WO2016186402A1 - Metal thin film substrate and method of manufacturing same - Google Patents

Metal thin film substrate and method of manufacturing same Download PDF

Info

Publication number
WO2016186402A1
WO2016186402A1 PCT/KR2016/005124 KR2016005124W WO2016186402A1 WO 2016186402 A1 WO2016186402 A1 WO 2016186402A1 KR 2016005124 W KR2016005124 W KR 2016005124W WO 2016186402 A1 WO2016186402 A1 WO 2016186402A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
metal thin
substrate
film substrate
thickness
Prior art date
Application number
PCT/KR2016/005124
Other languages
French (fr)
Korean (ko)
Inventor
이성훈
조국경
이건환
윤정흠
송명관
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to US15/122,064 priority Critical patent/US20170175249A1/en
Priority claimed from KR1020160059030A external-priority patent/KR101712597B1/en
Publication of WO2016186402A1 publication Critical patent/WO2016186402A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate

Definitions

  • the present invention relates to a metal thin film substrate and a method of manufacturing the same.
  • Metal thin films made of silver (Ag) have photoelectric properties such as excellent high conductivity, high transmittance in the visible region and low infrared region, and are applied to transparent conductive films, optical sensors, smart windows, and the like.
  • the substrates are continuously formed on various inorganic substrates including insulators, semiconductors and conductors in the range of several tens of nm and several nm. There is a need for technology for metal thin films.
  • the initial growth behavior of the metal on the substrate causes the metal to grow in the form of three-dimensional particles rather than in the form of two-dimensional continuous thin films due to the low wettability of the metal on the substrate. This is due to the higher bonding force between the metal and the metal than the bonding force between the substrate and the metal.
  • noble metals such as gold (Au), platinum (Pt), and silver (Ag)
  • Au gold
  • Pt platinum
  • Au silver
  • Au highly conductive metals
  • Cu copper
  • Ni nickel
  • Al aluminum
  • This growth characteristic of the metal on the substrate is difficult to meet the requirements of the two-dimensional continuous thin film from the beginning of growth, and more than a certain thickness was required to form the continuous thin film.
  • a substrate having high wettability and bonding strength with the metal (2) formation of a seed metal thin film layer on the substrate before deposition of the metal, (3) deposition rate and Temperature control, (4) metals doped with trace amounts of other metals (Al, Cu, etc.), (5) metals have been used for doping trace amounts of oxygen, and the like.
  • the conventional technology for suppressing the three-dimensional growth behavior of the metal has the property of controlling / modifying the substrate surface or limiting the growth of the material.
  • Patent literature related to a transparent metal thin film is Korean Patent Publication No. 10-2012-0097451. This patent document describes the technique of obtaining high electroconductivity and light transmittance by adjusting the composition of a zinc oxide type transparent conductive thin film.
  • An object of the present invention is to provide a metal thin film substrate which is grown into a two-dimensional continuous thin film from the beginning of growth, and a metal thin film having excellent light transmittance and conductivity is formed.
  • an object of the present invention is to provide a method for producing a metal thin film substrate in which a metal thin film having excellent light transmittance and conductivity is formed from a growth stage into a two-dimensional continuous thin film.
  • the substrate And a metal thin film formed on the substrate and including silver (Ag) or a silver alloy, wherein a ratio of the metal thin film to the total crystal surface of the (111) plane decreases as the thickness of the metal thin film increases.
  • a metal thin film substrate is provided.
  • the substrate And a metal thin film formed of silver (Ag) or silver alloy when formed on the substrate, wherein the metal thin film is formed through physical vapor deposition (PVD), and the process gas of the process is nitrogen
  • PVD physical vapor deposition
  • a metal thin film substrate including (N 2 ) is provided.
  • a metal thin film substrate having a degree of preferred orientation (p (111)) of the (111) plane of the metal thin film is 1.6 or more.
  • a metal thin film substrate having (111) / (200) of the metal thin film is 10 or more.
  • a metal thin film substrate having a degree of preferred orientation (p (111)) of 1.7 or less is provided.
  • a metal thin film substrate having (111) / (200) of the metal thin film of 12 or less is provided.
  • a metal thin film substrate having a thickness of more than 0 nm and 40 nm or less is provided.
  • a metal thin film substrate having roughness of more than 0 nm and 0.8 nm or less is provided.
  • the substrate is provided with a metal thin film substrate which is a transparent polymer substrate.
  • the substrate is provided with a metal thin film substrate comprising a conductive oxide or nitride.
  • the metal thin film substrate is provided with a metal thin film substrate having a sheet resistance of 30 ⁇ / sq or less.
  • the metal thin film substrate is provided with a metal thin film substrate having a light transmittance of 85% or more.
  • a metal thin film substrate further comprising an intermediate layer formed between the substrate and the metal thin film.
  • a metal thin film substrate further comprising a protective layer formed on the metal thin film.
  • the metal thin film is provided with a metal thin film substrate, characterized in that the doped with nitrogen.
  • a metal thin film substrate having a nitrogen content of 20% or less is provided.
  • the metal thin film is provided with a metal thin film substrate formed by physical vapor deposition (PVD) using argon (Ar) and nitrogen (N 2 ) as a process gas.
  • PVD physical vapor deposition
  • the process gas is provided with a metal thin film substrate having an argon (Ar): nitrogen (N 2 ) ratio of 45: 2 to 35.
  • an article comprising the metal thin film substrate.
  • the article is provided an article which is a transparent electrode for display, a polarizing plate, a transparent electrode for solar cell, low radiation coating, an electrode for transparent heater, or a fine metal electrode for semiconductor.
  • preparing a substrate Forming a metal thin film containing silver (Ag) or silver alloy by physical vapor deposition (PVD, Physical Vapor Deposition) on the substrate; including, but the process of physical vapor deposition (PVD, Physical Vapor Deposition)
  • the gas includes nitrogen (N 2 ).
  • a process gas of the physical vapor deposition is provided with a method for manufacturing a metal thin film substrate including argon (Ar) and nitrogen (N 2 ).
  • the process gas of the sputtering process is provided with a method for producing a metal thin film substrate having an argon (Ar): nitrogen (N 2 ) ratio of 45: 2 to 35.
  • the ratio of the (111) plane of the metal thin film to the entire crystal surface is reduced as the thickness of the metal thin film is provided a method of manufacturing a metal thin film substrate.
  • the thickness of the metal thin film is 10 nm or less
  • a method for manufacturing a metal thin film substrate having a nitrogen content of 20% or less is provided.
  • a method of manufacturing a metal thin film substrate further comprising the step of forming an intermediate layer between the substrate and the metal thin film.
  • a method for manufacturing a metal thin film substrate further comprising the step of forming a protective layer on the metal thin film.
  • the step of forming the metal thin film is provided a method of manufacturing a metal thin film substrate is performed at 100 °C or less.
  • the metal thin film substrate according to the present invention may be provided as a metal thin film having excellent light transmittance and conductivity, grown into a two-dimensional continuous thin film from the beginning of growth.
  • the method for manufacturing a metal thin film substrate according to the present invention can efficiently induce growth into a two-dimensional continuous thin film from the beginning of the metal thin film growth to replace the metal thin film having excellent light transmittance and conductivity It can manufacture with area.
  • FIG. 1 is a longitudinal cross-sectional view showing an internal configuration of a metal thin film substrate according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal cross-sectional view showing an internal configuration of a metal thin film substrate according to another embodiment of the present invention.
  • FIG. 3 is a flowchart schematically illustrating a method of manufacturing a metal thin film substrate according to an embodiment of the present invention.
  • FIG 4 is a view comparing the growth pattern (I) of the general metal and the growth pattern (II) of the metal according to the present invention.
  • FIG 5 is a view showing the orientation of the metal thin film according to the flow rate of the process gas and the thickness of the metal thin film.
  • FIG. 6 is a view showing the orientation of the metal thin film according to the flow rate of the process gas and the thickness of the metal thin film.
  • pole figures visually emphasizing the Psi rocking curve related to the orientation according to the flow rate of the process gas and the thickness of the metal thin film.
  • 10 to 16 are FE-SEM picture of the metal thin film according to the flow rate of the process gas.
  • 17 is a diagram illustrating composition analysis in a metal thin film substrate.
  • 18 is a view comparing surface roughnesses of metal thin film substrates according to process gas flow rates.
  • 19 is a view comparing surface roughness according to the thickness change of the metal thin film substrate according to the exemplary embodiment of the present invention.
  • 20 is a view comparing resistance values of metal thin film substrates according to process gas flow rates.
  • 21 is a graph showing a result of confirming that there is no independent AgN phase in Ag (N) by performing a 2theta scan of the metal thin film according to the present invention.
  • 24 and 25 illustrate photoelectric characteristics of a metal thin film substrate according to an exemplary embodiment of the present invention.
  • FIG. 1 is a longitudinal cross-sectional view showing an internal configuration of a metal thin film substrate according to an embodiment of the present invention.
  • a metal thin film substrate according to an embodiment of the present invention includes a substrate 110 and a metal thin film 120.
  • the substrate 110 becomes a base material on which the metal thin film 120 can grow.
  • the substrate 110 may include any one of a transparent polymer and glass, but is not limited thereto.
  • the substrate 110 may be formed of a transparent polymer or glass layer under a thin film made of a metal, a conductive oxide, or a conductive nitride. Therefore, when the substrate 110 is made of a transparent polymer, it may be usefully used for a transparent flexible display and a transparent electrode for a flexible solar cell. Accordingly, the substrate 110 may be a transparent polymer for a flexible display device including PC, PET, PES, PEN, PAR, PI, and the like.
  • the substrate 110 may be any material as long as the metal thin film 120 can be grown. That is, the substrate 110 may include any one of a dielectric, a semiconductor, and a conductor. In addition, the substrate 110 may include a metal, a conductive oxide, or a conductive nitride. More specifically, Al, Ba, Be, Ca, Cr, Cu, Cd, Dy, Ga, Ge, Hf, In, Lu, Mg, Mo, Ni, Rb, Sc, Si, Sn, Ta, Te, Ti, Oxide, nitride, oxide-nitride and magnesium fluoride of metals selected from the group consisting of W, Zn, Zr, and Yb may be used, but not limited thereto. It doesn't happen.
  • the substrate 110 has a preferred orientation.
  • the orientation of the substrate 110 may affect the orientation of the metal thin film 120 to be grown on the substrate 110.
  • the metal thin film 120 is formed on the substrate 110.
  • the metal thin film 120 is formed to be grown into a two-dimensional continuous thin film from the beginning of growth.
  • metal exhibits a behavior of growing into three-dimensional particles rather than a two-dimensional continuous thin film due to the low wettability of the metal on the substrate 110.
  • the growth behavior of the metal can be controlled by controlling the orientation of the metal formed at the beginning of the growth.
  • the metal thin film 120 includes silver (Ag) or a silver alloy. Looking at the general growth behavior of silver (Ag) or silver alloy in terms of orientation, initially not only the (111) plane but also other planes develop. Then, as the thickness of the silver (Ag) or silver alloy becomes thicker, the ratio of the (111) plane becomes higher. This growth behavior can be varied to allow the (111) plane of silver (Ag) or silver alloy to grow predominantly compared to other planes from the beginning of growth.
  • the predominance of the (111) plane having the (111) growth direction of the metal thin film 120 is advantageous in forming a rapid initial continuous thin film, and the metal thin film substrate of the present invention is the entire (111) plane of the metal thin film 120.
  • the ratio with respect to the crystal surface is relatively high and decreases as the thickness of the metal thin film increases.
  • the ratio of the (111) plane to the total crystal surface is relatively low and increases as the thickness of the metal thin film increases. Therefore, the metal thin film substrate of the present invention tends to be completely opposite and has an excellent continuous thin film formed in a relatively thin thickness.
  • a degree of preferred orientation (p (111)) of the (111) plane of the metal thin film 120 may be 1.6 or more.
  • the metal thin film 111 has a relatively thin thickness and has a high continuous film having a high degree of orientation of the (111) plane.
  • p (111) is higher than 1.6, which is advantageous for initial continuous thin film formation.
  • the (111) / (200) of the metal thin film 120 may be 10 or more. According to the exemplary embodiment of the present invention, in the state where the thickness of the metal thin film 120 is relatively thin, the (111) / (200) is high, and thus the continuous thin film is excellent. Although not limited thereto, when the thickness of the metal thin film is 10 nm or less, (111) / (200) is higher than 10, which is advantageous for initial continuous thin film formation.
  • a degree of preferred orientation (p (111)) of the (111) surface of the metal thin film 120 may be 1.7 or less.
  • p (111) is relatively lower than that of the conventional metal thin film, so that the vertical growth of the metal thin film 120 is predominant, thereby rapidly growing a continuous thin film having a desired thickness.
  • the thickness of the metal thin film when the thickness of the metal thin film is 10 nm or more, (111) / (200) of the metal thin film may be 12 or less.
  • the thickness of the metal thin film 120 is greater than or equal to 10 nm, p (111) is relatively lower than that of the conventional metal thin film, so that the vertical growth of the metal thin film 120 is predominant, thereby rapidly growing a continuous thin film having a desired thickness.
  • the thickness of the metal thin film 120 may be greater than 0 nm and less than or equal to 40 nm.
  • the thickness of the metal thin film 120 is preferably greater than 0 nm and 24 nm or less, more preferably 14 nm or less, even more preferably 12 nm or less, even more preferably 10 nm or less, even more preferably 8 nm or less.
  • the metal thin film 120 is preferably configured so that the light transmittance does not decrease.
  • the roughness of the metal thin film 120 may be greater than 0 nm and less than or equal to 0.8 nm.
  • the metal thin film 120 according to the present invention has a relatively high ratio of the entire crystal plane of the (111) plane to induce two-dimensional growth of the initial continuous thin film, so that the metal thin film 120 has low roughness even at a thin thickness. It is characterized by having.
  • the metal thin film 120 may be formed by physical vapor deposition (PVD) including nitrogen (N 2 ) as a process gas. Therefore, the metal thin film 120 may contain nitrogen. Although not limited thereto, when the thickness of the metal thin film 120 is 10 nm or less, the nitrogen content of the metal thin film 120 may be 20% or less.
  • the substrate 110 includes zinc oxide (ZnO).
  • Zinc oxide (ZnO) is known to have better wettability of noble metals than polymers, glass and silicon wafers.
  • Zinc oxide (ZnO) is mainly developed in the (002) plane, which has the same growth direction as the (111) plane of silver (Ag). That is, the metal thin film 120 is controlled to be formed in accordance with the orientation of the substrate 110 during the initial growth.
  • silver (Ag) is used as the metal thin film 120, but the present invention is not limited thereto, and the metal thin film 120 may include silver alloy and nickel (Ni). It may include any one.
  • FIG. 2 is a longitudinal cross-sectional view showing an internal configuration of a metal thin film substrate according to another embodiment of the present invention.
  • the metal thin film substrate according to the second embodiment of the present invention may further include an intermediate layer 130.
  • the metal thin film substrate according to the third embodiment of the present invention may further include a protective layer 140.
  • the metal thin film substrate according to the fourth embodiment of the present invention includes a substrate 110, an intermediate layer 130, a metal thin film 120, and a protective layer 140.
  • the metal thin film substrate may be a transparent conductive thin film formed by stacking a transparent inorganic layer-metal thin film-transparent inorganic layer structure.
  • the intermediate layer 130 is formed between the substrate 110 and the metal thin film 120.
  • the intermediate layer 130 may be formed of zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO), al-doping zinc oxide (AZO), ga-doping zinc oxide (GZO), IGZO, ATO, and TiO. It may be made of any one of two , but is not limited thereto.
  • the intermediate layer 130 may be transparently formed on the substrate 110 by physical vapor deposition (PVD), and may have a thickness of about 20 nm to about 200 nm.
  • the intermediate layer 130 is preferably configured to increase the electrical conductivity while maintaining the light transmittance of the substrate 110.
  • the intermediate layer 130 includes a material having good wettability of the metal.
  • the intermediate layer 130 may replace the role of the substrate 110 in one embodiment of the present invention.
  • the intermediate layer 130 may include a material such as zinc oxide (ZnO) having an orientation when the substrate 110 is made of glass or a polymer material to affect the growth characteristics of the metal thin film 120. Can be.
  • the protective layer 140 is formed on the metal thin film 120, and serves to prevent oxidation of the metal thin film 120 and to prevent physical damage.
  • the protective layer 140 may be formed of any one of zinc oxide (ZnO), ITO, IZO, AZO, GZO, IGZO, ATO, and TiO 2 , but is not limited thereto.
  • the protective layer 140 may be transparently formed on the substrate 110 by physical vapor deposition (PVD), and may have a thickness of about 20 nm to about 200 nm.
  • the intermediate layer 130 is preferably configured to increase the electrical conductivity while maintaining the light transmittance of the substrate 110.
  • the protective layer 140 is formed of zinc oxide (ZnO).
  • intermediate layer 130 and the protective layer 140 may be made of the same material or different materials.
  • the metal thin film substrate according to the present invention may be configured by various combinations of the metal thin film 120, the intermediate layer 130, and the protective layer 140.
  • the metal thin film substrate may have excellent sheet resistance of 30 ⁇ s / sq or less.
  • the metal thin film substrate may have bending resistance with respect to a bending diameter of 10 mm or less.
  • the metal thin film substrate may have a light transmittance of 85% or more. Although not limited thereto, the metal thin film substrate may have a light transmittance of 90% or more in the visible light region (400-800 nm).
  • the metal thin film substrate according to the present invention is excellent in electrical conductivity, light transmittance characteristics, etc., by forming an excellent two-dimensional continuous thin film at the beginning of metal thin film formation, and thus may be utilized in articles of various application fields.
  • the metal thin film substrate may be utilized for a transparent electrode for a display, a polarizing plate, a transparent electrode for a solar cell, a low radiation coating, an electrode for a transparent heater, or a fine metal electrode for a semiconductor.
  • FIG. 3 is a flowchart illustrating a method of manufacturing a metal thin film substrate according to an embodiment of the present invention.
  • the substrate 110 is formed.
  • the substrate 110 may be formed to include zinc oxide (ZnO) when the intermediate layer 130 is not present.
  • ZnO zinc oxide
  • the substrate 110 is not limited thereto and various materials described above may be used.
  • step S220 determines the flow rate of the process gas to be used in the sputtering process.
  • the metal thin film 120 is formed.
  • the metal thin film 120 is formed by a sputtering process using silver (Ag) as a sputtering target, and the process gas includes argon (Ar) and nitrogen (N 2 ).
  • the flow rate of the process gas may be determined so that the metal thin film has an orientation corresponding to that of the substrate at the initial growth.
  • the term "orientation" does not mean that all crystal planes are formed in the same direction, but is used to mean that one or more of the crystal planes increases or decreases in proportion to the entire crystal plane.
  • nitrogen (N 2 ) was additionally injected without using only one type of argon (Ar).
  • Ar argon
  • injection of nitrogen (N 2 ) changes the plasma environment of the sputtering process, the nitrogen component itself does not affect photoelectric properties such as conductivity and transmittance of the metal thin film 120.
  • the injection process of nitrogen (N 2 ) does not exclude the inclusion of a small amount of NOx in the scope of the present invention.
  • the injection of nitrogen (N 2 ) induces the metal thin film 120 to have an orientation corresponding to that of the substrate 110.
  • Nitrogen (N 2 ) also affects the final product structure.
  • the metal thin film 120 deposited at this time may have a characteristic depending on the orientation of the substrate 110 and may have an orientation corresponding to the orientation of the substrate 110.
  • nitrogen (N 2 ) may be relatively actively coupled to the metal in the initial sputtering process, the content of the remaining nitrogen (N 2 ) may vary depending on the thickness of the metal thin film formed. Although not limited to this, when the thickness of the metal thin film is 10 nm or less, the nitrogen content of the metal thin film is preferably 20% or less, more preferably 10% or less.
  • the process gas of the sputtering process preferably has an argon (Ar): nitrogen (N 2 ) ratio of 45: 2 to 35, more preferably 45: 4 to 16. Within this range, it is possible to efficiently induce the development of the (111) plane during the initial growth of silver (Ag).
  • the ratio of the (111) plane of the metal thin film 120 to the entire crystal surface is reduced as the thickness of the metal thin film 120 increases.
  • the property that the orientation of the metal thin film 120 depends on the substrate 110 is more pronounced when the metal includes silver (Ag) and the substrate 110 includes zinc oxide (ZnO).
  • the forming of the metal thin film 120 may be performed at 100 ° C. or less, preferably at room temperature.
  • the intermediate layer 130 was formed by physical vapor deposition (PVD), and zinc oxide (ZnO) was used as a sputtering targer.
  • PVD physical vapor deposition
  • ZnO zinc oxide
  • the intermediate layer 130 injects argon (Ar) gas into the vacuum chamber at an initial vacuum of 3 ⁇ 10 -6 Torr or less and 200 W on a 4 inch zinc oxide (ZnO) sputtering target at a working vacuum of 3 ⁇ 10 -3 Torr. Was deposited by applying RF power.
  • Ar argon
  • ZnO zinc oxide
  • the deposition conditions of the intermediate layer 130 are as follows.
  • the metal thin film 120 was formed by physical vapor deposition (PVD), and silver (Ag) was used as a sputtering targer.
  • PVD physical vapor deposition
  • Ag silver
  • the deposition conditions of the metal thin film 120 are as follows.
  • the protective layer 140 was formed of the same material as the intermediate layer 130, and the deposition conditions were also the same using a sputtering process.
  • FIG. 4 is a view comparing a growth pattern of a general metal with a growth pattern of a metal according to the present invention.
  • FIG. 4 shows a growth pattern of a general metal.
  • metals formed of microparticles grow by being bonded to each other through a process called Ostwald Ripening to Cluster migration. This growth characteristic does not satisfy the two-dimensional continuous thin film in the initial growth.
  • Figure 4 is intended to conceptualize the growth of the metal, the arrow on the substrate does not indicate the movement of the actual particles, but means the growth over time in the same position.
  • (II) shows a growth pattern of a metal according to the present invention. From the initial growth, the formation of particles through Ostwald Ripening to Cluster migration as in (I) is suppressed, and growth behavior is shown through the connection between adjacent particles whose movement is suppressed on the substrate surface.
  • FIG 5 is a view showing the orientation of the metal thin film according to the flow rate of the process gas and the thickness of the metal thin film.
  • FIG. 6 is a view showing the orientation of the metal thin film according to the flow rate of the process gas and the thickness of the metal thin film.
  • the degree of preferred orientation of the (111) plane is a measure of the degree of development of the (111) plane, and p (111)> 1 indicates that the (111) plane mainly develops, and p (111) ⁇ 1 , Other than (111) planes are developed.
  • pole figures visually emphasizing the Psi rocking curve related to the orientation according to the flow rate of the process gas and the thickness of the metal thin film. Through these measurements it is possible to determine the development of Ag (111) according to the thickness.
  • FIG. 10 is a result of using zinc oxide (ZnO) as the substrate 110 and silver (Ag) as the metal thin film 120, and the flow rates of argon (Ar) and nitrogen (N 2 ) in the sputtering process gas are 45: 0 sccm (FIG. 10 a), 45: 4 sccm (FIG. 10 b), 45: 8 sccm (FIG. 10 c) 45:16 sccm (d of FIG. 10) were used.
  • ZnO zinc oxide
  • Ar argon
  • N 2 nitrogen
  • the metal thin film 120 in FIG. 10A shows the growth characteristics before the growth of the metal thin film 120 and the formation of the two-dimensional continuous thin film.
  • the nominal thickness of the metal is 2 nm.
  • argon (Ar) and nitrogen as the process gas are compared with the particles growing individually and exhibiting growth behavior that is not connected to each other.
  • (N 2 ) it can be seen that the metal particles are connected to each other to show a growth tendency to form a two-dimensional continuous thin film (b to d of FIG. 10).
  • 11 to 15 show the ratio of Ar: N 2 gas injected in the sputtering process of Ag, 50sccm: 0sccm (for Ag), 50sccm; 4sccm (for AgNx (4sccm)), 50sccm: 16sccm (for AgNx ( 16 sccm) shows a change in the morphology of Ag and AgNx deposited on ZnO thin films of 20 nm thickness at different thicknesses.
  • Ag and AgNx (4sccm) are typical, independent individual pieces that form a polygon.
  • AgNx (16sccm) eliminates this conventional polygonal structure, instead of random clusters and neck-like interconnects, while forming metal clusters of tiny particles grown through nucleation. It can be seen that it is composed of a bridge.
  • the thickness increases further, the size of the cluster increases, thereby lowering the surface energy of the cluster, and also improving the interfacial adhesion with ZnO, thereby suppressing migration of the cluster. It is possible.
  • 16 is a FE-SEM photograph of the cross section of a metal thin film substrate with or without process gas.
  • FIG. 16 illustrates zinc oxide (ZnO) as an intermediate layer 130 and zinc oxide (ZnO) as a protective layer 140 on a substrate 110 and a thickness of 6.5 nm between the intermediate layer 130 and the protective layer 140.
  • the cross section of silver (Ag) formed is shown.
  • 17 is a diagram illustrating composition analysis in a metal thin film substrate.
  • FIG. 17 illustrates zinc oxide (ZnO) 20 nm as an intermediate layer 130 and zinc oxide (ZnO) 5 nm as a protective layer 140 formed on a substrate 110 formed of a silicon wafer (Si wafer).
  • Composition analysis obtained from XPS depth profiling is shown in a structure in which an Ag metal layer is formed with a thickness of 24 nm between the protective layers 140.
  • the flow rates of argon (Ar) and nitrogen (N 2 ) in the sputtering process gas were 45: 0 sccm (a in FIG. 17), 45: 4 sccm (b in FIG. 17), and 45: 8 sccm (c in FIG. 17). 45:16 sccm (d in FIG. 17) was used.
  • the metal thin substrate was removed through ion etching, and the composition analysis was performed until only a silicon wafer was detected.
  • nitrogen (N 2 ) was not detected at the time of 600 sec of etching time when the composition of silver (Ag) representing the metal thin film 120 was the highest point.
  • the metal thin film 120 may not completely exclude the inclusion of nitrogen (N 2 ), and considering the detection limit of XPS, nitrogen (N 2 ) in the metal thin film 120 is 1% or less.
  • FIG. 18 is a view comparing surface roughnesses of metal thin film substrates according to process gas flow rates. Surface roughness was measured using XRR (X-Ray Reflectivity, Model: Empyrean, PANalytical).
  • 20 is a view comparing resistance values of a metal thin film substrate according to a process gas flow rate.
  • ZnO (20nm) / Ag / ZnO (20nm) and ZnO (20nm) / Ag (N) / ZnO (20nm) structure by Four-point probe system (MCP-T600, Mitsubishi Chemical Co.) Indicates resistance value.
  • the resistance value was lower in the case of mixing with N 2 than in the case of using only Ar as the process gas, and the difference was more prominent in the thin thickness.
  • 21 is a graph showing a result of confirming that there is no independent AgN phase in Ag (N) by performing a 2theta scan of the metal thin film according to the present invention.
  • FIG. 22 shows 20 nm-thick Ag (N) on a Si wafer and FIG. 23 shows 100 nm-thick Ag (N) on a Si wafer.
  • N atomic% of about 5% was reached in the initial thin film, and then decreased. It has been shown to remain below.
  • N atomic% of about 5 to 15 was reached after the initial thin film, and then decreased to maintain 2 to 3% thereafter. Appeared.
  • the correlation between the SIMS result of measuring N increase in the initial thin film and the XRD result of measuring a high (111) / (200) ratio due to N injection in the initial thin film shows that the Ag initial thin film, that is, the continuous thin film is not formed yet.
  • the surface of the Ag cluster is composed of a polygonal structure having multiple faces.
  • the surface of the initial Ag cluster has very high surface reactivity due to its high surface energy due to its small cluster size, and this reactivity decreases with increasing size.
  • This adsorption of N inhibits the growth of the face by interfering with the adsorption of Ag ions reaching the cluster from the gas phase (by inhibiting Ag-Ag cohesion).
  • the ratio of p (111) or (111) / (200) increases rapidly by N 2 injection.
  • This increase in p (111) lowers the surface energy of the cluster itself, thereby inhibiting three-dimensional growth due to coalescence (or agglomeration) between nanoscopic clusters, and instead forming a two-dimensional continuous thin film even in thin films from stable clusters. It was confirmed (FE-SEM, TEM results).
  • 24 and 25 illustrate photoelectric characteristics of a metal thin film substrate according to an exemplary embodiment of the present invention.
  • optical properties of ZnO / Ag (N) / ZnO (Ag (N) thin film structure located between ZnO oxides) structure were verified from the morphology of the present invention (Optical transmittance UV-Visible-near infrared spectrophotometry, Cary series, Agilent technologies).
  • the method of manufacturing the metal thin film substrate of the present invention described above can be grown into a two-dimensional continuous thin film from the beginning of the thin film growth, and is useful for all fields requiring continuous metal thin film formation such as display manufacturing, solar cell electrode manufacturing, heater, semiconductor process, and the like. Can be utilized.

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

The present invention relates to a metal thin film substrate and a method of manufacturing same and, particularly, to a metal thin film substrate characterized by comprising a substrate having an orientation, and a metal thin film formed on the substrate, wherein the metal thin film is formed to have an orientation corresponding to the orientation of the substrate at the time of initial growth. The metal thin film substrate of the present invention is grown as a two-dimensional continuous thin film from the time of initial growth and has the effect of providing a metal thin film having excellent light transmissivity and conductivity.

Description

금속 박막 기판 및 이의 제조방법 Metal thin film substrate and manufacturing method thereof
본 발명은 금속 박막 기판 및 이의 제조방법에 관한 것이다.The present invention relates to a metal thin film substrate and a method of manufacturing the same.
은(Ag)을 재료로 하는 금속 박막은 뛰어난 높은 전도성, 높은 가시광 영역 내지 낮은 적외선영역의 광투과율과 같은 광전특성을 가지며 투명 전도막, 광센서, 스마트 윈도우 등에 적용되고 있다.Metal thin films made of silver (Ag) have photoelectric properties such as excellent high conductivity, high transmittance in the visible region and low infrared region, and are applied to transparent conductive films, optical sensors, smart windows, and the like.
이러한 적용에 있어서 광흡수와 반사를 억제하면서 뛰어난 전기전도성의 특성이 요구되는데, 이러한 요구를 충족시키기 위해서는 부도체, 반도체 및 도체를 포함하는 다양한 무기물 기판에 수십 nm는 물론 수 nm의 범위에서도 연속적으로 형성된 금속 박막에 대한 기술이 필요하다.This application requires excellent electrical conductivity while suppressing light absorption and reflection. To meet these requirements, the substrates are continuously formed on various inorganic substrates including insulators, semiconductors and conductors in the range of several tens of nm and several nm. There is a need for technology for metal thin films.
그러나, 기판 상에서 금속의 초기 성장 거동은 기판 상에서 금속의 낮은 젖음성(low wettability)으로 인해 금속이 2차원 연속박막 형태가 아닌 3차원 입자형태로 성장하게 된다. 이는 기판과 금속간의 결합력보다 금속과 금속간의 결합력이 높음에 기인한다. 이러한 특징은 귀금속(noble metal)인 금(Au), 백금(Pt), 은(Ag)에서 두드러지게 나타나고 고전도성 금속인 구리(Cu), 니켈(Ni), 알루미늄(Al) 등에서도 일정 부분 발생한다.However, the initial growth behavior of the metal on the substrate causes the metal to grow in the form of three-dimensional particles rather than in the form of two-dimensional continuous thin films due to the low wettability of the metal on the substrate. This is due to the higher bonding force between the metal and the metal than the bonding force between the substrate and the metal. These characteristics are prominent in noble metals such as gold (Au), platinum (Pt), and silver (Ag), and some of them also occur in highly conductive metals such as copper (Cu), nickel (Ni), and aluminum (Al). do.
기판 상에서의 금속의 이러한 성장 특성은 성장 초기부터 2차원 연속 박막이라는 요구조건을 만족시키기는 어렵고 연속 박막을 형성하기 위해서는 일정 이상의 두께가 요구되었다.This growth characteristic of the metal on the substrate is difficult to meet the requirements of the two-dimensional continuous thin film from the beginning of growth, and more than a certain thickness was required to form the continuous thin film.
이러한 금속의 성장거동을 제어하기 위하여, (1) 금속과의 젖음성과 결합력이 높은 기판을 사용, (2) 금속의 증착 전 기판 상에 시드(seed) 금속 박막층의 형성, (3) 증착 속도 및 온도의 조절, (4) 미량의 타금속(Al, Cu 등)을 도핑한 금속, (5) 금속에 미량의 산소의 도핑 등이 사용되어져 왔다.In order to control the growth behavior of these metals, (1) a substrate having high wettability and bonding strength with the metal, (2) formation of a seed metal thin film layer on the substrate before deposition of the metal, (3) deposition rate and Temperature control, (4) metals doped with trace amounts of other metals (Al, Cu, etc.), (5) metals have been used for doping trace amounts of oxygen, and the like.
이상에서와 같이 금속의 3차원 성장 거동을 억제하기 위한 종래 기술은 기판 표면을 조절/변경하거나 성장되는 물질이 제한되는 특성이 있었다. As described above, the conventional technology for suppressing the three-dimensional growth behavior of the metal has the property of controlling / modifying the substrate surface or limiting the growth of the material.
한편, 미량의 타금속을 도핑할 경우 은(Ag)에 비해 전도성과 광투과율이 낮은 타금속의 함유로 인한 특성 저하를 감수해야 하였으며 금속에 미량의 산소를 도핑 할 경우, 대면적으로 균일한 특성을 확보하기에는 공정상 어려움이 있었다.On the other hand, when a small amount of other metals are doped, the deterioration of the properties due to the inclusion of other metals with lower conductivity and light transmittance than that of silver (Ag) has to be tolerated. There was a difficulty in securing the process.
투명 금속 박막과 관련된 특허문헌으로는 한국 공개특허 제10-2012-0097451호가 있다. 본 특허문헌은 산화아연계 투명 도전 박막의 조성을 조절함으로써 높은 도전성 및 광투과율을 얻는 기술에 관하여 기재하고 있다.Patent literature related to a transparent metal thin film is Korean Patent Publication No. 10-2012-0097451. This patent document describes the technique of obtaining high electroconductivity and light transmittance by adjusting the composition of a zinc oxide type transparent conductive thin film.
본 발명은 성장 초기부터 2차원 연속 박막으로의 성장되고 광투과율 및 전도성이 우수한 금속 박막이 형성되는 금속 박막 기판을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a metal thin film substrate which is grown into a two-dimensional continuous thin film from the beginning of growth, and a metal thin film having excellent light transmittance and conductivity is formed.
또한, 본 발명은 성장 초기부터 2차원 연속 박막으로의 성장되고 광투과율 및 전도성이 우수한 금속 박막이 형성되는 금속 박막 기판의 제조방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method for producing a metal thin film substrate in which a metal thin film having excellent light transmittance and conductivity is formed from a growth stage into a two-dimensional continuous thin film.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 더욱 명확하게 된다.Other objects and advantages of the present invention will become apparent from the following detailed description, claims and drawings.
본 발명의 일 측면에 의하면, 기판; 및 상기 기판 상에 형성되며 은(Ag) 또는 은합금을 포함하는 금속 박막;을 포함하되, 상기 금속 박막의 (111)면의 전체 결정면에 대한 비율은 상기 금속 박막의 두께가 증가함에 따라 감소하는 금속 박막 기판이 제공된다.According to an aspect of the invention, the substrate; And a metal thin film formed on the substrate and including silver (Ag) or a silver alloy, wherein a ratio of the metal thin film to the total crystal surface of the (111) plane decreases as the thickness of the metal thin film increases. A metal thin film substrate is provided.
본 발명의 다른 측면에 의하면, 기판; 및 상기 기판 상에 형성되면 은(Ag) 또는 은합금을 포함하는 금속 박막;을 포함하되, 상기 금속 박막은 물리기상증착법(PVD, Physical Vapor Deposition)을 통하여 형성되며, 상기 공정의 공정 가스는 질소(N2)를 포함하는 금속 박막 기판이 제공된다.According to another aspect of the invention, the substrate; And a metal thin film formed of silver (Ag) or silver alloy when formed on the substrate, wherein the metal thin film is formed through physical vapor deposition (PVD), and the process gas of the process is nitrogen A metal thin film substrate including (N 2 ) is provided.
본 발명의 일 실시예에 의하면, 상기 금속 박막의 (111)면의 배향도(Degree of preferred orientation, p(111))가 1.6 이상인 금속 박막 기판이 제공된다.According to an embodiment of the present invention, a metal thin film substrate having a degree of preferred orientation (p (111)) of the (111) plane of the metal thin film is 1.6 or more.
본 발명의 일 실시예에 의하면, 상기 금속 박막의 (111)/(200)이 10 이상인 금속 박막 기판이 제공된다.According to an embodiment of the present invention, a metal thin film substrate having (111) / (200) of the metal thin film is 10 or more.
본 발명의 일 실시예에 의하면, 상기 금속 박막의 두께가 10nm 이상인 경우 상기 금속 박막의 (111)면의 배향도(Degree of preferred orientation, p(111))가 1.7 이하인 금속 박막 기판이 제공된다.According to an embodiment of the present invention, when the thickness of the metal thin film is 10 nm or more, a metal thin film substrate having a degree of preferred orientation (p (111)) of 1.7 or less is provided.
본 발명의 일 실시예에 의하면, 상기 금속 박막의 두께가 10nm 이상인 경우 상기 금속 박막의 (111)/(200)이 12 이하인 금속 박막 기판이 제공된다.According to one embodiment of the present invention, when the thickness of the metal thin film is 10 nm or more, a metal thin film substrate having (111) / (200) of the metal thin film of 12 or less is provided.
본 발명의 일 실시예에 의하면, 상기 금속 박막의 두께는 0nm 초과, 40nm 이하인 금속 박막 기판이 제공된다.According to an embodiment of the present invention, a metal thin film substrate having a thickness of more than 0 nm and 40 nm or less is provided.
본 발명의 일 실시예에 의하면, 상기 금속 박막의 조도가 0 nm 초과, 0.8 nm 이하인 금속 박막 기판이 제공된다.According to an embodiment of the present invention, a metal thin film substrate having roughness of more than 0 nm and 0.8 nm or less is provided.
본 발명의 일 실시예에 의하면, 상기 기판은 투명 폴리머 기판인 금속 박막 기판이 제공된다.According to an embodiment of the present invention, the substrate is provided with a metal thin film substrate which is a transparent polymer substrate.
본 발명의 일 실시예에 의하면, 상기 기판은 전도성 산화물 또는 질화물을 포함하는 금속 박막 기판이 제공된다.According to an embodiment of the present invention, the substrate is provided with a metal thin film substrate comprising a conductive oxide or nitride.
본 발명의 일 실시예에 의하면, 상기 금속 박막 기판은 30Ω/sq 이하의 면저항을 가지는 금속 박막 기판이 제공된다.According to one embodiment of the present invention, the metal thin film substrate is provided with a metal thin film substrate having a sheet resistance of 30 Ω / sq or less.
본 발명의 일 실시예에 의하면, 상기 금속 박막 기판은 85% 이상의 광투과도를 가지는 금속 박막 기판이 제공된다.According to one embodiment of the invention, the metal thin film substrate is provided with a metal thin film substrate having a light transmittance of 85% or more.
본 발명의 일 실시예에 의하면, 상기 기판 및 상기 금속 박막 사이에 형성되는 중간층;을 더 포함하는 금속 박막 기판이 제공된다.According to an embodiment of the present invention, there is provided a metal thin film substrate further comprising an intermediate layer formed between the substrate and the metal thin film.
본 발명의 일 실시예에 의하면, 상기 금속 박막 상에 형성되는 보호층;을 더 포함하는 금속 박막 기판이 제공된다.According to an embodiment of the present invention, there is provided a metal thin film substrate further comprising a protective layer formed on the metal thin film.
본 발명의 일 실시예에 의하면, 상기 금속 박막은 질소로 도핑되는 것을 특징으로 하는 금속 박막 기판이 제공된다.According to one embodiment of the invention, the metal thin film is provided with a metal thin film substrate, characterized in that the doped with nitrogen.
본 발명의 일 실시예에 의하면, 상기 금속 박막의 두께가 10nm 이하인 경우, 상기 금속 박막의 질소 함유량은 20% 이하인 금속 박막 기판이 제공된다.According to an embodiment of the present invention, when the thickness of the metal thin film is 10 nm or less, a metal thin film substrate having a nitrogen content of 20% or less is provided.
본 발명의 일 실시예에 의하면, 상기 금속 박막은 아르곤(Ar) 및 질소(N2)를 공정가스로 한 물리기상증착법(PVD, Physical Vapor Deposition)에 의해 형성되는 금속 박막 기판이 제공된다.According to an embodiment of the present invention, the metal thin film is provided with a metal thin film substrate formed by physical vapor deposition (PVD) using argon (Ar) and nitrogen (N 2 ) as a process gas.
본 발명의 일 실시예에 의하면, 상기 공정 가스는 아르곤(Ar) : 질소(N2)가 45 : 2 내지 35의 비율인 금속 박막 기판이 제공된다.According to an embodiment of the present invention, the process gas is provided with a metal thin film substrate having an argon (Ar): nitrogen (N 2 ) ratio of 45: 2 to 35.
본 발명의 또 다른 측면에 의하면, 상기 금속 박막 기판을 포함하는 물품이 제공된다.According to another aspect of the invention, an article is provided comprising the metal thin film substrate.
본 발명의 일 실시예에 의하면, 상기 물품은 디스플레이용 투명 전극, 편광판, 태양전지용 투명 전극, 저방사코팅, 투명히터용 전극, 또는 반도체용 미세금속전극인 물품이 제공된다.According to an embodiment of the present invention, the article is provided an article which is a transparent electrode for display, a polarizing plate, a transparent electrode for solar cell, low radiation coating, an electrode for transparent heater, or a fine metal electrode for semiconductor.
본 발명의 또 다른 측면에 의하면, 기판을 준비하는 단계; 상기 기판 상에 물리기상증착법(PVD, Physical Vapor Deposition)에 의해 은(Ag) 또는 은합금을 포함하는 금속 박막을 형성하는 단계;를 포함하되, 상기 물리기상증착법(PVD, Physical Vapor Deposition)의 공정 가스는 질소(N2)를 포함하는 것을 특징으로 하는 금속 박막 기판의 제조방법이 제공된다.According to another aspect of the invention, preparing a substrate; Forming a metal thin film containing silver (Ag) or silver alloy by physical vapor deposition (PVD, Physical Vapor Deposition) on the substrate; including, but the process of physical vapor deposition (PVD, Physical Vapor Deposition) Provided is a method for manufacturing a metal thin film substrate, wherein the gas includes nitrogen (N 2 ).
본 발명의 일 실시예에 의하면, 상기 물리기상증착법(PVD, Physical Vapor Deposition)의 공정 가스는 아르곤(Ar) 및 질소(N2)를 포함하는 금속 박막 기판의 제조 방법이 제공된다.According to an embodiment of the present invention, a process gas of the physical vapor deposition (PVD) is provided with a method for manufacturing a metal thin film substrate including argon (Ar) and nitrogen (N 2 ).
본 발명의 일 실시예에 의하면, 상기 스퍼터링 공정의 공정 가스는 아르곤(Ar) : 질소(N2)가 45 : 2 내지 35의 비율인 금속 박막 기판의 제조 방법이 제공된다.According to one embodiment of the present invention, the process gas of the sputtering process is provided with a method for producing a metal thin film substrate having an argon (Ar): nitrogen (N 2 ) ratio of 45: 2 to 35.
본 발명의 일 실시예에 의하면, 상기 금속 박막의 (111)면의 전체 결정면에 대한 비율은 상기 금속 박막의 두께가 증가함에 따라 감소하는 금속 박막 기판의 제조 방법이 제공된다.According to an embodiment of the present invention, the ratio of the (111) plane of the metal thin film to the entire crystal surface is reduced as the thickness of the metal thin film is provided a method of manufacturing a metal thin film substrate.
본 발명의 일 실시예에 의하면, 상기 금속 박막의 두께가 10nm 이하인 경우, 상기 금속 박막의 질소 함유량은 20% 이하인 금속 박막 기판의 제조방법이 제공된다.According to an embodiment of the present invention, when the thickness of the metal thin film is 10 nm or less, a method for manufacturing a metal thin film substrate having a nitrogen content of 20% or less is provided.
본 발명의 일 실시예에 의하면, 상기 기판 및 상기 금속 박막 사이에 중간층을 형성하는 단계;를 더 포함하는 금속 박막 기판의 제조 방법이 제공된다.According to an embodiment of the present invention, there is provided a method of manufacturing a metal thin film substrate further comprising the step of forming an intermediate layer between the substrate and the metal thin film.
본 발명의 일 실시예에 의하면, 상기 금속 박막 상에 보호층을 형성하는 단계;를 더 포함하는 금속 박막 기판의 제조 방법이 제공된다.According to an embodiment of the present invention, there is provided a method for manufacturing a metal thin film substrate further comprising the step of forming a protective layer on the metal thin film.
본 발명의 일 실시예에 의하면, 상기 금속 박막을 형성하는 단계는 100℃ 이하에서 수행되는 금속 박막 기판의 제조 방법이 제공된다.According to one embodiment of the invention, the step of forming the metal thin film is provided a method of manufacturing a metal thin film substrate is performed at 100 ℃ or less.
본 발명의 일 실시예에 의하면, 본 발명에 의한 금속 박막 기판은 성장 초기부터 2차원 연속 박막으로 성장되며 광투과율 및 전도성이 우수한 금속 박막을 제공할 수 있다.According to an embodiment of the present invention, the metal thin film substrate according to the present invention may be provided as a metal thin film having excellent light transmittance and conductivity, grown into a two-dimensional continuous thin film from the beginning of growth.
또한, 본 발명의 일 실시예에 의하면, 본 발명에 의한 금속 박막 기판의 제조방법은 금속 박막 성장 초기부터 2차원 연속 박막으로 성장을 효율적으로 유도할 수 있어 광투과율 및 전도성이 우수한 금속 박막을 대면적으로 제조할 수 있다.In addition, according to an embodiment of the present invention, the method for manufacturing a metal thin film substrate according to the present invention can efficiently induce growth into a two-dimensional continuous thin film from the beginning of the metal thin film growth to replace the metal thin film having excellent light transmittance and conductivity It can manufacture with area.
도 1은 본 발명의 일 실시예에 따른 금속 박막 기판의 내부 구성을 보인 종단면도이다.1 is a longitudinal cross-sectional view showing an internal configuration of a metal thin film substrate according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 금속 박막 기판의 내부 구성을 보인 종단면도이다.2 is a longitudinal cross-sectional view showing an internal configuration of a metal thin film substrate according to another embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 금속 박막 기판의 제조방법을 개략적으로 나타낸 순서도이다.3 is a flowchart schematically illustrating a method of manufacturing a metal thin film substrate according to an embodiment of the present invention.
도 4는 일반적인 금속의 성장패턴(I)과 본 발명의 의한 금속의 성장패턴(II)을 비교한 도면이다.4 is a view comparing the growth pattern (I) of the general metal and the growth pattern (II) of the metal according to the present invention.
도 5는 공정가스의 유량 및 금속 박막의 두께에 따른 금속 박막의 배향성을 나타낸 도면이다.5 is a view showing the orientation of the metal thin film according to the flow rate of the process gas and the thickness of the metal thin film.
도 6은 공정가스의 유량 및 금속 박막의 두께에 따른 금속 박막의 배향도를 나타낸 도면이다.6 is a view showing the orientation of the metal thin film according to the flow rate of the process gas and the thickness of the metal thin film.
도 7 내지 도 9는 공정가스의 유량 및 금속 박막의 두께에 따른 배향성과 관련된 Psi rocking curve를 시각적으로 강조한 Pole figure이다. 7 to 9 are pole figures visually emphasizing the Psi rocking curve related to the orientation according to the flow rate of the process gas and the thickness of the metal thin film.
도 10 내지 16은 공정가스의 유량에 따른 금속 박막의 FE-SEM 사진이다.10 to 16 are FE-SEM picture of the metal thin film according to the flow rate of the process gas.
도 17은 금속 박막 기판 내 조성 분석을 나타낸 도면이다.17 is a diagram illustrating composition analysis in a metal thin film substrate.
도 18은 공정가스 유량에 따른 금속 박막 기판의 표면 조도를 비교한 도면이다.18 is a view comparing surface roughnesses of metal thin film substrates according to process gas flow rates.
도 19는 본 발명의 일 실시예에 따른 금속 박막 기판의 두께 변경에 따른 표면 조도를 비교한 도면이다.19 is a view comparing surface roughness according to the thickness change of the metal thin film substrate according to the exemplary embodiment of the present invention.
도 20은 공정가스 유량에 따른 금속 박막 기판의 저항값을 비교한 도면이다.20 is a view comparing resistance values of metal thin film substrates according to process gas flow rates.
도 21은 본 발명에 의한 금속 박막을 2theta scan하여 Ag(N)내에 독립적인 AgN phase가 존재하지 않음을 확인한 결과를 보여주는 그래프이다. 21 is a graph showing a result of confirming that there is no independent AgN phase in Ag (N) by performing a 2theta scan of the metal thin film according to the present invention.
도 22 및 도 23은 Ag(N) 내의 N (질소) 잔량 검출을 위한 SIMS 분석을 한 결과를 나타낸다.22 and 23 show the results of SIMS analysis for detecting the residual amount of N (nitrogen) in Ag (N).
도 24 및 도 25는 본 발명의 일 실시예에 의한 금속 박막 기판의 광전 특성을 나타낸 도면이다.24 and 25 illustrate photoelectric characteristics of a metal thin film substrate according to an exemplary embodiment of the present invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
이하, 본 발명의 실시예를 첨부한 도면들을 참조하여 상세히 설명하기로 한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면 번호에 상관없이 동일한 수단에 대해서는 동일한 참조 번호를 사용하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, the same reference numerals will be used for the same means regardless of the reference numerals in order to facilitate the overall understanding.
도 1은 본 발명의 일 실시예에 따른 금속 박막 기판의 내부 구성을 보인 종단면도이다.1 is a longitudinal cross-sectional view showing an internal configuration of a metal thin film substrate according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 금속 박막 기판은 기판(110) 및 금속 박막(120)을 포함한다.Referring to FIG. 1, a metal thin film substrate according to an embodiment of the present invention includes a substrate 110 and a metal thin film 120.
상기 기판(110)은 상기 금속 박막(120)이 성장할 수 있는 모재가 된다. The substrate 110 becomes a base material on which the metal thin film 120 can grow.
상기 기판(110)은 투명 폴리머 및 유리 중 어느 하나를 포함할 수 있으나, 이 이에 제한되는 것은 아니다. 본 발명에 의한 금속 박막 기판이 투명 전도막으로 사용되는 경우, 상기 기판(110)은 금속, 전도성 산화물, 또는 전도성 질화물로 이루어진 박막 아래에 투명 폴리머 또는 유리층으로 형성될 수 있다. 따라서 상기 기판(110)이 투명 폴리머로 구성되면 투명 플렉서블 디스플레이 및 플렉서블 태양전지용 투명 전극 등에 유용하게 활용될 수 있다. 따라서, 상기 기판(110)은 PC, PET, PES, PEN, PAR, PI 등을 포함하는 플렉서블 디스플레이 소자용 투명 폴리머가 채택될 수 있다. The substrate 110 may include any one of a transparent polymer and glass, but is not limited thereto. When the metal thin film substrate according to the present invention is used as a transparent conductive film, the substrate 110 may be formed of a transparent polymer or glass layer under a thin film made of a metal, a conductive oxide, or a conductive nitride. Therefore, when the substrate 110 is made of a transparent polymer, it may be usefully used for a transparent flexible display and a transparent electrode for a flexible solar cell. Accordingly, the substrate 110 may be a transparent polymer for a flexible display device including PC, PET, PES, PEN, PAR, PI, and the like.
상기 기판(110)은 금속 박막(120)이 성장할 수 있는 것이라면 어떤 재료이든 사용할 수 있다. 즉, 기판(110)은 유전체, 반도체, 및 도체 중 어느 하나를 포함할 수 있다. 또한, 상기 기판(110)은 금속, 전도성 산화물, 또는 전도성 질화물을 포함할 수 있다. 보다 구체적으로, Al, Ba, Be, Ca, Cr, Cu, Cd, Dy, Ga, Ge, Hf, In, Lu, Mg, Mo, Ni, Rb, Sc, Si, Sn, Ta, Te, Ti, W, Zn, Zr, 및 Yb로 구성된 군에서 선택된 금속의 산화물(oxide), 질화물(nitride), 산화물-질화물의 화합물(oxynitride) 및 불화 마그네슘(Magnesium fluoride) 중 어느 하나를 이용할 수 있으며, 이에 제한되는 것은 아니다.The substrate 110 may be any material as long as the metal thin film 120 can be grown. That is, the substrate 110 may include any one of a dielectric, a semiconductor, and a conductor. In addition, the substrate 110 may include a metal, a conductive oxide, or a conductive nitride. More specifically, Al, Ba, Be, Ca, Cr, Cu, Cd, Dy, Ga, Ge, Hf, In, Lu, Mg, Mo, Ni, Rb, Sc, Si, Sn, Ta, Te, Ti, Oxide, nitride, oxide-nitride and magnesium fluoride of metals selected from the group consisting of W, Zn, Zr, and Yb may be used, but not limited thereto. It doesn't happen.
바람직하게는, 상기 기판(110)은 배향성(preferred orientation)을 갖는다. 상기 기판(110)의 배향성은 기판(110)에서 성장할 금속 박막(120)의 배향성에 영향을 미칠 수 있다.Preferably, the substrate 110 has a preferred orientation. The orientation of the substrate 110 may affect the orientation of the metal thin film 120 to be grown on the substrate 110.
상기 금속 박막(120)은 상기 기판(110) 상에 형성된다. 상기 금속 박막(120)은 성장 초기부터 2차원 연속 박막으로의 성장될 수 있도록 형성된다.The metal thin film 120 is formed on the substrate 110. The metal thin film 120 is formed to be grown into a two-dimensional continuous thin film from the beginning of growth.
일반적으로 금속은 상기 기판(110) 상에 금속의 낮은 젖음성으로 인하여 2차원 연속박막이 아닌 3차원 입자로 성장하려는 거동을 보인다. 본 발명에 의하면 이러한 금속의 성장거동은 성장 초기에 형성되는 금속의 배향성의 조절을 통하여 제어할 수 있다.In general, metal exhibits a behavior of growing into three-dimensional particles rather than a two-dimensional continuous thin film due to the low wettability of the metal on the substrate 110. According to the present invention, the growth behavior of the metal can be controlled by controlling the orientation of the metal formed at the beginning of the growth.
본 발명의 일 실시예에서는 금속 박막(120)은 은(Ag) 또는 은 합금을 포함한다. 은(Ag) 또는 은 합금의 일반적인 성장거동을 배향성 측면에서 살펴보면 초기에는 (111)면뿐만 아니라 그 외의 면들도 발달한다. 이후 은(Ag) 또는 은 합금의 두께가 두꺼워짐에 따라 (111)면의 비율이 점점 높아지게 된다. 이러한 성장거동에 변화를 주어 성장 초기부터 은(Ag) 또는 은 합금의 (111)면이 그 외의 면에 비해 우세하게 성장하도록 할 수 있다. In one embodiment of the present invention, the metal thin film 120 includes silver (Ag) or a silver alloy. Looking at the general growth behavior of silver (Ag) or silver alloy in terms of orientation, initially not only the (111) plane but also other planes develop. Then, as the thickness of the silver (Ag) or silver alloy becomes thicker, the ratio of the (111) plane becomes higher. This growth behavior can be varied to allow the (111) plane of silver (Ag) or silver alloy to grow predominantly compared to other planes from the beginning of growth.
상기 금속 박막(120)의 (111) 성장 방향을 가진 (111) 면이 우세한 것은 빠른 초기 연속 박막 형성 시 유리한데, 본 발명의 금속 박막 기판은 상기 금속 박막(120)의 (111)면의 전체 결정면에 대한 비율이 상대적으로 높고 금속 박막의 두께가 증가함에 따라 감소하는 특징으로 가진다. 종래기술에 의한 금속 박막의 경우 (111) 면의 전체 결정면에 대한 비율이 상대적으로 낮고 금속 박막의 두께가 증가함에 따라 증가한다. 따라서 본 발명의 금속 박막 기판은 완전히 상반되는 경향을 나타내고, 상대적으로 얇은 두께로 형성된 우수한 연속 박막을 가진다. The predominance of the (111) plane having the (111) growth direction of the metal thin film 120 is advantageous in forming a rapid initial continuous thin film, and the metal thin film substrate of the present invention is the entire (111) plane of the metal thin film 120. The ratio with respect to the crystal surface is relatively high and decreases as the thickness of the metal thin film increases. In the case of the metal thin film according to the prior art, the ratio of the (111) plane to the total crystal surface is relatively low and increases as the thickness of the metal thin film increases. Therefore, the metal thin film substrate of the present invention tends to be completely opposite and has an excellent continuous thin film formed in a relatively thin thickness.
이에 제한되는 것은 아니나, 상기 금속 박막(120)의 (111)면의 배향도(Degree of preferred orientation, p(111))가 1.6 이상일 수 있다. 본 발명의 일 실시예에 의하면, 금속 박막(111)의 두께가 상대적으로 얇은 상태에서 (111)면의 배향도가 높아 우수한 연속 박막을 가진다. 이에 제한되는 것은 아니나, 금속 박막의 두께가 10nm 이하인 경우, p(111)이 1.6 이상으로 높아 초기 연속 박막 형성에 유리하다. Although not limited thereto, a degree of preferred orientation (p (111)) of the (111) plane of the metal thin film 120 may be 1.6 or more. According to the exemplary embodiment of the present invention, the metal thin film 111 has a relatively thin thickness and has a high continuous film having a high degree of orientation of the (111) plane. Although not limited thereto, when the thickness of the metal thin film is 10 nm or less, p (111) is higher than 1.6, which is advantageous for initial continuous thin film formation.
이에 제한되는 것은 아니나, 상기 금속 박막(120)의 (111)/(200)이 10 이상일 수 있다. 본 발명의 일 실시예에 의하면, 금속 박막(120)의 두께가 상대적으로 얇은 상태에서 (111)/(200)이 높아 우수한 연속 박막을 가진다. 이에 제한되는 것은 아니나, 금속 박막의 두께가 10nm 이하인 경우, (111)/(200)이 10 이상으로 높아 초기 연속 박막 형성에 유리하다. Although not limited thereto, the (111) / (200) of the metal thin film 120 may be 10 or more. According to the exemplary embodiment of the present invention, in the state where the thickness of the metal thin film 120 is relatively thin, the (111) / (200) is high, and thus the continuous thin film is excellent. Although not limited thereto, when the thickness of the metal thin film is 10 nm or less, (111) / (200) is higher than 10, which is advantageous for initial continuous thin film formation.
이에 제한되는 것은 아니나, 상기 금속 박막(120)의 두께가 10nm 이상인 경우 상기 금속 박막(120)의 (111)면의 배향도(Degree of preferred orientation, p(111))가 1.7 이하일 수 있다. 상기 금속 박막(120)의 두께가 10nm 이상인 경우 p(111)가 종래 금속 박막에 비해 상대적으로 낮아져서 금속 박막(120)의 수직 성장이 우세하여 원하는 두께의 연속 박막을 신속하게 성장시킬 수 있다. Although not limited thereto, when the thickness of the metal thin film 120 is 10 nm or more, a degree of preferred orientation (p (111)) of the (111) surface of the metal thin film 120 may be 1.7 or less. When the thickness of the metal thin film 120 is greater than or equal to 10 nm, p (111) is relatively lower than that of the conventional metal thin film, so that the vertical growth of the metal thin film 120 is predominant, thereby rapidly growing a continuous thin film having a desired thickness.
이에 제한되는 것은 아니나, 상기 금속 박막의 두께가 10nm 이상인 경우 상기 금속 박막의 (111)/(200)이 12 이하일 수 있다. 상기 금속 박막(120)의 두께가 10nm 이상인 경우 p(111)가 종래 금속 박막에 비해 상대적으로 낮아져서 금속 박막(120)의 수직 성장이 우세하여 원하는 두께의 연속 박막을 신속하게 성장시킬 수 있다. Although not limited thereto, when the thickness of the metal thin film is 10 nm or more, (111) / (200) of the metal thin film may be 12 or less. When the thickness of the metal thin film 120 is greater than or equal to 10 nm, p (111) is relatively lower than that of the conventional metal thin film, so that the vertical growth of the metal thin film 120 is predominant, thereby rapidly growing a continuous thin film having a desired thickness.
이에 제한되는 것은 아니나, 상기 금속 박막(120)의 두께는 0nm 초과, 40nm 이하일 수 있다. 상기 금속 박막(120)의 두께는 0nm 초과, 24nm 이하가 바람직하고, 14nm 이하가 더 바람직하고, 12nm 이하가 더욱더 바람직하고, 10nm 이하가 더욱더 바람직하고, 8nm 이하가 더욱더 바람직하다. 상기 금속 박막(120)은 투광도가 저하되지 않도록 구성되는 것이 바람직하다. Although not limited thereto, the thickness of the metal thin film 120 may be greater than 0 nm and less than or equal to 40 nm. The thickness of the metal thin film 120 is preferably greater than 0 nm and 24 nm or less, more preferably 14 nm or less, even more preferably 12 nm or less, even more preferably 10 nm or less, even more preferably 8 nm or less. The metal thin film 120 is preferably configured so that the light transmittance does not decrease.
이에 제한되는 것은 아니나, 상기 금속 박막(120)의 조도가 0 nm 초과, 0.8 nm 이하일 수 있다. 본 발명에 의한 상기 금속 박막(120)은 (111)면의 전체 결정면에 대한 비율이 상대적으로 높아 초기 연속 박막의 2차원적 성장이 유도되어, 상기 금속 박막(120)이 얇은 두께에서도 낮은 조도를 가지는 것을 특징으로 한다.Although not limited thereto, the roughness of the metal thin film 120 may be greater than 0 nm and less than or equal to 0.8 nm. The metal thin film 120 according to the present invention has a relatively high ratio of the entire crystal plane of the (111) plane to induce two-dimensional growth of the initial continuous thin film, so that the metal thin film 120 has low roughness even at a thin thickness. It is characterized by having.
상기 금속 박막(120)은 공정 가스로 질소(N2)를 포함하는 물리기상증착법(PVD, Physical Vapor Deposition)에 의해 형성될 수 있다. 따라서, 상기 금속 박막(120)은 질소를 함유하고 있을 수 있다. 이에 제한되는 것은 아니나, 상기 금속 박막(120)의 두께가 10nm 이하인 경우 상기 금속 박막(120)의 질소 함유량은 20% 이하일 수 있다.The metal thin film 120 may be formed by physical vapor deposition (PVD) including nitrogen (N 2 ) as a process gas. Therefore, the metal thin film 120 may contain nitrogen. Although not limited thereto, when the thickness of the metal thin film 120 is 10 nm or less, the nitrogen content of the metal thin film 120 may be 20% or less.
은(Ag)의 성장 초기에 (111)면이 발달하는 특성은 기판(110)의 배향성에 따라 더욱 강화될 수 있다. 본 발명의 일 실시예에서는 기판(110)은 산화아연(ZnO)을 포함한다. 산화아연(ZnO)는 폴리머와 유리, 실리콘 웨이퍼(Si wafer)에 비해 귀금속(noble metal)의 젖음성이 좋은 물질로 알려져 있다. 산화아연(ZnO)은 (002)면이 주로 발달하며 이는 은(Ag)의 (111)면과 같은 성장 방향성을 가진다. 즉, 금속 박막(120)이 초기 성장 시에 기판(110)의 배향성에 상응하여 형성되도록 제어하는 것이다.The development of the (111) plane at the beginning of the growth of silver (Ag) may be further enhanced according to the orientation of the substrate 110. In an embodiment of the present invention, the substrate 110 includes zinc oxide (ZnO). Zinc oxide (ZnO) is known to have better wettability of noble metals than polymers, glass and silicon wafers. Zinc oxide (ZnO) is mainly developed in the (002) plane, which has the same growth direction as the (111) plane of silver (Ag). That is, the metal thin film 120 is controlled to be formed in accordance with the orientation of the substrate 110 during the initial growth.
본 발명의 실시예에서는 금속 박막(120)으로 은(Ag)을 사용하였으나, 이에 제한되는 것은 아니며 금속 박막(120)은 은 합금 및 니켈(Ni)과 같이 상술한 배향성에 관한 특성을 지닌 금속 중 어느 하나를 포함할 수 있다.In the exemplary embodiment of the present invention, silver (Ag) is used as the metal thin film 120, but the present invention is not limited thereto, and the metal thin film 120 may include silver alloy and nickel (Ni). It may include any one.
도 2는 본 발명의 다른 실시예에 따른 금속 박막 기판의 내부 구성을 보인 종단면도이다.2 is a longitudinal cross-sectional view showing an internal configuration of a metal thin film substrate according to another embodiment of the present invention.
도 2의 (A)를 참조하면, 본 발명의 제2실시예에 따른 금속 박막 기판은 중간층(130)을 더 포함할 수 있다. 도 2의 (B)를 참조하면, 본 발명의 제3실시예에 따른 금속 박막 기판은 보호층(140)을 더 포함할 수 있다. 도 2의 (C)를 참조하면, 본 발명의 제4실시예에 따른 금속 박막 기판은 기판(110), 중간층(130), 금속 박막(120) 및 보호층(140)을 포함한다. 예를 들어, 상기 금속 박막 기판은 투명 무기물층-금속 박막-투명 무기물층 구조로 적층되어 형성된 투명 전도성 박막일 수 있다.Referring to FIG. 2A, the metal thin film substrate according to the second embodiment of the present invention may further include an intermediate layer 130. Referring to FIG. 2B, the metal thin film substrate according to the third embodiment of the present invention may further include a protective layer 140. Referring to FIG. 2C, the metal thin film substrate according to the fourth embodiment of the present invention includes a substrate 110, an intermediate layer 130, a metal thin film 120, and a protective layer 140. For example, the metal thin film substrate may be a transparent conductive thin film formed by stacking a transparent inorganic layer-metal thin film-transparent inorganic layer structure.
상기 중간층(130)은 상기 기판(110)과 상기 금속 박막(120) 사이에 형성된다. 상기 중간층(130)은 산화아연(ZnO), ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), AZO(Al-doping Zinc Oxide), GZO(Ga-doping Zinc Oxide), IGZO, ATO, 및 TiO2 중 어느 하나로 이루어질 수 있으나, 이에 제한되는 것은 아니다. 상기 중간층(130)은 상기 기판(110)에 물리기상증착법(PVD, Physical Vapor Deposition)으로 투명하게 형성되며, 20~200nm의 두께를 가질 수 있다. 상기 중간층(130)은 상기 기판(110)의 투광도를 유지하면서 전기전도도를 높일 수 있도록 구성되는 것이 바람직하다. The intermediate layer 130 is formed between the substrate 110 and the metal thin film 120. The intermediate layer 130 may be formed of zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO), al-doping zinc oxide (AZO), ga-doping zinc oxide (GZO), IGZO, ATO, and TiO. It may be made of any one of two , but is not limited thereto. The intermediate layer 130 may be transparently formed on the substrate 110 by physical vapor deposition (PVD), and may have a thickness of about 20 nm to about 200 nm. The intermediate layer 130 is preferably configured to increase the electrical conductivity while maintaining the light transmittance of the substrate 110.
바람직하게는, 상기 중간층(130)은 금속의 젖음성이 좋은 물질을 포함한다. 상기 중간층(130)은 본 발명의 일 실시예에서의 기판(110)의 역할을 대체할 수 있는 것이다. 상기 중간층(130)은 상기 기판(110)이 유리나, 폴리머 재질과 같은 경우에 배향성을 갖는 산화아연(ZnO)과 같은 물질을 포함하도록 하여 상기 금속 박막(120)의 성장특성에 영향을 미치도록 할 수 있다.Preferably, the intermediate layer 130 includes a material having good wettability of the metal. The intermediate layer 130 may replace the role of the substrate 110 in one embodiment of the present invention. The intermediate layer 130 may include a material such as zinc oxide (ZnO) having an orientation when the substrate 110 is made of glass or a polymer material to affect the growth characteristics of the metal thin film 120. Can be.
상기 보호층(140)은 상기 금속 박막(120) 상에 형성되며, 상기 금속 박막(120)의 산화를 방지하고 물리적 손상을 방지하는 역할을 한다. 상기 보호층(140)은 산화아연(ZnO), ITO, IZO, AZO, GZO, IGZO, ATO, 및 TiO2 중 어느 하나로 이루질 수 있으나, 이에 제한되는 것은 아니다. 상기 보호층(140)은 상기 기판(110)에 물리기상증착법(PVD, Physical Vapor Deposition)으로 투명하게 형성되며, 20~200nm의 두께를 가질 수 있다. 상기 중간층(130)은 상기 기판(110)의 투광도를 유지하면서 전기전도도를 높일 수 있도록 구성되는 것이 바람직하다. 본 발명의 일 실시예에서 상기 보호층(140)은 산화아연(ZnO)으로 형성하였다. The protective layer 140 is formed on the metal thin film 120, and serves to prevent oxidation of the metal thin film 120 and to prevent physical damage. The protective layer 140 may be formed of any one of zinc oxide (ZnO), ITO, IZO, AZO, GZO, IGZO, ATO, and TiO 2 , but is not limited thereto. The protective layer 140 may be transparently formed on the substrate 110 by physical vapor deposition (PVD), and may have a thickness of about 20 nm to about 200 nm. The intermediate layer 130 is preferably configured to increase the electrical conductivity while maintaining the light transmittance of the substrate 110. In one embodiment of the present invention, the protective layer 140 is formed of zinc oxide (ZnO).
또한, 상기 중간층(130)과 상기 보호층(140)은 동일 재료로 구성될 수도 있고 이종의 재료로 구성될 수도 있다. In addition, the intermediate layer 130 and the protective layer 140 may be made of the same material or different materials.
본 발명에 의한 금속 박막 기판은 도 2에서 살펴본 바와 같이 금속박막(120), 중간층(130) 및 보호층(140)의 다양한 조합으로 구성이 가능하다.As described with reference to FIG. 2, the metal thin film substrate according to the present invention may be configured by various combinations of the metal thin film 120, the intermediate layer 130, and the protective layer 140.
이에 제한되는 것은 아니나, 상기 금속 박막 기판은 30Ω/sq 이하의 우수한 면저항을 가질 수 있다.Although not limited thereto, the metal thin film substrate may have excellent sheet resistance of 30 μs / sq or less.
이에 제한되는 것은 아니나, 상기 금속 박막 기판은 10mm 이하의 굴곡지름에 대한 내굴곡 특성을 가질 수 있다.Although not limited thereto, the metal thin film substrate may have bending resistance with respect to a bending diameter of 10 mm or less.
이에 제한되는 것은 아니나, 상기 금속 박막 기판은 85% 이상의 광투과도를 가질 수 있다. 이에 제한되는 것은 아니나, 상기 금속 박막 기판은 가시광선 영역(400-800nm)에서는 90% 이상의 광투과도를 가질 수 있다. Although not limited thereto, the metal thin film substrate may have a light transmittance of 85% or more. Although not limited thereto, the metal thin film substrate may have a light transmittance of 90% or more in the visible light region (400-800 nm).
상술한 바와 같이, 본 발명에 의한 금속 박막 기판은 금속 박막 형성 초기에 우수한 2차원 연속 박막의 형성으로 전기전도도, 및 광투과도 특성 등이 우수하여 다양한 응용 분야의 물품에 활용될 수 있다.As described above, the metal thin film substrate according to the present invention is excellent in electrical conductivity, light transmittance characteristics, etc., by forming an excellent two-dimensional continuous thin film at the beginning of metal thin film formation, and thus may be utilized in articles of various application fields.
이에 제한되는 것은 아니나, 상기 금속 박막 기판은 디스플레이용 투명 전극, 편광판, 태양전지용 투명 전극, 저방사코팅, 투명히터용 전극, 또는 반도체용 미세금속전극에 활용될 수 있다.Although not limited thereto, the metal thin film substrate may be utilized for a transparent electrode for a display, a polarizing plate, a transparent electrode for a solar cell, a low radiation coating, an electrode for a transparent heater, or a fine metal electrode for a semiconductor.
도 3은 본 발명의 일 실시예에 따른 금속 박막 기판의 제조방법을 나타낸 순서도이다.3 is a flowchart illustrating a method of manufacturing a metal thin film substrate according to an embodiment of the present invention.
S210 단계에서는 기판(110)을 형성한다. 상기 기판(110)은 중간층(130)이 없는 경우 산화아연(ZnO)를 포함하도록 형성할 수도 있으나, 이에 제한되지 않으며 상술한 다양한 소재를 사용할 수 있다.In operation S210, the substrate 110 is formed. The substrate 110 may be formed to include zinc oxide (ZnO) when the intermediate layer 130 is not present. However, the substrate 110 is not limited thereto and various materials described above may be used.
S220 단계에서는 스퍼터링 공정에 사용될 공정가스의 유량을 결정한다.In step S220 determines the flow rate of the process gas to be used in the sputtering process.
S230 단계에서는 금속 박막(120)을 형성한다.In operation S230, the metal thin film 120 is formed.
본 발명의 일 실시예에서 금속 박막(120)은 은(Ag)을 스퍼터링 타겟으로 하는 스퍼터링 공정에 의해 형성되며 공정가스는 아르곤(Ar) 및 질소(N2)를 포함한다. 공정가스의 유량은 상기 금속 박막이 초기 성장 시에 상기 기판의 배향성에 상응하는 배향성을 갖도록 결정될 수 있다. 본 발명에서 배향성에 대한 의미는 모든 결정면이 동일한 방향으로 형성되는 것을 의미하는 것이 아니라 결정면 중에 어느 하나 이상의 결정면이 전체 결정면에 비해 그 비율이 증가 또는 감소한다는 의미로 사용된다.In one embodiment of the present invention, the metal thin film 120 is formed by a sputtering process using silver (Ag) as a sputtering target, and the process gas includes argon (Ar) and nitrogen (N 2 ). The flow rate of the process gas may be determined so that the metal thin film has an orientation corresponding to that of the substrate at the initial growth. In the present invention, the term "orientation" does not mean that all crystal planes are formed in the same direction, but is used to mean that one or more of the crystal planes increases or decreases in proportion to the entire crystal plane.
실험 내지 이론적 계산을 통하여 공정가스의 유량에 따라 금속의 배향성이 어떻게 변화하는지 예측할 수 있으며, 이러한 배향성에 상응하도록 공정가스의 유량을 결정할 수 있게 된다.Through experimental or theoretical calculations, it is possible to predict how the orientation of the metal changes with the flow rate of the process gas, and the flow rate of the process gas can be determined to correspond to the orientation.
상기 금속 박막(120)의 증착에 있어서 공정가스를 아르곤(Ar) 한 종만을 사용하지 않고 질소(N2)를 추가로 주입하였다. 질소(N2)의 주입은 스퍼터링 공정의 플라즈마 환경을 변화시키기는 하지만 질소성분 자체가 금속 박막(120)의 전도성, 투과성과 같은 광전 특성에는 영향을 미치지 않는다. 본 발명에 있어서 상기 질소(N2)의 주입 공정은 NOx이 미량으로 포함되는 것을 본 발명의 범위에서 배제하는 것은 아니다.In the deposition of the metal thin film 120, nitrogen (N 2 ) was additionally injected without using only one type of argon (Ar). Although injection of nitrogen (N 2 ) changes the plasma environment of the sputtering process, the nitrogen component itself does not affect photoelectric properties such as conductivity and transmittance of the metal thin film 120. In the present invention, the injection process of nitrogen (N 2 ) does not exclude the inclusion of a small amount of NOx in the scope of the present invention.
상기 질소(N2)의 주입은 증착되는 은(Ag)의 초기 성장 시 (111)면의 발달을 유도한다. 이러한 특성은 상술한 바와 같이 금속 박막(120)을 형성함에 있어 매우 얇은 두께에서도 2차원 연속박막의 성장이 가능하게 한다.The injection of nitrogen (N 2 ) leads to the development of the (111) plane during the initial growth of the deposited silver (Ag). This characteristic allows the growth of the two-dimensional continuous thin film even in a very thin thickness in forming the metal thin film 120 as described above.
다른 측면에서, 질소(N2)의 주입은 금속 박막(120)이 기판(110)의 배향성에 상응하는 배향성을 갖도록 유도한다. 또한, 질소(N2)는 최종 생성물에는 최종 생성물의 구조에는 영향을 미친다. 그리고, 이때 증착되는 상기 금속 박막(120)은 상기 기판(110)의 배향성에 의존하는 특성이 있으며 기판(110)의 배향성에 상응하는 배향성을 갖도록 형성될 수 있다. In another aspect, the injection of nitrogen (N 2 ) induces the metal thin film 120 to have an orientation corresponding to that of the substrate 110. Nitrogen (N 2 ) also affects the final product structure. In addition, the metal thin film 120 deposited at this time may have a characteristic depending on the orientation of the substrate 110 and may have an orientation corresponding to the orientation of the substrate 110.
한편, 질소(N2)는 초기 스퍼터링 공정에서 금속과 상대적으로 활발하게 결합할 수 있어, 형성되는 금속 박막의 두께에 따라 잔존하는 질소(N2)의 함유량은 차이가 있을 수 있다. 이에 제한되는 것은 아니나, 상기 금속 박막의 두께가 10nm 이하인 경우, 상기 금속 박막의 질소 함유량은 바람직하게 20% 이하, 더욱 바람직하게 10% 이하이다.On the other hand, nitrogen (N 2 ) may be relatively actively coupled to the metal in the initial sputtering process, the content of the remaining nitrogen (N 2 ) may vary depending on the thickness of the metal thin film formed. Although not limited to this, when the thickness of the metal thin film is 10 nm or less, the nitrogen content of the metal thin film is preferably 20% or less, more preferably 10% or less.
이에 제한되는 것은 아니나, 상기 스퍼터링 공정의 공정 가스는 아르곤(Ar) : 질소(N2)가 바람직하게 45 : 2 내지 35, 더욱 바람직하게 45 : 4 내지 16의 비율을 가진다. 상기 범위에서 은(Ag)의 초기 성장 시 (111)면의 발달을 효율적으로 유도할 수 있다.Although not limited thereto, the process gas of the sputtering process preferably has an argon (Ar): nitrogen (N 2 ) ratio of 45: 2 to 35, more preferably 45: 4 to 16. Within this range, it is possible to efficiently induce the development of the (111) plane during the initial growth of silver (Ag).
상기와 같은 공정 가스의 제어로 상기 금속 박막(120)의 (111)면의 전체 결정면에 대한 비율은 상기 금속 박막(120)의 두께가 증가함에 따라 감소하는 특징을 가진다.By controlling the process gas as described above, the ratio of the (111) plane of the metal thin film 120 to the entire crystal surface is reduced as the thickness of the metal thin film 120 increases.
상기 금속 박막(120)의 배향성이 기판(110)에 의존하는 특성은 금속이 은(Ag)을 포함하고, 기판(110)이 산화아연(ZnO)을 포함하는 경우 더욱 두드러진다.The property that the orientation of the metal thin film 120 depends on the substrate 110 is more pronounced when the metal includes silver (Ag) and the substrate 110 includes zinc oxide (ZnO).
상기 금속 박막(120)을 형성하는 단계는 100℃이하에서 수행될 수 있고, 바람직하게는 실온에서 수행될 수 있다.The forming of the metal thin film 120 may be performed at 100 ° C. or less, preferably at room temperature.
본 발명의 일 실시예에서 중간층(130)은 물리기상증착법(PVD, Physical Vapor Deposition)으로 형성하였으며, 스퍼터링 타겟(sputtering targer)으로 산화아연(ZnO)을 사용하였다.In an embodiment of the present invention, the intermediate layer 130 was formed by physical vapor deposition (PVD), and zinc oxide (ZnO) was used as a sputtering targer.
상기 중간층(130)은 초기 진공도가 3×10-6 Torr 이하에서 진공챔버 내부에 아르곤(Ar) 가스를 주입하고 작업 진공도 3×10-3 Torr에서 4 inch 산화아연(ZnO) 스퍼터링 타겟에 200 W의 RF 전력을 인가하여 증착하였다.The intermediate layer 130 injects argon (Ar) gas into the vacuum chamber at an initial vacuum of 3 × 10 -6 Torr or less and 200 W on a 4 inch zinc oxide (ZnO) sputtering target at a working vacuum of 3 × 10 -3 Torr. Was deposited by applying RF power.
상기 중간층(130)의 증착조건은 다음과 같다. The deposition conditions of the intermediate layer 130 are as follows.
상기 중간층(130) 증착조건Deposition conditions of the intermediate layer 130
-스파터링 타겟: 산화아연(ZnO) (4 inch)Spattering Target: Zinc Oxide (ZnO) (4 inch)
-작업 가스: Ar (100%, 45sccm )Working gas: Ar (100%, 45sccm)
-작업진공도: 3×10-3 TorrVacuum degree: 3 × 10 -3 Torr
-RF전력: 200WRF power: 200 W
-코팅속도: 0.12 nm/secCoating Speed: 0.12 nm / sec
-특성: n-typeCharacteristics: n-type
본 발명의 일 실시예에서 금속 박막(120)은 물리기상증착법(PVD, Physical Vapor Deposition)으로 형성하였으며, 스퍼터링 타겟(sputtering targer)으로 은(Ag)을 사용하였다.In an embodiment of the present invention, the metal thin film 120 was formed by physical vapor deposition (PVD), and silver (Ag) was used as a sputtering targer.
상기 금속 박막(120)의 증착조건은 다음과 같다.The deposition conditions of the metal thin film 120 are as follows.
상기 금속 박막(120) 증착조건Deposition conditions of the metal thin film 120
-스파터링 타겟: 은(Ag) (4 inch)Spattering Target: Ag (4 inch)
-공정 가스: 아르곤(Ar) : 질소(N2) (45 : 0-32 sccm)Process gas: argon (Ar): nitrogen (N 2 ) (45: 0-32 sccm)
-작업진공도: 3×10-3 TorrVacuum degree: 3 × 10 -3 Torr
-RF전력: 50WRF power: 50 W
-온도(℃) : 실온Temperature (℃): Room temperature
-코팅속도: ~0.18-~0.16 nm/secCoating speed: ~ 0.18-0.16 nm / sec
상기 보호층(140)은 중간층(130)과 동일한 재료로 형성하였으며, 스퍼터링 공정을 이용하여 증착조건도 동일하게 하였다.The protective layer 140 was formed of the same material as the intermediate layer 130, and the deposition conditions were also the same using a sputtering process.
도 4는 일반적인 금속의 성장패턴과 본 발명의 의한 금속의 성장패턴을 비교한 도면이다.4 is a view comparing a growth pattern of a general metal with a growth pattern of a metal according to the present invention.
도 4의 (I)은 일반적인 금속의 성장패턴을 나타낸다. 도 4의 (I)에 도시된 바와 같이 미세입자들로 형성된 금속은 Ostwald Ripening 내지 Cluster migration 이라는 과정을 통하여 상호 결합되어 성장한다. 이러한 성장특성은 초기 성장 시 2차원 연속박막을 만족시키지 못한다. 도 4는 금속의 성장을 개념적으로 나타나기 위한 것으로 기판 상의 화살표가 실제 입자의 이동을 나타내는 것은 아니고 동일한 위치에서의 시간의 흐름에 따른 성장을 의미한다.4 (I) shows a growth pattern of a general metal. As shown in (I) of FIG. 4, metals formed of microparticles grow by being bonded to each other through a process called Ostwald Ripening to Cluster migration. This growth characteristic does not satisfy the two-dimensional continuous thin film in the initial growth. Figure 4 is intended to conceptualize the growth of the metal, the arrow on the substrate does not indicate the movement of the actual particles, but means the growth over time in the same position.
도 4의 (II)는 본 발명에 의한 금속의 성장패턴을 나타낸다. 초기 성장에서부터 (I)에서와 같은 Ostwald Ripening 내지 Cluster migration을 통한 입자의 형성은 억제되고, 기판 표면에서 이동이 억제된 근접한 입자 간에 연결을 통한 성장 거동을 보인다.4 (II) shows a growth pattern of a metal according to the present invention. From the initial growth, the formation of particles through Ostwald Ripening to Cluster migration as in (I) is suppressed, and growth behavior is shown through the connection between adjacent particles whose movement is suppressed on the substrate surface.
도 5는 공정가스의 유량 및 금속 박막의 두께에 따른 금속 박막의 배향성을 나타낸 도면이다.5 is a view showing the orientation of the metal thin film according to the flow rate of the process gas and the thickness of the metal thin film.
도 5는 기판(110)으로 산화아연(ZnO), 금속 박막(120)으로 은(Ag)이 사용된 결과이며, 스퍼터링 공정가스 중 아르곤(Ar) 및 질소(N2)의 유량은 각각 45:0 sccm, 45:4 sccm, 45:16 sccm을 사용하였다.5 is a result of using zinc oxide (ZnO) as the substrate 110 and silver (Ag) as the metal thin film 120, and the flow rates of argon (Ar) and nitrogen (N 2 ) in the sputtering process gas are respectively 45: 0 sccm, 45: 4 sccm, 45:16 sccm were used.
결정면은 Nominal thickness-based 측정 결과로 이를 살펴보면, 공정가스로 아르곤(Ar)만을 사용하였을 때는 금속 박막(120)의 두께가 증가함에 따라, (200)면 보다는 (111)면이 발달하였다.As a result of the measurement of the nominal thickness-based crystal surface, when only argon (Ar) was used as the process gas, the (111) plane developed rather than the (200) plane as the thickness of the metal thin film 120 increased.
이에 비해, 공정가스로 아르곤(Ar) 및 질소(N2)를 사용하였을 때에는 성장 초기부터 (111)면이 급격히 증가하였고, 금속 박막(120)의 두께가 증가함에 따라 (111)면의 비율이 급격히 감소하여 순수 Ag와 상반되는 결과로 나타났다.In contrast, when argon (Ar) and nitrogen (N 2 ) were used as process gases, the (111) plane increased rapidly from the beginning of growth, and as the thickness of the metal thin film 120 increased, the ratio of the (111) plane increased. It was sharply reduced and showed a result opposite to that of pure Ag.
도 6은 공정가스의 유량 및 금속 박막의 두께에 따른 금속 박막의 배향성을 나타낸 도면이다.6 is a view showing the orientation of the metal thin film according to the flow rate of the process gas and the thickness of the metal thin film.
(111)면의 배향도(degree of preferred orientation)란 (111)면의 발달 정도를 나타내는 척도로, p(111) > 1 이면 (111)면이 주로 발달함을 나타내고, p(111) < 1 이면, (111)면 이외의 면들이 발달함을 나타낸다.The degree of preferred orientation of the (111) plane is a measure of the degree of development of the (111) plane, and p (111)> 1 indicates that the (111) plane mainly develops, and p (111) <1 , Other than (111) planes are developed.
도 6은 기판(110)으로 산화아연(ZnO), 금속 박막(120)으로 은(Ag)이 사용된 결과이며, 스퍼터링 공정가스 중 아르곤(Ar) 및 질소(N2)의 유량은 각각 45:0 sccm, 45:4 sccm, 45:16 sccm을 사용하였다.6 is a result of using zinc oxide (ZnO) as the substrate 110 and silver (Ag) as the metal thin film 120, and the flow rates of argon (Ar) and nitrogen (N 2 ) in the sputtering process gas are respectively 45: 0 sccm, 45: 4 sccm, 45:16 sccm were used.
결정면은 Nominal thickness-based 측정 결과로 이를 살펴보면, 도 5에서의 결과와 유사하게, 공정가스로 아르곤(Ar)만을 사용하였을 때는 금속 박막(120)의 두께가 증가함에 따라, 다른 면 보다는 (111)면이 발달하였다.As a result of the measurement of the crystal surface as a nominal thickness-based measurement, similar to the results in FIG. 5, when only the argon (Ar) was used as the process gas, the thickness of the metal thin film 120 increased, rather than the other surface (111). Cotton developed.
이에 비해, 공정가스로 아르곤(Ar) 및 질소(N2)를 사용하였을 때에는 성장 초기부터 (111)면이 발달하였고, 금속 박막(120)의 두께가 증가함에 따라 (111)면의 비율이 감소하였다.In contrast, when argon (Ar) and nitrogen (N 2 ) were used as process gases, the (111) plane developed from the beginning of growth, and as the thickness of the metal thin film 120 increased, the ratio of the (111) plane decreased. It was.
도 7 내지 도 9는 공정가스의 유량 및 금속 박막의 두께에 따른 배향성과 관련된 Psi rocking curve를 시각적으로 강조한 Pole figure이다. 이들 측정을 통해 두께에 따른 Ag(111)의 발달 정도를 파악할 수 있다.7 to 9 are pole figures visually emphasizing the Psi rocking curve related to the orientation according to the flow rate of the process gas and the thickness of the metal thin film. Through these measurements it is possible to determine the development of Ag (111) according to the thickness.
도 7을 참조하면, 상기 순수한 Ag의 경우 20nm에서의 Ag(111)의 발달 정도가 낮게 나타났다.Referring to FIG. 7, in the case of pure Ag, the degree of development of Ag (111) at 20 nm was low.
도 8 및 도 9를 참조하면, 공정가스로 아르곤(Ar) 및 질소(N2)를 사용하였을 때에는 성장 초기부터 (111)면이 발달하였고, 금속 박막(120)의 두께가 증가함에 따라 (111)면의 비율이 감소하였다.8 and 9, when argon (Ar) and nitrogen (N 2 ) were used as process gases, the (111) plane developed from the beginning of growth, and as the thickness of the metal thin film 120 increased (111). ) The proportion of cotton decreased.
도 10 내지 도 15는 공정가스의 유량에 따른 금속 박막의 FE-SEM(Model S-5500, Hitachi Co) 사진이다. 10 to 15 are FE-SEM (Model S-5500, Hitachi Co) photograph of the metal thin film according to the flow rate of the process gas.
도 10은 기판(110)으로 산화아연(ZnO), 금속 박막(120)으로 은(Ag)이 사용된 결과이며, 스퍼터링 공정가스 중 아르곤(Ar) 및 질소(N2)의 유량은 각각 45:0 sccm(도 10의 a), 45:4 sccm(도 10의 b), 45:8 sccm(도 10의 c) 45:16 sccm(도 10의 d)을 사용하였다.10 is a result of using zinc oxide (ZnO) as the substrate 110 and silver (Ag) as the metal thin film 120, and the flow rates of argon (Ar) and nitrogen (N 2 ) in the sputtering process gas are 45: 0 sccm (FIG. 10 a), 45: 4 sccm (FIG. 10 b), 45: 8 sccm (FIG. 10 c) 45:16 sccm (d of FIG. 10) were used.
다만, 정확하게는 도 10의 a에서의 금속 박막(120)은 금속 박막(120)으로의 성장 전의 형태이며 2차원 연속 박막으로 형성되기 전의 성장특성을 나타낸다. 금속의 수직두께(nominal thickness)는 2nm이다.Exactly, the metal thin film 120 in FIG. 10A shows the growth characteristics before the growth of the metal thin film 120 and the formation of the two-dimensional continuous thin film. The nominal thickness of the metal is 2 nm.
도 10을 참조하면, 공정가스로 아르곤(Ar)만을 사용한 경우는 입자들이 개별적으로 성장하고 서로 연결이 되지 않는 성장거동을 보임에 비해(도 10의 a), 공정가스로 아르곤(Ar) 및 질소(N2)를 사용하였을 때에 금속 입자들이 서로 연결되어 2차원 연속 박막을 형성하려는 성장경향을 보임을 알 수 있다(도 10의 b 내지 d).Referring to FIG. 10, in the case of using only argon (Ar) as the process gas, argon (Ar) and nitrogen as the process gas are compared with the particles growing individually and exhibiting growth behavior that is not connected to each other. When using (N 2 ) it can be seen that the metal particles are connected to each other to show a growth tendency to form a two-dimensional continuous thin film (b to d of FIG. 10).
도 11 내지 도 15는 Ag의 스퍼터링(sputtering) 공정에서 주입되는 Ar:N2 가스의 비를 50sccm:0sccm (for Ag), 50sccm;4sccm (for AgNx(4sccm)), 50sccm:16sccm (for AgNx(16sccm)으로 조절하였을 때, 20 nm두께의 ZnO 박막상에 다른 두께로 증착된 Ag와 AgNx의 모폴로지 특성 변화를 나타낸 것이다.11 to 15 show the ratio of Ar: N 2 gas injected in the sputtering process of Ag, 50sccm: 0sccm (for Ag), 50sccm; 4sccm (for AgNx (4sccm)), 50sccm: 16sccm (for AgNx ( 16 sccm) shows a change in the morphology of Ag and AgNx deposited on ZnO thin films of 20 nm thickness at different thicknesses.
도 11을 참조하면, Ag, AgNx(N2=4sccm), 및 AgNx(N2=16sccm)의 모폴로지 비교 시, 2 nm 두께에서 Ag와 AgNx (4sccm)은 다각형의 형태를 이루는 전형적이고 독립적인 개개의 금속 클러스터(metal cluster, 핵생성을 거치면서 성장한 아주 작은 입자들)를 형성하는데 반해, AgNx(16sccm)은 이러한 기존의 다각형 구조가 사라지고 그 대신 랜덤 클러스터(random cluster)와 이들을 연결하는 neck-like bridge로 구성되는 것을 알 수 있었다. 3 nm 두께에서는 AgNx(4sccm)에서도 이러한 랜덤 클러스터(random cluster) 구조는 확인되었으나, AgNx(4sccm)과 AgNx(16sccm)을 비교 시, AgNx(16sccm)이 ZnO 표면을 더 많이 덮고 있는 즉, 높은 젖음성(high wettability) 내지 확산(dispersion)이 확인되었다.Referring to FIG. 11, when comparing the morphologies of Ag, AgNx (N 2 = 4sccm), and AgNx (N 2 = 16sccm), at 2 nm thickness, Ag and AgNx (4sccm) are typical, independent individual pieces that form a polygon. AgNx (16sccm) eliminates this conventional polygonal structure, instead of random clusters and neck-like interconnects, while forming metal clusters of tiny particles grown through nucleation. It can be seen that it is composed of a bridge. This random cluster structure was also observed in AgNx (4sccm) at 3 nm thickness, but when comparing AgNx (4sccm) and AgNx (16sccm), AgNx (16sccm) covered more ZnO surface, that is, high wettability. high wettability to dispersion were identified.
도 12를 참조하면, 이러한 랜덤 클러스터(random cluster) 구조는 Ag의 경우 더 두꺼운 박막 (~6 nm)에서 확인되었다. 동일 두께에서 AgNx(4sccm)과 AgNx(16sccm)에서는 훨씬 높은 젖음성(wettability)을 나타내고, 거의 모든 ZnO 표면은 AgNx에 의해 덮여지는 것이 확인되었다.Referring to FIG. 12, such a random cluster structure was found in a thicker thin film (˜6 nm) for Ag. At the same thickness, AgNx (4sccm) and AgNx (16sccm) showed much higher wettability, and almost all ZnO surfaces were confirmed to be covered by AgNx.
도 13을 참조하면, 12 nm 이상 두께에서 확인되는 것과 같이 두께가 많이 증가하면 Ag가 완전히 ZnO 표면을 커버하기는 하지만, 조대한 Ag입자들이 관찰되었다. 이에 반해 AgNx의 박막의 경우는 상대적으로 작은 입자들로 형성됨이 확인되었다.Referring to FIG. 13, coarse Ag particles were observed although Ag completely covered the ZnO surface when the thickness increased as shown in the thickness of 12 nm or more. In contrast, it was confirmed that the AgNx thin film was formed of relatively small particles.
도 14 및 도 15는 AgNx에서 N2양을 0sccm에서 24sccm까지 확대해서 초기 클러스터(cluster)의 발달(evolution) 과정을 확인한 결과를 나타낸다.14 and 15 show the results of confirming the evolution of the initial cluster (cluster) by expanding the amount of N 2 from 0sccm to 24sccm in AgNx.
도 14를 참조하면, 1 nm 두께에서는 순수 Ag와 N-도핑된 Ag(N-doped Ag)의 비교에서, 그리고 낮은 N-doping level과 높은 N-doping level의 비교에서 명확한 차이를 발견할 수 없었다. 즉 핵생성 과정을 거치면서 형성되는 안정화된 미세 Ag 핵들의 밀도는 비슷하다고 볼 수 있다.Referring to FIG. 14, no clear difference was found in the comparison of pure Ag and N-doped Ag at 1 nm thickness and in comparison of low and high N-doping levels. . That is, the density of the stabilized fine Ag nuclei formed during the nucleation process is similar.
도 15를 참조하면, 이후 두께가 증가하면 3 nm 정도에서는 순수 Ag와 AgN간에는 명확한 차이가 존재한다. 순수 Ag는 아직 독립적이고 다각형의 클러스터들(polygonal cluster)의 형태로 ZnO 표면에 분포하고 있으며, Ag에 의한 ZnO 표면의 커버리지(coverage)는 아직 낮은 수준을 유지한다. 그러나, AgN에서는 특히 N의 양이 증가할수록, 클러스터간의 연결이 활성화되고 이러한 결합은 클러스터의 형태를 불규칙적(irregular)으로 바뀌게 만들며, 상대적으로 높은 수준의 ZnO 표면이 AgN에 의해 커버된다.Referring to FIG. 15, when the thickness increases, there is a clear difference between pure Ag and AgN at about 3 nm. Pure Ag is still independent and distributed on the ZnO surface in the form of polygonal clusters, and the coverage of the ZnO surface by Ag is still low. However, in AgN, especially as the amount of N increases, the inter-cluster linkage is activated and this bond causes the cluster's shape to become irregular, with relatively high levels of ZnO surfaces covered by AgN.
이러한 AgN의 모폴로지 특성이 순수 Ag에서 발현되기 위해서는 두께가 더욱 증가하여, 클러스터의 크기가 증가되고 이에 의해 클러스터의 표면에너지가 낮아지며 또한 ZnO와의 계면접착력이 향상되어서 클러스터의 이동(migration)이 억제되어질 때 가능하다. When the morphology of AgN is expressed in pure Ag, the thickness increases further, the size of the cluster increases, thereby lowering the surface energy of the cluster, and also improving the interfacial adhesion with ZnO, thereby suppressing migration of the cluster. It is possible.
도 16은 공정가스 유무에 따른 금속 박막 기판 단면의 FE-SEM 사진이다.16 is a FE-SEM photograph of the cross section of a metal thin film substrate with or without process gas.
도 16은 기판(110) 상에 중간층(130)으로 산화아연(ZnO), 보호층(140)으로 산화아연(ZnO)가 형성되고 중간층(130) 및 보호층(140) 사이에 6.5nm 두께로 형성된 은(Ag)의 단면을 나타낸다.FIG. 16 illustrates zinc oxide (ZnO) as an intermediate layer 130 and zinc oxide (ZnO) as a protective layer 140 on a substrate 110 and a thickness of 6.5 nm between the intermediate layer 130 and the protective layer 140. The cross section of silver (Ag) formed is shown.
공정가스로 아르곤(Ar)만 사용하였을 때에 비해(도 16의 a), 공정가스로 아르곤(Ar) 및 질소(N2)를 사용하였을 때(도 16의 b) 금속 박막(120) 계면의 거칠기가 상대적으로 낮고 연속 박막이 형성됨을 알 수 있다.Roughness at the interface of the metal thin film 120 when argon (Ar) and nitrogen (N 2 ) are used as the process gas (Fig. 16b), compared to when only argon (Ar) is used as the process gas. Is relatively low and a continuous thin film is formed.
도 17은 금속 박막 기판 내 조성 분석을 나타낸 도면이다.17 is a diagram illustrating composition analysis in a metal thin film substrate.
도 17은 실리콘 웨이퍼(Si wafer)로 형성한 기판(110) 상에 중간층(130)으로 산화아연(ZnO) 20nm, 보호층(140)으로 산화아연(ZnO) 5nm가 형성되고 중간층(130) 및 보호층(140) 사이에 24nm 두께로 Ag 금속층이 형성된 구조에서 XPS depth profiling으로부터 얻어진 조성 분석을 나타낸다. 스퍼터링 공정가스 중 아르곤(Ar) 및 질소(N2)의 유량은 각각 45:0 sccm(도 17의 a), 45:4 sccm(도 17의 b), 45:8 sccm (도 17의 c) 45:16 sccm(도 17의 d)을 사용하였다.FIG. 17 illustrates zinc oxide (ZnO) 20 nm as an intermediate layer 130 and zinc oxide (ZnO) 5 nm as a protective layer 140 formed on a substrate 110 formed of a silicon wafer (Si wafer). Composition analysis obtained from XPS depth profiling is shown in a structure in which an Ag metal layer is formed with a thickness of 24 nm between the protective layers 140. The flow rates of argon (Ar) and nitrogen (N 2 ) in the sputtering process gas were 45: 0 sccm (a in FIG. 17), 45: 4 sccm (b in FIG. 17), and 45: 8 sccm (c in FIG. 17). 45:16 sccm (d in FIG. 17) was used.
금속 박막 기판은 이온 에칭을 통해 제거하면서 실리콘 웨이퍼(Si wafer)만 검출될 때까지 조성분석을 진행하였다. 도 17의 a 내지 d에서 확인할 수 있듯이 금속 박막(120)을 나타내는 은(Ag)의 조성이 최고점인 에칭 시간 600sec 시점에서 질소(N2)는 검출되지 않았다. 다만, 금속 박막(120)은 질소(N2)의 포함을 완벽히 배제할 수는 없으며 XPS의 검출한도를 고려할 때 금속 박막(120) 내의 질소(N2)는 1%이하이다.The metal thin substrate was removed through ion etching, and the composition analysis was performed until only a silicon wafer was detected. As can be seen from a to d of FIG. 17, nitrogen (N 2 ) was not detected at the time of 600 sec of etching time when the composition of silver (Ag) representing the metal thin film 120 was the highest point. However, the metal thin film 120 may not completely exclude the inclusion of nitrogen (N 2 ), and considering the detection limit of XPS, nitrogen (N 2 ) in the metal thin film 120 is 1% or less.
도 18은 공정가스 유량에 따른 금속 박막 기판의 표면 조도를 비교한 도면이다. 표면조도는 XRR(X-Ray Reflectivity, Model : Empyrean, PANalytical)를 이용하여 측정하였다.18 is a view comparing surface roughnesses of metal thin film substrates according to process gas flow rates. Surface roughness was measured using XRR (X-Ray Reflectivity, Model: Empyrean, PANalytical).
공정 가스가 Ar:N2=45:4 sccm 또는 Ar:N2=45:16 sccm 으로 투입한 경우, 아르곤(Ar)만을 사용한 경우보다 표면 조도가 낮아진 것을 알 수 있다.It can be seen that the surface roughness was lower when the process gas was introduced at Ar: N 2 = 45: 4 sccm or Ar: N 2 = 45: 16 sccm, compared with the case where only argon (Ar) was used.
도 19는 본 발명의 일 실시예에 따른 금속 박막 기판의 두께 변경에 따른 표면 조도를 비교한 도면이다. 표면 조도는 AFM으로 측정하였다. 공정 가스가 Ar:N2=45:4 sccm 으로 투입한 경우 금속 박막(120)을 6nm의 두께로 증착한 경우 가장 낮은 조도를 보였다.19 is a view comparing surface roughness according to the thickness change of the metal thin film substrate according to the exemplary embodiment of the present invention. Surface roughness was measured by AFM. When the process gas was introduced as Ar: N 2 = 45: 4 sccm, when the metal thin film 120 was deposited with a thickness of 6 nm, the lowest roughness was shown.
도 20은 공정가스 유량에 따른 금속 박막 기판의 저항 값을 비교한 도면이다.20 is a view comparing resistance values of a metal thin film substrate according to a process gas flow rate.
도 20은 Four-point probe system (MCP-T600, Mitsubishi Chemical Co.)에 의해 ZnO(20nm)/Ag/ZnO(20nm)와 ZnO(20nm)/Ag(N)/ZnO(20nm) 구조에서 측정된 저항 (Resistivity) 값을 나타낸다.20 is measured in ZnO (20nm) / Ag / ZnO (20nm) and ZnO (20nm) / Ag (N) / ZnO (20nm) structure by Four-point probe system (MCP-T600, Mitsubishi Chemical Co.) Indicates resistance value.
도 20을 참조하면, 저항값에 있어서 공정 가스로 Ar만을 사용한 경우보다 N2와 혼합하여 사용한 경우가 저항값이 낮게 나타났으며 특히 얇은 두께에서 그 차이가 더욱 두드러지게 나타났다.Referring to FIG. 20, the resistance value was lower in the case of mixing with N 2 than in the case of using only Ar as the process gas, and the difference was more prominent in the thin thickness.
이것은 저항(resistivity) 감소가 연속박막 형성에 의한 전도성(conductivity) 증가와 반비례한다는 점에서, 이 결과는 N-도핑이 Ag의 연속박막형성을 촉진하는 것이 확인되었다. 이러한 특성은 Ag(N), 8-16sccm에서 saturation되는 것이 확인되며, 이후 N 증가는 연속박막을 형성한 Ag (두께가 10 nm 이상)일 때 저항 증가로 이어질 수 있다. This was found that the decrease in resistivity was inversely proportional to the increase in conductance due to continuous thin film formation, and this result confirmed that N-doping promoted continuous thin film formation of Ag. This property is confirmed to be saturated at Ag (N), 8-16sccm, and the increase in N may lead to an increase in resistance when Ag (the thickness is 10 nm or more) forming a continuous thin film.
도 21은 본 발명에 의한 금속 박막을 2theta scan하여 Ag(N)내에 독립적인 AgN phase가 존재하지 않음을 확인한 결과를 보여주는 그래프이다. 21 is a graph showing a result of confirming that there is no independent AgN phase in Ag (N) by performing a 2theta scan of the metal thin film according to the present invention.
도 21을 참조하면, 모든 Ag peak들은 Ag(N)내에서도 확인가능하며 이로부터 본 실험에서 증착된 Ag(N)은 Ag 금속(metallic)임이 확인되었다. 한편, N inclusion의 영향으로 피크 강도(peak intensity)와 FWHM 값이 변하는 것으로 나타나 결정성(crystallinity)에 변화가 있는 것으로 확인할 수 있었다. Referring to FIG. 21, all Ag peaks can be identified even in Ag (N), and from this, it was confirmed that Ag (N) deposited in this experiment was Ag metal. On the other hand, peak intensity and FWHM values were changed due to the influence of N inclusion, indicating that there was a change in crystallinity.
도 22 및 도 23은 Ag(N) 내의 N (질소) 잔량 검출을 위한 SIMS 분석을 한 결과를 나타낸다. 상기 SIMS 분석 결과를 통해 N 잔량 검출이 가능하다는 것과 N 조성에 따라 Ag(111)/Ag(200)의 변화를 유발하는 메커니즘을 확인할 수 있었다.22 and 23 show the results of SIMS analysis for detecting the residual amount of N (nitrogen) in Ag (N). Through the SIMS analysis result, it was possible to confirm the detection of the remaining amount of N and the mechanism causing the change of Ag (111) / Ag (200) according to the N composition.
상기 SIMS 분석은 한국기초과학지원연구원 부산센터(Korea Basic Science Institute, Busan Center)에서 진행하였고, 분석 장비 및 분석 조건은 표 1에 나타내었다.The SIMS analysis was conducted at the Korea Basic Science Institute, Busan Center, and the analysis equipment and analysis conditions are shown in Table 1.
Figure PCTKR2016005124-appb-T000001
Figure PCTKR2016005124-appb-T000001
도 22는 Si 웨이퍼 상에 20 nm-두께의 Ag(N)를 나타내고 도 23은 Si 웨이퍼 상에 100 nm-두께의 Ag(N)를 나타낸다.FIG. 22 shows 20 nm-thick Ag (N) on a Si wafer and FIG. 23 shows 100 nm-thick Ag (N) on a Si wafer.
우선 N의 조성을 살펴보면, 도 22를 참조하면, Ag(N)_1 (Ar:N2 = 45:4 sccm)의 경우 초기 박막에는 5% 내외의 N atomic%가 도달된 후 감소하여 이후에는 1% 이하에서 유지하는 것으로 나타났다. First, referring to the composition of N, referring to FIG. 22, in the case of Ag (N) _1 (Ar: N 2 = 45: 4 sccm), N atomic% of about 5% was reached in the initial thin film, and then decreased. It has been shown to remain below.
도 23을 참조하면, Ag(N)_2 (Ar:N2 = 45:16 sccm)의 경우 초기 박막에는 5~15 내외의 N atomic %가 도달된 후 감소하여 이후에는 2~3%를 유지하는 것으로 나타났다.Referring to FIG. 23, in the case of Ag (N) _2 (Ar: N 2 = 45:16 sccm), N atomic% of about 5 to 15 was reached after the initial thin film, and then decreased to maintain 2 to 3% thereafter. Appeared.
또한, 초기박막에서 N 증가를 측정한 SIMS 결과와 초기박막에서 N 주입에 따른 높은 (111)/(200)비를 측정한 XRD 결과의 연관성을 살펴보면, Ag 초기 박막, 즉 아직 연속박막이 형성되지 않고 개별적 클러스터(individual cluster) 또는 입자(granule)로 이루어진 단계에서는 Ag 클러스터의 표면은 여러 면(face)을 가지는 다각형(polygonal) 구조로 이루어져 있음을 확인하였다.In addition, the correlation between the SIMS result of measuring N increase in the initial thin film and the XRD result of measuring a high (111) / (200) ratio due to N injection in the initial thin film shows that the Ag initial thin film, that is, the continuous thin film is not formed yet. In the step consisting of individual clusters or granules, it was confirmed that the surface of the Ag cluster is composed of a polygonal structure having multiple faces.
초기 Ag 클러스터(cluster)의 표면은 그 작은 클러스터 크기(cluster size)로 인해 높은 표면에너지에 의한 아주 높은 표면 반응성을 가지고 있고, 이러한 반응성은 크기가 증가할수록 감소한다.The surface of the initial Ag cluster has very high surface reactivity due to its high surface energy due to its small cluster size, and this reactivity decreases with increasing size.
그러므로 Ag와 N 사이의 높은 결합에너지 장벽(barrier)에도 불구하고 이러한 높은 표면 반응성 (높은 표면에너지에 의한)을 낮추기 위해 많은 양의 N이 초기 Ag 클러스터에 흡착된다. Therefore, despite the high binding energy barrier between Ag and N, a large amount of N is adsorbed to the initial Ag cluster to lower this high surface reactivity (due to high surface energy).
이러한 N의 흡착은 이후 기상으로부터 클러스터에 도달되는 Ag 이온의 흡착을 방해함으로써(Ag-Ag cohesion을 억제시킴으로써) 해당 face의 성장을 억제한다. This adsorption of N inhibits the growth of the face by interfering with the adsorption of Ag ions reaching the cluster from the gas phase (by inhibiting Ag-Ag cohesion).
하지만 Ag 클러스터의 여러 face 중 (111)이 가장 낮은 표면에너지를 가짐으로써 다른 face들에 비해, 특히 (200)에 비해, 가장 안정되어 있으므로 N의 흡착이 상대적으로 억제된다. 이로부터 다른 face에 비해 Ag(111)의 성장은 지속된다. However, since (111) of the Ag clusters has the lowest surface energy, the adsorption of N is relatively suppressed since it is most stable compared to other faces, especially (200). From this, growth of Ag (111) is continued compared to other faces.
이것의 결과로써 p(111) 혹은 (111)/(200)의 비가 N2 주입에 의해 급격히 증가한다. 이러한 p(111)의 증가는 클러스터 자체의 표면에너지를 낮춤으로써, nanoscopic cluster간의 coalescence (혹은 agglomeration)에 의한 3차원 성장을 억제하고 대신 안정된 다수의 클러스터로부터 얇은 박막에서도 2차원 연속박막을 형성하는 것으로 확인되었다(FE-SEM, TEM 결과). As a result of this, the ratio of p (111) or (111) / (200) increases rapidly by N 2 injection. This increase in p (111) lowers the surface energy of the cluster itself, thereby inhibiting three-dimensional growth due to coalescence (or agglomeration) between nanoscopic clusters, and instead forming a two-dimensional continuous thin film even in thin films from stable clusters. It was confirmed (FE-SEM, TEM results).
도 24 및 도 25는 본 발명의 일 실시예에 의한 금속 박막 기판의 광전 특성을 나타낸 도면이다.24 and 25 illustrate photoelectric characteristics of a metal thin film substrate according to an exemplary embodiment of the present invention.
상기 본 발명의 모폴로지 특성으로부터 ZnO/Ag(N)/ZnO (ZnO 산화물 사이에 위치한 Ag(N) 박막 구조) 구조의 광특성 향상을 검증하였다(Optical transmittance UV-Visible-near infrared spectrophotometry, Cary series, Agilent technologies).The optical properties of ZnO / Ag (N) / ZnO (Ag (N) thin film structure located between ZnO oxides) structure were verified from the morphology of the present invention (Optical transmittance UV-Visible-near infrared spectrophotometry, Cary series, Agilent technologies).
도 24를 참조하면, 400-2200 nm 파장대에서 측정한 총 광투과율 (total transmittance) Ag에 비해 Ag(N), 특히 Ag(N) 16sccm의 optimal total transmittance가 전파장대에서 높은 것이 확인되었다(가시광선 및 near-IR 영역).Referring to FIG. 24, it was confirmed that the optimal total transmittance of Ag (N), in particular, Ag (N) 16sccm was higher at the radio wave band than the total light transmittance Ag measured in the 400-2200 nm wavelength band (visible light). And near-IR region).
주목해야 하는 결과는, Ag의 경우 가시광 영역(400-800 nm)에서 optimal transmittance는 10-12 nm에서 확보되는 반면에, Ag(N) 16sccm의 경우는 그 optimal transmittance가 단지 6 nm 두께에서 확보된다. Optimal transmittance가 연속박막을 형성하는 최소 두께에서 확보되는 사실로부터 Ag에 비해 Ag(N) 16sccm에서 얇은 두께에서 연속박막을 형성하여 그 투과도가 향상되는 것을 확인할 수 있다. 이 사실은 N-도핑을 통한 연속박막 형성을 촉진한다는 위의 결과들과 일치한다.It should be noted that for Ag, optimal transmittance is achieved at 10-12 nm in the visible region (400-800 nm), while for Ag (N) 16 sccm its optimal transmittance is only at 6 nm thick. . From the fact that the optimal transmittance is secured at the minimum thickness to form the continuous thin film, it can be seen that the transmittance is improved by forming the continuous thin film at a thin thickness of Ag (N) 16sccm compared to Ag. This fact is consistent with the above results of promoting continuous thin film formation through N-doping.
도 25를 참조하면, 도 24의 동일 광투과도 측정 자료를 가시광선 파장대로 축소할 경우, 명확하게 N-도핑의 증가에 의해 Ag(N)의 광투과율이 증가하고 더 낮은 두께에서 최고의 광투과율에 도달하는 것이 확인되었다.Referring to FIG. 25, when the same light transmittance measurement data of FIG. 24 is reduced to the visible light wavelength, the light transmittance of Ag (N) is clearly increased by the increase of N-doping and the highest light transmittance at a lower thickness is obtained. It was confirmed to arrive.
상술한 본 발명의 금속 박막 기판의 제조 방법은 박막 성장 초기부터 2차원 연속 박막으로 성장시킬 수 있어, 디스플레이 제조, 태양전지용 전극 제조, 히터, 반도체 공정 등 연속적 금속 박막 형성이 필요한 모든 분야에 유용하게 활용될 수 있다.The method of manufacturing the metal thin film substrate of the present invention described above can be grown into a two-dimensional continuous thin film from the beginning of the thin film growth, and is useful for all fields requiring continuous metal thin film formation such as display manufacturing, solar cell electrode manufacturing, heater, semiconductor process, and the like. Can be utilized.
이상, 본 발명의 일 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면, 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리 범위 내에 포함된다고 할 것이다.As mentioned above, although an embodiment of the present invention has been described, those of ordinary skill in the art may add, change, delete, or eliminate the elements within the scope of the present invention described in the claims. The present invention may be variously modified and changed by addition, etc., which will also be included within the scope of the present invention.

Claims (20)

  1. 기판; 및Board; And
    상기 기판 상에 형성되며 은(Ag) 또는 은합금을 포함하는 금속 박막;을 포함하되,And a metal thin film formed on the substrate and including silver (Ag) or a silver alloy.
    상기 금속 박막의 (111)면의 전체 결정면에 대한 비율은 상기 금속 박막의 두께가 증가함에 따라 감소하는 금속 박막 기판. And a ratio of the (111) plane of the metal thin film to the entire crystal surface decreases as the thickness of the metal thin film increases.
  2. 제1항에 있어서,The method of claim 1,
    상기 금속 박막의 (111)면의 배향도(Degree of preferred orientation, p(111))가 1.6 이상인 금속 박막 기판.A metal thin film substrate having a degree of preferred orientation (p (111)) of the (111) plane of the metal thin film.
  3. 제1항에 있어서,The method of claim 1,
    상기 금속 박막의 (111)/(200)이 10 이상인 금속 박막 기판.A metal thin film substrate, wherein (111) / (200) of the metal thin film is 10 or more.
  4. 제1항에 있어서,The method of claim 1,
    상기 금속 박막의 두께가 10nm 이상인 경우 상기 금속 박막의 (111)면의 배향도(Degree of preferred orientation, p(111))가 1.7 이하인 금속 박막 기판.The metal thin film substrate having a degree of preferred orientation (p (111)) of 1.7 or less when the thickness of the metal thin film is 10 nm or more.
  5. 제1항에 있어서,The method of claim 1,
    상기 금속 박막의 두께가 10nm 이상인 경우 상기 금속 박막의 (111)/(200)이 12 이하인 금속 박막 기판.The metal thin film substrate having (111) / (200) of the metal thin film of 12 or less when the thickness of the metal thin film is 10 nm or more.
  6. 제1항에 있어서,The method of claim 1,
    상기 금속 박막의 두께는 0nm 초과, 40nm 이하인 금속 박막 기판.The metal thin film substrate has a thickness of more than 0 nm and 40 nm or less.
  7. 제1항에 있어서,The method of claim 1,
    상기 금속 박막의 조도가 0 nm 초과, 0.8 nm 이하인 금속 박막 기판.A metal thin film substrate having roughness of more than 0 nm and 0.8 nm or less.
  8. 제1항에 있어서, The method of claim 1,
    상기 기판은 투명 폴리머 기판인 금속 박막 기판.The substrate is a metal thin film substrate is a transparent polymer substrate.
  9. 제1항에 있어서,The method of claim 1,
    상기 기판은 전도성 산화물 또는 질화물을 포함하는 금속 박막 기판.The substrate is a metal thin film substrate comprising a conductive oxide or nitride.
  10. 제1항에 있어서,The method of claim 1,
    상기 금속 박막 기판은 30Ω/sq 이하의 면저항을 가지는 금속 박막 기판. The metal thin film substrate has a sheet resistance of 30 Ω / sq or less.
  11. 제1항에 있어서, The method of claim 1,
    상기 금속 박막 기판은 85% 이상의 광투과도를 가지는 금속 박막 기판.The metal thin film substrate has a light transmittance of 85% or more.
  12. 제1항에 있어서,The method of claim 1,
    상기 기판 및 상기 금속 박막 사이에 형성되는 중간층;을 더 포함하는 금속 박막 기판.And an intermediate layer formed between the substrate and the metal thin film.
  13. 제1항에 있어서,The method of claim 1,
    상기 금속 박막 상에 형성되는 보호층;을 더 포함하는 금속 박막 기판.And a protective layer formed on the metal thin film.
  14. 제1항에 있어서,The method of claim 1,
    상기 금속 박막은 질소로 도핑되는 금속 박막 기판.The metal thin film is a metal thin film substrate doped with nitrogen.
  15. 제1항에 있어서,The method of claim 1,
    상기 금속 박막의 두께가 10nm 이하인 경우, 상기 금속 박막의 질소 함유량은 20% 이하인 금속 박막 기판.The metal thin film substrate having a nitrogen content of 20% or less when the thickness of the metal thin film is 10 nm or less.
  16. 제1항에 있어서, The method of claim 1,
    상기 금속 박막은 아르곤(Ar) 및 질소(N2)를 공정가스로 한 물리기상증착법(PVD, Physical Vapor Deposition)에 의해 형성되는 금속 박막 기판.The metal thin film is a metal thin film substrate formed by physical vapor deposition (PVD) using argon (Ar) and nitrogen (N 2 ) as a process gas.
  17. 제16항에 있어서,The method of claim 16,
    상기 공정 가스는 아르곤(Ar) : 질소(N2)가 45 : 2 내지 35의 비율인 금속 박막 기판.The process gas is a metal thin film substrate having an argon (Ar): nitrogen (N 2 ) ratio of 45: 2 to 35.
  18. 제1항에 있어서,The method of claim 1,
    상기 금속 박막을 형성하는 단계가 100℃ 이하에서 수행되는 금속 박막 기판.Forming the metal thin film is a metal thin film substrate is performed at 100 ℃ or less.
  19. 제1항에 기재된 금속 박막 기판을 포함하는 물품.An article comprising the metal thin film substrate according to claim 1.
  20. 제19항에 있어서,The method of claim 19,
    상기 물품은 디스플레이용 투명 전극, 편광판, 태양전지용 투명 전극, 저방사코팅, 투명히터용 전극, 또는 반도체용 미세금속전극인 물품.The article is a transparent electrode for a display, a polarizing plate, a transparent electrode for solar cells, a low radiation coating, an electrode for a transparent heater, or a fine metal electrode for a semiconductor.
PCT/KR2016/005124 2015-05-15 2016-05-13 Metal thin film substrate and method of manufacturing same WO2016186402A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/122,064 US20170175249A1 (en) 2015-05-15 2016-05-13 Thin metal film substrate and method for preparing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150067837 2015-05-15
KR10-2015-0067837 2015-05-15
KR10-2016-0059030 2016-05-13
KR1020160059030A KR101712597B1 (en) 2015-05-15 2016-05-13 thin metal layer substrate and fabrication method for the same

Publications (1)

Publication Number Publication Date
WO2016186402A1 true WO2016186402A1 (en) 2016-11-24

Family

ID=57320697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005124 WO2016186402A1 (en) 2015-05-15 2016-05-13 Metal thin film substrate and method of manufacturing same

Country Status (1)

Country Link
WO (1) WO2016186402A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275130A (en) * 1993-03-18 1994-09-30 Hitachi Ltd Transparent conductive film
JPH10323932A (en) * 1997-05-23 1998-12-08 Toyobo Co Ltd Transparent conductive film
KR20120097451A (en) * 2011-02-22 2012-09-04 한국과학기술연구원 Transparent conductive composition and target, transparent conductive thin film and method for producing the same using the target
KR20130077963A (en) * 2011-12-30 2013-07-10 한국기계연구원 A transparent flexible board having layer for high flexible layer and transparency conductive layer and manufacturing method of the same
KR20140084392A (en) * 2012-12-26 2014-07-07 한국기계연구원 A transparency conductive board and Method of manufacturing thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275130A (en) * 1993-03-18 1994-09-30 Hitachi Ltd Transparent conductive film
JPH10323932A (en) * 1997-05-23 1998-12-08 Toyobo Co Ltd Transparent conductive film
KR20120097451A (en) * 2011-02-22 2012-09-04 한국과학기술연구원 Transparent conductive composition and target, transparent conductive thin film and method for producing the same using the target
KR20130077963A (en) * 2011-12-30 2013-07-10 한국기계연구원 A transparent flexible board having layer for high flexible layer and transparency conductive layer and manufacturing method of the same
KR20140084392A (en) * 2012-12-26 2014-07-07 한국기계연구원 A transparency conductive board and Method of manufacturing thereof

Similar Documents

Publication Publication Date Title
WO2017142231A1 (en) Metal plate, mask for deposition and manufacturing method therefor
WO2014003346A1 (en) Light emitting diode for surface mount technology, method of manufacturing the same, and method of manufacturing light emitting diode module
WO2011046388A2 (en) Solar photovoltaic device and a production method for the same
WO2016171421A1 (en) Touch window
WO2014161380A1 (en) Transparent conductive electrodes comprising merged metal nanowires, their structure design, and method of making such structures
WO2011040786A2 (en) Solar photovoltaic device and a production method for the same
WO2015065162A1 (en) Conductive structure and preparation method therefor
WO2016047950A1 (en) Light emitting device and method of fabricating the same
WO2018034411A1 (en) Film touch sensor and structure for film touch sensor
WO2018103599A1 (en) Active switch array substrate and fabrication method therefor
WO2019083338A1 (en) Oxide semiconductor thin-film transistor and method for manufacturing same
WO2020105910A1 (en) Alloy metal plate and deposition mask including same
WO2017111561A1 (en) Alloy-coated steel sheet and manufacturing method therefor
WO2020145568A1 (en) Solar cell preparation method
WO2020171397A1 (en) Flexible flat cable and method of producing the same
WO2022114501A1 (en) Perovskite solar cell module and manufacturing method for same
WO2016122006A1 (en) Core-shell nanowire, method for synthesizing the core-shell nanowire, and transparent electrode and organic light emitting diode including the core-shell nanowire
WO2018043766A1 (en) Copper thin film substrate and method for manufacturing same
WO2016186402A1 (en) Metal thin film substrate and method of manufacturing same
WO2014133285A1 (en) Conductive thin film, method for producing same, and electronic element comprising same
CN100539046C (en) The manufacture method of semiconductor device and stripping means and semiconductor device
WO2020180149A1 (en) Packaging substrate and semiconductor apparatus comprising same
WO2011013966A2 (en) Method for manufacturing a heat-dissipating substrate for an led, and structure thereof
WO2020050549A1 (en) Method for controlling current path range by using electric field, and electronic circuit
WO2017111275A1 (en) Thin film transistor substrate, and display panel and display device including same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15122064

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796729

Country of ref document: EP

Kind code of ref document: A1