as a fluid to the pipe 8 or the pipe 11, and the pipe 8 or the pipe 11 passes the discharged water as the fluid. By doing in this way, since the excess discharge water from the humidifier 19 can be reused as the fluid for cooling the motor 1, water can be effectively utilized and saved.
 実施の形態1~6において、モータを冷却するためにケーシングの外部の表面に冷却用の流体を通すパイプを設けたが、以上説明してきた方法をモータに適用するのではなく、空気調和装置の制御基板やその部品に適用して、これらを冷却することも可能である。制御基板、又は制御基板の部品と接触するように放熱フィンを取付け、そこに冷却用の流体を通すパイプを設けて、流体を流動させることで、制御基板等の発熱を抑えることができる。これにより、制御基板等の温度上昇による部品の寿命の低下、及び部品の性能の低下を抑制することが可能となる。 In the first to sixth embodiments, the pipe for passing the cooling fluid is provided on the outer surface of the casing in order to cool the motor. However, the method described above is not applied to the motor. It is also possible to cool these by applying to the control board and its components. A heat radiation fin is attached so as to come into contact with the control board or a component of the control board, and a pipe through which a cooling fluid is passed is provided to flow the fluid, whereby heat generation of the control board or the like can be suppressed. Thereby, it is possible to suppress a decrease in the life of the component and a decrease in the performance of the component due to the temperature rise of the control board and the like.
 1 モータ、1a 回転軸、1b モータ部、1c ケーシング、2 ファンケーシング、3 熱交換器、4 ドレンパン、5 ドレンポンプ、6 チューブ、7 チューブ、8 パイプ、9 放熱フィン、10 ソケット、11 パイプ、12 凸部、13 モータ冷却用部品、14 ネジ、14a ネジ穴、15 モータ冷却用部品固定金具、16 パイプ連結チューブ、17 チューブ、18 チューブ、19 加湿器、20 チューブ、21 ファンプレート、22 排水口、24 給水口、25 空気の流れ、30 本体ケース、40 送風機部、50 熱交換器部、100 空気調和装置の室内機、100a 空気調和装置の室内機。 1 motor, 1a rotating shaft, 1b motor unit, 1c casing, 2 fan casing, 3 heat exchanger, 4 drain pan, 5 drain pump, 6 tube, 7 tube, 8 pipe, 9 heat dissipation fin, 10 socket, 11 pipe, 12 Convex part, 13 Motor cooling parts, 14 screws, 14a screw holes, 15 Motor cooling parts fixing brackets, 16 pipe connection tubes, 17 tubes, 18 tubes, 19 humidifiers, 20 tubes, 21 fan plates, 22 drains, 24 water supply port, 25 air flow, 30 body case, 40 blower part, 50 heat exchanger part, 100 air conditioner indoor unit, 100a air conditioner indoor unit.

Claims (10)

  1.  回転軸と、
     前記回転軸を介してファンを回転駆動するモータ部と、
     前記モータ部を収納するケーシングと、
     前記ケーシングの表面に設けられ、流体を通すパイプと、を備えた
     モータ。
    A rotation axis;
    A motor unit that rotationally drives the fan via the rotating shaft;
    A casing for housing the motor unit;
    A motor provided on a surface of the casing and through which a fluid passes.
  2.  前記パイプの一端に着脱自在に接続される第一のチューブと、
     前記パイプの他端に着脱自在に接続される第二のチューブと、を備える
     請求項1に記載のモータ。
    A first tube detachably connected to one end of the pipe;
    The motor according to claim 1, further comprising a second tube detachably connected to the other end of the pipe.
  3.  前記ケーシングの表面に前記回転軸と平行な複数の放熱フィンを備え、
     前記パイプは、前記複数の放熱フィンの間に配置されている
     請求項1又は2に記載のモータ。
    A plurality of heat dissipating fins parallel to the rotating shaft are provided on the surface of the casing,
    The motor according to claim 1, wherein the pipe is disposed between the plurality of heat radiation fins.
  4.  前記ケーシングの表面に前記回転軸と平行な放熱フィンを備え、
     前記パイプは、前記放熱フィンの内部に設けられている
     請求項1又は2に記載のモータ。
    Provided on the surface of the casing with radiating fins parallel to the rotating shaft,
    The motor according to claim 1, wherein the pipe is provided inside the radiating fin.
  5.  前記ケーシングの表面に前記回転軸と平行な凸部を設け、
     前記パイプは、前記凸部の内部に設けられている
     請求項1又は2に記載のモータ。
    Providing a convex portion parallel to the rotation axis on the surface of the casing,
    The motor according to claim 1, wherein the pipe is provided inside the convex portion.
  6.  前記凸部は、前記ケーシングに着脱自在に設けられている
     請求項5に記載のモータ。
    The motor according to claim 5, wherein the convex portion is detachably provided on the casing.
  7.  2本の前記パイプと、
     2本の前記パイプ同士を連結する連結部材と、を備え、
     2本の前記パイプは、前記連結部材を介して互いに連結される
     請求項1~6のいずれか一項に記載のモータ。
    Two pipes,
    A connecting member for connecting the two pipes,
    The motor according to any one of claims 1 to 6, wherein the two pipes are connected to each other via the connecting member.
  8.  請求項1~7のいずれか一項に記載のモータと、
     熱交換器と、
     前記熱交換器で発生した凝縮水を貯留するドレンパンと、
     前記ドレンパンに貯留した前記凝縮水を排水するドレンポンプと、を備え、
     前記ドレンポンプは、前記凝縮水を前記パイプに送出する
     空気調和装置の室内機。
    A motor according to any one of claims 1 to 7;
    A heat exchanger,
    A drain pan for storing condensed water generated in the heat exchanger;
    A drain pump for draining the condensed water stored in the drain pan,
    The drain pump sends out the condensed water to the pipe.
  9.  請求項1~7のいずれか一項に記載のモータと、
     前記モータの下流側に設けられ、水の供給を受けて空気を加湿する加湿器と、を備え、
     前記パイプは、前記水を通し、
     前記加湿器は、前記パイプを通った前記水を受け入れる
     空気調和装置の室内機。
    A motor according to any one of claims 1 to 7;
    A humidifier that is provided on the downstream side of the motor and humidifies the air by receiving water supply;
    The pipe passes the water,
    The humidifier receives the water that has passed through the pipe.
  10.  前記加湿器から流出した余剰分の排出水を貯留するドレンパンと、
     前記ドレンパンに貯留した前記排出水を排水するドレンポンプと、を更に備え、
     前記ドレンポンプは、前記排出水を前記パイプに送出し、
     前記パイプは、前記排出水を前記流体として通す
     請求項9に記載の空気調和装置の室内機。
    A drain pan for storing excess drainage water flowing out of the humidifier;
    A drain pump for draining the discharged water stored in the drain pan,
    The drain pump sends the discharged water to the pipe,
    The indoor unit of the air conditioning apparatus according to claim 9, wherein the pipe passes the discharged water as the fluid.
PCT/JP2015/064951 2015-05-25 2015-05-25 Motor, and indoor unit for air conditioning device WO2016189625A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/064951 WO2016189625A1 (en) 2015-05-25 2015-05-25 Motor, and indoor unit for air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/064951 WO2016189625A1 (en) 2015-05-25 2015-05-25 Motor, and indoor unit for air conditioning device

Publications (1)

Publication Number Publication Date
WO2016189625A1 true WO2016189625A1 (en) 2016-12-01

Family

ID=57393144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064951 WO2016189625A1 (en) 2015-05-25 2015-05-25 Motor, and indoor unit for air conditioning device

Country Status (1)

Country Link
WO (1) WO2016189625A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111759A (en) * 1993-10-08 1995-04-25 Showa Alum Corp Water-cooled motor housing
JPH07284250A (en) * 1994-04-08 1995-10-27 Hitachi Ltd Cooling structure of rotating electric machine
JP2008048563A (en) * 2006-08-21 2008-02-28 Murata Mach Ltd Linear motor and machine tool mounting it
JP2010142064A (en) * 2008-12-15 2010-06-24 Nissan Motor Co Ltd Device for cooling inverter and motor
JP2013198239A (en) * 2012-03-19 2013-09-30 Toshiba Mitsubishi-Electric Industrial System Corp Rotary electric machine
US20140246933A1 (en) * 2013-03-04 2014-09-04 Remy Technologies, Llc Liquid-cooled rotary electric machine having heat source-surrounding fluid passage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111759A (en) * 1993-10-08 1995-04-25 Showa Alum Corp Water-cooled motor housing
JPH07284250A (en) * 1994-04-08 1995-10-27 Hitachi Ltd Cooling structure of rotating electric machine
JP2008048563A (en) * 2006-08-21 2008-02-28 Murata Mach Ltd Linear motor and machine tool mounting it
JP2010142064A (en) * 2008-12-15 2010-06-24 Nissan Motor Co Ltd Device for cooling inverter and motor
JP2013198239A (en) * 2012-03-19 2013-09-30 Toshiba Mitsubishi-Electric Industrial System Corp Rotary electric machine
US20140246933A1 (en) * 2013-03-04 2014-09-04 Remy Technologies, Llc Liquid-cooled rotary electric machine having heat source-surrounding fluid passage

Similar Documents

Publication Publication Date Title
CN104930603B (en) The outdoor unit of air-conditioning
KR102166764B1 (en) Control box and outdoor unit for air conditioner
JP4325714B2 (en) Refrigeration equipment
JP4886617B2 (en) Cooling system
KR102014738B1 (en) Turbo Blower Apparatus with Cooling Structure for Inlet Air
JP6407466B1 (en) Outside air conditioner and ventilation system
KR100686529B1 (en) A ventilator for an engine room of ship
CN106225209A (en) A kind of air conditioner heat radiator being convenient to clean changing
JP4905014B2 (en) Air conditioner
WO2016189625A1 (en) Motor, and indoor unit for air conditioning device
KR20160086658A (en) Turbo blower
CN211240533U (en) Air conditioner electrical box with high-efficient heat dissipation mechanism
JP6385582B2 (en) Air conditioner indoor unit
JP7092362B2 (en) Temperature / humidity control device
JP5951428B2 (en) Air conditioner
CN105890243A (en) Integrated refrigerating unit
JP5705015B2 (en) Air conditioning system and building
CN111442444A (en) Semiconductor air conditioner
JP2011102672A (en) Ventilation air conditioner
JP2016161205A (en) Heat source unit of refrigeration device
JP2008185325A (en) Outdoor unit for air conditioner
KR200442139Y1 (en) structure for assembling PTC heater of a heating appartus for vehicle
JP2000022363A (en) Heat dissipation fin for electric circuit element, outdoor unit and air conditioner
JP2002022199A (en) Air conditioner
KR20090041969A (en) Cooling system for vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP