WO2016189596A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2016189596A1
WO2016189596A1 PCT/JP2015/064800 JP2015064800W WO2016189596A1 WO 2016189596 A1 WO2016189596 A1 WO 2016189596A1 JP 2015064800 W JP2015064800 W JP 2015064800W WO 2016189596 A1 WO2016189596 A1 WO 2016189596A1
Authority
WO
WIPO (PCT)
Prior art keywords
gradation value
video
pixel
input
video signal
Prior art date
Application number
PCT/JP2015/064800
Other languages
French (fr)
Japanese (ja)
Inventor
亮 山川
Original Assignee
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺ディスプレイプロダクト株式会社 filed Critical 堺ディスプレイプロダクト株式会社
Priority to PCT/JP2015/064800 priority Critical patent/WO2016189596A1/en
Publication of WO2016189596A1 publication Critical patent/WO2016189596A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the video signal flowing through the video signal line changes from the previous video signal to a video signal in which the previous video signal and the target video signal are superimposed, and eventually converges to the target video signal.
  • the video signal is a rectangular wave signal
  • waveform rounding may occur due to superposition with the preceding video signal.
  • the second correction unit may reduce the gradation value corrected by the first correction unit as the pixel electrode corresponding to the target pixel is closer to the video input unit, and the target pixel.
  • the pixel electrode corresponding to is corrected higher as it is farther from the video input unit.
  • the second correction unit uses the corrected gradation value after the correction by the first correction unit. If the pixel electrode corresponding to the target pixel is lower than the value and far from the video input unit, the corrected gradation value is corrected to be higher than the corrected gradation value by the first correction unit. It is characterized by that.
  • the gradation value of the target pixel is subjected to two-stage correction by the first correction unit and the second correction unit.
  • the first correction unit corrects the gradation value of the pixel of interest based on the input gradation value of the pixel of interest and the input gradation value of the preceding pixel.
  • waveform rounding caused by the difference between the input gradation value of the target pixel and the input gradation value of the preceding pixel is suppressed.
  • the second correction unit further corrects the corrected gradation value of the target pixel.
  • the tone value after correction by the first correction unit is lower than the input tone value of the target pixel. Accordingly, when the amplitude of the video signal given to the target pixel tends to increase due to the influence of the video signal given to the previous stage pixel, the amplitude of the video signal can be appropriately reduced.
  • the gradation value after correction by the second correction unit is lower than the gradation value after correction by the first correction unit.
  • the gradation value corrected by the second correction unit is higher than the gradation value corrected by the first correction unit.
  • the amplitude of the video signal must correspond to the gradation value after correction by the second correction unit, but if the waveform is rounded in the video signal, the amplitude of the video signal corresponds to the gradation value after correction.
  • the amplitude is smaller (or larger) than the amplitude A.
  • the amplitude of the video signal converges to the amplitude A over time. Therefore, if a video signal with a large waveform rounding is applied to the pixel electrode early and a video signal with a small waveform rounding is applied to the pixel electrode later, a video signal having an amplitude A is applied to each pixel electrode for a necessary and sufficient time. It is done.
  • FIG. 1 is a block diagram showing a configuration of a display device 2 according to Embodiment 1 of the present invention.
  • 2 is a block diagram showing a connection relationship between the pixel electrodes 14, 14,... Included in the display device 2 and the video signal lines 11, 11,... And the scanning signal lines 12, 12,.
  • FIG. 3 is a block diagram illustrating a configuration of a control system of the display device 2.
  • the display device 2 of the present embodiment is configured as a television receiver or a display of a personal computer.
  • the display device 2 displays a full-color image using, for example, RGB (Red, Green, Blue) three primary colors.
  • the display device 2 is not limited to the three primary colors RGB, but may be the four primary colors RGBY (Red, Green, Blue, Yellow) or the four primary colors RGBW (Red, Green, Blue, White).
  • the liquid crystal display panel 1 includes two light-transmitting substrates disposed facing each other in the front-rear direction, and liquid crystal sealed between the light-transmitting substrates (each illustrated).
  • M video signal lines 11, 11,..., N scanning signal lines 12, 12,..., ⁇ M ⁇ N ⁇ TFTs 13, 13,. And ⁇ M ⁇ N ⁇ pixel electrodes 14, 14,... are provided on one side of the transparent substrate.
  • a transparent electrode layer (not shown) is provided on the other side of the translucent substrate.
  • FIG. 2 in order to distinguish the video signal lines 11, 11,... And the scanning signal lines 12, 12,. L2, ... are attached.
  • FIG. 2 in order to distinguish the TFTs 13, 13,... And the pixel electrodes 14, 14,. ... is attached.
  • the TFT 13 is represented by a letter “T”.
  • the image displayed on the liquid crystal display panel 1 includes pixels corresponding to the pixel electrodes 14, 14. Each pixel has an output gradation value of R color, G color, or B color. The output gradation value of each pixel corresponds to the amplitude of the video signal applied to the pixel electrode 14 corresponding to the pixel. 2 and 3, the pixel electrode 14 corresponding to the R (or G or B) pixel is represented by the letter “R” (or “G” or “B”).
  • R or G or B
  • the output gradation value of each pixel included in the image is equal to the input gradation value of each pixel included in the image to be originally displayed.
  • Each gradation value is an integer from “0” to “255”.
  • the video signal lines 11, 11,... are juxtaposed at an appropriate distance in the left-right direction (the width direction of the liquid crystal display panel 1).
  • Each video signal line 11 is long in the vertical direction (the height direction of the liquid crystal display panel 1).
  • the video signal lines 11 L1 , 11 L2 ,... are arranged in this order from the left.
  • the scanning signal lines 12, 12,... are juxtaposed at an appropriate distance in the vertical direction.
  • Each scanning signal line 12 is long in the left-right direction, and crosses the M video signal lines 11, 11,. In other words, the video signal lines 11, 11,... And the scanning signal lines 12, 12,.
  • the scanning signal lines 12 L1 , 12 L2 ,... are arranged in this order from the top.
  • the TFTs 13, 13,... are arranged in the vicinity of the intersections one by one corresponding to the intersections of the video signal lines 11, 11,.
  • Each TFT 13 is a switching element and is connected to the video signal line 11 and the scanning signal line 12 at the intersection.
  • the source electrode (and gate electrode) of the TFT 13 is connected to the video signal line 11 (and scanning signal line 12).
  • TFTs 13 11 , 13 12 ,... (And TFTs 13 21 , 13 22 ,...) Are arranged in this order from above and connected to the video signal line 11 L1 (and video signal line 11 L2 ). Yes.
  • the TFTs 13 11 , 13 12 ,... are individually connected to the scanning signal lines 12 L1 , 12 L2,.
  • the TFTs 13 21 , 13 22 are individually connected to the scanning signal lines 12 L1 , 12 L2,.
  • the pixel electrodes 14, 14,... are arranged in a matrix and are connected to the drain electrodes of the TFTs 13, 13,. That is, the pixel electrode 14 is connected to the video signal line 11 through the TFT 13.
  • the TFT 13 is not shown for simplification of the drawing. Accordingly, the pixel electrode 14 shown in FIG. 3 is depicted as if it were directly connected to the video signal line 11 and the scanning signal line 12.
  • the video drive unit 21 is connected to the upper ends of the video signal lines 11, 11,.
  • a plurality of later-described gradation signals are sequentially input to the video driving unit 21, and a later-described latch strobe signal (“LS” in FIG. 3) is input at an appropriate timing.
  • a video signal, a gradation signal, and a latch strobe signal, and a gate clock (“GC” in FIG. 3) and a scanning signal, which will be described later, are respectively rectangular wave signals.
  • the first correction unit 24 includes a temporary storage unit 241, a lookup table 242 (hereinafter referred to as LUT 242), and a calculation unit 243.
  • the gradation signal input to the first correction unit 24 is given to the temporary storage unit 241 and the calculation unit 243.
  • the first corrected gradation value is higher than the input gradation value of the target pixel
  • the input level of the target pixel is When the tone value is lower than the input tone value of the preceding pixel, the first corrected tone value is lower than the input tone value of the target pixel.
  • the input tone value of the target pixel is equal to the input tone value of the preceding pixel
  • the input tone value of the target pixel is equal to the first corrected tone value.
  • the gradation value indicated by the gradation signal given from the outside of the first correction unit 24 to the calculation unit 243 is the input gradation value of the target pixel.
  • the gradation value given from the temporary storage unit 241 to the calculation unit 243 is handled as the input gradation value of the preceding pixel.
  • the calculation unit 243 refers to the LUT 242 every time a gradation signal is input to the first correction unit 24, and combines the input gradation value of the target pixel and the input gradation value of the preceding pixel given to the calculation unit 243.
  • the first corrected gradation value associated with is obtained.
  • the calculation unit 243 outputs a gradation signal indicating the obtained first corrected gradation value to the second correction unit 25.
  • the correction by the first correction unit 24 suppresses the waveform rounding generated in the video signal flowing through the video signal line 11 that is caused by the difference between the input tone value of the target pixel and the input tone value of the preceding pixel. It is done in. Because the amplitude of the preceding video signal is larger / smaller than the amplitude of the target video signal, the amplitude of the video signal flowing through the video signal line 11 is larger / smaller than the amplitude corresponding to the input gradation value (that is, waveform rounding occurs).
  • the amplitude of the video signal actually applied to the pixel electrode 14 is appropriately reduced / increased (that is, the waveform). Curbing).
  • a plurality of gradation signals are sequentially input from the first correction unit 24 to the second correction unit 25.
  • the gradation value indicated by the gradation signal is the first corrected gradation value.
  • the second correction unit 25 further corrects the first corrected gradation value in accordance with the distance from the video driving unit 21 of the pixel electrode 14 (hereinafter referred to as the target pixel electrode 14) corresponding to the target pixel.
  • the further corrected gradation value after the first correction is hereinafter referred to as a second corrected gradation value.
  • the second correction unit 25 performs the second correction when the target pixel electrode 14 is far from the video driving unit 21 and the second corrected gradation value when the target pixel electrode 14 is close to the video driving unit 21.
  • the second corrected gradation value is calculated so as to be higher than the subsequent gradation value. This is because the rise time of the video signal input to the video signal line 11 becomes longer as it moves away from the video drive unit 21 due to adverse effects such as electrical resistance and capacitance of the video signal line 11 (that is, the waveform). This is because the rounding gets worse. In order to cancel this rounding of the waveform, when the target pixel electrode 14 is far from the video driving unit 21, it is necessary to make the second corrected gradation value higher than when the target pixel electrode 14 is close to the video driving unit 21. is there.
  • the second correction unit 25 of the present embodiment is the second corrected gradation value when the pixel of interest electrode 14 is far from the video driver 21 (that is, when the pixel electrode 14 of interest is long from the video driver 21). Is higher than the first corrected gradation value, and the second corrected gradation when the pixel electrode 14 of interest is close to the video driver 21 (that is, when the distance of the pixel electrode 14 from the video driver 21 is short). The value is set lower than the first corrected gradation value. When it cannot be said that the target pixel electrode 14 is far from or close to the video driving unit 21 (that is, when the distance of the target pixel electrode 14 from the video driving unit 21 is medium), the second correction unit 25 performs the second correction. The gradation value is made equal to the first corrected gradation value.
  • the second correction unit 25 includes a column counter 251, a row counter 252, a coefficient table 253, and a calculation unit 254.
  • the gradation signal input to the second correction unit 25 is given to the column counter 251 and the calculation unit 254.
  • individual row numbers are assigned to the scanning signal lines 12, 12,.
  • the row numbers assigned to the scanning signal lines 12, 12,... Are “1”, “2”,.
  • the scanning signal line 12 with the larger row number is farther from the video driver 21.
  • the count result of the column counter 251 before displaying the video is reset to “0”.
  • the column counter 251 increments the count result by “1” every time a gradation signal is given.
  • the column counter 251 gives a predetermined count signal to the row counter 252 and resets the count result to “0”.
  • the coefficient table 253 is a data table stored in a nonvolatile memory (not shown).
  • the coefficient table 253 stores row numbers and correction coefficients described later in association with each other.
  • the second corrected gradation value is obtained by multiplying the first corrected gradation value by a correction coefficient. The greater the line number, the greater the associated correction factor.
  • the gradation signal input to the control unit 23 is input to the video drive unit 21 as it is. Therefore, the gradation value indicated by the gradation signal input to the video driver 21 is the second corrected gradation value. Therefore, the video drive unit 21 inputs a video signal corresponding to the second corrected gradation value to the video signal lines 11, 11,. As a result, in the image displayed on the liquid crystal display panel 1, the output gradation value of each pixel is not significantly different from the input gradation value. That is, display quality can be improved.
  • the display device 2 according to the first embodiment includes K video drive units 21, 21,..., Whereas the display device 2 according to the present embodiment includes ⁇ 2 ⁇ K ⁇ video drive units 21, 21,. .
  • the display device 2 will be described as including two video driving units 21 and 21.
  • One of the two video drive units 21 is connected to the upper end of the video signal lines 11, 11,...
  • the other video drive unit 21 is connected to the lower end of the video signal lines 11, 11,. It is connected.
  • the gradation signal and the latch strobe signal are input from the control unit 23 to each of the video drive units 21 and 21.
  • the same video signal is simultaneously input to the video signal lines 11, 11,... From the upper end side and the lower end side.
  • the time table 233 is a data table stored in a nonvolatile memory (not shown).
  • the row number and the elapsed time t are stored in association with each other. The larger the line number, the smaller the associated elapsed time t.
  • the time table 233 stores first to third elapsed times t.
  • a video signal is given to the pixel electrode 14 corresponding to the scanning signal line 12 of the row number “N ⁇ 2/3 + 2” for ⁇ HT ⁇ time.
  • a waveform rounding due to the distance from the video drive unit 21 is significantly generated. That is, it takes a long time for the amplitude of the video signal to converge to the amplitude A from the amplitude corresponding to the gradation value “0”. Therefore, since a video signal having an amplitude A is given to the pixel electrode 14 only for a short time, a voltage corresponding to the gradation value “255” is applied to the liquid crystal between the pixel electrode 14 and the transparent electrode. Is applied only for a short time.
  • the pixel at the upper part of the liquid crystal display panel 1 and the pixel at the lower part of the liquid crystal display panel 1 reach the gradation value “255” from the gradation value “0”. That is, in the image displayed on the liquid crystal display panel 1, the output gradation value of each pixel is not much different from the input gradation value. That is, display quality can be improved.
  • the display device 2 as described above further suppresses the adverse effect of waveform rounding caused by the distance from the video driving unit 21 of each pixel electrode 14 by adjusting the timing of inputting the video signal to the video signal line.
  • Such a display device 2 can be easily obtained by replacing the control unit 23 included in the display device 2 of the first embodiment with the control unit 23 of the present embodiment. That is, it is not necessary to add new hardware in order to further improve the display quality, so that the manufacturing cost of the display device 2 can be suppressed.
  • the nonvolatile memory 261 stores first correction data, second correction data, and constant data (not shown).
  • the first correction data is a function and / or data table for calculating the first corrected gradation value based on the input gradation value of the target pixel and the input gradation value of the preceding pixel.
  • a decrease coefficient P 2 for obtaining the first corrected gradation value by decreasing the attention input gradation value when the attention input gradation value is lower than the previous stage input gradation value.
  • FIG. 12 is a flowchart illustrating a procedure of gradation value correction processing executed in the display device 2.
  • the computing unit 263 determines whether or not to start displaying video (S11), and when the video is not yet displayed (NO in S11), the processing of S11 is executed again.
  • the calculation unit 263 resets various variables (S12). Specifically, the calculation unit 263 resets the variable m for counting the columns to “0”, resets the row number n to “1”, the attention input gradation value g a , the previous stage input gradation value, g b, resets the first post-correction gradation value g 1, and the second corrected tone value g 2 respectively to "0".
  • the calculation unit 263 determines whether or not a gradation signal has been input to itself (S13). If it has not been input yet (NO in S13), the processing of S13 is executed again. If own tone signal is input (YES in S13), the arithmetic unit 263, the tone value indicated by the input gradation signal, assigns to the target input gradation value g a (S14), first Correction processing (see FIG. 13) is executed (S15). In the first correction process, the first corrected gradation value g 1 is obtained. After the end of the first correction process, the calculation unit 263 substitutes the value of the target input tone value g a for the previous input tone value g b (S16).
  • FIG. 13 is a flowchart showing details of the first correction processing procedure.
  • the computing unit 263 determines whether or not the target input tone value g a is greater than the previous-stage input tone value g b (S31). When g a > g b (YES in S31), the calculation unit 263 reads the increase coefficient P 1 from the nonvolatile memory 261 (S32), and the first corrected gradation value g according to the following equation (1): 1 is calculated (S33).
  • g 1 P 1 ⁇ g a (1)
  • the computing unit 263 in S33 or S36 also performs a process of rounding the first corrected gradation value g 1 obtained by the equations (1) and (2) to an integer of “0” to “255”.
  • the calculation unit 263 substitutes the target input tone value g a for the first corrected tone value g 1 (S37). After the process of S33, S36, or S37 is completed, the calculation unit 263 ends the first correction process and returns to the gradation value correction process shown in FIG.
  • the first correction data may be the LUT 242.
  • the calculation unit 263 in the first correction process refers to the LUT 242 instead of the processes of S31 to S37, and the first correction process associated with the combination of the target input tone value g a and the previous input tone value g b .
  • a process of obtaining a corrected gradation value g 1 is performed.
  • FIG. 14 is a flowchart showing details of the second correction processing procedure.
  • the computing unit 263 reads the function f from the nonvolatile memory 261 (S51). Next, the computing unit 263 calculates the second corrected gradation value g 2 by substituting the row number n and the first corrected gradation value g 1 into the function f (S52). At this time, the calculation unit 263 also performs a process of rounding the second corrected gradation value g 2 to an integer of “0” to “255”.
  • the calculation unit 263 increments the variable m by “1” (S53), and determines whether the variable m is equal to or greater than the constant M (S54).
  • the calculation unit 263 determines whether or not the row number n is equal to or greater than a constant N (S55).
  • n ⁇ N NO in S55
  • the calculation unit 263 increments the row number n by “1” (S56), and resets the variable m to “0” (S57). If n ⁇ N (YES in S55), the calculation unit 263 resets the row number n to “1” (S58), and moves the process to S57.
  • the second correction data may be a coefficient table 253.
  • the calculation unit 263 in the second correction process refers to the coefficient table 253 using the line number n instead of the process of S51, performs a process of obtaining a correction coefficient, and obtains the process instead of the process of S52.
  • a process of calculating the second corrected gradation value g 2 is performed by multiplying the correction coefficient by the first corrected gradation value g 1 and rounding the multiplication result to an integer of “0” to “255”.
  • the display device 2 as described above has the same operational effects as the display device 2 of the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

In order to provide a display device in which display quality can be improved, the gradation value of a target pixel is corrected on the basis of an input gradation value of the target pixel and an input gradation value of a previous-stage pixel, and is further corrected in accordance with the distance, from an image drive unit 21, of a pixel electrode 14 corresponding to the target pixel. Thus, an image signal having an amplitude corresponding to the corrected gradation value (i.e., an appropriate amplitude) is provided to the pixel electrode 14. Accordingly, display quality can be improved by eliminating negative effects of waveform distortion caused by the difference between the input gradation value of the target pixel and the input gradation value of the previous-stage pixel, and also waveform distortion caused by the distance from the image drive unit 21.

Description

表示装置Display device
 本発明は、映像を表示する表示装置に関する。 The present invention relates to a display device that displays video.
 表示装置は表示パネル及び映像駆動部を備える。表示パネルには、縦横の格子状に配された各複数本の映像信号線及び走査信号線と、映像信号線及び走査信号線の各交差点に対応して1個ずつ配された画素電極とが含まれている(特許文献1参照)。 The display device includes a display panel and a video drive unit. The display panel includes a plurality of video signal lines and scanning signal lines arranged in a vertical and horizontal grid pattern, and pixel electrodes arranged one by one corresponding to the intersections of the video signal lines and the scanning signal lines. Included (see Patent Document 1).
 映像駆動部は映像信号線の端部に接続されている。走査信号線には、映像駆動部に近いものから順に、走査信号が入力される。映像駆動部は、何れかの走査信号線に走査信号が入力される場合に、全ての映像信号線に映像信号を入力する。
 映像信号は、走査信号が入力された走査信号線に対応して配されている画素電極に与えられる。
 表示パネルが表示する映像には、画素電極に与えられた映像信号に応じた階調値を有する画素が含まれている。
The video driver is connected to the end of the video signal line. Scan signals are input to the scan signal lines in order from the closest to the video drive unit. The video driver inputs video signals to all video signal lines when a scanning signal is input to any of the scanning signal lines.
The video signal is given to the pixel electrode arranged corresponding to the scanning signal line to which the scanning signal is input.
The video displayed on the display panel includes pixels having gradation values corresponding to the video signal applied to the pixel electrodes.
特開2003-177375号公報JP 2003-177375 A
 しかしながら、表示装置が実際に表示した映像の画素が有する階調値は、表示装置が本来表示すべきだった映像の画素が有する階調値とは異なることがある。この結果、例えば市松模様の映像を表示すべきときに、無用の縞模様が付加された市松模様の映像を表示してしまうような、表示品位の劣化が生じる。 However, the gradation value of the image pixel actually displayed by the display device may be different from the gradation value of the image pixel that the display device should have originally displayed. As a result, for example, when a checkered image is to be displayed, display quality is deteriorated such that a checkered image with an unnecessary stripe pattern is displayed.
 以下では、本来表示すべき映像の画素が有する階調値を入力階調値といい、表示装置が表示する映像の画素が有する階調値を出力階調値という。
 また、注目画素(画像処理対象である画素)に対応する画素電極を注目画素電極といい、注目画素電極と同じ映像信号線から映像信号を与えられる画素電極の内、注目画素電極の映像駆動部に近い側に隣り合う画素電極を前段画素電極という。
 前段画素電極は、注目画素電極に縦方向(映像信号線の長さ方向)に隣り合う画素電極である。前段画素は、前段画素電極に対応する画素である。
In the following, the gradation value possessed by the pixel of the video to be originally displayed is referred to as the input gradation value, and the gradation value possessed by the pixel of the image displayed by the display device is referred to as the output gradation value.
In addition, a pixel electrode corresponding to a target pixel (a pixel to be image-processed) is referred to as a target pixel electrode. A pixel electrode adjacent to the side closer to the pixel is referred to as a previous pixel electrode.
The pre-stage pixel electrode is a pixel electrode adjacent to the target pixel electrode in the vertical direction (length direction of the video signal line). The front stage pixel is a pixel corresponding to the front stage pixel electrode.
 上述した表示品位の劣化の理由として、注目画素の入力階調値が、前段画素の入力階調値の悪影響を受けることが挙げられる。何故ならば、映像駆動部が、出力する映像信号を、前段画素の入力階調値に対応する映像信号(前段映像信号)から、注目画素の入力階調値に対応する映像信号(注目映像信号)に切り替えたとしても、映像信号の切り替え直後の映像信号線には、まだ前段映像信号が流れているからである。 The reason for the deterioration in display quality described above is that the input tone value of the target pixel is adversely affected by the input tone value of the previous pixel. This is because the video driver outputs the video signal output from the video signal corresponding to the input gradation value of the previous pixel (previous video signal) to the video signal corresponding to the input gradation value of the target pixel (target video signal). This is because the previous video signal is still flowing through the video signal line immediately after switching the video signal.
 従って、映像信号線に流れる映像信号は、前段映像信号から、前段映像信号と注目映像信号とが重ね合わされた映像信号に変化し、やがて注目映像信号に収束する。映像信号は矩形波信号であるが、前段映像信号との重ね合わせにより、波形なまりが生じることがある。
 前段画素の入力階調値と注目画素の入力階調値との差が大きいほど、注目映像信号と前段映像信号との振幅差は大きい。故に、注目映像信号に大きな波形なまりが生じる。大きな波形なまりが生じた注目映像信号が注目画素電極に与えられれば、注目画素の出力階調値が、注目画素の入力階調値とは大きく異なるものになる。
Therefore, the video signal flowing through the video signal line changes from the previous video signal to a video signal in which the previous video signal and the target video signal are superimposed, and eventually converges to the target video signal. Although the video signal is a rectangular wave signal, waveform rounding may occur due to superposition with the preceding video signal.
The larger the difference between the input tone value of the previous pixel and the input tone value of the target pixel, the greater the difference in amplitude between the target video signal and the previous video signal. Therefore, a large waveform rounding occurs in the target video signal. If a target video signal having a large waveform rounding is applied to the target pixel electrode, the output tone value of the target pixel is significantly different from the input tone value of the target pixel.
 ところで、注目画素の出力階調値と注目画素の入力階調値との差は、注目画素電極が映像駆動部から遠いほど甚だしくなる傾向にある。これは、映像駆動部から遠くなるほど、映像信号線の電気抵抗及び静電容量等の悪影響が映像信号に及んで、映像信号の立ち上がり時間が無用に長期化する(即ち波形なまりが悪化する)からである。 By the way, the difference between the output gradation value of the target pixel and the input gradation value of the target pixel tends to become more serious as the target pixel electrode is farther from the video driver. This is because, as the distance from the video drive unit increases, adverse effects such as electrical resistance and capacitance of the video signal line affect the video signal, and the rise time of the video signal is unnecessarily prolonged (that is, the waveform rounding is worsened). It is.
 特許文献1に記載の表示装置は、注目画素の入力階調値が、注目画素の横方向(走査信号線の長さ方向)に隣り合う画素の入力階調値の悪影響を受けることに起因する表示品位の劣化を抑制する。つまり、特許文献1の表示装置は、注目画素の入力階調値が前段画素の入力階調値の悪影響を受けることに起因する表示品位の劣化を抑制するものではない。
 また、特許文献1に記載の表示装置は、画素電極が3列周期の変形千鳥配置された特殊な構造を有している。従って、表示装置の製造コストが増大する虞がある。
In the display device described in Patent Document 1, the input tone value of the target pixel is adversely affected by the input tone value of a pixel adjacent in the horizontal direction of the target pixel (the length direction of the scanning signal line). Reduces display quality degradation. In other words, the display device of Patent Document 1 does not suppress display quality deterioration caused by the input gradation value of the target pixel being adversely affected by the input gradation value of the preceding pixel.
Further, the display device described in Patent Document 1 has a special structure in which pixel electrodes are arranged in a modified staggered manner with a period of three columns. Therefore, the manufacturing cost of the display device may increase.
 本発明は斯かる事情に鑑みてなされたものであり、その主たる目的は、表示品位を向上させることができる表示装置を提供することにある。 The present invention has been made in view of such circumstances, and a main object thereof is to provide a display device capable of improving display quality.
 本発明に係る表示装置は、複数の映像信号線と、該映像信号線に接続されている複数の画素電極と、前記複数の映像信号線の端部に接続されており、前記画素電極に与えられる映像信号を前記映像信号線に入力する映像入力部とを備え、前記画素電極に与えられた映像信号に応じた階調値を有する画素を含む映像を表示する表示装置において、注目画素の階調値と、前記注目画素に対応する画素電極と隣り合い、該画素電極と同じ映像信号線から映像信号を与えられる画素電極に対応する前段画素の階調値とに基づいて、前記注目画素の階調値を補正する第1補正部、及び、前記注目画素に対応する画素電極の前記映像入力部からの遠近に応じて、前記第1補正部による補正後の階調値を更に補正する第2補正部を備え、前記映像入力部は、前記第2補正部による補正後の階調値に応じた映像信号を前記映像信号線に入力するようにしてあることを特徴とする。 The display device according to the present invention includes a plurality of video signal lines, a plurality of pixel electrodes connected to the video signal lines, and an end of the plurality of video signal lines. In a display device for displaying an image including a pixel having a gradation value corresponding to the video signal applied to the pixel electrode, the image input unit includes: Based on the tone value and the gradation value of the previous pixel adjacent to the pixel electrode corresponding to the target pixel and corresponding to the pixel electrode to which a video signal is applied from the same video signal line as the pixel electrode, A first correction unit that corrects a gradation value, and a first correction unit that further corrects the gradation value corrected by the first correction unit according to the perspective of the pixel electrode corresponding to the target pixel from the video input unit. 2 correction units, and the video input unit Characterized in that a video signal corresponding to the gray scale value corrected by the second correcting unit are to be input to the video signal lines.
 本発明に係る表示装置は、前記第1補正部は、前記注目画素の階調値が前記前段画素の階調値よりも高い場合、補正後の階調値を前記注目画素の階調値よりも高く、前記注目画素の階調値が前記前段画素の階調値よりも低い場合、補正後の階調値を前記注目画素の階調値よりも低く補正するようにしてあることを特徴とする。 In the display device according to the aspect of the invention, the first correction unit may correct the corrected gradation value from the gradation value of the target pixel when the gradation value of the target pixel is higher than the gradation value of the preceding pixel. If the gradation value of the target pixel is lower than the gradation value of the preceding pixel, the corrected gradation value is corrected to be lower than the gradation value of the target pixel. To do.
 本発明に係る表示装置は、前記第2補正部は、前記第1補正部による補正後の階調値を、前記注目画素に対応する画素電極が前記映像入力部から近いほど低く、前記注目画素に対応する画素電極が前記映像入力部に遠いほど高く補正するようにしてあることを特徴とする。 In the display device according to the aspect of the invention, the second correction unit may reduce the gradation value corrected by the first correction unit as the pixel electrode corresponding to the target pixel is closer to the video input unit, and the target pixel. The pixel electrode corresponding to is corrected higher as it is farther from the video input unit.
 本発明に係る表示装置は、前記第2補正部は、前記注目画素に対応する画素電極が前記映像入力部に近い場合、補正後の階調値を前記第1補正部による補正後の階調値よりも低く、前記注目画素に対応する画素電極が前記映像入力部から遠い場合、補正後の階調値を前記第1補正部による補正後の階調値よりも高く補正するようにしてあることを特徴とする。 In the display device according to the present invention, when the pixel electrode corresponding to the target pixel is close to the video input unit, the second correction unit uses the corrected gradation value after the correction by the first correction unit. If the pixel electrode corresponding to the target pixel is lower than the value and far from the video input unit, the corrected gradation value is corrected to be higher than the corrected gradation value by the first correction unit. It is characterized by that.
 本発明に係る表示装置は、前記複数の映像信号線に交差するよう並置されており、順に走査信号が入力される複数の走査信号線を更に備え、前記映像入力部は、前記走査信号線に走査信号が入力される場合に、前記画素電極に与えられる映像信号を前記映像信号線に入力するようにしてあり、前記走査信号線に走査信号が入力される時点を基準にした前記映像信号線に映像信号が入力されるタイミングは、前記走査信号が入力される前記走査信号線の前記映像入力部からの遠近に応じて異なることを特徴とする。 The display device according to the present invention further includes a plurality of scanning signal lines that are juxtaposed so as to intersect the plurality of video signal lines, and sequentially input a scanning signal, and the video input unit is connected to the scanning signal lines. When a scanning signal is input, the video signal applied to the pixel electrode is input to the video signal line, and the video signal line is based on the time when the scanning signal is input to the scanning signal line. The timing at which the video signal is input differs according to the distance from the video input unit of the scanning signal line to which the scanning signal is input.
 本発明にあっては、注目画素の階調値に、第1補正部及び第2補正部による2段階の補正が施される。
 まず、注目画素の入力階調値及び前段画素の入力階調値夫々に基づいて、第1補正部が注目画素の階調値を補正する。第1補正部による補正後の階調値に応じた映像信号は、注目画素の入力階調値と前段画素の入力階調値との差に起因する波形なまりが抑制されている。
 次に、画素電極の映像入力部からの遠近に応じて、第2補正部が注目画素の補正後の階調値を更に補正する。第2補正部による補正後の階調値に応じた映像信号は、画素電極の映像入力部からの遠近に起因する波形なまりが抑制されている。
 この結果、入力階調値に対応した出力階調値を有する画素が表示される。
In the present invention, the gradation value of the target pixel is subjected to two-stage correction by the first correction unit and the second correction unit.
First, the first correction unit corrects the gradation value of the pixel of interest based on the input gradation value of the pixel of interest and the input gradation value of the preceding pixel. In the video signal corresponding to the gradation value corrected by the first correction unit, waveform rounding caused by the difference between the input gradation value of the target pixel and the input gradation value of the preceding pixel is suppressed.
Next, according to the perspective of the pixel electrode from the video input unit, the second correction unit further corrects the corrected gradation value of the target pixel. In the video signal corresponding to the gradation value corrected by the second correction unit, waveform rounding due to the perspective of the pixel electrode from the video input unit is suppressed.
As a result, a pixel having an output gradation value corresponding to the input gradation value is displayed.
 本発明にあっては、注目画素の入力階調値が前段画素の入力階調値よりも高い場合、第1補正部による補正後の階調値は、注目画素の入力階調値よりも高い。従って、前段画素に与えられた映像信号の影響で注目画素に与えられる映像信号の振幅が小さくなりがちな場合に、映像信号の振幅を適宜に増大させることができる。 In the present invention, when the input tone value of the target pixel is higher than the input tone value of the previous pixel, the tone value after correction by the first correction unit is higher than the input tone value of the target pixel. . Therefore, when the amplitude of the video signal given to the target pixel tends to be reduced due to the influence of the video signal given to the preceding pixel, the amplitude of the video signal can be increased appropriately.
 一方、注目画素の入力階調値が前段画素の入力階調値よりも低い場合、第1補正部による補正後の階調値は、注目画素の入力階調値よりも低い。従って、前段画素に与えられた映像信号の影響で注目画素に与えられる映像信号の振幅が大きくなりがちな場合に、映像信号の振幅を適宜に減少させることができる。 On the other hand, when the input tone value of the target pixel is lower than the input tone value of the previous pixel, the tone value after correction by the first correction unit is lower than the input tone value of the target pixel. Accordingly, when the amplitude of the video signal given to the target pixel tends to increase due to the influence of the video signal given to the previous stage pixel, the amplitude of the video signal can be appropriately reduced.
 本発明にあっては、注目画素に対応する画素電極が映像入力部から遠い場合の第2補正部による補正後の階調値は、注目画素に対応する画素電極が映像入力部に近い場合の第2補正部による補正後の階調値よりも高い。
 従って、画素電極が映像入力部から遠いほど長期化しがちな映像信号の立ち上がり時間を、適宜に短縮することができる。
In the present invention, when the pixel electrode corresponding to the target pixel is far from the video input unit, the gradation value after correction by the second correction unit is the same as when the pixel electrode corresponding to the target pixel is close to the video input unit. It is higher than the gradation value after correction by the second correction unit.
Accordingly, the rise time of the video signal, which tends to be longer as the pixel electrode is farther from the video input unit, can be appropriately shortened.
 本発明にあっては、注目画素に対応する画素電極が、映像制御部に近い場合、第2補正部による補正後の階調値は、第1補正部による補正後の階調値よりも低い。一方、注目画素に対応する画素電極が、映像制御部から遠い場合、第2補正部による補正後の階調値は、第1補正部による補正後の階調値よりも高い。 In the present invention, when the pixel electrode corresponding to the target pixel is close to the video control unit, the gradation value after correction by the second correction unit is lower than the gradation value after correction by the first correction unit. . On the other hand, when the pixel electrode corresponding to the target pixel is far from the video control unit, the gradation value corrected by the second correction unit is higher than the gradation value corrected by the first correction unit.
 階調値には上限値及び下限値がある。第1補正部による補正後の階調値が上限値(又は下限値)である場合には、第2補正部による補正後の階調値を上限値(又は下限値)とすればよい。また、階調値の中央値を境に補正の増減が入れ替わるので、上限値付近の階調値に対する補正量及び下限付近の階調値に対する補正量夫々の絶対値を同程度にすることができる。
 以上の結果、上限値から下限値まで何れの値の階調値に対しても適切な補正を施すことができるので、表示品位を向上させることができる。
The gradation value has an upper limit value and a lower limit value. When the gradation value corrected by the first correction unit is the upper limit value (or lower limit value), the gradation value corrected by the second correction unit may be set as the upper limit value (or lower limit value). Further, since the increase / decrease of correction is switched at the boundary of the median value of the gradation values, the absolute values of the correction amount for the gradation value near the upper limit value and the correction amount for the gradation value near the lower limit value can be made similar. .
As a result, appropriate correction can be applied to any gradation value from the upper limit value to the lower limit value, so that the display quality can be improved.
 本発明にあっては、各画素電極に対応する走査信号線に走査信号が入力される時点を基準にした場合、映像入力部に近い画素電極に映像信号が与えられるタイミングと、映像入力部から遠い画素電極に映像信号が与えられるタイミングとが異なる。 In the present invention, when the scanning signal is input to the scanning signal line corresponding to each pixel electrode, the timing at which the video signal is applied to the pixel electrode near the video input unit, and the video input unit The timing at which a video signal is applied to a distant pixel electrode is different.
 映像信号の振幅は、第2補正部による補正後の階調値に対応しなければならないが、映像信号に波形なまりが生じている場合、映像信号の振幅は、補正後の階調値に対応する振幅Aよりも小さい(又は大きい)振幅になる。しかしながら、映像信号の振幅は、時間の経過に伴って振幅Aに収束する。そこで、波形なまりが大きい映像信号には早めに画素電極に与え、波形なまりが小さい映像信号には遅めに画素電極に与えれば、各画素電極に振幅Aの映像信号が必要十分な時間だけ与えられる。 The amplitude of the video signal must correspond to the gradation value after correction by the second correction unit, but if the waveform is rounded in the video signal, the amplitude of the video signal corresponds to the gradation value after correction. The amplitude is smaller (or larger) than the amplitude A. However, the amplitude of the video signal converges to the amplitude A over time. Therefore, if a video signal with a large waveform rounding is applied to the pixel electrode early and a video signal with a small waveform rounding is applied to the pixel electrode later, a video signal having an amplitude A is applied to each pixel electrode for a necessary and sufficient time. It is done.
 つまり、画素電極に映像信号を与えるタイミングを、画素電極の映像入力部からの遠近に応じて変更する。故に、波形なまりが収束した映像信号が、必要十分な時間だけ各画素電極に与えられるので、補正後の階調値に対応した階調値を有する画素が表示される。従って、注目画素の入力階調値と前段画素の入力階調値との差に起因する波形なまり、及び映像入力部からの遠近に起因する波形なまり夫々の悪影響を更に排除して、表示品位を更に向上させることができる。 That is, the timing for applying the video signal to the pixel electrode is changed according to the distance from the video input unit of the pixel electrode. Therefore, since the video signal in which the waveform rounding is converged is applied to each pixel electrode for a necessary and sufficient time, a pixel having a gradation value corresponding to the corrected gradation value is displayed. Accordingly, the waveform rounding caused by the difference between the input tone value of the target pixel and the input tone value of the preceding pixel and the waveform rounding caused by the distance from the video input unit are further eliminated, and the display quality is improved. Further improvement can be achieved.
 本発明の表示装置による場合、注目画素の階調値(即ち、画素電極に与えられる映像信号の振幅に対応するもの)は、注目画素の入力階調値及び前段画素の入力階調値夫々に基づいて補正され、画素電極の映像入力部からの遠近に応じて更に補正される。故に、適切な振幅を有する映像信号が、画素電極に与えられる。
 従って、注目画素の入力階調値と前段画素の入力階調値との差に起因する波形なまりのみならず、映像入力部からの遠近に起因する波形なまりの悪影響を排除して、表示品位を向上させることができる。
According to the display device of the present invention, the gradation value of the target pixel (that is, the one corresponding to the amplitude of the video signal applied to the pixel electrode) is set for each of the input gradation value of the target pixel and the input gradation value of the preceding pixel. Based on this, the pixel electrode is further corrected according to the distance from the video input unit. Therefore, a video signal having an appropriate amplitude is applied to the pixel electrode.
Therefore, not only the waveform rounding caused by the difference between the input tone value of the target pixel and the input tone value of the preceding pixel, but also the adverse effect of the waveform rounding caused by the distance from the video input unit is eliminated, and the display quality is improved. Can be improved.
本発明の実施の形態1に係る表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the display apparatus which concerns on Embodiment 1 of this invention. 表示装置が備える画素電極と映像信号線及び走査信号線夫々との接続関係を示すブロック図である。It is a block diagram which shows the connection relation of the pixel electrode with which a display apparatus is provided, and each of a video signal line and a scanning signal line. 表示装置の制御系の構成を示すブロック図である。It is a block diagram which shows the structure of the control system of a display apparatus. 表示装置が備える第1補正部及び第2補正部夫々の構成を示すブロック図である。It is a block diagram which shows the structure of each of the 1st correction | amendment part with which a display apparatus is provided, and a 2nd correction | amendment part. 本発明の実施の形態2に係る表示装置の制御系の構成を示すブロック図である。It is a block diagram which shows the structure of the control system of the display apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る表示装置が備える制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the control part with which the display apparatus which concerns on Embodiment 3 of this invention is provided. 表示装置におけるゲートクロック、走査信号、ラッチストローブ信号、及び映像信号夫々の出力のタイミング(映像駆動部に近い場合)を示すタイミングチャートである。5 is a timing chart showing the output timings (when close to the video driver) of the gate clock, scanning signal, latch strobe signal, and video signal in the display device. 表示装置におけるゲートクロック、走査信号、ラッチストローブ信号、及び映像信号夫々の出力のタイミング(映像駆動部から遠い場合)を示すタイミングチャートである。5 is a timing chart showing the output timings (when distant from the video driver) of the gate clock, scanning signal, latch strobe signal, and video signal in the display device. 従来の表示装置におけるゲートクロック、走査信号、ラッチストローブ信号、及び映像信号夫々の出力のタイミング(映像駆動部に近い場合)を示すタイミングチャートである。It is a timing chart which shows the output timing (when it is close to a video drive part) of each of a gate clock, a scanning signal, a latch strobe signal, and a video signal in a conventional display device. 従来の表示装置におけるゲートクロック、走査信号、ラッチストローブ信号、及び映像信号夫々の出力のタイミング(映像駆動部から遠い場合)を示すタイミングチャートである。It is a timing chart which shows the output timing (when it is far from a video drive part) of each of a gate clock in a conventional display apparatus, a scanning signal, a latch strobe signal, and a video signal. 本発明の実施の形態4に係る表示装置が備える制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the control part with which the display apparatus which concerns on Embodiment 4 of this invention is provided. 表示装置で実行される階調値補正処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the gradation value correction process performed with a display apparatus. 表示装置で実行される第1補正処理手順の詳細を示すフローチャートである。It is a flowchart which shows the detail of the 1st correction process procedure performed with a display apparatus. 表示装置で実行される第2補正処理手順の詳細を示すフローチャートである。It is a flowchart which shows the detail of the 2nd correction | amendment process procedure performed with a display apparatus.
 以下、本発明を、その実施の形態を示す図面に基づいて詳述する。 Hereinafter, the present invention will be described in detail based on the drawings showing the embodiments thereof.
実施の形態 1.
 図1は、本発明の実施の形態1に係る表示装置2の構成を示すブロック図である。
 図2は、表示装置2が備える画素電極14,14,…と映像信号線11,11,…及び走査信号線12,12,…夫々との接続関係を示すブロック図である。
 図3は、表示装置2の制御系の構成を示すブロック図である。
 本実施の形態の表示装置2は、テレビジョン受信機、又はパーソナルコンピュータのディスプレイ等として構成されている。表示装置2は、例えばRGB(Red,Green,Blue)3原色を用いてフルカラーの映像を表示する。
 なお、表示装置2はRGB3原色に限定されず、RGBY(Red,Green,Blue,Yellow )4原色、又はRGBW(Red,Green,Blue,White)4原色等でもよい。
Embodiment 1.
FIG. 1 is a block diagram showing a configuration of a display device 2 according to Embodiment 1 of the present invention.
2 is a block diagram showing a connection relationship between the pixel electrodes 14, 14,... Included in the display device 2 and the video signal lines 11, 11,... And the scanning signal lines 12, 12,.
FIG. 3 is a block diagram illustrating a configuration of a control system of the display device 2.
The display device 2 of the present embodiment is configured as a television receiver or a display of a personal computer. The display device 2 displays a full-color image using, for example, RGB (Red, Green, Blue) three primary colors.
The display device 2 is not limited to the three primary colors RGB, but may be the four primary colors RGBY (Red, Green, Blue, Yellow) or the four primary colors RGBW (Red, Green, Blue, White).
 表示装置2は、液晶表示パネル1、K個の映像駆動部21,21,…(映像入力部)、L個の走査駆動部22,22,…、制御部23、第1補正部24、及び第2補正部25を備える。ここで、K,L夫々は複数である。以下では説明を簡単にするために、表示装置2が各1個の映像駆動部21及び走査駆動部22を備えているものとして説明する。また、以下の説明では、液晶表示パネル1の上下左右方向を図に向かって上下左右方向とする。 The display device 2 includes a liquid crystal display panel 1, K video drive units 21, 21,... (Video input unit), L scan drive units 22, 22..., A control unit 23, a first correction unit 24, and A second correction unit 25 is provided. Here, there are a plurality of K and L. Hereinafter, in order to simplify the description, it is assumed that the display device 2 includes one video driving unit 21 and one scanning driving unit 22. In the following description, the vertical and horizontal directions of the liquid crystal display panel 1 are the vertical and horizontal directions as viewed in the figure.
 液晶表示パネル1は、前後方向に対面配置された2枚の透光基板と、透光基板間に封止された液晶とを有する(各図示)。透光基板の一方には、M本の映像信号線11,11,…、N本の走査信号線12,12,…、{M×N}個のTFT13,13,…(Thin Film Transistor)、及び{M×N}個の画素電極14,14,…が設けられている。ここで、M,N夫々は複数である。透光基板の他方には図示しない透明電極層が設けられている。
 図2では、映像信号線11,11,…同士及び走査信号線12,12,…同士を区別するために、一部の符号11,11,…及び符号12,12,…に添え字L1,L2,…を付してある。また、図2では、TFT13,13,…同士及び画素電極14,14,…同士を区別するために、一部の符号13,13,…及び符号14,14,…に添え字11,12,…を付してある。図2では、TFT13を「T」の文字で表している。
The liquid crystal display panel 1 includes two light-transmitting substrates disposed facing each other in the front-rear direction, and liquid crystal sealed between the light-transmitting substrates (each illustrated). On one side of the transparent substrate, M video signal lines 11, 11,..., N scanning signal lines 12, 12,..., {M × N} TFTs 13, 13,. And {M × N} pixel electrodes 14, 14,... Are provided. Here, there are a plurality of M and N. A transparent electrode layer (not shown) is provided on the other side of the translucent substrate.
In FIG. 2, in order to distinguish the video signal lines 11, 11,... And the scanning signal lines 12, 12,. L2, ... are attached. In FIG. 2, in order to distinguish the TFTs 13, 13,... And the pixel electrodes 14, 14,. ... is attached. In FIG. 2, the TFT 13 is represented by a letter “T”.
 液晶表示パネル1には映像が表示される。液晶表示パネル1に表示される映像には、画素電極14,14,…に対応する画素が含まれている。各画素は、R色、G色、又はB色の出力階調値を有する。各画素の出力階調値は、当該画素に対応する画素電極14に与えられた映像信号の振幅に対応する。図2及び図3では、R色(又はG色若しくはB色)の画素に対応する画素電極14を「R」(又は「G」若しくは「B」)の文字で表している。
 液晶表示パネル1に表示される映像において、映像に含まれている各画素の出力階調値は、本来表示すべき映像に含まれている各画素の入力階調値に等しいことが望ましい。各階調値は“0”以上“255”以下の整数である。
An image is displayed on the liquid crystal display panel 1. The image displayed on the liquid crystal display panel 1 includes pixels corresponding to the pixel electrodes 14, 14. Each pixel has an output gradation value of R color, G color, or B color. The output gradation value of each pixel corresponds to the amplitude of the video signal applied to the pixel electrode 14 corresponding to the pixel. 2 and 3, the pixel electrode 14 corresponding to the R (or G or B) pixel is represented by the letter “R” (or “G” or “B”).
In the image displayed on the liquid crystal display panel 1, it is desirable that the output gradation value of each pixel included in the image is equal to the input gradation value of each pixel included in the image to be originally displayed. Each gradation value is an integer from “0” to “255”.
 映像信号線11,11,…は左右方向(液晶表示パネル1の幅方向)に適長離隔して並置されている。各映像信号線11は上下方向(液晶表示パネル1の高さ方向)に長い。映像信号線11L1,11L2,…は左からこの順に並んでいる。
 走査信号線12,12,…は上下方向に適長離隔して並置されている。各走査信号線12は左右方向に長く、M本の映像信号線11,11,…に交差している。即ち、映像信号線11,11,…及び走査信号線12,12,…は格子状に配されている。走査信号線12L1,12L2,…は上からこの順に並んでいる。
The video signal lines 11, 11,... Are juxtaposed at an appropriate distance in the left-right direction (the width direction of the liquid crystal display panel 1). Each video signal line 11 is long in the vertical direction (the height direction of the liquid crystal display panel 1). The video signal lines 11 L1 , 11 L2 ,... Are arranged in this order from the left.
The scanning signal lines 12, 12,... Are juxtaposed at an appropriate distance in the vertical direction. Each scanning signal line 12 is long in the left-right direction, and crosses the M video signal lines 11, 11,. In other words, the video signal lines 11, 11,... And the scanning signal lines 12, 12,. The scanning signal lines 12 L1 , 12 L2 ,... Are arranged in this order from the top.
 TFT13,13,…は、映像信号線11,11,…及び走査信号線12,12,…の各交差点に対応して1個ずつ交差点近傍に配されている。各TFT13はスイッチング素子であり、交差点の映像信号線11及び走査信号線12に接続されている。具体的には、TFT13のソース電極(及びゲート電極)が映像信号線11(及び走査信号線12)に接続されている。
 図2に示すように、TFT1311,1312,…(及びTFT1321,1322,…)は、この順に上から並んで、映像信号線11L1(及び映像信号線11L2)に接続されている。TFT1311,1312,…は、走査信号線12L1,12L2,…に個別に接続されている。同様に、TFT1321,1322,…も、走査信号線12L1,12L2,…に個別に接続されている。
The TFTs 13, 13,... Are arranged in the vicinity of the intersections one by one corresponding to the intersections of the video signal lines 11, 11,. Each TFT 13 is a switching element and is connected to the video signal line 11 and the scanning signal line 12 at the intersection. Specifically, the source electrode (and gate electrode) of the TFT 13 is connected to the video signal line 11 (and scanning signal line 12).
As shown in FIG. 2, TFTs 13 11 , 13 12 ,... (And TFTs 13 21 , 13 22 ,...) Are arranged in this order from above and connected to the video signal line 11 L1 (and video signal line 11 L2 ). Yes. The TFTs 13 11 , 13 12 ,... Are individually connected to the scanning signal lines 12 L1 , 12 L2,. Similarly, the TFTs 13 21 , 13 22 ,... Are individually connected to the scanning signal lines 12 L1 , 12 L2,.
 左右方向に隣り合う2本の映像信号線11L1,11L2間にて、映像信号線11L1に接続されているTFT1311,1312,…と映像信号線11L2に接続されているTFT1321,1322,…とは、上下方向に交互に並置されている。
 上下方向に隣り合う2本の走査信号線12,12間にて、一方の走査信号線12に接続されているTFT13,13,…と他方の走査信号線12に接続されているTFT13,13,…とは、左右方向に交互に並置されている。
At lateral direction adjacent two video signal lines 11 L1, 11 L2 between the video signal line 11 L1 in connected TFT 13 11, 13 12, ... and are connected to the video signal line 11 L2 TFT 13 21 , 13 22 ,... Are alternately arranged in the vertical direction.
Between the two scanning signal lines 12 and 12 adjacent in the vertical direction, the TFTs 13, 13,... Connected to one scanning signal line 12 and the TFTs 13, 13, connected to the other scanning signal line 12. Are alternately arranged in the left-right direction.
 画素電極14,14,…はマトリクス状に配されており、TFT13,13,…のドレイン電極に一対一対応で接続されている。即ち、画素電極14はTFT13を介して映像信号線11に接続されている。
 図3では図面の簡単化のためにTFT13の図示を省略している。従って、図3に示す画素電極14は映像信号線11及び走査信号線12に直接的に接続されているかのように描き表わされている。
The pixel electrodes 14, 14,... Are arranged in a matrix and are connected to the drain electrodes of the TFTs 13, 13,. That is, the pixel electrode 14 is connected to the video signal line 11 through the TFT 13.
In FIG. 3, the TFT 13 is not shown for simplification of the drawing. Accordingly, the pixel electrode 14 shown in FIG. 3 is depicted as if it were directly connected to the video signal line 11 and the scanning signal line 12.
 映像駆動部21は、映像信号線11,11,…の上端部に接続されている。映像駆動部21には、複数個の後述する階調信号が順次入力され、後述するラッチストローブ信号(図3中「LS」)が適宜のタイミングで入力される。映像信号、階調信号、及びラッチストローブ信号と、各後述するゲートクロック(図3中「GC」)及び走査信号とは、夫々矩形波信号である。 The video drive unit 21 is connected to the upper ends of the video signal lines 11, 11,. A plurality of later-described gradation signals are sequentially input to the video driving unit 21, and a later-described latch strobe signal (“LS” in FIG. 3) is input at an appropriate timing. A video signal, a gradation signal, and a latch strobe signal, and a gate clock (“GC” in FIG. 3) and a scanning signal, which will be described later, are respectively rectangular wave signals.
 ラッチストローブ信号は、映像駆動部21が映像信号を出力するタイミングを示す。ラッチストローブ信号が入力される都度、映像駆動部21は、M個の映像信号をM本の映像信号線11,11,…へ一対一対応で出力する。このとき出力されるM個の映像信号は、映像駆動部21に入力された階調信号の内の、直近M個の階調信号に対応するものである。 The latch strobe signal indicates the timing at which the video drive unit 21 outputs the video signal. Each time the latch strobe signal is input, the video drive unit 21 outputs M video signals to the M video signal lines 11, 11,. The M video signals output at this time correspond to the most recent M gray level signals among the gray level signals input to the video drive unit 21.
 階調信号は階調値を示す。階調信号に対応する映像信号は、階調信号が示す階調値に対応する振幅を有する。各映像信号線11への映像信号の出力は、ラッチストローブ信号が入力されてから少なくとも次のラッチストローブ信号が入力されるまで継続される。つまり、映像駆動部21は、ラッチストローブ信号が入力される都度、出力する映像信号の振幅を変更するか、又は同じ振幅のまま維持する。 The gradation signal indicates the gradation value. The video signal corresponding to the gradation signal has an amplitude corresponding to the gradation value indicated by the gradation signal. The output of the video signal to each video signal line 11 is continued until at least the next latch strobe signal is input after the latch strobe signal is input. That is, every time the latch strobe signal is input, the video driver 21 changes the amplitude of the video signal to be output or maintains the same amplitude.
 各画素電極14の映像駆動部21からの遠近は、画素電極14に対応する走査信号線12(即ちTFT13を介して画素電極14に接続されている走査信号線12)の映像駆動部21からの遠近に対応する。画素電極14に対応する走査信号線12が上側に位置している(即ち、走査信号線12が映像駆動部21に近い)ほど、画素電極14は映像駆動部21に近い。 The perspective of each pixel electrode 14 from the video drive unit 21 is from the video drive unit 21 of the scanning signal line 12 corresponding to the pixel electrode 14 (that is, the scanning signal line 12 connected to the pixel electrode 14 via the TFT 13). Corresponding to the perspective. The closer the scanning signal line 12 corresponding to the pixel electrode 14 is to the upper side (that is, the closer the scanning signal line 12 is to the video driving unit 21), the closer the pixel electrode 14 is to the video driving unit 21.
 走査駆動部22は、走査信号線12,12,…の左端部に接続されている。走査駆動部22には、ゲートクロックが一定のタイミングで断続的に入力される。ゲートクロックは、走査駆動部22が走査信号を出力するタイミングを示す。走査駆動部22は、ゲートクロックが入力されてから所定時間Hの間、何れか1本の走査信号線12へ走査信号を出力し続け、所定時間Hが経過したときに、走査信号線12への走査信号の出力を停止する。
 走査信号線12に入力された走査信号は、走査信号が入力された走査信号線12に接続されているTFT13,13,…に与えられる。TFT13は通常はオフであり、走査信号が与えられている間(即ち所定時間Hの間)だけオンになる。
The scanning drive unit 22 is connected to the left end of the scanning signal lines 12, 12,. A gate clock is intermittently input to the scan driver 22 at a fixed timing. The gate clock indicates the timing at which the scan driver 22 outputs a scan signal. The scanning drive unit 22 continues to output the scanning signal to any one scanning signal line 12 for a predetermined time H after the gate clock is input, and when the predetermined time H has passed, the scanning driving unit 22 supplies the scanning signal to the scanning signal line 12. The output of the scanning signal is stopped.
The scanning signal input to the scanning signal line 12 is applied to the TFTs 13, 13,... Connected to the scanning signal line 12 to which the scanning signal is input. The TFT 13 is normally turned off, and is turned on only while the scanning signal is applied (that is, for a predetermined time H).
 TFT13,13,…がオンになると、オンになったTFT13,13,…に接続されている画素電極14,14,…に、映像信号が与えられる。オフのままのTFT13,13,…に接続されている画素電極14,14,…には、映像信号は与えられない。
 画素電極14に映像信号が与えられると、与えられた映像信号の振幅に応じた電圧が、映像信号を受けた画素電極14と上述の透明電極層との間に印加される。このとき、映像信号を受けた画素電極14と透明電極層との間に存在する液晶の配向が変化する。この結果、映像信号を受けた画素電極14に対応する画素の階調値が、映像信号の振幅に対応する階調値になる。
When the TFTs 13, 13,... Are turned on, a video signal is given to the pixel electrodes 14, 14,... Connected to the TFTs 13, 13,. .. Are not supplied to the pixel electrodes 14, 14,... Connected to the TFTs 13, 13,.
When a video signal is applied to the pixel electrode 14, a voltage corresponding to the amplitude of the applied video signal is applied between the pixel electrode 14 that has received the video signal and the above-described transparent electrode layer. At this time, the orientation of the liquid crystal existing between the pixel electrode 14 receiving the video signal and the transparent electrode layer changes. As a result, the gradation value of the pixel corresponding to the pixel electrode 14 that has received the video signal becomes a gradation value corresponding to the amplitude of the video signal.
 走査駆動部22は、ゲートクロックが入力される都度、上側(映像駆動部21に近い側)の走査信号線12から順に、走査信号を出力する。具体的には、走査駆動部22は、ゲートクロックの入力に伴って走査信号線12L1へ走査信号を出力した場合、次のゲートクロックの入力に伴って走査信号線12L2へ走査信号を出力する。 Each time the gate clock is input, the scan driver 22 sequentially outputs the scan signals from the scan signal line 12 on the upper side (side closer to the video driver 21). Specifically, when the scanning drive unit 22 outputs a scanning signal to the scanning signal line 12 L1 with the input of the gate clock, the scanning driving unit 22 outputs the scanning signal to the scanning signal line 12 L2 with the input of the next gate clock. To do.
 従って、画素電極1412(又は画素電極1422)に対応する画素を注目画素とした場合、前段画素に対応する前段画素電極は、画素電極1411(又は画素電極1421)である。画素電極1413(又は画素電極1423)に対応する画素を注目画素とした場合、前段画素に対応する前段画素電極は、画素電極1412(又は画素電極1422)である。
 最下位置の走査信号線12へ走査信号を出力した後でゲートクロックが入力された場合、走査駆動部22は、最上位置の走査信号線12へ走査信号を出力する。
Therefore, when the pixel corresponding to the pixel electrode 14 12 (or pixel electrode 14 22 ) is the target pixel, the previous pixel electrode corresponding to the previous pixel is the pixel electrode 14 11 (or pixel electrode 14 21 ). When the pixel corresponding to the pixel electrode 14 13 (or pixel electrode 14 23 ) is the target pixel, the previous pixel electrode corresponding to the previous pixel is the pixel electrode 14 12 (or pixel electrode 14 22 ).
When a gate clock is input after outputting a scanning signal to the scanning signal line 12 at the lowest position, the scanning driver 22 outputs the scanning signal to the scanning signal line 12 at the uppermost position.
 制御部23には、複数個の階調信号が順次入力される。制御部23は、入力された階調信号を映像駆動部21へ順次出力する。
 制御部23は、映像駆動部21及び走査駆動部22の動作を制御する。このために、制御部23は、ゲートクロックを一定の周期で1個ずつ走査駆動部へ出力する。ゲートクロックは、階調信号がM個出力される都度、1個出力される。また、制御部23は、ラッチストローブ信号を適宜のタイミングで映像駆動部21へ出力する。ラッチストローブ信号は、ゲートクロックが1個出力される都度、1個出力される。
A plurality of gradation signals are sequentially input to the control unit 23. The control unit 23 sequentially outputs the input gradation signals to the video driving unit 21.
The control unit 23 controls the operations of the video drive unit 21 and the scan drive unit 22. For this purpose, the control unit 23 outputs the gate clock to the scan driving unit one by one at a constant cycle. One gate clock is output every time M gradation signals are output. In addition, the control unit 23 outputs a latch strobe signal to the video drive unit 21 at an appropriate timing. One latch strobe signal is output each time one gate clock is output.
 図4は、第1補正部24及び第2補正部25夫々の構成を示すブロック図である。
 第1補正部24には、複数個の階調信号が順次入力される。第1補正部24に入力される階調信号は、例えば、図示しないアンテナを介して外部からテレビジョン放送波を受信し、受信したテレビジョン放送波を放送信号に変換し、変換した放送信号に所定の信号処理を施したものである。つまり、この階調信号が示す階調値は、入力階調値である。
 なお、第1補正部24に入力される階調信号は、入力階調値を適宜に補正したものであってもよい。
FIG. 4 is a block diagram illustrating the configuration of each of the first correction unit 24 and the second correction unit 25.
A plurality of gradation signals are sequentially input to the first correction unit 24. The gradation signal input to the first correction unit 24 receives, for example, a television broadcast wave from the outside via an antenna (not shown), converts the received television broadcast wave into a broadcast signal, and converts it into a converted broadcast signal. The signal is subjected to predetermined signal processing. That is, the gradation value indicated by the gradation signal is an input gradation value.
Note that the gradation signal input to the first correction unit 24 may be one obtained by appropriately correcting the input gradation value.
 第1補正部24は、一時記憶部241、ルックアップテーブル242(以下、LUT242という)、及び演算部243を備えている。第1補正部24に入力された階調信号は、一時記憶部241及び演算部243に与えられる。 The first correction unit 24 includes a temporary storage unit 241, a lookup table 242 (hereinafter referred to as LUT 242), and a calculation unit 243. The gradation signal input to the first correction unit 24 is given to the temporary storage unit 241 and the calculation unit 243.
 映像を表示する前の一時記憶部241には、デフォルトとして例えば階調値“0”が記憶される。一時記憶部241は、第1補正部24に階調信号が入力される都度、入力された階調信号が示す階調値(注目画素の入力階調値)を記憶すると共に、前回記憶した階調値(デフォルトの階調値か、又は、前段画素の入力階調値)を演算部243に与える。 For example, the gradation value “0” is stored as a default in the temporary storage unit 241 before displaying the video. The temporary storage unit 241 stores the gradation value (input gradation value of the target pixel) indicated by the input gradation signal each time the gradation signal is input to the first correction unit 24 and the previously stored level. The tone value (the default tone value or the input tone value of the preceding pixel) is given to the calculation unit 243.
 LUT242は、図示しない不揮発性メモリに記憶されたデータテーブルである。LUT242には、注目画素の入力階調値と、前段画素の入力階調値と、これらの組み合わせ1つにつき1個の第1補正後階調値(後述)とが関連付けて記憶してある。
 第1補正後階調値は、注目画素の入力階調値と前段画素の入力階調値とに基づいて、注目画素の入力階調値を補正したものであり、予めLUT242に記憶してある。
The LUT 242 is a data table stored in a nonvolatile memory (not shown). The LUT 242 stores an input tone value of the target pixel, an input tone value of the preceding pixel, and one first corrected tone value (described later) for each combination thereof.
The first corrected gradation value is obtained by correcting the input gradation value of the target pixel based on the input gradation value of the target pixel and the input gradation value of the preceding pixel, and is stored in the LUT 242 in advance. .
 本実施の形態では、注目画素の入力階調値が前段画素の入力階調値よりも高い場合、第1補正後階調値は注目画素の入力階調値よりも高く、注目画素の入力階調値が前段画素の入力階調値よりも低い場合、第1補正後階調値は注目画素の入力階調値よりも低い。注目画素の入力階調値と前段画素の入力階調値との差の絶対値が大きいほど、注目画素の入力階調値と第1補正後階調値との差の絶対値は大きい。注目画素の入力階調値と前段画素の入力階調値とが等しい場合、注目画素の入力階調値と第1補正後階調値とは等しい。 In the present embodiment, when the input gradation value of the target pixel is higher than the input gradation value of the preceding pixel, the first corrected gradation value is higher than the input gradation value of the target pixel, and the input level of the target pixel is When the tone value is lower than the input tone value of the preceding pixel, the first corrected tone value is lower than the input tone value of the target pixel. The larger the absolute value of the difference between the input tone value of the target pixel and the input tone value of the previous pixel, the greater the absolute value of the difference between the input tone value of the target pixel and the first corrected tone value. When the input tone value of the target pixel is equal to the input tone value of the preceding pixel, the input tone value of the target pixel is equal to the first corrected tone value.
 第1補正部24の外部から演算部243に与えられた階調信号が示す階調値は注目画素の入力階調値である。一時記憶部241から演算部243に与えられた階調値は、前段画素の入力階調値として扱われる。演算部243は、第1補正部24に階調信号が入力される都度、LUT242を参照し、演算部243に与えられた注目画素の入力階調値と前段画素の入力階調値との組み合わせに関連付けられた第1補正後階調値を求める。演算部243は、求めた第1補正後階調値を示す階調信号を、第2補正部25へ出力する。 The gradation value indicated by the gradation signal given from the outside of the first correction unit 24 to the calculation unit 243 is the input gradation value of the target pixel. The gradation value given from the temporary storage unit 241 to the calculation unit 243 is handled as the input gradation value of the preceding pixel. The calculation unit 243 refers to the LUT 242 every time a gradation signal is input to the first correction unit 24, and combines the input gradation value of the target pixel and the input gradation value of the preceding pixel given to the calculation unit 243. The first corrected gradation value associated with is obtained. The calculation unit 243 outputs a gradation signal indicating the obtained first corrected gradation value to the second correction unit 25.
 第1補正部24による補正は、映像信号線11を流れる映像信号に生じる波形なまりのうち、注目画素の入力階調値と前段画素の入力階調値との差に起因するものを抑制する目的で行なわれる。前段映像信号の振幅が注目映像信号の振幅よりも大きい/小さいせいで、映像信号線11を流れる映像信号の振幅が入力階調値に対応する振幅よりも大きく/小さくなる(即ち波形なまりが生じる)のであるから、第1補正後階調値を注目画素の入力階調値よりも小さく/大きくすれば、画素電極14に実際に与えられる映像信号の振幅を適宜に減少/増大させる(即ち波形なまりを抑制する)ことができる。 The correction by the first correction unit 24 suppresses the waveform rounding generated in the video signal flowing through the video signal line 11 that is caused by the difference between the input tone value of the target pixel and the input tone value of the preceding pixel. It is done in. Because the amplitude of the preceding video signal is larger / smaller than the amplitude of the target video signal, the amplitude of the video signal flowing through the video signal line 11 is larger / smaller than the amplitude corresponding to the input gradation value (that is, waveform rounding occurs). Therefore, if the gradation value after the first correction is made smaller / larger than the input gradation value of the target pixel, the amplitude of the video signal actually applied to the pixel electrode 14 is appropriately reduced / increased (that is, the waveform). Curbing).
 第2補正部25には、第1補正部24から複数個の階調信号が順次入力される。この階調信号が示す階調値は、第1補正後階調値である。
 第2補正部25は、注目画素に対応する画素電極14(以下、注目画素電極14という)の映像駆動部21からの遠近に応じて、第1補正後階調値を更に補正する。第1補正後階調値を更に補正したものを、以下では第2補正後階調値という。
A plurality of gradation signals are sequentially input from the first correction unit 24 to the second correction unit 25. The gradation value indicated by the gradation signal is the first corrected gradation value.
The second correction unit 25 further corrects the first corrected gradation value in accordance with the distance from the video driving unit 21 of the pixel electrode 14 (hereinafter referred to as the target pixel electrode 14) corresponding to the target pixel. The further corrected gradation value after the first correction is hereinafter referred to as a second corrected gradation value.
 具体的には、第2補正部25は、注目画素電極14が映像駆動部21から遠い場合の第2補正後階調値が、注目画素電極14が映像駆動部21に近い場合の第2補正後階調値よりも高くなるよう第2補正後階調値を演算する。
 何故ならば、映像信号線11に入力された映像信号の立ち上がり時間は、映像信号線11の電気抵抗及び静電容量等の悪影響によって、映像駆動部21から遠ざかるに連れて長期化する(即ち波形なまりが悪化する)からである。この波形なまりを打ち消すために、注目画素電極14が映像駆動部21から遠い場合には、注目画素電極14が映像駆動部21に近い場合よりも第2補正後階調値を高めにする必要がある。
Specifically, the second correction unit 25 performs the second correction when the target pixel electrode 14 is far from the video driving unit 21 and the second corrected gradation value when the target pixel electrode 14 is close to the video driving unit 21. The second corrected gradation value is calculated so as to be higher than the subsequent gradation value.
This is because the rise time of the video signal input to the video signal line 11 becomes longer as it moves away from the video drive unit 21 due to adverse effects such as electrical resistance and capacitance of the video signal line 11 (that is, the waveform). This is because the rounding gets worse. In order to cancel this rounding of the waveform, when the target pixel electrode 14 is far from the video driving unit 21, it is necessary to make the second corrected gradation value higher than when the target pixel electrode 14 is close to the video driving unit 21. is there.
 本実施の形態の第2補正部25は、注目画素電極14が映像駆動部21から遠い場合(即ち注目画素電極14の映像駆動部21からの距離が長い場合)の第2補正後階調値は第1補正後階調値よりも高くし、注目画素電極14が映像駆動部21に近い場合(即ち注目画素電極14の映像駆動部21からの距離が短い場合)の第2補正後階調値は第1補正後階調値よりも低くする。注目画素電極14が映像駆動部21から遠いとも近いとも言えない場合(即ち注目画素電極14の映像駆動部21からの距離が中程度である場合)、第2補正部25は、第2補正後階調値を第1補正後階調値に等しくする。 The second correction unit 25 of the present embodiment is the second corrected gradation value when the pixel of interest electrode 14 is far from the video driver 21 (that is, when the pixel electrode 14 of interest is long from the video driver 21). Is higher than the first corrected gradation value, and the second corrected gradation when the pixel electrode 14 of interest is close to the video driver 21 (that is, when the distance of the pixel electrode 14 from the video driver 21 is short). The value is set lower than the first corrected gradation value. When it cannot be said that the target pixel electrode 14 is far from or close to the video driving unit 21 (that is, when the distance of the target pixel electrode 14 from the video driving unit 21 is medium), the second correction unit 25 performs the second correction. The gradation value is made equal to the first corrected gradation value.
 このために、第2補正部25は、列カウンタ251、行カウンタ252、係数テーブル253、及び演算部254を備えている。第2補正部25に入力された階調信号は、列カウンタ251及び演算部254に与えられる。
 本実施の形態では、走査信号線12,12,…に個別の行番号が割り振られている。走査信号線12,12,…夫々に割り振られている行番号は、上側の走査信号線12から順に“1”,“2”,…,“N”である。行番号が大きい走査信号線12ほど、映像駆動部21から遠い。
For this purpose, the second correction unit 25 includes a column counter 251, a row counter 252, a coefficient table 253, and a calculation unit 254. The gradation signal input to the second correction unit 25 is given to the column counter 251 and the calculation unit 254.
In this embodiment, individual row numbers are assigned to the scanning signal lines 12, 12,. The row numbers assigned to the scanning signal lines 12, 12,... Are “1”, “2”,. The scanning signal line 12 with the larger row number is farther from the video driver 21.
 映像を表示する前の列カウンタ251の計数結果は“0”にリセットされる。列カウンタ251は、階調信号が与えられる都度、計数結果を“1”インクリメントする。計数結果が“M”に達した場合、列カウンタ251は、行カウンタ252に所定の計数信号を与え、計数結果を“0”にリセットする。 The count result of the column counter 251 before displaying the video is reset to “0”. The column counter 251 increments the count result by “1” every time a gradation signal is given. When the count result reaches “M”, the column counter 251 gives a predetermined count signal to the row counter 252 and resets the count result to “0”.
 映像を表示する前の行カウンタ252の計数結果は“1”にリセットされる。行カウンタ252は、計数信号が与えられる都度、計数結果を“1”インクリメントする。計数結果が“N”に達している状態で更に計数信号が与えられた場合、行カウンタ252は計数結果を“1”にリセットする。
 行カウンタ252の係数結果は、注目画素電極14に対応する走査信号線12の行番号である。
The count result of the row counter 252 before displaying the video is reset to “1”. The row counter 252 increments the count result by “1” every time the count signal is given. When a count signal is further given in a state where the count result has reached “N”, the row counter 252 resets the count result to “1”.
The coefficient result of the row counter 252 is the row number of the scanning signal line 12 corresponding to the target pixel electrode 14.
 係数テーブル253は、図示しない不揮発性メモリに記憶されたデータテーブルである。係数テーブル253には、行番号と、後述する補正係数とが関連付けて記憶してある。
 第2補正後階調値は、第1補正後階調値に補正係数を乗じることによって得られる。行番号が大きいほど、関連付けられている補正係数は大きい。
The coefficient table 253 is a data table stored in a nonvolatile memory (not shown). The coefficient table 253 stores row numbers and correction coefficients described later in association with each other.
The second corrected gradation value is obtained by multiplying the first corrected gradation value by a correction coefficient. The greater the line number, the greater the associated correction factor.
 例えば、係数テーブル253には、第1~第4の補正係数が記憶してある。行番号“1”~“N/4”には、第1の補正係数が関連付けられており、第1の補正係数は“1.0”より小さい(具体的には“0.9”)。行番号“N/4+1”~“N/2”には、第2の補正係数が関連付けられており、第2の補正係数は1.0に等しい。行番号“N/2+1”~“N×3/4”には、第3の補正係数が関連付けられており、第3の補正係数は“1.0”より大きい(具体的には“1.1”)行番号“N×3/4+1”~“N”には、第4の補正係数が関連付けられており、第4の補正係数は第3の補正係数より大きい(具体的には“1.2”)。 For example, the coefficient table 253 stores first to fourth correction coefficients. The row numbers “1” to “N / 4” are associated with the first correction coefficient, and the first correction coefficient is smaller than “1.0” (specifically “0.9”). The row numbers “N / 4 + 1” to “N / 2” are associated with the second correction coefficient, and the second correction coefficient is equal to 1.0. Line numbers “N / 2 + 1” to “N × 3/4” are associated with a third correction coefficient, and the third correction coefficient is greater than “1.0” (specifically, “1. 1 ”) The fourth correction coefficient is associated with the row numbers“ N × 3/4 + 1 ”to“ N ”, and the fourth correction coefficient is larger than the third correction coefficient (specifically,“ 1 ”). .2 ").
 なお、補正係数の、係数テーブル253に記憶される個数は、2個又は3個でもよく、5個以上でもよい。ただし、補正係数の個数が過剰な(例えば行番号ごとに異なる補正係数が設定してある)場合、補正係数の設定工程が煩雑になるだけでなく、係数テーブル253を記憶するために、記憶容量が過大な不揮発メモリを要する。
 第1~第4の補正係数は、第1~第4の順に大きくなる“1.0”以上の数値でもよく、第1~第4の順に小さくなる“1.0”以下の数値でもよい。
The number of correction coefficients stored in the coefficient table 253 may be two or three, or five or more. However, when the number of correction coefficients is excessive (for example, a different correction coefficient is set for each row number), not only the correction coefficient setting process becomes complicated, but also a storage capacity for storing the coefficient table 253. Requires an excessively large amount of non-volatile memory.
The first to fourth correction coefficients may be numerical values of “1.0” or higher that increase in the first to fourth order, or numerical values of “1.0” or lower that decrease in the first to fourth order.
 演算部254は、階調信号が与えられる都度、まず、行カウンタ252から計数結果(即ち行番号)を取得する。次に、演算部254は、取得した行番号を用いて係数テーブル253を参照し、補正係数を求める。次いで、演算部254は、求めた補正係数と、与えられた階調信号が示す第1補正後階調値とを乗算する。ただし、乗算結果が“255”より大きい場合、演算部254は乗算結果を“255”とする。次に、演算部254は、求めた乗算結果の小数点以下を切り捨てることによって第2補正後階調値を求める。最後に、演算部254は、求めた第2補正後階調値を示す階調信号を制御部23へ出力する。 The calculation unit 254 first obtains a count result (that is, a row number) from the row counter 252 each time a gradation signal is given. Next, the calculation unit 254 refers to the coefficient table 253 using the acquired line number and obtains a correction coefficient. Next, the arithmetic unit 254 multiplies the obtained correction coefficient by the first corrected gradation value indicated by the given gradation signal. However, when the multiplication result is larger than “255”, the calculation unit 254 sets the multiplication result to “255”. Next, the computing unit 254 obtains the second corrected gradation value by rounding down the decimal part of the obtained multiplication result. Finally, the calculation unit 254 outputs a gradation signal indicating the obtained second corrected gradation value to the control unit 23.
 つまり、制御部23に入力された階調信号は、そのまま映像駆動部21に入力される。従って、映像駆動部21に入力された階調信号が示す階調値は、第2補正後階調値である。故に、映像駆動部21は、第2補正後階調値に応じた映像信号を映像信号線11,11,…に入力する。
 この結果、液晶表示パネル1に表示される映像において、各画素の出力階調値は入力階調値と大差ない。即ち、表示品位を向上させることができる。
That is, the gradation signal input to the control unit 23 is input to the video drive unit 21 as it is. Therefore, the gradation value indicated by the gradation signal input to the video driver 21 is the second corrected gradation value. Therefore, the video drive unit 21 inputs a video signal corresponding to the second corrected gradation value to the video signal lines 11, 11,.
As a result, in the image displayed on the liquid crystal display panel 1, the output gradation value of each pixel is not significantly different from the input gradation value. That is, display quality can be improved.
 以上のような表示装置2が備える画素電極14,14,…の配置は、一般的な表示装置の画素電極と同様である。つまり、表示品位を向上させるために特殊な構造を有している必要がないので、表示装置2の製造コストを抑制することができる。 The arrangement of the pixel electrodes 14, 14,... Included in the display device 2 as described above is the same as the pixel electrodes of a general display device. That is, since it is not necessary to have a special structure in order to improve display quality, the manufacturing cost of the display device 2 can be suppressed.
実施の形態 2.
 図5は、本発明の実施の形態2に係る表示装置2の制御系の構成を示すブロック図である。図5は実施の形態1の図3に対応する。
 本実施の形態の表示装置2は、実施の形態1の表示装置2と略同様の構成である。以下では、実施の形態1との差異について説明し、その他、実施の形態1に対応する部分には同一符号を付してそれらの説明を省略する。
Embodiment 2. FIG.
FIG. 5 is a block diagram showing the configuration of the control system of display device 2 according to Embodiment 2 of the present invention. FIG. 5 corresponds to FIG. 3 of the first embodiment.
The display device 2 of the present embodiment has substantially the same configuration as the display device 2 of the first embodiment. Hereinafter, differences from the first embodiment will be described, and other parts corresponding to those of the first embodiment are denoted by the same reference numerals and description thereof will be omitted.
 実施の形態1の表示装置2はK個の映像駆動部21,21,…を備えるが、本実施の形態の表示装置2は{2×K}個の映像駆動部21,21,…を備える。以下では説明を簡単にするために、表示装置2が2個の映像駆動部21,21を備えているものとして説明する。
 2個の内、一方の映像駆動部21は、映像信号線11,11,…の上端部に接続されており、他方の映像駆動部21は、映像信号線11,11,…の下端部に接続されている。
 階調信号及びラッチストローブ信号は、制御部23から映像駆動部21,21夫々に入力される。映像信号線11,11,…夫々には、上端部側及び下端部側から同一の映像信号が同時的に入力される。
The display device 2 according to the first embodiment includes K video drive units 21, 21,..., Whereas the display device 2 according to the present embodiment includes {2 × K} video drive units 21, 21,. . In the following, for the sake of simplicity of explanation, the display device 2 will be described as including two video driving units 21 and 21.
One of the two video drive units 21 is connected to the upper end of the video signal lines 11, 11,..., And the other video drive unit 21 is connected to the lower end of the video signal lines 11, 11,. It is connected.
The gradation signal and the latch strobe signal are input from the control unit 23 to each of the video drive units 21 and 21. The same video signal is simultaneously input to the video signal lines 11, 11,... From the upper end side and the lower end side.
 各画素電極14の映像駆動部21,21からの遠近は、画素電極14に対応する走査信号線12の映像駆動部21,21からの遠近に対応する。画素電極14に対応する走査信号線12が映像駆動部21,21の何れか一方に近いほど、画素電極14は映像駆動部21に近い。一方、画素電極14に対応する走査信号線12が映像駆動部21,21の両方から近いほど、画素電極14は映像駆動部21から遠い。換言すれば、映像信号線11の上端部又は下端部に接続されている画素電極14は、映像駆動部21,21の何れかに近いが、映像信号線11の上下方向中央部に接続されている画素電極14は、映像駆動部21,21の何れからも遠い。 The perspective of each pixel electrode 14 from the video drive units 21, 21 corresponds to the perspective of the scanning signal line 12 corresponding to the pixel electrode 14 from the video drive units 21, 21. The closer the scanning signal line 12 corresponding to the pixel electrode 14 is to either one of the video driving units 21, 21, the closer the pixel electrode 14 is to the video driving unit 21. On the other hand, the closer the scanning signal line 12 corresponding to the pixel electrode 14 is from both of the video driving units 21, 21, the farther the pixel electrode 14 is from the video driving unit 21. In other words, the pixel electrode 14 connected to the upper end or the lower end of the video signal line 11 is close to either of the video drive units 21 and 21, but is connected to the vertical center of the video signal line 11. The pixel electrode 14 is far from either of the video drive units 21 and 21.
 走査駆動部22は、ゲートクロックが入力される都度、上側(上側の映像駆動部21に近い側)の走査信号線12から順に、走査信号を出力する。
 第2補正部25は、注目画素に対応する画素電極14の映像駆動部21,21からの遠近に応じて、第1補正後階調値を更に補正する。
Each time the gate clock is input, the scanning drive unit 22 sequentially outputs scanning signals from the scanning signal line 12 on the upper side (side closer to the upper video driving unit 21).
The second correction unit 25 further corrects the first corrected gradation value in accordance with the distance from the video driving units 21 and 21 of the pixel electrode 14 corresponding to the target pixel.
 具体的には、第2補正部25は、注目画素電極14が映像駆動部21,21の両方から遠い場合の第2補正後階調値が、注目画素電極14が映像駆動部21,21の何れか一方に近い場合の第2補正後階調値よりも高くなるよう第2補正後階調値を演算する。 Specifically, the second correction unit 25 determines the second corrected gradation value when the target pixel electrode 14 is far from both of the video drive units 21 and 21, and the target pixel electrode 14 is that of the video drive units 21 and 21. The second corrected gradation value is calculated so as to be higher than the second corrected gradation value when it is close to either one.
 このために、係数テーブル253には、例えば第1~第3の補正係数が記憶してある。行番号“1”~“N/3”には、第1の補正係数が関連付けられており、第1の補正係数は“1.0”に等しい。行番号“N/3+1”~“N×2/3”には、第2の補正係数が関連付けられており、第2の補正係数は1.0より大きい。行番号“N×2/3+1”~“N”には、第3の補正係数が関連付けられており、第3の補正係数は“1.0”に等しい。
 以上のような表示装置2は、実施の形態1の表示装置2と同様の作用効果を奏する。
For this purpose, the coefficient table 253 stores, for example, first to third correction coefficients. The row numbers “1” to “N / 3” are associated with the first correction coefficient, and the first correction coefficient is equal to “1.0”. The row numbers “N / 3 + 1” to “N × 2/3” are associated with the second correction coefficient, and the second correction coefficient is larger than 1.0. A third correction coefficient is associated with the row numbers “N × 2/3 + 1” to “N”, and the third correction coefficient is equal to “1.0”.
The display device 2 as described above has the same operational effects as the display device 2 of the first embodiment.
実施の形態 3.
 図6は、本発明の実施の形態3に係る表示装置2が備える制御部23の構成を示すブロック図である。
 本実施の形態の表示装置2は、実施の形態1の表示装置2と略同様の構成である。以下では、実施の形態1との差異について説明し、その他、実施の形態1に対応する部分には同一符号を付してそれらの説明を省略する。
Embodiment 3. FIG.
FIG. 6 is a block diagram showing a configuration of the control unit 23 provided in the display device 2 according to Embodiment 3 of the present invention.
The display device 2 of the present embodiment has substantially the same configuration as the display device 2 of the first embodiment. Hereinafter, differences from the first embodiment will be described, and other parts corresponding to those of the first embodiment are denoted by the same reference numerals and description thereof will be omitted.
 従来の表示装置においては、走査信号線12に走査信号が入力される時点を基準にした映像信号線11,11,…に映像信号が入力されるタイミングは一定である。
 つまり、走査信号線12に走査信号が入力されてから映像信号線11,11,…に映像信号が入力されるまでの経過時間を経過時間tとおくと、従来の表示装置の場合、経過時間tはt=T(TはT≧0の定数)で一定である。
In the conventional display device, the timing at which the video signal is input to the video signal lines 11, 11,... With respect to the time point when the scanning signal is input to the scanning signal line 12 is constant.
In other words, if the elapsed time from when the scanning signal is input to the scanning signal line 12 to when the video signal is input to the video signal lines 11, 11,. t is constant at t = T (T is a constant of T ≧ 0).
 本実施の形態の表示装置2においては、走査信号線12に走査信号が入力される時点を基準にした映像信号線11,11,…に映像信号が入力されるタイミングは、走査信号が入力される走査信号線12の映像駆動部21からの遠近(即ち、映像信号が与えられる画素電極14,14,…夫々の映像駆動部21からの遠近)に応じて異なる。 In the display device 2 of the present embodiment, the scanning signal is input at the timing when the video signal is input to the video signal lines 11, 11,... Based on the time when the scanning signal is input to the scanning signal line 12. The scanning signal line 12 differs depending on the distance from the video drive unit 21 (that is, the perspective of the pixel electrodes 14, 14... To which the video signal is applied from the video drive unit 21).
 具体的には、映像駆動部21に近い走査信号線12に走査信号が入力される場合に、走査信号が入力される時点を基準にした映像信号線11,11,…に映像信号が入力されるタイミングは、映像駆動部21から遠い走査信号線12に走査信号が入力される場合に、走査信号が入力される時点を基準にした映像信号線11,11,…に映像信号が入力されるタイミングよりも遅い。
 つまり、映像駆動部21から遠い走査信号線12に走査信号が入力される場合、経過時間tはt=Tf (Tf はTf ≧0の定数)である。一方、映像駆動部21に近い走査信号線12に走査信号が入力される場合、経過時間tはt=Tn (Tn はTn >Tf の定数)である。
Specifically, when a scanning signal is input to the scanning signal line 12 close to the video driving unit 21, the video signal is input to the video signal lines 11, 11,. When the scanning signal is input to the scanning signal line 12 far from the video driver 21, the video signal is input to the video signal lines 11, 11,. Slower than timing.
That is, when a scanning signal is input to the scanning signal line 12 far from the video driver 21, the elapsed time t is t = Tf (Tf is a constant of Tf ≧ 0). On the other hand, when a scanning signal is input to the scanning signal line 12 close to the video driver 21, the elapsed time t is t = Tn (Tn is a constant of Tn> Tf).
 走査信号線12に走査信号が入力されるタイミングは、走査駆動部22にゲートクロックが入力されるタイミングに対応し、映像信号線11,11,…に映像信号が入力されるタイミングは、映像駆動部21にラッチストローブ信号が入力されるタイミングに対応する。走査駆動部22にゲートクロックが入力されるタイミングは、制御部23から走査駆動部22へゲートクロックが出力されるタイミングに対応し、映像駆動部21にラッチストローブ信号が入力されるタイミングは、制御部23から映像信号線11,11,…へ映像信号が出力されるタイミングに対応する。
 つまり、経過時間tは、走査駆動部22へゲートクロックが出力されてから、映像信号線11,11,…へ映像信号が出力されるまでの経過時間に対応する。
The timing at which the scanning signal is input to the scanning signal line 12 corresponds to the timing at which the gate clock is input to the scanning drive unit 22, and the timing at which the video signal is input to the video signal lines 11, 11,. This corresponds to the timing at which the latch strobe signal is input to the unit 21. The timing at which the gate clock is input to the scan driver 22 corresponds to the timing at which the gate clock is output from the controller 23 to the scan driver 22, and the timing at which the latch strobe signal is input to the video driver 21 is controlled. This corresponds to the timing at which the video signal is output from the unit 23 to the video signal lines 11, 11,.
That is, the elapsed time t corresponds to the elapsed time from when the gate clock is output to the scan driver 22 until the video signal is output to the video signal lines 11, 11.
 制御部23は、列カウンタ231、行カウンタ232、時間テーブル233、及び演算部234を備えている。制御部23に入力された階調信号は、列カウンタ231及び演算部234に与えられる。
 列カウンタ231及び行カウンタ232の動作は、列カウンタ251及び行カウンタ252の動作と同様である。
The control unit 23 includes a column counter 231, a row counter 232, a time table 233, and a calculation unit 234. The gradation signal input to the control unit 23 is given to the column counter 231 and the calculation unit 234.
The operations of the column counter 231 and the row counter 232 are the same as the operations of the column counter 251 and the row counter 252.
 時間テーブル233は、図示しない不揮発性メモリに記憶されたデータテーブルである。時間テーブル233には、行番号と、経過時間tとが関連付けて記憶してある。
 行番号が大きいほど、関連付けられている経過時間tは小さい。
 例えば、時間テーブル233には、第1~第3の経過時間tが記憶してある。行番号“1”~“N/3”には、第1の経過時間tが関連付けられており、第1の経過時間tはt=Tn である。行番号“N/3+1”~“N×2/3”には、第2の経過時間tが関連付けられており、第2の経過時間tはt=Tm である(0≦Tf <Tm <Tn )。行番号“N×2/3+1”~“N”には、第3の経過時間tが関連付けられており、第3の経過時間tはt=Tf である。
The time table 233 is a data table stored in a nonvolatile memory (not shown). In the time table 233, the row number and the elapsed time t are stored in association with each other.
The larger the line number, the smaller the associated elapsed time t.
For example, the time table 233 stores first to third elapsed times t. The line numbers “1” to “N / 3” are associated with the first elapsed time t, and the first elapsed time t is t = Tn. The row numbers “N / 3 + 1” to “N × 2/3” are associated with the second elapsed time t, and the second elapsed time t is t = Tm (0 ≦ Tf <Tm <Tn). ). The row numbers “N × 2/3 + 1” to “N” are associated with the third elapsed time t, and the third elapsed time t is t = Tf.
 なお、経過時間tの、時間テーブル233に記憶される個数は、2個でもよく、4個以上でもよい。しかしながら、経過時間tの個数が過剰な(例えば行番号ごとに異なる経過時間tが設定してある)場合、経過時間tの設定工程が煩雑になるだけでなく、時間テーブル233を記憶するために、記憶容量が過大な不揮発メモリを要する。 Note that the number of elapsed time t stored in the time table 233 may be two or four or more. However, when the number of elapsed times t is excessive (for example, a different elapsed time t is set for each row number), not only the setting process of the elapsed time t becomes complicated, but also the time table 233 is stored. A non-volatile memory having an excessive storage capacity is required.
 演算部234は、階調信号が与えられる都度、与えられた階調信号を、そのまま映像駆動部21へ出力する。また、演算部234は、行カウンタ232から計数結果(即ち行番号)を取得する。次に、演算部234は、取得した行番号を用いて時間テーブル233を参照し、経過時間tを求める。更に、演算部234は、所定のタイミングで走査駆動部22へゲートクロックを出力すると共に、ゲートクロックの出力時点からの経過時間を計時開始する。
 そして、演算部234は、計時結果が経過時間tに達するまでラッチストローブ信号の出力を待機し、計時結果が経過時間t以上であった場合に、映像駆動部21へラッチストローブ信号を出力する。最後に、演算部234は、経過時間の計時を終了し、計時結果を“0”にリセットする。
The calculation unit 234 outputs the given gradation signal to the video driving unit 21 as it is every time the gradation signal is given. In addition, the calculation unit 234 acquires a count result (that is, a row number) from the row counter 232. Next, the computing unit 234 refers to the time table 233 using the acquired line number and obtains the elapsed time t. Further, the calculation unit 234 outputs a gate clock to the scan driving unit 22 at a predetermined timing, and starts measuring the elapsed time from the output time of the gate clock.
Then, the calculation unit 234 waits for the output of the latch strobe signal until the time measurement result reaches the elapsed time t, and outputs the latch strobe signal to the video drive unit 21 when the time measurement result is equal to or longer than the elapsed time t. Finally, the calculation unit 234 ends the elapsed time measurement and resets the time measurement result to “0”.
 図7及び図8は、表示装置2におけるゲートクロック、走査信号、ラッチストローブ信号、及び映像信号夫々の出力のタイミングを示すタイミングチャートである。図7は走査信号線12が映像駆動部21に近い場合を示し、図8は走査信号線12が映像駆動部21から遠い場合を示している。図8ではTf =0の場合を例示している。
 図9及び図10は、従来の表示装置におけるゲートクロック、走査信号、ラッチストローブ信号、及び映像信号夫々の出力のタイミングを示すタイミングチャートである。図9及び図10は図7及び図8に対応する。図9及び図10ではT>0の場合を例示している。
7 and 8 are timing charts showing the output timings of the gate clock, the scanning signal, the latch strobe signal, and the video signal in the display device 2, respectively. FIG. 7 shows the case where the scanning signal line 12 is close to the video driving unit 21, and FIG. 8 shows the case where the scanning signal line 12 is far from the video driving unit 21. FIG. 8 illustrates a case where Tf = 0.
9 and 10 are timing charts showing the output timings of the gate clock, the scanning signal, the latch strobe signal, and the video signal in the conventional display device. 9 and 10 correspond to FIGS. 7 and 8. 9 and 10 illustrate the case where T> 0.
 図7及び図9は、行番号“1”,“2”,“3”の走査信号線12,12,12に対応する画素電極14,14,14に、同一の映像信号線11から階調値“0”,“255”,“255”の映像信号が与えられる場合を例示している。これは、画素電極14が映像駆動部21に近いので、映像信号線11,11,…に映像信号が入力されるタイミングが遅い場合の例である。図7及び図9に示す走査信号は、行番号“2”の走査信号線12に与えられるものである。 7 and 9 show gradations from the same video signal line 11 to the pixel electrodes 14, 14, 14 corresponding to the scanning signal lines 12, 12, 12 of the row numbers “1”, “2”, “3”. A case where video signals having values “0”, “255”, and “255” are given is illustrated. This is an example of the case where the timing at which the video signal is input to the video signal lines 11, 11,... Is late because the pixel electrode 14 is close to the video drive unit 21. The scanning signals shown in FIGS. 7 and 9 are given to the scanning signal line 12 of the row number “2”.
 図8及び図10は行番号“N×2/3+1”,“N×2/3+2”,“N×2/3+3”の走査信号線12,12,12に対応する画素電極14,14,14に、同一の映像信号線11から階調値“0”,“255”,“255”の映像信号が与えられる場合を例示している。これは、画素電極14が映像駆動部21から遠いので、映像信号線11,11,…に映像信号が入力されるタイミングが早い場合の例である。図8及び図10に示す走査信号は、行番号“N×2/3+2”の走査信号線12に与えられるものである。 8 and 10 show pixel electrodes 14, 14, 14 corresponding to the scanning signal lines 12, 12, 12 of row numbers “N × 2/3 + 1”, “N × 2/3 + 2”, “N × 2/3 + 3”. In the example, the video signals having the gradation values “0”, “255”, and “255” are given from the same video signal line 11. This is an example of the case where the timing at which the video signal is input to the video signal lines 11, 11,... Is early because the pixel electrode 14 is far from the video drive unit 21. The scanning signals shown in FIGS. 8 and 10 are applied to the scanning signal line 12 of the row number “N × 2/3 + 2”.
 従来、図9に示すように、行番号“2”の走査信号線12に対応する画素電極14には、{H-T}時間の間、映像信号が与えられる。この画素電極14に与えられる映像信号には、各画素電極14の映像駆動部21からの遠近に起因する波形なまりがほとんど生じていない。つまり、この映像信号の振幅が、階調値“0”に対応する振幅から階調値“255”に対応する振幅(以下、振幅Aという)に収束するまでの時間は短い。従って、この画素電極14には、振幅Aを有する映像信号が長時間与えられるので、この画素電極14と透明電極との間にある液晶には、階調値“255”に対応する電圧が長時間印加される。 Conventionally, as shown in FIG. 9, a video signal is supplied to the pixel electrode 14 corresponding to the scanning signal line 12 of the row number “2” for {HT} time. In the video signal applied to the pixel electrode 14, the waveform rounding due to the distance from the video driving unit 21 of each pixel electrode 14 hardly occurs. That is, the time until the amplitude of the video signal converges from the amplitude corresponding to the gradation value “0” to the amplitude corresponding to the gradation value “255” (hereinafter referred to as amplitude A) is short. Therefore, since a video signal having an amplitude A is given to the pixel electrode 14 for a long time, a voltage corresponding to the gradation value “255” is long in the liquid crystal between the pixel electrode 14 and the transparent electrode. Applied for hours.
 一方、図10に示すように、行番号“N×2/3+2”の走査信号線12に対応する画素電極14には、{H-T}時間の間、映像信号が与えられる。この画素電極14に与えられる映像信号には、映像駆動部21からの遠近に起因する波形なまりが大幅に生じている。つまり、この映像信号の振幅が、階調値“0”に対応する振幅から振幅Aに収束するまでの時間は長い。従って、この画素電極14には、振幅Aを有する映像信号が短時間しか与えられないので、この画素電極14と透明電極との間にある液晶には、階調値“255”に対応する電圧が短時間しか印加されない。 On the other hand, as shown in FIG. 10, a video signal is given to the pixel electrode 14 corresponding to the scanning signal line 12 of the row number “N × 2/3 + 2” for {HT} time. In the video signal given to the pixel electrode 14, a waveform rounding due to the distance from the video drive unit 21 is significantly generated. That is, it takes a long time for the amplitude of the video signal to converge to the amplitude A from the amplitude corresponding to the gradation value “0”. Therefore, since a video signal having an amplitude A is given to the pixel electrode 14 only for a short time, a voltage corresponding to the gradation value “255” is applied to the liquid crystal between the pixel electrode 14 and the transparent electrode. Is applied only for a short time.
 以上のことから、液晶表示パネル1の上部にある画素は階調値“0”から階調値“255”に達するのに対し、液晶表示パネル1の下部にある画素は階調値“0”から階調値“255”に達しない虞がある。このような画素毎の階調値の差異は、表示品位を悪化させる。 From the above, the pixel at the upper part of the liquid crystal display panel 1 reaches the gradation value “255” from the gradation value “0”, whereas the pixel at the lower part of the liquid crystal display panel 1 has the gradation value “0”. Therefore, the gradation value “255” may not be reached. Such a difference in gradation value for each pixel deteriorates display quality.
 本実施の形態では、図7に示すように、行番号“2”の走査信号線12に対応する画素電極14には、{H-Tn }時間の間、映像信号が与えられる。この画素電極14に与えられる映像信号には、映像駆動部21からの遠近に起因する波形なまりがほとんど生じていない。従って、この画素電極14には、振幅Aを有する映像信号が必要十分な時間だけ与えられるので、この画素電極14と透明電極との間にある液晶には、階調値“255”に対応する電圧が必要十分な時間だけ印加される。 In the present embodiment, as shown in FIG. 7, a video signal is applied to the pixel electrode 14 corresponding to the scanning signal line 12 of the row number “2” for {H−Tn} time. In the video signal applied to the pixel electrode 14, there is almost no waveform rounding due to the distance from the video drive unit 21. Accordingly, since the video signal having the amplitude A is given to the pixel electrode 14 for a necessary and sufficient time, the liquid crystal between the pixel electrode 14 and the transparent electrode corresponds to the gradation value “255”. The voltage is applied for a necessary and sufficient time.
 一方、図8に示すように、行番号“N×2/3+2”の走査信号線12に対応する画素電極14には、{H-Tf }時間の間、映像信号が与えられる。{H-Tf }時間は{H-Tn }時間よりも長時間であるが、この画素電極14に与えられる映像信号には、映像駆動部21からの遠近に起因する波形なまりが大幅に生じている。従って、この画素電極14には、振幅Aを有する映像信号が必要十分な時間(行番号“2”の走査信号線12に対応する画素電極14に振幅Aを有する映像信号が与えられる時間と同程度の時間)だけ与えられるので、この画素電極14と透明電極との間にある液晶には、階調値“255”に対応する電圧が必要十分な時間だけ印加される。 On the other hand, as shown in FIG. 8, a video signal is given to the pixel electrode 14 corresponding to the scanning signal line 12 of the row number “N × 2/3 + 2” for {H−Tf} time. The {H−Tf} time is longer than the {H−Tn} time, but the video signal applied to the pixel electrode 14 has a waveform rounding caused by the distance from the video driver 21. Yes. Therefore, the pixel electrode 14 has a necessary and sufficient time for the video signal having the amplitude A (the same time as the video signal having the amplitude A is applied to the pixel electrode 14 corresponding to the scanning signal line 12 of the row number “2”). The voltage corresponding to the gradation value “255” is applied to the liquid crystal between the pixel electrode 14 and the transparent electrode for a necessary and sufficient time.
 以上のことから、液晶表示パネル1の上部にある画素も液晶表示パネル1の下部にある画素も階調値“0”から階調値“255”に達する。つまり、液晶表示パネル1に表示される映像において、各画素の出力階調値は入力階調値と大差ない。即ち、表示品位を向上させることができる。 From the above, the pixel at the upper part of the liquid crystal display panel 1 and the pixel at the lower part of the liquid crystal display panel 1 reach the gradation value “255” from the gradation value “0”. That is, in the image displayed on the liquid crystal display panel 1, the output gradation value of each pixel is not much different from the input gradation value. That is, display quality can be improved.
 ところで、行番号“3”の走査信号線12に対応する画素電極14及び行番号“N×2/3+3”の走査信号線12に対応する画素電極14夫々には、波形なまりが生じていない映像信号が与えられる。何故ならば、前段入力階調値と注目入力階調値とが同じだからである。このような場合においても、画素電極14と透明電極との間にある液晶には、階調値“255”に対応する電圧が必要十分な時間だけ印加されるので、各画素電極14に対応する画素の入力階調値と出力階調値とが大幅に異なる虞はない。 By the way, an image in which no waveform rounding occurs in the pixel electrode 14 corresponding to the scanning signal line 12 of the row number “3” and the pixel electrode 14 corresponding to the scanning signal line 12 of the row number “N × 2/3 + 3”. A signal is given. This is because the previous input tone value and the target input tone value are the same. Even in such a case, since the voltage corresponding to the gradation value “255” is applied to the liquid crystal between the pixel electrode 14 and the transparent electrode for a necessary and sufficient time, it corresponds to each pixel electrode 14. There is no possibility that the input gradation value and the output gradation value of the pixel are significantly different.
 以上のような表示装置2は、映像信号を映像信号線に入力するタイミングの調整によって、各画素電極14の映像駆動部21からの遠近に起因する波形なまりの悪影響を更に抑制する。このような表示装置2は、実施の形態1の表示装置2が備える制御部23を本実施の形態の制御部23に替えれば、簡便に得ることができる。つまり、表示品位を更に向上させるために新たなハードウェアを追加する必要がないので、表示装置2の製造コストを抑制することができる。 The display device 2 as described above further suppresses the adverse effect of waveform rounding caused by the distance from the video driving unit 21 of each pixel electrode 14 by adjusting the timing of inputting the video signal to the video signal line. Such a display device 2 can be easily obtained by replacing the control unit 23 included in the display device 2 of the first embodiment with the control unit 23 of the present embodiment. That is, it is not necessary to add new hardware in order to further improve the display quality, so that the manufacturing cost of the display device 2 can be suppressed.
実施の形態 4.
 図11は、本発明の実施の形態4に係る表示装置2が備える制御部26の構成を示すブロック図である。
 本実施の形態の表示装置2は、実施の形態1の表示装置2と略同様の構成である。以下では、実施の形態1との差異について説明し、その他、実施の形態1に対応する部分には同一符号を付してそれらの説明を省略する。
Embodiment 4 FIG.
FIG. 11 is a block diagram showing a configuration of the control unit 26 provided in the display device 2 according to Embodiment 4 of the present invention.
The display device 2 of the present embodiment has substantially the same configuration as the display device 2 of the first embodiment. Hereinafter, differences from the first embodiment will be described, and other parts corresponding to those of the first embodiment are denoted by the same reference numerals and description thereof will be omitted.
 表示装置2は、実施の形態1の制御部23、第1補正部24、及び第2補正部25を備えておらず、制御部26を備えている。
 入力階調値を示す階調信号は、実施の形態1では第1補正部24に入力されるが、本実施の形態では制御部26に入力される。
 制御部26は、不揮発性メモリ261、揮発性メモリ262、及び演算部263を備えている。
The display device 2 does not include the control unit 23, the first correction unit 24, and the second correction unit 25 of the first embodiment, but includes the control unit 26.
The gradation signal indicating the input gradation value is input to the first correction unit 24 in the first embodiment, but is input to the control unit 26 in the present embodiment.
The control unit 26 includes a nonvolatile memory 261, a volatile memory 262, and a calculation unit 263.
 不揮発性メモリ261には、第1補正データ及び第2補正データと図示しない定数データとが記憶してある。
 第1補正データは、注目画素の入力階調値と前段画素の入力階調値とに基づいて第1補正後階調値を演算するための関数及び/又はデータテーブル等である。以下では、第1補正データに、注目入力階調値が前段入力階調値よりも高い場合に注目入力階調値を増加させることによって第1補正後階調値を求めるための増加用係数Pと、注目入力階調値が前段入力階調値よりも低い場合に注目入力階調値を減少させることによって第1補正後階調値を求めるための減少用係数Pとが含まれている場合を例示する。
The nonvolatile memory 261 stores first correction data, second correction data, and constant data (not shown).
The first correction data is a function and / or data table for calculating the first corrected gradation value based on the input gradation value of the target pixel and the input gradation value of the preceding pixel. In the following, an increase coefficient P for obtaining the first corrected gradation value by increasing the attention input gradation value when the attention input gradation value is higher than the previous stage input gradation value in the first correction data. 1 and a decrease coefficient P 2 for obtaining the first corrected gradation value by decreasing the attention input gradation value when the attention input gradation value is lower than the previous stage input gradation value. An example is given.
 第2補正データは、注目画素電極14の映像駆動部21からの遠近に応じて、第1補正後階調値に基づいて第2補正後階調値を演算するための関数及び/又はデータテーブル等である。以下では第2補正データに、行番号及び第1補正後階調値を独立変数として第2補正後階調値を求めるための関数fが含まれている場合を例示する。
 定数データは、定数M及び定数Nである。
 揮発性メモリ262は、演算部263の作業領域として用いられる。演算部263は、揮発性メモリ262に対して例えば各種変数を読み書きする。
The second correction data is a function and / or data table for calculating the second corrected gradation value based on the first corrected gradation value according to the perspective of the pixel electrode 14 of interest from the video driving unit 21. Etc. Hereinafter, a case where the function f for obtaining the second corrected gradation value using the row number and the first corrected gradation value as independent variables is included in the second correction data will be exemplified.
The constant data is a constant M and a constant N.
The volatile memory 262 is used as a work area for the calculation unit 263. The computing unit 263 reads / writes various variables from / to the volatile memory 262, for example.
 演算部263は、実施の形態1の制御部23と同様にして、映像駆動部21及び走査駆動部22の動作を制御する。
 演算部263には、複数個の階調信号が順次入力される。演算部263は、入力された階調信号を次に説明するように補正してから映像駆動部21へ順次出力する。
The calculation unit 263 controls the operations of the video drive unit 21 and the scan drive unit 22 in the same manner as the control unit 23 of the first embodiment.
A plurality of gradation signals are sequentially input to the calculation unit 263. The calculation unit 263 corrects the input gradation signal as described below, and then sequentially outputs it to the video drive unit 21.
 図12は、表示装置2で実行される階調値補正処理の手順を示すフローチャートである。
 演算部263は、映像の表示を開始するか否かを判定し(S11)、まだ映像を表示しない場合(S11でNO)、再びS11の処理を実行する。
 映像の表示を開始する場合(S11でYES)、演算部263は、各種変数をリセットする(S12)。具体的には、演算部263は、列をカウントするための変数mを“0”にリセットし、行番号nを“1”にリセットし、注目入力階調値g、前段入力階調値g、第1補正後階調値g、及び第2補正後階調値gを夫々“0”にリセットする。
FIG. 12 is a flowchart illustrating a procedure of gradation value correction processing executed in the display device 2.
The computing unit 263 determines whether or not to start displaying video (S11), and when the video is not yet displayed (NO in S11), the processing of S11 is executed again.
When the display of video is started (YES in S11), the calculation unit 263 resets various variables (S12). Specifically, the calculation unit 263 resets the variable m for counting the columns to “0”, resets the row number n to “1”, the attention input gradation value g a , the previous stage input gradation value, g b, resets the first post-correction gradation value g 1, and the second corrected tone value g 2 respectively to "0".
 次に、演算部263は、自身に階調信号が入力されたか否かを判定し(S13)、まだ入力されていない場合(S13でNO)、再びS13の処理を実行する。
 自身に階調信号が入力された場合(S13でYES)、演算部263は、入力された階調信号が示す階調値を、注目入力階調値gに代入し(S14)、第1補正処理(図13参照)を実行する(S15)。第1補正処理では、第1補正後階調値gが求められる。
 第1補正処理の終了後、演算部263は、注目入力階調値gの値を、前段入力階調値gに代入する(S16)。
Next, the calculation unit 263 determines whether or not a gradation signal has been input to itself (S13). If it has not been input yet (NO in S13), the processing of S13 is executed again.
If own tone signal is input (YES in S13), the arithmetic unit 263, the tone value indicated by the input gradation signal, assigns to the target input gradation value g a (S14), first Correction processing (see FIG. 13) is executed (S15). In the first correction process, the first corrected gradation value g 1 is obtained.
After the end of the first correction process, the calculation unit 263 substitutes the value of the target input tone value g a for the previous input tone value g b (S16).
 次いで、演算部263は、第2補正処理(図14参照)を実行する(S17)。第2補正処理では、第2補正後階調値gが求められる。
 次に、演算部263は、第2補正後階調値gを示す階調信号を映像駆動部21へ出力する(S18)。
 次いで、演算部263は、映像の表示を終了するか否かを判定し(S19)、まだ映像の表示を終了しない場合(S19でNO)、演算部263は、処理をS13へ戻す。映像の表示を終了する場合(S19でYES)、演算部263は、階調値補正処理を終了する。
Next, the computing unit 263 performs a second correction process (see FIG. 14) (S17). In the second correction process, the second corrected gradation value g 2 is obtained.
Next, the computing unit 263 outputs a gradation signal indicating the second corrected gradation value g 2 to the video driving unit 21 (S18).
Next, the calculation unit 263 determines whether or not to end the display of the video (S19). If the display of the video is not yet ended (NO in S19), the calculation unit 263 returns the process to S13. When the display of the video is to be ended (YES in S19), the calculation unit 263 ends the gradation value correction process.
 図13は、第1補正処理手順の詳細を示すフローチャートである。
 演算部263は、注目入力階調値gが前段入力階調値gより大きいか否かを判定する(S31)。
 g>gである場合(S31でYES)、演算部263は、不揮発性メモリ261から増加用係数Pを読み出し(S32)、次の式(1)に従って第1補正後階調値gを算出する(S33)。
  g=P×g…(1)
FIG. 13 is a flowchart showing details of the first correction processing procedure.
The computing unit 263 determines whether or not the target input tone value g a is greater than the previous-stage input tone value g b (S31).
When g a > g b (YES in S31), the calculation unit 263 reads the increase coefficient P 1 from the nonvolatile memory 261 (S32), and the first corrected gradation value g according to the following equation (1): 1 is calculated (S33).
g 1 = P 1 × g a (1)
 g≦gである場合(S31でNO)、演算部263は、注目入力階調値gが前段入力階調値gより小さいか否かを判定する(S34)。
 g<gである場合(S34でYES)、演算部263は、不揮発性メモリ261から減少用係数Pを読み出し(S35)、次の式(2)に従って第1補正後階調値gを算出する(S36)。
  g=P×g…(2)
When g a ≦ g b (NO in S31), the calculation unit 263 determines whether or not the target input tone value g a is smaller than the preceding input tone value g b (S34).
When g a <g b (YES in S34), the calculation unit 263 reads the reduction coefficient P 2 from the nonvolatile memory 261 (S35), and the first corrected gradation value g according to the following equation (2): 1 is calculated (S36).
g 1 = P 2 × g a (2)
 S33又はS36における演算部263は、式(1),(2)で求めた第1補正後階調値gを“0”~“255”の整数に丸める処理も行なう。 The computing unit 263 in S33 or S36 also performs a process of rounding the first corrected gradation value g 1 obtained by the equations (1) and (2) to an integer of “0” to “255”.
 g=gである場合(S34でNO)、演算部263は、注目入力階調値gを第1補正後階調値gに代入する(S37)。
 S33、S36、又はS37の処理終了後、演算部263は第1補正処理を終了して、図12に示す階調値補正処理へ戻る。
 なお、第1補正データはLUT242でもよい。この場合、第1補正処理における演算部263は、S31~S37の処理に替えて、LUT242を参照し、注目入力階調値gと前段入力階調値gとの組み合わせに関連付けられた第1補正後階調値gを求める処理を行なう。
When g a = g b (NO in S34), the calculation unit 263 substitutes the target input tone value g a for the first corrected tone value g 1 (S37).
After the process of S33, S36, or S37 is completed, the calculation unit 263 ends the first correction process and returns to the gradation value correction process shown in FIG.
The first correction data may be the LUT 242. In this case, the calculation unit 263 in the first correction process refers to the LUT 242 instead of the processes of S31 to S37, and the first correction process associated with the combination of the target input tone value g a and the previous input tone value g b . A process of obtaining a corrected gradation value g 1 is performed.
 図14は、第2補正処理手順の詳細を示すフローチャートである。
 演算部263は、不揮発性メモリ261から関数fを読み出す(S51)。
 次いで、演算部263は、行番号n及び第1補正後階調値gを関数fに代入することによって、第2補正後階調値gを算出する(S52)。このとき、演算部263は、第2補正後階調値gを“0”~“255”の整数に丸める処理も行なう。
FIG. 14 is a flowchart showing details of the second correction processing procedure.
The computing unit 263 reads the function f from the nonvolatile memory 261 (S51).
Next, the computing unit 263 calculates the second corrected gradation value g 2 by substituting the row number n and the first corrected gradation value g 1 into the function f (S52). At this time, the calculation unit 263 also performs a process of rounding the second corrected gradation value g 2 to an integer of “0” to “255”.
 S52の終了後、演算部263は、変数mを“1”インクリメントし(S53)、変数mが定数M以上であるか否かを判定する(S54)。
 m≧Mである場合(S54でYES)、演算部263は、行番号nが定数N以上であるか否かを判定する(S55)。
 n<Nである場合(S55でNO)、演算部263は、行番号nを“1”インクリメントし(S56)、変数mを“0”にリセットする(S57)。
 n≧Nである場合(S55でYES)、演算部263は、行番号nを“1”にリセットし(S58)、処理をS57に移す。
After the end of S52, the calculation unit 263 increments the variable m by “1” (S53), and determines whether the variable m is equal to or greater than the constant M (S54).
When m ≧ M (YES in S54), the calculation unit 263 determines whether or not the row number n is equal to or greater than a constant N (S55).
When n <N (NO in S55), the calculation unit 263 increments the row number n by “1” (S56), and resets the variable m to “0” (S57).
If n ≧ N (YES in S55), the calculation unit 263 resets the row number n to “1” (S58), and moves the process to S57.
 m<Mである場合(S54でNO)、又はS57の処理終了後、演算部263は第2補正処理を終了して、図12に示す階調値補正処理へ戻る。
 なお、第2補正データは係数テーブル253でもよい。この場合、第2補正処理における演算部263は、S51の処理に替えて、行番号nを用いて係数テーブル253を参照し、補正係数を求める処理を行ない、S52の処理に替えて、求めた補正係数と第1補正後階調値gとを乗算し、乗算結果を“0”~“255”の整数に丸めることによって、第2補正後階調値gを算出する処理を行なう。
When m <M (NO in S54) or after the process of S57 is completed, the arithmetic unit 263 ends the second correction process and returns to the gradation value correction process shown in FIG.
The second correction data may be a coefficient table 253. In this case, the calculation unit 263 in the second correction process refers to the coefficient table 253 using the line number n instead of the process of S51, performs a process of obtaining a correction coefficient, and obtains the process instead of the process of S52. A process of calculating the second corrected gradation value g 2 is performed by multiplying the correction coefficient by the first corrected gradation value g 1 and rounding the multiplication result to an integer of “0” to “255”.
 以上のような表示装置2は、実施の形態1の表示装置2と同様の作用効果を奏する。 The display device 2 as described above has the same operational effects as the display device 2 of the first embodiment.
 今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、請求の範囲と均等の意味及び請求の範囲内での全ての変更が含まれることが意図される。
 また、本発明の効果がある限りにおいて、表示装置2に、実施の形態1~3に開示されていない構成要素が含まれていてもよい。
 各実施の形態に開示されている構成要件(技術的特徴)はお互いに組み合わせ可能であり、組み合わせによって新しい技術的特徴を形成することができる。
The embodiment disclosed this time is to be considered as illustrative in all points and not restrictive. The scope of the present invention is not intended to include the above-described meaning, but is intended to include meanings equivalent to the scope of the claims and all modifications within the scope of the claims.
In addition, as long as the effect of the present invention is obtained, the display device 2 may include components that are not disclosed in the first to third embodiments.
The constituent elements (technical features) disclosed in each embodiment can be combined with each other, and a new technical feature can be formed by the combination.
 11  映像信号線
 12  走査信号線
 14  画素電極
 2   表示装置
 21  映像駆動部(映像入力部)
 24  第1補正部
 25  第2補正部 
DESCRIPTION OF SYMBOLS 11 Video signal line 12 Scanning signal line 14 Pixel electrode 2 Display apparatus 21 Video drive part (video input part)
24 1st correction | amendment part 25 2nd correction | amendment part

Claims (5)

  1.  複数の映像信号線と、
     該映像信号線に接続されている複数の画素電極と、
     前記複数の映像信号線の端部に接続されており、前記画素電極に与えられる映像信号を前記映像信号線に入力する映像入力部と
     を備え、
     前記画素電極に与えられた映像信号に応じた階調値を有する画素を含む映像を表示する表示装置において、
     注目画素の階調値と、前記注目画素に対応する画素電極と隣り合い、該画素電極と同じ映像信号線から映像信号を与えられる画素電極に対応する前段画素の階調値とに基づいて、前記注目画素の階調値を補正する第1補正部、及び、
     前記注目画素に対応する画素電極の前記映像入力部からの遠近に応じて、前記第1補正部による補正後の階調値を更に補正する第2補正部
     を備え、
     前記映像入力部は、前記第2補正部による補正後の階調値に応じた映像信号を前記映像信号線に入力するようにしてあることを特徴とする表示装置。
    Multiple video signal lines;
    A plurality of pixel electrodes connected to the video signal line;
    A video input unit that is connected to ends of the plurality of video signal lines and that inputs video signals applied to the pixel electrodes to the video signal lines;
    In a display device for displaying an image including a pixel having a gradation value corresponding to a video signal applied to the pixel electrode,
    Based on the gradation value of the pixel of interest and the gradation value of the previous pixel adjacent to the pixel electrode corresponding to the pixel of interest and corresponding to the pixel electrode to which a video signal is applied from the same video signal line as the pixel electrode, A first correction unit for correcting a gradation value of the target pixel; and
    A second correction unit that further corrects the gradation value corrected by the first correction unit according to the distance from the video input unit of the pixel electrode corresponding to the target pixel;
    The display device according to claim 1, wherein the video input unit inputs a video signal corresponding to the gradation value corrected by the second correction unit to the video signal line.
  2.  前記第1補正部は、
     前記注目画素の階調値が前記前段画素の階調値よりも高い場合、補正後の階調値を前記注目画素の階調値よりも高く、
     前記注目画素の階調値が前記前段画素の階調値よりも低い場合、補正後の階調値を前記注目画素の階調値よりも低く補正するようにしてあることを特徴とする請求項1に記載の表示装置。
    The first correction unit includes:
    When the gradation value of the target pixel is higher than the gradation value of the preceding pixel, the corrected gradation value is higher than the gradation value of the target pixel;
    The corrected gradation value is corrected to be lower than the gradation value of the target pixel when the gradation value of the target pixel is lower than the gradation value of the preceding pixel. The display device according to 1.
  3.  前記第2補正部は、前記第1補正部による補正後の階調値を、
     前記注目画素に対応する画素電極が前記映像入力部から近いほど低く、
     前記注目画素に対応する画素電極が前記映像入力部に遠いほど高く補正するようにしてあることを特徴とする請求項1又は2に記載の表示装置。
    The second correction unit calculates the gradation value corrected by the first correction unit,
    The closer the pixel electrode corresponding to the pixel of interest is from the video input unit,
    The display device according to claim 1, wherein a pixel electrode corresponding to the target pixel is corrected to be higher as it is farther from the video input unit.
  4.  前記第2補正部は、
     前記注目画素に対応する画素電極が前記映像入力部に近い場合、補正後の階調値を前記第1補正部による補正後の階調値よりも低く、
     前記注目画素に対応する画素電極が前記映像入力部から遠い場合、補正後の階調値を前記第1補正部による補正後の階調値よりも高く補正するようにしてあることを特徴とする請求項3に記載の表示装置。
    The second correction unit includes
    When the pixel electrode corresponding to the target pixel is close to the video input unit, the gradation value after correction is lower than the gradation value after correction by the first correction unit,
    When the pixel electrode corresponding to the target pixel is far from the video input unit, the gradation value after correction is corrected to be higher than the gradation value after correction by the first correction unit. The display device according to claim 3.
  5.  前記複数の映像信号線に交差するよう並置されており、順に走査信号が入力される複数の走査信号線を更に備え、
     前記映像入力部は、前記走査信号線に走査信号が入力される場合に、前記画素電極に与えられる映像信号を前記映像信号線に入力するようにしてあり、
     前記走査信号線に走査信号が入力される時点を基準にした前記映像信号線に映像信号が入力されるタイミングは、前記走査信号が入力される前記走査信号線の前記映像入力部からの遠近に応じて異なることを特徴とする請求項1乃至4の何れか一項に記載の表示装置。
    A plurality of scanning signal lines which are juxtaposed so as to intersect the plurality of video signal lines and to which scanning signals are input in order;
    The video input unit is configured to input a video signal applied to the pixel electrode to the video signal line when a scanning signal is input to the scanning signal line.
    The timing at which the video signal is input to the video signal line based on the time point when the scanning signal is input to the scanning signal line is the distance from the video input unit of the scanning signal line to which the scanning signal is input. The display device according to claim 1, wherein the display device is different depending on the display device.
PCT/JP2015/064800 2015-05-22 2015-05-22 Display device WO2016189596A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/064800 WO2016189596A1 (en) 2015-05-22 2015-05-22 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/064800 WO2016189596A1 (en) 2015-05-22 2015-05-22 Display device

Publications (1)

Publication Number Publication Date
WO2016189596A1 true WO2016189596A1 (en) 2016-12-01

Family

ID=57392609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064800 WO2016189596A1 (en) 2015-05-22 2015-05-22 Display device

Country Status (1)

Country Link
WO (1) WO2016189596A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140883A (en) * 2003-11-05 2005-06-02 Hitachi Ltd Display device
JP2008152176A (en) * 2006-12-20 2008-07-03 Sony Corp Display device drive circuit, display device, electronic equipment, display device driving method, and computer program
JP2008209890A (en) * 2007-01-29 2008-09-11 Hitachi Displays Ltd Display device
WO2012077620A1 (en) * 2010-12-10 2012-06-14 シャープ株式会社 Timing control circuit for display device, display device, and timing control method for display device
JP2012189765A (en) * 2011-03-10 2012-10-04 Panasonic Liquid Crystal Display Co Ltd Liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140883A (en) * 2003-11-05 2005-06-02 Hitachi Ltd Display device
JP2008152176A (en) * 2006-12-20 2008-07-03 Sony Corp Display device drive circuit, display device, electronic equipment, display device driving method, and computer program
JP2008209890A (en) * 2007-01-29 2008-09-11 Hitachi Displays Ltd Display device
WO2012077620A1 (en) * 2010-12-10 2012-06-14 シャープ株式会社 Timing control circuit for display device, display device, and timing control method for display device
JP2012189765A (en) * 2011-03-10 2012-10-04 Panasonic Liquid Crystal Display Co Ltd Liquid crystal display device

Similar Documents

Publication Publication Date Title
JP6309777B2 (en) Display device, display panel driver, and display panel driving method
US10923014B2 (en) Liquid crystal display device
US9812088B2 (en) Display device including gray scale corrector and driving method thereof
US9007408B2 (en) Method of compensating a stain, a method of driving a display panel having the method of compensating a stain and a display apparatus for performing the method of driving the display panel
KR102145391B1 (en) Display device and driving method thereof
JP6185514B2 (en) Display device, display device control method, and display device drive method
KR102370367B1 (en) Display apparatus and method of driving the same
WO2013035635A1 (en) Image display device and image display method
US20140118423A1 (en) Liquid crystal display apparatus
KR101160832B1 (en) Display device and method of modifying image signals for display device
KR20150081103A (en) Display device and driving method thereof
US20140306984A1 (en) Display device and driving method thereof
JP6347957B2 (en) Display device, display panel driver, and display panel driving method
KR101488997B1 (en) Signal processing device, signal processing method, and display apparatus
KR20160124360A (en) Display apparatus and method of driving display panel using the same
WO2013161648A1 (en) Display control circuit, liquid crystal display device provided therewith, and display control method
KR20160054141A (en) Display Device and Driving Method Thereof
CN111599321B (en) Liquid crystal display device and image signal correction method
JP6910246B2 (en) Liquid crystal display device and image display method
CN111599322A (en) Liquid crystal display device and image signal correction method
KR101958287B1 (en) Display Device And Method Of Driving The Same
JP5336406B2 (en) Display method of display device and display device
WO2016189596A1 (en) Display device
JP6577223B2 (en) Liquid crystal display
KR100935672B1 (en) Driving apparatus and method of liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP