WO2016189592A1 - Yaw moment control device and yaw moment control method - Google Patents

Yaw moment control device and yaw moment control method Download PDF

Info

Publication number
WO2016189592A1
WO2016189592A1 PCT/JP2015/064796 JP2015064796W WO2016189592A1 WO 2016189592 A1 WO2016189592 A1 WO 2016189592A1 JP 2015064796 W JP2015064796 W JP 2015064796W WO 2016189592 A1 WO2016189592 A1 WO 2016189592A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
yaw moment
force distribution
driving force
control
Prior art date
Application number
PCT/JP2015/064796
Other languages
French (fr)
Japanese (ja)
Inventor
勝義 小川
洋平 対馬
信人 谷口
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2015/064796 priority Critical patent/WO2016189592A1/en
Publication of WO2016189592A1 publication Critical patent/WO2016189592A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance

Definitions

  • the present invention relates to yaw moment control of a vehicle that performs left and right wheel driving force control and left and right wheel braking force control.
  • Left and right wheel driving force control and left and right wheel braking force control are known as controls for improving vehicle running performance.
  • Left and right wheel driving force control controls the yaw moment of the vehicle by changing the driving force distribution to the left and right driving wheels, that is, the driving wheels on the inner side of the turning and the driving wheels on the outer side of the turning according to the turning state of the vehicle.
  • Left and right wheel braking force control is to control the yaw moment of the vehicle by changing the distribution of braking force to the left and right wheels, that is, the inner wheel and the outer wheel according to the turning state of the vehicle. .
  • Japanese Patent Application Laid-Open No. 2011-162145 discloses a control device that generates a yaw moment by left and right wheel driving force control when the yaw moment to be generated during turning is less than the maximum value of the yaw moment that can be generated by left and right wheel driving force control. Is described. This control device generates the maximum yaw moment that can be generated by left and right wheel driving force control when the yaw moment that should be generated during turning exceeds the maximum value of yaw moment that can be generated by left and right wheel driving force control. The shortage is covered by left and right wheel drive force control.
  • an object of the present invention is to control the yaw moment of the vehicle by the left and right wheel driving force control and the left and right wheel braking force control without giving the driver a sense of incongruity.
  • a vehicle including a left and right wheel driving force distribution mechanism that changes the driving force distribution of the left and right wheels of the vehicle, and a left and right wheel braking force distribution mechanism that changes the braking force distribution of the left and right wheels of the vehicle.
  • a yaw moment control device for controlling a yaw moment is provided. When the lateral acceleration generated during turning of the vehicle is smaller than a predetermined lateral acceleration set in advance, the yaw moment control device generates a yaw moment necessary for turning of the vehicle using only the left and right wheel driving force distribution mechanism.
  • FIG. 1 is a schematic plan view showing a vehicle drive system and a drive system control system.
  • FIG. 2 is a cross-sectional view showing the configuration of the left and right rear wheel driving force distribution unit.
  • FIG. 3 is a flowchart showing a control routine for generating the yaw moment.
  • FIG. 4 is a control map that defines left and right wheel driving force distribution control areas and left and right wheel braking force distribution areas.
  • FIG. 1 is a schematic plan view showing a wheel drive system and a drive system control system of a vehicle 100 to which the first embodiment is applied.
  • Vehicle 100 is a four-wheel drive vehicle having left front wheel 1L and right front wheel 1R as main drive wheels and left rear wheel 2L and right rear wheel 2R as auxiliary drive wheels.
  • driving force means torque.
  • Vehicle 100 includes an internal combustion engine (hereinafter also simply referred to as “engine”) 3 as a drive source.
  • vehicle 100 includes a transaxle 4 including a transmission and a differential gear device for shifting rotational power from engine 3. Rotational power from the engine 3 is shifted by the transaxle 4 and transmitted to the left and right front wheels 1L and 1R via the left and right front wheel axle shafts 5L and 5R.
  • the vehicle 100 uses a part of the rotational power shifted by the transaxle 4 as a transfer 6, a propeller shaft 7, left and right rear wheel driving force distribution unit (left and right wheel driving force distribution mechanism) 8, and left and right rear wheel axle shafts 9L and 9R. There is also provided a transmission system for transmitting to the left and right rear wheels 2L, 2R via the.
  • the left and right rear wheel driving force distribution unit 8 has a function of distributing and outputting the rotational power transmitted through the propeller shaft 7 to the left and right rear wheels 2L and 2R.
  • the left and right rear wheel driving force distribution unit 8 includes a center shaft 39 extending in the axial direction of the axle shafts 9L and 9R between the left and right axle shafts 9L and 9R.
  • the left and right rear wheel driving force distribution unit 8 further includes a left rear wheel side clutch 11L for connecting and controlling the center shaft 39 and the left rear wheel axle shaft 9L, and between the center shaft 39 and the left rear wheel axle shaft 9R.
  • a right rear wheel side clutch 11R for coupling control.
  • the driving force is distributed to the left and right rear wheels 2L, 2R as described above.
  • the detailed configuration of the left and right rear wheel driving force distribution unit 8 will be described later.
  • the vehicle 100 includes wheel speed sensors 22 that detect the rotational speeds of the left and right front wheels 1L and 1R and the left and right rear wheels 2L and 2R.
  • the detection value of each wheel speed sensor 22 is read into a stability control (VDC: Vehicle Dynamics Control) control unit (hereinafter referred to as VDCCU) 26.
  • VDCCU 26 calculates the vehicle speed based on the average value of the detection values of the wheel speed sensors 22. Further, the VDCCU 26 controls the brake pressure, that is, the braking force, of the brake mechanism 10 provided in each wheel 1L, 1R, 2L, 2R as stability control.
  • the stability control will be described later.
  • the vehicle 100 includes a yaw rate / G sensor 23 for detecting a yaw rate and acceleration around a vertical axis passing through the center of gravity of the vehicle 100, a steering angle sensor 24 for detecting a steering wheel steering angle, and an accelerator pedal opening for detecting an accelerator pedal opening.
  • Degree sensor 27 The detection value of the accelerator pedal opening sensor 27 is read into an engine control unit (ENG Control, hereinafter referred to as ENGCU) 25 in the drawing.
  • ENGCU 25 also reads a detection value of a crank angle sensor (not shown) that detects the engine rotation speed.
  • the detection value of the steering angle sensor 24 is read into the ENGCU 25 and the four-wheel drive control unit (4WD Control unit in the figure, hereinafter referred to as 4WDCU) 21.
  • ENGCU 25, 4WDCU 21 and VDC control unit (VDC control unit) 26 are connected to each other via a communication line 28 of CAN (Controller area network) so as to be capable of bidirectional communication.
  • CAN Controller area network
  • FIG. 2 is a cross-sectional view showing the configuration of the left and right rear wheel driving force distribution unit 8. Since the configuration of the left and right rear wheel driving force distribution unit 8 is known, the main part will be briefly described.
  • the left and right rear wheel driving force distribution unit 8 has a center section housing 3a that is divided in a vertical direction along the axis of the input side hypoid gear 12a of FIG. 2 and that passes through the axis of the center shaft 39.
  • the center section housing 3a includes a center section front housing 38 that houses the input-side hypoid gear 12a and a part of the center shaft 39 and the output-side hypoid gear 12b. Further, the center section housing 3a has a center section rear housing 30 that houses a part of the center shaft 39 and the output side hypoid gear 12b.
  • the center section front housing 38 and the center section rear housing 30 are each divided into an upper side and a lower side along the axis of the input side hypoid gear 12a so that the center shaft 39, the output side hypoid gear 12b and the like can be assembled from the radial direction. It is configured.
  • the substantially cup-shaped coupling housings 51 and 52 that respectively house the left rear wheel side clutch 11L and the right rear wheel side clutch 11R are disposed on both sides of the center section housing 3a in the center shaft axial direction.
  • the coupling housings 51 and 52 are attached by bolts 53 from the side of the center section housing 3a in the center shaft axial direction.
  • the input side hypoid gear 12a includes a companion flange 60 connected to the propeller shaft 7 on the front side of the vehicle, and a companion flange nut 61 that fixes the companion flange 60 and the input side hypoid gear 12a.
  • An oil seal 35 and a companion flange dust shield 36 that covers the oil seal 35 from the opening side of the center section front housing 38 are disposed between the companion flange 60 and the center section front housing 38.
  • a center shaft 39 is rotatably supported by the center section housing 3a via bearings 31 and 32.
  • the output side hypoid gear 12b is attached to the center shaft 39 by spline fitting.
  • a left shim 41 that adjusts the axial position of the bearing 31 is attached to the center section housing 3a outside the bearing 31 in the axial direction (left side in FIG. 2).
  • a right shim 42 that adjusts the axial position of the bearing 32 is attached to the center section housing 3a outside the bearing 32 in the axial direction (right side in FIG. 2).
  • the center shaft 39 is a hollow, substantially cylindrical member, and has shaft fitting portions 39L and 39R formed with splines on the inner periphery of both ends.
  • a coupling input shaft 111L that is integral with the left rear wheel side clutch 11L and has a spline on the outer periphery thereof, and a coupling input shaft 111R that is also integral with the right rear wheel side clutch 11R are connected to the shaft fitting portions 39L and 39R.
  • the shaft fitting portions 39L and 39R mesh with the outer periphery of the coupling input shaft 111L and 111R, and the center shaft 39 is connected to the left rear wheel side clutch 11L and the right rear wheel side clutch 11R.
  • an electronically controlled coupling (not shown) is provided between the rear end of the propeller shaft 7 extending from the transfer 6 to the rear of the vehicle and the bevel gear type final reduction gear 12 composed of the input side hypoid gear 12a and the output side hypoid gear 12b. Intervened.
  • the electronically controlled coupling electronically controls the pressing force of the multi-plate clutch, so that the ratio of the front wheel driving torque and the rear wheel driving torque, that is, the driving torque of the left and right front wheels 1L, 1R and the driving torque of the left and right rear wheels 2L, 2R. And the ratio can be changed.
  • part of the rotational power of the engine 3 is transmitted from the transfer 6 to the center shaft 39 via the propeller shaft 7, the electronically controlled coupling, and the final reduction gear 12. Then, it is distributed from the center shaft 39 to the left and right rear wheels 2L, 2R according to the respective fastening forces of the left rear wheel side clutch 11L and the right rear wheel side clutch 11R.
  • the 4WDCU 21 executes this fastening force control.
  • each of the left rear wheel side clutch 11L and the right rear wheel side clutch 11R is an electromagnetic type in which the fastening force is determined according to the supply current.
  • Supply to the clutches 11L and 11R is such that the engagement forces of the clutches 11L and 11R are the engagement forces corresponding to the target drive forces of the left and right rear wheels 2L and 2R calculated in the left and right wheel drive force distribution control described later. Control the current.
  • the 4WDCU 21 reads the detection values of the wheel speed sensor 22, the yaw rate / G sensor 23, and the steering angle sensor 24 via the CAN communication line 28. Further, the 4WDCU 21 reads the output torque Te and the engine rotation speed of the engine 3 calculated by the ENGCU 25 and the transmission ratio of the transaxle 4 calculated by a transmission control unit (not shown) via the CAN communication line 28.
  • the 4WDCU 21 executes driving force distribution control to the front wheels 1L and 1R and the rear wheels 2L and 2R in order to improve the start performance and acceleration performance of the vehicle.
  • the 4WDCU 21 basically distributes the total driving force to the left and right front wheels 1L and 1R which are main driving wheels.
  • traveling in this state is referred to as front wheel drive traveling.
  • the 4WDCU 21 distributes a part of the driving force to the left and right rear wheels 2L and 2R.
  • traveling in this state is referred to as four-wheel drive traveling.
  • the distribution of driving force to the front wheels 1L and 1R and the rear wheels 2L and 2R is determined according to changes in road surface conditions, vehicle turning conditions, wheel slip conditions, and the like.
  • the 4WDCU 21 distributes the driving force to the left and right rear wheels 2L and 2R to improve the turning performance when the vehicle 100 is turning.
  • the 4WD CU 21 executes not only front / rear wheel driving force distribution but also left / right wheel driving force distribution control by controlling the fastening force of the left rear wheel side clutch 11L and the right rear wheel side clutch 11R. For example, by increasing the distribution of driving force to the outer wheel during turning, a yaw moment that turns inward is generated, and turning performance is improved.
  • the 4WDCU 21 performs control so that the driving force transmitted to the rear wheels increases as the yaw moment necessary for turning increases.
  • the 4WDCU 21 may execute the left / right driving force distribution control during turning in cooperation with the left / right wheel braking force distribution control executed by the VDCCU 26.
  • the left and right wheel braking force distribution control is one of the stability controls executed by the VDCCU 26.
  • Stability control VDC: Vehicles Dynamics Control
  • the VDCCU 26 detects an understeer tendency or an oversteer tendency of a vehicle that is turning based on the steering angle, the vehicle speed, the lateral acceleration, and the like in order to stabilize the vehicle behavior, and suppresses the detected tendency.
  • Control power and braking force distribution For example, during an oversteer tendency, a yaw moment that turns outward by applying a braking force to the front and rear outer wheels during turning is generated to suppress oversteer.
  • a braking force is applied to the rear outer wheel during turning to generate a yaw moment that turns inward to suppress understeer.
  • the understeer tendency is a turning tendency in which the vehicle traveling direction deviates outside the turning circle when the centrifugal force of the vehicle exceeds the ground friction force of the front wheels during turning.
  • the oversteer tendency is a turning tendency in which the vehicle traveling direction deviates to the inside of the turning circle due to the centrifugal force of the vehicle exceeding the ground frictional force of the rear wheel during turning.
  • the VDCCU 26 executes left and right wheel braking force distribution control for generating a yaw moment by applying different braking forces to the outer wheel and the inner wheel during turning, regardless of the brake pedal depression force, in order to improve turning performance. For example, as with the suppression of understeer, turning performance can be improved by generating a yaw moment that applies a braking force to the rear outer wheel and responds inward during turning.
  • left and right wheel driving force distribution control and left and right wheel braking force distribution control will be described.
  • the left / right braking force distribution control Understeer and oversteer can be suppressed and turning performance can be improved as described above.
  • the vehicle inevitably decelerates due to the nature of the control, so that it is possible to improve the safety when turning at an overspeed.
  • deceleration of the vehicle may give the driver a feeling of strangeness.
  • the turning performance can be improved as described above.
  • the left and right wheel driving force distribution control gives the driver a sense of acceleration because the vehicle is hardly decelerated due to the nature of the control, and the driving efficiency is increased by distributing appropriate driving force to the left and right wheels.
  • the 4WD CU 21 executes the left and right wheel driving force distribution control and the left and right wheel braking force distribution control in a coordinated manner in order to improve the turning performance of the vehicle without giving the driver a sense of incongruity.
  • FIG. 3 is a flowchart showing a control routine executed by the 4WDCU 21.
  • “TV” in the figure is an abbreviation of “Torque Vectoring”, and means left and right wheel driving force distribution control.
  • “Brake” means left and right wheel braking force distribution control.
  • it demonstrates according to the step of a flowchart.
  • the 4WD CU 21 calculates an estimated lateral acceleration (hereinafter also referred to as an estimated lateral G).
  • the estimated lateral G is lateral acceleration during a turn estimated based on the vehicle running state.
  • the actual lateral acceleration may be detected by a lateral acceleration sensor.
  • the lateral acceleration is detected. Use an estimate of acceleration.
  • the 4WDCU 21 calculates the estimated lateral G using the wheel steering angle, vehicle speed, and yaw rate. 4WDCU21 calculates the steering angle of a wheel based on the detected value of the steering angle sensor 24 which detects the steering angle of a steering wheel.
  • the 4WDCU 21 reads the average value of the detection values of the wheel speed sensors 22 calculated by the VDCCU 26 as the vehicle speed.
  • the 4WDCU 21 reads the detection value of the yaw rate / G sensor 23 as the yaw rate. Since the method for calculating the estimated lateral G based on these values is known, the description thereof is omitted.
  • step S20 the 4WDCU 21 calculates a target rear yaw moment gain.
  • the target rear yaw moment gain refers to the yaw moment generated by the left and right wheel driving force distribution control in order to generate the yaw moment necessary for turning according to the steering of the driver (hereinafter referred to as the target yaw moment). It is calculated by dividing by etc. The greater the yaw moment gain, the greater the force required to turn the vehicle.
  • step S30 the 4WD CU 21 defines the left and right wheel driving force distribution control region and the left and right wheel braking force distribution control region based on the control map shown in FIG.
  • the control map shows the turning performance and the vehicle. It is set to achieve both stability. For example, when the estimated lateral G is 0.8 G and the target yaw moment gain is 0.4, both the left and right wheel driving force distribution control and the left and right wheel braking force distribution control are performed from the control map. Execute. For example, when the estimated lateral G is 0.3 G and the target yaw moment gain is 0.2, only the left and right wheel driving force distribution control is performed based on the control map.
  • step S40 the 4WDCU 21 determines to execute the left and right wheel driving force distribution control and the left and right wheel braking force distribution control in a coordinated manner.
  • step S60 the 4WD CU 21 sets the distribution between the yaw moment generated by the left and right wheel driving force distribution control and the yaw moment generated by the left and right wheel braking force distribution control.
  • the 4WDCU 21 calculates a yaw moment (target rear yaw moment) to be generated by distributing the driving force to the left and right rear wheels 2L, 2R in order to eliminate the difference between the target yaw moment and the actual yaw moment yaw rate. Specifically, the 4WDCU 21 first transmits the drive to the left and right rear wheels 2L, 2R via the electronically controlled coupling based on the engine speed, the intake air amount, and the shift position of the transmission in the transaxle 4. Calculate the force. Next, the 4WDCU 21 calculates a target yaw moment when performing a turn according to the steering of the driver based on the vehicle speed and the steering angle.
  • a target yaw moment target rear yaw moment
  • the 4WDCU 21 calculates a yaw moment (target rear yaw moment) to be generated by distributing the driving force to the left and right rear wheels 2L, 2R in order to eliminate the difference between the target yaw moment and the actual yaw moment.
  • the target rear yaw moment calculated as described above becomes excessively large relative to the restored yaw moment, resulting in unstable controllability. There is.
  • the target rear yaw moment may be corrected based on the steering steering angular velocity and the lateral acceleration change rate. Further, the vehicle body behavior may be disturbed due to slipping of the wheel during turning. Therefore, the driving force distribution to the left and right rear wheels 2L and 2R may be corrected based on the slip ratio of the turning wheel.
  • the distribution of the yaw moment generated by the left and right wheel driving force distribution control and the yaw moment generated by the left and right wheel braking force distribution control is such that the yaw moment generated by the left and right wheel braking force distribution control increases as the target rear yaw moment increases.
  • the specific distribution differs depending on the specifications of the vehicle 100 such as the wheel base, and therefore is set according to the specification of each vehicle.
  • step S50 the 4WDCU 21 sets the driving force distribution of the left and right wheels 2L and 2R so as to generate the target rear yaw moment only by the left and right wheel driving force distribution control.
  • a 4WDCU yaw moment
  • a vehicle 100 that includes a left and right rear wheel driving force distribution unit (left and right wheel driving force distribution mechanism) 8 and a brake mechanism (left and right wheel braking force distribution mechanism) 10.
  • a control device 21 is provided.
  • the 4WDCU 21 When the lateral acceleration generated during the turning of the vehicle is smaller than a predetermined lateral acceleration set in advance, the 4WDCU 21 generates a yaw moment necessary for the turning of the vehicle using only the left and right rear wheel driving force distribution unit 8. That is, in a turn with a small lateral acceleration, the vehicle does not decelerate and does not give the driver a sense of incongruity because the vehicle actively turns in response to the left and right wheel driving force distribution control.
  • the yaw moment necessary for turning the vehicle is obtained using the left and right rear wheel driving force distribution unit 8 and the brake mechanism 10. generate.
  • the left and right wheel braking force distribution control is also performed, so that the driver can turn without giving an excessive feeling of acceleration to the driver and without decelerating.
  • the present invention is not limited to this. Absent.
  • a configuration in which the left and right power distribution mechanism is provided on the front wheels, or an electric motor in each of the left and right rear wheels 2L and 2R, and a driving force of each electric motor may be controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)

Abstract

This yaw moment control device controls a yaw moment of a vehicle provided with: a right-and-left-wheel driving force distribution mechanism that changes the driving force distribution of right and left wheels of a vehicle; and a right-and-left-wheel braking force distribution mechanism that changes the braking force distribution of the right and left wheels of the vehicle. The yaw moment control device causes only the right-and-left-wheel driving force distribution mechanism to generate a yaw moment necessary for turning of the vehicle in the case where a lateral acceleration generated during turning of the vehicle is less than a preset predetermined lateral acceleration.

Description

ヨーモーメント制御装置及びヨーモーメント制御方法Yaw moment control apparatus and yaw moment control method
 本発明は、左右輪駆動力制御と左右輪制動力制御とを行う車両のヨーモーメント制御に関する。 The present invention relates to yaw moment control of a vehicle that performs left and right wheel driving force control and left and right wheel braking force control.
 車両の走行性能を向上させる制御として、左右輪駆動力制御と左右輪制動力制御とが知られている。左右輪駆動力制御とは、車両の旋回状態に応じて左右の駆動輪、つまり旋回内側の駆動輪と旋回外側の駆動輪への駆動力配分を変化させることにより、車両のヨーモーメントを制御するものである。左右輪制動力制御とは、左右の車輪、つまり車両の旋回状態に応じて旋回内側の車輪と旋回外側の車輪への制動力配分を変化させることにより、車両のヨーモーメントを制御するものである。 Left and right wheel driving force control and left and right wheel braking force control are known as controls for improving vehicle running performance. Left and right wheel driving force control controls the yaw moment of the vehicle by changing the driving force distribution to the left and right driving wheels, that is, the driving wheels on the inner side of the turning and the driving wheels on the outer side of the turning according to the turning state of the vehicle. Is. Left and right wheel braking force control is to control the yaw moment of the vehicle by changing the distribution of braking force to the left and right wheels, that is, the inner wheel and the outer wheel according to the turning state of the vehicle. .
 特開2011-162145には、旋回中に発生させるべきヨーモーメントが左右輪駆動力制御で発生可能なヨーモーメントの最大値以下の場合には、左右輪駆動力制御でヨーモーメントを発生させる制御装置が記載されている。この制御装置は、旋回中に発生させるべきヨーモーメントが左右輪駆動力制御で発生可能なヨーモーメントの最大値を超える場合には、左右輪駆動力制御で発生可能な最大のヨーモーメントを発生させ、不足分を左右輪駆動力制御で賄っている。 Japanese Patent Application Laid-Open No. 2011-162145 discloses a control device that generates a yaw moment by left and right wheel driving force control when the yaw moment to be generated during turning is less than the maximum value of the yaw moment that can be generated by left and right wheel driving force control. Is described. This control device generates the maximum yaw moment that can be generated by left and right wheel driving force control when the yaw moment that should be generated during turning exceeds the maximum value of yaw moment that can be generated by left and right wheel driving force control. The shortage is covered by left and right wheel drive force control.
 しかしながら、上記文献の制御では横加速度の状態を考慮していないため、運転者に違和感を与える可能性がある。 However, since the control in the above document does not consider the state of lateral acceleration, there is a possibility that the driver may feel uncomfortable.
 そこで本発明では、運転者に違和感を与えることなく、左右輪駆動力制御と左右輪制動力制御とで車両のヨーモーメントを制御することを目的とする。 Therefore, an object of the present invention is to control the yaw moment of the vehicle by the left and right wheel driving force control and the left and right wheel braking force control without giving the driver a sense of incongruity.
 本発明のある態様によれば、車両の左右輪の駆動力配分を変更する左右輪駆動力配分機構と、車両の左右輪の制動力配分を変更する左右輪制動力配分機構とを備える車両のヨーモーメントを制御するヨーモーメント制御装置が提供される。ヨーモーメント制御装置は、車両の旋回中に発生する横加速度が予め設定した所定横加速度より小さい場合は、左右輪駆動力配分機構だけで車両の旋回に必要なヨーモーメントを発生させる。 According to an aspect of the present invention, there is provided a vehicle including a left and right wheel driving force distribution mechanism that changes the driving force distribution of the left and right wheels of the vehicle, and a left and right wheel braking force distribution mechanism that changes the braking force distribution of the left and right wheels of the vehicle. A yaw moment control device for controlling a yaw moment is provided. When the lateral acceleration generated during turning of the vehicle is smaller than a predetermined lateral acceleration set in advance, the yaw moment control device generates a yaw moment necessary for turning of the vehicle using only the left and right wheel driving force distribution mechanism.
 上記態様によれば、横加速度の低い旋回においては、左右輪駆動力配分制御だけを実行するので、車両を減速させることなく旋回することができる。つまり、運転者に違和感を与えることなく旋回できる。 According to the above aspect, in turning with low lateral acceleration, only the left and right wheel driving force distribution control is executed, so that the vehicle can be turned without decelerating. That is, the vehicle can turn without giving the driver a sense of incongruity.
図1は、車両の駆動系と駆動系の制御システムとを示す概略平面図である。FIG. 1 is a schematic plan view showing a vehicle drive system and a drive system control system. 図2は、左右後輪駆動力配分ユニットの構成を示す断面図である。FIG. 2 is a cross-sectional view showing the configuration of the left and right rear wheel driving force distribution unit. 図3は、ヨーモーメントを発生させるための制御ルーチンを示すフローチャートである。FIG. 3 is a flowchart showing a control routine for generating the yaw moment. 図4は、左右輪駆動力配分制御領域と左右輪制動力配分領域とを規定する制御マップである。FIG. 4 is a control map that defines left and right wheel driving force distribution control areas and left and right wheel braking force distribution areas.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は、第1実施形態を適用する車両100の車輪駆動系と駆動系の制御システムとを示す概略平面図である。 FIG. 1 is a schematic plan view showing a wheel drive system and a drive system control system of a vehicle 100 to which the first embodiment is applied.
 車両100は、左前輪1L及び右前輪1Rを主駆動輪とし、左後輪2L及び右後輪2Rを副駆動輪とする四輪駆動車両である。なお、本説明中における「駆動力」とは、トルクを意味する。 Vehicle 100 is a four-wheel drive vehicle having left front wheel 1L and right front wheel 1R as main drive wheels and left rear wheel 2L and right rear wheel 2R as auxiliary drive wheels. In the present description, “driving force” means torque.
 車両100は、駆動源として内燃エンジン(以下、単に「エンジン」ともいう)3を備える。また、車両100はエンジン3からの回転動力を変速する変速機及びディファレンシャルギヤ装置を含むトランスアクスル4を備える。エンジン3からの回転動力は、トランスアクスル4にて変速され、左右前輪アクスルシャフト5L、5Rを介して左右前輪1L、1Rに伝達される。 Vehicle 100 includes an internal combustion engine (hereinafter also simply referred to as “engine”) 3 as a drive source. In addition, vehicle 100 includes a transaxle 4 including a transmission and a differential gear device for shifting rotational power from engine 3. Rotational power from the engine 3 is shifted by the transaxle 4 and transmitted to the left and right front wheels 1L and 1R via the left and right front wheel axle shafts 5L and 5R.
 車両100は、トランスアクスル4により変速された回転動力の一部を、トランスファー6、プロペラシャフト7、左右後輪駆動力配分ユニット(左右輪駆動力配分機構)8及び左右後輪アクスルシャフト9L、9Rを介して左右後輪2L、2Rに伝達する伝達系も備える。 The vehicle 100 uses a part of the rotational power shifted by the transaxle 4 as a transfer 6, a propeller shaft 7, left and right rear wheel driving force distribution unit (left and right wheel driving force distribution mechanism) 8, and left and right rear wheel axle shafts 9L and 9R. There is also provided a transmission system for transmitting to the left and right rear wheels 2L, 2R via the.
 左右後輪駆動力配分ユニット8は、プロペラシャフト7を介して伝達された回転動力を、左右後輪2L、2Rへ分配して出力する機能を有する。左右後輪駆動力配分ユニット8は、左右のアクスルシャフト9L、9Rの間に、アクスルシャフト9L、9Rの軸線方向に延びるセンターシャフト39を備える。左右後輪駆動力配分ユニット8は更に、センターシャフト39と左後輪アクスルシャフト9Lとを結合制御するための左後輪側クラッチ11Lと、センターシャフト39と左後輪アクスルシャフト9Rとの間を結合制御するための右後輪側クラッチ11Rとを備える。これら左後輪側クラッチ11L及び右後輪側クラッチ11Rの締結力を制御することにより、上記のように駆動力を左右後輪2L、2Rに分配する。左右後輪駆動力配分ユニット8の詳細な構成については後述する。 The left and right rear wheel driving force distribution unit 8 has a function of distributing and outputting the rotational power transmitted through the propeller shaft 7 to the left and right rear wheels 2L and 2R. The left and right rear wheel driving force distribution unit 8 includes a center shaft 39 extending in the axial direction of the axle shafts 9L and 9R between the left and right axle shafts 9L and 9R. The left and right rear wheel driving force distribution unit 8 further includes a left rear wheel side clutch 11L for connecting and controlling the center shaft 39 and the left rear wheel axle shaft 9L, and between the center shaft 39 and the left rear wheel axle shaft 9R. A right rear wheel side clutch 11R for coupling control. By controlling the fastening force of the left rear wheel side clutch 11L and the right rear wheel side clutch 11R, the driving force is distributed to the left and right rear wheels 2L, 2R as described above. The detailed configuration of the left and right rear wheel driving force distribution unit 8 will be described later.
 車両100は、左右前輪1L、1R及び左右後輪2L、2Rの各車輪の回転速度を検出する車輪速センサ22を備える。各車輪速センサ22の検出値はスタビリティ制御(VDC:Vehicle Dynamics Control)コントロールユニット(以下、VDCCUという)26に読み込まれる。VDCCU26では、各車輪速センサ22の検出値の平均値に基づいて車速を算出する。また、VDCCU26は、スタビリティ制御として、各車輪1L、1R、2L、2Rに設けられたブレーキ機構10のブレーキ圧、つまり制動力を制御する。スタビリティ制御については後述する。 The vehicle 100 includes wheel speed sensors 22 that detect the rotational speeds of the left and right front wheels 1L and 1R and the left and right rear wheels 2L and 2R. The detection value of each wheel speed sensor 22 is read into a stability control (VDC: Vehicle Dynamics Control) control unit (hereinafter referred to as VDCCU) 26. The VDCCU 26 calculates the vehicle speed based on the average value of the detection values of the wheel speed sensors 22. Further, the VDCCU 26 controls the brake pressure, that is, the braking force, of the brake mechanism 10 provided in each wheel 1L, 1R, 2L, 2R as stability control. The stability control will be described later.
 車両100は、車両100の重心を通る鉛直軸線周りにおけるヨーレート及び加速度を検出するヨーレート・Gセンサ23と、ステアリングホイール操舵角を検出する操舵角センサ24と、アクセルペダル開度を検出するアクセルペダル開度センサ27と、を備える。アクセルペダル開度センサ27の検出値は、エンジンコントロールユニット(図中のENG Control unit、以下、ENGCUという)25に読み込まれる。ENGCU25には、エンジン回転速度を検出する図示しないクランク角度センサの検出値も読み込まれる。操舵角センサ24の検出値は、ENGCU25と四輪駆動コントロールユニット(図中の4WD Control unit、以下4WDCUという)21とに読み込まれる。 The vehicle 100 includes a yaw rate / G sensor 23 for detecting a yaw rate and acceleration around a vertical axis passing through the center of gravity of the vehicle 100, a steering angle sensor 24 for detecting a steering wheel steering angle, and an accelerator pedal opening for detecting an accelerator pedal opening. Degree sensor 27. The detection value of the accelerator pedal opening sensor 27 is read into an engine control unit (ENG Control, hereinafter referred to as ENGCU) 25 in the drawing. ENGCU 25 also reads a detection value of a crank angle sensor (not shown) that detects the engine rotation speed. The detection value of the steering angle sensor 24 is read into the ENGCU 25 and the four-wheel drive control unit (4WD Control unit in the figure, hereinafter referred to as 4WDCU) 21.
 ENGCU25、4WDCU21及びVDCコントロールユニット(図中のVDC Control unit)26は、CAN(Controller Area Network)の通信ライン28を介して双方向通信可能に接続されている。 ENGCU 25, 4WDCU 21 and VDC control unit (VDC control unit) 26 are connected to each other via a communication line 28 of CAN (Controller area network) so as to be capable of bidirectional communication.
 図2は、左右後輪駆動力配分ユニット8の構成を示す断面図である。左右後輪駆動力配分ユニット8の構成は公知なので、主要部分について簡単に説明する。 FIG. 2 is a cross-sectional view showing the configuration of the left and right rear wheel driving force distribution unit 8. Since the configuration of the left and right rear wheel driving force distribution unit 8 is known, the main part will be briefly described.
 左右後輪駆動力配分ユニット8は、図2の入力側ハイポイドギヤ12aの軸に沿って上下方向であって、かつ、センターシャフト39の軸線を通る面で分割されたセンターセクションハウジング3aを有する。センターセクションハウジング3aは、入力側ハイポイドギヤ12aと、センターシャフト39及び出力側ハイポイドギヤ12bの一部とを収装するセンターセクションフロントハウジング38を有する。さらに、センターセクションハウジング3aは、センターシャフト39及び出力側ハイポイドギヤ12bの一部を収装するセンターセクションリヤハウジング30を有する。これらセンターセクションフロントハウジング38とセンターセクションリヤハウジング30は、それぞれ入力側ハイポイドギヤ12aの軸に沿ってアッパー側とロア側に2分割され、センターシャフト39及び出力側ハイポイドギヤ12b等を径方向から組み付け可能に構成されている。 The left and right rear wheel driving force distribution unit 8 has a center section housing 3a that is divided in a vertical direction along the axis of the input side hypoid gear 12a of FIG. 2 and that passes through the axis of the center shaft 39. The center section housing 3a includes a center section front housing 38 that houses the input-side hypoid gear 12a and a part of the center shaft 39 and the output-side hypoid gear 12b. Further, the center section housing 3a has a center section rear housing 30 that houses a part of the center shaft 39 and the output side hypoid gear 12b. The center section front housing 38 and the center section rear housing 30 are each divided into an upper side and a lower side along the axis of the input side hypoid gear 12a so that the center shaft 39, the output side hypoid gear 12b and the like can be assembled from the radial direction. It is configured.
 センターセクションハウジング3aのセンターシャフト軸方向の両側には、左後輪側クラッチ11L及び右後輪側クラッチ11Rをそれぞれ収装する略カップ形状のカップリングハウジング51、52が配置されている。カップリングハウジング51、52はボルト53によりセンターセクションハウジング3aのセンターシャフト軸方向の側方から取り付けられる。 The substantially cup- shaped coupling housings 51 and 52 that respectively house the left rear wheel side clutch 11L and the right rear wheel side clutch 11R are disposed on both sides of the center section housing 3a in the center shaft axial direction. The coupling housings 51 and 52 are attached by bolts 53 from the side of the center section housing 3a in the center shaft axial direction.
 センターセクションフロントハウジング38と入力側ハイポイドギヤ12aとの間には、入力側ハイポイドギヤ12aを回転可能に支持するフロントベアリング34及びリヤベアリング33と、フロントベアリング34とリヤベアリング33との間隔を保持するベアリングスペーサ37とが配置されている。また、入力側ハイポイドギヤ12aは車両前方側においてプロペラシャフト7と連結するコンパニオンフランジ60と、このコンパニオンフランジ60と入力側ハイポイドギヤ12aとを固定するコンパニオンフランジナット61とを有する。また、コンパニオンフランジ60とセンターセクションフロントハウジング38との間にはオイルシール35と、このオイルシール35をセンターセクションフロントハウジング38の開口側から覆うコンパニオンフランジダストシールド36とが配置されている。 Between the center section front housing 38 and the input-side hypoid gear 12a, a front bearing 34 and a rear bearing 33 that rotatably support the input-side hypoid gear 12a, and a bearing spacer that maintains a space between the front bearing 34 and the rear bearing 33 are provided. 37 are arranged. The input side hypoid gear 12a includes a companion flange 60 connected to the propeller shaft 7 on the front side of the vehicle, and a companion flange nut 61 that fixes the companion flange 60 and the input side hypoid gear 12a. An oil seal 35 and a companion flange dust shield 36 that covers the oil seal 35 from the opening side of the center section front housing 38 are disposed between the companion flange 60 and the center section front housing 38.
 センターセクションハウジング3aには、センターシャフト39がベアリング31及び32を介して回転可能に支持されている。センターシャフト39には、出力側ハイポイドギヤ12bがスプライン嵌合により取り付けられている。ベアリング31の軸方向外側(図2中左側)であってセンターセクションハウジング3aとの間には、ベアリング31の軸方向位置を調整する左側シム41が取り付けられている。同様に、ベアリング32の軸方向外側(図2中右側)であってセンターセクションハウジング3aとの間には、ベアリング32の軸方向位置を調整する右側シム42が取り付けられている。 A center shaft 39 is rotatably supported by the center section housing 3a via bearings 31 and 32. The output side hypoid gear 12b is attached to the center shaft 39 by spline fitting. A left shim 41 that adjusts the axial position of the bearing 31 is attached to the center section housing 3a outside the bearing 31 in the axial direction (left side in FIG. 2). Similarly, a right shim 42 that adjusts the axial position of the bearing 32 is attached to the center section housing 3a outside the bearing 32 in the axial direction (right side in FIG. 2).
 センターシャフト39は中空の略円筒部材であり、両端内周にはスプラインが形成されたシャフト嵌合部39L、39Rを有する。そして、シャフト嵌合部39L、39Rに、左後輪側クラッチ11Lと一体であって外周にスプラインを有するカップリングインプットシャフト111Lと、同様に右後輪側クラッチ11Rと一体のカップリングインプットシャフト111Rとが軸方向に沿って挿入される。これにより、シャフト嵌合部39L,39Rとカップリングインプットシャフト111L、111Rの外周とが噛み合い、センターシャフト39と、左後輪側クラッチ11L及び右後輪側クラッチ11Rとが連結される。 The center shaft 39 is a hollow, substantially cylindrical member, and has shaft fitting portions 39L and 39R formed with splines on the inner periphery of both ends. A coupling input shaft 111L that is integral with the left rear wheel side clutch 11L and has a spline on the outer periphery thereof, and a coupling input shaft 111R that is also integral with the right rear wheel side clutch 11R are connected to the shaft fitting portions 39L and 39R. Are inserted along the axial direction. As a result, the shaft fitting portions 39L and 39R mesh with the outer periphery of the coupling input shaft 111L and 111R, and the center shaft 39 is connected to the left rear wheel side clutch 11L and the right rear wheel side clutch 11R.
 左後輪側クラッチ11L及び右後輪側クラッチ11Rと、カップリングインプットシャフト111L、111Rとの間には、カップリングインプットシャフト111L、111Rよりも拡径した台座部11L1及び11R1が形成されている。台座部11L1及び11R1とセンターセクションハウジング3aとの間にはオイルシール43、44が取り付けられている。これにより、左後輪側クラッチ11L及び右後輪側クラッチ11Rの収装部が液密とされている。 Between the left rear wheel side clutch 11L and the right rear wheel side clutch 11R, and the coupling input shafts 111L and 111R, pedestal portions 11L1 and 11R1 having diameters larger than the coupling input shafts 111L and 111R are formed. . Oil seals 43 and 44 are attached between the pedestals 11L1 and 11R1 and the center section housing 3a. Thereby, the accommodation parts of the left rear wheel side clutch 11L and the right rear wheel side clutch 11R are liquid-tight.
 また、トランスファー6から車両後方へ延びるプロペラシャフト7の後端と、入力側ハイポイドギヤ12aおよび出力側ハイポイドギヤ12bより成る傘歯車式の終減速機12との間には、図示しない電子制御式カップリングが介装される。電子制御式カップリングは、多板クラッチの押付力を電子制御することで、前輪駆動トルクと後輪駆動トルクの比、つまり左右前輪1L、1Rの駆動トルクと左右後輪2L、2Rの駆動トルクとの比を変化させることができる。 Further, an electronically controlled coupling (not shown) is provided between the rear end of the propeller shaft 7 extending from the transfer 6 to the rear of the vehicle and the bevel gear type final reduction gear 12 composed of the input side hypoid gear 12a and the output side hypoid gear 12b. Intervened. The electronically controlled coupling electronically controls the pressing force of the multi-plate clutch, so that the ratio of the front wheel driving torque and the rear wheel driving torque, that is, the driving torque of the left and right front wheels 1L, 1R and the driving torque of the left and right rear wheels 2L, 2R. And the ratio can be changed.
 上記の構成により、エンジン3の回転動力の一部は、トランスファー6からプロペラシャフト7、電子制御式カップリングおよび終減速機12を介してセンターシャフト39へ伝達される。そして、左後輪側クラッチ11L及び右後輪側クラッチ11Rのそれぞれの締結力に応じて、センターシャフト39から左右後輪2L、2Rに分配される。この締結力の制御は4WDCU21が実行する。 With the above configuration, part of the rotational power of the engine 3 is transmitted from the transfer 6 to the center shaft 39 via the propeller shaft 7, the electronically controlled coupling, and the final reduction gear 12. Then, it is distributed from the center shaft 39 to the left and right rear wheels 2L, 2R according to the respective fastening forces of the left rear wheel side clutch 11L and the right rear wheel side clutch 11R. The 4WDCU 21 executes this fastening force control.
 なお、左後輪側クラッチ11Lおよび右後輪側クラッチ11Rはそれぞれ、供給電流に応じて締結力を決定される電磁式である。これらクラッチ11L、11Rの締結力がそれぞれ、後述する左右輪駆動力配分制御において算出された左右後輪2L、2Rの目標駆動力に対応した締結力となるように、クラッチ11L、11Rへの供給電流を制御する。 Note that each of the left rear wheel side clutch 11L and the right rear wheel side clutch 11R is an electromagnetic type in which the fastening force is determined according to the supply current. Supply to the clutches 11L and 11R is such that the engagement forces of the clutches 11L and 11R are the engagement forces corresponding to the target drive forces of the left and right rear wheels 2L and 2R calculated in the left and right wheel drive force distribution control described later. Control the current.
 4WDCU21は、CANの通信ライン28を介して車輪速センサ22、ヨーレート・Gセンサ23及び操舵角センサ24の検出値を読み込む。また、4WDCU21は、ENGCU25で算出するエンジン3の出力トルクTe及びエンジン回転速度と、図示しない変速機コントロールユニットで算出するトランスアクスル4の変速比と、をCANの通信ライン28を介して読み込む。 The 4WDCU 21 reads the detection values of the wheel speed sensor 22, the yaw rate / G sensor 23, and the steering angle sensor 24 via the CAN communication line 28. Further, the 4WDCU 21 reads the output torque Te and the engine rotation speed of the engine 3 calculated by the ENGCU 25 and the transmission ratio of the transaxle 4 calculated by a transmission control unit (not shown) via the CAN communication line 28.
 4WDCU21は、車両の発進性能や加速性能を向上させるために、前輪1L、1R及び後輪2L、2Rへの駆動力配分制御を実行する。4WDCU21は、基本的には主駆動輪である左右前輪1L、1Rに全駆動力を配分する。以下、この状態での走行を前輪駆動走行という。そして、左右前輪1L、1Rがスリップした場合等に、4WDCU21は左右後輪2L、2Rへ駆動力の一部を配分する。以下、この状態での走行を四輪駆動走行という。前輪1L、1R及び後輪2L、2Rへの駆動力配分は、路面状況の変化、車両の旋回状態、車輪のスリップ状態等に応じて決定する。 The 4WDCU 21 executes driving force distribution control to the front wheels 1L and 1R and the rear wheels 2L and 2R in order to improve the start performance and acceleration performance of the vehicle. The 4WDCU 21 basically distributes the total driving force to the left and right front wheels 1L and 1R which are main driving wheels. Hereinafter, traveling in this state is referred to as front wheel drive traveling. When the left and right front wheels 1L and 1R slip, etc., the 4WDCU 21 distributes a part of the driving force to the left and right rear wheels 2L and 2R. Hereinafter, traveling in this state is referred to as four-wheel drive traveling. The distribution of driving force to the front wheels 1L and 1R and the rear wheels 2L and 2R is determined according to changes in road surface conditions, vehicle turning conditions, wheel slip conditions, and the like.
 また、4WDCU21は、左右前輪1L、1Rがスリップしていなくても、車両100の旋回時には、旋回性能向上のために左右後輪2L、2Rへ駆動力を配分する。その際、4WDCU21は前後輪の駆動力配分だけでなく、左後輪側クラッチ11Lおよび右後輪側クラッチ11Rの締結力を制御することによる左右輪駆動力配分制御を実行する。例えば、旋回時に外輪への駆動力配分を高めることにより、内側へ回頭するヨーモーメントを発生させ、旋回性能を向上させる。なお、4WDCU21は、旋回に必要なヨーモーメントが大きくなるほど、後輪に伝達される駆動力が大きくなるよう制御する。 Also, even if the left and right front wheels 1L and 1R are not slipping, the 4WDCU 21 distributes the driving force to the left and right rear wheels 2L and 2R to improve the turning performance when the vehicle 100 is turning. At that time, the 4WD CU 21 executes not only front / rear wheel driving force distribution but also left / right wheel driving force distribution control by controlling the fastening force of the left rear wheel side clutch 11L and the right rear wheel side clutch 11R. For example, by increasing the distribution of driving force to the outer wheel during turning, a yaw moment that turns inward is generated, and turning performance is improved. The 4WDCU 21 performs control so that the driving force transmitted to the rear wheels increases as the yaw moment necessary for turning increases.
 さらに、4WDCU21は、旋回時における左右駆動力配分制御を、VDCCU26が実行する左右輪制動力配分制御と協調して実行することもある。左右輪制動力配分制御は、VDCCU26が実行するスタビリティ制御の一つである。スタビリティ制御(VDC:Vehicle Dynamics Control)とは、車両の挙動安定化や旋回性能向上を目的として、旋回状態に応じて左右前輪1L、1R及び左右後輪2L、2Rへの制動力配分を決定する制御である。例えば、VDCCU26は、車両挙動の安定化のために、ステアリング操舵角、車速及び横加速度等に基づいて旋回中の車両のアンダーステア傾向またはオーバーステア傾向を検出し、検出した傾向を緩和するように制動力及び制動力配分を制御する。例えば、オーバーステア傾向時には、旋回時に前後外輪に制動力をかけることで外側へ回頭させるヨーモーメントを発生させて、オーバーステアを抑制する。また、アンダーステア傾向時には、旋回時に後ろ外輪に制動力をかけることで内側へ回頭するヨーモーメントを発生させて、アンダーステアを抑制する。 Furthermore, the 4WDCU 21 may execute the left / right driving force distribution control during turning in cooperation with the left / right wheel braking force distribution control executed by the VDCCU 26. The left and right wheel braking force distribution control is one of the stability controls executed by the VDCCU 26. Stability control (VDC: Vehicles Dynamics Control) determines the distribution of braking force to the left and right front wheels 1L and 1R and the left and right rear wheels 2L and 2R in accordance with the turning state for the purpose of stabilizing vehicle behavior and improving turning performance. It is control to do. For example, the VDCCU 26 detects an understeer tendency or an oversteer tendency of a vehicle that is turning based on the steering angle, the vehicle speed, the lateral acceleration, and the like in order to stabilize the vehicle behavior, and suppresses the detected tendency. Control power and braking force distribution. For example, during an oversteer tendency, a yaw moment that turns outward by applying a braking force to the front and rear outer wheels during turning is generated to suppress oversteer. When the vehicle is understeering, a braking force is applied to the rear outer wheel during turning to generate a yaw moment that turns inward to suppress understeer.
 なお、アンダーステア傾向とは、旋回中に車両の遠心力が前輪の接地摩擦力を超えることによって、車両進行方向が旋回円の外側へ外れる旋回傾向である。オーバーステア傾向とは、旋回中に車両の遠心力が後輪の接地摩擦力を超えることによって、車両進行方向が旋回円の内側へ外れる旋回傾向である。 Note that the understeer tendency is a turning tendency in which the vehicle traveling direction deviates outside the turning circle when the centrifugal force of the vehicle exceeds the ground friction force of the front wheels during turning. The oversteer tendency is a turning tendency in which the vehicle traveling direction deviates to the inside of the turning circle due to the centrifugal force of the vehicle exceeding the ground frictional force of the rear wheel during turning.
 また、VDCCU26は、旋回性能の向上のために、ブレーキペダル踏力とは関係なく、旋回時に外輪と内輪とに異なる制動力を与えることによりヨーモーメントを発生させる左右輪制動力配分制御を実行する。例えば、アンダーステアの抑制と同様に、旋回時に後ろ外輪に制動力をかけて内側へ回答するヨーモーメントを発生させれば、旋回性能が向上する。 Also, the VDCCU 26 executes left and right wheel braking force distribution control for generating a yaw moment by applying different braking forces to the outer wheel and the inner wheel during turning, regardless of the brake pedal depression force, in order to improve turning performance. For example, as with the suppression of understeer, turning performance can be improved by generating a yaw moment that applies a braking force to the rear outer wheel and responds inward during turning.
 次に、左右輪駆動力配分制御と左右輪制動力配分制御とについて説明する。 Next, left and right wheel driving force distribution control and left and right wheel braking force distribution control will be described.
 左右制動力配分制御によれば、上記のようにアンダーステアやオーバーステアの抑制、及び旋回性能の向上を図ることができる。また、左右輪制動力配分制御では、その制御の性質上、車両は必然的に減速するので、オーバースピードで旋回を開始したときの安全性を向上できる。しかし、このような車両の減速が、運転者に違和感を与えることもある。特に、素早いステアリング操作で走行レーンの変更を行うときのように、横Gは大きくない状態で車両ヨーモーメントを左右に発生させる走行シーンで減速感を覚えることがある。 According to the left / right braking force distribution control, understeer and oversteer can be suppressed and turning performance can be improved as described above. Further, in the left and right wheel braking force distribution control, the vehicle inevitably decelerates due to the nature of the control, so that it is possible to improve the safety when turning at an overspeed. However, such deceleration of the vehicle may give the driver a feeling of strangeness. In particular, there may be a feeling of deceleration in a driving scene in which the vehicle yaw moment is generated to the left and right with the lateral G not being large, such as when the driving lane is changed by a quick steering operation.
 一方、左右輪駆動力配分制御によれば、上記のように旋回性能を向上できる。しかし、左右輪駆動力配分制御は、その制御の性質上車両が殆ど減速せず、さらに左右輪に適切な駆動力が配分されることによって駆動効率が高まるので、運転者に加速感を与える。特に、高い横Gでの旋回であるほど、この加速感に対して運転者が違和感を覚えることがある。 On the other hand, according to the left and right wheel driving force distribution control, the turning performance can be improved as described above. However, the left and right wheel driving force distribution control gives the driver a sense of acceleration because the vehicle is hardly decelerated due to the nature of the control, and the driving efficiency is increased by distributing appropriate driving force to the left and right wheels. In particular, the higher the side G is, the more the driver feels uncomfortable with this acceleration feeling.
 そこで、本実施形態では、運転者に違和感を与えることなく車両の旋回性向上を図るために、4WDCU21が左右輪駆動力配分制御と左右輪制動力配分制御とを協調して実行する。 Therefore, in this embodiment, the 4WD CU 21 executes the left and right wheel driving force distribution control and the left and right wheel braking force distribution control in a coordinated manner in order to improve the turning performance of the vehicle without giving the driver a sense of incongruity.
 図3は、4WDCU21が実行する制御ルーチンを示すフローチャートである。図中の「TV」は「Torque Vectoring」の略であり、左右輪駆動力配分制御を意味する。同じく「Brake」は左右輪制動力配分制御を意味する。以下、フローチャートのステップにしたがって説明する。 FIG. 3 is a flowchart showing a control routine executed by the 4WDCU 21. “TV” in the figure is an abbreviation of “Torque Vectoring”, and means left and right wheel driving force distribution control. Similarly, “Brake” means left and right wheel braking force distribution control. Hereinafter, it demonstrates according to the step of a flowchart.
 ステップS10で、4WDCU21は推定横加速度(以下、推定横Gともいう)を算出する。推定横Gとは、車両走行状態に基づいて推定される旋回中の横加速度である。なお、横加速度センサにより実際の横加速度を検出してもよいが、ステアリング操舵してから横加速度が発生し、センサで検出するまでの時間遅れの影響を除去するため、本実施形態においては横加速度の推定値を用いる。4WDCU21は、車輪の舵角、車速及びヨーレートを用いて推定横Gを算出する。4WDCU21は、車輪の舵角をステアリングホイールの操舵角を検出する操舵角センサ24の検出値に基づいて算出する。4WDCU21は、VDCCU26にて算出された各車輪速センサ22の検出値の平均値を車速として読み込む。4WDCU21は、ヨーレートとしてヨーレート・Gセンサ23の検出値を読み込む。これらの値に基づく推定横Gの算出方法は公知なので説明を省略する。 In step S10, the 4WD CU 21 calculates an estimated lateral acceleration (hereinafter also referred to as an estimated lateral G). The estimated lateral G is lateral acceleration during a turn estimated based on the vehicle running state. The actual lateral acceleration may be detected by a lateral acceleration sensor. However, in order to eliminate the influence of the time delay from when the steering is steered until the lateral acceleration is generated and detected by the sensor, in the present embodiment, the lateral acceleration is detected. Use an estimate of acceleration. The 4WDCU 21 calculates the estimated lateral G using the wheel steering angle, vehicle speed, and yaw rate. 4WDCU21 calculates the steering angle of a wheel based on the detected value of the steering angle sensor 24 which detects the steering angle of a steering wheel. The 4WDCU 21 reads the average value of the detection values of the wheel speed sensors 22 calculated by the VDCCU 26 as the vehicle speed. The 4WDCU 21 reads the detection value of the yaw rate / G sensor 23 as the yaw rate. Since the method for calculating the estimated lateral G based on these values is known, the description thereof is omitted.
 ステップS20で、4WDCU21は目標リヤヨーモーメントゲインを算出する。目標リヤヨーモーメントゲインとは、運転者のステアリング操舵に応じた旋回に必要なヨーモーメント(以下、目標ヨーモーメントという)を発生させるために、左右輪駆動力配分制御により発生させるヨーモーメントを車両重量等で割って算出したものである。ヨーモーメントゲインが大きいほど車両を回頭させるために必要となる力が大きくなる。 In step S20, the 4WDCU 21 calculates a target rear yaw moment gain. The target rear yaw moment gain refers to the yaw moment generated by the left and right wheel driving force distribution control in order to generate the yaw moment necessary for turning according to the steering of the driver (hereinafter referred to as the target yaw moment). It is calculated by dividing by etc. The greater the yaw moment gain, the greater the force required to turn the vehicle.
 ステップS30で、4WDCU21は図4に示す制御マップに基づいて左右輪駆動力配分制御領域と左右輪制動力配分制御領域について規定する。目標とする横Gが大きい場合は、必要なヨーモーメントも大きくなるが、所定値以上のヨーモーメントの付与は旋回中の車両安定性を低下させる可能性があるため、制御マップは旋回性能と車両安定性を両立するように設定している。例えば、推定横Gが0.8Gで、目標ヨーモーメントゲインが0.4のとき、制御マップより左右輪駆動力配分制御と左右輪制動力配分制御の両制御を行うため、ステップS40の処理を実行する。例えば、推定横Gが0.3Gで、目標ヨーモーメントゲインが0.2のとき、制御マップより左右輪駆動力配分制御のみを行うため、後述するステップS50の処理を実行する。 In step S30, the 4WD CU 21 defines the left and right wheel driving force distribution control region and the left and right wheel braking force distribution control region based on the control map shown in FIG. When the target lateral G is large, the necessary yaw moment also increases. However, since giving a yaw moment greater than a predetermined value may reduce the vehicle stability during the turn, the control map shows the turning performance and the vehicle. It is set to achieve both stability. For example, when the estimated lateral G is 0.8 G and the target yaw moment gain is 0.4, both the left and right wheel driving force distribution control and the left and right wheel braking force distribution control are performed from the control map. Execute. For example, when the estimated lateral G is 0.3 G and the target yaw moment gain is 0.2, only the left and right wheel driving force distribution control is performed based on the control map.
 ステップS40で、4WDCU21は左右輪駆動力配分制御と左右輪制動力配分制御とを協調して実行することを決定する。そして、ステップS60で、4WDCU21は左右輪駆動力配分制御で発生させるヨーモーメントと左右輪制動力配分制御で発生させるヨーモーメントとの配分を設定する。 In step S40, the 4WDCU 21 determines to execute the left and right wheel driving force distribution control and the left and right wheel braking force distribution control in a coordinated manner. In step S60, the 4WD CU 21 sets the distribution between the yaw moment generated by the left and right wheel driving force distribution control and the yaw moment generated by the left and right wheel braking force distribution control.
 4WDCU21は、目標ヨーモーメントと実際のヨーモーメントヨーレートとの差を解消するために左右後輪2L、2Rへの駆動力配分で発生させるべきヨーモーメント(目標リヤヨーモーメント)を算出する。具体的には、4WDCU21は、まずエンジン回転速度、吸入空気量及びトランスアクスル4内の変速機のシフトポジションに基づいて、電子制御式カップリングを介して左右後輪2L、2Rに伝達される駆動力を算出する。次に、4WDCU21は、車速とステアリング操舵角とに基づいて運転者のステアリング操舵に応じた旋回を行う場合の目標ヨーモーメントを算出する。そして、4WDCU21は、目標ヨーモーメントと実際のヨーモーメントとの差を解消するために左右後輪2L、2Rへの駆動力配分で発生させるべきヨーモーメント(目標リヤヨーモーメント)を算出する。 The 4WDCU 21 calculates a yaw moment (target rear yaw moment) to be generated by distributing the driving force to the left and right rear wheels 2L, 2R in order to eliminate the difference between the target yaw moment and the actual yaw moment yaw rate. Specifically, the 4WDCU 21 first transmits the drive to the left and right rear wheels 2L, 2R via the electronically controlled coupling based on the engine speed, the intake air amount, and the shift position of the transmission in the transaxle 4. Calculate the force. Next, the 4WDCU 21 calculates a target yaw moment when performing a turn according to the steering of the driver based on the vehicle speed and the steering angle. Then, the 4WDCU 21 calculates a yaw moment (target rear yaw moment) to be generated by distributing the driving force to the left and right rear wheels 2L, 2R in order to eliminate the difference between the target yaw moment and the actual yaw moment.
 なお、車速変化や車両の横滑りといった要因で復元ヨーモーメントが変化することで、上記のように算出した目標リヤヨーモーメントが復元ヨーモーメントに対して過剰に大きくなり、制御性が不安定になる場合がある。これを防止するために、ステアリング操舵角速度と横加速度変化率とに基づいて上記目標リヤヨーモーメントを補正してもよい。また、旋回中に車輪がスリップすることで車体挙動が乱れる場合がある。そこで、旋回中の車輪のスリップ率に基づいて左右後輪2L、2Rへの駆動力配分を補正してもよい。 If the restored yaw moment changes due to factors such as changes in vehicle speed or vehicle skidding, the target rear yaw moment calculated as described above becomes excessively large relative to the restored yaw moment, resulting in unstable controllability. There is. In order to prevent this, the target rear yaw moment may be corrected based on the steering steering angular velocity and the lateral acceleration change rate. Further, the vehicle body behavior may be disturbed due to slipping of the wheel during turning. Therefore, the driving force distribution to the left and right rear wheels 2L and 2R may be corrected based on the slip ratio of the turning wheel.
 左右輪駆動力配分制御で発生させるヨーモーメントと左右輪制動力配分制御で発生させるヨーモーメントとの配分は、目標リヤヨーモーメントが大きくなるほど左右輪制動力配分制御で発生させるヨーモーメントが大きくなるように設定する。具体的な配分は、車両100のホイールベース等の仕様により異なるため、車両の仕様毎に適合により設定する。 The distribution of the yaw moment generated by the left and right wheel driving force distribution control and the yaw moment generated by the left and right wheel braking force distribution control is such that the yaw moment generated by the left and right wheel braking force distribution control increases as the target rear yaw moment increases. Set to. The specific distribution differs depending on the specifications of the vehicle 100 such as the wheel base, and therefore is set according to the specification of each vehicle.
 一方、ステップS50で4WDCU21は、左右輪駆動力配分制御のみで目標リヤヨーモーメントを発生させるように、左右輪2L、2Rの駆動力配分を設定する。 On the other hand, in step S50, the 4WDCU 21 sets the driving force distribution of the left and right wheels 2L and 2R so as to generate the target rear yaw moment only by the left and right wheel driving force distribution control.
 次に、本実施形態による作用効果について説明する。 Next, the function and effect of this embodiment will be described.
 本実施形態では、左右後輪駆動力配分ユニット(左右輪駆動力配分機構)8と、ブレーキ機構(左右輪制動力配分機構)10と、を備える車両100のヨーモーメントを制御する4WDCU(ヨーモーメント制御装置)21が提供される。4WDCU21は、車両の旋回中に発生する横加速度が予め設定した所定横加速度より小さい場合は、左右後輪駆動力配分ユニット8だけで車両の旋回に必要なヨーモーメントを発生させる。つまり、横加速度が小さい旋回では、左右輪駆動力配分制御で対応して積極的に旋回するので、車両が減速することがなく、運転者に違和感を与えることがない。 In the present embodiment, a 4WDCU (yaw moment) that controls the yaw moment of a vehicle 100 that includes a left and right rear wheel driving force distribution unit (left and right wheel driving force distribution mechanism) 8 and a brake mechanism (left and right wheel braking force distribution mechanism) 10. A control device 21 is provided. When the lateral acceleration generated during the turning of the vehicle is smaller than a predetermined lateral acceleration set in advance, the 4WDCU 21 generates a yaw moment necessary for the turning of the vehicle using only the left and right rear wheel driving force distribution unit 8. That is, in a turn with a small lateral acceleration, the vehicle does not decelerate and does not give the driver a sense of incongruity because the vehicle actively turns in response to the left and right wheel driving force distribution control.
 本実施形態では、車両100の旋回中に発生する横加速度が所定横加速度以上の場合は、左右後輪駆動力配分ユニット8と、ブレーキ機構10とを用いて車両の旋回に必要なヨーモーメントを発生させる。横加速度が大きい旋回では、左右輪制動力配分制御も併せて行うので、過剰な加速感を運転者に与えることなく、かつ減速することもなく旋回することができる。 In the present embodiment, when the lateral acceleration generated during turning of the vehicle 100 is equal to or greater than a predetermined lateral acceleration, the yaw moment necessary for turning the vehicle is obtained using the left and right rear wheel driving force distribution unit 8 and the brake mechanism 10. generate. In turning with a large lateral acceleration, the left and right wheel braking force distribution control is also performed, so that the driver can turn without giving an excessive feeling of acceleration to the driver and without decelerating.
 なお、上記実施形態では、湿式多板クラッチ式の左右後輪駆動力配分ユニット8を用いて左右後輪2L、2Rへの駆動力配分を制御する場合について説明したが、これに限られるわけではない。例えば、前輪に左右動力配分機構を備える構成でもよいし、左右後輪2L、2Rにそれぞれ電動モータを備え、各電動モータの駆動力を制御する構成でもよい。 In the above-described embodiment, the case where the driving force distribution to the left and right rear wheels 2L and 2R is controlled using the wet multi-plate clutch type left and right rear wheel driving force distribution unit 8 is described, but the present invention is not limited to this. Absent. For example, a configuration in which the left and right power distribution mechanism is provided on the front wheels, or an electric motor in each of the left and right rear wheels 2L and 2R, and a driving force of each electric motor may be controlled.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.

Claims (3)

  1.  車両の左右輪の駆動力配分を変更する左右輪駆動力配分機構と、
     車両の左右輪の制動力配分を変更する左右輪制動力配分機構と、
    を備える車両のヨーモーメントを制御するヨーモーメント制御装置において、
     前記車両の旋回中に発生する横加速度が予め設定した所定横加速度より小さい場合は、前記左右輪駆動力配分機構だけで車両の旋回に必要なヨーモーメントを発生させるヨーモーメント制御装置。
    A left and right wheel driving force distribution mechanism for changing the driving force distribution of the left and right wheels of the vehicle;
    Left and right wheel braking force distribution mechanism for changing the braking force distribution of the left and right wheels of the vehicle;
    In a yaw moment control device for controlling the yaw moment of a vehicle comprising:
    A yaw moment control device for generating a yaw moment necessary for turning of a vehicle only by the left and right wheel driving force distribution mechanism when a lateral acceleration generated during the turning of the vehicle is smaller than a predetermined lateral acceleration set in advance.
  2.  請求項1に記載のヨーモーメント制御装置において、
     前記車両の旋回中に発生する横加速度が前記所定横加速度以上の場合は、前記左右輪駆動力配分機構と前記左右輪制動力配分機構とを用いて車両の旋回に必要なヨーモーメントを発生させるヨーモーメント制御装置。
    In the yaw moment control device according to claim 1,
    When the lateral acceleration generated during the turning of the vehicle is equal to or greater than the predetermined lateral acceleration, the yaw moment necessary for the turning of the vehicle is generated using the left and right wheel driving force distribution mechanism and the left and right wheel braking force distribution mechanism. Yaw moment control device.
  3.  車両の左右輪の駆動力配分を変更する左右輪駆動力配分機構と、
     車両の左右輪の制動力配分を変更する左右輪制動力配分機構と、
    を備える車両のヨーモーメントを制御するヨーモーメント制御方法において、
     前記車両の旋回中に発生する横加速度が予め設定した所定横加速度より小さい場合は、前記左右輪駆動力配分機構だけで車両の旋回に必要なヨーモーメントを発生させるヨーモーメント制御方法。
    A left and right wheel driving force distribution mechanism for changing the driving force distribution of the left and right wheels of the vehicle;
    Left and right wheel braking force distribution mechanism for changing the braking force distribution of the left and right wheels of the vehicle;
    In a yaw moment control method for controlling a yaw moment of a vehicle comprising:
    A yaw moment control method for generating a yaw moment necessary for turning of a vehicle only by the left and right wheel driving force distribution mechanism when a lateral acceleration generated during the turning of the vehicle is smaller than a predetermined lateral acceleration set in advance.
PCT/JP2015/064796 2015-05-22 2015-05-22 Yaw moment control device and yaw moment control method WO2016189592A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/064796 WO2016189592A1 (en) 2015-05-22 2015-05-22 Yaw moment control device and yaw moment control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/064796 WO2016189592A1 (en) 2015-05-22 2015-05-22 Yaw moment control device and yaw moment control method

Publications (1)

Publication Number Publication Date
WO2016189592A1 true WO2016189592A1 (en) 2016-12-01

Family

ID=57393877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064796 WO2016189592A1 (en) 2015-05-22 2015-05-22 Yaw moment control device and yaw moment control method

Country Status (1)

Country Link
WO (1) WO2016189592A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164926A (en) * 1993-12-17 1995-06-27 Mazda Motor Corp Driving force distribution control device of automobile
JP2006117177A (en) * 2004-10-25 2006-05-11 Mitsubishi Motors Corp Turning behavior controller for vehicle
JP2007131229A (en) * 2005-11-11 2007-05-31 Mitsubishi Motors Corp Turning behavior controller for vehicle
JP2008044555A (en) * 2006-08-18 2008-02-28 Honda Motor Co Ltd Yaw moment controller for vehicle
JP2009012707A (en) * 2007-07-09 2009-01-22 Mitsubishi Motors Corp Turning behavior controller for vehicle
JP2010156274A (en) * 2008-12-26 2010-07-15 Toyota Motor Corp Drive control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164926A (en) * 1993-12-17 1995-06-27 Mazda Motor Corp Driving force distribution control device of automobile
JP2006117177A (en) * 2004-10-25 2006-05-11 Mitsubishi Motors Corp Turning behavior controller for vehicle
JP2007131229A (en) * 2005-11-11 2007-05-31 Mitsubishi Motors Corp Turning behavior controller for vehicle
JP2008044555A (en) * 2006-08-18 2008-02-28 Honda Motor Co Ltd Yaw moment controller for vehicle
JP2009012707A (en) * 2007-07-09 2009-01-22 Mitsubishi Motors Corp Turning behavior controller for vehicle
JP2010156274A (en) * 2008-12-26 2010-07-15 Toyota Motor Corp Drive control device

Similar Documents

Publication Publication Date Title
US6076033A (en) Process for controlling yaw moment in vehicle
CN105365816B (en) The control device and control method of differential limiting device
JP5133686B2 (en) Powertrain and powertrain control method
JP4798012B2 (en) Control device for differential limiting device for vehicle
JP6662368B2 (en) Control device for four-wheel drive vehicle
JP5246351B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP7159768B2 (en) Driving control device for four-wheel drive vehicle
JP6836196B2 (en) Control device for four-wheel drive vehicles
KR101561813B1 (en) Control apparatus for vehicular drive system
JP2010173523A (en) Drive control device for front engine-front drive vehicle
JP2010164080A (en) Drive control device for vehicle
JP2020016314A (en) Behavior control device of four-wheel drive vehicle
JP2020192962A (en) Four-wheel drive car
JP2003104186A (en) Acceleration slip control device for four-wheel drive vehicle
US10731753B2 (en) All-wheel drive-vehicle controller
WO2016189592A1 (en) Yaw moment control device and yaw moment control method
WO2014103474A1 (en) Vehicle control device
JP4730543B2 (en) Vehicle driving force distribution control device
JP2007261484A (en) Driving force distribution controller for vehicle
JP2013019522A (en) Vehicle control device
JP5299368B2 (en) Vehicle left and right wheel driving force distribution control device
JPH0635259B2 (en) Vehicle drive system clutch control device
JP6141751B2 (en) Driving force distribution control device
JPH04151333A (en) Driving force controller
US11155162B2 (en) Travel control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP