WO2016189222A1 - Ensemble d'anneau de turbine avec maintien par crabotage - Google Patents

Ensemble d'anneau de turbine avec maintien par crabotage Download PDF

Info

Publication number
WO2016189222A1
WO2016189222A1 PCT/FR2016/051167 FR2016051167W WO2016189222A1 WO 2016189222 A1 WO2016189222 A1 WO 2016189222A1 FR 2016051167 W FR2016051167 W FR 2016051167W WO 2016189222 A1 WO2016189222 A1 WO 2016189222A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
annular
flange
turbine
support structure
Prior art date
Application number
PCT/FR2016/051167
Other languages
English (en)
Inventor
Lucien Henri Jacques QUENNEHEN
Sébastien Serge Francis CONGRATEL
Original Assignee
Safran Aircraft Engines
Herakles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines, Herakles filed Critical Safran Aircraft Engines
Priority to EP16726368.0A priority Critical patent/EP3298245B1/fr
Priority to US15/575,137 priority patent/US10858958B2/en
Priority to CN201680030536.5A priority patent/CN107810310B/zh
Publication of WO2016189222A1 publication Critical patent/WO2016189222A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]

Definitions

  • the invention relates to a turbine ring assembly for a turbomachine, which assembly comprises a plurality of one-piece ceramic matrix composite ring sectors and a ring support structure.
  • the field of application of the invention is in particular that of aeronautical gas turbine engines.
  • the invention is however applicable to other turbomachines, for example industrial turbines.
  • Ceramic matrix composite materials are known for their good mechanical properties that make them suitable for constituting structural elements, and for their ability to retain these properties at high temperatures.
  • the ring sectors comprise an annular base whose inner face defines the inner face of the turbine ring and an outer face from which two leg portions extend. whose ends are engaged in housings of a metal ring support structure.
  • the flanges of the ring support structure may no longer be in contact with the legs of the sectors or, at contrary, exert too much stress on the legs of the sectors, which can damage them.
  • the invention aims to avoid such drawbacks and proposes for this purpose a turbine ring assembly comprising a plurality of ring sectors of ceramic matrix composite material forming a turbine ring and a ring support structure integral with a turbine casing and having two annular flanges, each ring sector having an annular base portion with an inner face defining the inner face of the turbine ring and an outer face from which extend radially two legs the tabs of each ring sector being held between the two annular flanges of the ring support structure, the ring support structure comprising an annular retention flange mounted on the turbine housing, the annular retention flange having an annular web forming one of the flanges of the ring support structure, both annular flanges of the ring-supporting structure exerting a stress on the legs of the ring sectors, at least one of the flanges of the ring-supporting structure being elastically deformable in the axial direction of the turbine ring, characterized in that the flange comprises a first series
  • connection by interconnection allows easy assembly and disassembly of ring sectors.
  • the contact between the flanges of the ring support structure and the tabs of the ring sectors can be maintained independently of temperature variations.
  • the ring sectors can be mounted between the flanges with a "cold" prestressing, so that the contact between the ring sectors and the flanges is assured regardless of the temperature conditions.
  • the flexibility of at least one of the flanges of the ring support structure allows its deformation to accommodate the differential thermal expansion between the ring sectors and the flanges so as to avoid exerting too much stress on the ring sectors.
  • the turbine casing comprises an annular boss extending between a shell of the casing and the flange of the ring structure. This prevents upstream-downstream leakage between the housing and the flange.
  • At least one of the annular flanges of the ring support structure comprises a lip on its face facing the tabs of the ring sectors.
  • the presence of a lip on a flange facilitates the definition of the contact portion between the flange of the ring support structure and the tabs of the ring sectors facing it.
  • the turbine ring assembly according to the invention, it further comprises a first plurality of pins engaged both in one of the annular flanges of the ring support structure and the tabs of the ring sectors facing said annular flange, and a second plurality of pins engaged both in the other annular flange of the ring support structure and the legs of the ring sectors facing said other annular flange.
  • the pins make it possible to block the possible rotation of the ring sectors in the ring support structure and to hold them radially in said structure.
  • each elastically deformable flange of the ring support structure has a thickness less than that of the other flange of said ring support structure.
  • the present invention also relates to a method for producing a turbine ring assembly comprising:
  • each ring sector having an annular base portion with an inner face defining the inner face of a turbine ring and an outer face from of which radially extend first and second legs,
  • a ring support structure comprising a first annular flange integral with a turbine casing and an annular retention flange comprising a second annular flange, said flange being intended to be assembled with the turbine casing
  • the turbine casing comprises an annular boss extending between a shell of said casing and the flange of the ring structure.
  • At least one of the annular flanges of the ring support structure comprises a lip on its face facing the legs of the sectors of the invention. ring.
  • a third aspect of the method of making a turbine ring assembly it further comprises engaging a first plurality of pins in both the first annular flange of the ring support and the first tabs of the ring sectors during assembly of said first tabs and, after assembly by interconnection of the annular retention flange, the engagement of a second plurality of pins in both the second annular flange and the second legs of the ring sectors.
  • the elastically deformable flange of the ring support structure has a thickness less than that of the other flange of said support structure. ring.
  • FIG. 1 is a radial half-sectional view showing an embodiment of a turbine ring assembly according to the invention
  • FIG. 2 to 6 show schematically the mounting of a ring sector in the ring support structure of the ring assembly of Figure 1;
  • FIG. 7 is a schematic perspective view of the flange of Figures 1, 3, 4 and 5. Detailed description of embodiments
  • FIG. 1 shows a high pressure turbine ring assembly comprising a turbine ring 1 made of ceramic matrix composite material (CMC) and a metal ring support structure 3.
  • the turbine ring 1 surrounds a set of blades 5.
  • the turbine ring 1 is formed of a plurality of ring sectors 10, Figure 1 being a radial sectional view along a plane passing between two sectors of contiguous rings.
  • the arrow DA indicates the axial direction with respect to the turbine ring 1 while the arrow DR indicates the radial direction with respect to the turbine ring 1.
  • Each ring sector 10 has a substantially inverted ⁇ -shaped section with an annular base 12 whose inner face coated with a layer 13 of abradable material and / or a thermal barrier defines the flow stream of gaseous flow in the turbine.
  • Upstream and downstream tabs 14, 16 extend from the outer face of the annular base 12 in the radial direction DR.
  • upstream and downstream are used herein with reference to the flow direction of the gas flow in the turbine (arrow F).
  • the ring support structure 3 is formed of two parts, namely a first part corresponding to an annular upstream radial flange 32 which is preferably formed integrally with a turbine casing 30 and a second part corresponding to an annular retention flange 50 mounted on the turbine casing 30.
  • the annular upstream radial flange 32 comprises a lip 34 on its face opposite the upstream lugs 14 of the ring sectors 10, the lip 34 being supported on the outer face 14a of the upstream lugs 14
  • the flange 50 comprises an annular web 57 which forms an annular downstream radial flange 54 having a lip 55 on its opposite side of the downstream tabs 16 of the ring sectors 10, the lip 55 being supported on the face 16.
  • the flange 50 comprises an annular body 51 extending axially and comprising, on the upstream side, the annular web 57 and, on the downstream side, a first series of teeth 52 distributed from one side to the other. circumferentially on the flange 50 and spaced from each other by first engagement passages 53 ( Figures 4 and 7).
  • the turbine casing 30 comprises on the downstream side a second series of teeth 35 extending radially from the inner surface of the ferrule 38 of the turbine casing 30.
  • the teeth 35 are circumferentially distributed on the inner surface 38a of the ferrule 38 and spaced from each other by second engagement passages 36 (Fig. 4).
  • the teeth 52 and 35 cooperate with each other to form a circumferential clutch.
  • the lugs 14 and 16 of each ring sector 10 are preloaded between the annular flanges 32 and 54 so that the flanges exert, at least "cold", it is that is to say at an ambient temperature of about 20 ° C, but also at all operating temperatures of the turbine, a stress on the lugs 14 and 16 and thus a tightening of the sectors by the flanges.
  • This constraint is maintained at all temperatures at which the ring assembly can be subjected during operation of the turbine and is controlled, that is to say without over-stressing the ring sectors, thanks to the presence of less an elastically deformable flange as explained above.
  • the ring sectors 10 are further maintained by blocking pins. More precisely and as illustrated in FIG. 1, pins 40 are engaged both in the annular upstream radial flange 32 of the ring support structure 3 and in the upstream lugs 14 of the ring sectors 10. For this purpose , the pins 40 each respectively pass through an orifice 33 formed in the annular upstream radial flange 32 and an orifice 15 formed in each upstream lug 14, the orifices 33 and 15 being aligned during the assembly of the ring sectors 10 on the support structure Likewise, pins 41 are engaged both in the annular downstream radial flange 54 of the flange 50 and in the downstream lugs 16 of the ring sectors 10.
  • the pins 41 each pass through a respective orifice 56 formed in the annular downstream radial flange 54 and an orifice 17 formed each downstream lug 16, the orifices 56 and 17 being aligned during mounting of the ring sectors 10 on the ring support structure 3.
  • FIG. production pions having a length greater than or equal to the distance between the two flanges may be used.
  • each peg passes through the orifices present on the two flanges of the ring structure and on the two lugs of the ring sectors.
  • a tongue 22a extends over almost the entire length of the annular base 12 in the middle portion thereof.
  • Another tab 22b extends along the tab 14 and on a portion of the annular base 12.
  • Another tab 22c extends along the tab 16. At one end, the tab 22c abuts the tab 22a and on the tongue 22b.
  • the tongues 22a, 22b, 22c are for example metallic and are mounted with cold play in their housings to ensure the sealing function at the temperatures encountered in service.
  • this assembly is carried out at a distance from the hot face of the annular base 12 exposed to the gas flow,
  • the tabs 14, 16 advantageously have a relatively large radial section relative to their average thickness so that an effective thermal decoupling is obtained between the annular base 12 and the ends of the tabs 14, 16, and
  • one of the flanges of the ring structure is elastically deformable, which makes it possible to compensate for the differential expansions between the tabs of the CMC ring sectors and the flanges of the metal ring support structure without significantly increasing the stress exerted "cold" by the flanges on the legs of the ring sectors.
  • Ventperes 32a formed in the flange 32 make it possible to supply cooling air to the outside of the turbine ring 10.
  • sealing between the upstream and downstream of the turbine ring assembly is provided by an annular boss 31 extending radially from the inner surface 38a of the shell 38 of the turbine housing 3 and the free end in contact with the surface of the body 51 of the flange 50.
  • Each ring sector 10 described above is made of ceramic matrix composite material (CMC) by forming a fibrous preform having a shape close to that of the ring sector and densification of the ring sector by a ceramic matrix .
  • CMC ceramic matrix composite material
  • ceramic fiber yarns for example SiC fiber yarns, such as those marketed by the Japanese company Nippon Carbon under the name "Nicalon”, or carbon fiber yarns.
  • the fiber preform is advantageously made by three-dimensional weaving, or multilayer weaving with development of debonding zones to separate the preform portions corresponding to the tabs 14 and 16 of the sectors 10.
  • the weave can be interlock type, as illustrated.
  • Other weaves of three-dimensional weave or multilayer can be used as for example multi-web or multi-satin weaves.
  • the blank After weaving, the blank can be shaped to obtain a ring sector preform which is consolidated and densified by a ceramic matrix, the densification can be achieved in particular by chemical vapor infiltration (CVI) or an MI process ( "Melt Infiltrated", liquid silicon introduced into the fibrous preform by capillarity, the preform being previously consolidated by a CVI phase) which are well known per se.
  • CVI chemical vapor infiltration
  • MI process "Melt Infiltrated", liquid silicon introduced into the fibrous preform by capillarity, the preform being previously consolidated by a CVI phase
  • the ring support structure 3 is made of a metallic material such as inconel, the C263 superalloy or Waspaloy®.
  • the realization of the turbine ring assembly is continued by mounting the ring sectors 10 on the ring support structure 3. As shown in FIGS. 2 and 4, the ring sectors 10 are first fixed by their upstream lug 14 to the annular upstream radial flange 32 of the ring support structure 3 by pins 40 which are engaged in the aligned orifices 33 and 15 formed respectively in the annular upstream radial flange 32 and in the leg upstream 14.
  • the assembly is interconnected by clutching.
  • the gap E between the annular upstream radial flange 54 formed by the annular web 57 of the flange 50 and the outer surface 52a of the teeth 52 of said flange is smaller than the distance D present between the outer face 16a of the downstream lugs 16 of the ring sectors and the inner face 35b of the teeth 35 present on the turbine casing 30.
  • the gap E is measured between the lip 55 at the end of the annular flange 54 and the outer surface 52a of the teeth 52.
  • the spacing is measured between the internal face of the flange present on the flange which will be in contact with the external surface of the downstream legs of the ring sectors and the surf external ace of the flange teeth.
  • the ring support structure comprises at least one annular flange which is elastically deformable in the axial direction DA of the invention. 'ring.
  • the annular downstream radial flange 54 present on the flange 50 which is elastically deformable.
  • the annular web 57 forming the annular downstream radial flange 54 of the ring support structure 3 has a small thickness, for example less than 2.5 mm, which gives it a certain elasticity.
  • the flange 50 is mounted on the turbine casing 30 by placing the teeth 52 present on the flange 50 vis-à-vis the engagement passages 36 formed on the turbine casing 30, the teeth 35 present on said turbine casing being also placed vis-à-vis the engagement passages 53 formed between the teeth 52 on the flange 50.
  • the distance E being less than the distance D, it is necessary to apply an axial force FA to the flange 50 in the direction indicated in Figure 6 to engage the teeth 52 to- beyond the teeth 35 and allow a rotation R of the flange at an angle corresponding substantially to the width of the teeth 35 and 52. After this rotation, the flange 50 is released, the latter then being maintained in axial stress between the upstream tabs 16 of the sectors ring 10 and the inner surface 35b of the teeth 35 of the turbine casing 30.
  • Each ring sector lug 14 or 16 may comprise a or several ports for the passage of a blocking pin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Un ensemble d'anneau de turbine comprend une pluralité de secteurs d'anneau (10) en matériau composite à matrice céramique formant un anneau de turbine (1) et une structure de support d'anneau (3) solidaire d'un carter de turbine (30) et comportant deux brides annulaires (32, 54), chaque secteur d'anneau (10) ayant deux pattes (14, 16) maintenues entre les deux brides annulaires (32, 36) de la structure de support d'anneau (3). La structure de support d'anneau comprend un flasque annulaire de rétention monté sur le carter de turbine, le flasque annulaire de rétention comportant un voile annulaire formant une (36) des brides de la structure de support d'anneau. Les deux brides annulaires (32, 54) de la structure de support d'anneau (3) exercent une contrainte sur les pattes (14, 16) des secteurs d'anneau (10). Une (54) des brides de la structure de support d'anneau (3) est élastiquement déformable dans la direction axiale (DA) de l'anneau de turbine (1). Le flasque comprend une première série de dents (52) réparties de manière circonférentielle sur ledit flasque tandis que le carter de turbine comprend une deuxième série de dents (35) réparties de manière circonférentielle sur ledit carter et en ce que les dents de la première série de dents et les dents de la deuxième série de dents forment un crabotage circonférentiel.

Description

Ensemble d'anneau de turbine avec maintien par crabotage
Arrière-plan de l'invention
L'invention concerne un ensemble d'anneau de turbine pour une turbomachine, lequel ensemble comprend une pluralité de secteurs d'anneau en une seule pièce en matériau composite à matrice céramique et une structure de support d'anneau.
Le domaine d'application de l'invention est notamment celui des moteurs aéronautiques à turbine à gaz. L'invention est toutefois applicable à d'autres turbomachines, par exemple des turbines industrielles.
Les matériaux composites à matrice céramique, ou CMC, sont connus pour leurs bonnes propriétés mécaniques qui les rendent aptes à constituer des éléments de structure, et pour leur capacité à conserver ces propriétés à des températures élevées.
Dans des moteurs aéronautiques à turbine à gaz, l'amélioration du rendement et la réduction des émissions polluantes conduisent à rechercher un fonctionnement à des températures toujours plus élevées. Dans le cas d'ensembles d'anneau de turbine entièrement métalliques, il est nécessaire de refroidir tous les éléments de l'ensemble et en particulier l'anneau de turbine qui est soumis à des flux hautes températures. Ce refroidissement a un impact significatif sur la performance du moteur puisque le flux de refroidissement utilisé est prélevé sur le flux principal du moteur. En outre, l'utilisation de métal pour l'anneau de turbine limite les possibilités d'augmenter la température au niveau de la turbine, ce qui permettrait pourtant d'améliorer les performances des moteurs aéronautiques.
L'utilisation de CMC pour différentes parties chaudes de tels moteurs a déjà été envisagée, d'autant que les CMC ont une masse volumique inférieure à celle de métaux réfractaires traditionnellement utilisés.
Ainsi, la réalisation de secteurs d'anneau de turbine en une seule pièce en CMC est notamment décrite dans le document US 2012/0027572. Les secteurs d'anneau comportent une base annulaire dont la face interne définit la face interne de l'anneau de turbine et une face externe à partir de laquelle s'étendent deux parties formant pattes dont les extrémités sont engagées dans des logements d'une structure métallique de support d'anneau.
L'utilisation de secteurs d'anneau en CMC permet de réduire significativement la ventilation nécessaire au refroidissement de l'anneau de turbine. Toutefois, l'étanchéité entre la veine d'écoulement gazeux du côté intérieur des secteurs d'anneau et le côté extérieur des secteurs d'anneau demeure un problème. En effet, afin d'assurer une bonne étanchéité, il faut pouvoir assurer un bon contact entre les pattes des secteurs d'anneau en CMC et les brides métalliques de la structure de support d'anneau. Or, les dilatations différentielles entre le métal de la structure de support d'anneau et le CMC des secteurs d'anneau complique le maintien de l'étanchéité entre ces éléments. Ainsi, lors de dilatations différentielles et suivant la géométrie de montage des secteurs d'anneau sur la structure de support d'anneau, les brides de la structure de support d'anneau peuvent ne plus être en contact avec les pattes des secteurs ou, au contraire, exercer une contrainte trop forte sur les pattes des secteurs, ce qui peut les endommager.
En outre, comme décrit dans le document US 2012/0027572, le maintien des secteurs d'anneau sur la structure de support d'anneau nécessite l'utilisation d'une pince à section en U, ce qui complexifie le montage des secteurs et augmente le coût de l'ensemble.
Obiet et résumé de l'invention
L'invention vise à éviter de tels inconvénients et propose à cet effet un ensemble d'anneau de turbine comprenant une pluralité de secteurs d'anneau en matériau composite à matrice céramique formant un anneau de turbine et une structure de support d'anneau solidaire d'un carter de turbine et comportant deux brides annulaires, chaque secteur d'anneau ayant une partie formant base annulaire avec une face interne définissant la face interne de l'anneau de turbine et une face externe à partir de laquelle s'étendent radialement deux pattes, les pattes de chaque secteur d'anneau étant maintenues entre les deux brides annulaires de la structure de support d'anneau, la structure de support d'anneau comprenant un flasque annulaire de rétention monté sur le carter de turbine, le flasque annulaire de rétention comportant un voile annulaire formant une des brides de la structure de support d'anneau, les deux brides annulaires de la structure de support d'anneau exerçant une contrainte sur les pattes des secteurs d'anneau, au moins une des brides de la structure de support d'anneau étant élastiquement déformable dans la direction axiale de l'anneau de turbine, caractérisé en ce que le flasque comprend une première série de dents réparties de manière circonférentielle sur ledit flasque tandis que le carter de turbine comprend une deuxième série de dents réparties de manière circonférentielle sur ledit carter, les dents de la première série de dents et les dents de la deuxième série de dents formant un crabotage circonférentiel.
Cette liaison par crabotage permet un montage et un démontage aisé des secteurs d'anneau.
En outre, grâce à la présence d'au moins une bride élastiquement déformable, le contact entre les brides de la structure de support d'anneau et les pattes des secteurs d'anneau peut être maintenu indépendamment des variations de température. En effet, les secteurs d'anneau peuvent être montés entre les brides avec une précontrainte « à froid », de sorte que le contact entre les secteurs d'anneau et les brides soit assuré quelles que soient les conditions de température. La souplesse d'au moins une des brides de la structure de support d'anneau permet par sa déformation d'accommoder les dilatations thermiques différentielles entre les secteurs d'anneau et les brides de manière à éviter d'exercer une contrainte trop importante sur les secteurs d'anneau.
Selon un premier aspect de l'ensemble d'anneau de turbine selon l'invention, le carter de turbine comprend un bossage annulaire s'étendant entre une virole du carter et le flasque de la structure d'anneau. On empêche ainsi les fuites amont-aval entre le carter et le flasque.
Selon un deuxième aspect de l'ensemble d'anneau de turbine selon l'invention, au moins une des brides annulaires de la structure de support d'anneau comporte une lèvre sur sa face en regard des pattes des secteurs d'anneau. La présence d'une lèvre sur une bride permet de faciliter la définition de la portion de contact entre la bride de la structure de support d'anneau et les pattes des secteurs d'anneau en regard de celle-ci.
Selon un troisième aspect de l'ensemble d'anneau de turbine selon l'invention, celui-ci comprend en outre une première pluralité de pions engagés à la fois dans une des brides annulaires de la structure de support d'anneau et les pattes des secteurs d'anneau en regard de ladite bride annulaire, et une deuxième pluralité de pions engagés à la fois dans l'autre bride annulaire de la structure de support d'anneau et les pattes des secteurs d'anneau en regard de ladite autre bride annulaire. Les pions permettent de bloquer la rotation éventuelle des secteurs d'anneau dans la structure de support d'anneau et de les maintenir radialement dans ladite structure.
Selon un quatrième aspect de l'ensemble d'anneau de turbine selon l'invention, chaque bride élastiquement déformable de la structure de support d'anneau présente une épaisseur inférieure à celle de l'autre bride de ladite structure de support d'anneau.
La présente invention a également pour objet un procédé de réalisation d'un ensemble d'anneau de turbine comprenant :
- la fabrication d'une pluralité de secteurs d'anneau en matériau composite à matrice céramique, chaque secteur d'anneau ayant une partie formant base annulaire avec une face interne définissant la face interne d'un anneau de turbine et une face externe à partir de laquelle s'étendent radialement des première et deuxième pattes,
- la fabrication d'une structure de support d'anneau comprenant une première bride annulaire solidaire d'un carter de turbine et un flasque annulaire de rétention comportant une deuxième bride annulaire, ledit flasque étant destiné à être assemblé avec le carter de turbine,
- le montage de chaque première patte des secteurs d'anneau sur la première bride annulaire de la structure de support d'anneau,
- le montage par crabotage du flasque annulaire de rétention sur le carter de turbine, la deuxième bride étant maintenue en appui sur chaque deuxième patte, ledit flasque annulaire de rétention étant monté en précontrainte axiale sur le carter de turbine, au moins une des brides de la structure de support d'anneau étant élastiquement déformable dans la direction axiale de l'anneau de turbine.
Grâce au montage par crabotage du flasque, il est possible de positionner les pattes des secteurs d'anneau entre les brides de la structure de support d'anneau sans avoir à forcer sur lesdites pattes qui sont ensuite maintenues avec une contrainte entre les brides après montage du flasque. Selon un premier aspect du procédé de réalisation d'un ensemble d'anneau de turbine selon l'invention, le carter de turbine comprend un bossage annulaire s'étendant entre une virole dudit carter et le flasque de la structure d'anneau.
Selon un deuxième aspect du procédé de réalisation d'un ensemble d'anneau de turbine selon l'invention, au moins une des brides annulaires de la structure de support d'anneau comporte une lèvre sur sa face en regard des pattes des secteurs d'anneau.
Selon un troisième aspect du procédé de réalisation d'un ensemble d'anneau de turbine selon l'invention, celui-ci comprend en outre l'engagement d'une première pluralité de pions à la fois dans la première bride annulaire de la structure de support d'anneau et les premières pattes des secteurs d'anneau lors du montage desdites premières pattes et, après le montage par crabotage du flasque annulaire de rétention, l'engagement d'une deuxième pluralité de pions à la fois dans la deuxième bride annulaire et les deuxièmes pattes des secteurs d'anneau.
Selon un quatrième aspect du procédé de réalisation d'un ensemble d'anneaux de turbine selon l'invention, la bride élastiquement déformable de la structure de support d'anneau présente une épaisseur inférieure à celle de l'autre bride de ladite structure de support d'anneau.
Brève description des dessins.
L'invention sera mieux comprise à la lecture faite ci-après, à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels :
- la figure 1 est une vue en demi-coupe radiale montrant un mode de réalisation d'un ensemble d'anneau de turbine selon l'invention ;
- les figures 2 à 6 montrent schématiquement le montage d'un secteur d'anneau dans la structure de support d'anneau de l'ensemble d'anneau de la figure 1 ;
- la figure 7 est une vue schématique en perspective du flasque des figures 1, 3, 4 et 5. Description détaillée de modes de réalisation
La figure 1 montre un ensemble d'anneau de turbine haute pression comprenant un anneau de turbine 1 en matériau composite à matrice céramique (CMC) et une structure métallique de support d'anneau 3. L'anneau de turbine 1 entoure un ensemble de pales rotatives 5. L'anneau de turbine 1 est formé d'une pluralité de secteurs d'anneau 10, la figure 1 étant une vue en coupe radiale selon un plan passant entre deux secteurs d'anneaux contigus. La flèche DA indique la direction axiale par rapport à l'anneau de turbine 1 tandis que la flèche DR indique la direction radiale par rapport à l'anneau de turbine 1.
Chaque secteur d'anneau 10 a une section sensiblement en forme de π inversé avec une base annulaire 12 dont la face interne revêtue d'une couche 13 de matériau abradable et/ou d'une barrière thermique définit la veine d'écoulement de flux gazeux dans la turbine. Des pattes amont et aval 14, 16 s'étendent à partir de la face externe de la base annulaire 12 dans la direction radiale DR. Les termes "amont" et "aval" sont utilisés ici en référence au sens d'écoulement du flux gazeux dans la turbine (flèche F).
La structure de support d'anneau 3 est formée de deux parties, à savoir une première partie correspondant à une bride radiale amont annulaire 32 qui est de préférence formée intégralement avec un carter de turbine 30 et une deuxième partie correspondant à un flasque annulaire de rétention 50 monté sur le carter de turbine 30. La bride radiale amont annulaire 32 comporte une lèvre 34 sur sa face en regard des pattes amont 14 des secteurs d'anneau 10, la lèvre 34 étant en appui sur la face externe 14a des pattes amont 14. Du côté aval, le flasque 50 comporte un voile annulaire 57 qui forme une bride radiale aval annulaire 54 comportant une lèvre 55 sur sa face en regard des pattes aval 16 des secteurs d'anneau 10, la lèvre 55 tant en appui sur la face externe 16a des pattes aval 16. Le flasque 50 comprend un corps annulaire 51 s'étendant axialement et comprenant, du côté amont, le voile annulaire 57 et, du côté aval, une première série de dents 52 réparties de manière circonférentielle sur le flasque 50 et espacées les unes des autres par des premiers passages d'engagement 53 (figures 4 et 7). Le carter de turbine 30 comporte du côté aval une deuxième série de dents 35 s'étendant radialement depuis la surface interne de la virole 38 du carter de turbine 30. Les dents 35 sont réparties de manière circonférentielle sur la surface interne 38a de la virole 38 et espacées les unes des autres par des deuxièmes passages d'engagement 36 (figure 4). Les dents 52 et 35 coopèrent entre elles pour former un crabotage circonférentiel.
Comme expliqué ci-après en détails, les pattes 14 et 16 de chaque secteur d'anneau 10 sont montées en précontrainte entre les brides annulaires 32 et 54 de manière à ce que les brides exercent, au moins à « froid », c'est-à-dire à une température ambiante d'environ 20°C, mais également à toutes les températures de fonctionnement de la turbine, une contrainte sur les pattes 14 et 16 et donc un serrage des secteurs par les brides. Cette contrainte est maintenue à toutes les températures auxquelles l'ensemble d'anneau peut être soumis lors du fonctionnement de la turbine et est maîtrisée, c'est-à-dire sans surcontraindre les secteurs d'anneau, grâce à la présence d'au moins une bride élastiquement déformable comme expliqué ci-avant.
Par ailleurs, dans l'exemple décrit ici, les secteurs d'anneau 10 sont en outre maintenus par des pions de blocage. Plus précisément et comme illustré sur la figure 1, des pions 40 sont engagés à la fois dans la bride radiale amont annulaire 32 de la structure de support d'anneau 3 et dans les pattes amont 14 des secteurs d'anneau 10. A cet effet, les pions 40 traversent chacun respectivement un orifice 33 ménagé dans la bride radiale amont annulaire 32 et un orifice 15 ménagé dans chaque patte amont 14, les orifices 33 et 15 étant alignés lors du montage des secteurs d'anneau 10 sur la structure de support d'anneau 3. De même, des pions 41 sont engagés à la fois dans la bride radiale aval annulaire 54 du flasque 50 et dans les pattes aval 16 des secteurs d'anneau 10. A cet effet, les pions 41 traversent chacun respectivement un orifice 56 ménagé dans la bride radiale aval annulaire 54 et un orifice 17 ménagé chaque patte aval 16, les orifices 56 et 17 étant alignés lors du montage des secteurs d'anneau 10 sur la structure de support d'anneau 3. Selon une variante de réalisation, des pions ayant une longueur supérieure ou égale à la distance entre les deux brides peuvent être utilisés. Dans ce cas, chaque pion traverse les orifices présents sur les deux brides de la structure d'anneau et sur les deux pattes des secteurs d'anneau.
En outre, l'étanchéité inter-secteurs est assurée par des languettes d'étanchéité logées dans des rainures se faisant face dans les bords en regard de deux secteurs d'anneau voisins. Une languette 22a s'étend sur presque toute la longueur de la base annulaire 12 dans la partie médiane de celle-ci. Une autre languette 22b s'étend le long de la patte 14 et sur une partie de la base annulaire 12. Une autre languette 22c s'étend le long de la patte 16. A une extrémité, la languette 22c vient en butée sur la languette 22a et sur la languette 22b. Les languettes 22a, 22b, 22c sont par exemple métalliques et sont montées avec jeu à froid dans leurs logements afin d'assurer la fonction d'étanchéité aux températures rencontrées en service.
L'assemblage sans jeu des pattes 14, 16 du secteur d'anneau en CMC avec des parties métalliques de la structure de support d'anneau est rendu possible en dépit de la différence de coefficient de dilatation thermique du fait que :
- cet assemblage est réalisé à distance de la face chaude de la base annulaire 12 exposée au flux gazeux,
- les pattes 14, 16 présentent avantageusement en section radiale une longueur relativement grande par rapport à leur épaisseur moyenne de sorte qu'un découplage thermique efficace est obtenu entre la base annulaire 12 et les extrémités des pattes 14, 16, et
- une des brides de la structure d'anneau est élastiquement déformable, ce qui permet de compenser les dilatations différentielles entre les pattes des secteurs d'anneau en CMC et les brides de la structure de support d'anneau en métal sans augmenter significativement la contrainte exercée « à froid » par les brides sur les pattes des secteurs d'anneau.
De façon classique, des orifices de ventilation 32a formés dans la bride 32 permettent d'amener de l'air de refroidissement du côté extérieur de l'anneau de turbine 10.
En outre, étanchéité entre l'amont et l'aval de l'ensemble d'anneau de turbine est assurée par un bossage annulaire 31 s'étendant radialement depuis la surface interne 38a de la virole 38 du carter de turbine 3 et dont l'extrémité libre en en contact avec la surface du corps 51 du flasque 50.
On décrit maintenant un procédé de réalisation d'un ensemble d'anneaux de turbine correspondant à celui représenté sur la figure 1. Chaque secteur d'anneau 10 décrit ci-avant est réalisé en matériau composite à matrice céramique (CMC) par formation d'une préforme fibreuse ayant une forme voisine de celle du secteur d'anneau et densification du secteur d'anneau par une matrice céramique.
Pour la réalisation de la préforme fibreuse, on peut utiliser des fils en fibres céramique, par exemple des fils en fibres SiC tels que ceux commercialisés par la société japonaise Nippon Carbon sous la dénomination "Nicalon", ou des fils en fibres de carbone.
La préforme fibreuse est avantageusement réalisée par tissage tridimensionnel, ou tissage multicouches avec aménagement de zones de déliaison permettant d'écarter les parties de préformes correspondant aux pattes 14 et 16 des secteurs 10.
Le tissage peut être de type interlock, comme illustré. D'autres armures de tissage tridimensionnel ou multicouches peuvent être utilisées comme par exemple des armures multi-toile ou multi-satin. On pourra se référer au document WO 2006/136755.
Après tissage, l'ébauche peut être mise en forme pour obtenir une préforme de secteur d'anneau qui est consolidée et densifiée par une matrice céramique, la densification pouvant être réalisée notamment par infiltration chimique en phase gazeuse (CVI) ou un procédé MI (« Melt Infiltrated », silicium liquide introduit dans la préforme fibreuse par capillarité, la préforme étant préalablement consolidée par une phase CVI) qui sont bien connus en soi.
Un exemple détaillé de fabrication de secteurs d'anneau en CMC est notamment décrit dans le document US 2012/0027572.
La structure de support d'anneau 3 est quant à elle réalisée en un matériau métallique tel que de l'inconel, le superalliage C263 ou du Waspaloy®. La réalisation de l'ensemble d'anneau de turbine se poursuit par le montage des secteurs d'anneau 10 sur la structure de support d'anneau 3. Comme illustré sur les figures 2 et 4, les secteurs d'anneau 10 sont d'abord fixés par leur patte amont 14 à la bride radiale amont annulaire 32 de la structure de support d'anneau 3 par des pions 40 qui sont engagés dans les orifices alignés 33 et 15 ménagés respectivement dans la bride radiale amont annulaire 32 et dans la patte amont 14.
Une fois tous les secteurs d'anneau 10 ainsi fixés à la bride radiale amont annulaire 32, on procède à l'assemblage par crabotage du flasque annulaire de rétention 50 entre le carter de turbine 3 et les pattes aval des secteurs d'anneau 10. Conformément au mode de réalisation décrit ici, l'écartement E entre la bride radiale amont annulaire 54 formée par le voile annulaire 57 du flasque 50 et la surface externe 52a des dents 52 dudit flasque est inférieur à la distance D présente entre la face externe 16a des pattes aval 16 des secteurs d'anneau et la face interne 35b des dents 35 présentes sur le carter de turbine 30. Dans l'exemple décrit ici, l'écartement E est mesuré entre la lèvre 55 présente à l'extrémité de la bride annulaire 54 et la surface externe 52a des dents 52. Dans les modes de réalisation de l'ensemble d'anneau de turbine de l'invention dans lesquels la ou les brides annulaires ne comportent pas de lèvres, l'écartement est mesuré entre la face interne de la bride présente sur le flasque qui sera en contact avec la surface externe des pattes aval des secteurs d'anneau et la surface externe des dents du flasque.
En définissant un écartement E entre la bride radiale amont annulaire et la surface externe des dents du flasque inférieur à la distance D entre la face externe des pattes aval des secteurs d'anneau et la face interne des dents présentes sur le carter de turbine, il est possible de monter les secteurs d'anneau en précontrainte entre les brides de la structure de support d'anneau. Toutefois, afin de ne pas endommager les pattes des secteurs d'anneau en CMC lors du montage et conformément à l'invention, la structure de support d'anneau comprend au moins une bride annulaire qui est élastiquement déformable dans la direction axiale DA de l'anneau. Dans l'exemple décrit ici, c'est la bride radiale aval annulaire 54 présente sur le flasque 50 qui est élastiquement déformable. En effet, le voile annulaire 57 formant la bride radiale aval annulaire 54 de la structure de support d'anneau 3 présente une faible épaisseur, par exemple inférieure à 2,5 mm, ce qui lui confère une certaine élasticité.
Comme illustré sur les figures 5 et 6, le flasque 50 est monté sur la carter de turbine 30 en plaçant les dents 52 présentes sur le flasque 50 en vis-à-vis des passages d'engagement 36 ménagés sur le carter de turbine 30, les dents 35 présentes sur ledit carter de turbine étant également placées en vis-à-vis des passages d'engagement 53 ménagés entre les dents 52 sur le flasque 50. L'écartement E étant inférieur à la distance D, il est nécessaire d'appliquer un effort axial FA sur le flasque 50 dans la direction indiquée sur la figure 6 afin d'engager les dents 52 au- delà des dents 35 et permettre une rotation R du flasque suivant un angle correspondant sensiblement à la largeur des dents 35 et 52. Après cette rotation, le flasque 50 est relâché, ce dernier étant alors maintenu en contrainte axiale entre les pattes amont 16 des secteurs d'anneau 10 et la surface interne 35b des dents 35 du carter de turbine 30.
Une fois le flasque ainsi mis en place, des pions 41 sont engagés dans les orifices alignés 56 et 17 ménagés respectivement dans la bride radiale aval annulaire 54 et dans la patte aval 16. Chaque patte 14 ou 16 de secteur d'anneau peut comporter un ou plusieurs orifice pour le passage d'un pion de blocage.

Claims

REVENDICATIONS
1. Ensemble d'anneau de turbine comprenant une pluralité de secteurs d'anneau (10) en matériau composite à matrice céramique formant un anneau de turbine (1) et une structure de support d'anneau (3) solidaire d'un carter de turbine (30) et comportant deux brides annulaires (32, 54), chaque secteur d'anneau (10) ayant une partie (12) formant base annulaire avec une face interne définissant la face interne de l'anneau de turbine (1) et une face externe à partir de laquelle s'étendent radialement deux pattes (14, 16), les pattes (14, 16) de chaque secteur d'anneau (10) étant maintenues entre les deux brides annulaires (32, 36) de la structure de support d'anneau (3), la structure de support d'anneau comprenant un flasque annulaire de rétention monté sur le carter de turbine, le flasque annulaire de rétention comportant un voile annulaire formant une des brides de la structure de support d'anneau, les deux brides annulaires (32, 54) de la structure de support d'anneau (3) exerçant une contrainte sur les pattes (14, 16) des secteurs d'anneau (10), au moins une (54) des brides de la structure de support d'anneau (3) étant élastiquement déformable dans la direction axiale (DA) de l'anneau de turbine (1),
caractérisé en ce que le flasque comprend une première série de dents (52) réparties de manière circonférentielle sur ledit flasque tandis que le carter de turbine comprend une deuxième série de dents (35) réparties de manière circonférentielle sur ledit carter et en ce que les dents de la première série de dents et les dents de la deuxième série de dents forment un crabotage circonférentiel.
2. Ensemble selon la revendication 1, caractérisé en ce que le carter de turbine comprend un bossage annulaire s'étendant entre une virole dudit carter et le flasque de la structure d'anneau.
3. Ensemble d'anneau de turbine selon la revendication 1 ou 2, caractérisé en ce qu'au moins une des brides annulaires (32 ; 54) de la structure de support d'anneau comporte une lèvre (34 ; 55) sur sa face en regard des pattes (14 ; 16) des secteurs d'anneau (10).
4. Ensemble d'anneau de turbine selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend en outre une première pluralité de pions (40) engagés à la fois dans une des brides annulaires (32) de la structure de support d'anneau (3) et les pattes (14) des secteurs d'anneau (10) en regard de ladite bride annulaire (32) et une deuxième pluralité de pions (41) engagés à la fois dans l'autre bride annulaire (54) de la structure de support d'anneau (3) et les pattes (16) des secteurs d'anneau (10) en regard de ladite autre bride annulaire (54).
5. Ensemble d'anneau de turbine selon l'une quelconque des revendications 1 à 4, caractérisé en ce que chaque bride élastiquement déformable (54) de la structure de support d'anneau (3) présente une épaisseur inférieure à celle de l'autre bride (32) de ladite structure de support d'anneau (3).
6. Procédé de réalisation d'un ensemble d'anneaux de turbine comprenant :
- la fabrication d'une pluralité de secteurs d'anneau (10) en matériau composite à matrice céramique, chaque secteur d'anneau (10) ayant une partie (12) formant base annulaire avec une face interne définissant la face interne d'un anneau de turbine (1) et une face externe à partir de laquelle s'étendent radialement des première et deuxième pattes (14, 16),
- la fabrication d'une structure de support d'anneau (3) comprenant une première bride annulaire (32) solidaire d'un carter de turbine et un flasque annulaire de rétention comportant une deuxième bride annulaire (54), ledit flasque étant destiné à être assemblé avec le carter de turbine,
- le montage de chaque première patte (14) des secteurs d'anneau (10) sur la première bride annulaire de la structure de support d'anneau,
- le montage par crabotage du flasque annulaire de rétention sur le carter de turbine, la deuxième bride (54) étant maintenue en appui sur chaque deuxième patte (16), ledit flasque annulaire de rétention étant monté en précontrainte axiale sur le carter de turbine, au moins une (54) des brides de la structure de support d'anneau (3) étant élastiquement déformable dans la direction axiale (DA) de l'anneau de turbine (1).
7. Procédé selon la revendication 6, caractérisé en ce que le carter de turbine comprend un bossage annulaire s'étendant entre une virole dudit carter et le flasque de la structure d'anneau.
8. Procédé selon la revendication 6 ou 7, caractérisé en ce qu'au moins une des brides annulaires (32 ; 54) de la structure de support d'anneau (3) comporte une lèvre (34 ; 55) sur sa face en regard des pattes (14 ; 16) des secteurs d'anneau (10).
9. Procédé selon l'une quelconque des revendications 6 à 8, caractérisé en ce qu'il comprend en outre l'engagement d'une première pluralité de pions (40) à la fois dans la première bride annulaire (32) de la structure de support d'anneau (3) et les premières pattes (14) des secteurs d'anneau (10) lors du montage desdites premières pattes et, après le montage par crabotage du flasque annulaire de rétention, l'engagement d'une deuxième pluralité de pions (41) à la fois dans la deuxième bride annulaire (54) et les deuxièmes pattes (16) des secteurs d'anneau (10).
PCT/FR2016/051167 2015-05-22 2016-05-18 Ensemble d'anneau de turbine avec maintien par crabotage WO2016189222A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16726368.0A EP3298245B1 (fr) 2015-05-22 2016-05-18 Ensemble d'anneau de turbine avec maintien par crabotage
US15/575,137 US10858958B2 (en) 2015-05-22 2016-05-18 Turbine ring assembly held by jaw coupling
CN201680030536.5A CN107810310B (zh) 2015-05-22 2016-05-18 以爪形离合器方式保持的涡轮环组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1554605 2015-05-22
FR1554605A FR3036433B1 (fr) 2015-05-22 2015-05-22 Ensemble d'anneau de turbine avec maintien par crabotage

Publications (1)

Publication Number Publication Date
WO2016189222A1 true WO2016189222A1 (fr) 2016-12-01

Family

ID=54291389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/051167 WO2016189222A1 (fr) 2015-05-22 2016-05-18 Ensemble d'anneau de turbine avec maintien par crabotage

Country Status (5)

Country Link
US (1) US10858958B2 (fr)
EP (1) EP3298245B1 (fr)
CN (1) CN107810310B (fr)
FR (1) FR3036433B1 (fr)
WO (1) WO2016189222A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3093541A1 (fr) 2019-03-08 2020-09-11 Safran Aircraft Engines Turbine à gaz pour aéronef à double rotor

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3033825B1 (fr) * 2015-03-16 2018-09-07 Safran Aircraft Engines Ensemble d'anneau de turbine en materiau composite a matrice ceramique
FR3049003B1 (fr) * 2016-03-21 2018-04-06 Safran Aircraft Engines Ensemble d'anneau de turbine sans jeu de montage a froid
EP3299591B1 (fr) * 2016-09-27 2019-12-18 Siemens Aktiengesellschaft Porte-aubes directrices, carter de turbine et turbine
FR3056637B1 (fr) * 2016-09-27 2018-10-19 Safran Aircraft Engines Ensemble d'anneau de turbine avec calage a froid
FR3064022B1 (fr) * 2017-03-16 2019-09-13 Safran Aircraft Engines Ensemble d'anneau de turbine
FR3072720B1 (fr) 2017-10-23 2019-09-27 Safran Aircraft Engines Carter pour turbomachine comprenant une portion centrale en saillie relativement a deux portions laterales dans une region de jonction
FR3080145B1 (fr) * 2018-04-17 2020-05-01 Safran Aircraft Engines Distributeur en cmc avec reprise d'effort par une pince etanche
US11085316B2 (en) 2018-08-22 2021-08-10 Raytheon Technologies Corporation Blade outer air seal formed of laminate and having radial support hooks
CN109339955B (zh) * 2018-12-16 2021-09-03 中国航发沈阳发动机研究所 一种放气活门调节机构的支撑结构
US10815810B2 (en) * 2019-01-10 2020-10-27 Raytheon Technologies Corporation BOAS assemblies with axial support pins
FR3093938B1 (fr) 2019-03-19 2021-02-26 Safran Ceram Outillage de support pour préformes poreuses à infiltrer et four utilisant un tel outillage
US11255210B1 (en) * 2020-10-28 2022-02-22 Rolls-Royce Corporation Ceramic matrix composite turbine shroud assembly with joined cover plate
US11852019B1 (en) * 2023-06-07 2023-12-26 Rtx Corporation Axial seal systems for gas turbine engines

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4087199A (en) * 1976-11-22 1978-05-02 General Electric Company Ceramic turbine shroud assembly
WO2006136755A2 (fr) 2005-06-24 2006-12-28 Snecma Structure fibreuse de renfort pour piece en materiau composite et piece la comportant
US20120027572A1 (en) 2009-03-09 2012-02-02 Snecma Propulsion Solide, Le Haillan Turbine ring assembly
GB2485016A (en) * 2010-10-29 2012-05-02 Gen Electric Turbine component with resilient mounting
EP2631434A2 (fr) * 2012-02-22 2013-08-28 General Electric Company Carénage de turbine à faible ductilité

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281090A (en) * 1990-04-03 1994-01-25 General Electric Co. Thermally-tuned rotary labyrinth seal with active seal clearance control
US5632600A (en) * 1995-12-22 1997-05-27 General Electric Company Reinforced rotor disk assembly
FR2800797B1 (fr) * 1999-11-10 2001-12-07 Snecma Assemblage d'un anneau bordant une turbine a la structure de turbine
FR2867229B1 (fr) * 2004-03-05 2006-07-28 Snecma Moteurs Palier a roulement de turbomachine a encombrement reduit
JP4822716B2 (ja) * 2005-02-07 2011-11-24 三菱重工業株式会社 シール構造を備えたガスタービン
FR2930592B1 (fr) * 2008-04-24 2010-04-30 Snecma Distributeur de turbine pour une turbomachine
RU2547542C2 (ru) * 2010-11-29 2015-04-10 Альстом Текнолоджи Лтд Осевая газовая турбина
US9188062B2 (en) * 2012-08-30 2015-11-17 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4087199A (en) * 1976-11-22 1978-05-02 General Electric Company Ceramic turbine shroud assembly
WO2006136755A2 (fr) 2005-06-24 2006-12-28 Snecma Structure fibreuse de renfort pour piece en materiau composite et piece la comportant
US20120027572A1 (en) 2009-03-09 2012-02-02 Snecma Propulsion Solide, Le Haillan Turbine ring assembly
GB2485016A (en) * 2010-10-29 2012-05-02 Gen Electric Turbine component with resilient mounting
EP2631434A2 (fr) * 2012-02-22 2013-08-28 General Electric Company Carénage de turbine à faible ductilité

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3093541A1 (fr) 2019-03-08 2020-09-11 Safran Aircraft Engines Turbine à gaz pour aéronef à double rotor
WO2020183074A2 (fr) 2019-03-08 2020-09-17 Safran Aircraft Engines Turbine à gaz pour aéronef à double rotor
CN113544361A (zh) * 2019-03-08 2021-10-22 赛峰飞机发动机公司 用于双旋翼飞机的燃气涡轮
US20220178331A1 (en) * 2019-03-08 2022-06-09 Safran Aircraft Engines Gas turbine for twin-rotor aircraft

Also Published As

Publication number Publication date
EP3298245B1 (fr) 2019-07-24
EP3298245A1 (fr) 2018-03-28
FR3036433A1 (fr) 2016-11-25
CN107810310B (zh) 2021-01-08
FR3036433B1 (fr) 2019-09-13
US20180142572A1 (en) 2018-05-24
CN107810310A (zh) 2018-03-16
US10858958B2 (en) 2020-12-08

Similar Documents

Publication Publication Date Title
EP3298245B1 (fr) Ensemble d'anneau de turbine avec maintien par crabotage
EP3298244B1 (fr) Ensemble d'anneau de turbine avec maintien axial
EP3390782B1 (fr) Ensemble d'anneau de turbine avec maintien élastique a froid.
CA2986663C (fr) Ensemble d'anneau de turbine avec maintien par brides
EP3433471B1 (fr) Ensemble d'anneau de turbine avec maintien spécifique à froid
EP3390783B1 (fr) Ensemble d'anneau de turbine et turbine associée
EP3298246B1 (fr) Ensemble d'anneau de turbine permettant une dilatation thermique différentielle
EP3271556B1 (fr) Ensemble d'anneau de turbine comprenant une pluralité de secteurs d'anneau en matériau composite à matrice céramique
EP2406466B1 (fr) Ensemble d'anneau de turbine
FR3056637A1 (fr) Ensemble d'anneau de turbine avec calage a froid
FR2942844A1 (fr) Ensemble d'anneau de turbine avec arret axial
EP3274565B1 (fr) Ensemble d'anneau de turbine avec dispositif de maintien spécifique de secteurs d'anneau en materiau composite a matrice ceramique
WO2017194860A1 (fr) Ensemble d'anneau de turbine avec calage a froid
FR3041994A1 (fr) Ensemble d'anneau de turbine
FR2942845A1 (fr) Ensemble d'anneau de turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16726368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15575137

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE